WorldWideScience

Sample records for achieve higher accuracy

  1. Photon caliper to achieve submillimeter positioning accuracy

    Science.gov (United States)

    Gallagher, Kyle J.; Wong, Jennifer; Zhang, Junan

    2017-09-01

    The purpose of this study was to demonstrate the feasibility of using a commercial two-dimensional (2D) detector array with an inherent detector spacing of 5 mm to achieve submillimeter accuracy in localizing the radiation isocenter. This was accomplished by delivering the Vernier ‘dose’ caliper to a 2D detector array where the nominal scale was the 2D detector array and the non-nominal Vernier scale was the radiation dose strips produced by the high-definition (HD) multileaf collimators (MLCs) of the linear accelerator. Because the HD MLC sequence was similar to the picket fence test, we called this procedure the Vernier picket fence (VPF) test. We confirmed the accuracy of the VPF test by offsetting the HD MLC bank by known increments and comparing the known offset with the VPF test result. The VPF test was able to determine the known offset within 0.02 mm. We also cross-validated the accuracy of the VPF test in an evaluation of couch hysteresis. This was done by using both the VPF test and the ExacTrac optical tracking system to evaluate the couch position. We showed that the VPF test was in agreement with the ExacTrac optical tracking system within a root-mean-square value of 0.07 mm for both the lateral and longitudinal directions. In conclusion, we demonstrated the VPF test can determine the offset between a 2D detector array and the radiation isocenter with submillimeter accuracy. Until now, no method to locate the radiation isocenter using a 2D detector array has been able to achieve such accuracy.

  2. Bounds on achievable accuracy in analog optical linear-algebra processors

    Science.gov (United States)

    Batsell, Stephen G.; Walkup, John F.; Krile, Thomas F.

    1990-07-01

    Upper arid lower bounds on the number of bits of accuracy achievable are determined by applying a seconth-ortler statistical model to the linear algebra processor. The use of bounds was found necessary due to the strong signal-dependence of the noise at the output of the optical linear algebra processor (OLAP). 1 1. ACCURACY BOUNDS One of the limiting factors in applying OLAPs to real world problems has been the poor achievable accuracy of these processors. Little previous research has been done on determining noise sources from a systems perspective which would include noise generated in the multiplication ard addition operations spatial variations across arrays and crosstalk. We have previously examined these noise sources and determined a general model for the output noise mean and variance. The model demonstrates a strony signaldependency in the noise at the output of the processor which has been confirmed by our experiments. 1 We define accuracy similar to its definition for an analog signal input to an analog-to-digital (ND) converter. The number of bits of accuracy achievable is related to the log (base 2) of the number of separable levels at the P/D converter output. The number of separable levels is fouri by dividing the dynamic range by m times the standard deviation of the signal a. 2 Here m determines the error rate in the P/D conversion. The dynamic range can be expressed as the

  3. Convolutional Neural Network Achieves Human-level Accuracy in Music Genre Classification

    OpenAIRE

    Dong, Mingwen

    2018-01-01

    Music genre classification is one example of content-based analysis of music signals. Traditionally, human-engineered features were used to automatize this task and 61% accuracy has been achieved in the 10-genre classification. However, it's still below the 70% accuracy that humans could achieve in the same task. Here, we propose a new method that combines knowledge of human perception study in music genre classification and the neurophysiology of the auditory system. The method works by trai...

  4. Quantum chemistry by random walk: Higher accuracy

    International Nuclear Information System (INIS)

    Anderson, J.B.

    1980-01-01

    The random walk method of solving the Schroedinger equation is extended to allow the calculation of eigenvalues of atomic and molecular systems with higher accuracy. The combination of direct calculation of the difference delta between a true wave function psi and a trial wave function psi/sub o/ with importance sampling greatly reduces systematic and statistical error. The method is illustrated with calculations for ground-state hydrogen and helium atoms using trial wave functions from variational calculations. The energies obtained are 20 to 100 times more accurate than those of the corresponding variational calculations

  5. Accuracy required and achievable in radiotherapy dosimetry: have modern technology and techniques changed our views?

    Science.gov (United States)

    Thwaites, David

    2013-06-01

    In this review of the accuracy required and achievable in radiotherapy dosimetry, older approaches and evidence-based estimates for 3DCRT have been reprised, summarising and drawing together the author's earlier evaluations where still relevant. Available evidence for IMRT uncertainties has been reviewed, selecting information from tolerances, QA, verification measurements, in vivo dosimetry and dose delivery audits, to consider whether achievable uncertainties increase or decrease for current advanced treatments and practice. Overall there is some evidence that they tend to increase, but that similar levels should be achievable. Thus it is concluded that those earlier estimates of achievable dosimetric accuracy are still applicable, despite the changes and advances in technology and techniques. The one exception is where there is significant lung involvement, where it is likely that uncertainties have now improved due to widespread use of more accurate heterogeneity models. Geometric uncertainties have improved with the wide availability of IGRT.

  6. Comparatives Korean and Mongolian Achievement In Higher Education

    OpenAIRE

    Uranchimeg Julia Agvaantseren; Park Sae Hoon

    2013-01-01

    The purpose of this paper is to introduce the transition of Korean higher education reform and to study of Korean and Mongolian experience and achievement in contemporary higher education. And also paper provides a description of the higher education in Mongolia in an effort to identify important financial issues and concern while comparing with Korean high education experience and tries to attract attention of policy makers for better alternative...

  7. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  8. Achieving Equity in Higher Education: The Unfinished Agenda

    Science.gov (United States)

    Astin, Alexander W.; Astin, Helen S.

    2015-01-01

    In this retrospective account of their scholarly work over the past 45 years, Alexander and Helen Astin show how the struggle to achieve greater equity in American higher education is intimately connected to issues of character development, leadership, civic responsibility, and spirituality. While shedding some light on a variety of questions…

  9. Stable Same-Sex Friendships with Higher Achieving Partners Promote Mathematical Reasoning in Lower Achieving Primary School Children

    Science.gov (United States)

    DeLay, Dawn; Laursen, Brett; Kiuru, Noona; Poikkeus, Anna-Maija; Aunola, Kaisa; Nurmi, Jari-Erik

    2015-01-01

    This study is designed to investigate friend influence over mathematical reasoning in a sample of 374 children in 187 same-sex friend dyads (184 girls in 92 friendships; 190 boys in 95 friendships). Participants completed surveys that measured mathematical reasoning in the 3rd grade (approximately 9 years old) and one year later in the 4th grade (approximately 10 years old). Analyses designed for dyadic data (i.e., longitudinal Actor-Partner Interdependence Models) indicated that higher achieving friends influenced the mathematical reasoning of lower achieving friends, but not the reverse. Specifically, greater initial levels of mathematical reasoning among higher achieving partners in the 3rd grade predicted greater increases in mathematical reasoning from 3rd grade to 4th grade among lower achieving partners. These effects held after controlling for peer acceptance and rejection, task avoidance, interest in mathematics, maternal support for homework, parental education, length of the friendship, and friendship group norms on mathematical reasoning. PMID:26402901

  10. Variables associated with achievement in higher education: A systematic review of meta-analyses.

    Science.gov (United States)

    Schneider, Michael; Preckel, Franzis

    2017-06-01

    The last 2 decades witnessed a surge in empirical studies on the variables associated with achievement in higher education. A number of meta-analyses synthesized these findings. In our systematic literature review, we included 38 meta-analyses investigating 105 correlates of achievement, based on 3,330 effect sizes from almost 2 million students. We provide a list of the 105 variables, ordered by the effect size, and summary statistics for central research topics. The results highlight the close relation between social interaction in courses and achievement. Achievement is also strongly associated with the stimulation of meaningful learning by presenting information in a clear way, relating it to the students, and using conceptually demanding learning tasks. Instruction and communication technology has comparably weak effect sizes, which did not increase over time. Strong moderator effects are found for almost all instructional methods, indicating that how a method is implemented in detail strongly affects achievement. Teachers with high-achieving students invest time and effort in designing the microstructure of their courses, establish clear learning goals, and employ feedback practices. This emphasizes the importance of teacher training in higher education. Students with high achievement are characterized by high self-efficacy, high prior achievement and intelligence, conscientiousness, and the goal-directed use of learning strategies. Barring the paucity of controlled experiments and the lack of meta-analyses on recent educational innovations, the variables associated with achievement in higher education are generally well investigated and well understood. By using these findings, teachers, university administrators, and policymakers can increase the effectivity of higher education. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Do you really understand? Achieving accuracy in interracial relationships.

    Science.gov (United States)

    Holoien, Deborah Son; Bergsieker, Hilary B; Shelton, J Nicole; Alegre, Jan Marie

    2015-01-01

    Accurately perceiving whether interaction partners feel understood is important for developing intimate relationships and maintaining smooth interpersonal exchanges. During interracial interactions, when are Whites and racial minorities likely to accurately perceive how understood cross-race partners feel? We propose that participant race, desire to affiliate, and racial salience moderate accuracy in interracial interactions. Examination of cross-race roommates (Study 1) and interracial interactions with strangers (Study 2) revealed that when race is salient, Whites higher in desire to affiliate with racial minorities failed to accurately perceive the extent to which racial minority partners felt understood. Thus, although the desire to affiliate may appear beneficial, it may interfere with Whites' ability to accurately perceive how understood racial minorities feel. By contrast, racial minorities higher in desire to affiliate with Whites accurately perceived how understood White partners felt. Furthermore, participants' overestimation of how well they understood partners correlated negatively with partners' reports of relationship quality. Collectively, these findings indicate that racial salience and desire to affiliate moderate accurate perceptions of cross-race partners-even in the context of sustained interracial relationships-yielding divergent outcomes for Whites and racial minorities. (PsycINFO Database Record (c) 2015 APA, all rights reserved). (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  12. Storytelling in the digital world: achieving higher-level learning objectives.

    Science.gov (United States)

    Schwartz, Melissa R

    2012-01-01

    Nursing students are not passive media consumers but instead live in a technology ecosystem where digital is the language they speak. To prepare the next generation of nurses, educators must incorporate multiple technologies to improve higher-order learning. The author discusses the evolution and use of storytelling as part of the digital world and how digital stories can be aligned with Bloom's Taxonomy so that students achieve higher-level learning objectives.

  13. Parental Encouragement in Relation to Academic Achievement of Higher Secondary School Students

    Science.gov (United States)

    Lawrence, A. S. Arul; Barathi, C.

    2016-01-01

    Parental Encouragement refers to the general process undertaken by the parents to initiative and directs the behaviour of the children towards high academic achievement. The present study aims to probe the relationship between Parental Encouragement and Academic Achievement of Higher Secondary School Students. Survey method was employed and the…

  14. Comparing Episodes of Mathematics Teaching for Higher Achievers in England and Germany

    Science.gov (United States)

    Kelly, Peter; Kotthoff, Hans-Georg

    2016-01-01

    To illustrate similarities and differences in lower secondary level mathematics teaching with higher achievers and thereby explore privileging processes, we contrast a teaching episode in Baden-Württemberg, Germany with one in South West England. These have been selected from a larger study as typical within each region for higher achieving…

  15. Achieving High Accuracy in Calculations of NMR Parameters

    DEFF Research Database (Denmark)

    Faber, Rasmus

    quantum chemical methods have been developed, the calculation of NMR parameters with quantitative accuracy is far from trivial. In this thesis I address some of the issues that makes accurate calculation of NMR parameters so challenging, with the main focus on SSCCs. High accuracy quantum chemical......, but no programs were available to perform such calculations. As part of this thesis the CFOUR program has therefore been extended to allow the calculation of SSCCs using the CC3 method. CC3 calculations of SSCCs have then been performed for several molecules, including some difficult cases. These results show...... vibrations must be included. The calculation of vibrational corrections to NMR parameters has been reviewed as part of this thesis. A study of the basis set convergence of vibrational corrections to nuclear shielding constants has also been performed. The basis set error in vibrational correction...

  16. Predicting early academic achievement: The role of higher-versus lower-order personality traits

    Directory of Open Access Journals (Sweden)

    Zupančič Maja

    2011-01-01

    Full Text Available The study explored the role of children’s (N = 193 individual differences and parental characteristics at the beginning of the first year of schooling in predicting students’ attainment of academic standards at the end of the year. Special attention was paid to children’s personality as perceived by the teachers’ assistants. Along with parents’ education, parenting practices and first-graders’ cognitive ability, the incremental predictive power of children’s higher-order (robust personality traits was compared to the contribution of lower-order (specific traits in explaining academic achievement. The specific traits provided a somewhat more accurate prediction than the robust traits. Unique contributions of maternal authoritative parenting, children’s cognitive ability, and personality to academic achievement were established. The ratings of first-graders’ conscientiousness (a higher-order trait improved the prediction of academic achievement based on parenting and cognitive ability by 12%, whereas assistant teacher’s perceived children’s intelligence and low antagonism (lower-order traits improved the prediction by 17%.

  17. Leveraging Quality Improvement to Achieve Student Learning Assessment Success in Higher Education

    Science.gov (United States)

    Glenn, Nancy Gentry

    2009-01-01

    Mounting pressure for transformational change in higher education driven by technology, globalization, competition, funding shortages, and increased emphasis on accountability necessitates that universities implement reforms to demonstrate responsiveness to all stakeholders and to provide evidence of student achievement. In the face of the demand…

  18. Martial arts striking hand peak acceleration, accuracy and consistency.

    Science.gov (United States)

    Neto, Osmar Pinto; Marzullo, Ana Carolina De Miranda; Bolander, Richard P; Bir, Cynthia A

    2013-01-01

    The goal of this paper was to investigate the possible trade-off between peak hand acceleration and accuracy and consistency of hand strikes performed by martial artists of different training experiences. Ten male martial artists with training experience ranging from one to nine years volunteered to participate in the experiment. Each participant performed 12 maximum effort goal-directed strikes. Hand acceleration during the strikes was obtained using a tri-axial accelerometer block. A pressure sensor matrix was used to determine the accuracy and consistency of the strikes. Accuracy was estimated by the radial distance between the centroid of each subject's 12 strikes and the target, whereas consistency was estimated by the square root of the 12 strikes mean squared distance from their centroid. We found that training experience was significantly correlated to hand peak acceleration prior to impact (r(2)=0.456, p =0.032) and accuracy (r(2)=0. 621, p=0.012). These correlations suggest that more experienced participants exhibited higher hand peak accelerations and at the same time were more accurate. Training experience, however, was not correlated to consistency (r(2)=0.085, p=0.413). Overall, our results suggest that martial arts training may lead practitioners to achieve higher striking hand accelerations with better accuracy and no change in striking consistency.

  19. Does higher quality early child care promote low-income children's math and reading achievement in middle childhood?

    Science.gov (United States)

    Dearing, Eric; McCartney, Kathleen; Taylor, Beck A

    2009-01-01

    Higher quality child care during infancy and early childhood (6-54 months of age) was examined as a moderator of associations between family economic status and children's (N = 1,364) math and reading achievement in middle childhood (4.5-11 years of age). Low income was less strongly predictive of underachievement for children who had been in higher quality care than for those who had not. Consistent with a cognitive advantage hypothesis, higher quality care appeared to promote achievement indirectly via early school readiness skills. Family characteristics associated with selection into child care also appeared to promote the achievement of low-income children, but the moderating effect of higher quality care per se remained evident when controlling for selection using covariates and propensity scores.

  20. Global discriminative learning for higher-accuracy computational gene prediction.

    Directory of Open Access Journals (Sweden)

    Axel Bernal

    2007-03-01

    Full Text Available Most ab initio gene predictors use a probabilistic sequence model, typically a hidden Markov model, to combine separately trained models of genomic signals and content. By combining separate models of relevant genomic features, such gene predictors can exploit small training sets and incomplete annotations, and can be trained fairly efficiently. However, that type of piecewise training does not optimize prediction accuracy and has difficulty in accounting for statistical dependencies among different parts of the gene model. With genomic information being created at an ever-increasing rate, it is worth investigating alternative approaches in which many different types of genomic evidence, with complex statistical dependencies, can be integrated by discriminative learning to maximize annotation accuracy. Among discriminative learning methods, large-margin classifiers have become prominent because of the success of support vector machines (SVM in many classification tasks. We describe CRAIG, a new program for ab initio gene prediction based on a conditional random field model with semi-Markov structure that is trained with an online large-margin algorithm related to multiclass SVMs. Our experiments on benchmark vertebrate datasets and on regions from the ENCODE project show significant improvements in prediction accuracy over published gene predictors that use intrinsic features only, particularly at the gene level and on genes with long introns.

  1. Achieving Higher Accuracy in the Gamma-Ray Spectrocopic Assay of Holdup

    International Nuclear Information System (INIS)

    Russo, P.A.; Wenz, T.R.; Smith, S.E.; Harris, J.F.

    2000-01-01

    Gamma-ray spectroscopy is an important technique for the measurement of quantities of nuclear material holdup in processing equipment. Because the equipment in large facilities dedicated to uranium isotopic enrichment, uranium/plutonium scrap recovery or various stages of fuel fabrication is extensive, the total holdup may be large by its distribution alone, even if deposit thicknesses are small. Good accountability practices require unbiased measurements with uncertainties that are as small as possible. This paper describes new procedures for use with traditional holdup analysis methods based on gamma-ray spectroscopy. The procedures address the two sources of bias inherent in traditional gamma-ray measurements of holdup. Holdup measurements are performed with collimated, shielded gamma-ray detectors. The measurement distance is chosen to simplify the deposit geometry to that of a point, line or area. The quantitative holdup result is based on the net count rate of a representative gamma ray. This rate is corrected for contributions from room background and for attenuation by the process equipment. Traditional holdup measurements assume that the width of the point or line deposit is very small compared to the measurement distance, and that the self-attenuation effects can be neglected. Because each point or line deposit has a finite width and because self-attenuation affects all measurements, bias is incurred in both assumptions. In both cases the bias is negative, explaining the systematically low results of gamma-ray holdup measurements. The new procedures correct for bias that arises from both the finite-source effects and the gamma-ray self-attenuation. The procedures used to correct for both of these effects apply to the generalized geometries. One common empirical parameter is used for both corrections. It self-consistently limits the total error incurred (from uncertain knowledge of this parameter) in the combined correction process, so that it is compelling to use these procedures. The algorithms and the procedures are simple, general, and easily automated for use plant-wide. This paper shows the derivation of the new, generalized correction algorithms for finite-source and self-attenuation effects. It also presents an analysis of the sensitivity of the holdup result to the uncertainty in the empirical parameter when one or both corrections are made. The paper uses specific examples of the magnitudes of finite-source and self-attenuation corrections to measurements that were made in the field. It discusses the automated implementation of the correction procedure

  2. Validity of Assessment and Recognition of Non-Formal and Informal Learning Achievements in Higher Education

    Science.gov (United States)

    Kaminskiene, Lina; Stasiunaitiene, Egle

    2013-01-01

    The article identifies the validity of assessment of non-formal and informal learning achievements (NILA) as one of the key factors for encouraging further development of the process of assessing and recognising non-formal and informal learning achievements in higher education. The authors analyse why the recognition of non-formal and informal…

  3. High-accuracy drilling with an image guided light weight robot: autonomous versus intuitive feed control.

    Science.gov (United States)

    Tauscher, Sebastian; Fuchs, Alexander; Baier, Fabian; Kahrs, Lüder A; Ortmaier, Tobias

    2017-10-01

    Assistance of robotic systems in the operating room promises higher accuracy and, hence, demanding surgical interventions become realisable (e.g. the direct cochlear access). Additionally, an intuitive user interface is crucial for the use of robots in surgery. Torque sensors in the joints can be employed for intuitive interaction concepts. Regarding the accuracy, they lead to a lower structural stiffness and, thus, to an additional error source. The aim of this contribution is to examine, if an accuracy needed for demanding interventions can be achieved by such a system or not. Feasible accuracy results of the robot-assisted process depend on each work-flow step. This work focuses on the determination of the tool coordinate frame. A method for drill axis definition is implemented and analysed. Furthermore, a concept of admittance feed control is developed. This allows the user to control feeding along the planned path by applying a force to the robots structure. The accuracy is researched by drilling experiments with a PMMA phantom and artificial bone blocks. The described drill axis estimation process results in a high angular repeatability ([Formula: see text]). In the first set of drilling results, an accuracy of [Formula: see text] at entrance and [Formula: see text] at target point excluding imaging was achieved. With admittance feed control an accuracy of [Formula: see text] at target point was realised. In a third set twelve holes were drilled in artificial temporal bone phantoms including imaging. In this set-up an error of [Formula: see text] and [Formula: see text] was achieved. The results of conducted experiments show that accuracy requirements for demanding procedures such as the direct cochlear access can be fulfilled with compliant systems. Furthermore, it was shown that with the presented admittance feed control an accuracy of less then [Formula: see text] is achievable.

  4. Pigeons exhibit higher accuracy for chosen memory tests than for forced memory tests in duration matching-to-sample.

    Science.gov (United States)

    Adams, Allison; Santi, Angelo

    2011-03-01

    Following training to match 2- and 8-sec durations of feederlight to red and green comparisons with a 0-sec baseline delay, pigeons were allowed to choose to take a memory test or to escape the memory test. The effects of sample omission, increases in retention interval, and variation in trial spacing on selection of the escape option and accuracy were studied. During initial testing, escaping the test did not increase as the task became more difficult, and there was no difference in accuracy between chosen and forced memory tests. However, with extended training, accuracy for chosen tests was significantly greater than for forced tests. In addition, two pigeons exhibited higher accuracy on chosen tests than on forced tests at the short retention interval and greater escape rates at the long retention interval. These results have not been obtained in previous studies with pigeons when the choice to take the test or to escape the test is given before test stimuli are presented. It appears that task-specific methodological factors may determine whether a particular species will exhibit the two behavioral effects that were initially proposed as potentially indicative of metacognition.

  5. Is Equal Access to Higher Education in South Asia and Sub-Saharan Africa Achievable by 2030?

    Science.gov (United States)

    Ilie, Sonia; Rose, Pauline

    2016-01-01

    Higher education is back in the spotlight, with post-2015 sustainable development goals emphasising equality of access. In this paper, we highlight the long distance still to travel to achieve the goal of equal access to higher education for all, with a focus on poorer countries which tend to have lower levels of enrolment in higher education.…

  6. Genomic selection in mink yield higher accuracies with a Bayesian approach allowing for heterogeneous variance than a GBLUP model

    DEFF Research Database (Denmark)

    Villumsen, Trine Michelle; Su, Guosheng; Cai, Zexi

    2018-01-01

    by sequencing. Four live grading traits and four traits on dried pelts for size and quality were analysed. GWAS analysis detected significant SNPs for all the traits. The single-trait Bayesian model resulted in higher accuracies for the genomic predictions than the single-trait GBLUP model, especially......The accuracy of genomic prediction for mink was compared for single-trait and multiple-trait GBLUP models and Bayesian models that allowed for heterogeneous (co)variance structure over the genome. The mink population consisted of 2,103 brown minks genotyped with the method of genotyping...... for the traits measured on dried pelts. We expected the multiple-trait models to be superior to the single trait models since the multiple-trait model can make use of information when traits are correlated. However, we did not find a general improvement in accuracies with the multiple-trait models compared...

  7. Stopping power accuracy and achievable spatial resolution of helium ion imaging using a prototype particle CT detector system

    Directory of Open Access Journals (Sweden)

    Volz Lennart

    2017-09-01

    Full Text Available A precise relative stopping power map of the patient is crucial for accurate particle therapy. Charged particle imaging determines the stopping power either tomographically – particle computed tomography (pCT – or by combining prior knowledge from particle radiography (pRad and x-ray CT. Generally, multiple Coulomb scattering limits the spatial resolution. Compared to protons, heavier particles scatter less due to their lower charge/mass ratio. A theoretical framework to predict the most likely trajectory of particles in matter was developed for light ions up to carbon and was found to be the most accurate for helium comparing for fixed initial velocity. To further investigate the potential of helium in particle imaging, helium computed tomography (HeCT and radiography (HeRad were studied at the Heidel-berg Ion-Beam Therapy Centre (HIT using a prototype pCT detector system registering individual particles, originally developed by the U.S. pCT collaboration. Several phantoms were investigated: modules of the Catphan QA phantom for analysis of spatial resolution and achievable stopping power accuracy, a paediatric head phantom (CIRS and a custom-made phantom comprised of animal meat enclosed in a 2 % agarose mixture representing human tissue. The pCT images were reconstructed applying the CARP iterative reconstruction algorithm. The MTF10% was investigated using a sharp edge gradient technique. HeRad provides a spatial resolution above that of protons (MTF1010%=6.07 lp/cm for HeRad versus MTF10%=3.35 lp/cm for proton radiography. For HeCT, the spatial resolution was limited by the number of projections acquired (90 projections for a full scan. The RSP accuracy for all inserts of the Catphan CTP404 module was found to be 2.5% or better and is subject to further optimisation. In conclusion, helium imaging appears to offer higher spatial resolution compared to proton imaging. In future studies, the advantage of helium imaging compared to other

  8. Achieving the Texas Higher Education Vision

    National Research Council Canada - National Science Library

    Benjamin, Roger

    2000-01-01

    The Texas higher education system faces severe challenges in responding to the twin demands placed on it by economic growth and by the increasing problems of access to higher education that many Texans experience...

  9. Bias associated with delayed verification in test accuracy studies: accuracy of tests for endometrial hyperplasia may be much higher than we think!

    Directory of Open Access Journals (Sweden)

    Coomarasamy Aravinthan

    2004-05-01

    Full Text Available Abstract Background To empirically evaluate bias in estimation of accuracy associated with delay in verification of diagnosis among studies evaluating tests for predicting endometrial hyperplasia. Methods Systematic reviews of all published research on accuracy of miniature endometrial biopsy and endometr ial ultrasonography for diagnosing endometrial hyperplasia identified 27 test accuracy studies (2,982 subjects. Of these, 16 had immediate histological verification of diagnosis while 11 had verification delayed > 24 hrs after testing. The effect of delay in verification of diagnosis on estimates of accuracy was evaluated using meta-regression with diagnostic odds ratio (dOR as the accuracy measure. This analysis was adjusted for study quality and type of test (miniature endometrial biopsy or endometrial ultrasound. Results Compared to studies with immediate verification of diagnosis (dOR 67.2, 95% CI 21.7–208.8, those with delayed verification (dOR 16.2, 95% CI 8.6–30.5 underestimated the diagnostic accuracy by 74% (95% CI 7%–99%; P value = 0.048. Conclusion Among studies of miniature endometrial biopsy and endometrial ultrasound, diagnostic accuracy is considerably underestimated if there is a delay in histological verification of diagnosis.

  10. Genomic Prediction Accuracy for Resistance Against Piscirickettsia salmonis in Farmed Rainbow Trout

    Directory of Open Access Journals (Sweden)

    Grazyella M. Yoshida

    2018-02-01

    Full Text Available Salmonid rickettsial syndrome (SRS, caused by the intracellular bacterium Piscirickettsia salmonis, is one of the main diseases affecting rainbow trout (Oncorhynchus mykiss farming. To accelerate genetic progress, genomic selection methods can be used as an effective approach to control the disease. The aims of this study were: (i to compare the accuracy of estimated breeding values using pedigree-based best linear unbiased prediction (PBLUP with genomic BLUP (GBLUP, single-step GBLUP (ssGBLUP, Bayes C, and Bayesian Lasso (LASSO; and (ii to test the accuracy of genomic prediction and PBLUP using different marker densities (0.5, 3, 10, 20, and 27 K for resistance against P. salmonis in rainbow trout. Phenotypes were recorded as number of days to death (DD and binary survival (BS from 2416 fish challenged with P. salmonis. A total of 1934 fish were genotyped using a 57 K single-nucleotide polymorphism (SNP array. All genomic prediction methods achieved higher accuracies than PBLUP. The relative increase in accuracy for different genomic models ranged from 28 to 41% for both DD and BS at 27 K SNP. Between different genomic models, the highest relative increase in accuracy was obtained with Bayes C (∼40%, where 3 K SNP was enough to achieve a similar accuracy to that of the 27 K SNP for both traits. For resistance against P. salmonis in rainbow trout, we showed that genomic predictions using GBLUP, ssGBLUP, Bayes C, and LASSO can increase accuracy compared with PBLUP. Moreover, it is possible to use relatively low-density SNP panels for genomic prediction without compromising accuracy predictions for resistance against P. salmonis in rainbow trout.

  11. Accuracy Limitations in Optical Linear Algebra Processors

    Science.gov (United States)

    Batsell, Stephen Gordon

    1990-01-01

    One of the limiting factors in applying optical linear algebra processors (OLAPs) to real-world problems has been the poor achievable accuracy of these processors. Little previous research has been done on determining noise sources from a systems perspective which would include noise generated in the multiplication and addition operations, noise from spatial variations across arrays, and from crosstalk. In this dissertation, we propose a second-order statistical model for an OLAP which incorporates all these system noise sources. We now apply this knowledge to determining upper and lower bounds on the achievable accuracy. This is accomplished by first translating the standard definition of accuracy used in electronic digital processors to analog optical processors. We then employ our second-order statistical model. Having determined a general accuracy equation, we consider limiting cases such as for ideal and noisy components. From the ideal case, we find the fundamental limitations on improving analog processor accuracy. From the noisy case, we determine the practical limitations based on both device and system noise sources. These bounds allow system trade-offs to be made both in the choice of architecture and in individual components in such a way as to maximize the accuracy of the processor. Finally, by determining the fundamental limitations, we show the system engineer when the accuracy desired can be achieved from hardware or architecture improvements and when it must come from signal pre-processing and/or post-processing techniques.

  12. Early static {sup 18}F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Nathalie L.; Winkelmann, Isabel; Wenter, Vera; Mille, Erik; Todica, Andrei; Brendel, Matthias; Bartenstein, Peter [Ludwig-Maximilians-University Munich, Department of Nuclear Medicine, Munich (Germany); Suchorska, Bogdana; Tonn, Joerg-Christian [Ludwig-Maximilians-University Munich, Department of Neurosurgery, Munich (Germany); Schmid-Tannwald, Christine [Ludwig-Maximilians-University Munich, Institute for Clinical Radiology, Munich (Germany); La Fougere, Christian [University of Tuebingen, Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Tuebingen (Germany)

    2016-06-15

    Current guidelines for glioma imaging by positron emission tomography (PET) using the amino acid analogue O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine ({sup 18}F-FET) recommend image acquisition from 20-40 min post injection (p.i.). The maximal tumour-to-background evaluation (TBR{sub max}) obtained in these summation images does not enable reliable differentiation between low and high grade glioma (LGG and HGG), which, however, can be achieved by dynamic {sup 18}F-FET-PET. We investigated the accuracy of tumour grading using TBR{sub max} values at different earlier time points after tracer injection. Three hundred and fourteen patients with histologically proven primary diagnosis of glioma (131 LGG, 183 HGG) who had undergone 40-min dynamic {sup 18}F-FET-PET scans were retrospectively evaluated. TBR{sub max} was assessed in the standard 20-40 min summation images, as well as in summation images from 0-10 min, 5-15 min, 5-20 min, and 15-30 min p.i., and kinetic analysis was performed. TBR{sub max} values and kinetic analysis were correlated with histological classification. ROC analyses were performed for each time frame and sensitivity, specificity, and accuracy were assessed. TBR{sub max} values in the earlier summation images were significantly better for tumour grading (P < 0.001) when compared to standard 20-40 min scans, with best results for the early 5-15 min scan. This was due to higher TBR{sub max} in the HGG (3.9 vs. 3.3; p < 0.001), while TBR{sub max} remained nearly stable in the LGG (2.2 vs. 2.1). Overall, accuracy increased from 70 % in the 20-40 min analysis to 77 % in the 5-15 min images, but did not reach the accuracy of dynamic analysis (80 %). Early TBR{sub max} assessment (5-15 min p.i.) is more accurate for the differentiation between LGG and HGG than the standard static scan (20-40 min p.i.) mainly caused by the characteristic high {sup 18}F-FET uptake of HGG in the initial phase. Therefore, when dynamic {sup 18}F-FET-PET cannot be performed

  13. Bias associated with delayed verification in test accuracy studies: accuracy of tests for endometrial hyperplasia may be much higher than we think!

    OpenAIRE

    Clark, T Justin; ter Riet, Gerben; Coomarasamy, Aravinthan; Khan, Khalid S

    2004-01-01

    Abstract Background To empirically evaluate bias in estimation of accuracy associated with delay in verification of diagnosis among studies evaluating tests for predicting endometrial hyperplasia. Methods Systematic reviews of all published research on accuracy of miniature endometrial biopsy and endometr ial ultrasonography for diagnosing endometrial hyperplasia identified 27 test accuracy studies (2,982 subjects). Of these, 16 had immediate histological verification of diagnosis while 11 ha...

  14. Improving calibration accuracy in gel dosimetry

    International Nuclear Information System (INIS)

    Oldham, M.; McJury, M.; Webb, S.; Baustert, I.B.; Leach, M.O.

    1998-01-01

    A new method of calibrating gel dosimeters (applicable to both Fricke and polyacrylamide gels) is presented which has intrinsically higher accuracy than current methods, and requires less gel. Two test-tubes of gel (inner diameter 2.5 cm, length 20 cm) are irradiated separately with a 10x10cm 2 field end-on in a water bath, such that the characteristic depth-dose curve is recorded in the gel. The calibration is then determined by fitting the depth-dose measured in water, against the measured change in relaxivity with depth in the gel. Increased accuracy is achieved in this simple depth-dose geometry by averaging the relaxivity at each depth. A large number of calibration data points, each with relatively high accuracy, are obtained. Calibration data over the full range of dose (1.6-10 Gy) is obtained by irradiating one test-tube to 10 Gy at dose maximum (D max ), and the other to 4.5 Gy at D max . The new calibration method is compared with a 'standard method' where five identical test-tubes of gel were irradiated to different known doses between 2 and 10 Gy. The percentage uncertainties in the slope and intercept of the calibration fit are found to be lower with the new method by a factor of about 4 and 10 respectively, when compared with the standard method and with published values. The gel was found to respond linearly within the error bars up to doses of 7 Gy, with a slope of 0.233±0.001 s -1 Gy -1 and an intercept of 1.106±0.005 Gy. For higher doses, nonlinear behaviour was observed. (author)

  15. Do Shared Interests Affect the Accuracy of Budgets?

    Directory of Open Access Journals (Sweden)

    Ilse Maria Beuren

    2015-04-01

    Full Text Available The creation of budgetary slack is a phenomenon associated with various behavioral aspects. This study focuses on accuracy in budgeting when the benefit of the slack is shared between the unit manager and his/her assistant. In this study, accuracy is measured by the level of slack in the budget, and the benefit of slack represents a financial consideration for the manager and the assistant. The study aims to test how shared interests in budgetary slack affect the accuracy of budget reports in an organization. To this end, an experimental study was conducted with a sample of 90 employees in management and other leadership positions at a cooperative that has a variable compensation plan based on the achievement of organizational goals. The experiment conducted in this study is consubstantiated by the study of Church, Hannan and Kuang (2012, which was conducted with a sample of undergraduate students in the United States and used a quantitative approach to analyze the results. In the first part of the experiment, the results show that when budgetary slack is not shared, managers tend to create greater slack when the assistant is not aware of the creation of slack; these managers thus generate a lower accuracy index than managers whose assistants are aware of the creation of slack. When budgetary slack is shared, there is higher average slack when the assistant is aware of the creation of slack. In the second part of the experiment, the accuracy index is higher for managers who prepare the budget with the knowledge that their assistants prefer larger slack values. However, the accuracy level differs between managers who know that their assistants prefer maximizing slack values and managers who do not know their assistants' preference regarding slack. These results contribute to the literature by presenting evidence of managers' behavior in the creation of budgetary slack in scenarios in which they share the benefits of slack with their assistants.

  16. Investigating the Relationships between Approaches to Learning, Learner Identities and Academic Achievement in Higher Education

    Science.gov (United States)

    Herrmann, K. J.; Bager-Elsborg, A.; McCune, V.

    2017-01-01

    This paper considers relationships between approaches to learning, learner identities, self-efficacy beliefs and academic achievement in higher education. In addition to already established survey instruments, a new scale, "subject area affinity," was developed. The scale explores the extent to which students identify with their area of…

  17. The Interplay between Reflective Thinking, Critical Thinking, Self-Monitoring, and Academic Achievement in Higher Education

    Science.gov (United States)

    Ghanizadeh, Afsaneh

    2017-01-01

    The present study assessed the associations among higher-order thinking skills (reflective thinking, critical thinking) and self-monitoring that contribute to academic achievement among university students. The sample consisted of 196 Iranian university students (mean age = 22.05, SD = 3.06; 112 females; 75 males) who were administered three…

  18. Intellectual ability, learning style, personality, achievement motivation and academic success of psychology students in higher education.

    NARCIS (Netherlands)

    Busato, V.V.; Prins, F.J.; Elshout, J.J.; Hamaker, C.

    2000-01-01

    This study is directed towards an integration of intellectual ability, learning style, personality and achievement motivation as predictors of academic success in higher education. Correlational analyses partly confirmed and partly disconfirmed our expectations in a sample of 409 first-year

  19. Peaks, plateaus, numerical instabilities, and achievable accuracy in Galerkin and norm minimizing procedures for solving Ax=b

    Energy Technology Data Exchange (ETDEWEB)

    Cullum, J. [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States)

    1994-12-31

    Plots of the residual norms generated by Galerkin procedures for solving Ax = b often exhibit strings of irregular peaks. At seemingly erratic stages in the iterations, peaks appear in the residual norm plot, intervals of iterations over which the norms initially increase and then decrease. Plots of the residual norms generated by related norm minimizing procedures often exhibit long plateaus, sequences of iterations over which reductions in the size of the residual norm are unacceptably small. In an earlier paper the author discussed and derived relationships between such peaks and plateaus within corresponding Galerkin/Norm Minimizing pairs of such methods. In this paper, through a set of numerical experiments, the author examines connections between peaks, plateaus, numerical instabilities, and the achievable accuracy for such pairs of iterative methods. Three pairs of methods, GMRES/Arnoldi, QMR/BCG, and two bidiagonalization methods are studied.

  20. Accuracy and precision in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Marshall, T.O.

    1984-01-01

    The question of accuracy and precision in thermoluminescent dosimetry, particularly in relation to lithium fluoride phosphor, is discussed. The more important sources of error, including those due to the detectors, the reader, annealing and dosemeter design, are identified and methods of reducing their effects on accuracy and precision to a minimum are given. Finally, the accuracy and precision achievable for three quite different applications are discussed, namely, for personal dosimetry, environmental monitoring and for the measurement of photon dose distributions in phantoms. (U.K.)

  1. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    International Nuclear Information System (INIS)

    Zhou, Xiafeng; Guo, Jiong; Li, Fu

    2015-01-01

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  2. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn

    2015-12-15

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  3. Cognitive accuracy and intelligent executive function in the brain and in business.

    Science.gov (United States)

    Bailey, Charles E

    2007-11-01

    This article reviews research on cognition, language, organizational culture, brain, behavior, and evolution to posit the value of operating with a stable reference point based on cognitive accuracy and a rational bias. Drawing on rational-emotive behavioral science, social neuroscience, and cognitive organizational science on the one hand and a general model of brain and frontal lobe executive function on the other, I suggest implications for organizational success. Cognitive thought processes depend on specific brain structures functioning as effectively as possible under conditions of cognitive accuracy. However, typical cognitive processes in hierarchical business structures promote the adoption and application of subjective organizational beliefs and, thus, cognitive inaccuracies. Applying informed frontal lobe executive functioning to cognition, emotion, and organizational behavior helps minimize the negative effects of indiscriminate application of personal and cultural belief systems to business. Doing so enhances cognitive accuracy and improves communication and cooperation. Organizations operating with cognitive accuracy will tend to respond more nimbly to market pressures and achieve an overall higher level of performance and employee satisfaction.

  4. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  5. Two high accuracy digital integrators for Rogowski current transducers

    Science.gov (United States)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  6. Improving the Stability and Accuracy of Power Hardware-in-the-Loop Simulation Using Virtual Impedance Method

    Directory of Open Access Journals (Sweden)

    Xiaoming Zha

    2016-11-01

    Full Text Available Power hardware-in-the-loop (PHIL systems are advanced, real-time platforms for combined software and hardware testing. Two paramount issues in PHIL simulations are the closed-loop stability and simulation accuracy. This paper presents a virtual impedance (VI method for PHIL simulations that improves the simulation’s stability and accuracy. Through the establishment of an impedance model for a PHIL simulation circuit, which is composed of a voltage-source converter and a simple network, the stability and accuracy of the PHIL system are analyzed. Then, the proposed VI method is implemented in a digital real-time simulator and used to correct the combined impedance in the impedance model, achieving higher stability and accuracy of the results. The validity of the VI method is verified through the PHIL simulation of two typical PHIL examples.

  7. Students' Commitment, Engagement and Locus of Control as Predictor of Academic Achievement at Higher Education Level

    Science.gov (United States)

    Sarwar, Muhammad; Ashrafi, Ghulam Muhammad

    2014-01-01

    The purpose of this study was to analyze Students' Commitment, Engagement and Locus of Control as predictors of Academic Achievement at Higher Education Level. We used analytical model and conclusive research approach to conduct study and survey method for data collection. We selected 369 students using multistage sampling technique from three…

  8. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron

    Science.gov (United States)

    Dragoni, Daniele; Daff, Thomas D.; Csányi, Gábor; Marzari, Nicola

    2018-01-01

    We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case. The training database includes total energies, forces, and stresses obtained from density-functional theory in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments, ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations. There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent by atomic configurations that were not part of the training set. We observe the benefit and the need of using highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a systematically improvable potential that can achieve the same accuracy of density-functional theory calculations, but at a fraction of the computational cost.

  9. Higher accuracy analytical approximations to a nonlinear oscillator with discontinuity by He's homotopy perturbation method

    International Nuclear Information System (INIS)

    Belendez, A.; Hernandez, A.; Belendez, T.; Neipp, C.; Marquez, A.

    2008-01-01

    He's homotopy perturbation method is used to calculate higher-order approximate periodic solutions of a nonlinear oscillator with discontinuity for which the elastic force term is proportional to sgn(x). We find He's homotopy perturbation method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions with a maximal relative error for the approximate period of less than 1.56% for all values of oscillation amplitude, while this relative error is 0.30% for the second iteration and as low as 0.057% when the third-order approximation is considered. Comparison of the result obtained using this method with those obtained by different harmonic balance methods reveals that He's homotopy perturbation method is very effective and convenient

  10. What accuracy is required and can be achieved in radiation therapy (review of radiobiological and clinical data)

    International Nuclear Information System (INIS)

    Wambersie, A.

    2001-01-01

    An attempt is made to formulate the requirements for the accuracy in the delivery of absorbed dose to a patient during radiation therapy. These requirements are mainly based on the relative steepness and separation of the dose-effect curves for local tumour control and normal tissue damage. The curves for normal tissue complications in general may be steeper than those for local tumour control. From these data, a standard requirement of 3.5% is proposed for the combined uncertainty of type A (random) and type B (systematic), given as one relative standard deviation in the absorbed dose delivery. However, it is recognized that, in many cases, larger uncertainties are acceptable (palliative treatments). This value of 3.5% applies to the absorbed dose at the specification point for curative treatments. As far as the dose accuracy requirements at other points in the planning target volume are concerned, a value of 5% (one standard deviation) seems more appropriate. This required accuracy in the delivery of the absorbed dose cannot always be completely achieved in photon therapy even for simple treatment conditions. All the clinical data which were reviewed, including some results from the 'Patterns of Care Study', indicate a close correlation between the outcomes of therapy (control rates, complications) and dose level, inaccuracy or errors in dosimetry and patient-machine positioning. This has been reported for external beam therapy as well as for brachytherapy. Only the clinical results will allow us to select the optimal treatment conditions (e.g. selection and definition of the planning target volumes, dose levels and beam arrangement), but they could be interpreted correctly only to the extent that the treatment execution would be correct. This result strongly endorses the Quality Assurance Programmes, in which the clinicians and physicists should be fully involved. Lastly, the outcome of a treatment can only be interpreted meaningfully if the parameters of the

  11. Motivation, cognitive processing and achievement in higher education

    NARCIS (Netherlands)

    Bruinsma, M.

    2004-01-01

    This study investigated the question of whether a student's expectancy, values and negative affect influenced their deep information processing approach and achievement at the end of the first and second academic year. Five hundred and sixty-five first-year students completed a self-report

  12. The Effects of Social Identification and Organizational Identification on Student Commitment, Achievement and Satisfaction in Higher Education

    Science.gov (United States)

    Wilkins, Stephen; Butt, Muhammad Mohsin; Kratochvil, Daniel; Balakrishnan, Melodena Stephens

    2016-01-01

    The purpose of this research is to investigate the effects of social and organizational identifications on student commitment, achievement and satisfaction in higher education. The sample comprised 437 students enrolled in an undergraduate or postgraduate programme in business or management. A model was developed and tested using structural…

  13. Motivation, Cognitive Processing and Achievement in Higher Education

    Science.gov (United States)

    Bruinsma, Marjon

    2004-01-01

    This study investigated the question of whether a student's expectancy, values and negative affect influenced their deep information processing approach and achievement at the end of the first and second academic year. Five hundred and sixty-five first-year students completed a self-report questionnaire on three different occasions. The…

  14. Electron ray tracing with high accuracy

    International Nuclear Information System (INIS)

    Saito, K.; Okubo, T.; Takamoto, K.; Uno, Y.; Kondo, M.

    1986-01-01

    An electron ray tracing program is developed to investigate the overall geometrical and chromatic aberrations in electron optical systems. The program also computes aberrations due to manufacturing errors in lenses and deflectors. Computation accuracy is improved by (1) calculating electrostatic and magnetic scalar potentials using the finite element method with third-order isoparametric elements, and (2) solving the modified ray equation which the aberrations satisfy. Computation accuracy of 4 nm is achieved for calculating optical properties of the system with an electrostatic lens

  15. ACCURACY ANALYSIS OF A LOW-COST PLATFORM FOR POSITIONING AND NAVIGATION

    Directory of Open Access Journals (Sweden)

    S. Hofmann

    2012-07-01

    Full Text Available This paper presents an accuracy analysis of a platform based on low-cost components for landmark-based navigation intended for research and teaching purposes. The proposed platform includes a LEGO MINDSTORMS NXT 2.0 kit, an Android-based Smartphone as well as a compact laser scanner Hokuyo URG-04LX. The robot is used in a small indoor environment, where GNSS is not available. Therefore, a landmark map was produced in advance, with the landmark positions provided to the robot. All steps of procedure to set up the platform are shown. The main focus of this paper is the reachable positioning accuracy, which was analyzed in this type of scenario depending on the accuracy of the reference landmarks and the directional and distance measuring accuracy of the laser scanner. Several experiments were carried out, demonstrating the practically achievable positioning accuracy. To evaluate the accuracy, ground truth was acquired using a total station. These results are compared to the theoretically achievable accuracies and the laser scanner’s characteristics.

  16. Leveraging People-Related Maturity Issues for Achieving Higher Maturity and Capability Levels

    Science.gov (United States)

    Buglione, Luigi

    During the past 20 years Maturity Models (MM) become a buzzword in the ICT world. Since the initial Crosby's idea in 1979, plenty of models have been created in the Software & Systems Engineering domains, addressing various perspectives. By analyzing the content of the Process Reference Models (PRM) in many of them, it can be noticed that people-related issues have little weight in the appraisals of the capabilities of organizations while in practice they are considered as significant contributors in traditional process and organizational performance appraisals, as stressed instead in well-known Performance Management models such as MBQA, EFQM and BSC. This paper proposes some ways for leveraging people-related maturity issues merging HR practices from several types of maturity models into the organizational Business Process Model (BPM) in order to achieve higher organizational maturity and capability levels.

  17. Achieving Accuracy Requirements for Forest Biomass Mapping: A Data Fusion Method for Estimating Forest Biomass and LiDAR Sampling Error with Spaceborne Data

    Science.gov (United States)

    Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.

    2012-01-01

    The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized

  18. Accreditation of Viet Nam's Higher Education: Achievements and Challenges after a Dozen Years of Development

    Science.gov (United States)

    Nguyen, Huu Cuong; Evers, Colin; Marshall, Stephen

    2017-01-01

    Purpose: The purpose of this paper is to investigate the development of Viet Nam's approach to higher education quality assurance during the past dozen years since its establishment, focusing on the achievements and challenges. Design/methodology/approach: This is a desktop analysis study. The paper analyses the policies and practices related to…

  19. Climate Change Accuracy: Requirements and Economic Value

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R.; Mlynczak, M. G.; Lukashin, C.; Thome, K. J.; Baize, R. R.

    2014-12-01

    Higher than normal accuracy is required to rigorously observe decadal climate change. But what level is needed? How can this be quantified? This presentation will summarize a new more rigorous and quantitative approach to determining the required accuracy for climate change observations (Wielicki et al., 2013, BAMS). Most current global satellite observations cannot meet this accuracy level. A proposed new satellite mission to resolve this challenge is CLARREO (Climate Absolute Radiance and Refractivity Observatory). CLARREO is designed to achieve advances of a factor of 10 for reflected solar spectra and a factor of 3 to 5 for thermal infrared spectra (Wielicki et al., Oct. 2013 BAMS). The CLARREO spectrometers are designed to serve as SI traceable benchmarks for the Global Satellite Intercalibration System (GSICS) and to greatly improve the utility of a wide range of LEO and GEO infrared and reflected solar passive satellite sensors for climate change observations (e.g. CERES, MODIS, VIIIRS, CrIS, IASI, Landsat, SPOT, etc). Providing more accurate decadal change trends can in turn lead to more rapid narrowing of key climate science uncertainties such as cloud feedback and climate sensitivity. A study has been carried out to quantify the economic benefits of such an advance as part of a rigorous and complete climate observing system. The study concludes that the economic value is $12 Trillion U.S. dollars in Net Present Value for a nominal discount rate of 3% (Cooke et al. 2013, J. Env. Sys. Dec.). A brief summary of these two studies and their implications for the future of climate science will be presented.

  20. Diagnostic accuracy of MRCP in choledocholithiasis

    International Nuclear Information System (INIS)

    Guarise, Alessandro; Mainardi, Paride; Baltieri, Susanna; Faccioli, Niccolo'

    2005-01-01

    Purpose: To evaluate the accuracy of MRCP in diagnosing choledocholithiasis considering Endoscopic Retrograde Cholangiopancreatography (ERCP) as the gold standard. To compare the results achieved during the first two years of use (1999-2000) of Magnetic Resonance Cholangiopancreatography (MRCP) in patients with suspected choledocholithiasis with those achieved during the following two years (2001-2002) in order to establish the repeatability and objectivity of MRCP results. Materials and methods: One hundred and seventy consecutive patients underwent MRCP followed by ERCP within 72 h. In 22/170 (13%) patients ERCP was unsuccessful for different reasons. MRCP was performed using a 1.5 T magnet with both multi-slice HASTE sequences and thick-slice projection technique. Choledocholithiasis was diagnosed in the presence of signal void images in the dependent portion of the duct surrounded by hyperintense bile and detected at least in two projections. The MRCP results, read independently from the ERCP results, were compared in two different and subsequent periods. Results: ERCP confirmed choledocholithiasis in 87 patients. In these cases the results of MRCP were the following: 78 true positives, 53 true negatives, 7 false positives, and 9 false negatives. The sensitivity, specificity and accuracy were 90%, 88% and 89%, respectively. After the exclusion of stones with diameters smaller than 6 mm, the sensitivity, specificity and accuracy were 100%, 99% and 99%, respectively. MRCP accuracy was related to the size of the stones. There was no significant statistical difference between the results obtained in the first two-year period and those obtained in the second period. Conclusions: MRCP i sufficiently accurate to replace ERCP in patients with suspected choledocholithiasis. The results are related to the size of stones. The use of well-defined radiological signs allows good diagnostic accuracy independent of the learning curve [it

  1. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine.

    Science.gov (United States)

    Castaneda, Christian; Nalley, Kip; Mannion, Ciaran; Bhattacharyya, Pritish; Blake, Patrick; Pecora, Andrew; Goy, Andre; Suh, K Stephen

    2015-01-01

    As research laboratories and clinics collaborate to achieve precision medicine, both communities are required to understand mandated electronic health/medical record (EHR/EMR) initiatives that will be fully implemented in all clinics in the United States by 2015. Stakeholders will need to evaluate current record keeping practices and optimize and standardize methodologies to capture nearly all information in digital format. Collaborative efforts from academic and industry sectors are crucial to achieving higher efficacy in patient care while minimizing costs. Currently existing digitized data and information are present in multiple formats and are largely unstructured. In the absence of a universally accepted management system, departments and institutions continue to generate silos of information. As a result, invaluable and newly discovered knowledge is difficult to access. To accelerate biomedical research and reduce healthcare costs, clinical and bioinformatics systems must employ common data elements to create structured annotation forms enabling laboratories and clinics to capture sharable data in real time. Conversion of these datasets to knowable information should be a routine institutionalized process. New scientific knowledge and clinical discoveries can be shared via integrated knowledge environments defined by flexible data models and extensive use of standards, ontologies, vocabularies, and thesauri. In the clinical setting, aggregated knowledge must be displayed in user-friendly formats so that physicians, non-technical laboratory personnel, nurses, data/research coordinators, and end-users can enter data, access information, and understand the output. The effort to connect astronomical numbers of data points, including '-omics'-based molecular data, individual genome sequences, experimental data, patient clinical phenotypes, and follow-up data is a monumental task. Roadblocks to this vision of integration and interoperability include ethical, legal

  2. Accuracy comparison of Pléiades satellite ortho-images using GPS ...

    African Journals Online (AJOL)

    Ivan Henrico

    imagery to achieve a certain level of geometric accuracy are in literature well .... The Pléiades primary product can be described as the processing ..... This article studied the influence of two types of GCP collection methods on the accuracy of.

  3. A New Approach to Improve Accuracy of Grey Model GMC(1,n in Time Series Prediction

    Directory of Open Access Journals (Sweden)

    Sompop Moonchai

    2015-01-01

    Full Text Available This paper presents a modified grey model GMC(1,n for use in systems that involve one dependent system behavior and n-1 relative factors. The proposed model was developed from the conventional GMC(1,n model in order to improve its prediction accuracy by modifying the formula for calculating the background value, the system of parameter estimation, and the model prediction equation. The modified GMC(1,n model was verified by two cases: the study of forecasting CO2 emission in Thailand and forecasting electricity consumption in Thailand. The results demonstrated that the modified GMC(1,n model was able to achieve higher fitting and prediction accuracy compared with the conventional GMC(1,n and D-GMC(1,n models.

  4. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms.

    Science.gov (United States)

    Phillips, P Jonathon; Yates, Amy N; Hu, Ying; Hahn, Carina A; Noyes, Eilidh; Jackson, Kelsey; Cavazos, Jacqueline G; Jeckeln, Géraldine; Ranjan, Rajeev; Sankaranarayanan, Swami; Chen, Jun-Cheng; Castillo, Carlos D; Chellappa, Rama; White, David; O'Toole, Alice J

    2018-05-29

    Achieving the upper limits of face identification accuracy in forensic applications can minimize errors that have profound social and personal consequences. Although forensic examiners identify faces in these applications, systematic tests of their accuracy are rare. How can we achieve the most accurate face identification: using people and/or machines working alone or in collaboration? In a comprehensive comparison of face identification by humans and computers, we found that forensic facial examiners, facial reviewers, and superrecognizers were more accurate than fingerprint examiners and students on a challenging face identification test. Individual performance on the test varied widely. On the same test, four deep convolutional neural networks (DCNNs), developed between 2015 and 2017, identified faces within the range of human accuracy. Accuracy of the algorithms increased steadily over time, with the most recent DCNN scoring above the median of the forensic facial examiners. Using crowd-sourcing methods, we fused the judgments of multiple forensic facial examiners by averaging their rating-based identity judgments. Accuracy was substantially better for fused judgments than for individuals working alone. Fusion also served to stabilize performance, boosting the scores of lower-performing individuals and decreasing variability. Single forensic facial examiners fused with the best algorithm were more accurate than the combination of two examiners. Therefore, collaboration among humans and between humans and machines offers tangible benefits to face identification accuracy in important applications. These results offer an evidence-based roadmap for achieving the most accurate face identification possible. Copyright © 2018 the Author(s). Published by PNAS.

  5. Linear Discriminant Analysis achieves high classification accuracy for the BOLD fMRI response to naturalistic movie stimuli.

    Directory of Open Access Journals (Sweden)

    Hendrik eMandelkow

    2016-03-01

    Full Text Available Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI. However, conventional fMRI analysis based on statistical parametric mapping (SPM and the general linear model (GLM is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA, have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbour (NN, Gaussian Naïve Bayes (GNB, and (regularised Linear Discriminant Analysis (LDA in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie.Results show that LDA regularised by principal component analysis (PCA achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2s apart during a 300s movie (chance level 0.7% = 2s/300s. The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  6. Optimization of drift gases for accuracy in pressurized drift tubes

    CERN Document Server

    Kirchner, J J; Dinner, A R; Fidkowski, K J; Wyatt, J H

    2001-01-01

    Modern detectors such as ATLAS use pressurized drift tubes to minimize diffusion and achieve high coordinate accuracy. However, the coordinate accuracy depends on the exact knowledge of converting measured times into coordinates. Linear space-time relationships are best for reconstruction, but difficult to achieve in the $E \\propto \\frac{1}{r}$ field. Previous mixtures, which contained methane or other organic quenchers, are disfavored because of ageing problems. From our studies of nitrogen and carbon dioxide, two mixtures with only small deviations from linearity were determined and measured. Scaling laws for different pressures and magnetic fields are also given.

  7. Optimization of drift gases for accuracy in pressurized drift tubes

    International Nuclear Information System (INIS)

    Kirchner, J.J.; Becker, U.J.; Dinner, R.B.; Fidkowski, K.J.; Wyatt, J.H.

    2001-01-01

    Modern detectors such as ATLAS use pressurized drift tubes to minimize diffusion and achieve high coordinate accuracy. However, the coordinate accuracy depends on the exact knowledge of converting measured times into coordinates. Linear space-time relationships are best for reconstruction, but difficult to achieve in the E∝1/r field. Previous mixtures, which contained methane or other organic quenchers, are disfavored because of ageing problems. From our studies of nitrogen and carbon dioxide, two mixtures with only small deviations from linearity were determined and measured. Scaling laws for different pressures and magnetic fields are also given

  8. Improving orbit prediction accuracy through supervised machine learning

    Science.gov (United States)

    Peng, Hao; Bai, Xiaoli

    2018-05-01

    Due to the lack of information such as the space environment condition and resident space objects' (RSOs') body characteristics, current orbit predictions that are solely grounded on physics-based models may fail to achieve required accuracy for collision avoidance and have led to satellite collisions already. This paper presents a methodology to predict RSOs' trajectories with higher accuracy than that of the current methods. Inspired by the machine learning (ML) theory through which the models are learned based on large amounts of observed data and the prediction is conducted without explicitly modeling space objects and space environment, the proposed ML approach integrates physics-based orbit prediction algorithms with a learning-based process that focuses on reducing the prediction errors. Using a simulation-based space catalog environment as the test bed, the paper demonstrates three types of generalization capability for the proposed ML approach: (1) the ML model can be used to improve the same RSO's orbit information that is not available during the learning process but shares the same time interval as the training data; (2) the ML model can be used to improve predictions of the same RSO at future epochs; and (3) the ML model based on a RSO can be applied to other RSOs that share some common features.

  9. Staging cancer of the uterus: A national audit of MRI accuracy

    International Nuclear Information System (INIS)

    Duncan, K.A.; Drinkwater, K.J.; Frost, C.; Remedios, D.; Barter, S.

    2012-01-01

    Aim: To report the results of a nationwide audit of the accuracy of magnetic resonance imaging (MRI) staging in uterine body cancer when staging myometrial invasion, cervical extension, and lymph node spread. Materials and methods: All UK radiology departments were invited to participate using a web-based tool for submitting anonymized data for a 12 month period. MRI staging was compared with histopathological staging using target accuracies of 85, 86, and 70% respectively. Results: Of the departments performing MRI staging of endometrial cancer, 37/87 departments contributed. Targets for MRI staging were achieved for two of the three standards nationally with diagnostic accuracy for depth of myometrial invasion, 82%; for cervical extension, 90%; and for pelvic nodal involvement, 94%; the latter two being well above the targets. However, only 13/37 (35%) of individual centres met the target for assessing depth of myometrial invasion, 31/36 (86%) for cervical extension and 31/34 (91%) for pelvic nodal involvement. Statistical analysis demonstrated no significant difference for the use of intravenous contrast medium, but did show some evidence of increasing accuracy in assessment of depth of myometrial invasion with increasing caseload. Conclusion: Overall performance in the UK was good, with only the target for assessment of depth of myometrial invasion not being met. Inter-departmental variation was seen. One factor that may improve performance in assessment of myometrial invasion is a higher caseload. No other clear factor to improve performance were identified.

  10. Staging cancer of the uterus: A national audit of MRI accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, K.A., E-mail: k.duncan@nhs.net [Clinical Radiology Audit Committee, Royal College of Radiologists, London (United Kingdom); Drinkwater, K.J. [Clinical Radiology Audit Committee, Royal College of Radiologists, London (United Kingdom); Frost, C. [Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel Street, London (United Kingdom); Remedios, D.; Barter, S. [Clinical Radiology Audit Committee, Royal College of Radiologists, London (United Kingdom)

    2012-06-15

    Aim: To report the results of a nationwide audit of the accuracy of magnetic resonance imaging (MRI) staging in uterine body cancer when staging myometrial invasion, cervical extension, and lymph node spread. Materials and methods: All UK radiology departments were invited to participate using a web-based tool for submitting anonymized data for a 12 month period. MRI staging was compared with histopathological staging using target accuracies of 85, 86, and 70% respectively. Results: Of the departments performing MRI staging of endometrial cancer, 37/87 departments contributed. Targets for MRI staging were achieved for two of the three standards nationally with diagnostic accuracy for depth of myometrial invasion, 82%; for cervical extension, 90%; and for pelvic nodal involvement, 94%; the latter two being well above the targets. However, only 13/37 (35%) of individual centres met the target for assessing depth of myometrial invasion, 31/36 (86%) for cervical extension and 31/34 (91%) for pelvic nodal involvement. Statistical analysis demonstrated no significant difference for the use of intravenous contrast medium, but did show some evidence of increasing accuracy in assessment of depth of myometrial invasion with increasing caseload. Conclusion: Overall performance in the UK was good, with only the target for assessment of depth of myometrial invasion not being met. Inter-departmental variation was seen. One factor that may improve performance in assessment of myometrial invasion is a higher caseload. No other clear factor to improve performance were identified.

  11. Does filler database size influence identification accuracy?

    Science.gov (United States)

    Bergold, Amanda N; Heaton, Paul

    2018-06-01

    Police departments increasingly use large photo databases to select lineup fillers using facial recognition software, but this technological shift's implications have been largely unexplored in eyewitness research. Database use, particularly if coupled with facial matching software, could enable lineup constructors to increase filler-suspect similarity and thus enhance eyewitness accuracy (Fitzgerald, Oriet, Price, & Charman, 2013). However, with a large pool of potential fillers, such technologies might theoretically produce lineup fillers too similar to the suspect (Fitzgerald, Oriet, & Price, 2015; Luus & Wells, 1991; Wells, Rydell, & Seelau, 1993). This research proposes a new factor-filler database size-as a lineup feature affecting eyewitness accuracy. In a facial recognition experiment, we select lineup fillers in a legally realistic manner using facial matching software applied to filler databases of 5,000, 25,000, and 125,000 photos, and find that larger databases are associated with a higher objective similarity rating between suspects and fillers and lower overall identification accuracy. In target present lineups, witnesses viewing lineups created from the larger databases were less likely to make correct identifications and more likely to select known innocent fillers. When the target was absent, database size was associated with a lower rate of correct rejections and a higher rate of filler identifications. Higher algorithmic similarity ratings were also associated with decreases in eyewitness identification accuracy. The results suggest that using facial matching software to select fillers from large photograph databases may reduce identification accuracy, and provides support for filler database size as a meaningful system variable. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Computed tomography-based lung nodule volumetry - do optimized reconstructions of routine protocols achieve similar accuracy, reproducibility and interobserver variability to that of special volumetry protocols?

    International Nuclear Information System (INIS)

    Bolte, H.; Riedel, C.; Knoess, N.; Hoffmann, B.; Heller, M.; Biederer, J.; Freitag, S.

    2007-01-01

    Purpose: The aim of this in vitro and ex vivo CT study was to investigate whether the use of a routine thorax protocol (RTP) with optimized reconstruction parameters can provide comparable accuracy, reproducibility and interobserver variability of volumetric analyses to that of a special volumetry protocol (SVP). Materials and Methods: To assess accuracy, 3 polyurethane (PU) spheres (35 HU; diameters: 4, 6 and 10 mm) were examined with a recommended SVP using a multislice CT (collimation 16 x 0.75 mm, pitch 1.25, 20 mAs, slice thickness 1 mm, increment 0.7 mm, medium kernel) and an optimized RTP (collimation 16 x 1.5 mm, pitch 1.25, 100 mAs, reconstructed slice thickness 2 mm, increment 0.4 mm, sharp kernel). For the assessment of intrascan and interscan reproducibility and interobserver variability, 20 artificial small pulmonary nodules were placed in a dedicated ex vivo chest phantom and examined with identical scan protocols. The artificial lesions consisted of a fat-wax-Lipiodol registered mixture. Phantoms and ex vivo lesions were examined afterwards using commercial volumetry software. To describe accuracy the relative deviations from the true volumes of the PU phantoms were calculated. For intrascan and interscan reproducibility and interobserver variability, the 95 % normal range (95 % NR) of relative deviations between two measurements was calculated. Results: For the SVP the achieved relative deviations for the 4, 6 and 10 mm PU phantoms were - 14.3 %, - 12.7 % and - 6.8 % and were 4.5 %, - 0.6 % and - 2.6 %, respectively, for the optimized RTP. SVP showed a 95 % NR of 0 - 1.5 % for intrascan and a 95 % NR of - 10.8 - 2.9 % for interscan reproducibility. The 95 % NR for interobserver variability was - 4.3 - 3.3 %. The optimized RTP achieved a 95 % NR of - 3.1 - 4.3 % for intrascan reproducibility and a 95 % NR of - 7.0 - 3.5 % for interscan reproducibility. The 95 % NR for interobserver variability was - 0.4 - 6.8 %. (orig.)

  13. Academic Self-Concept, Achievement Goals, and Achievement: Is Their Relation the Same for Academic Achievers and Underachievers?

    Science.gov (United States)

    Preckel, Franzis; Brunner, Martin

    2015-01-01

    This longitudinal study investigated the contribution of achievement goals and academic self-concept for the prediction of unexpected academic achievement (i.e., achievement that is higher or lower than expected with respect to students' cognitive ability) in general and when comparing groups of extreme over- and underachievers. Our sample…

  14. Parental Level of Education: Associations with Psychological Well-Being, Academic Achievement and Reasons for Pursuing Higher Education in Adolescence

    Science.gov (United States)

    Schlechter, Melissa; Milevsky, Avidan

    2010-01-01

    The purpose of the current study is to determine the interconnection between parental level of education, psychological well-being, academic achievement and reasons for pursuing higher education in adolescents. Participants included 439 college freshmen from a mid-size state university in the northeastern USA. A survey, including indices of…

  15. Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression

    Directory of Open Access Journals (Sweden)

    Lemieux Sébastien

    2006-08-01

    Full Text Available Abstract Background The identification of differentially expressed genes (DEGs from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. Results On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. Conclusion The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition.

  16. FIELD ACCURACY TEST OF RPAS PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    P. Barry

    2013-08-01

    Full Text Available Baseline Surveys Ltd is a company which specialises in the supply of accurate geospatial data, such as cadastral, topographic and engineering survey data to commercial and government bodies. Baseline Surveys Ltd invested in aerial drone photogrammetric technology and had a requirement to establish the spatial accuracy of the geographic data derived from our unmanned aerial vehicle (UAV photogrammetry before marketing our new aerial mapping service. Having supplied the construction industry with survey data for over 20 years, we felt that is was crucial for our clients to clearly understand the accuracy of our photogrammetry so they can safely make informed spatial decisions, within the known accuracy limitations of our data. This information would also inform us on how and where UAV photogrammetry can be utilised. What we wanted to find out was the actual accuracy that can be reliably achieved using a UAV to collect data under field conditions throughout a 2 Ha site. We flew a UAV over the test area in a "lawnmower track" pattern with an 80% front and 80% side overlap; we placed 45 ground markers as check points and surveyed them in using network Real Time Kinematic Global Positioning System (RTK GPS. We specifically designed the ground markers to meet our accuracy needs. We established 10 separate ground markers as control points and inputted these into our photo modelling software, Agisoft PhotoScan. The remaining GPS coordinated check point data were added later in ArcMap to the completed orthomosaic and digital elevation model so we could accurately compare the UAV photogrammetry XYZ data with the RTK GPS XYZ data at highly reliable common points. The accuracy we achieved throughout the 45 check points was 95% reliably within 41 mm horizontally and 68 mm vertically and with an 11.7 mm ground sample distance taken from a flight altitude above ground level of 90 m.The area covered by one image was 70.2 m × 46.4 m, which equals 0.325 Ha. This

  17. MUSCLE: multiple sequence alignment with high accuracy and high throughput.

    Science.gov (United States)

    Edgar, Robert C

    2004-01-01

    We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.

  18. 100% classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox.

    Directory of Open Access Journals (Sweden)

    Francisco J Valverde-Albacete

    Full Text Available The most widely spread measure of performance, accuracy, suffers from a paradox: predictive models with a given level of accuracy may have greater predictive power than models with higher accuracy. Despite optimizing classification error rate, high accuracy models may fail to capture crucial information transfer in the classification task. We present evidence of this behavior by means of a combinatorial analysis where every possible contingency matrix of 2, 3 and 4 classes classifiers are depicted on the entropy triangle, a more reliable information-theoretic tool for classification assessment. Motivated by this, we develop from first principles a measure of classification performance that takes into consideration the information learned by classifiers. We are then able to obtain the entropy-modulated accuracy (EMA, a pessimistic estimate of the expected accuracy with the influence of the input distribution factored out, and the normalized information transfer factor (NIT, a measure of how efficient is the transmission of information from the input to the output set of classes. The EMA is a more natural measure of classification performance than accuracy when the heuristic to maximize is the transfer of information through the classifier instead of classification error count. The NIT factor measures the effectiveness of the learning process in classifiers and also makes it harder for them to "cheat" using techniques like specialization, while also promoting the interpretability of results. Their use is demonstrated in a mind reading task competition that aims at decoding the identity of a video stimulus based on magnetoencephalography recordings. We show how the EMA and the NIT factor reject rankings based in accuracy, choosing more meaningful and interpretable classifiers.

  19. The accuracy of transvaginal sonography to detect endometriosis cyst

    Science.gov (United States)

    Diantika, M.; Gunardi, E. R.

    2017-08-01

    Endometriosis is common in women of reproductive age. Late diagnosis is still the main concern. Currently, noninvasive diagnostic testing, such as transvaginal sonography, is recommended. The aim of the current study was to evaluate the accuracy of transvaginal sonography in diagnosing endometrial cysts in patients in Cipto Mangunkusumo Hospital, Jakarta, Indonesia. This diagnostic study was carried out at Cipto Mangunkusumo Hospital between January 2014 and June 2015. Outpatients suspected have an endometrial cyst based on the patient history and a clinical examination was recruited. The patients were then evaluated using transvaginal sonography by an experienced sonologist, according to the research protocol. The gold standard test was a histological finding in the removed surgical mass. Ninety-eight patients were analyzed. An endometrial cyst was confirmed by histology in 85 patients (87%). The accuracy, sensitivity, specificity, positive predictive value and negative predictive value of transvaginal sonography was established to be 85% (a range of 71-99%), 93%, 77%, 96%, and 63%, respectively. A significantly higher area under the curve was identified using transvaginal sonogpraphy compared to that achieved with a clinical examination alone (85% versus 79%). Transvaginal sonography was useful in diagnosing endometrial cysts in outpatients and is recommended in daily clinical practice.

  20. Methods Research about Accuracy Loss Tracing of Dynamic Measurement System Based on WNN

    International Nuclear Information System (INIS)

    Lin, S-W; Fei, Y T; Jiang, M L; Tsai, C-Y; Cheng Hsinyu

    2006-01-01

    The paper presents a method of achieving accuracy loss of the dynamic measurement system according to change of errors on different period of the system. WNN, used to trace the accuracy loss of dynamic measurement system, traces the total precision loss during a certain period to every part of the system, and the accuracy loss of every part can be get, so retaining the accuracy and optimum design of the system is possible. Take tracing the accuracy loss of a simulated system for an example to testify the method

  1. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    Directory of Open Access Journals (Sweden)

    Mingjun Deng

    2017-12-01

    Full Text Available The Chinese Gaofen-3 (GF-3 mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method.

  2. Towards complete and accurate reporting of studies of diagnostic accuracy: The STARD initiative

    NARCIS (Netherlands)

    Bossuyt, Patrick M.; Reitsma, Johannes B.; Bruns, David E.; Gatsonis, Constantine A.; Glasziou, Paul P.; Irwig, Les M.; Lijmer, Jeroen G.; Moher, David; Rennie, Drummond; de Vet, Henrica C. W.

    2003-01-01

    Background: To comprehend the results of diagnostic accuracy studies, readers must understand the design, conduct, analysis, and results of such studies. That goal can be achieved only through complete transparency from authors. Objective: To improve the accuracy and completeness of reporting of

  3. New conceptual copper alloy bearing for diesel engine to achieve longer life under higher load; Diesel engine yo komen`atsu chojumyo jikuuke no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tomikawa, T; Oshiro, H; Hashizume, K; Kamiya, S [Taiho Kogyo Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, the requirement like higher output, lower fuel consumption and cleaner exhaust gas for automotive engines has been increased. As a result, especially, higher bearing performance is required for diesel engine under a higher unit load and longer period. For this reason, we have developed the new conceptual copper alloy bearing to achieve higher performance under a higher unit load. This paper describes about the performance of this new bearing material. 3 refs., 12 figs., 5 tabs.

  4. Effects of Traditional, Blended and E-Learning on Students' Achievement in Higher Education

    Science.gov (United States)

    Al-Qahtani, Awadh A. Y.; Higgins, S. E.

    2013-01-01

    The study investigates the effect of e-learning, blended learning and classroom learning on students' achievement. Two experimental groups together with a control group from Umm Al-Qura University in Saudi Arabia were identified randomly. To assess students' achievement in the different groups, pre- and post-achievement tests were used. The…

  5. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack

    2013-09-18

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  6. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack; Faverge, Mathieu; Ltaief, Hatem; Luszczek, Piotr R.

    2013-01-01

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  7. Detailed precision and accuracy analysis of swarm parameters from a pulsed Townsend experiment

    Science.gov (United States)

    Haefliger, P.; Franck, C. M.

    2018-02-01

    A newly built pulsed Townsend experimental setup which allows one to measure both electron and ion currents is presented. The principle of pulsed Townsend measurements itself is well established to obtain swarm parameters such as the effective ionization rate coefficient, the density-reduced mobility, and the density-normalized longitudinal diffusion coefficient. The main novelty of the present contribution is a detailed and comprehensive analysis of the entire measurement and evaluation chain with respect to accuracy, precision, and reproducibility. The influence of the input parameters (gap distance, applied voltage, measured pressure, and temperature) is analyzed in detail. An overall accuracy of ±0.5% in the density reduced electric field (E/N) is achieved, which is close to the theoretically possible limit using the chosen components. The precision of the experimental results is higher than the accuracy. Through an extensive measurement campaign, the repeatability of our measurements proved to be high and similar to the precision. The reproducibility of results at identical (E/N) is similar to the precision for different distances but decreases for varying pressures. For benchmark purposes, measurements for Ar, CO2, and N2 are presented and compared with our previous experimental setup, simulations, and other experimental references.

  8. Case study: Comparison of motivation for achieving higher performance between self-directed and manager-directed aerospace engineering teams

    Science.gov (United States)

    Erlick, Katherine

    "The stereotype of engineers is that they are not people oriented; the stereotype implies that engineers would not work well in teams---that their task emphasis is a solo venture and does not encourage social aspects of collaboration" (Miner & Beyerlein, 1999, p. 16). The problem is determining the best method of providing a motivating environment where design engineers may contribute within a team in order to achieve higher performance in the organization. Theoretically, self-directed work teams perform at higher levels. But, allowing a design engineer to contribute to the team while still maintaining his or her anonymity is the key to success. Therefore, a motivating environment must be established to encourage greater self-actualization in design engineers. The purpose of this study is to determine the favorable motivational environment for design engineers and describe the comparison between two aerospace design-engineering teams: one self-directed and the other manager directed. Following the comparison, this study identified whether self-direction or manager-direction provides the favorable motivational environment for operating as a team in pursuit of achieving higher performance. The methodology used in this research was the case study focusing on the team's levels of job satisfaction and potential for higher performance. The collection of data came from three sources, (a) surveys, (b) researcher observer journal and (c) collection of artifacts. The surveys provided information regarding personal behavior characteristics, potentiality for higher performance and motivational attributes. The researcher journal provided information regarding team dynamics, individual interaction, conflict and conflict resolution. The milestone for performance was based on the collection of artifacts from the two teams. The findings from this study illustrated that whether the team was manager-directed or self-directed does not appear to influence the needs and wants of the

  9. Cadastral Database Positional Accuracy Improvement

    Science.gov (United States)

    Hashim, N. M.; Omar, A. H.; Ramli, S. N. M.; Omar, K. M.; Din, N.

    2017-10-01

    Positional Accuracy Improvement (PAI) is the refining process of the geometry feature in a geospatial dataset to improve its actual position. This actual position relates to the absolute position in specific coordinate system and the relation to the neighborhood features. With the growth of spatial based technology especially Geographical Information System (GIS) and Global Navigation Satellite System (GNSS), the PAI campaign is inevitable especially to the legacy cadastral database. Integration of legacy dataset and higher accuracy dataset like GNSS observation is a potential solution for improving the legacy dataset. However, by merely integrating both datasets will lead to a distortion of the relative geometry. The improved dataset should be further treated to minimize inherent errors and fitting to the new accurate dataset. The main focus of this study is to describe a method of angular based Least Square Adjustment (LSA) for PAI process of legacy dataset. The existing high accuracy dataset known as National Digital Cadastral Database (NDCDB) is then used as bench mark to validate the results. It was found that the propose technique is highly possible for positional accuracy improvement of legacy spatial datasets.

  10. A study on low-cost, high-accuracy, and real-time stereo vision algorithms for UAV power line inspection

    Science.gov (United States)

    Wang, Hongyu; Zhang, Baomin; Zhao, Xun; Li, Cong; Lu, Cunyue

    2018-04-01

    Conventional stereo vision algorithms suffer from high levels of hardware resource utilization due to algorithm complexity, or poor levels of accuracy caused by inadequacies in the matching algorithm. To address these issues, we have proposed a stereo range-finding technique that produces an excellent balance between cost, matching accuracy and real-time performance, for power line inspection using UAV. This was achieved through the introduction of a special image preprocessing algorithm and a weighted local stereo matching algorithm, as well as the design of a corresponding hardware architecture. Stereo vision systems based on this technique have a lower level of resource usage and also a higher level of matching accuracy following hardware acceleration. To validate the effectiveness of our technique, a stereo vision system based on our improved algorithms were implemented using the Spartan 6 FPGA. In comparative experiments, it was shown that the system using the improved algorithms outperformed the system based on the unimproved algorithms, in terms of resource utilization and matching accuracy. In particular, Block RAM usage was reduced by 19%, and the improved system was also able to output range-finding data in real time.

  11. Investigating the relationships between approaches to learning, learner identities and academic achievement in higher education

    DEFF Research Database (Denmark)

    Herrmann, Kim Jesper; Bager-Elsborg, Anna; McCune, Velda

    2017-01-01

    This paper considers relationships between approaches to learning, learner identities, self-efficacy beliefs and academic achievement in higher education. In addition to already established survey instruments, a new scale, subject area affinity, was developed. The scale explores the extent to which...... students identify with their area of study and imagine being part of it in future. The new scale showed strong psychometric properties when it was tested on a sample of 4377 students at a research-intensive university. The new scale correlated positively with both the deep approach and self-efficacy scales....... The new scale also correlated negatively with the surface approach scale. K-means cluster analysis identified seven distinct groups of students who espoused interpretable combinations of approaches, self-efficacy and subject area affinity. Cluster membership was associated with differences in academic...

  12. Image Positioning Accuracy Analysis for Super Low Altitude Remote Sensing Satellites

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2012-10-01

    Full Text Available Super low altitude remote sensing satellites maintain lower flight altitudes by means of ion propulsion in order to improve image resolution and positioning accuracy. The use of engineering data in design for achieving image positioning accuracy is discussed in this paper based on the principles of the photogrammetry theory. The exact line-of-sight rebuilding of each detection element and this direction precisely intersecting with the Earth's elliptical when the camera on the satellite is imaging are both ensured by the combined design of key parameters. These parameters include: orbit determination accuracy, attitude determination accuracy, camera exposure time, accurately synchronizing the reception of ephemeris with attitude data, geometric calibration and precise orbit verification. Precise simulation calculations show that image positioning accuracy of super low altitude remote sensing satellites is not obviously improved. The attitude determination error of a satellite still restricts its positioning accuracy.

  13. High-accuracy user identification using EEG biometrics.

    Science.gov (United States)

    Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip

    2016-08-01

    We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.

  14. You are so beautiful... to me: seeing beyond biases and achieving accuracy in romantic relationships.

    Science.gov (United States)

    Solomon, Brittany C; Vazire, Simine

    2014-09-01

    Do romantic partners see each other realistically, or do they have overly positive perceptions of each other? Research has shown that realism and positivity co-exist in romantic partners' perceptions (Boyes & Fletcher, 2007). The current study takes a novel approach to explaining this seemingly paradoxical effect when it comes to physical attractiveness--a highly evaluative trait that is especially relevant to romantic relationships. Specifically, we argue that people are aware that others do not see their partners as positively as they do. Using both mean differences and correlational approaches, we test the hypothesis that despite their own biased and idiosyncratic perceptions, people have 2 types of partner-knowledge: insight into how their partners see themselves (i.e., identity accuracy) and insight into how others see their partners (i.e., reputation accuracy). Our results suggest that romantic partners have some awareness of each other's identity and reputation for physical attractiveness, supporting theories that couple members' perceptions are driven by motives to fulfill both esteem- and epistemic-related needs (i.e., to see their partners positively and realistically). 2014 APA, all rights reserved

  15. Higher Education Quality Assessment Model: Towards Achieving Educational Quality Standard

    Science.gov (United States)

    Noaman, Amin Y.; Ragab, Abdul Hamid M.; Madbouly, Ayman I.; Khedra, Ahmed M.; Fayoumi, Ayman G.

    2017-01-01

    This paper presents a developed higher education quality assessment model (HEQAM) that can be applied for enhancement of university services. This is because there is no universal unified quality standard model that can be used to assess the quality criteria of higher education institutes. The analytical hierarchy process is used to identify the…

  16. Analysis on Dynamic Transmission Accuracy for RV Reducer

    Directory of Open Access Journals (Sweden)

    Zhang Fengshou

    2017-01-01

    Full Text Available By taking rotate vector (RV reducer as the research object, the factors affecting the transmission accuracy are studied, including the machining errors of the main parts, assembly errors, clearance, micro-displacement, gear mesh stiffness and damping, bearing stiffness. Based on Newton second law, the transmission error mathematical model of RV reducer is set up. Then, the RV reducer transmission error curve is achieved by solving the mathematical model using the Runge-Kutta methods under the combined action of various error factors. Through the analysis of RV reducer transmission test, it can be found that there are similar variation trend and frequency components compared the theoretical research and experimental result. The presented method is useful to the research on dynamic transmission accuracy of RV reducer, and also applies to research the transmission accuracy of other cycloid drive systems.

  17. Improvement of vision measurement accuracy using Zernike moment based edge location error compensation model

    International Nuclear Information System (INIS)

    Cui, J W; Tan, J B; Zhou, Y; Zhang, H

    2007-01-01

    This paper presents the Zernike moment based model developed to compensate edge location errors for further improvement of the vision measurement accuracy by compensating the slight changes resulting from sampling and establishing mathematic expressions for subpixel location of theoretical and actual edges which are either vertical to or at an angle with X-axis. Experimental results show that the proposed model can be used to achieve a vision measurement accuracy of up to 0.08 pixel while the measurement uncertainty is less than 0.36μm. It is therefore concluded that as a model which can be used to achieve a significant improvement of vision measurement accuracy, the proposed model is especially suitable for edge location of images with low contrast

  18. Final Technical Report: Increasing Prediction Accuracy.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    PV performance models are used to quantify the value of PV plants in a given location. They combine the performance characteristics of the system, the measured or predicted irradiance and weather at a site, and the system configuration and design into a prediction of the amount of energy that will be produced by a PV system. These predictions must be as accurate as possible in order for finance charges to be minimized. Higher accuracy equals lower project risk. The Increasing Prediction Accuracy project at Sandia focuses on quantifying and reducing uncertainties in PV system performance models.

  19. The Interplay Among Academic Self-Concept, Self-Efficacy, Self-Regulation and Academic Achievement of Higher Education L2 Learners

    OpenAIRE

    Özkan KIRMIZI

    2015-01-01

    Self-concept, self efficacy, and self-regulation are three important factors that predict the success of L2 learners to a large extent. Therefore, the present study was designed to measure the academic self-concept, self efficacy, self-regulation level of higher education students in relation to academic achievement and self-evaluation and secondarily to investigate the correlation between academic self-concept, selfefficacy, and self-regulation. In the present study, academic self-concept wa...

  20. Higher order polynomial expansion nodal method for hexagonal core neutronics analysis

    International Nuclear Information System (INIS)

    Jin, Young Cho; Chang, Hyo Kim

    1998-01-01

    A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy

  1. Accuracy Assessment of Underwater Photogrammetric Three Dimensional Modelling for Coral Reefs

    Science.gov (United States)

    Guo, T.; Capra, A.; Troyer, M.; Gruen, A.; Brooks, A. J.; Hench, J. L.; Schmitt, R. J.; Holbrook, S. J.; Dubbini, M.

    2016-06-01

    Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.

  2. Improving Accuracy of Processing Through Active Control

    Directory of Open Access Journals (Sweden)

    N. N. Barbashov

    2016-01-01

    Full Text Available An important task of modern mathematical statistics with its methods based on the theory of probability is a scientific estimate of measurement results. There are certain costs under control, and under ineffective control when a customer has got defective products these costs are significantly higher because of parts recall.When machining the parts, under the influence of errors a range scatter of part dimensions is offset towards the tolerance limit. To improve a processing accuracy and avoid defective products involves reducing components of error in machining, i.e. to improve the accuracy of machine and tool, tool life, rigidity of the system, accuracy of the adjustment. In a given time it is also necessary to adapt machine.To improve an accuracy and a machining rate there, currently  become extensively popular various the in-process gaging devices and controlled machining that uses adaptive control systems for the process monitoring. Improving the accuracy in this case is compensation of a majority of technological errors. The in-cycle measuring sensors (sensors of active control allow processing accuracy improvement by one or two quality and provide a capability for simultaneous operation of several machines.Efficient use of in-cycle measuring sensors requires development of methods to control the accuracy through providing the appropriate adjustments. Methods based on the moving average, appear to be the most promising for accuracy control since they include data on the change in some last measured values of the parameter under control.

  3. Numerical methods of higher order of accuracy for incompressible flows

    Czech Academy of Sciences Publication Activity Database

    Kozel, K.; Louda, Petr; Příhoda, Jaromír

    2010-01-01

    Roč. 80, č. 8 (2010), s. 1734-1745 ISSN 0378-4754 Institutional research plan: CEZ:AV0Z20760514 Keywords : higher order methods * upwind methods * backward-facing step Subject RIV: BK - Fluid Dynamics Impact factor: 0.812, year: 2010

  4. Accuracy Rates of Ancestry Estimation by Forensic Anthropologists Using Identified Forensic Cases.

    Science.gov (United States)

    Thomas, Richard M; Parks, Connie L; Richard, Adam H

    2017-07-01

    A common task in forensic anthropology involves the estimation of the ancestry of a decedent by comparing their skeletal morphology and measurements to skeletons of individuals from known geographic groups. However, the accuracy rates of ancestry estimation methods in actual forensic casework have rarely been studied. This article uses 99 forensic cases with identified skeletal remains to develop accuracy rates for ancestry estimations conducted by forensic anthropologists. The overall rate of correct ancestry estimation from these cases is 90.9%, which is comparable to most research-derived rates and those reported by individual practitioners. Statistical tests showed no significant difference in accuracy rates depending on examiner education level or on the estimated or identified ancestry. More recent cases showed a significantly higher accuracy rate. The incorporation of metric analyses into the ancestry estimate in these cases led to a higher accuracy rate. © 2017 American Academy of Forensic Sciences.

  5. Verification of Positional Accuracy of ZVS3003 Geodetic Control ...

    African Journals Online (AJOL)

    The International GPS Service (IGS) has provided GPS orbit products to the scientific community with increased precision and timeliness. Many users interested in geodetic positioning have adopted the IGS precise orbits to achieve centimeter level accuracy and ensure long-term reference frame stability. Positioning with ...

  6. A higher-order numerical framework for stochastic simulation of chemical reaction systems.

    KAUST Repository

    Székely, Tamás

    2012-07-15

    BACKGROUND: In this paper, we present a framework for improving the accuracy of fixed-step methods for Monte Carlo simulation of discrete stochastic chemical kinetics. Stochasticity is ubiquitous in many areas of cell biology, for example in gene regulation, biochemical cascades and cell-cell interaction. However most discrete stochastic simulation techniques are slow. We apply Richardson extrapolation to the moments of three fixed-step methods, the Euler, midpoint and θ-trapezoidal τ-leap methods, to demonstrate the power of stochastic extrapolation. The extrapolation framework can increase the order of convergence of any fixed-step discrete stochastic solver and is very easy to implement; the only condition for its use is knowledge of the appropriate terms of the global error expansion of the solver in terms of its stepsize. In practical terms, a higher-order method with a larger stepsize can achieve the same level of accuracy as a lower-order method with a smaller one, potentially reducing the computational time of the system. RESULTS: By obtaining a global error expansion for a general weak first-order method, we prove that extrapolation can increase the weak order of convergence for the moments of the Euler and the midpoint τ-leap methods, from one to two. This is supported by numerical simulations of several chemical systems of biological importance using the Euler, midpoint and θ-trapezoidal τ-leap methods. In almost all cases, extrapolation results in an improvement of accuracy. As in the case of ordinary and stochastic differential equations, extrapolation can be repeated to obtain even higher-order approximations. CONCLUSIONS: Extrapolation is a general framework for increasing the order of accuracy of any fixed-step stochastic solver. This enables the simulation of complicated systems in less time, allowing for more realistic biochemical problems to be solved.

  7. The effects of higher-order questioning strategies on nonscience majors' achievement in an introductory environmental science course and their attitudes toward the environment

    Science.gov (United States)

    Eason, Grace Teresa

    The purpose of this quasi-experimental study was to determine the effect a higher-order questioning strategy (Bloom, 1956) had on undergraduate non-science majors' attitudes toward the environment and their achievement in an introductory environmental science course, EDS 1032, "Survey of Science 2: Life Science," which was offered during the Spring 2000 term. Students from both treatment and control groups (N = 63), which were determined using intact classes, participated in eight cooperative group activities based on the Biological Sciences Curriculum Studies (BSCS) 5E model (Bybee, 1993). The treatment group received a higher-order questioning method combined with the BSCS 5E model. The control group received a lower-order questioning method, combined with the BSCS 5E model. Two instruments were used to measure students' attitude and achievement changes. The Ecology Issue Attitude (EIA) survey (Schindler, 1995) and a comprehensive environmental science final exam. Kolb's Learning Style Inventory (KLSI, 1985) was used to measure students' learning style type. After a 15-week treatment period, results were analyzed using MANCOVA. The overall MANCOVA model used to test the statistical difference between the collective influences of the independent variables on the three dependent variables simultaneously was found to be not significant at alpha = .05. This differs from findings of previous studies in which higher-order questioning techniques had a significant effect on student achievement (King 1989 & 1992; Blosser, 1991; Redfield and Rousseau, 1981; Gall 1970). At the risk of inflated Type I and Type II error rates, separate univariate analyses were performed. However, none of the research factors, when examined collectively or separately, made any significant contribution to explaining the variability in EIA attitude, EIA achievement, and comprehensive environmental science final examination scores. Nevertheless, anecdotal evidence from student's self

  8. Social class, contextualism, and empathic accuracy.

    Science.gov (United States)

    Kraus, Michael W; Côté, Stéphane; Keltner, Dacher

    2010-11-01

    Recent research suggests that lower-class individuals favor explanations of personal and political outcomes that are oriented to features of the external environment. We extended this work by testing the hypothesis that, as a result, individuals of a lower social class are more empathically accurate in judging the emotions of other people. In three studies, lower-class individuals (compared with upper-class individuals) received higher scores on a test of empathic accuracy (Study 1), judged the emotions of an interaction partner more accurately (Study 2), and made more accurate inferences about emotion from static images of muscle movements in the eyes (Study 3). Moreover, the association between social class and empathic accuracy was explained by the tendency for lower-class individuals to explain social events in terms of features of the external environment. The implications of class-based patterns in empathic accuracy for well-being and relationship outcomes are discussed.

  9. Accuracy comparison among different machine learning techniques for detecting malicious codes

    Science.gov (United States)

    Narang, Komal

    2016-03-01

    In this paper, a machine learning based model for malware detection is proposed. It can detect newly released malware i.e. zero day attack by analyzing operation codes on Android operating system. The accuracy of Naïve Bayes, Support Vector Machine (SVM) and Neural Network for detecting malicious code has been compared for the proposed model. In the experiment 400 benign files, 100 system files and 500 malicious files have been used to construct the model. The model yields the best accuracy 88.9% when neural network is used as classifier and achieved 95% and 82.8% accuracy for sensitivity and specificity respectively.

  10. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel.

    Science.gov (United States)

    Mitt, Mario; Kals, Mart; Pärn, Kalle; Gabriel, Stacey B; Lander, Eric S; Palotie, Aarno; Ripatti, Samuli; Morris, Andrew P; Metspalu, Andres; Esko, Tõnu; Mägi, Reedik; Palta, Priit

    2017-06-01

    Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF)≥5% and low-frequency variants (0.5≤MAF<5%) across diverse populations, but the imputation of rare variation (MAF<0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference panels from diverse populations with a population-specific high-coverage (30 ×) whole-genome sequencing (WGS) based reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies.

  11. Impact of product configuration systems on product profitability and costing accuracy

    DEFF Research Database (Denmark)

    Myrodia, Anna; Kristjansdottir, Katrin; Hvam, Lars

    2017-01-01

    in control of their product assortment, making the right decisions in the sales phase and increasing sales of optimal products. These benefits should have an impact on the company's ability to make more accurate cost estimations in the sales phase, which can positively affect the products’ profitability......This article aims at analyzing the impact of implementing a product configuration system (PCS) on the increased accuracy of the cost calculations and the increased profitability of the products. Companies that have implemented PCSs have achieved substantial benefits in terms of being more...... and after a PCS was implemented. The comparison in the case study revealed that increased accuracy of the cost calculations in the sales phase and consequently increased profitability can be achieved by implementing a PCS....

  12. Improving the accuracy of protein secondary structure prediction using structural alignment

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2006-06-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has steadily improved over the past 30 years. Now many secondary structure prediction methods routinely achieve an accuracy (Q3 of about 75%. We believe this accuracy could be further improved by including structure (as opposed to sequence database comparisons as part of the prediction process. Indeed, given the large size of the Protein Data Bank (>35,000 sequences, the probability of a newly identified sequence having a structural homologue is actually quite high. Results We have developed a method that performs structure-based sequence alignments as part of the secondary structure prediction process. By mapping the structure of a known homologue (sequence ID >25% onto the query protein's sequence, it is possible to predict at least a portion of that query protein's secondary structure. By integrating this structural alignment approach with conventional (sequence-based secondary structure methods and then combining it with a "jury-of-experts" system to generate a consensus result, it is possible to attain very high prediction accuracy. Using a sequence-unique test set of 1644 proteins from EVA, this new method achieves an average Q3 score of 81.3%. Extensive testing indicates this is approximately 4–5% better than any other method currently available. Assessments using non sequence-unique test sets (typical of those used in proteome annotation or structural genomics indicate that this new method can achieve a Q3 score approaching 88%. Conclusion By using both sequence and structure databases and by exploiting the latest techniques in machine learning it is possible to routinely predict protein secondary structure with an accuracy well above 80%. A program and web server, called PROTEUS, that performs these secondary structure predictions is accessible at http://wishart.biology.ualberta.ca/proteus. For high throughput or batch sequence analyses, the PROTEUS programs

  13. High Accuracy Transistor Compact Model Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mar, Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  14. Sustained availability of trimethoprim in drinking water to achieve higher plasma sulphonamide-trimethoprim antibacterial activity in broilers.

    Science.gov (United States)

    Sumano, H; Hernandez, L; Gutierrez, L; Bernad-Bernad, M J

    2005-02-01

    (1) In order to make trimethoprim (TMP) available to broilers throughout the day, a sustained release formulation (SRF) of the drug in the form of granules was added to the water tank that supplies drinking water. (2) Broilers were initially dosed with sulphachloropiridazine-TMP (SCP-TMP 5:1) and then further medicated throughout the day, achieving in the end a dose of 30 mg/kg each of SCP and TMP (group A). Group B received a preparation with the same dose of SCP and TMP (1:1) as group A, but administered as a single dose without the SRF of TMP. Group C received the customary SCP-TMP 5:1 preparation (30 and 6 mg/kg, respectively). Water tanks were completely consumed in 3 to 4 h. (3) Broilers were bled at different times and concentration of antibacterial activity in serum determined by correlating the composite antibacterial activity of SCP and TMP with actual concentrations of these drugs by means of a microbiological agar diffusion assay. (4) Time vs serum concentrations of activity were higher in group B; the increments in the maximum serum concentration for group B over groups A and C being 39 and 67%, respectively. (5) However, the sustained concentration of activity over time, measured as the area under the cu)rve, was highest in group A. Group B had higher values for area under the curve than group C. (6) An additional dose of TMP to achieve 30 mg/kg of both SCP and TMP improves the serum concentration of this combination over the customary 5:1 proportion. The best values for sustaining antibacterial activity were obtained using a 1:1 ratio as in group A. The use of a SRF as in group A may translate into better clinical results.

  15. ACCURACY ASSESSMENT OF UNDERWATER PHOTOGRAMMETRIC THREE DIMENSIONAL MODELLING FOR CORAL REEFS

    Directory of Open Access Journals (Sweden)

    T. Guo

    2016-06-01

    Full Text Available Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values. Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.

  16. High accuracy wavelength calibration for a scanning visible spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Scotti, Filippo; Bell, Ronald E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2010-10-15

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies {<=}0.2 A. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of {approx}0.25 A has been demonstrated. With the addition of a high resolution (0.075 arc sec) optical encoder on the grating stage, greater precision ({approx}0.005 A) is possible, allowing absolute velocity measurements within {approx}0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  17. Performance assessment of a cavity ring-down laser spectrometer: achieving better precision and accuracy in the measurement of δ18O and δ2H in liquid water samples

    International Nuclear Information System (INIS)

    Prado-Pérez, A J; Rodríguez-Arévalo, J; Díaz-Teijeiro, M F

    2014-01-01

    The development of new isotopic laser-based analyzers currently represents a clear alternative to conventional isotope ratio mass spectrometers. However, this analytical technique also suffers some disadvantages such as the memory effect, problems related to the overall stability of the equipment and other issues associated with the injection system, essentially regarding the syringe's longevity. This paper aims to minimize these disadvantages in order to increase the overall performance, in terms of precision and accuracy, of these kinds of analyzers. The main results of the experiments carried out in this paper have shown that: (i) the minimum number of discarded injections needed to eliminate the memory effect can be determined just considering the expected isotopic signature difference between two consecutive samples; (ii) both accuracy and precision of the isotopic measurements increase with increasing injection volume up to 2.1–2.2 µL; (iii) it is possible to extend the syringe lifetime by almost a factor of 6 by using n-methyl 2-pyrrolidone as a lubricant. Besides, it has been concluded that, by using the appropriate procedure, the main disadvantages associated with CRDS laser spectroscopy analyzers can be minimized, achieving measurement accuracy and precision of the order of ±0.05 ‰ for δ 18 O and ±0.3 ‰ for δ 2 H. (paper)

  18. Knowing right from wrong in mental arithmetic judgments: calibration of confidence predicts the development of accuracy.

    Science.gov (United States)

    Rinne, Luke F; Mazzocco, Michèle M M

    2014-01-01

    Does knowing when mental arithmetic judgments are right--and when they are wrong--lead to more accurate judgments over time? We hypothesize that the successful detection of errors (and avoidance of false alarms) may contribute to the development of mental arithmetic performance. Insight into error detection abilities can be gained by examining the "calibration" of mental arithmetic judgments-that is, the alignment between confidence in judgments and the accuracy of those judgments. Calibration may be viewed as a measure of metacognitive monitoring ability. We conducted a developmental longitudinal investigation of the relationship between the calibration of children's mental arithmetic judgments and their performance on a mental arithmetic task. Annually between Grades 5 and 8, children completed a problem verification task in which they rapidly judged the accuracy of arithmetic expressions (e.g., 25 + 50 = 75) and rated their confidence in each judgment. Results showed that calibration was strongly related to concurrent mental arithmetic performance, that calibration continued to develop even as mental arithmetic accuracy approached ceiling, that poor calibration distinguished children with mathematics learning disability from both low and typically achieving children, and that better calibration in Grade 5 predicted larger gains in mental arithmetic accuracy between Grades 5 and 8. We propose that good calibration supports the implementation of cognitive control, leading to long-term improvement in mental arithmetic accuracy. Because mental arithmetic "fluency" is critical for higher-level mathematics competence, calibration of confidence in mental arithmetic judgments may represent a novel and important developmental predictor of future mathematics performance.

  19. The acitretin and methotrexate combination therapy for psoriasis vulgaris achieves higher effectiveness and less liver fibrosis.

    Science.gov (United States)

    An, Jingang; Zhang, Dingwei; Wu, Jiawen; Li, Jiong; Teng, Xiu; Gao, Xiaomin; Li, Ruilian; Wang, Xiuying; Xia, Linlin; Xia, Yumin

    2017-07-01

    Both acitretin and methotrexate are effective in ameliorating psoriatic lesion. However, their combination has been seldom reported in the treatment of psoriasis because of the warning regarding the potential hepatotoxicity of the drug interactions. This study was designed to investigate the effectiveness of such combination therapy for psoriasis vulgaris, and the potential benefit as well as side effect during the treatment. Thirty-nine patients with psoriasis vulgaris were treated with acitretin, methotrexate or their combination or as control. Similarly, K14-VEGF transgenic psoriasis-like mice were treated with these drugs. Human primary keratinocytes and hepatic stellate cells were used for analyzing their effect in vitro. The results showed that the combination therapy exhibited higher effectiveness in remitting skin lesion, but did not significantly affect the liver function of both patients and mice. Moreover, the combination groups showed less elevation of profibrotic factors in sera when compared with methotrexate alone groups accordingly. Furthermore, primary keratinocytes expressed more involucrin as well as loricrin and proliferated more slowly on the combined stimulation. Interestingly, such combination treatment induced lower expression of profibrotic factors in hepatic stellate cells. In conclusion, the acitretin-methotrexate combination therapy for psoriasis vulgaris can achieve higher effectiveness and result in less liver fibrosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Leveraging the Power of Experiential Learning to Achieve Higher-Order Proficiencies

    Science.gov (United States)

    Henderson, Amy

    2018-01-01

    Although experiential learning approaches, such as service-learning, have been shown to increase student motivation and academic achievement, faculty concerns about the costs of developing and implementing such courses have limited their adoption within economics. One cost that can be eliminated is the opportunity cost typically associated with…

  1. Accuracy in Optical Information Processing

    Science.gov (United States)

    Timucin, Dogan Aslan

    Low computational accuracy is an important obstacle for optical processors which blocks their way to becoming a practical reality and a serious challenger for classical computing paradigms. This research presents a comprehensive solution approach to the problem of accuracy enhancement in discrete analog optical information processing systems. Statistical analysis of a generic three-plane optical processor is carried out first, taking into account the effects of diffraction, interchannel crosstalk, and background radiation. Noise sources included in the analysis are photon, excitation, and emission fluctuations in the source array, transmission and polarization fluctuations in the modulator, and photoelectron, gain, dark, shot, and thermal noise in the detector array. Means and mutual coherence and probability density functions are derived for both optical and electrical output signals. Next, statistical models for a number of popular optoelectronic devices are studied. Specific devices considered here are light-emitting and laser diode sources, an ideal noiseless modulator and a Gaussian random-amplitude-transmittance modulator, p-i-n and avalanche photodiode detectors followed by electronic postprocessing, and ideal free-space geometrical -optics propagation and single-lens imaging systems. Output signal statistics are determined for various interesting device combinations by inserting these models into the general formalism. Finally, based on these special-case output statistics, results on accuracy limitations and enhancement in optical processors are presented. Here, starting with the formulation of the accuracy enhancement problem as (1) an optimal detection problem and (2) as a parameter estimation problem, the potential accuracy improvements achievable via the classical multiple-hypothesis -testing and maximum likelihood and Bayesian parameter estimation methods are demonstrated. Merits of using proper normalizing transforms which can potentially stabilize

  2. The Effect of Task Type and Pre-task Planning Condition on the Accuracy of Intermediate EFL Learners' Writing Performance

    Directory of Open Access Journals (Sweden)

    Seyeed Mohammad Alavi

    2012-05-01

    Full Text Available Task-based language teaching, which requires learners to transact tasks resembling their real life language needs, demands language learners to perform planning at different stages of their learning. Since various types of tasks can be used in task-based instruction, the present study examined the effect of task types and various participatory structures during pre-task planning on the quality of learners' writing performance, (i.e., accuracy. Towards this end, 120 intermediate EFL students were randomly assigned to 3 experimental groups and one control group. While the experimental groups were subjected to different pre-task planning conditions, (i.e., individual, pair, and group, the control group performed tasks without any planning. During the treatment, they experienced task modeling, presentation and completion. A factorial design was followed in the present study, and the collected data were analyzed through ANOVAs that revealed task type and pre-task planning condition influenced the writing accuracy of the participants in a way that resulted in greater accuracy in the decision-making task in the experimental groups, thereby ensuring the effectiveness of the treatment in mitigating the long-standing problem of EFL learners in achieving higher levels of accuracy when a specific task type is concerned.

  3. Leadership and culture of data governance for the achievement of higher education goals (Case study: Indonesia University of Education)

    Science.gov (United States)

    Putro, Budi Laksono; Surendro, Kridanto; Herbert

    2016-02-01

    Data is a vital asset in a business enterprise in achieving organizational goals. Data and information affect the decision-making process on the various activities of an organization. Data problems include validity, quality, duplication, control over data, and the difficulty of data availability. Data Governance is the way the company / institution manages its data assets. Data Governance covers the rules, policies, procedures, roles and responsibilities, and performance indicators that direct the overall management of data assets. Studies on governance data or information aplenty recommend the importance of cultural factors in the governance of research data. Among the organization's leadership culture has a very close relationship, and there are two concepts turn, namely: Culture created by leaders, leaders created by culture. Based on the above, this study exposure to the theme "Leadership and Culture Of Data Governance For The Achievement Of Higher Education Goals (Case Study: Indonesia University Of Education)". Culture and Leadership Model Development of on Higher Education in Indonesia would be made by comparing several models of data governance, organizational culture, and organizational leadership on previous studies based on the advantages and disadvantages of each model to the existing organizational business. Results of data governance model development is shown in the organizational culture FPMIPA Indonesia University Of Education today is the cultural market and desired culture is a culture of clan. Organizational leadership today is Individualism Index (IDV) (83.72%), and situational leadership on selling position.

  4. The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years.

    Science.gov (United States)

    Wang, Yu; Mette, Michael Florian; Miedaner, Thomas; Gottwald, Marlen; Wilde, Peer; Reif, Jochen C; Zhao, Yusheng

    2014-07-04

    Marker-assisted selection (MAS) and genomic selection (GS) based on genome-wide marker data provide powerful tools to predict the genotypic value of selection material in plant breeding. However, case-to-case optimization of these approaches is required to achieve maximum accuracy of prediction with reasonable input. Based on extended field evaluation data for grain yield, plant height, starch content and total pentosan content of elite hybrid rye derived from testcrosses involving two bi-parental populations that were genotyped with 1048 molecular markers, we compared the accuracy of prediction of MAS and GS in a cross-validation approach. MAS delivered generally lower and in addition potentially over-estimated accuracies of prediction than GS by ridge regression best linear unbiased prediction (RR-BLUP). The grade of relatedness of the plant material included in the estimation and test sets clearly affected the accuracy of prediction of GS. Within each of the two bi-parental populations, accuracies differed depending on the relatedness of the respective parental lines. Across populations, accuracy increased when both populations contributed to estimation and test set. In contrast, accuracy of prediction based on an estimation set from one population to a test set from the other population was low despite that the two bi-parental segregating populations under scrutiny shared one parental line. Limiting the number of locations or years in field testing reduced the accuracy of prediction of GS equally, supporting the view that to establish robust GS calibration models a sufficient number of test locations is of similar importance as extended testing for more than one year. In hybrid rye, genomic selection is superior to marker-assisted selection. However, it achieves high accuracies of prediction only for selection candidates closely related to the plant material evaluated in field trials, resulting in a rather pessimistic prognosis for distantly related material

  5. Cone-beam computed tomography versus digital periapical radiography in the detection of artificially created periapical lesions: A pilot study of the diagnostic accuracy of endodontists using both techniques

    Energy Technology Data Exchange (ETDEWEB)

    Campello, Abdrea Fagundes; Goncalves, Lucio Souza; Marques, Fabio vidal [Faculty of Dentistry, Estacio de Sa University, Rio de Janeiro (Brazil); Guedes, Fabio Ribeiro [Faculty of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil)

    2017-03-15

    The aim of this study was to compare the diagnostic accuracy of previously trained endodontists in the detection of artificially created periapical lesions using cone-beam computed tomography (CBCT) and digital periapical radiography (DPR). An ex vivo model using dry skulls was used, in which simulated apical lesions were created and then progressively enlarged using no.1/2, no.2, no.4, and no.6 round burs. A total of 11 teeth were included in the study, and 110 images were obtained with CBCT and with an intraoral digital periapical radiographic sensor (Instrumentarium dental, Tuusula, Finland) initially and after each bur was used. Specificity and sensitivity were calculated. All images were evaluated by 10 previously trained, certified endodontists. Agreement was calculated using the kappa coefficient. The accuracy of each method in detecting apical lesions was calculated using the chi-square test. The kappa coefficient between examiners showed low agreement (range, 0.17-0.64). No statistical difference was found between CBCT and DPR in teeth without apical lesions (P=.15). The accuracy for CBCT was significantly higher than for DPR in all corresponding simulated lesions (P<.001). The correct diagnostic rate for CBCT ranged between 56.9% and 73.6%. The greatest difference between CBCT and DPR was seen in the maxillary teeth (CBCT, 71.4%; DPR, 28.6%; P<.01) and multi-rooted teeth (CBCT, 83.3%; DPR, 33.3%; P<.01). CBCT allowed higher accuracy than DPR in detecting simulated lesions for all simulated lesions tested. Endodontists need to be properly trained in interpreting CBCT scans to achieve higher diagnostic accuracy.

  6. A STUDY ON SOCIAL ADJUSTMENT AMONG HIGHER SECONDARY SCHOOL STUDENTS AND ITS IMPACT ON THEIR ACADEMIC ACHIEVEMENT IN COIMBATORE DISTRICT

    OpenAIRE

    P.Priya Packiaselvi; Ms.Malathi.V.A

    2017-01-01

    Every human being seeks adjustment to various situations. He constantly makes efforts to adjustment himself to his surroundings because a wholesome adjustment is essential for leading a happy life and going satisfaction. Social adjustment to other people is general and to the group with which they are identified is particular. The main motive of the study is to find out the social adjustment among higher secondary school students and its impact on academic achievement in Coimbatore Educationa...

  7. Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort.

    Science.gov (United States)

    Shcherbina, Anna; Mattsson, C Mikael; Waggott, Daryl; Salisbury, Heidi; Christle, Jeffrey W; Hastie, Trevor; Wheeler, Matthew T; Ashley, Euan A

    2017-05-24

    The ability to measure physical activity through wrist-worn devices provides an opportunity for cardiovascular medicine. However, the accuracy of commercial devices is largely unknown. The aim of this work is to assess the accuracy of seven commercially available wrist-worn devices in estimating heart rate (HR) and energy expenditure (EE) and to propose a wearable sensor evaluation framework. We evaluated the Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2, PulseOn, and Samsung Gear S2. Participants wore devices while being simultaneously assessed with continuous telemetry and indirect calorimetry while sitting, walking, running, and cycling. Sixty volunteers (29 male, 31 female, age 38 ± 11 years) of diverse age, height, weight, skin tone, and fitness level were selected. Error in HR and EE was computed for each subject/device/activity combination. Devices reported the lowest error for cycling and the highest for walking. Device error was higher for males, greater body mass index, darker skin tone, and walking. Six of the devices achieved a median error for HR below 5% during cycling. No device achieved an error in EE below 20 percent. The Apple Watch achieved the lowest overall error in both HR and EE, while the Samsung Gear S2 reported the highest. In conclusion, most wrist-worn devices adequately measure HR in laboratory-based activities, but poorly estimate EE, suggesting caution in the use of EE measurements as part of health improvement programs. We propose reference standards for the validation of consumer health devices (http://precision.stanford.edu/).

  8. Capability Database of Injection Molding Process— Requirements Study for Wider Suitability and Higher Accuracy

    DEFF Research Database (Denmark)

    Boorla, Srinivasa Murthy; Eifler, Tobias; Jepsen, Jens Dines O.

    2017-01-01

    for an improved applicability of corresponding database solutions in an industrial context. A survey of database users at all phases of product value chain in the plastic industry revealed that 59% of the participating companies use their own, internally created databases, although reported to be not fully...... adequate in most cases. Essential influences are the suitability of the provided data, defined by the content such as material, tolerance types, etc. covered, as well as its accuracy, largely influenced by the updating frequency. Forming a consortium with stakeholders, linking database update to technology...

  9. Achievement motivation and memory: achievement goals differentially influence immediate and delayed remember-know recognition memory.

    Science.gov (United States)

    Murayama, Kou; Elliot, Andrew J

    2011-10-01

    Little research has been conducted on achievement motivation and memory and, more specifically, on achievement goals and memory. In the present research, the authors conducted two experiments designed to examine the influence of mastery-approach and performance-approach goals on immediate and delayed remember-know recognition memory. The experiments revealed differential effects for achievement goals over time: Performance-approach goals showed higher correct remember responding on an immediate recognition test, whereas mastery-approach goals showed higher correct remember responding on a delayed recognition test. Achievement goals had no influence on overall recognition memory and no consistent influence on know responding across experiments. These findings indicate that it is important to consider quality, not just quantity, in both motivation and memory, when studying relations between these constructs.

  10. Testing an Automated Accuracy Assessment Method on Bibliographic Data

    Directory of Open Access Journals (Sweden)

    Marlies Olensky

    2014-12-01

    Full Text Available This study investigates automated data accuracy assessment as described in data quality literature for its suitability to assess bibliographic data. The data samples comprise the publications of two Nobel Prize winners in the field of Chemistry for a 10-year-publication period retrieved from the two bibliometric data sources, Web of Science and Scopus. The bibliographic records are assessed against the original publication (gold standard and an automatic assessment method is compared to a manual one. The results show that the manual assessment method reflects truer accuracy scores. The automated assessment method would need to be extended by additional rules that reflect specific characteristics of bibliographic data. Both data sources had higher accuracy scores per field than accumulated per record. This study contributes to the research on finding a standardized assessment method of bibliographic data accuracy as well as defining the impact of data accuracy on the citation matching process.

  11. Effects of accuracy motivation and anchoring on metacomprehension judgment and accuracy.

    Science.gov (United States)

    Zhao, Qin

    2012-01-01

    The current research investigates how accuracy motivation impacts anchoring and adjustment in metacomprehension judgment and how accuracy motivation and anchoring affect metacomprehension accuracy. Participants were randomly assigned to one of six conditions produced by the between-subjects factorial design involving accuracy motivation (incentive or no) and peer performance anchor (95%, 55%, or no). Two studies showed that accuracy motivation did not impact anchoring bias, but the adjustment-from-anchor process occurred. Accuracy incentive increased anchor-judgment gap for the 95% anchor but not for the 55% anchor, which induced less certainty about the direction of adjustment. The findings offer support to the integrative theory of anchoring. Additionally, the two studies revealed a "power struggle" between accuracy motivation and anchoring in influencing metacomprehension accuracy. Accuracy motivation could improve metacomprehension accuracy in spite of anchoring effect, but if anchoring effect is too strong, it could overpower the motivation effect. The implications of the findings were discussed.

  12. TU-F-CAMPUS-T-02: Vernier Picket Fence Test: A Non-Imaging Method to Localize the Radiation Isocenter with Submillimeter Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Wong, J; Gallagher, K [Oregon Health & Science University, Portland, OR (United States); Oregon State University, Corvallis, OR (United States); Zhang, J [Oregon Health & Science University, Portland, OR (United States)

    2015-06-15

    Purpose: The purpose of this study is to propose a new non-imaging method to localize the radiation isocenter with submillimeter accuracy. Methods: The Vernier picket fence (VPF) is a multileaf collimator (MLC) picket fence sequence in which the fence spacing is 1/N smaller than the detector spacing of the QA phantom, where N is the magnification factor, typically set to 10 or 20. Similar to reading a Vernier caliper, the user can easily achieve the resolution of 1/N of the detector spacing by visually inspecting the maximum signal. To achieve higher accuracy, a Gaussian model was used to interpolate the peak position, which can fall between adjacent detectors. In two separate tests, precise MLC offsets and imprecise couch offsets were applied to a 2D detector array (MapCheck, Sun Nuclear Corp., Melbourne, Florida) to introduce setup errors. Two vertical VPF fields were delivered with collimator angles at 0° and 90° to detect the lateral and longitudinal setup errors, respectively. For a rotational QA phantom, an additional lateral VPF field is needed to detect the vertical setup error for three-dimensional capabilities. Results: With N set to 20 and a detector spacing of 5 mm for MapCheck, the resolution of the VPF’s visual analysis is 0.25 mm. With the Gaussian interpretation, the VPF can achieve an accuracy of 0.02 mm, as shown by the MLC offset test. The couch offset test measured the couch hysteresis and demonstrated that the setup error detected by the VPF differed from the ExacTrac™ (Brainlab AG, Feldkirchen, Germany) optical tracking by 0.055 mm in the lateral direction and 0.041 mm in the longitudinal direction on average. The VPF was also shown to be feasible in the vertical direction as well. Conclusion: This study verified the VPF as a non-imaging method to localize the radiation isocenter with submillimeter accuracy. Funding is in part by the Portland Chapter of the Achievement Rewards for College Scientists. The content is solely the

  13. What Happens to the Fish's Achievement in a Little Pond? A Simultaneous Analysis of Class-Average Achievement Effects on Achievement and Academic Self-Concept

    Science.gov (United States)

    Stäbler, Franziska; Dumont, Hanna; Becker, Michael; Baumert, Jürgen

    2017-01-01

    Empirical studies have demonstrated that students who are taught in a group of students with higher average achievement benefit in terms of their achievement. However, there is also evidence showing that being surrounded by high-achieving students has a negative effect on students' academic self-concept, also known as the big-fish--little-pond…

  14. Music Achievement and Academic Achievement: Isolating the School as a Unit of Study

    Science.gov (United States)

    Frey-Clark, Marta

    2015-01-01

    Music participation and academic achievement have long been of interest to educators, researchers and policy makers. The literature is replete with studies linking music participation to higher state assessment scores, grade point averages, and Standardized Achievement Test (SAT) scores. If students from quality music programs academically…

  15. Accuracy of pedicle screw placement in patients with Marfan syndrome.

    Science.gov (United States)

    Qiao, Jun; Zhu, Feng; Xu, Leilei; Liu, Zhen; Sun, Xu; Qian, Bangping; Jiang, Qing; Zhu, Zezhang; Qiu, Yong

    2017-03-21

    There is no study concerning safety and accuracy of pedicle screw placement in Marfan syndrome. The objective of this study is to investigate accuracy and safety of pedicle screw placement in scoliosis associated with Marfan syndrome. CT scanning was performed to analyze accuracy of pedicle screw placement. Pedicle perforations were classified as medial, lateral or anterior and categorized to four grades: ≤ 2 mm as Grade 1, 2.1-4.0 mm as Grade 2, 4.1-6.0 mm as Grade 3, ≥6.1 mm as Grade 4. Fully contained screws or with medial wall perforation ≤ 2 mm or with lateral wall perforation ≤ 6 mm and without injury of visceral organs were considered acceptable, otherwise were unacceptable. 976 pedicle screws were placed, 713 screws (73.1%) were fully contained within the cortical boundaries of the pedicle. 924 (94.7%) screws were considered as acceptable, and 52 (5.3%) as unacceptable. The perforation rate was higher using free-hand technique than O-arm navigation technique (30.8% VS. 11.4%, P Marfan syndrome is accuracy and safe. O-arm navigation was an effective modality to ensure the safety and accuracy of screw placement. Special attention should be paid when screws were placed at the lumber spine and the concave side of spine deformity to avoid the higher rate of complications.

  16. Constructing Better Classifier Ensemble Based on Weighted Accuracy and Diversity Measure

    Directory of Open Access Journals (Sweden)

    Xiaodong Zeng

    2014-01-01

    Full Text Available A weighted accuracy and diversity (WAD method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases.

  17. A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers

    Science.gov (United States)

    Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang

    1990-02-01

    In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.

  18. Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures.

    Science.gov (United States)

    Marheineke, Nadine; Scherer, Uta; Rücker, Martin; von See, Constantin; Rahlf, Björn; Gellrich, Nils-Claudius; Stoetzer, Marcus

    2018-06-01

    Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated. Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument. Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique. Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor. Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.

  19. ACCURACY OF MEASUREMENTS IN OBLIQUE AERIAL IMAGES FOR URBAN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    W. Ostrowski

    2016-10-01

    Full Text Available Oblique aerial images have been a source of data for urban areas for several years. However, the accuracy of measurements in oblique images during this time has been limited to a single meter due to the use of direct -georeferencing technology and the underlying digital elevation model. Therefore, oblique images have been used mostly for visualization purposes. This situation changed in recent years as new methods, which allowed for a higher accuracy of exterior orientation, were developed. Current developments include the process of determining exterior orientation and the previous but still crucial process of tie point extraction. Progress in this area was shown in the ISPRS/EUROSDR Benchmark on Multi-Platform Photogrammetry and is also noticeable in the growing interest in the use of this kind of imagery. The higher level of accuracy in the orientation of oblique aerial images that has become possible in the last few years should result in a higher level of accuracy in the measurements of these types of images. The main goal of this research was to set and empirically verify the accuracy of measurements in oblique aerial images. The research focused on photogrammetric measurements composed of many images, which use a high overlap within an oblique dataset and different view angles. During the experiments, two series of images of urban areas were used. Both were captured using five DigiCam cameras in a Maltese cross configuration. The tilt angles of the oblique cameras were 45 degrees, and the position of the cameras during flight used a high grade GPS/INS navigation system. The orientation of the images was set using the Pix4D Mapper Pro software with both measurements of the in-flight camera position and the ground control points (measured with GPS RTK technology. To control the accuracy, check points were used (which were also measured with GPS RTK technology. As reference data for the whole study, an area of the city-based map was used

  20. Accuracy of five intraoral scanners compared to indirect digitalization.

    Science.gov (United States)

    Güth, Jan-Frederik; Runkel, Cornelius; Beuer, Florian; Stimmelmayr, Michael; Edelhoff, Daniel; Keul, Christine

    2017-06-01

    Direct and indirect digitalization offer two options for computer-aided design (CAD)/ computer-aided manufacturing (CAM)-generated restorations. The aim of this study was to evaluate the accuracy of different intraoral scanners and compare them to the process of indirect digitalization. A titanium testing model was directly digitized 12 times with each intraoral scanner: (1) CS 3500 (CS), (2) Zfx Intrascan (ZFX), (3) CEREC AC Bluecam (BLU), (4) CEREC AC Omnicam (OC) and (5) True Definition (TD). As control, 12 polyether impressions were taken and the referring plaster casts were digitized indirectly with the D-810 laboratory scanner (CON). The accuracy (trueness/precision) of the datasets was evaluated by an analysing software (Geomagic Qualify 12.1) using a "best fit alignment" of the datasets with a highly accurate reference dataset of the testing model, received from industrial computed tomography. Direct digitalization using the TD showed the significant highest overall "trueness", followed by CS. Both performed better than CON. BLU, ZFX and OC showed higher differences from the reference dataset than CON. Regarding the overall "precision", the CS 3500 intraoral scanner and the True Definition showed the best performance. CON, BLU and OC resulted in significantly higher precision than ZFX did. Within the limitations of this in vitro study, the accuracy of the ascertained datasets was dependent on the scanning system. The direct digitalization was not superior to indirect digitalization for all tested systems. Regarding the accuracy, all tested intraoral scanning technologies seem to be able to reproduce a single quadrant within clinical acceptable accuracy. However, differences were detected between the tested systems.

  1. Application of fast fourier transform method to evaluate the accuracy of sbloca data base

    International Nuclear Information System (INIS)

    D'Auria, F.; Galassi, G.M.; Leonardi, M.; Galetti, M.R.

    1997-01-01

    The purpose of this paper is to perform the quantitative accuracy evaluation of a small break LOCA data base and then evaluate the accuracy of RELAP5/MOD2 code i.e. of the ensemble constituted by the code itself, the user, the nodalization and the selected code options, in predicting this kind of transient. In order to achieve this objective, qualitative accuracy evaluation results from several tests performed in 4 facilities (LOBI, SPES, BETHSY and LSTF) are used. The quantitative evaluation is achieved adopting a method developed at University of Pisa, which has capabilities in quantifying the errors in code predictions with respect to the measured experimental signal, using the Fast Fourier Transform; this allows an integral representation of code discrepancies in the frequency domain. The RELAP5/MOD2 code has been extensively used at the University of Pisa and the nodalizations of the 4 facilities have been qualified through the application to several experiments performed in the same facilities. (author)

  2. The accuracy of the ATLAS muon X-ray tomograph

    Science.gov (United States)

    Avramidou, R.; Berbiers, J.; Boudineau, C.; Dechelette, C.; Drakoulakos, D.; Fabjan, C.; Grau, S.; Gschwendtner, E.; Maugain, J.-M.; Rieder, H.; Rangod, S.; Rohrbach, F.; Sbrissa, E.; Sedykh, E.; Sedykh, I.; Smirnov, Y.; Vertogradov, L.; Vichou, I.

    2003-01-01

    A gigantic detector, the ATLAS project, is under construction at CERN for particle physics research at the Large Hadron Collider which is to be ready by 2006. An X-ray tomograph has been developed, designed and constructed at CERN in order to control the mechanical quality of the ATLAS muon chambers. We reached a measurement accuracy of 2 μm systematic and 2 μm statistical uncertainties in the horizontal and vertical directions in the working area 220 cm (horizontal)×60 cm (vertical). Here we describe in detail the fundamental approach of the basic principle chosen to achieve such good accuracy. In order to crosscheck our precision, key results of measurements are presented.

  3. The accuracy of the ATLAS muon X-ray tomograph

    International Nuclear Information System (INIS)

    Avramidou, R.; Berbiers, J.; Boudineau, C.; Dechelette, C.; Drakoulakos, D.; Fabjan, C.; Grau, S.; Gschwendtner, E.; Maugain, J.-M.; Rieder, H.; Rangod, S.; Rohrbach, F.; Sbrissa, E.; Sedykh, E.; Sedykh, I.; Smirnov, Y.; Vertogradov, L.; Vichou, I.

    2003-01-01

    A gigantic detector, the ATLAS project, is under construction at CERN for particle physics research at the Large Hadron Collider which is to be ready by 2006. An X-ray tomograph has been developed, designed and constructed at CERN in order to control the mechanical quality of the ATLAS muon chambers. We reached a measurement accuracy of 2 μm systematic and 2 μm statistical uncertainties in the horizontal and vertical directions in the working area 220 cm (horizontal)x60 cm (vertical). Here we describe in detail the fundamental approach of the basic principle chosen to achieve such good accuracy. In order to crosscheck our precision, key results of measurements are presented

  4. INFLUENCE OF STRUCTURE COMPONENTS ON MACHINE TOOL ACCURACY

    Directory of Open Access Journals (Sweden)

    ConstantinSANDU

    2017-11-01

    Full Text Available For machine tools, the accuracy of the parts of the machine tool structure (after roughing should be subject to relief and natural or artificial aging. The performance of the current accuracy of machine tools as linearity or flatness was higher than 5 μm/m. Under this value there are great difficulties. The performance of the structure of the machine tools in the manufacture of structural parts of machine tools, with a flatness accuracy that the linearity of about 2 μm/m, are significant deviations form of their half-finished. This article deals with the influence of errors of form of semifinished and machined parts on them, on their shape and especially what happens to structure machine tools when the components of the structure were assembling this.

  5. Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity.

    Science.gov (United States)

    Passini, Elisa; Britton, Oliver J; Lu, Hua Rong; Rohrbacher, Jutta; Hermans, An N; Gallacher, David J; Greig, Robert J H; Bueno-Orovio, Alfonso; Rodriguez, Blanca

    2017-01-01

    Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC 50 /Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca 2+ -transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca 2+ /late Na + currents and Na + /Ca 2+ -exchanger, reduced Na + /K + -pump) are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density

  6. Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity

    Directory of Open Access Journals (Sweden)

    Elisa Passini

    2017-09-01

    Full Text Available Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC50/Hill coefficient. Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca2+-transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs. Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca2+/late Na+ currents and Na+/Ca2+-exchanger, reduced Na+/K+-pump are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density

  7. Laser measuring scanners and their accuracy limits

    Science.gov (United States)

    Jablonski, Ryszard

    1993-09-01

    Scanning methods have gained the greater importance for some years now due to a short measuring time and wide range of application in flexible manufacturing processes. This paper is a summing up of the autho?s creative scientific work in the field of measuring scanners. The research conducted allowed to elaborate the optimal configurations of measuring systems based on the scanning method. An important part of the work was the analysis of a measuring scanner - as a transducer of an angle rotation into the linear displacement which resulted in obtaining its much higher accuracy and finally in working out a measuring scanner eliminating the use of an additional reference standard. The completion of the work is an attempt to determine an attainable accuracy limit of scanning measurement of both length and angle. Using a high stability deflector and a corrected scanning lens one can obtain the angle determination over 30 (or 2 mm) to an accuracy 0 (or 0 tm) when the measuring rate is 1000 Hz or the range d60 (4 mm) with accuracy 0 " (0 jim) and measurement frequency 6 Hz.

  8. Accuracy of CT-guided biopsies in 158 patients with thoracic spinal lesions

    Energy Technology Data Exchange (ETDEWEB)

    Hao, D.J.; He, B.R.; Liu, T.J.; Zhao, Q.P. (Dept. of Spinal Surgery, Xian Red Cross Hospital, Xian Shaanxi (China)), email: zqpddn1@gmail.com; Sun, H.H. (Dept. of Orthopaedic, Tangdu Hospital, Fourth Military Medical Univ., Xian Shaanxi (China)); Jiang, Y.H. (Dept. of Radiology, Xian Red Cross Hospital, Xian Shaanxi (China))

    2011-11-15

    Background. Inconsistent accuracies of CT-guided thoracic spinal biopsies have been reported in previous studies. Purpose. To determine the accuracy of CT-guided thoracic spinal biopsy, to compare the results with those previously reported, and to determine if there are any factors that influence the accuracy of CT-guided thoracic spinal biopsy. Material and Methods. In total, 158 consecutive CT-guided percutaneous thoracic spine procedures (performed at the Dept. of Spinal Surgery, Xian Red Cross Hospital between April 2000 and July 2010) were reviewed. The 158 lesions were categorized by location and radiographic features. Pathological and clinical follow-up were used to determine accuracy. Results. The diagnostic accuracy of CT-guided thoracic spinal biopsy was 90.5% overall. Biopsy of metastatic bone disease (98.2%) was significantly more accurate than biopsies of primary tumors (80.9%) and of hematological malignancies (47.0%) (P < 0.05 and P < 0.005, respectively). The diagnostic accuracy of CT-guided thoracic spinal biopsy was significantly higher for the lower thoracic spine (97.6%) than for the middle (90.0%) or upper thoracic spine (80.4%) (P < 0.05 and P < 0.025, respectively). The diagnostic accuracy was significantly higher for lytic lesions (96.4%) than for sclerotic lesions (81.3%) (P < 0.010). The accuracy of biopsies performed using the transpedicular approach (91.0%) was not significantly different from that of biopsies performed using posterolateral approaches (91.5%) (0.25 < P < 0.5). Conclusion. Percutaneous CT-guided thoracic spinal biopsy is a viable alternative to open surgical biopsy. The diagnostic accuracy was not affected by any of the variables except for lesion level, histology, and radiographic features

  9. Accuracy of CT-guided biopsies in 158 patients with thoracic spinal lesions

    International Nuclear Information System (INIS)

    Hao, D.J.; He, B.R.; Liu, T.J.; Zhao, Q.P.; Sun, H.H.; Jiang, Y.H.

    2011-01-01

    Background. Inconsistent accuracies of CT-guided thoracic spinal biopsies have been reported in previous studies. Purpose. To determine the accuracy of CT-guided thoracic spinal biopsy, to compare the results with those previously reported, and to determine if there are any factors that influence the accuracy of CT-guided thoracic spinal biopsy. Material and Methods. In total, 158 consecutive CT-guided percutaneous thoracic spine procedures (performed at the Dept. of Spinal Surgery, Xian Red Cross Hospital between April 2000 and July 2010) were reviewed. The 158 lesions were categorized by location and radiographic features. Pathological and clinical follow-up were used to determine accuracy. Results. The diagnostic accuracy of CT-guided thoracic spinal biopsy was 90.5% overall. Biopsy of metastatic bone disease (98.2%) was significantly more accurate than biopsies of primary tumors (80.9%) and of hematological malignancies (47.0%) (P < 0.05 and P < 0.005, respectively). The diagnostic accuracy of CT-guided thoracic spinal biopsy was significantly higher for the lower thoracic spine (97.6%) than for the middle (90.0%) or upper thoracic spine (80.4%) (P < 0.05 and P < 0.025, respectively). The diagnostic accuracy was significantly higher for lytic lesions (96.4%) than for sclerotic lesions (81.3%) (P < 0.010). The accuracy of biopsies performed using the transpedicular approach (91.0%) was not significantly different from that of biopsies performed using posterolateral approaches (91.5%) (0.25 < P < 0.5). Conclusion. Percutaneous CT-guided thoracic spinal biopsy is a viable alternative to open surgical biopsy. The diagnostic accuracy was not affected by any of the variables except for lesion level, histology, and radiographic features

  10. Camera sensor arrangement for crop/weed detection accuracy in agronomic images.

    Science.gov (United States)

    Romeo, Juan; Guerrero, José Miguel; Montalvo, Martín; Emmi, Luis; Guijarro, María; Gonzalez-de-Santos, Pablo; Pajares, Gonzalo

    2013-04-02

    In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects.

  11. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    Science.gov (United States)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  12. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    Science.gov (United States)

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  13. Leadership - a key to success in achieving higher competitiveness at companies

    OpenAIRE

    Hudakova, Ivana

    2008-01-01

    The idea of leadership has fascinated people for centuries. Leadership, or leading, is an asocial process, where the leader is seeking for voluntary participation of the subordinated, thus striving to achieve the company's objectives. Leadership clearly proves to be more than exercising power and authority. It also covers a number of managerial abilities, such as susceptibility, motivation, scrupulousness, empathy and communication. Leadership has to be present at all levels of the organizati...

  14. Target Price Accuracy

    Directory of Open Access Journals (Sweden)

    Alexander G. Kerl

    2011-04-01

    Full Text Available This study analyzes the accuracy of forecasted target prices within analysts’ reports. We compute a measure for target price forecast accuracy that evaluates the ability of analysts to exactly forecast the ex-ante (unknown 12-month stock price. Furthermore, we determine factors that explain this accuracy. Target price accuracy is negatively related to analyst-specific optimism and stock-specific risk (measured by volatility and price-to-book ratio. However, target price accuracy is positively related to the level of detail of each report, company size and the reputation of the investment bank. The potential conflicts of interests between an analyst and a covered company do not bias forecast accuracy.

  15. Clarity Versus Accuracy and Objectivity in Written Legal English

    Directory of Open Access Journals (Sweden)

    Violeta Janulevičienė

    2011-12-01

    Full Text Available This paper is an attempt to analyse the most important grammatical and, specifically, syntactic features and to point out some prominent lexical ones, which aim at accuracy and objectivity of a written legal document, and to discuss how these features influence clarity and transparency of the legal documents. The study covers the analysis of some EU, UK, US legislative acts alongside with some extracts from contract samples. The analysis reveals that written legal English is distinguished by long compound sentences, often with inverted word order and numerous embeddings, passive constructions and nominalisations, specific use of personal pronouns and collocations of synonyms (doublets and triplets, etc. These means allow to achieve the most possible accuracy and objectivity in legal texts but make them complicated and difficult to comprehend at once. Formality, achieved by the mentioned means, makes legal English distant from everyday language and often becomes a reason for criticism. Plain English supporters encourage simplifying legal language; however, long traditions of legal English make changes slow and difficult. Therefore, comprehension and usage of legal English still requires special knowledge of its lexical and grammatical features.

  16. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li Zan; Braun Torsten; Dimitrova Desislava

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper we are particularly interested in GPS based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Ou...

  17. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li, Zan; Braun, Torsten; Dimitrova, Desislava Cvetanova

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. O...

  18. Empathic Accuracy in Male Adolescents with Conduct Disorder and Higher versus Lower Levels of Callous-Unemotional Traits.

    Science.gov (United States)

    Martin-Key, N; Brown, T; Fairchild, G

    2017-10-01

    Adolescents with disruptive behavior disorders are reported to show deficits in empathy and emotion recognition. However, prior studies have mainly used questionnaires to measure empathy or experimental paradigms that are lacking in ecological validity. We used an empathic accuracy (EA) task to study EA, emotion recognition, and affective empathy in 77 male adolescents aged 13-18 years: 37 with Conduct Disorder (CD) and 40 typically-developing controls. The CD sample was divided into higher callous-emotional traits (CD/CU+) and lower callous-unemotional traits (CD/CU-) subgroups using a median split. Participants watched films of actors recalling happy, sad, surprised, angry, disgusted or fearful autobiographical experiences and provided continuous ratings of emotional intensity (assessing EA), as well as naming the emotion (recognition) and reporting the emotion they experienced themselves (affective empathy). The CD and typically-developing groups did not significantly differ in EA and there were also no differences between the CD/CU+ and CD/CU- subgroups. Participants with CD were significantly less accurate than controls in recognizing sadness, fear, and disgust, all ps sadness, fear, and disgust relative to controls, all ps < 0.010, rs ≥ 0.33, whereas the CD/CU+ and CD/CU- subgroups did not differ in affective empathy. These results extend prior research by demonstrating affective empathy and emotion recognition deficits in adolescents with CD using a more ecologically-valid task, and challenge the view that affective empathy deficits are specific to CD/CU+.

  19. Higher-order techniques in computational electromagnetics

    CERN Document Server

    Graglia, Roberto D

    2016-01-01

    Higher-Order Techniques in Computational Electromagnetics explains 'high-order' techniques that can significantly improve the accuracy, computational cost, and reliability of computational techniques for high-frequency electromagnetics, such as antennas, microwave devices and radar scattering applications.

  20. Parental Involvement and Academic Achievement

    Science.gov (United States)

    Goodwin, Sarah Christine

    2015-01-01

    This research study examined the correlation between student achievement and parent's perceptions of their involvement in their child's schooling. Parent participants completed the Parent Involvement Project Parent Questionnaire. Results slightly indicated parents of students with higher level of achievement perceived less demand or invitations…

  1. Evidence for enhanced interoceptive accuracy in professional musicians

    Directory of Open Access Journals (Sweden)

    Katharina eSchirmer-Mokwa

    2015-12-01

    Full Text Available Interoception is defined as the perceptual activity involved in the processing of internal bodily signals. While the ability of internal perception is considered a relatively stable trait, recent data suggest that learning to integrate multisensory information can modulate it. Making music is a uniquely rich multisensory experience that has shown to alter motor, sensory, and multimodal representations in the brain of musicians. We hypothesize that musical training also heightens interoceptive accuracy comparable to other perceptual modalities. Thirteen professional singers, twelve string players, and thirteen matched non-musicians were examined using a well-established heartbeat discrimination paradigm complemented by self-reported dispositional traits. Results revealed that both groups of musicians displayed higher interoceptive accuracy than non-musicians, whereas no differences were found between singers and string-players. Regression analyses showed that accumulated musical practice explained about 49% variation in heartbeat perception accuracy in singers but not in string-players. Psychometric data yielded a number of psychologically plausible inter-correlations in musicians related to performance anxiety. However, dispositional traits were not a confounding factor on heartbeat discrimination accuracy. Together, these data provide first evidence indicating that professional musicians show enhanced interoceptive accuracy compared to non-musicians. We argue that musical training largely accounted for this effect.

  2. Improvement of the accuracy of phase observation by modification of phase-shifting electron holography

    International Nuclear Information System (INIS)

    Suzuki, Takahiro; Aizawa, Shinji; Tanigaki, Toshiaki; Ota, Keishin; Matsuda, Tsuyoshi; Tonomura, Akira

    2012-01-01

    We found that the accuracy of the phase observation in phase-shifting electron holography is strongly restricted by time variations of mean intensity and contrast of the holograms. A modified method was developed for correcting these variations. Experimental results demonstrated that the modification enabled us to acquire a large number of holograms, and as a result, the accuracy of the phase observation has been improved by a factor of 5. -- Highlights: ► A modified phase-shifting electron holography was proposed. ► The time variation of mean intensity and contrast of holograms were corrected. ► These corrections lead to a great improvement of the resultant phase accuracy. ► A phase accuracy of about 1/4000 rad was achieved from experimental results.

  3. Influence of cue word perceptual information on metamemory accuracy in judgement of learning.

    Science.gov (United States)

    Hu, Xiao; Liu, Zhaomin; Li, Tongtong; Luo, Liang

    2016-01-01

    Previous studies have suggested that perceptual information regarding to-be-remembered words in the study phase affects the accuracy of judgement of learning (JOL). However, few have investigated whether the perceptual information in the JOL phase influences JOL accuracy. This study examined the influence of cue word perceptual information in the JOL phase on immediate and delayed JOL accuracy through changes in cue word font size. In Experiment 1, large-cue word pairs had significantly higher mean JOL magnitude than small-cue word pairs in immediate JOLs and higher relative accuracy than small-cue pairs in delayed JOLs, but font size had no influence on recall performance. Experiment 2 increased the JOL time, and mean JOL magnitude did not reliably differ for large-cue compared with small-cue pairs in immediate JOLs. However, the influence on relative accuracy still existed in delayed JOLs. Experiment 3 increased the familiarity of small-cue words in the delayed JOL phase by adding a lexical decision task. The results indicated that cue word font size no longer affected relative accuracy in delayed JOLs. The three experiments in our study indicated that the perceptual information regarding cue words in the JOL phase affects immediate and delayed JOLs in different ways.

  4. Content in Context Improves Deception Detection Accuracy

    Science.gov (United States)

    Blair, J. Pete; Levine, Timothy R.; Shaw, Allison S.

    2010-01-01

    Past research has shown that people are only slightly better than chance at distinguishing truths from lies. Higher accuracy rates, however, are possible when contextual knowledge is used to judge the veracity of situated message content. The utility of content in context was shown in a series of experiments with students (N = 26, 45, 51, 25, 127)…

  5. Application of Mensuration Technology to Improve the Accuracy of Field Artillery Firing Unit Location

    Science.gov (United States)

    2013-12-13

    8 U.S. Army Field Artillery Operations ............................................................................ 8 Geodesy ...Experts in this field of study have a full working knowledge of geodesy and the theory that allows mensuration to surpass the level of accuracy achieved...desired. (2) Fire that is intended to achieve the desired result on target.”6 Geodesy : “that branch of applied mathematics which determines by observation

  6. Increase in the Accuracy of Calculating Length of Horizontal Cable SCS in Civil Engineering

    Science.gov (United States)

    Semenov, A.

    2017-11-01

    A modification of the method for calculating the horizontal cable consumption of SCS established at civil engineering facilities is proposed. The proposed procedure preserves the prototype simplicity and provides a 5 percent accuracy increase. The values of the achieved accuracy are justified, their compliance with the practice of real projects is proved. The method is brought to the level of the engineering algorithm and formalized in the form of 12/70 rule.

  7. Haptic perception accuracy depending on self-produced movement.

    Science.gov (United States)

    Park, Chulwook; Kim, Seonjin

    2014-01-01

    This study measured whether self-produced movement influences haptic perception ability (experiment 1) as well as the factors associated with levels of influence (experiment 2) in racket sports. For experiment 1, the haptic perception accuracy levels of five male table tennis experts and five male novices were examined under two different conditions (no movement vs. movement). For experiment 2, the haptic afferent subsystems of five male table tennis experts and five male novices were investigated in only the self-produced movement-coupled condition. Inferential statistics (ANOVA, t-test) and custom-made devices (shock & vibration sensor, Qualisys Track Manager) of the data were used to determine the haptic perception accuracy (experiment 1, experiment 2) and its association with expertise. The results of this research show that expert-level players acquire higher accuracy with less variability (racket vibration and angle) than novice-level players, especially in their self-produced movement coupled performances. The important finding from this result is that, in terms of accuracy, the skill-associated differences were enlarged during self-produced movement. To explain the origin of this difference between experts and novices, the functional variability of haptic afferent subsystems can serve as a reference. These two factors (self-produced accuracy and the variability of haptic features) as investigated in this study would be useful criteria for educators in racket sports and suggest a broader hypothesis for further research into the effects of the haptic accuracy related to variability.

  8. On the Accuracy of Language Trees

    Science.gov (United States)

    Pompei, Simone; Loreto, Vittorio; Tria, Francesca

    2011-01-01

    Historical linguistics aims at inferring the most likely language phylogenetic tree starting from information concerning the evolutionary relatedness of languages. The available information are typically lists of homologous (lexical, phonological, syntactic) features or characters for many different languages: a set of parallel corpora whose compilation represents a paramount achievement in linguistics. From this perspective the reconstruction of language trees is an example of inverse problems: starting from present, incomplete and often noisy, information, one aims at inferring the most likely past evolutionary history. A fundamental issue in inverse problems is the evaluation of the inference made. A standard way of dealing with this question is to generate data with artificial models in order to have full access to the evolutionary process one is going to infer. This procedure presents an intrinsic limitation: when dealing with real data sets, one typically does not know which model of evolution is the most suitable for them. A possible way out is to compare algorithmic inference with expert classifications. This is the point of view we take here by conducting a thorough survey of the accuracy of reconstruction methods as compared with the Ethnologue expert classifications. We focus in particular on state-of-the-art distance-based methods for phylogeny reconstruction using worldwide linguistic databases. In order to assess the accuracy of the inferred trees we introduce and characterize two generalizations of standard definitions of distances between trees. Based on these scores we quantify the relative performances of the distance-based algorithms considered. Further we quantify how the completeness and the coverage of the available databases affect the accuracy of the reconstruction. Finally we draw some conclusions about where the accuracy of the reconstructions in historical linguistics stands and about the leading directions to improve it. PMID:21674034

  9. On the accuracy of language trees.

    Directory of Open Access Journals (Sweden)

    Simone Pompei

    Full Text Available Historical linguistics aims at inferring the most likely language phylogenetic tree starting from information concerning the evolutionary relatedness of languages. The available information are typically lists of homologous (lexical, phonological, syntactic features or characters for many different languages: a set of parallel corpora whose compilation represents a paramount achievement in linguistics. From this perspective the reconstruction of language trees is an example of inverse problems: starting from present, incomplete and often noisy, information, one aims at inferring the most likely past evolutionary history. A fundamental issue in inverse problems is the evaluation of the inference made. A standard way of dealing with this question is to generate data with artificial models in order to have full access to the evolutionary process one is going to infer. This procedure presents an intrinsic limitation: when dealing with real data sets, one typically does not know which model of evolution is the most suitable for them. A possible way out is to compare algorithmic inference with expert classifications. This is the point of view we take here by conducting a thorough survey of the accuracy of reconstruction methods as compared with the Ethnologue expert classifications. We focus in particular on state-of-the-art distance-based methods for phylogeny reconstruction using worldwide linguistic databases. In order to assess the accuracy of the inferred trees we introduce and characterize two generalizations of standard definitions of distances between trees. Based on these scores we quantify the relative performances of the distance-based algorithms considered. Further we quantify how the completeness and the coverage of the available databases affect the accuracy of the reconstruction. Finally we draw some conclusions about where the accuracy of the reconstructions in historical linguistics stands and about the leading directions to improve

  10. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, Eric M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  11. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  12. A practical implementation of the higher-order transverse-integrated nodal diffusion method

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomašević, Djordje I.; Moraal, Harm

    2014-01-01

    Highlights: • A practical higher-order nodal method is developed for diffusion calculations. • The method resolves the issue of the transverse leakage approximation. • The method achieves much superior accuracy as compared to standard nodal methods. • The calculational cost is only about 50% greater than standard nodal methods. • The method is packaged in a module for connection to existing nodal codes. - Abstract: Transverse-integrated nodal diffusion methods currently represent the standard in full core neutronic simulation. The primary shortcoming of this approach is the utilization of the quadratic transverse leakage approximation. This approach, although proven to work well for typical LWR problems, is not consistent with the formulation of nodal methods and can cause accuracy and convergence problems. In this work, an improved, consistent quadratic leakage approximation is formulated, which derives from the class of higher-order nodal methods developed some years ago. Further, a number of iteration schemes are developed around this consistent quadratic leakage approximation which yields accurate node average results in much improved calculational times. The most promising of these iteration schemes results from utilizing the consistent leakage approximation as a correction method to the standard quadratic leakage approximation. Numerical results are demonstrated on a set of benchmark problems and further applied to a realistic reactor problem, particularly the SAFARI-1 reactor, operating at Necsa, South Africa. The final optimal solution strategy is packaged into a standalone module which may simply be coupled to existing nodal diffusion codes

  13. Real-Time Tropospheric Product Establishment and Accuracy Assessment in China

    Science.gov (United States)

    Chen, M.; Guo, J.; Wu, J.; Song, W.; Zhang, D.

    2018-04-01

    Tropospheric delay has always been an important issue in Global Navigation Satellite System (GNSS) processing. Empirical tropospheric delay models are difficult to simulate complex and volatile atmospheric environments, resulting in poor accuracy of the empirical model and difficulty in meeting precise positioning demand. In recent years, some scholars proposed to establish real-time tropospheric product by using real-time or near-real-time GNSS observations in a small region, and achieved some good results. This paper uses real-time observing data of 210 Chinese national GNSS reference stations to estimate the tropospheric delay, and establishes ZWD grid model in the country wide. In order to analyze the influence of tropospheric grid product on wide-area real-time PPP, this paper compares the method of taking ZWD grid product as a constraint with the model correction method. The results show that the ZWD grid product estimated based on the national reference stations can improve PPP accuracy and convergence speed. The accuracy in the north (N), east (E) and up (U) direction increase by 31.8 %,15.6 % and 38.3 %, respectively. As with the convergence speed, the accuracy of U direction experiences the most improvement.

  14. Accuracy of frozen section in borderline ovarian tumor

    Directory of Open Access Journals (Sweden)

    Maryam Dadzan

    2015-01-01

    Full Text Available Borderline ovarian tumor or low malignant ovarian tumor presents in 10-15% of all ovarian cancers, which usually affects younger women and have favorable prognosis even with conservative surgery, in which fertility can be preserved. Lack of reliable diagnostic tool to indicate the type of malignancy before or at the time of surgery makes the borderline ovarian tumor one of the most controversial topics in gynecology. This might lead to many overtreatment cases with radical surgery or undertreatment with conservative surgery with the higher rate of overtreatment compared to under treatment.In this review article, we extensively searched for all reported data regarding the accuracy of frozen section in borderline ovarian tumor. Reviewing the results of six studies, which specifically considered the accuracy of frozen section in borderline ovarian tumors, revealed an accuracy of 60% with an agreement between final pathology and frozen section results. Overall, 24.5% of under-diagnosed malignant cases interpreted to be benign and 4.9% overdiagnosed cases with benign tumor considered as a malignant. Frozen section is a reliable tool to exclude benign tumor from borderline and malignant but underdiagnosed percentage is higher. There are limitations in this review including the small number of enrolled cases, different time of diagnosis and different investigated countries and the discrepancies between the studied articles in this review.

  15. Effects of using the developing nurses' thinking model on nursing students' diagnostic accuracy.

    Science.gov (United States)

    Tesoro, Mary Gay

    2012-08-01

    This quasi-experimental study tested the effectiveness of an educational model, Developing Nurses' Thinking (DNT), on nursing students' clinical reasoning to achieve patient safety. Teaching nursing students to develop effective thinking habits that promote positive patient outcomes and patient safety is a challenging endeavor. Positive patient outcomes and safety are achieved when nurses accurately interpret data and subsequently implement appropriate plans of care. This study's pretest-posttest design determined whether use of the DNT model during 2 weeks of clinical postconferences improved nursing students' (N = 83) diagnostic accuracy. The DNT model helps students to integrate four constructs-patient safety, domain knowledge, critical thinking processes, and repeated practice-to guide their thinking when interpreting patient data and developing effective plans of care. The posttest scores of students from the intervention group showed statistically significant improvement in accuracy. Copyright 2012, SLACK Incorporated.

  16. Evaluating the accuracy of molecular diagnostic testing for canine visceral leishmaniasis using latent class analysis.

    Directory of Open Access Journals (Sweden)

    Manuela da Silva Solcà

    Full Text Available Host tissues affected by Leishmania infantum have differing degrees of parasitism. Previously, the use of different biological tissues to detect L. infantum DNA in dogs has provided variable results. The present study was conducted to evaluate the accuracy of molecular diagnostic testing (qPCR in dogs from an endemic area for canine visceral leishmaniasis (CVL by determining which tissue type provided the highest rate of parasite DNA detection. Fifty-one symptomatic dogs were tested for CVL using serological, parasitological and molecular methods. Latent class analysis (LCA was performed for accuracy evaluation of these methods. qPCR detected parasite DNA in 100% of these animals from at least one of the following tissues: splenic and bone marrow aspirates, lymph node and skin fragments, blood and conjunctival swabs. Using latent variable as gold standard, the qPCR achieved a sensitivity of 95.8% (CI 90.4-100 in splenic aspirate; 79.2% (CI 68-90.3 in lymph nodes; 77.3% (CI 64.5-90.1 in skin; 75% (CI 63.1-86.9 in blood; 50% (CI 30-70 in bone marrow; 37.5% (CI 24.2-50.8 in left-eye; and 29.2% (CI 16.7-41.6 in right-eye conjunctival swabs. The accuracy of qPCR using splenic aspirates was further evaluated in a random larger sample (n = 800, collected from dogs during a prevalence study. The specificity achieved by qPCR was 76.7% (CI 73.7-79.6 for splenic aspirates obtained from the greater sample. The sensitivity accomplished by this technique was 95% (CI 93.5-96.5 that was higher than those obtained for the other diagnostic tests and was similar to that observed in the smaller sampling study. This confirms that the splenic aspirate is the most effective type of tissue for detecting L. infantum infection. Additionally, we demonstrated that LCA could be used to generate a suitable gold standard for comparative CVL testing.

  17. Does ADHD in adults affect the relative accuracy of metamemory judgments?

    Science.gov (United States)

    Knouse, Laura E; Paradise, Matthew J; Dunlosky, John

    2006-11-01

    Prior research suggests that individuals with ADHD overestimate their performance across domains despite performing more poorly in these domains. The authors introduce measures of accuracy from the larger realm of judgment and decision making--namely, relative accuracy and calibration--to the study of self-evaluative judgment accuracy in adults with ADHD. Twenty-eight adults with ADHD and 28 matched controls participate in a computer-administered paired-associate learning task and predict their future recall using immediate and delayed judgments of learning (JOLs). Retrospective confidence judgments are also collected. Groups perform equally in terms of judgment magnitude and absolute judgment accuracy as measured by discrepancy scores and calibration curves. Both groups benefit equally from making their JOL at a delay, and the group with ADHD show higher relative accuracy for delayed judgments. Results suggest that under certain circumstances, adults with ADHD can make accurate judgments about their future memory.

  18. Technique for Increasing Accuracy of Positioning System of Machine Tools

    Directory of Open Access Journals (Sweden)

    Sh. Ji

    2014-01-01

    Full Text Available The aim of research is to improve the accuracy of positioning and processing system using a technique for optimization of pressure diagrams of guides in machine tools. The machining quality is directly related to its accuracy, which characterizes an impact degree of various errors of machines. The accuracy of the positioning system is one of the most significant machining characteristics, which allow accuracy evaluation of processed parts.The literature describes that the working area of the machine layout is rather informative to characterize the effect of the positioning system on the macro-geometry of the part surfaces to be processed. To enhance the static accuracy of the studied machine, in principle, two groups of measures are possible. One of them points toward a decrease of the cutting force component, which overturns the slider moments. Another group of measures is related to the changing sizes of the guide facets, which may lead to their profile change.The study was based on mathematical modeling and optimization of the cutting zone coordinates. And we find the formula to determine the surface pressure of the guides. The selected parameters of optimization are vectors of the cutting force and values of slides and guides. Obtained results show that a technique for optimization of coordinates in the cutting zone was necessary to increase a processing accuracy.The research has established that to define the optimal coordinates of the cutting zone we have to change the sizes of slides, value and coordinates of applied forces, reaching the pressure equalization and improving the accuracy of positioning system of machine tools. In different points of the workspace a vector of forces is applied, pressure diagrams are found, which take into account the changes in the parameters of positioning system, and the pressure diagram equalization to provide the most accuracy of machine tools is achieved.

  19. THE EFFECT OF MODERATE AND HIGH-INTENSITY FATIGUE ON GROUNDSTROKE ACCURACY IN EXPERT AND NON-EXPERT TENNIS PLAYERS

    Directory of Open Access Journals (Sweden)

    Mark Lyons

    2013-06-01

    Full Text Available Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female and 17 non-expert (13 male, 4 female tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70% and high-intensities (90% set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test. Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA's revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player's achievement goal indicators. Future research is required to explore the effects of fatigue on

  20. Accuracy of stereolithographic models of human anatomy

    International Nuclear Information System (INIS)

    Barker, T.M.; Earwaker, W.J.S.; Lisle, D.A.

    1994-01-01

    A study was undertaken to determine the dimensional accuracy of anatomical replicas derived from X-ray 3D computed tomography (CT) images and produced using the rapid prototyping technique of stereolithography (SLA). A dry bone skull and geometric phantom were scanned, and replicas were produced. Distance measurements were obtained to compare the original objects and the resulting replicas. Repeated measurements between anatomical landmarks were used for comparison of the original skull and replica. Results for the geometric phantom demonstrate a mean difference of +0.47mm, representing an accuracy of 97.7-99.12%. Measurements of the skull produced a range of absolute differences (maximum +4.62mm, minimum +0.1mm, mean +0.85mm). These results support the use of SLA models of human anatomical structures in such areas as pre-operative planning of complex surgical procedures. For applications where higher accuracy is required, improvements can be expected by utilizing smaller pixel resolution in the CT images. Stereolithographic models can now be confidently employed as accurate, three-dimensional replicas of complex, anatomical structures. 14 refs., 2 tabs., 8 figs

  1. Improving the accuracy of the structure prediction of the third hypervariable loop of the heavy chains of antibodies.

    KAUST Repository

    Messih, Mario Abdel; Lepore, Rosalba; Marcatili, Paolo; Tramontano, Anna

    2014-01-01

    MOTIVATION: Antibodies are able to recognize a wide range of antigens through their complementary determining regions formed by six hypervariable loops. Predicting the 3D structure of these loops is essential for the analysis and reengineering of novel antibodies with enhanced affinity and specificity. The canonical structure model allows high accuracy prediction for five of the loops. The third loop of the heavy chain, H3, is the hardest to predict because of its diversity in structure, length and sequence composition. RESULTS: We describe a method, based on the Random Forest automatic learning technique, to select structural templates for H3 loops among a dataset of candidates. These can be used to predict the structure of the loop with a higher accuracy than that achieved by any of the presently available methods. The method also has the advantage of being extremely fast and returning a reliable estimate of the model quality. AVAILABILITY AND IMPLEMENTATION: The source code is freely available at http://www.biocomputing.it/H3Loopred/ .

  2. Improving the accuracy of the structure prediction of the third hypervariable loop of the heavy chains of antibodies.

    KAUST Repository

    Messih, Mario Abdel

    2014-06-13

    MOTIVATION: Antibodies are able to recognize a wide range of antigens through their complementary determining regions formed by six hypervariable loops. Predicting the 3D structure of these loops is essential for the analysis and reengineering of novel antibodies with enhanced affinity and specificity. The canonical structure model allows high accuracy prediction for five of the loops. The third loop of the heavy chain, H3, is the hardest to predict because of its diversity in structure, length and sequence composition. RESULTS: We describe a method, based on the Random Forest automatic learning technique, to select structural templates for H3 loops among a dataset of candidates. These can be used to predict the structure of the loop with a higher accuracy than that achieved by any of the presently available methods. The method also has the advantage of being extremely fast and returning a reliable estimate of the model quality. AVAILABILITY AND IMPLEMENTATION: The source code is freely available at http://www.biocomputing.it/H3Loopred/ .

  3. Improvement of the accuracy of phase observation by modification of phase-shifting electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Takahiro; Aizawa, Shinji; Tanigaki, Toshiaki [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Ota, Keishin, E-mail: ota@microphase.co.jp [Microphase Co., Ltd., Onigakubo 1147-9, Tsukuba, Ibaragi 300-2651 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Kunigami, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-07-15

    We found that the accuracy of the phase observation in phase-shifting electron holography is strongly restricted by time variations of mean intensity and contrast of the holograms. A modified method was developed for correcting these variations. Experimental results demonstrated that the modification enabled us to acquire a large number of holograms, and as a result, the accuracy of the phase observation has been improved by a factor of 5. -- Highlights: Black-Right-Pointing-Pointer A modified phase-shifting electron holography was proposed. Black-Right-Pointing-Pointer The time variation of mean intensity and contrast of holograms were corrected. Black-Right-Pointing-Pointer These corrections lead to a great improvement of the resultant phase accuracy. Black-Right-Pointing-Pointer A phase accuracy of about 1/4000 rad was achieved from experimental results.

  4. Atomic-accuracy prediction of protein loop structures through an RNA-inspired Ansatz.

    Directory of Open Access Journals (Sweden)

    Rhiju Das

    Full Text Available Consistently predicting biopolymer structure at atomic resolution from sequence alone remains a difficult problem, even for small sub-segments of large proteins. Such loop prediction challenges, which arise frequently in comparative modeling and protein design, can become intractable as loop lengths exceed 10 residues and if surrounding side-chain conformations are erased. Current approaches, such as the protein local optimization protocol or kinematic inversion closure (KIC Monte Carlo, involve stages that coarse-grain proteins, simplifying modeling but precluding a systematic search of all-atom configurations. This article introduces an alternative modeling strategy based on a 'stepwise ansatz', recently developed for RNA modeling, which posits that any realistic all-atom molecular conformation can be built up by residue-by-residue stepwise enumeration. When harnessed to a dynamic-programming-like recursion in the Rosetta framework, the resulting stepwise assembly (SWA protocol enables enumerative sampling of a 12 residue loop at a significant but achievable cost of thousands of CPU-hours. In a previously established benchmark, SWA recovers crystallographic conformations with sub-Angstrom accuracy for 19 of 20 loops, compared to 14 of 20 by KIC modeling with a comparable expenditure of computational power. Furthermore, SWA gives high accuracy results on an additional set of 15 loops highlighted in the biological literature for their irregularity or unusual length. Successes include cis-Pro touch turns, loops that pass through tunnels of other side-chains, and loops of lengths up to 24 residues. Remaining problem cases are traced to inaccuracies in the Rosetta all-atom energy function. In five additional blind tests, SWA achieves sub-Angstrom accuracy models, including the first such success in a protein/RNA binding interface, the YbxF/kink-turn interaction in the fourth 'RNA-puzzle' competition. These results establish all-atom enumeration as

  5. METHOD OF ACHIEVING ACCURACY OF THERMO-MECHANICAL TREATMENT OF LOW-RIGIDITY SHAFTS

    Directory of Open Access Journals (Sweden)

    Antoni Świć

    2016-03-01

    Full Text Available The paper presents a method combining the processes of straightening and thermal treatment. Technological processes with axial strain were considered, for the case of heated material and without its heating. The essence of the process in the case of heated material consisted in the fact that if under tension all longitudinal forces in the first approximation are uniform - the same strains are generated. The presented technological approach, aimed at reducing the curvature of axial-symmetrical parts, is acceptable as the process of rough, preliminary machining, in the case of shafts with the ratio L/D≤100 (L – shaft length, d – shaft diameter and without a tendency of strengthening. To improve the accuracy and stability of geometric form of low-rigidity parts, a method was developed that combines the processes of straightening and heat treatment. The method consists in that axial strain – tension, is applied to the shaft during heating, and during cooling the product is fixed in a fixture, the cooling rate of the shaft being several-fold greater than that of the fixture. A device is presented for the realisation of the method of controlling the process of plastic deformation of low-rigidity shafts. In the case of the presented device and the adopted calculation scheme, a method was developed that permits the determination of the length of shaft section and of the time of its cooling.

  6. An angle encoder for super-high resolution and super-high accuracy using SelfA

    Science.gov (United States)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  7. Evaluating the calculation accuracy of AAA algorithm for the situation with small fields in bone by monte carlo

    International Nuclear Information System (INIS)

    Zhang Yanqiu; Qiu Xiaoping; Yang Zhen; Lu Zhiping

    2011-01-01

    In order to evaluate the calculation accuracy of Anisotropic Analytical Algorithm (AAA) for the situation with small fields in a water-bone phantom using Monte Carlo simulation as benchmarks. A water phantom with a bone slab was built,in which the depth dose (DD) and off-axis ratio (OAR) for field 2 cm x 2 cm to field 8 cm x 8 cm were calculated by AAA algorithms, PBC algorithms (as comparison), and Monte Carlo (MC) simulation. The evaluation of algorithms by MC simulation was achieved by the comparisons of DD and the 1 dimension gamma analysis of OAR. It was shown that both of AAA algorithm and PBC algorithm overestimated the DD in bone region, and the dose differences ranged from 2.16%-2.7%, 1.4%-2.03%, respectively. AAA algorithm and PBC algorithm underestimated the DD in back of bone region, and the dose differences ranged from -0.39% - -1.19%, -0.13% - -0.4%, respectively. AAA algorithm and PBC algorithm overestimated the dose of field inner edge and field outer edge,respectively. One dimension gamma analysis indicated that AAA algorithm and PBC algorithm gamma pass rate was 100%, 100%, 100%, 86%, 100%, 100%, 72%, 64%, respectively. In bone medium,the dose calculated by AAA was slightly higher than MC simulation, the calculation accuracy was not evidently higher than PBC. (authors)

  8. Convergence Time and Positioning Accuracy Comparison between BDS and GPS Precise Point Positioning

    Directory of Open Access Journals (Sweden)

    ZHANG Xiaohong

    2015-03-01

    Full Text Available BDS/GPS data from MGEX were processed by TriP 2.0 software developed at Wuhan University. Both static and kinematic float PPP are tested by adopting precise satellite orbits and clocks provided by Research Center of GNSS, Wuhan University. The results show that the convergence time of BDS static PPP is about 80min while kinematic PPP is about 100min. For 3h observations, static positioning accuracy of 5 cm and kinematic positioning accuracy of 8 cm in horizontal, about 12 cm in vertical can be achieved. Similar to GPS PPP, precision in east component is worse than north. At present, BDS PPP needs longer convergence time than GPS PPP to reach an absolute positioning accuracy of cm~dm due to the lack of global tracking stations and the limited accuracy of orbit and clock products.

  9. Higher weight, lower education: a longitudinal association between adolescents' body mass index and their subsequent educational achievement level?

    Science.gov (United States)

    Larsen, Junilla K; Kleinjan, Marloes; Engels, Rutger C M E; Fisher, Jennifer O; Hermans, Roel C J

    2014-12-01

    The purpose of this study was to examine the association between adolescents' body mass index (BMI) z-scores and their subsequent level of schooling, extending previous longitudinal research by using objectively measured weight and height data. A longitudinal study with 3 study waves (1-year intervals) involving 1248 Dutch adolescents (49% girls; mean age = 13.7 years) at schools providing different educational levels was used to determine adolescents who moved and did not move to a lower educational level in the first year, or in the second year, and to examine whether this movement could be predicted by BMI z-scores (zBMI), after controlling for a large range of potential confounding factors. A total of 1164 Dutch adolescents continued in the same level of education, whereas 84 adolescents moved to a lower educational level (43 moved in the first and 41 in the second year). A higher zBMI significantly increased the risk of a general transition to a lower educational level, and of a transition in the first year, but not in the second year, after controlling for potential demographic, behavioral, and psychological confounds. Findings suggest that a higher zBMI during adolescence immediately lowers educational achievement level during general secondary education. © 2014, American School Health Association.

  10. A design of optical modulation system with pixel-level modulation accuracy

    Science.gov (United States)

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  11. a New Approach for Accuracy Improvement of Pulsed LIDAR Remote Sensing Data

    Science.gov (United States)

    Zhou, G.; Huang, W.; Zhou, X.; He, C.; Li, X.; Huang, Y.; Zhang, L.

    2018-05-01

    In remote sensing applications, the accuracy of time interval measurement is one of the most important parameters that affect the quality of pulsed lidar data. The traditional time interval measurement technique has the disadvantages of low measurement accuracy, complicated circuit structure and large error. A high-precision time interval data cannot be obtained in these traditional methods. In order to obtain higher quality of remote sensing cloud images based on the time interval measurement, a higher accuracy time interval measurement method is proposed. The method is based on charging the capacitance and sampling the change of capacitor voltage at the same time. Firstly, the approximate model of the capacitance voltage curve in the time of flight of pulse is fitted based on the sampled data. Then, the whole charging time is obtained with the fitting function. In this method, only a high-speed A/D sampler and capacitor are required in a single receiving channel, and the collected data is processed directly in the main control unit. The experimental results show that the proposed method can get error less than 3 ps. Compared with other methods, the proposed method improves the time interval accuracy by at least 20 %.

  12. Moving to higher ground: Closing the high school science achievement gap

    Science.gov (United States)

    Mebane, Joyce Graham

    The purpose of this study was to examine the perceptions of West High School constituents (students, parents, teachers, administrators, and guidance counselors) about the readiness and interest of African American students at West High School to take Advanced Placement (AP) and International Baccalaureate (IB) science courses as a strategy for closing the achievement gap. This case study utilized individual interviews and questionnaires for data collection. The participants were selected biology students and their parents, teachers, administrators, and guidance counselors at West High School. The results of the study indicated that just over half the students and teachers, most parents, and all guidance counselors thought African American students were prepared to take AP science courses. Only one of the three administrators thought the students were prepared to take AP science courses. Between one-half and two-thirds of the students, parents, teachers, and administrators thought students were interested in taking an AP science course. Only two of the guidance counselors thought there was interest among the African American students in taking AP science courses. The general consensus among the constituents about the readiness and interest of African American students at West High School to take IB science courses was that it is too early in the process to really make definitive statements. West is a prospective IB school and the program is new and not yet in place. Educators at the West High School community must find reasons to expect each student to succeed. Lower expectations often translate into lower academic demands and less rigor in courses. Lower academic demands and less rigor in courses translate into less than adequate performance by students. When teachers and administrators maintain high expectations, they encourage students to aim high rather than slide by with mediocre effort (Lumsden, 1997). As a result of the study, the following suggestions should

  13. Achievement goals affect metacognitive judgments

    Science.gov (United States)

    Ikeda, Kenji; Yue, Carole L.; Murayama, Kou; Castel, Alan D.

    2017-01-01

    The present study examined the effect of achievement goals on metacognitive judgments, such as judgments of learning (JOLs) and metacomprehension judgments, and actual recall performance. We conducted five experiments manipulating the instruction of achievement goals. In each experiment, participants were instructed to adopt mastery-approach goals (i.e., develop their own mental ability through a memory task) or performance-approach goals (i.e., demonstrate their strong memory ability through getting a high score on a memory task). The results of Experiments 1 and 2 showed that JOLs of word pairs in the performance-approach goal condition tended to be higher than those in the mastery-approach goal condition. In contrast, cued recall performance did not differ between the two goal conditions. Experiment 3 also demonstrated that metacomprehension judgments of text passages were higher in the performance-approach goal condition than in the mastery-approach goals condition, whereas test performance did not differ between conditions. These findings suggest that achievement motivation affects metacognitive judgments during learning, even when achievement motivation does not influence actual performance. PMID:28983496

  14. Imputation Accuracy from Low to Moderate Density Single Nucleotide Polymorphism Chips in a Thai Multibreed Dairy Cattle Population

    Directory of Open Access Journals (Sweden)

    Danai Jattawa

    2016-04-01

    Full Text Available The objective of this study was to investigate the accuracy of imputation from low density (LDC to moderate density SNP chips (MDC in a Thai Holstein-Other multibreed dairy cattle population. Dairy cattle with complete pedigree information (n = 1,244 from 145 dairy farms were genotyped with GeneSeek GGP20K (n = 570, GGP26K (n = 540 and GGP80K (n = 134 chips. After checking for single nucleotide polymorphism (SNP quality, 17,779 SNP markers in common between the GGP20K, GGP26K, and GGP80K were used to represent MDC. Animals were divided into two groups, a reference group (n = 912 and a test group (n = 332. The SNP markers chosen for the test group were those located in positions corresponding to GeneSeek GGP9K (n = 7,652. The LDC to MDC genotype imputation was carried out using three different software packages, namely Beagle 3.3 (population-based algorithm, FImpute 2.2 (combined family- and population-based algorithms and Findhap 4 (combined family- and population-based algorithms. Imputation accuracies within and across chromosomes were calculated as ratios of correctly imputed SNP markers to overall imputed SNP markers. Imputation accuracy for the three software packages ranged from 76.79% to 93.94%. FImpute had higher imputation accuracy (93.94% than Findhap (84.64% and Beagle (76.79%. Imputation accuracies were similar and consistent across chromosomes for FImpute, but not for Findhap and Beagle. Most chromosomes that showed either high (73% or low (80% imputation accuracies were the same chromosomes that had above and below average linkage disequilibrium (LD; defined here as the correlation between pairs of adjacent SNP within chromosomes less than or equal to 1 Mb apart. Results indicated that FImpute was more suitable than Findhap and Beagle for genotype imputation in this Thai multibreed population. Perhaps additional increments in imputation accuracy could be achieved by increasing the completeness of pedigree information.

  15. Impact Of Tissue Sampling On Accuracy Of Ki67 Immunohistochemistry Evaluation In Breast Cancer

    Directory of Open Access Journals (Sweden)

    Justinas Besusparis

    2016-06-01

    The sampling requirements were dependent on the heterogeneity of the biomarker expression. To achieve a coefficient error of 10%, 5-6 cores were needed for homogeneous cases, while 11-12 cores for heterogeneous cases. In mixed tumor population, 8 TMA cores were required. Similarly, to achieve the same accuracy, approximately 4,000 nuclei must be counted when the intra-tumor heterogeneity is mixed/unknown. Tumors at the lower scale of proliferative activity would require larger sampling (10-12 TMA cores, or 5,000 nuclei to achieve the same error measurement results as for highly proliferative tumors. Our data show that optimal tissue sampling for IHC biomarker evaluation is dependent on the heterogeneity of the tissue under study and needs to be determined on a per-use basis. We propose a method that can be applied to determine the TMA sampling strategy for specific biomarkers, tissues and study targets. In addition, our findings highlight the importance of high-capacity computer-based IHC measurement techniques to improve accuracy of the testing.

  16. Motivation and academic achievement in medical students.

    Science.gov (United States)

    Yousefy, Alireza; Ghassemi, Gholamreza; Firouznia, Samaneh

    2012-01-01

    Despite their ascribed intellectual ability and achieved academic pursuits, medical students' academic achievement is influenced by motivation. This study is an endeavor to examine the role of motivation in the academic achievement of medical students. In this cross-sectional correlational study, out of the total 422 medical students, from 4th to final year during the academic year 2007-2008, at School of Medicine, Isfahan University of Medical Sciences, 344 participated in completion of the Inventory of School Motivation (ISM), comprising 43 items and measuring eight aspects of motivation. The gold standard for academic achievement was their average academic marks at pre-clinical and clinical levels. Data were computer analyzed by running a couple of descriptive and analytical tests including Pearson Correlation and Student's t-student. Higher motivation scores in areas of competition, effort, social concern, and task were accompanied by higher average marks at pre-clinical as well as clinical levels. However, the latter ones showed greater motivation for social power as compared to the former group. Task and competition motivation for boys was higher than for girls. In view of our observations, students' academic achievement requires coordination and interaction between different aspects of motivation.

  17. The effect of search term on the quality and accuracy of online information regarding distal radius fractures.

    Science.gov (United States)

    Dy, Christopher J; Taylor, Samuel A; Patel, Ronak M; Kitay, Alison; Roberts, Timothy R; Daluiski, Aaron

    2012-09-01

    Recent emphasis on shared decision making and patient-centered research has increased the importance of patient education and health literacy. The internet is rapidly growing as a source of self-education for patients. However, concern exists over the quality, accuracy, and readability of the information. Our objective was to determine whether the quality, accuracy, and readability of information online about distal radius fractures vary with the search term. This was a prospective evaluation of 3 search engines using 3 different search terms of varying sophistication ("distal radius fracture," "wrist fracture," and "broken wrist"). We evaluated 70 unique Web sites for quality, accuracy, and readability. We used comparative statistics to determine whether the search term affected the quality, accuracy, and readability of the Web sites found. Three orthopedic surgeons independently gauged quality and accuracy of information using a set of predetermined scoring criteria. We evaluated the readability of the Web site using the Fleisch-Kincaid score for reading grade level. There were significant differences in the quality, accuracy, and readability of information found, depending on the search term. We found higher quality and accuracy resulted from the search term "distal radius fracture," particularly compared with Web sites resulting from the term "broken wrist." The reading level was higher than recommended in 65 of the 70 Web sites and was significantly higher when searching with "distal radius fracture" than "wrist fracture" or "broken wrist." There was no correlation between Web site reading level and quality or accuracy. The readability of information about distal radius fractures in most Web sites was higher than the recommended reading level for the general public. The quality and accuracy of the information found significantly varied with the sophistication of the search term used. Physicians, professional societies, and search engines should consider

  18. ACCURACY COMPARISON OF VHR SYSTEMATIC-ORTHO SATELLITE IMAGERIES AGAINST VHR ORTHORECTIFIED IMAGERIES USING GCP

    Directory of Open Access Journals (Sweden)

    E. Widyaningrum

    2016-06-01

    Full Text Available The Very High Resolution (VHR satellite imageries such us Pleiades, WorldView-2, GeoEye-1 used for precise mapping purpose must be corrected from any distortion to achieve the expected accuracy. Orthorectification is performed to eliminate geometric errors of the VHR satellite imageries. Orthorectification requires main input data such as Digital Elevation Model (DEM and Ground Control Point (GCP. The VHR systematic-ortho imageries were generated using SRTM 30m DEM without using any GCP data. The accuracy value differences of VHR systematic-ortho imageries and VHR orthorectified imageries using GCP currently is not exactly defined. This study aimed to identified the accuracy comparison of VHR systematic-ortho imageries against orthorectified imageries using GCP. Orthorectified imageries using GCP created by using Rigorous model. Accuracy evaluation is calculated by using several independent check points.

  19. Acquisition of decision making criteria: reward rate ultimately beats accuracy.

    Science.gov (United States)

    Balci, Fuat; Simen, Patrick; Niyogi, Ritwik; Saxe, Andrew; Hughes, Jessica A; Holmes, Philip; Cohen, Jonathan D

    2011-02-01

    Speed-accuracy trade-offs strongly influence the rate of reward that can be earned in many decision-making tasks. Previous reports suggest that human participants often adopt suboptimal speed-accuracy trade-offs in single session, two-alternative forced-choice tasks. We investigated whether humans acquired optimal speed-accuracy trade-offs when extensively trained with multiple signal qualities. When performance was characterized in terms of decision time and accuracy, our participants eventually performed nearly optimally in the case of higher signal qualities. Rather than adopting decision criteria that were individually optimal for each signal quality, participants adopted a single threshold that was nearly optimal for most signal qualities. However, setting a single threshold for different coherence conditions resulted in only negligible decrements in the maximum possible reward rate. Finally, we tested two hypotheses regarding the possible sources of suboptimal performance: (1) favoring accuracy over reward rate and (2) misestimating the reward rate due to timing uncertainty. Our findings provide support for both hypotheses, but also for the hypothesis that participants can learn to approach optimality. We find specifically that an accuracy bias dominates early performance, but diminishes greatly with practice. The residual discrepancy between optimal and observed performance can be explained by an adaptive response to uncertainty in time estimation.

  20. Effect of X-Word Grammar and Traditional Grammar Instruction on Grammatical Accuracy

    Science.gov (United States)

    Livingston, Sue; Toce, Andi; Casey, Toce; Montoya, Fernando; Hart, Bonny R.; O'Flaherty, Carmela

    2018-01-01

    This study first briefly describes an instructional approach to teaching grammar known as X-Word Grammar and then compares its effectiveness in assisting students in achieving grammatical accuracy with traditionally taught grammar. Two groups of L2 pre-college students were taught using curricula and practice procedures in two different grammar…

  1. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed. copyright 1997 American Institute of Physics

  2. Accuracy in Robot Generated Image Data Sets

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Dahl, Anders Bjorholm

    2015-01-01

    In this paper we present a practical innovation concerning how to achieve high accuracy of camera positioning, when using a 6 axis industrial robots to generate high quality data sets for computer vision. This innovation is based on the realization that to a very large extent the robots positioning...... error is deterministic, and can as such be calibrated away. We have successfully used this innovation in our efforts for creating data sets for computer vision. Since the use of this innovation has a significant effect on the data set quality, we here present it in some detail, to better aid others...

  3. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    Directory of Open Access Journals (Sweden)

    Guanwu Zhou

    2014-07-01

    Full Text Available Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system’s performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  4. ZCURVE 3.0: identify prokaryotic genes with higher accuracy as well as automatically and accurately select essential genes

    Science.gov (United States)

    Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao

    2015-01-01

    In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. PMID:25977299

  5. Correlation between the model accuracy and model-based SOC estimation

    International Nuclear Information System (INIS)

    Wang, Qianqian; Wang, Jiao; Zhao, Pengju; Kang, Jianqiang; Yan, Few; Du, Changqing

    2017-01-01

    State-of-charge (SOC) estimation is a core technology for battery management systems. Considerable progress has been achieved in the study of SOC estimation algorithms, especially the algorithm on the basis of Kalman filter to meet the increasing demand of model-based battery management systems. The Kalman filter weakens the influence of white noise and initial error during SOC estimation but cannot eliminate the existing error of the battery model itself. As such, the accuracy of SOC estimation is directly related to the accuracy of the battery model. Thus far, the quantitative relationship between model accuracy and model-based SOC estimation remains unknown. This study summarizes three equivalent circuit lithium-ion battery models, namely, Thevenin, PNGV, and DP models. The model parameters are identified through hybrid pulse power characterization test. The three models are evaluated, and SOC estimation conducted by EKF-Ah method under three operating conditions are quantitatively studied. The regression and correlation of the standard deviation and normalized RMSE are studied and compared between the model error and the SOC estimation error. These parameters exhibit a strong linear relationship. Results indicate that the model accuracy affects the SOC estimation accuracy mainly in two ways: dispersion of the frequency distribution of the error and the overall level of the error. On the basis of the relationship between model error and SOC estimation error, our study provides a strategy for selecting a suitable cell model to meet the requirements of SOC precision using Kalman filter.

  6. Method of control of machining accuracy of low-rigidity elastic-deformable shafts

    Directory of Open Access Journals (Sweden)

    Antoni Świć

    Full Text Available The paper presents an analysis of the possibility of increasing the accuracy and stability of machining of low-rigidity shafts while ensuring high efficiency and economy of their machining. An effective way of improving the accuracy of machining of shafts is increasing their rigidity as a result of oriented change of the elastic-deformable state through the application of a tensile force which, combined with the machining force, forms longitudinal-lateral strains. The paper also presents mathematical models describing the changes of the elastic-deformable state resulting from the application of the tensile force. It presents the results of experimental studies on the deformation of elastic low-rigidity shafts, performed on a special test stand developed on the basis of a lathe. An estimation was made of the effectiveness of the method of control of the elastic-deformable state with the use, as the regulating effects, the tensile force and eccentricity. It was demonstrated that controlling the two parameters: tensile force and eccentricity, one can improve the accuracy of machining, and thus achieve a theoretically assumed level of accuracy.

  7. Evaluation of the accuracy and limitations of three tooth-color measuring machines

    Directory of Open Access Journals (Sweden)

    Jiun-Yao Chang

    2015-03-01

    Conclusion: By knowing the limits of each machine after being analyzed with the Munsell Book of Color, we can use the color measuring instrument in the specific color space range that the devices measuring accuracy performs the best in to achieve objective and accurate tooth-color measuring results in routine dental practice.

  8. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: A novel in vivo analysis method.

    Science.gov (United States)

    Nedelcu, R; Olsson, P; Nyström, I; Rydén, J; Thor, A

    2018-02-01

    To evaluate a novel methodology using industrial scanners as a reference, and assess in vivo accuracy of 3 intraoral scanners (IOS) and conventional impressions. Further, to evaluate IOS precision in vivo. Four reference-bodies were bonded to the buccal surfaces of upper premolars and incisors in five subjects. After three reference-scans, ATOS Core 80 (ATOS), subjects were scanned three times with three IOS systems: 3M True Definition (3M), CEREC Omnicam (OMNI) and Trios 3 (TRIOS). One conventional impression (IMPR) was taken, 3M Impregum Penta Soft, and poured models were digitized with laboratory scanner 3shape D1000 (D1000). Best-fit alignment of reference-bodies and 3D Compare Analysis was performed. Precision of ATOS and D1000 was assessed for quantitative evaluation and comparison. Accuracy of IOS and IMPR were analyzed using ATOS as reference. Precision of IOS was evaluated through intra-system comparison. Precision of ATOS reference scanner (mean 0.6 μm) and D1000 (mean 0.5 μm) was high. Pairwise multiple comparisons of reference-bodies located in different tooth positions displayed a statistically significant difference of accuracy between two scanner-groups: 3M and TRIOS, over OMNI (p value range 0.0001 to 0.0006). IMPR did not show any statistically significant difference to IOS. However, deviations of IOS and IMPR were within a similar magnitude. No statistical difference was found for IOS precision. The methodology can be used for assessing accuracy of IOS and IMPR in vivo in up to five units bilaterally from midline. 3M and TRIOS had a higher accuracy than OMNI. IMPR overlapped both groups. Intraoral scanners can be used as a replacement for conventional impressions when restoring up to ten units without extended edentulous spans. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Measuring Adolescent Self-Awareness and Accuracy Using a Performance-Based Assessment and Parental Report

    Directory of Open Access Journals (Sweden)

    Sharon Zlotnik

    2018-02-01

    Full Text Available AimThe aim of this study was to assess awareness of performance and performance accuracy for a task that requires executive functions (EF, among healthy adolescents and to compare their performance to their parent’s ratings.MethodParticipants: 109 healthy adolescents (mean age 15.2 ± 1.86 years completed the Weekly Calendar Planning Activity (WCPA. The discrepancy between self-estimated and actual performance was used to measure the level of awareness. The participants were divided into high and low accuracy groups according to the WCPA accuracy median score. The participants were also divided into high and low awareness groups. A comparison was conducted between groups using WCPA performance and parent ratings on the Behavior Rating Inventory of Executive Function (BRIEF.ResultsHigher awareness was associated with better EF performance. Participants with high accuracy scores were more likely to show high awareness of performance as compared to participants with low accuracy scores. The high accuracy group had better parental ratings of EF, higher efficiency, followed more rules, and were more aware of their WCPA performance.ConclusionOur results highlight the important contribution that self-awareness of performance may have on the individual’s function. Assessing the level of awareness and providing metacognitive training techniques for those adolescents who are less aware, could support their performance.

  10. Correlation of Conditional Admittance and Student Achievement in an Undergraduate Higher Education Setting

    Science.gov (United States)

    Parisi, Joe

    2012-01-01

    This paper explores several research questions that identify differences between conditionally admitted students and regularly admitted students in terms of achievement results at one institution. The research provides specific variables as well as relationships including historical and comparative aggregate data from 2009 and 2010 that indicate…

  11. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    Science.gov (United States)

    Downie, John D.; Goodman, Joseph W.

    1989-10-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  12. The Effect of School Improvement Planning on Student Achievement

    Science.gov (United States)

    Huber, David J.; Conway, James M.

    2015-01-01

    This study evaluated the hypothesis that schools in Connecticut's Alliance Districts (lowest-performing districts) with higher-quality school improvement plans (SIPs) would have higher levels of student achievement. An exploratory research question evaluated whether SIPs predicted achievement of particular subgroups. SIPs were obtained and scored…

  13. The effect of letter string length and report condition on letter recognition accuracy.

    Science.gov (United States)

    Raghunandan, Avesh; Karmazinaite, Berta; Rossow, Andrea S

    Letter sequence recognition accuracy has been postulated to be limited primarily by low-level visual factors. The influence of high level factors such as visual memory (load and decay) has been largely overlooked. This study provides insight into the role of these factors by investigating the interaction between letter sequence recognition accuracy, letter string length and report condition. Letter sequence recognition accuracy for trigrams and pentagrams were measured in 10 adult subjects for two report conditions. In the complete report condition subjects reported all 3 or all 5 letters comprising trigrams and pentagrams, respectively. In the partial report condition, subjects reported only a single letter in the trigram or pentagram. Letters were presented for 100ms and rendered in high contrast, using black lowercase Courier font that subtended 0.4° at the fixation distance of 0.57m. Letter sequence recognition accuracy was consistently higher for trigrams compared to pentagrams especially for letter positions away from fixation. While partial report increased recognition accuracy in both string length conditions, the effect was larger for pentagrams, and most evident for the final letter positions within trigrams and pentagrams. The effect of partial report on recognition accuracy for the final letter positions increased as eccentricity increased away from fixation, and was independent of the inner/outer position of a letter. Higher-level visual memory functions (memory load and decay) play a role in letter sequence recognition accuracy. There is also suggestion of additional delays imposed on memory encoding by crowded letter elements. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  14. A higher-complex carbohydrate diet in gestational diabetes mellitus achieves glucose targets and lowers postprandial lipids: a randomized crossover study.

    Science.gov (United States)

    Hernandez, Teri L; Van Pelt, Rachael E; Anderson, Molly A; Daniels, Linda J; West, Nancy A; Donahoo, William T; Friedman, Jacob E; Barbour, Linda A

    2014-01-01

    The conventional diet approach to gestational diabetes mellitus (GDM) advocates carbohydrate restriction, resulting in higher fat (HF), also a substrate for fetal fat accretion and associated with maternal insulin resistance. Consequently, there is no consensus about the ideal GDM diet. We hypothesized that, compared with a conventional, lower-carbohydrate/HF diet (40% carbohydrate/45% fat/15% protein), consumption of a higher-complex carbohydrate (HCC)/lower-fat (LF) Choosing Healthy Options in Carbohydrate Energy (CHOICE) diet (60/25/15%) would result in 24-h glucose area under the curve (AUC) profiles within therapeutic targets and lower postprandial lipids. Using a randomized, crossover design, we provided 16 GDM women (BMI 34 ± 1 kg/m2) with two 3-day isocaloric diets at 31 ± 0.5 weeks (washout between diets) and performed continuous glucose monitoring. On day 4 of each diet, we determined postprandial (5 h) glucose, insulin, triglycerides (TGs), and free fatty acids (FFAs) following a controlled breakfast meal. There were no between-diet differences for fasting or mean nocturnal glucose, but 24-h AUC was slightly higher (∼6%) on the HCC/LF CHOICE diet (P = 0.02). The continuous glucose monitoring system (CGMS) revealed modestly higher 1- and 2-h postprandial glucose on CHOICE (1 h, 115 ± 2 vs. 107 ± 3 mg/dL, P ≤ 0.01; 2 h, 106 ± 3 vs. 97 ± 3 mg/dL, P = 0.001) but well below current targets. After breakfast, 5-h glucose and insulin AUCs were slightly higher (P diet. This highly controlled study randomizing isocaloric diets and using a CGMS is the first to show that liberalizing complex carbohydrates and reducing fat still achieved glycemia below current treatment targets and lower postprandial FFAs. This diet strategy may have important implications for preventing macrosomia.

  15. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  16. Measuring true localization accuracy in super resolution microscopy with DNA-origami nanostructures

    International Nuclear Information System (INIS)

    Reuss, Matthias; Blom, Hans; Brismar, Hjalmar; Fördős, Ferenc; Högberg, Björn; Öktem, Ozan

    2017-01-01

    A common method to assess the performance of (super resolution) microscopes is to use the localization precision of emitters as an estimate for the achieved resolution. Naturally, this is widely used in super resolution methods based on single molecule stochastic switching. This concept suffers from the fact that it is hard to calibrate measures against a real sample (a phantom), because true absolute positions of emitters are almost always unknown. For this reason, resolution estimates are potentially biased in an image since one is blind to true position accuracy, i.e. deviation in position measurement from true positions. We have solved this issue by imaging nanorods fabricated with DNA-origami. The nanorods used are designed to have emitters attached at each end in a well-defined and highly conserved distance. These structures are widely used to gauge localization precision. Here, we additionally determined the true achievable localization accuracy and compared this figure of merit to localization precision values for two common super resolution microscope methods STED and STORM. (paper)

  17. Assessment of the accuracy of ABC/2 variations in traumatic epidural hematoma volume estimation: a retrospective study

    Directory of Open Access Journals (Sweden)

    Pengfei Yan

    2016-04-01

    Full Text Available Background. The traumatic epidural hematoma (tEDH volume is often used to assist in tEDH treatment planning and outcome prediction. ABC/2 is a well-accepted volume estimation method that can be used for tEDH volume estimation. Previous studies have proposed different variations of ABC/2; however, it is unclear which variation will provide a higher accuracy. Given the promising clinical contribution of accurate tEDH volume estimations, we sought to assess the accuracy of several ABC/2 variations in tEDH volume estimation. Methods. The study group comprised 53 patients with tEDH who had undergone non-contrast head computed tomography scans. For each patient, the tEDH volume was automatically estimated by eight ABC/2 variations (four traditional and four newly derived with an in-house program, and results were compared to those from manual planimetry. Linear regression, the closest value, percentage deviation, and Bland-Altman plot were adopted to comprehensively assess accuracy. Results. Among all ABC/2 variations assessed, the traditional variations y = 0.5 × A1B1C1 (or A2B2C1 and the newly derived variations y = 0.65 × A1B1C1 (or A2B2C1 achieved higher accuracy than the other variations. No significant differences were observed between the estimated volume values generated by these variations and those of planimetry (p > 0.05. Comparatively, the former performed better than the latter in general, with smaller mean percentage deviations (7.28 ± 5.90% and 6.42 ± 5.74% versus 19.12 ± 6.33% and 21.28 ± 6.80%, respectively and more values closest to planimetry (18/53 and 18/53 versus 2/53 and 0/53, respectively. Besides, deviations of most cases in the former fell within the range of 20% (90.57% and 96.23, respectively. Discussion. In the current study, we adopted an automatic approach to assess the accuracy of several ABC/2 variations for tEDH volume estimation. Our initial results showed that the variations y = 0.5 × A1B1C1 (or A2B2C1

  18. [In vivo model to evaluate the accuracy of complete-tooth spectrophotometer for dental clinics].

    Science.gov (United States)

    Liu, Feng; Yang, Jian; Xu, Tong-Kai; Xu, Ming-Ming; Ma, Yu

    2011-02-01

    To test ΔE between measured value and right value from the Crystaleye complete-tooth spectrophotometer, and to evaluate the accuracy rate of the spectrophotometer. Twenty prosthodontists participated in the study. Each of them used Vita 3D-Master shadeguide to do the shade matching, and used Crystaleye complete-tooth spectrophotometer (before and after the test training) tested the middle of eight fixed tabs from shadeguide in the dark box. The results of shade matching and spectrophotometer were recorded. The accuracy rate of shade matching and the spectrophotometer before and after training were calculated. The average accuracy rate of shade matching was 49%. The average accuracy rate of the spectrophotometer before and after training was 83% and 99%. The accuracy of the spectrophotometer was significant higher than that in shade matching, and training can improve the accuracy rate.

  19. Higher-order Cn dispersion coefficients for the alkali-metal atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M.W.J.

    2005-01-01

    The van der Waals coefficients, from C 11 through to C 16 resulting from second-, third-, and fourth-order perturbation theory are estimated for the alkali-metal (Li, Na, K, and Rb) atoms. The dispersion coefficients are also computed for all possible combinations of the alkali-metal atoms and hydrogen. The parameters are determined from sum rules after diagonalizing a semiempirical fixed core Hamiltonian in a large basis. Comparisons of the radial dependence of the C n /r n potentials give guidance as to the radial regions in which the various higher-order terms can be neglected. It is seen that including terms up to C 10 /r 10 results in a dispersion interaction that is accurate to better than 1% whenever the inter-nuclear spacing is larger than 20a 0 . This level of accuracy is mainly achieved due to the fortuitous cancellation between the repulsive (C 11 ,C 13 ,C 15 ) and attractive (C 12 ,C 14 ,C 16 ) dispersion forces

  20. An angle encoder for super-high resolution and super-high accuracy using SelfA

    International Nuclear Information System (INIS)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-01-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 2 21 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science and Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 2 33 , that is, corresponding to a 0.0015″ signal period

  1. ACCURACY AND RELIABILITY AS CRITERIA OF INFORMATIVENESS IN THE NEWS STORY

    Directory of Open Access Journals (Sweden)

    Melnikova Ekaterina Aleksandrovna

    2014-12-01

    Full Text Available The article clarifies the meaning of the terms accuracy and reliability of the news story, offers a researcher's approach to obtaining objective data that helps to verify linguistic means of accuracy and reliability presence in the informative structure of the text. The accuracy of the news story is defined as a high relevance degree of event reflection through language representation of its constituents; the reliability is viewed as news story originality that is proved by introducing citations and sources of information considered being trustworthy into the text content. Having based the research on an event nominative density identification method, the author composed nominative charts of 115 news story texts, collected at web-sites of BBC and CNN media corporations; distinguished qualitative and quantitative markers of accuracy and reliability in the news story text; confirmed that the accuracy of the news story is achieved with terminological clearness in nominating event constituents in the text, thematic bind between words, presence of onyms that help deeply identify characteristics of the referent event. The reliability of the text is discovered in eyewitness accounts, quotations, and references to the sources being considered as trustworthy. Accurate revision of associations between accuracy and reliability and informing strategies in digital news nets allowed the author to set two variants of information delivery, that differ in their communicative and pragmatic functions: developing (that informs about major and minor details of an event and truncated (which gives some details thus raising the interest to the event and urging a reader to open a full story.

  2. Examining the Academic Achievement-Delinquency Relationship Among Southeast Asian Americans.

    Science.gov (United States)

    Bui, Laura

    2018-05-01

    The extent to which poor academic achievement is strongly related to delinquency among Southeast Asian Americans (SEAA) remains unclear; reasons are methodological limitations and aggregated findings for Asian Americans, which mask evidence that SEAA have a higher prevalence of criminality and poor academic performance than other Asian American groups. The present study examines the academic achievement-delinquency relationship in a diverse group of 1,214 SEAA using data from the Children of Immigrants Longitudinal Study (CILS). Propensity score matching (PSM) was used to make causal inferences and assess whether poor academic achieving SEAA, after being matched with higher academic achieving SEAA, displayed a higher prevalence of delinquency. Findings showed that, even after matching, poor academic achieving SEAA were still more likely to exhibit delinquent behavior than those who performed academically better. Interventions targeting SEAA communities will need to focus more on improving academic achievement to directly prevent and decrease delinquent behavior.

  3. ZCURVE 3.0: identify prokaryotic genes with higher accuracy as well as automatically and accurately select essential genes.

    Science.gov (United States)

    Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao

    2015-07-01

    In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Analysis of the stability and accuracy of the discrete least-squares approximation on multivariate polynomial spaces

    KAUST Repository

    Migliorati, Giovanni

    2016-01-01

    We review the main results achieved in the analysis of the stability and accuracy of the discrete leastsquares approximation on multivariate polynomial spaces, with noiseless evaluations at random points, noiseless evaluations at low

  5. The accuracy of myocardial perfusion SPECT imaging in the evaluation of coronary artery disease in women and men

    International Nuclear Information System (INIS)

    Kaminek, M.; Myslivecek, M.; Huyak, V.; Koranda, P.; Skvarilova, M.; Ostransky, J.

    2001-01-01

    The purpose of this study is to compare sensitivity, specificity and accuracy of myocardial perfusion SPECT for the detection of coronary artery disease (CAD) in women and men. 588 patients (455 males and 133 females, 273 after a previous myocardial infarction) underwent stress myocardial perfusion SPECT. The accuracy of myocardial perfusion SPECT was proved by coronary angiography (stenosis >50% was considered as a CAD). The sensitivity of SPECT was slightly higher, but statistically not significant, in men than in women (94% versus 91%, p > 0.05). The specificity was higher in women than in men (93% versus 82%), but this difference was not statistically significant either (p > 0.05). The accuracy of SPECT was the same for both sexes (92%). In angiographically verified group of patients the selection bias was obvious - patients with CAD dominated (74%) and the fraction of patients with CAD in men's group (83%) was significantly higher than in women's group (50%), p < 0.05. No significant difference was revealed in the accuracy of myocardial perfusion SPECT in men and women. Our results are in accordance with the prevailing opinion in literature that discovered differences in sensitivity, specificity and diagnostic accuracy are usually not statistically significant or that they can be explained by the selection bias of patients in angiographically verified groups (significantly higher fraction of patients with CAD in men's group). (author)

  6. Accuracy Improvement of Real-Time Location Tracking for Construction Workers

    Directory of Open Access Journals (Sweden)

    Hyunsoo Kim

    2018-05-01

    Full Text Available Extensive research has been conducted on the real-time locating system (RTLS for tracking construction components, including workers, equipment, and materials, in order to improve construction performance (e.g., productivity improvement or accident prevention. In order to prevent safety accidents and make more sustainable construction job sites, the higher accuracy of RTLS is required. To improve the accuracy of RTLS in construction projects, this paper presents a RTLS using radio frequency identification (RFID. For this goal, this paper develops a location tracking error mitigation algorithm and presents the concept of using assistant tags. The applicability and effectiveness of the developed RTLS are tested under eight different construction environments and the test results confirm the system’s strong potential for improving the accuracy of real-time location tracking in construction projects, thus enhancing construction performance.

  7. Experimentation on accuracy of non functional requirement prioritization approaches for different complexity projects

    Directory of Open Access Journals (Sweden)

    Raj Kumar Chopra

    2016-09-01

    Full Text Available Non functional requirements must be selected for implementation together with functional requirements to enhance the success of software projects. Three approaches exist for performing the prioritization of non functional requirements using the suitable prioritization technique. This paper performs experimentation on three different complexity versions of the industrial software project using cost-value prioritization technique employing three approaches. Experimentation is conducted to analyze the accuracy of individual approaches and the variation of accuracy with the complexity of the software project. The results indicate that selecting non functional requirements separately, but in accordance with functionality has higher accuracy amongst the other two approaches. Further, likewise other approaches, it witnesses the decrease in accuracy with increase in software complexity but the decrease is minimal.

  8. Method for Improving Indoor Positioning Accuracy Using Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Seoung-Hyeon Lee

    2016-01-01

    Full Text Available Beacons using bluetooth low-energy (BLE technology have emerged as a new paradigm of indoor positioning service (IPS because of their advantages such as low power consumption, miniaturization, wide signal range, and low cost. However, the beacon performance is poor in terms of the indoor positioning accuracy because of noise, motion, and fading, all of which are characteristics of a bluetooth signal and depend on the installation location. Therefore, it is necessary to improve the accuracy of beacon-based indoor positioning technology by fusing it with existing indoor positioning technology, which uses Wi-Fi, ZigBee, and so forth. This study proposes a beacon-based indoor positioning method using an extended Kalman filter that recursively processes input data including noise. After defining the movement of a smartphone on a flat two-dimensional surface, it was assumed that the beacon signal is nonlinear. Then, the standard deviation and properties of the beacon signal were analyzed. According to the analysis results, an extended Kalman filter was designed and the accuracy of the smartphone’s indoor position was analyzed through simulations and tests. The proposed technique achieved good indoor positioning accuracy, with errors of 0.26 m and 0.28 m from the average x- and y-coordinates, respectively, based solely on the beacon signal.

  9. Practical implementation of a higher order transverse leakage approximation

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomašević

    2011-01-01

    Transverse integrated nodal diffusion methods currently represent the standard in full core neutronic simulation. The primary shortcoming in this approach, be it via the Analytic Nodal Method or Nodal Expansion Method, is the utilization of the quadratic transverse leakage approximation. This approach, although proven to work well for typical LWR problems, is not consistent with the formulation of nodal methods and can cause accuracy and convergence problems. In this work an improved, consistent quadratic leakage approximation is formulated, which derives from the class of higher order nodal methods developed some years ago. In this new approach, only information relevant to describing the transverse leak- age terms in the zero-order nodal equations are obtained from the higher order formalism. The method yields accuracy comparable to full higher order methods, but does not suffer from the same computational burden which these methods typically incur. (author)

  10. Strategic Planning for Higher Education.

    Science.gov (United States)

    Kotler, Philip; Murphy, Patrick E.

    1981-01-01

    The framework necessary for achieving a strategic planning posture in higher education is outlined. The most important benefit of strategic planning for higher education decision makers is that it forces them to undertake a more market-oriented and systematic approach to long- range planning. (Author/MLW)

  11. WISC-III and CAS: Which Correlates Higher with Achievement for a Clinical Sample?

    Science.gov (United States)

    Naglieri, Jack A.; De Lauder, Brianna Y.; Goldstein, Sam; Schwebech, Adam

    2006-01-01

    The relationships between Wechsler Intelligence Scale for Children-Third Edition (WISC-III) and the Cognitive Assessment System (CAS) with the Woodcock-Johnson Tests of Achievement (WJ-III) were examined for a sample of 119 children (87 males and 32 females) ages 6 to 16. The sample was comprised of children who were referred to a specialty clinic…

  12. Success in Higher Education: The Challenge to Achieve Academic Standing and Social Position

    Science.gov (United States)

    Life, James

    2015-01-01

    When students look at their classmates in the classroom, consciously or unconsciously, they see competitors both for academic recognition and social success. How do they fit in relation to others and how do they succeed in achieving both? Traditional views on the drive to succeed and the fear of failure are well known as motivators for achieving…

  13. Persistence of accuracy of genomic estimated breeding values over generations in layer chickens

    Directory of Open Access Journals (Sweden)

    Fernando Rohan

    2011-06-01

    Full Text Available Abstract Background The predictive ability of genomic estimated breeding values (GEBV originates both from associations between high-density markers and QTL (Quantitative Trait Loci and from pedigree information. Thus, GEBV are expected to provide more persistent accuracy over successive generations than breeding values estimated using pedigree-based methods. The objective of this study was to evaluate the accuracy of GEBV in a closed population of layer chickens and to quantify their persistence over five successive generations using marker or pedigree information. Methods The training data consisted of 16 traits and 777 genotyped animals from two generations of a brown-egg layer breeding line, 295 of which had individual phenotype records, while others had phenotypes on 2,738 non-genotyped relatives, or similar data accumulated over up to five generations. Validation data included phenotyped and genotyped birds from five subsequent generations (on average 306 birds/generation. Birds were genotyped for 23,356 segregating SNP. Animal models using genomic or pedigree relationship matrices and Bayesian model averaging methods were used for training analyses. Accuracy was evaluated as the correlation between EBV and phenotype in validation divided by the square root of trait heritability. Results Pedigree relationships in outbred populations are reduced by 50% at each meiosis, therefore accuracy is expected to decrease by the square root of 0.5 every generation, as observed for pedigree-based EBV (Estimated Breeding Values. In contrast the GEBV accuracy was more persistent, although the drop in accuracy was substantial in the first generation. Traits that were considered to be influenced by fewer QTL and to have a higher heritability maintained a higher GEBV accuracy over generations. In conclusion, GEBV capture information beyond pedigree relationships, but retraining every generation is recommended for genomic selection in closed breeding

  14. Achieving Metacognition through Cognitive Strategy Instruction

    Science.gov (United States)

    Apaydin, Marina; Hossary, Mohamad

    2017-01-01

    Purpose: The purpose of this paper is to present hands-on techniques that could help achieve higher forms of cognitive work of Bloom's learning taxonomy and progress toward self-actualization, the top of Maslow's hierarchy of needs. These results can be achieved by the combination of Apaydin's 3A approach and integrative learning.…

  15. Selectively Fortifying Reconfigurable Computing Device to Achieve Higher Error Resilience

    Directory of Open Access Journals (Sweden)

    Mingjie Lin

    2012-01-01

    Full Text Available With the advent of 10 nm CMOS devices and “exotic” nanodevices, the location and occurrence time of hardware defects and design faults become increasingly unpredictable, therefore posing severe challenges to existing techniques for error-resilient computing because most of them statically assign hardware redundancy and do not account for the error tolerance inherently existing in many mission-critical applications. This work proposes a novel approach to selectively fortifying a target reconfigurable computing device in order to achieve hardware-efficient error resilience for a specific target application. We intend to demonstrate that such error resilience can be significantly improved with effective hardware support. The major contributions of this work include (1 the development of a complete methodology to perform sensitivity and criticality analysis of hardware redundancy, (2 a novel problem formulation and an efficient heuristic methodology to selectively allocate hardware redundancy among a target design’s key components in order to maximize its overall error resilience, and (3 an academic prototype of SFC computing device that illustrates a 4 times improvement of error resilience for a H.264 encoder implemented with an FPGA device.

  16. Factors Determining the Inter-observer Variability and Diagnostic Accuracy of High-resolution Manometry for Esophageal Motility Disorders.

    Science.gov (United States)

    Kim, Ji Hyun; Kim, Sung Eun; Cho, Yu Kyung; Lim, Chul-Hyun; Park, Moo In; Hwang, Jin Won; Jang, Jae-Sik; Oh, Minkyung

    2018-01-30

    Although high-resolution manometry (HRM) has the advantage of visual intuitiveness, its diagnostic validity remains under debate. The aim of this study was to evaluate the diagnostic accuracy of HRM for esophageal motility disorders. Six staff members and 8 trainees were recruited for the study. In total, 40 patients enrolled in manometry studies at 3 institutes were selected. Captured images of 10 representative swallows and a single swallow in analyzing mode in both high-resolution pressure topography (HRPT) and conventional line tracing formats were provided with calculated metrics. Assessments of esophageal motility disorders showed fair agreement for HRPT and moderate agreement for conventional line tracing (κ = 0.40 and 0.58, respectively). With the HRPT format, the k value was higher in category A (esophagogastric junction [EGJ] relaxation abnormality) than in categories B (major body peristalsis abnormalities with intact EGJ relaxation) and C (minor body peristalsis abnormalities or normal body peristalsis with intact EGJ relaxation). The overall exact diagnostic accuracy for the HRPT format was 58.8% and rater's position was an independent factor for exact diagnostic accuracy. The diagnostic accuracy for major disorders was 63.4% with the HRPT format. The frequency of major discrepancies was higher for category B disorders than for category A disorders (38.4% vs 15.4%; P < 0.001). The interpreter's experience significantly affected the exact diagnostic accuracy of HRM for esophageal motility disorders. The diagnostic accuracy for major disorders was higher for achalasia than distal esophageal spasm and jackhammer esophagus.

  17. Training readers to improve their accuracy in grading Crohn's disease activity on MRI

    International Nuclear Information System (INIS)

    Tielbeek, Jeroen A.W.; Bipat, Shandra; Boellaard, Thierry N.; Nio, C.Y.; Stoker, Jaap

    2014-01-01

    To prospectively evaluate if training with direct feedback improves grading accuracy of inexperienced readers for Crohn's disease activity on magnetic resonance imaging (MRI). Thirty-one inexperienced readers assessed 25 cases as a baseline set. Subsequently, all readers received training and assessed 100 cases with direct feedback per case, randomly assigned to four sets of 25 cases. The cases in set 4 were identical to the baseline set. Grading accuracy, understaging, overstaging, mean reading times and confidence scores (scale 0-10) were compared between baseline and set 4, and between the four consecutive sets with feedback. Proportions of grading accuracy, understaging and overstaging per set were compared using logistic regression analyses. Mean reading times and confidence scores were compared by t-tests. Grading accuracy increased from 66 % (95 % CI, 56-74 %) at baseline to 75 % (95 % CI, 66-81 %) in set 4 (P = 0.003). Understaging decreased from 15 % (95 % CI, 9-23 %) to 7 % (95 % CI, 3-14 %) (P < 0.001). Overstaging did not change significantly (20 % vs 19 %). Mean reading time decreased from 6 min 37 s to 4 min 35 s (P < 0.001). Mean confidence increased from 6.90 to 7.65 (P < 0.001). During training, overall grading accuracy, understaging, mean reading times and confidence scores improved gradually. Inexperienced readers need training with at least 100 cases to achieve the literature reported grading accuracy of 75 %. (orig.)

  18. Dual-energy CTA in patients with symptomatic peripheral arterial occlusive disease. Study of diagnostic accuracy and impeding factors

    Energy Technology Data Exchange (ETDEWEB)

    Klink, Thorsten [Wuerzburg Univ. (Germany). Inst. of Diagnostic and Interventional Radiology; Bern Univ. (Switzerland). Univ. Inst. of Diagnostic, Interventional, and Pediatric Radiology; Wilhelm, Theresa; Roth, Christine [Univ. Hospital Giessen and Marburg, Marburg (Germany). Dept. of Diagnostic and Interventional Radiology; Heverhagen, Johannes T. [Bern Univ. (Switzerland). Univ. Inst. of Diagnostic, Interventional, and Pediatric Radiology

    2017-05-15

    The purpose of this study was to assess the diagnostic performance of dual-energy CT angiography (DE-CTA) in patients with symptomatic peripheral artery occlusive disease (PAOD) and to identify factors that impede its diagnostic accuracy. Dual-source DE-CTA scans of the lower extremities of 94 patients were retrospectively compared to the diagnostic reference standard, digital subtraction angiography (DSA). Two independent observers assessed PAOD incidence, image quality, artifacts, and diagnostic accuracy of DE-CTA in 1014 arterial segments on axial, combined 80/140 kVp reconstructions and on 3 D maximum intensity projections (MIP) after automated bone and plaque removal. The impact of calcifications, image quality, and image artifacts on the diagnostic accuracy was evaluated using Fisher's exact test. Furthermore, interobserver agreement was analyzed. Two observers achieved sensitivities of 98.0% and 93.9%, respectively, and specificities of 75.0% and 66.7%, respectively, for detecting stenoses of >50% of the lower extremity arteries. Calcifications impeded specificity, e.g. from 81.2% to 46.2% for reader 1 (p<0.001). Specificity increased with higher image quality, e.g. from 70.0% to 76.4% for reader 1 (p<0.001). Artifacts decreased the specificity of reader 2 (p<0.001). The overall interobserver agreement ranged between moderate and substantial for stenosis detection and calcified plaques. Conclusion DE-CTA is accurate in the detection of arterial stenoses of >50% in symptomatic PAOD patients. Calcified atherosclerotic plaques, image quality, and artifacts may impede specificity.

  19. High academic achievement in psychotic students.

    Science.gov (United States)

    Defries, Z; Grothe, L

    1978-02-01

    The authors studied 21 schizophrenic and borderline college students who achieved B+ or higher grade averages and underwent psychotherapy while in college. High academic achievement was found to provide relief from feelings of worthlessness and ineffectuality resulting from poor relationships with parents, siblings, and peers. Psychotherapy and the permissive yet supportive college atmosphere reinforced the students' self-esteem.

  20. THE ACCURACY OF EARNINGS FORECAST AND POST-IPO EARNINGS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Yanthi Hutagaol

    2017-03-01

    Full Text Available Prior studies showed that before IPO, many companies conducted earnings management in order to attractpotential investors through impressive earnings figures. This study aimed to investigate the tendency of earningsmanagement practice post - IPO. This practice of earnings management was motivated to preserve managers’reputation in achieving their earnings forecasts. Using a total of 165 IPOs in IDX during year 2000-2010, thisstudy employed descriptive analyses to identify the earnings management differences within the sample. A crosssectionanalysis was conducted to test the difference of earnings management indicator among the forecasters.Then, controlling for audit quality, ownership, firm size, and firm leverage, a regression analysis was performedto test the impact of earnings forecasts accuracy on the earnings management. The result of this research showedthat there was an indication that the forecasters conducted more earnings management than the non-forecasters.The study found that forecast accuracy was significantly related to managers’ behavior to manage post-IPOearnings. Further analysis showed that optimistic forecasters tended to engage more in more earning managementthan conservative forecasters. The cross section analysis confirmed that optimistic earnings forecast strengthenedthe relationship of forecast accuracy and post-IPO earnings management, while high audit quality failed toweaken it.

  1. Accuracy of road management data collection at various information ...

    African Journals Online (AJOL)

    The most detailed data is required for the operation system whilst the planning system utilises the least detailed data. This paper presents the results of a research project which was carried out in Tanzania in order to establish the loss of data accuracy as the data collection moves from very detailed level (IQLI) to a higher ...

  2. Improvement on Timing Accuracy of LIDAR for Remote Sensing

    Science.gov (United States)

    Zhou, G.; Huang, W.; Zhou, X.; Huang, Y.; He, C.; Li, X.; Zhang, L.

    2018-05-01

    The traditional timing discrimination technique for laser rangefinding in remote sensing, which is lower in measurement performance and also has a larger error, has been unable to meet the high precision measurement and high definition lidar image. To solve this problem, an improvement of timing accuracy based on the improved leading-edge timing discrimination (LED) is proposed. Firstly, the method enables the corresponding timing point of the same threshold to move forward with the multiple amplifying of the received signal. Then, timing information is sampled, and fitted the timing points through algorithms in MATLAB software. Finally, the minimum timing error is calculated by the fitting function. Thereby, the timing error of the received signal from the lidar is compressed and the lidar data quality is improved. Experiments show that timing error can be significantly reduced by the multiple amplifying of the received signal and the algorithm of fitting the parameters, and a timing accuracy of 4.63 ps is achieved.

  3. The diagnostic accuracy of pericolonic fat extension and attenuation for colorectal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Zeina, Abdel-Rauf, E-mail: raufzeina3@hotmail.com [Department of Radiology, Hillel Yaffe Medical Center, Hadera (Israel); Affiliated with the Faculty of Medicine, Technion-Israel Institute of Technology, Haifa (Israel); Mahamid, Ahmad [Division of Surgery, Hillel Yaffe Medical Center, Hadera (Israel); Affiliated with the Faculty of Medicine, Technion-Israel Institute of Technology, Haifa (Israel); Walid, Saliba [Department of Internal Medicine C, Ha’emek Medical Center, Afula (Israel); Affiliated with the Faculty of Medicine, Technion-Israel Institute of Technology, Haifa (Israel); Nachtigal, Alicia; Shapira-Rootman, Mika [Department of Radiology, Hillel Yaffe Medical Center, Hadera (Israel); Affiliated with the Faculty of Medicine, Technion-Israel Institute of Technology, Haifa (Israel)

    2015-09-15

    Highlights: • Pericolonic fat extent and attenuation were higher in stage ≥T3 than achieves 100% specificity. - Abstract: Objective: To evaluate the utility of quantitative analysis of the extension and attenuation of pericolonic fat in the local staging of colorectal cancer (CRC) using multi detector computed tomography (MDCT). Materials and methods: This was a retrospective study of 110 patients who were operated due to pathologically proven CRC from January 2007 to January 2010, and who underwent preoperative MDCT of the abdomen and pelvis with administration of intravenous contrast material and image acquisition during the portal venous phase. The mean age was 69 years (range of 38–90 years). Pathological reports were reviewed for TNM staging. All MDCT studies were reviewed by two certified radiologists for maximal and minimal tumor diameter, extent of the infiltrated pericolonic fat (measured in mm), attenuation of the infiltrated pericolonic fat (measured in Hounsfield units), and attenuation of normally appearing fat next to the tumor. The sensitivity and specificity of these parameters in detecting patients with ≥ T3 CRC were calculated. Results: The overall sensitivity, specificity, and accuracy of pericolonic fat infiltration in detecting patients with ≥T3 stage were 95% (95% CI, 89.0–98.7%), 20% (5.8–43.7%), and 81.9% (74.7–89%) respectively. The mean extent and attenuation of the infiltrated pericolonic fat, in addition to the maximal tumor diameter, were higher in the ≥T3 group (p < 0.05). By defining threshold values to these parameters, the positive predictive value for detecting ≥T3 stage tumors approaches 100%. Conclusion: Quantitative analysis of pericolonic fat

  4. Diagnostic accuracy of a clinical diagnosis of idiopathic pulmonary fibrosis

    DEFF Research Database (Denmark)

    Walsh, Simon L. F.; Maher, Toby M.; Kolb, Martin

    2017-01-01

    -index.A total of 404 physicians completed the study. Agreement for IPF diagnosis was higher among expert physicians (κw=0.65, IQR 0.53-0.72, pmeetings (κw=0.54, IQR 0.45-0.64, p....0001). The prognostic accuracy of academic physicians with >20 years of experience (C-index=0.72, IQR 0.0-0.73, p=0.229) and non-university hospital physicians with more than 20 years of experience, attending weekly MDT meetings (C-index=0.72, IQR 0.70-0.72, p=0.052), did not differ significantly (p=0.229 and p=0.......052 respectively) from the expert panel (C-index=0.74 IQR 0.72-0.75).Experienced respiratory physicians at university-based institutions diagnose IPF with similar prognostic accuracy to IPF experts. Regular MDT meeting attendance improves the prognostic accuracy of experienced non-university practitioners...

  5. Process planning and accuracy distribution of marine power plant modularization

    Directory of Open Access Journals (Sweden)

    ZHANG Jinguo

    2018-02-01

    Full Text Available [Objectives] Modular shipbuilding can shorten the cycle of design and construction, lower production costs and improve the quality of products, but higher shipbuilding capabilities are required, especially for the installation of power plants. Because of such characteristics of modular shipbuilding as the high precision of docking links, long size equipment installation chain and quantitative docking interfaces, docking installation is very difficult due to high docking deviation and low accuracy of docking installation, leading to the abnormal vibration of equipment. In order to solve this problem, [Methods] on the basis of domestic shipbuilding capability, numerical calculation methods are used to analyze the accuracy distribution of modular installation. [Results] The results show that the accuracy distribution of different docking links is reasonable and feasible, and the setting of adjusting allowance matches the requirements of shipbuilding. [Conclusions] This method provides a reference for the modular construction of marine power plants.

  6. New perspectives for high accuracy SLR with second generation geodesic satellites

    Science.gov (United States)

    Lund, Glenn

    1993-01-01

    This paper reports on the accuracy limitations imposed by geodesic satellite signatures, and on the potential for achieving millimetric performances by means of alternative satellite concepts and an optimized 2-color system tradeoff. Long distance laser ranging, when performed between a ground (emitter/receiver) station and a distant geodesic satellite, is now reputed to enable short arc trajectory determinations to be achieved with an accuracy of 1 to 2 centimeters. This state-of-the-art accuracy is limited principally by the uncertainties inherent to single-color atmospheric path length correction. Motivated by the study of phenomena such as postglacial rebound, and the detailed analysis of small-scale volcanic and strain deformations, the drive towards millimetric accuracies will inevitably be felt. With the advent of short pulse (less than 50 ps) dual wavelength ranging, combined with adequate detection equipment (such as a fast-scanning streak camera or ultra-fast solid-state detectors) the atmospheric uncertainty could potentially be reduced to the level of a few millimeters, thus, exposing other less significant error contributions, of which by far the most significant will then be the morphology of the retroreflector satellites themselves. Existing geodesic satellites are simply dense spheres, several 10's of cm in diameter, encrusted with a large number (426 in the case of LAGEOS) of small cube-corner reflectors. A single incident pulse, thus, results in a significant number of randomly phased, quasi-simultaneous return pulses. These combine coherently at the receiver to produce a convolved interference waveform which cannot, on a shot to shot basis, be accurately and unambiguously correlated to the satellite center of mass. This paper proposes alternative geodesic satellite concepts, based on the use of a very small number of cube-corner retroreflectors, in which the above difficulties are eliminated while ensuring, for a given emitted pulse, the return

  7. Inhibition of breathing after surfactant depletion is achieved at a higher arterial PCO2 during ventilation with liquid than with gas

    Directory of Open Access Journals (Sweden)

    Sindelar Richard

    2005-03-01

    Full Text Available Abstract Background Inhibition of phrenic nerve activity (PNA can be achieved when alveolar ventilation is adequate and when stretching of lung tissue stimulates mechanoreceptors to inhibit inspiratory activity. During mechanical ventilation under different lung conditions, inhibition of PNA can provide a physiological setting at which ventilatory parameters can be compared and related to arterial blood gases and pH. Objective To study lung mechanics and gas exchange at inhibition of PNA during controlled gas ventilation (GV and during partial liquid ventilation (PLV before and after lung lavage. Methods Nine anaesthetised, mechanically ventilated young cats (age 3.8 ± 0.5 months, weight 2.3 ± 0.1 kg (mean ± SD were studied with stepwise increases in peak inspiratory pressure (PIP until total inhibition of PNA was attained before lavage (with GV and after lavage (GV and PLV. Tidal volume (Vt, PIP, oesophageal pressure and arterial blood gases were measured at inhibition of PNA. One way repeated measures analysis of variance and Student Newman Keuls-tests were used for statistical analysis. Results During GV, inhibition of PNA occurred at lower PIP, transpulmonary pressure (Ptp and Vt before than after lung lavage. After lavage, inhibition of inspiratory activity was achieved at the same PIP, Ptp and Vt during GV and PLV, but occurred at a higher PaCO2 during PLV. After lavage compliance at inhibition was almost the same during GV and PLV and resistance was lower during GV than during PLV. Conclusion Inhibition of inspiratory activity occurs at a higher PaCO2 during PLV than during GV in cats with surfactant-depleted lungs. This could indicate that PLV induces better recruitment of mechanoreceptors than GV.

  8. Different intensities of basketball drills affect jump shot accuracy of expert and junior players

    Directory of Open Access Journals (Sweden)

    Giuseppe Marcolin

    2018-02-01

    Full Text Available Background In basketball a maximum accuracy at every game intensity is required while shooting. The aim of the present study was to investigate the acute effect of three different drill intensity simulation protocols on jump shot accuracy in expert and junior basketball players. Materials & Methods Eleven expert players (age 26 ± 6 yrs, weight 86 ± 11 kg, height 192 ± 8 cm and ten junior players (age 18 ± 1 yrs, weight 75 ± 12 kg, height 184 ± 9 cm completed three series of twenty jump shots at three different levels of exertion. Counter Movement Jump (CMJ height was also measured after each series of jump shots. Exertion’s intensity was induced manipulating the basketball drills. Heart rate was measured for the whole duration of the tests while the rating of perceived exertion (RPE was collected at the end of each series of shots. Results Heart rate and rating of perceived exertion (RPE were statistically different in the three conditions for both expert and junior players. CMJ height remained almost unchanged in both groups. Jump shot accuracy decreased with increasing drills intensity both in experts and junior players. Expert players showed higher accuracy than junior players for all the three levels of exertion (83% vs 64%, p < 0.001; 75% vs 57%, p < 0.05; 76% vs 60%, p < 0.01. Moreover, for the most demanding level of exertion, experts showed a higher accuracy in the last ten shots compared to the first ten shots (82% vs 70%, p < 0.05. Discussion Experts coped better with the different exertion’s intensities, thus maintaining a higher level of performance. The introduction of technical short bouts of high-intensity sport-specific exercises into skill sessions should be proposed to improve jump shot accuracy during matches.

  9. Accuracy Improvement of Discharge Measurement with Modification of Distance Made Good Heading

    Directory of Open Access Journals (Sweden)

    Jongkook Lee

    2016-01-01

    Full Text Available Remote control boats equipped with an Acoustic Doppler Current Profiler (ADCP are widely accepted and have been welcomed by many hydrologists for water discharge, velocity profile, and bathymetry measurements. The advantages of this technique include high productivity, fast measurements, operator safety, and high accuracy. However, there are concerns about controlling and operating a remote boat to achieve measurement goals, especially during extreme events such as floods. When performing river discharge measurements, the main error source stems from the boat path. Due to the rapid flow in a flood condition, the boat path is not regular and this can cause errors in discharge measurements. Therefore, improvement of discharge measurements requires modification of boat path. As a result, the measurement errors in flood flow conditions are 12.3–21.8% before the modification of boat path, but 1.2–3.7% after the DMG modification of boat path. And it is considered that the modified discharges are very close to the observed discharge in the flood flow conditions. In this study, through the distance made good (DMG modification of the boat path, a comprehensive discharge measurement with high accuracy can be achieved.

  10. Analysis of Correlation in MEMS Gyroscope Array and its Influence on Accuracy Improvement for the Combined Angular Rate Signal

    Directory of Open Access Journals (Sweden)

    Liang Xue

    2018-01-01

    Full Text Available Obtaining a correlation factor is a prerequisite for fusing multiple outputs of a mircoelectromechanical system (MEMS gyroscope array and evaluating accuracy improvement. In this paper, a mathematical statistics method is established to analyze and obtain the practical correlation factor of a MEMS gyroscope array, which solves the problem of determining the Kalman filter (KF covariance matrix Q and fusing the multiple gyroscope signals. The working principle and mathematical model of the sensor array fusion is briefly described, and then an optimal estimate of input rate signal is achieved by using of a steady-state KF gain in an off-line estimation approach. Both theoretical analysis and simulation show that the negative correlation factor has a favorable influence on accuracy improvement. Additionally, a four-gyro array system composed of four discrete individual gyroscopes was developed to test the correlation factor and its influence on KF accuracy improvement. The result showed that correlation factors have both positive and negative values; in particular, there exist differences for correlation factor between the different units in the array. The test results also indicated that the Angular Random Walk (ARW of 1.57°/h0.5 and bias drift of 224.2°/h for a single gyroscope were reduced to 0.33°/h0.5 and 47.8°/h with some negative correlation factors existing in the gyroscope array, making a noise reduction factor of about 4.7, which is higher than that of a uncorrelated four-gyro array. The overall accuracy of the combined angular rate signal can be further improved if the negative correlation factors in the gyroscope array become larger.

  11. Diagnostic accuracy of dual energy CT angiography in patients with diabetes mellitus

    International Nuclear Information System (INIS)

    Schabel, C.; Bongers, M.N.; Syha, R.; Ketelsen, D.; Homann, G.; Notohamiprodjo, M.; Nikolaou, K.; Bamberg, F.; Thomas, C.

    2015-01-01

    Peripheral arterial disease (PAD) represents a major and highly prevalent complication in patients with diabetes mellitus. The diagnostic, non-invasive work-up by computed tomography angiography (CTA) is limited in the presence of extensive calcification. The aim of the study was to determine the diagnostic accuracy of dual energy CTA (DE-CTA) for the detection and characterization of PAD in patients with diabetes mellitus. In this study 30 diabetic patients with suspected or known PAD were retrospectively included in the analysis. All subjects underwent DE-CTA (Somatom Definition Flash, Siemens Healthcare, Erlangen, Germany) prior to invasive angiography, which served as the reference standard. Blinded analysis included assessment of the presence and degree of peripheral stenosis on curved multiplanar reformatting (MPR) and maximum intensity projections (MIP). Conventional measures of diagnostic accuracy were derived. Among the 30 subjects included in the analysis (83 % male, mean age 70.0 ± 10.5 years, 83 % diabetes type 2), the prevalence of critical stenosis in 331 evaluated vessel segments was high (30 %). Dual energy CT identified critical stenoses with a high sensitivity and good specificity using curved MPR (100 % and 93.1 %, respectively) and MIP images (99 % and 91.8 %, respectively). In stratified analysis, the diagnostic accuracy was higher for stenosis pertaining to the pelvic and thigh vessels as compared with the lower extremities (curved MPR accuracy 97.1 % vs. 99.2 vs. 90.9 %; respectively, p < 0.001). The use of DE-CTA allows reliable detection and characterization of peripheral arterial stenosis in patients with diabetes mellitus with higher accuracy in vessels in the pelvic and thigh regions compared with the vessels in the lower legs. (orig.) [de

  12. Higher order corrections in quantum electrodynamics

    International Nuclear Information System (INIS)

    Rafael, E.

    1977-01-01

    Theoretical contributions to high-order corrections in purely leptonic systems, such as electrons and muons, muonium (μ + e - ) and positronium (e + e - ), are reviewed to establish the validity of quantum electrodynamics (QED). Two types of QED contributions to the anomalous magnetic moments are considered, from diagrams with one fermion type lines and those witn two fermion type lines. The contributions up to eighth order are compared to the data available with a different accuracy. Good agreement is stated within the experimental errors. The experimental accuracy of the muonium hyperfine structure and of the radiative corrections to the decay of positronium are compared to the one attainable in theoretical calculations. The need for a higher precision in both experimental data and theoretical calculations is stated

  13. Diagnostic accuracy of routine blood examinations and CSF lactate level for post-neurosurgical bacterial meningitis.

    Science.gov (United States)

    Zhang, Yang; Xiao, Xiong; Zhang, Junting; Gao, Zhixian; Ji, Nan; Zhang, Liwei

    2017-06-01

    To evaluate the diagnostic accuracy of routine blood examinations and Cerebrospinal Fluid (CSF) lactate level for Post-neurosurgical Bacterial Meningitis (PBM) at a large sample-size of post-neurosurgical patients. The diagnostic accuracies of routine blood examinations and CSF lactate level to distinguish between PAM and PBM were evaluated with the values of the Area Under the Curve of the Receiver Operating Characteristic (AUC -ROC ) by retrospectively analyzing the datasets of post-neurosurgical patients in the clinical information databases. The diagnostic accuracy of routine blood examinations was relatively low (AUC -ROC CSF lactate level achieved rather high diagnostic accuracy (AUC -ROC =0.891; CI 95%, 0.852-0.922). The variables of patient age, operation duration, surgical diagnosis and postoperative days (the interval days between the neurosurgery and examinations) were shown to affect the diagnostic accuracy of these examinations. The variables were integrated with routine blood examinations and CSF lactate level by Fisher discriminant analysis to improve their diagnostic accuracy. As a result, the diagnostic accuracy of blood examinations and CSF lactate level was significantly improved with an AUC -ROC value=0.760 (CI 95%, 0.737-0.782) and 0.921 (CI 95%, 0.887-0.948) respectively. The PBM diagnostic accuracy of routine blood examinations was relatively low, whereas the accuracy of CSF lactate level was high. Some variables that are involved in the incidence of PBM can also affect the diagnostic accuracy for PBM. Taking into account the effects of these variables significantly improves the diagnostic accuracies of routine blood examinations and CSF lactate level. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Exclusive processes beyond leading twist: {gamma}*T {yields} {rho}T impact factor with twist three accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland); Anikin, Igor V. [Joint Institute for Nuclear Research - JINR, Joliot-Curie st., 6, Moskovskaya obl., 141980, Dubna (Russian Federation); Ivanov, Dmitry Yu [Sobolev Institute of Mathematics, Acad. Koptyug pr., 4, 630090 Novosibirsk (Russian Federation); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France)

    2010-07-01

    We describe a consistent approach to factorization of scattering amplitudes for exclusive processes beyond the leading twist approximation. The method is based on the Taylor expansion of the scattering amplitude in the momentum space around the dominant light-cone direction and thus naturally introduces an appropriate set of non-perturbative correlators which encode effects not only of the lowest but also of the higher Fock states of the produced particle. The reduction of original set of correlators to a set of independent ones is achieved with the help of equations of motion and invariance of the scattering amplitude under rotation on the light-cone. As a concrete application, we compute the expressions of the impact factor for the transition of virtual photon to transversally polarised {rho}-meson up to the twist 3 accuracy. (Phys.Lett.B682:413-418,2010 and Nucl.Phys.B828:1-68,2010.). (authors)

  15. Development of a low-cost biogas filtration system to achieve higher-power efficient AC generator

    Science.gov (United States)

    Mojica, Edison E.; Ardaniel, Ar-Ar S.; Leguid, Jeanlou G.; Loyola, Andrea T.

    2018-02-01

    The paper focuses on the development of a low-cost biogas filtration system for alternating current generator to achieve higher efficiency in terms of power production. A raw biogas energy comprises of 57% combustible element and 43% non-combustible elements containing carbon dioxide (36%), water vapor (5%), hydrogen sulfide (0.5%), nitrogen (1%), oxygen (0 - 2%), and ammonia (0 - 1%). The filtration system composes of six stages: stage 1 is the water scrubber filter intended to remove the carbon dioxide and traces of hydrogen sulfide; stage 2 is the silica gel filter intended to reduce the water vapor; stage 3 is the iron sponge filter intended to remove the remaining hydrogen sulfide; stage 4 is the sodium hydroxide solution filter intended to remove the elemental sulfur formed during the interaction of the hydrogen sulfide and the iron sponge and for further removal of carbon dioxide; stage 5 is the silica gel filter intended to further eliminate the water vapor gained in stage 4; and, stage 6 is the activated carbon filter intended to remove the carbon dioxide. The filtration system was able to lower the non-combustible elements by 72% and thus, increasing the combustible element by 54.38%. The unfiltered biogas is capable of generating 16.3 kW while the filtered biogas is capable of generating 18.6 kW. The increased in methane concentration resulted to 14.11% increase in the power output. The outcome resulted to better engine performance in the generation of electricity.

  16. Emotion perception accuracy and bias in face-to-face versus cyberbullying.

    Science.gov (United States)

    Ciucci, Enrica; Baroncelli, Andrea; Nowicki, Stephen

    2014-01-01

    The authors investigated the association of traditional and cyber forms of bullying and victimization with emotion perception accuracy and emotion perception bias. Four basic emotions were considered (i.e., happiness, sadness, anger, and fear); 526 middle school students (280 females; M age = 12.58 years, SD = 1.16 years) were recruited, and emotionality was controlled. Results indicated no significant findings for girls. Boys with higher levels of traditional bullying did not show any deficit in perception accuracy of emotions, but they were prone to identify happiness and fear in faces when a different emotion was expressed; in addition, male cyberbullying was related to greater accuracy in recognizing fear. In terms of the victims, cyber victims had a global problem in recognizing emotions and a specific problem in processing anger and fear. It was concluded that emotion perception accuracy and bias were associated with bullying and victimization for boys not only in traditional settings but also in the electronic ones. Implications of these findings for possible intervention are discussed.

  17. SU-G-BRC-01: A Data-Driven Pre-Optimization Method for Prediction of Achievability of Clinical Objectives in IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, V; Kumar, P [Philips India Limited, Bangalore, Karnataka (India); Bzdusek, K [Philips, Fitchburg, WI (United States); Das, J Maria [Sanjay Gandhi PG Inst Med Scienes, Lucknow (India)

    2016-06-15

    Purpose: We propose a novel data-driven method to predict the achievability of clinical objectives upfront before invoking the IMRT optimization. Methods: A new metric called “Geometric Complexity (GC)” is used to estimate the achievability of clinical objectives. Here, GC is the measure of the number of “unmodulated” beamlets or rays that intersect the Region-of-interest (ROI) and the target volume. We first compute the geometric complexity ratio (GCratio) between the GC of a ROI (say, parotid) in a reference plan and the GC of the same ROI in a given plan. The GCratio of a ROI indicates the relative geometric complexity of the ROI as compared to the same ROI in the reference plan. Hence GCratio can be used to predict if a defined clinical objective associated with the ROI can be met by the optimizer for a given case. Basically a higher GCratio indicates a lesser likelihood for the optimizer to achieve the clinical objective defined for a given ROI. Similarly, a lower GCratio indicates a higher likelihood for the optimizer to achieve the clinical objective defined for the given ROI. We have evaluated the proposed method on four Head and Neck cases using Pinnacle3 (version 9.10.0) Treatment Planning System (TPS). Results: Out of the total of 28 clinical objectives from four head and neck cases included in the study, 25 were in agreement with the prediction, which implies an agreement of about 85% between predicted and obtained results. The Pearson correlation test shows a positive correlation between predicted and obtained results (Correlation = 0.82, r2 = 0.64, p < 0.005). Conclusion: The study demonstrates the feasibility of the proposed method in head and neck cases for predicting the achievability of clinical objectives with reasonable accuracy.

  18. Accuracy of genomic selection in European maize elite breeding populations.

    Science.gov (United States)

    Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C

    2012-03-01

    Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.

  19. Achievement goal profiles and developments in effort and achievement in upper elementary school.

    Science.gov (United States)

    Hornstra, Lisette; Majoor, Marieke; Peetsma, Thea

    2017-12-01

    The multiple goal perspective posits that certain combinations of achievement goals are more favourable than others in terms of educational outcomes. This study aimed to examine longitudinally whether students' achievement goal profiles and transitions between profiles are associated with developments in self-reported and teacher-rated effort and academic achievement in upper elementary school. Participants were 722 fifth-grade students and their teachers in fifth and sixth grade (N = 68). Students reported on their achievement goals and effort in language and mathematics three times in grade 5 to grade 6. Teachers rated students' general school effort. Achievement scores were obtained from school records. Goal profiles were derived with latent profile and transition analyses. Longitudinal multilevel analyses were conducted. Theoretically favourable goal profiles (high mastery and performance-approach goals, low on performance-avoidance goals), as well as transitions from less to more theoretically favourable goal profiles, were associated with higher levels and more growth in effort for language and mathematics and with stronger language achievement gains. Overall, these results provide support for the multiple goal perspective and show the sustained benefits of favourable goal profiles beyond effects of cognitive ability and background characteristics. © 2017 The Authors. British Journal of Education Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  20. Transformation Model with Constraints for High-Accuracy of 2D-3D Building Registration in Aerial Imagery

    Directory of Open Access Journals (Sweden)

    Guoqing Zhou

    2016-06-01

    Full Text Available This paper proposes a novel rigorous transformation model for 2D-3D registration to address the difficult problem of obtaining a sufficient number of well-distributed ground control points (GCPs in urban areas with tall buildings. The proposed model applies two types of geometric constraints, co-planarity and perpendicularity, to the conventional photogrammetric collinearity model. Both types of geometric information are directly obtained from geometric building structures, with which the geometric constraints are automatically created and combined into the conventional transformation model. A test field located in downtown Denver, Colorado, is used to evaluate the accuracy and reliability of the proposed method. The comparison analysis of the accuracy achieved by the proposed method and the conventional method is conducted. Experimental results demonstrated that: (1 the theoretical accuracy of the solved registration parameters can reach 0.47 pixels, whereas the other methods reach only 1.23 and 1.09 pixels; (2 the RMS values of 2D-3D registration achieved by the proposed model are only two pixels along the x and y directions, much smaller than the RMS values of the conventional model, which are approximately 10 pixels along the x and y directions. These results demonstrate that the proposed method is able to significantly improve the accuracy of 2D-3D registration with much fewer GCPs in urban areas with tall buildings.

  1. Accuracy Analysis of a Box-wing Theoretical SRP Model

    Science.gov (United States)

    Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui

    2016-07-01

    For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.

  2. Meditation experience predicts introspective accuracy.

    Directory of Open Access Journals (Sweden)

    Kieran C R Fox

    Full Text Available The accuracy of subjective reports, especially those involving introspection of one's own internal processes, remains unclear, and research has demonstrated large individual differences in introspective accuracy. It has been hypothesized that introspective accuracy may be heightened in persons who engage in meditation practices, due to the highly introspective nature of such practices. We undertook a preliminary exploration of this hypothesis, examining introspective accuracy in a cross-section of meditation practitioners (1-15,000 hrs experience. Introspective accuracy was assessed by comparing subjective reports of tactile sensitivity for each of 20 body regions during a 'body-scanning' meditation with averaged, objective measures of tactile sensitivity (mean size of body representation area in primary somatosensory cortex; two-point discrimination threshold as reported in prior research. Expert meditators showed significantly better introspective accuracy than novices; overall meditation experience also significantly predicted individual introspective accuracy. These results suggest that long-term meditators provide more accurate introspective reports than novices.

  3. Permitting of the accuracy in location of tumours and the accuracy in applying a precise dose covering in stereotactic gamma-knife treatments

    International Nuclear Information System (INIS)

    Ertl, A. G.

    1997-01-01

    The gamma-knife is a Co-60 irradiation device, permitting the location of a lesion with an accuracy of millimeters. Moreover, with the Gamma Knife it is possible to apply a precise dose covering the entire area inside the head. In order to visualize a lesion, we mostly have to resort to imaging techniques such as the MR tomography. The accuracy of locating the specific area for the stereotactic treatment was achieved with the help of a special screen plate which we designed ourselves. For determining the precise dose to be applied at the Gamma Knife, the central dose for all four collimator helmets as well as the dose distribution of the combined collimators had to be measured. In case of irradiations in prone position there may be considerable deviations compared to the dose-planning program; this we were able to demonstrate by a TLD array designed by ourselves. A more sophisticated evaluation of new dosimetry techniques - GafChromic films and BANG polymer gel - enabled us to investigate more complex irradiation patterns. (author)

  4. Study of three-dimensional PET and MR image registration based on higher-order mutual information

    International Nuclear Information System (INIS)

    Ren Haiping; Chen Shengzu; Wu Wenkai; Yang Hu

    2002-01-01

    Mutual information has currently been one of the most intensively researched measures. It has been proven to be accurate and effective registration measure. Despite the general promising results, mutual information sometimes might lead to misregistration because of neglecting spatial information and treating intensity variations with undue sensitivity. An extension of mutual information framework was proposed in which higher-order spatial information regarding image structures was incorporated into the registration processing of PET and MR. The second-order estimate of mutual information algorithm was applied to the registration of seven patients. Evaluation from Vanderbilt University and authors' visual inspection showed that sub-voxel accuracy and robust results were achieved in all cases with second-order mutual information as the similarity measure and with Powell's multidimensional direction set method as optimization strategy

  5. Study strategies and beliefs about learning as a function of academic achievement and achievement goals.

    Science.gov (United States)

    Geller, Jason; Toftness, Alexander R; Armstrong, Patrick I; Carpenter, Shana K; Manz, Carly L; Coffman, Clark R; Lamm, Monica H

    2018-05-01

    Prior research by Hartwig and Dunlosky [(2012). Study strategies of college students: Are self-testing and scheduling related to achievement? Psychonomic Bulletin & Review, 19(1), 126-134] has demonstrated that beliefs about learning and study strategies endorsed by students are related to academic achievement: higher performing students tend to choose more effective study strategies and are more aware of the benefits of self-testing. We examined whether students' achievement goals, independent of academic achievement, predicted beliefs about learning and endorsement of study strategies. We administered Hartwig and Dunlosky's survey, along with the Achievement Goals Questionnaire [Elliot, A. J., & McGregor, H. A. (2001). A 2 × 2 achievement goal framework. Journal of Personality & Social Psychology, 80, 501-519] to a large undergraduate biology course. Similar to results by Hartwig and Dunlosky, we found that high-performing students (relative to low-performing students) were more likely to endorse self-testing, less likely to cram, and more likely to plan a study schedule ahead of time. Independent of achievement, however, achievement goals were stronger predictors of certain study behaviours. In particular, avoidance goals (e.g., fear of failure) coincided with increased use of cramming and the tendency to be driven by impending deadlines. Results suggest that individual differences in student achievement, as well as the underlying reasons for achievement, are important predictors of students' approaches to studying.

  6. CT coronary angiography: Influence of different cardiac reconstruction intervals on image quality and diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Department of Radiology, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany)], E-mail: marc.dewey@charite.de; Teige, Florian [Department of Radiology, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany); Rutsch, Wolfgang [Department of Cardiology, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany)], E-mail: wolfgang.rutsch@charite.de; Schink, Tania [Department of Medical Biometry, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany)], E-mail: peter.martus@charite.de; Hamm, Bernd [Department of Radiology, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany)

    2008-07-15

    Purpose: To prospectively analyze image quality and diagnostic accuracy of different reconstruction intervals of coronary angiography using multislice computed tomography (MSCT). Materials and methods: For each of 47 patients, 10 ECG-gated MSCT reconstructions were generated throughout the RR interval from 0 to 90%, resulting in altogether 470 datasets. These datasets were randomly analyzed for image quality and accuracy and compared with conventional angiography. Statistical comparison of intervals was performed using nonparametric analysis for repeated measurements to account for clustering of arteries within patients. Results: Image reconstruction intervals centered at 80, 70, and 40% of the RR interval resulted (in that order) in the best overall image quality for all four main coronary vessels. Eighty percent reconstructions also yielded the highest diagnostic accuracy of all intervals. The combination of the three best intervals (80, 70, and 40%) significantly reduced the nondiagnostic rate as compared with 80% alone (p = 0.005). However, the optimal reconstruction interval combination achieved significantly improved specificities and nondiagnostic rates (p < 0.05). The optimal combination consisted of 1.7 {+-} 0.9 reconstruction intervals on average. In approximately half of the patients (49%, 23/47) a single reconstruction was optimal. In 18 (38%), 3 (6%), and 3 (6%) patients one, two, and three additional reconstruction intervals were required, respectively, to achieve optimal quality. In 28% of the patients the optimal combination consisted of reconstructions other than the three best intervals (80, 70, and 40%). Conclusion: Multiple image reconstruction intervals are essential to ensure high image quality and accuracy of CT coronary angiography.

  7. Accuracy of WAAS-Enabled GPS-RF Warning Signals When Crossing a Terrestrial Geofence

    Directory of Open Access Journals (Sweden)

    Lindsay M. Grayson

    2016-06-01

    Full Text Available Geofences are virtual boundaries based on geographic coordinates. When combined with global position system (GPS, or more generally global navigation satellite system (GNSS transmitters, geofences provide a powerful tool for monitoring the location and movements of objects of interest through proximity alarms. However, the accuracy of geofence alarms in GNSS-radio frequency (GNSS-RF transmitter receiver systems has not been tested. To achieve these goals, a cart with a GNSS-RF locator was run on a straight path in a balanced factorial experiment with three levels of cart speed, three angles of geofence intersection, three receiver distances from the track, and three replicates. Locator speed, receiver distance and geofence intersection angle all affected geofence alarm accuracy in an analysis of variance (p = 0.013, p = 2.58 × 10−8, and p = 0.0006, respectively, as did all treatment interactions (p < 0.0001. Slower locator speed, acute geofence intersection angle, and closest receiver distance were associated with reduced accuracy of geofence alerts.

  8. Hybrid Indoor-Based WLAN-WSN Localization Scheme for Improving Accuracy Based on Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Zahid Farid

    2016-01-01

    Full Text Available In indoor environments, WiFi (RSS based localization is sensitive to various indoor fading effects and noise during transmission, which are the main causes of localization errors that affect its accuracy. Keeping in view those fading effects, positioning systems based on a single technology are ineffective in performing accurate localization. For this reason, the trend is toward the use of hybrid positioning systems (combination of two or more wireless technologies in indoor/outdoor localization scenarios for getting better position accuracy. This paper presents a hybrid technique to implement indoor localization that adopts fingerprinting approaches in both WiFi and Wireless Sensor Networks (WSNs. This model exploits machine learning, in particular Artificial Natural Network (ANN techniques, for position calculation. The experimental results show that the proposed hybrid system improved the accuracy, reducing the average distance error to 1.05 m by using ANN. Applying Genetic Algorithm (GA based optimization technique did not incur any further improvement to the accuracy. Compared to the performance of GA optimization, the nonoptimized ANN performed better in terms of accuracy, precision, stability, and computational time. The above results show that the proposed hybrid technique is promising for achieving better accuracy in real-world positioning applications.

  9. Higher-Order Integral Equation Methods in Computational Electromagnetics

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Meincke, Peter

    Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...

  10. Determination of global positioning system (GPS) receiver clock errors: impact on positioning accuracy

    International Nuclear Information System (INIS)

    Yeh, Ta-Kang; Hwang, Cheinway; Xu, Guochang; Wang, Chuan-Sheng; Lee, Chien-Chih

    2009-01-01

    Enhancing the positioning precision is the primary pursuit of global positioning system (GPS) users. To achieve this goal, most studies have focused on the relationship between GPS receiver clock errors and GPS positioning precision. This study utilizes undifferentiated phase data to calculate GPS clock errors and to compare with the frequency of cesium clock directly, to verify estimated clock errors by the method used in this paper. The frequency stability calculated from this paper (the indirect method) and measured from the National Standard Time and Frequency Laboratory (NSTFL) of Taiwan (the direct method) match to 1.5 × 10 −12 (the value from this study was smaller than that from NSTFL), suggesting that the proposed technique has reached a certain level of quality. The built-in quartz clocks in the GPS receivers yield relative frequency offsets that are 3–4 orders higher than those of rubidium clocks. The frequency stability of the quartz clocks is on average two orders worse than that of the rubidium clock. Using the rubidium clock instead of the quartz clock, the horizontal and vertical positioning accuracies were improved by 26–78% (0.6–3.6 mm) and 20–34% (1.3–3.0 mm), respectively, for a short baseline. These improvements are 7–25% (0.3–1.7 mm) and 11% (1.7 mm) for a long baseline. Our experiments show that the frequency stability of the clock, rather than relative frequency offset, is the governing factor of positioning accuracy

  11. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images

    International Nuclear Information System (INIS)

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo

    2014-01-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. (author)

  12. Accuracy of Carotid Duplex Criteria in Diagnosis of Significant Carotid Stenosis in Asian Patients.

    Science.gov (United States)

    Dharmasaroja, Pornpatr A; Uransilp, Nattaphol; Watcharakorn, Arvemas; Piyabhan, Pritsana

    2018-03-01

    Extracranial carotid stenosis can be diagnosed by velocity criteria of carotid duplex. Whether they are accurately applied to define severity of internal carotid artery (ICA) stenosis in Asian patients needs to be proved. The purpose of this study was to evaluate the accuracy of 2 carotid duplex velocity criteria in defining significant carotid stenosis. Carotid duplex studies and magnetic resonance angiography were reviewed. Criteria 1 was recommended by the Society of Radiologists in Ultrasound; moderate stenosis (50%-69%): peak systolic velocity (PSV) 125-230 cm/s, diastolic velocity (DV) 40-100 cm/s; severe stenosis (>70%): PSV greater than 230 cm/s, DV greater than 100 cm/s. Criteria 2 used PSV greater than 140 cm/s, DV less than 110 cm/s to define moderate stenosis (50%-75%) and PSV greater than 140 cm/s, DV greater than 110 cm/s for severe stenosis (76%-95%). A total of 854 ICA segments were reviewed. There was moderate stenosis in 72 ICAs, severe stenosis in 50 ICAs, and occlusion in 78 ICAs. Criteria 2 had slightly lower sensitivity, whereas higher specificity and accuracy than criteria 1 were observed in detecting moderate stenosis (criteria 1: sensitivity 95%, specificity 83%, accuracy 84%; criteria 2: sensitivity 92%, specificity 92%, and accuracy 92%). However, in detection of severe ICA stenosis, no significant difference in sensitivity, specificity, and accuracy was found (criteria 1: sensitivity 82%, specificity 99.57%, accuracy 98%; criteria 2: sensitivity 86%, specificity 99.68%, and accuracy 99%). In the subgroup of moderate stenosis, the criteria using ICA PSV greater than 140 cm/s had higher specificity and accuracy than the criteria using ICA PSV 125-230 cm/s. However, there was no significant difference in detection of severe stenosis or occlusion of ICA. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. Analysis of the stability and accuracy of the discrete least-squares approximation on multivariate polynomial spaces

    KAUST Repository

    Migliorati, Giovanni

    2016-01-05

    We review the main results achieved in the analysis of the stability and accuracy of the discrete leastsquares approximation on multivariate polynomial spaces, with noiseless evaluations at random points, noiseless evaluations at low-discrepancy point sets, and noisy evaluations at random points.

  14. Study of the effect of temperature on the positioning accuracy of the pneumatic muscles

    Science.gov (United States)

    Laski, Pawel Andrzej; Blasiak, Slawomir; Takosoglu, Jakub Emanuel; Pietrala, Dawid Sebastian; Bracha, Gabriel Filip; Zwierzchowski, Jaroslaw; Nowakowski, Lukasz; Borkowski, Krzysztof; Blasiak, Malgorzata

    The article concerns experimental studies of the effect of temperature on the positioning accuracy of pneumatic muscles. It presents results of experimental studies in the form of thermal images from thermal imaging camera. Pneumatic artificial muscles have unique operational characteristics and because of that they are used in industrial production processes, where classic drives do not work. During operation of muscles with large frequencies above 60 Hz, one can observe a significant increase in temperatures on the bladder surface. The article concerns a study aimed at the determination of the maximum temperature which can be achieved and whether it affects the accuracy of their positioning.

  15. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  16. Overlay accuracy fundamentals

    Science.gov (United States)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  17. Investigation into the Accuracy of Colours Reproduced by the Ricoh Printer

    Directory of Open Access Journals (Sweden)

    Andrius Gedvila

    2013-02-01

    Full Text Available The paper investigates the reproduction accuracy of Ricoh Aficio colour 3006 printer. The study has been conducted analyzing four-color (CMYK gradation curves – the compliance of zonal absorbance with standard references and printing stability of gradation scales. The obtained colours have been measured spectrophotometrically determining the coordinates of colours CIE L*a*b* and differences in colours ΔE. Eight printing regimes and their settings have been examined. It has been found that the printer Ricoh has inaccurately colour grading. However, the quality of colour reproduction is sufficient for printing data not requiring high accuracy of colour reproduction. Colour grading significantly differs from the theoretical approaches, though some regimes (Gamma, Brightness, CMYK simulation allows achieving theoretical values. Despite the high inaccuracy of gradation, differences in colour are not high enough due to corrections made by software.Article in Lithuanian

  18. Towards higher intensities

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Over the past 2 weeks, commissioning of the machine protection system has advanced significantly, opening up the possibility of higher intensity collisions at 3.5 TeV. The intensity has been increased from 2 bunches of 1010 protons to 6 bunches of 2x1010 protons. Luminosities of 6x1028 cm-2s-1 have been achieved at the start of fills, a factor of 60 higher than those provided for the first collisions on 30 March.   The recent increase in LHC luminosity as recorded by the experiments. (Graph courtesy of the experiments and M. Ferro-Luzzi) To increase the luminosity further, the commissioning crews are now trying to push up the intensity of the individual proton bunches. After the successful injection of nominal intensity bunches containing 1.1x1011 protons, collisions were subsequently achieved at 450 GeV with these intensities. However, half-way through the first ramping of these nominal intensity bunches to 3.5 TeV on 15 May, a beam instability was observed, leading to partial beam loss...

  19. Achieving a high mode count in the exact electromagnetic simulation of diffractive optical elements.

    Science.gov (United States)

    Junker, André; Brenner, Karl-Heinz

    2018-03-01

    The application of rigorous optical simulation algorithms, both in the modal as well as in the time domain, is known to be limited to the nano-optical scale due to severe computing time and memory constraints. This is true even for today's high-performance computers. To address this problem, we develop the fast rigorous iterative method (FRIM), an algorithm based on an iterative approach, which, under certain conditions, allows solving also large-size problems approximation free. We achieve this in the case of a modal representation by avoiding the computationally complex eigenmode decomposition. Thereby, the numerical cost is reduced from O(N 3 ) to O(N log N), enabling a simulation of structures like certain diffractive optical elements with a significantly higher mode count than presently possible. Apart from speed, another major advantage of the iterative FRIM over standard modal methods is the possibility to trade runtime against accuracy.

  20. Classification of lung sounds using higher-order statistics: A divide-and-conquer approach.

    Science.gov (United States)

    Naves, Raphael; Barbosa, Bruno H G; Ferreira, Danton D

    2016-06-01

    Lung sound auscultation is one of the most commonly used methods to evaluate respiratory diseases. However, the effectiveness of this method depends on the physician's training. If the physician does not have the proper training, he/she will be unable to distinguish between normal and abnormal sounds generated by the human body. Thus, the aim of this study was to implement a pattern recognition system to classify lung sounds. We used a dataset composed of five types of lung sounds: normal, coarse crackle, fine crackle, monophonic and polyphonic wheezes. We used higher-order statistics (HOS) to extract features (second-, third- and fourth-order cumulants), Genetic Algorithms (GA) and Fisher's Discriminant Ratio (FDR) to reduce dimensionality, and k-Nearest Neighbors and Naive Bayes classifiers to recognize the lung sound events in a tree-based system. We used the cross-validation procedure to analyze the classifiers performance and the Tukey's Honestly Significant Difference criterion to compare the results. Our results showed that the Genetic Algorithms outperformed the Fisher's Discriminant Ratio for feature selection. Moreover, each lung class had a different signature pattern according to their cumulants showing that HOS is a promising feature extraction tool for lung sounds. Besides, the proposed divide-and-conquer approach can accurately classify different types of lung sounds. The classification accuracy obtained by the best tree-based classifier was 98.1% for classification accuracy on training, and 94.6% for validation data. The proposed approach achieved good results even using only one feature extraction tool (higher-order statistics). Additionally, the implementation of the proposed classifier in an embedded system is feasible. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. A cross-sectional study of mathematics achievement, estimation skills, and academic self-perception in students of varying ability.

    Science.gov (United States)

    Montague, Marjorie; van Garderen, Delinda

    2003-01-01

    This study investigated students' mathematics achievement, estimation ability, use of estimation strategies, and academic self-perception. Students with learning disabilities (LD), average achievers, and intellectually gifted students (N = 135) in fourth, sixth, and eighth grade participated in the study. They were assessed to determine their mathematics achievement, ability to estimate discrete quantities, knowledge and use of estimation strategies, and perception of academic competence. The results indicated that the students with LD performed significantly lower than their peers on the math achievement measures, as expected, but viewed themselves to be as academically competent as the average achievers did. Students with LD and average achievers scored significantly lower than gifted students on all estimation measures, but they differed significantly from one another only on the estimation strategy use measure. Interestingly, even gifted students did not seem to have a well-developed understanding of estimation and, like the other students, did poorly on the first estimation measure. The accuracy of their estimates seemed to improve, however, when students were asked open-ended questions about the strategies they used to arrive at their estimates. Although students with LD did not differ from average achievers in their estimation accuracy, they used significantly fewer effective estimation strategies. Implications for instruction are discussed.

  2. Diagnostic accuracy of general physician versus emergency medicine specialist in interpretation of chest X-ray suspected for iatrogenic pneumothorax: a brief report

    Directory of Open Access Journals (Sweden)

    Ghane Mohammad-reza

    2012-03-01

    Conclusion: These findings indicate that the diagnostic accuracy of emergency medicine specialists is significantly higher than those of general physicians. The diagnostic accuracy of both physician groups was higher than the values in similar studies that signifies the role of relevant training given in the emergency departments of the Hospital.

  3. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    Directory of Open Access Journals (Sweden)

    Zheng You

    2013-04-01

    Full Text Available The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  4. Optical system error analysis and calibration method of high-accuracy star trackers.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; You, Zheng

    2013-04-08

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  5. Understanding dental CAD/CAM for restorations--accuracy from a mechanical engineering viewpoint.

    Science.gov (United States)

    Tapie, Laurent; Lebon, Nicolas; Mawussi, Bernardin; Fron-Chabouis, Hélène; Duret, Francois; Attal, Jean-Pierre

    2015-01-01

    As is the case in the field of medicine, as well as in most areas of daily life, digital technology is increasingly being introduced into dental practice. Computer-aided design/ computer-aided manufacturing (CAD/CAM) solutions are available not only for chairside practice but also for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental practice can be considered as the handling of devices and software processing for the almost automatic design and creation of dental restorations. However, dentists who want to use dental CAD/CAM systems often do not have enough information to understand the variations offered by such technology practice. Knowledge of the random and systematic errors in accuracy with CAD/CAM systems can help to achieve successful restorations with this technology, and help with the purchasing of a CAD/CAM system that meets the clinical needs of restoration. This article provides a mechanical engineering viewpoint of the accuracy of CAD/ CAM systems, to help dentists understand the impact of this technology on restoration accuracy.

  6. The use of imprecise processing to improve accuracy in weather and climate prediction

    Energy Technology Data Exchange (ETDEWEB)

    Düben, Peter D., E-mail: dueben@atm.ox.ac.uk [University of Oxford, Atmospheric, Oceanic and Planetary Physics (United Kingdom); McNamara, Hugh [University of Oxford, Mathematical Institute (United Kingdom); Palmer, T.N. [University of Oxford, Atmospheric, Oceanic and Planetary Physics (United Kingdom)

    2014-08-15

    The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce

  7. The use of imprecise processing to improve accuracy in weather and climate prediction

    International Nuclear Information System (INIS)

    Düben, Peter D.; McNamara, Hugh; Palmer, T.N.

    2014-01-01

    The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and

  8. Process improvement methods increase the efficiency, accuracy, and utility of a neurocritical care research repository.

    Science.gov (United States)

    O'Connor, Sydney; Ayres, Alison; Cortellini, Lynelle; Rosand, Jonathan; Rosenthal, Eric; Kimberly, W Taylor

    2012-08-01

    Reliable and efficient data repositories are essential for the advancement of research in Neurocritical care. Various factors, such as the large volume of patients treated within the neuro ICU, their differing length and complexity of hospital stay, and the substantial amount of desired information can complicate the process of data collection. We adapted the tools of process improvement to the data collection and database design of a research repository for a Neuroscience intensive care unit. By the Shewhart-Deming method, we implemented an iterative approach to improve the process of data collection for each element. After an initial design phase, we re-evaluated all data fields that were challenging or time-consuming to collect. We then applied root-cause analysis to optimize the accuracy and ease of collection, and to determine the most efficient manner of collecting the maximal amount of data. During a 6-month period, we iteratively analyzed the process of data collection for various data elements. For example, the pre-admission medications were found to contain numerous inaccuracies after comparison with a gold standard (sensitivity 71% and specificity 94%). Also, our first method of tracking patient admissions and discharges contained higher than expected errors (sensitivity 94% and specificity 93%). In addition to increasing accuracy, we focused on improving efficiency. Through repeated incremental improvements, we reduced the number of subject records that required daily monitoring from 40 to 6 per day, and decreased daily effort from 4.5 to 1.5 h/day. By applying process improvement methods to the design of a Neuroscience ICU data repository, we achieved a threefold improvement in efficiency and increased accuracy. Although individual barriers to data collection will vary from institution to institution, a focus on process improvement is critical to overcoming these barriers.

  9. Using function approximation to determine neural network accuracy

    International Nuclear Information System (INIS)

    Wichman, R.F.; Alexander, J.

    2013-01-01

    Many, if not most, control processes demonstrate nonlinear behavior in some portion of their operating range and the ability of neural networks to model non-linear dynamics makes them very appealing for control. Control of high reliability safety systems, and autonomous control in process or robotic applications, however, require accurate and consistent control and neural networks are only approximators of various functions so their degree of approximation becomes important. In this paper, the factors affecting the ability of a feed-forward back-propagation neural network to accurately approximate a non-linear function are explored. Compared to pattern recognition using a neural network for function approximation provides an easy and accurate method for determining the network's accuracy. In contrast to other techniques, we show that errors arising in function approximation or curve fitting are caused by the neural network itself rather than scatter in the data. A method is proposed that provides improvements in the accuracy achieved during training and resulting ability of the network to generalize after training. Binary input vectors provided a more accurate model than with scalar inputs and retraining using a small number of the outlier x,y pairs improved generalization. (author)

  10. Analysts' Forecast Accuracy in Germany: The Effect of Different Accounting Principles and Changes of Accounting Principles

    OpenAIRE

    Jürgen Ernstberger; Simon Krotter; Christian Stadler

    2008-01-01

    This paper assesses the influence of an adoption of IAS/IFRS or US GAAP on the financial analysts’ forecast accuracy in a homogenous institutional framework. Our findings suggest that the forecast accuracy is higher for estimates based on IFRS or US GAAP data than for forecasts based on German GAAP data. Moreover, in the year of switching from German GAAP to US GAAP the forecast accuracy is lower than in other years. The paper contributes to prior research by providing evidence about the usef...

  11. Accuracy improvement techniques in Precise Point Positioning method using multiple GNSS constellations

    Science.gov (United States)

    Vasileios Psychas, Dimitrios; Delikaraoglou, Demitris

    2016-04-01

    The future Global Navigation Satellite Systems (GNSS), including modernized GPS, GLONASS, Galileo and BeiDou, offer three or more signal carriers for civilian use and much more redundant observables. The additional frequencies can significantly improve the capabilities of the traditional geodetic techniques based on GPS signals at two frequencies, especially with regard to the availability, accuracy, interoperability and integrity of high-precision GNSS applications. Furthermore, highly redundant measurements can allow for robust simultaneous estimation of static or mobile user states including more parameters such as real-time tropospheric biases and more reliable ambiguity resolution estimates. This paper presents an investigation and analysis of accuracy improvement techniques in the Precise Point Positioning (PPP) method using signals from the fully operational (GPS and GLONASS), as well as the emerging (Galileo and BeiDou) GNSS systems. The main aim was to determine the improvement in both the positioning accuracy achieved and the time convergence it takes to achieve geodetic-level (10 cm or less) accuracy. To this end, freely available observation data from the recent Multi-GNSS Experiment (MGEX) of the International GNSS Service, as well as the open source program RTKLIB were used. Following a brief background of the PPP technique and the scope of MGEX, the paper outlines the various observational scenarios that were used in order to test various data processing aspects of PPP solutions with multi-frequency, multi-constellation GNSS systems. Results from the processing of multi-GNSS observation data from selected permanent MGEX stations are presented and useful conclusions and recommendations for further research are drawn. As shown, data fusion from GPS, GLONASS, Galileo and BeiDou systems is becoming increasingly significant nowadays resulting in a position accuracy increase (mostly in the less favorable East direction) and a large reduction of convergence

  12. Accuracy of typical photogrammetric networks in cultural heritage 3D modeling projects

    Directory of Open Access Journals (Sweden)

    E. Nocerino

    2014-06-01

    Full Text Available The easy generation of 3D geometries (point clouds or polygonal models with fully automated image-based methods poses nontrivial problems on how to check a posteriori the quality of the achieved results. Clear statements and procedures on how to plan the camera network, execute the survey and use automatic tools to achieve the prefixed requirements are still an open issue. Although such issues had been discussed and solved some years ago, the importance of camera network geometry is today often underestimated or neglected in the cultural heritage field. In this paper different camera network geometries, with normal and convergent images, are analyzed and the accuracy of the produced results are compared to ground truth measurements.

  13. Maryland Higher Education Commission Data Book 2016. Creating a State of Achievement

    Science.gov (United States)

    Maryland Higher Education Commission, 2016

    2016-01-01

    This document presents statistics about higher education in Maryland for 2016. The tables in this document are presented according to the following categories: (1) Students; (2) Retention and Graduation; (3) Degrees; (4) Faculty; (5) Revenues & Expenditures; (6) Tuition and Fees; (7) Financial Aid, and (8) Private Career Schools. [For…

  14. Contributions of speed and accuracy to translational selection in bacteria.

    Directory of Open Access Journals (Sweden)

    Wenqi Ran

    Full Text Available Among bacteria, we have previously shown that species that are capable of rapid growth have stronger selection on codon usage than slow growing species, and possess higher numbers of rRNA and tRNA genes. This suggests that fast-growers are adapted for fast protein synthesis. There is also considerable evidence that codon usage is influenced by accuracy of translation, and some authors have argued that accuracy is more important than speed. Here we compare the strength of the two effects by studying the codon usages in high and low expression genes and on conserved and variable sites within high expression genes. We introduce a simple statistical method that can be used to assess the significance and the strength of the two types of bias in the same sets of sequences. We compare our statistical measure of codon bias to the common used codon adaptation index, and show that the new measure is preferable for three reasons for the purposes of this analysis. Across a large sample of bacterial genomes, both effects from speed and accuracy are clearly visible, although the speed effect appears to be much stronger than the accuracy effect and is found to be significant in a larger proportion of genomes. It is also difficult to explain the correlation of codon bias in the high expression genes with growth rates and numbers of copies of tRNA and rRNA genes on the basis of selection for accuracy. Hence we conclude that selection for translational speed is a dominant effect in driving codon usage bias in fast-growing bacteria, with selection for accuracy playing a small supplementary role.

  15. The Effects of Higher Education/Military Service on Achievement Levels of Police Academy Cadets.

    Science.gov (United States)

    Johnson, Thomas Allen

    This study compared levels of achievement of three groups of Houston (Texas) police academy cadets: those with no military service but with 60 or more college credit hours, those with military service and 0 hours of college credit, and those with military service and 1 to 59 hours of college credit. Prior to 1991, police cadets in Houston were…

  16. The Impact of Pushed Output on Accuracy and Fluency of Iranian EFL Learners' Speaking

    Science.gov (United States)

    Sadeghi Beniss, Aram Reza; Edalati Bazzaz, Vahid

    2014-01-01

    The current study attempted to establish baseline quantitative data on the impacts of pushed output on two components of speaking (i.e., accuracy and fluency). To achieve this purpose, 30 female EFL learners were selected from a whole population pool of 50 based on the standard test of IELTS interview and were randomly assigned into an…

  17. Maryland Higher Education Commission Data Book 2015. Creating a State of Achievement

    Science.gov (United States)

    Maryland Higher Education Commission, 2015

    2015-01-01

    This document presents statistics about higher education in Maryland for 2015. The tables in this document are presented according to the following categories: (1) Students; (2) Retention and Graduation; (3) Degrees; (4) Faculty; (5) Revenues & Expenditures; (6) Tuition and Fees; (7) Financial Aid, (8) Private Career Schools, and (9) Distance…

  18. Maryland Higher Education Commission Data Book 2014. Creating a State of Achievement

    Science.gov (United States)

    Maryland Higher Education Commission, 2014

    2014-01-01

    This document presents statistics about higher education in Maryland for 2014. The tables in this document are presented according to the following categories: (1) Students; (2) Retention and Graduation; (3) Degrees; (4) Faculty; (5) Revenues & Expenditures; (6) Tuition and Fees; (7) Financial Aid, (8) Private Career Schools, and (9) Distance…

  19. Assessing Genomic Selection Prediction Accuracy in a Dynamic Barley Breeding Population

    Directory of Open Access Journals (Sweden)

    A. H. Sallam

    2015-03-01

    Full Text Available Prediction accuracy of genomic selection (GS has been previously evaluated through simulation and cross-validation; however, validation based on progeny performance in a plant breeding program has not been investigated thoroughly. We evaluated several prediction models in a dynamic barley breeding population comprised of 647 six-row lines using four traits differing in genetic architecture and 1536 single nucleotide polymorphism (SNP markers. The breeding lines were divided into six sets designated as one parent set and five consecutive progeny sets comprised of representative samples of breeding lines over a 5-yr period. We used these data sets to investigate the effect of model and training population composition on prediction accuracy over time. We found little difference in prediction accuracy among the models confirming prior studies that found the simplest model, random regression best linear unbiased prediction (RR-BLUP, to be accurate across a range of situations. In general, we found that using the parent set was sufficient to predict progeny sets with little to no gain in accuracy from generating larger training populations by combining the parent set with subsequent progeny sets. The prediction accuracy ranged from 0.03 to 0.99 across the four traits and five progeny sets. We explored characteristics of the training and validation populations (marker allele frequency, population structure, and linkage disequilibrium, LD as well as characteristics of the trait (genetic architecture and heritability, . Fixation of markers associated with a trait over time was most clearly associated with reduced prediction accuracy for the mycotoxin trait DON. Higher trait in the training population and simpler trait architecture were associated with greater prediction accuracy.

  20. EEG channels reduction using PCA to increase XGBoost's accuracy for stroke detection

    Science.gov (United States)

    Fitriah, N.; Wijaya, S. K.; Fanany, M. I.; Badri, C.; Rezal, M.

    2017-07-01

    In Indonesia, based on the result of Basic Health Research 2013, the number of stroke patients had increased from 8.3 ‰ (2007) to 12.1 ‰ (2013). These days, some researchers are using electroencephalography (EEG) result as another option to detect the stroke disease besides CT Scan image as the gold standard. A previous study on the data of stroke and healthy patients in National Brain Center Hospital (RS PON) used Brain Symmetry Index (BSI), Delta-Alpha Ratio (DAR), and Delta-Theta-Alpha-Beta Ratio (DTABR) as the features for classification by an Extreme Learning Machine (ELM). The study got 85% accuracy with sensitivity above 86 % for acute ischemic stroke detection. Using EEG data means dealing with many data dimensions, and it can reduce the accuracy of classifier (the curse of dimensionality). Principal Component Analysis (PCA) could reduce dimensionality and computation cost without decreasing classification accuracy. XGBoost, as the scalable tree boosting classifier, can solve real-world scale problems (Higgs Boson and Allstate dataset) with using a minimal amount of resources. This paper reuses the same data from RS PON and features from previous research, preprocessed with PCA and classified with XGBoost, to increase the accuracy with fewer electrodes. The specific fewer electrodes improved the accuracy of stroke detection. Our future work will examine the other algorithm besides PCA to get higher accuracy with less number of channels.

  1. STTR Phase I: Low-Cost, High-Accuracy, Whole-Building Carbon Dioxide Monitoring for Demand Control Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hallstrom, Jason; Ni, Zheng Richard

    2018-05-15

    This STTR Phase I project assessed the feasibility of a new CO2 sensing system optimized for low-cost, high-accuracy, whole-building monitoring for use in demand control ventilation. The focus was on the development of a wireless networking platform and associated firmware to provide signal conditioning and conversion, fault- and disruptiontolerant networking, and multi-hop routing at building scales to avoid wiring costs. Early exploration of a bridge (or “gateway”) to direct digital control services was also explored. Results of the project contributed to an improved understanding of a new electrochemical sensor for monitoring indoor CO2 concentrations, as well as the electronics and networking infrastructure required to deploy those sensors at building scales. New knowledge was acquired concerning the sensor’s accuracy, environmental response, and failure modes, and the acquisition electronics required to achieve accuracy over a wide range of CO2 concentrations. The project demonstrated that the new sensor offers repeatable correspondence with commercial optical sensors, with supporting electronics that offer gain accuracy within 0.5%, and acquisition accuracy within 1.5% across three orders of magnitude variation in generated current. Considering production, installation, and maintenance costs, the technology presents a foundation for achieving whole-building CO2 sensing at a price point below $0.066 / sq-ft – meeting economic feasibility criteria established by the Department of Energy. The technology developed under this award addresses obstacles on the critical path to enabling whole-building CO2 sensing and demand control ventilation in commercial retrofits, small commercial buildings, residential complexes, and other highpotential structures that have been slow to adopt these technologies. It presents an opportunity to significantly reduce energy use throughout the United States a

  2. Influence of metallic dental implants and metal artefacts on dose calculation accuracy.

    Science.gov (United States)

    Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara

    2015-03-01

    Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic™ EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques.

  3. Influence of metallic dental implants and metal artefacts on dose calculation accuracy

    International Nuclear Information System (INIS)

    Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara

    2015-01-01

    Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic trademark EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques. (orig.) [de

  4. Higher-order force gradient symplectic algorithms

    Science.gov (United States)

    Chin, Siu A.; Kidwell, Donald W.

    2000-12-01

    We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.

  5. Identifying Factors That Affect Higher Educational Achievements of Jamaican Seventh-Day Adventists

    Science.gov (United States)

    Campbell, Samuel P.

    2011-01-01

    This mixed-method explanatory research examined factors that influenced Jamaican Seventh-day Adventist (SDA) members to pursue higher education. It sought to investigate whether the source of the motivation is tied to the Church's general philosophy on education or to its overall programs as experienced by the membership at large. The question of…

  6. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images.

    Science.gov (United States)

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo; Onozato, Yusuke; Cho, Sang Yong; Kishi, Kazuma; Dobashi, Suguru; Umezawa, Rei; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2014-11-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  7. Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy.

    Science.gov (United States)

    Medina, Carlos; Segura, José Carlos; De la Torre, Ángel

    2013-03-13

    This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF) of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA) scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse) less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm.

  8. Can Automatic Classification Help to Increase Accuracy in Data Collection?

    Directory of Open Access Journals (Sweden)

    Frederique Lang

    2016-09-01

    Full Text Available Purpose: The authors aim at testing the performance of a set of machine learning algorithms that could improve the process of data cleaning when building datasets. Design/methodology/approach: The paper is centered on cleaning datasets gathered from publishers and online resources by the use of specific keywords. In this case, we analyzed data from the Web of Science. The accuracy of various forms of automatic classification was tested here in comparison with manual coding in order to determine their usefulness for data collection and cleaning. We assessed the performance of seven supervised classification algorithms (Support Vector Machine (SVM, Scaled Linear Discriminant Analysis, Lasso and elastic-net regularized generalized linear models, Maximum Entropy, Regression Tree, Boosting, and Random Forest and analyzed two properties: accuracy and recall. We assessed not only each algorithm individually, but also their combinations through a voting scheme. We also tested the performance of these algorithms with different sizes of training data. When assessing the performance of different combinations, we used an indicator of coverage to account for the agreement and disagreement on classification between algorithms. Findings: We found that the performance of the algorithms used vary with the size of the sample for training. However, for the classification exercise in this paper the best performing algorithms were SVM and Boosting. The combination of these two algorithms achieved a high agreement on coverage and was highly accurate. This combination performs well with a small training dataset (10%, which may reduce the manual work needed for classification tasks. Research limitations: The dataset gathered has significantly more records related to the topic of interest compared to unrelated topics. This may affect the performance of some algorithms, especially in their identification of unrelated papers. Practical implications: Although the

  9. Accuracy Evaluation of C4.5 and Naive Bayes Classifiers Using Attribute Ranking Method

    Directory of Open Access Journals (Sweden)

    S. Sivakumari

    2009-03-01

    Full Text Available This paper intends to classify the Ljubljana Breast Cancer dataset using C4.5 Decision Tree and Nai?ve Bayes classifiers. In this work, classification is carriedout using two methods. In the first method, dataset is analysed using all the attributes in the dataset. In the second method, attributes are ranked using information gain ranking technique and only the high ranked attributes are used to build the classification model. We are evaluating the results of C4.5 Decision Tree and Nai?ve Bayes classifiers in terms of classifier accuracy for various folds of cross validation. Our results show that both the classifiers achieve good accuracy on the dataset.

  10. Evidence for a confidence-accuracy relationship in memory for same- and cross-race faces.

    Science.gov (United States)

    Nguyen, Thao B; Pezdek, Kathy; Wixted, John T

    2017-12-01

    Discrimination accuracy is usually higher for same- than for cross-race faces, a phenomenon known as the cross-race effect (CRE). According to prior research, the CRE occurs because memories for same- and cross-race faces rely on qualitatively different processes. However, according to a continuous dual-process model of recognition memory, memories that rely on qualitatively different processes do not differ in recognition accuracy when confidence is equated. Thus, although there are differences in overall same- and cross-race discrimination accuracy, confidence-specific accuracy (i.e., recognition accuracy at a particular level of confidence) may not differ. We analysed datasets from four recognition memory studies on same- and cross-race faces to test this hypothesis. Confidence ratings reliably predicted recognition accuracy when performance was above chance levels (Experiments 1, 2, and 3) but not when performance was at chance levels (Experiment 4). Furthermore, at each level of confidence, confidence-specific accuracy for same- and cross-race faces did not significantly differ when overall performance was above chance levels (Experiments 1, 2, and 3) but significantly differed when overall performance was at chance levels (Experiment 4). Thus, under certain conditions, high-confidence same-race and cross-race identifications may be equally reliable.

  11. Diagnosing Eyewitness Accuracy

    OpenAIRE

    Russ, Andrew

    2015-01-01

    Eyewitnesses frequently mistake innocent people for the perpetrator of an observed crime. Such misidentifications have led to the wrongful convictions of many people. Despite this, no reliable method yet exists to determine eyewitness accuracy. This thesis explored two new experimental methods for this purpose. Chapter 2 investigated whether repetition priming can measure prior exposure to a target and compared this with observers’ explicit eyewitness accuracy. Across three experiments slower...

  12. Uncertainty in real-time voltage stability assessment methods based on Thevenin equivalent due to PMU’s accuracy

    DEFF Research Database (Denmark)

    Perez, Angel; Møller, Jakob Glarbo; Jóhannsson, Hjörtur

    2014-01-01

    This article studies the influence of PMU’s accuracy in voltage stability assessment, considering the specific case of Th ́ evenin equivalent based methods that include wide-area information in its calculations. The objective was achieved by producing a set of synthesized PMU measurements from...... a time domain simulation and using the Monte Carlo method to reflect the accuracy for the PMUs. This is given by the maximum value for the Total Vector Error defined in the IEEE standard C37.118. Those measurements allowed to estimate the distribution pa- rameters (mean and standard deviation...

  13. Trait Perception Accuracy and Acquaintance Within Groups: Tracking Accuracy Development.

    Science.gov (United States)

    Brown, Jill A; Bernieri, Frank

    2017-05-01

    Previous work on trait perception has evaluated accuracy at discrete stages of relationships (e.g., strangers, best friends). A relatively limited body of literature has investigated changes in accuracy as acquaintance within a dyad or group increases. Small groups of initially unacquainted individuals spent more than 30 hr participating in a wide range of activities designed to represent common interpersonal contexts (e.g., eating, traveling). We calculated how accurately each participant judged others in their group on the big five traits across three distinct points within the acquaintance process: zero acquaintance, after a getting-to-know-you conversation, and after 10 weeks of interaction and activity. Judgments of all five traits exhibited accuracy above chance levels after 10 weeks. An examination of the trait rating stability revealed that much of the revision in judgments occurred not over the course of the 10-week relationship as suspected, but between zero acquaintance and the getting-to-know-you conversation.

  14. Reputation in Higher Education

    DEFF Research Database (Denmark)

    Plewa, Carolin; Ho, Joanne; Conduit, Jodie

    2016-01-01

    Reputation is critical for institutions wishing to attract and retain students in today's competitive higher education setting. Drawing on the resource based view and configuration theory, this research proposes that Higher Education Institutions (HEIs) need to understand not only the impact...... of independent resources but of resource configurations when seeking to achieve a strong, positive reputation. Utilizing fuzzy set qualitative comparative analysis (fsQCA), the paper provides insight into different configurations of resources that HEIs can utilize to build their reputation within their domestic...

  15. Accuracy of Electronic Health Record Data for Identifying Stroke Cases in Large-Scale Epidemiological Studies: A Systematic Review from the UK Biobank Stroke Outcomes Group.

    Directory of Open Access Journals (Sweden)

    Rebecca Woodfield

    Full Text Available Long-term follow-up of population-based prospective studies is often achieved through linkages to coded regional or national health care data. Our knowledge of the accuracy of such data is incomplete. To inform methods for identifying stroke cases in UK Biobank (a prospective study of 503,000 UK adults recruited in middle-age, we systematically evaluated the accuracy of these data for stroke and its main pathological types (ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, determining the optimum codes for case identification.We sought studies published from 1990-November 2013, which compared coded data from death certificates, hospital admissions or primary care with a reference standard for stroke or its pathological types. We extracted information on a range of study characteristics and assessed study quality with the Quality Assessment of Diagnostic Studies tool (QUADAS-2. To assess accuracy, we extracted data on positive predictive values (PPV and-where available-on sensitivity, specificity, and negative predictive values (NPV.37 of 39 eligible studies assessed accuracy of International Classification of Diseases (ICD-coded hospital or death certificate data. They varied widely in their settings, methods, reporting, quality, and in the choice and accuracy of codes. Although PPVs for stroke and its pathological types ranged from 6-97%, appropriately selected, stroke-specific codes (rather than broad cerebrovascular codes consistently produced PPVs >70%, and in several studies >90%. The few studies with data on sensitivity, specificity and NPV showed higher sensitivity of hospital versus death certificate data for stroke, with specificity and NPV consistently >96%. Few studies assessed either primary care data or combinations of data sources.Particular stroke-specific codes can yield high PPVs (>90% for stroke/stroke types. Inclusion of primary care data and combining data sources should improve accuracy in large

  16. A Least Squares Collocation Method for Accuracy Improvement of Mobile LiDAR Systems

    Directory of Open Access Journals (Sweden)

    Qingzhou Mao

    2015-06-01

    Full Text Available In environments that are hostile to Global Navigation Satellites Systems (GNSS, the precision achieved by a mobile light detection and ranging (LiDAR system (MLS can deteriorate into the sub-meter or even the meter range due to errors in the positioning and orientation system (POS. This paper proposes a novel least squares collocation (LSC-based method to improve the accuracy of the MLS in these hostile environments. Through a thorough consideration of the characteristics of POS errors, the proposed LSC-based method effectively corrects these errors using LiDAR control points, thereby improving the accuracy of the MLS. This method is also applied to the calibration of misalignment between the laser scanner and the POS. Several datasets from different scenarios have been adopted in order to evaluate the effectiveness of the proposed method. The results from experiments indicate that this method would represent a significant improvement in terms of the accuracy of the MLS in environments that are essentially hostile to GNSS and is also effective regarding the calibration of misalignment.

  17. New Mexico Higher Education Department Annual Report, 2016

    Science.gov (United States)

    New Mexico Higher Education Department, 2016

    2016-01-01

    The New Mexico Higher Education Department strives to bring leadership, guidance, and assistance to New Mexico's higher education stakeholders. The HED is committed to promoting best practices, institutional fiscal responsibility, and student achievement. Everything the agency does is through the lens of supporting New Mexico's higher education…

  18. Financing higher education in South Africa: Public funding ...

    African Journals Online (AJOL)

    controversy. The article discusses these funding challenges. It argues that the current higher education funding conundrum will hamstring the achievement of the important higher education policy goals articulated in the National Plan on Higher Education. The article finally argues for a shift towards a redistributive funding ...

  19. Achievable rate maximization for decode-and-forward MIMO-OFDM networks with an energy harvesting relay.

    Science.gov (United States)

    Du, Guanyao; Yu, Jianjun

    2016-01-01

    This paper investigates the system achievable rate for the multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system with an energy harvesting (EH) relay. Firstly we propose two protocols, time switching-based decode-and-forward relaying (TSDFR) and a flexible power splitting-based DF relaying (PSDFR) protocol by considering two practical receiver architectures, to enable the simultaneous information processing and energy harvesting at the relay. In PSDFR protocol, we introduce a temporal parameter to describe the time division pattern between the two phases which makes the protocol more flexible and general. In order to explore the system performance limit, we discuss the system achievable rate theoretically and formulate two optimization problems for the proposed protocols to maximize the system achievable rate. Since the problems are non-convex and difficult to solve, we first analyze them theoretically and get some explicit results, then design an augmented Lagrangian penalty function (ALPF) based algorithm for them. Numerical results are provided to validate the accuracy of our analytical results and the effectiveness of the proposed ALPF algorithm. It is shown that, PSDFR outperforms TSDFR to achieve higher achievable rate in such a MIMO-OFDM relaying system. Besides, we also investigate the impacts of the relay location, the number of antennas and the number of subcarriers on the system performance. Specifically, it is shown that, the relay position greatly affects the system performance of both protocols, and relatively worse achievable rate is achieved when the relay is placed in the middle of the source and the destination. This is different from the MIMO-OFDM DF relaying system without EH. Moreover, the optimal factor which indicates the time division pattern between the two phases in the PSDFR protocol is always above 0.8, which means that, the common division of the total transmission time into two equal phases in

  20. Compiler-Directed Transformation for Higher-Order Stencils

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Protonu [Univ. of Utah, Salt Lake City, UT (United States); Hall, Mary [Univ. of Utah, Salt Lake City, UT (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Straalen, Brian Van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-07-20

    As the cost of data movement increasingly dominates performance, developers of finite-volume and finite-difference solutions for partial differential equations (PDEs) are exploring novel higher-order stencils that increase numerical accuracy and computational intensity. This paper describes a new compiler reordering transformation applied to stencil operators that performs partial sums in buffers, and reuses the partial sums in computing multiple results. This optimization has multiple effect son improving stencil performance that are particularly important to higher-order stencils: exploits data reuse, reduces floating-point operations, and exposes efficient SIMD parallelism to backend compilers. We study the benefit of this optimization in the context of Geometric Multigrid (GMG), a widely used method to solvePDEs, using four different Jacobi smoothers built from 7-, 13-, 27-and 125-point stencils. We quantify performance, speedup, andnumerical accuracy, and use the Roofline model to qualify our results. Ultimately, we obtain over 4× speedup on the smoothers themselves and up to a 3× speedup on the multigrid solver. Finally, we demonstrate that high-order multigrid solvers have the potential of reducing total data movement and energy by several orders of magnitude.

  1. Explaining differences for Serbia and Slovenia in mathematics achievement in fourth grade

    Directory of Open Access Journals (Sweden)

    Kadijević Đorđe

    2015-01-01

    Full Text Available This paper presents the findings that are parts of a larger international project studying the achievements in mathematics and science for students in primary and lower secondary education. Specifically, we focused on the study of differences in mathematics achievement for Serbian and Slovenian fourth-graders. The study used a sample of 7,861 fourth-grade students from Serbia (N = 3,736 and Slovenia (N = 4,125. The results showed that Serbian students had higher overall achievement and scored higher in both the number content and the knowing cognitive domains, whereas Slovenian students scored higher on the geometry content and the data content domains, also having a higher balance among achievements for both content and cognitive domains. It was also found that Slovenian students had higher self-confidence in learning mathematics. Because there were no other significant differences between Serbia and Slovenia with respect to two other contextual variables and the correlations among these three contextual variables, the explanations of the achievement differences were based upon the consideration of various aspects of curriculum, teaching practice, and teachers' professional development in Serbia and Slovenia. The paper raises the question of educational implications of these findings and the possible directions of improving the quality of mathematics teaching.

  2. Analysts' Forecast Accuracy in Germany: The Effect of Different Accounting Principles and Changes of Accounting Principles

    Directory of Open Access Journals (Sweden)

    Jürgen Ernstberger

    2008-05-01

    Full Text Available This paper assesses the influence of an adoption of IAS/IFRS or US GAAP on the financial analysts’ forecast accuracy in a homogenous institutional framework. Our findings suggest that the forecast accuracy is higher for estimates based on IFRS or US GAAP data than for forecasts based on German GAAP data. Moreover, in the year of switching from German GAAP to US GAAP the forecast accuracy is lower than in other years. The paper contributes to prior research by providing evidence about the usefulness of international accounting data and about the adoption effects of a change to such accounting principles.

  3. Application of Mass Lumped Higher Order Finite Elements

    International Nuclear Information System (INIS)

    J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau

    2005-01-01

    There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied

  4. Scale Issues Related to the Accuracy Assessment of Land Use/Land Cover Maps Produced Using Multi-Resolution Data: Comments on “The Improvement of Land Cover Classification by Thermal Remote Sensing”. Remote Sens. 2015, 7(7, 8368–8390

    Directory of Open Access Journals (Sweden)

    Brian A. Johnson

    2015-10-01

    Full Text Available Much remote sensing (RS research focuses on fusing, i.e., combining, multi-resolution/multi-sensor imagery for land use/land cover (LULC classification. In relation to this topic, Sun and Schulz [1] recently found that a combination of visible-to-near infrared (VNIR; 30 m spatial resolution and thermal infrared (TIR; 100–120 m spatial resolution Landsat data led to more accurate LULC classification. They also found that using multi-temporal TIR data alone for classification resulted in comparable (and in some cases higher classification accuracies to the use of multi-temporal VNIR data, which contrasts with the findings of other recent research [2]. This discrepancy, and the generally very high LULC accuracies achieved by Sun and Schulz (up to 99.2% overall accuracy for a combined VNIR/TIR classification result, can likely be explained by their use of an accuracy assessment procedure which does not take into account the multi-resolution nature of the data. Sun and Schulz used 10-fold cross-validation for accuracy assessment, which is not necessarily inappropriate for RS accuracy assessment in general. However, here it is shown that the typical pixel-based cross-validation approach results in non-independent training and validation data sets when the lower spatial resolution TIR images are used for classification, which causes classification accuracy to be overestimated.

  5. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy

    Science.gov (United States)

    Yi, Jason; Manna, Asit; Barr, Valarie A.; Hong, Jennifer; Neuman, Keir C.; Samelson, Lawrence E.

    2016-01-01

    Investigation of heterogeneous cellular structures using single-molecule localization microscopy has been limited by poorly defined localization accuracy and inadequate multiplexing capacity. Using fluorescent nanodiamonds as fiducial markers, we define and achieve localization precision required for single-molecule accuracy in dSTORM images. Coupled with this advance, our new multiplexing strategy, madSTORM, allows accurate targeting of multiple molecules using sequential binding and elution of fluorescent antibodies. madSTORM is used on an activated T-cell to localize 25 epitopes, 14 of which are on components of the same multimolecular T-cell receptor complex. We obtain an average localization precision of 2.6 nm, alignment error of 2.0 nm, and molecules within structures. Probing the molecular topology of complex signaling cascades and other heterogeneous networks is feasible with madSTORM. PMID:27708141

  6. High-accuracy defect sizing for CRDM penetration adapters using the ultrasonic TOFD technique

    International Nuclear Information System (INIS)

    Atkinson, I.

    1995-01-01

    Ultrasonic time-of-flight diffraction (TOFD) is the preferred technique for critical sizing of throughwall orientated defects in a wide range of components, primarily because it is intrinsically more accurate than amplitude-based techniques. For the same reason, TOFD is the preferred technique for sizing the cracks in control rod drive mechanism (CRDM) penetration adapters, which have been the subject of much recent attention. Once the considerable problem of restricted access for the UT probes has been overcome, this inspection lends itself to very high accuracy defect sizing using TOFD. In qualification trials under industrial conditions, depth sizing to an accuracy of ≤ 0.5 mm has been routinely achieved throughout the full wall thickness (16 mm) of the penetration adapters, using only a single probe pair and without recourse to signal processing. (author)

  7. Higher-derivative Lee-Wick unification

    International Nuclear Information System (INIS)

    Carone, Christopher D.

    2009-01-01

    We consider gauge coupling unification in Lee-Wick extensions of the Standard Model that include higher-derivative quadratic terms beyond the minimally required set. We determine how the beta functions are modified when some Standard Model particles have two Lee-Wick partners. We show that gauge coupling unification can be achieved in such models without requiring the introduction of additional fields in the higher-derivative theory and we comment on possible ultraviolet completions.

  8. Social Power Increases Interoceptive Accuracy

    Directory of Open Access Journals (Sweden)

    Mehrad Moeini-Jazani

    2017-08-01

    Full Text Available Building on recent psychological research showing that power increases self-focused attention, we propose that having power increases accuracy in perception of bodily signals, a phenomenon known as interoceptive accuracy. Consistent with our proposition, participants in a high-power experimental condition outperformed those in the control and low-power conditions in the Schandry heartbeat-detection task. We demonstrate that the effect of power on interoceptive accuracy is not explained by participants’ physiological arousal, affective state, or general intention for accuracy. Rather, consistent with our reasoning that experiencing power shifts attentional resources inward, we show that the effect of power on interoceptive accuracy is dependent on individuals’ chronic tendency to focus on their internal sensations. Moreover, we demonstrate that individuals’ chronic sense of power also predicts interoceptive accuracy similar to, and independent of, how their situationally induced feeling of power does. We therefore provide further support on the relation between power and enhanced perception of bodily signals. Our findings offer a novel perspective–a psychophysiological account–on how power might affect judgments and behavior. We highlight and discuss some of these intriguing possibilities for future research.

  9. Student achievement in science: A longitudinal look at individual and school differences

    Science.gov (United States)

    Martinez, Alina

    The importance of science in today's technological society necessitates continued attention to students' experiences in science and specifically their achievement in science. There is a need to look at gender and race/ethnicity simultaneously when studying students' experiences in science and to explore factors related to higher achievement among students. Using data from the Longitudinal Study of American Youth, this study contributes to existing literature on student achievement in science by simultaneously exploring the effects of race/ethnicity and gender. Capitalizing on the availability of yearly science achievement scores, I present trajectories of student achievement from 7th to 12th grade. This study also includes an exploration of school effects. Overall, student achievement in science increases from 7th to 12th grade, although some leveling is seen in later grades. Growth in achievement differs by both gender and race/ethnicity, but racial/ethnic differences are larger than gender differences. Hispanic, Black, Asian, and White males score higher, on average, throughout the secondary grades than their female counterparts. Achievement scores of Asian students are consistently higher than White students, who in turn score higher than Hispanic and finally Black students. Both background and science-related factors help explain variation in achievement status and growth in achievement. Parental education is positively associated with achievement status among all groups except Black students for whom there is no effect of parental education. Science related resources in the home are positively associated with student achievement and the effect of these resources increases in later grades. Student achievement in science is also positively related to student course taking and attitude toward science. Furthermore, both the negative effect of viewing science as a male domain, which exists for males and females, and the positive effect of parental support for

  10. Diagnostic accuracy of surgeons and trainees in assessment of patients with acute abdominal pain.

    Science.gov (United States)

    2016-09-01

    Diagnostic accuracy in the assessment of patients with acute abdominal pain in the emergency ward is not adequate. It has been argued that this is because the investigations are carried out predominantly by a trainee. Resource utilization could be lowered if surgeons had a higher initial diagnostic accuracy. Patients with acute abdominal pain were included in a prospective cohort study. A surgical trainee and a surgeon made independent assessments in the emergency department, recording the clinical diagnosis and proposed diagnostic investigations. A reference standard diagnosis was established by an expert panel, and the proportion of correct diagnoses was calculated. Diagnostic accuracy was expressed in terms of sensitivity, specificity, positive predictive value and negative predictive value. Interobserver agreement for the diagnosis and elements of history-taking and physical examination were expressed by means of Cohen's κ. Certainty of diagnosis was recorded using a visual analogue scale. A trainee and a surgeon independently assessed 126 patients. Trainees made a correct diagnosis in 44·4 per cent of patients and surgeons in 42·9 per cent (P = 0·839). Surgeons, however, recorded a higher level of diagnostic certainty. Diagnostic accuracy was comparable in distinguishing urgent from non-urgent diagnoses, and for the most common diseases. Interobserver agreement for the clinical diagnosis varied from fair to moderate (κ = 0·28-0·57). The diagnostic accuracy of the initial clinical assessment is not improved when a surgeon rather than a surgical trainee assesses a patient with abdominal pain in the emergency department. © 2016 BJS Society Ltd Published by John Wiley & Sons Ltd.

  11. Prospects for higher spatial resolution quantitative X-ray analysis using transition element L-lines

    Science.gov (United States)

    Statham, P.; Holland, J.

    2014-03-01

    Lowering electron beam kV reduces electron scattering and improves spatial resolution of X-ray analysis. However, a previous round robin analysis of steels at 5 - 6 kV using Lα-lines for the first row transition elements gave poor accuracies. Our experiments on SS63 steel using Lα-lines show similar biases in Cr and Ni that cannot be corrected with changes to self-absorption coefficients or carbon coating. The inaccuracy may be caused by different probabilities for emission and anomalous self-absorption for the La-line between specimen and pure element standard. Analysis using Ll(L3-M1)-lines gives more accurate results for SS63 plausibly because the M1-shell is not so vulnerable to the atomic environment as the unfilled M4,5-shell. However, Ll-intensities are very weak and WDS analysis may be impractical for some applications. EDS with large area SDD offers orders of magnitude faster analysis and achieves similar results to WDS analysis with Lα-lines but poorer energy resolution precludes the use of Ll-lines in most situations. EDS analysis of K-lines at low overvoltage is an alternative strategy for improving spatial resolution that could give higher accuracy. The trade-off between low kV versus low overvoltage is explored in terms of sensitivity for element detection for different elements.

  12. Fast and Accuracy Control Chart Pattern Recognition using a New cluster-k-Nearest Neighbor

    OpenAIRE

    Samir Brahim Belhaouari

    2009-01-01

    By taking advantage of both k-NN which is highly accurate and K-means cluster which is able to reduce the time of classification, we can introduce Cluster-k-Nearest Neighbor as "variable k"-NN dealing with the centroid or mean point of all subclasses generated by clustering algorithm. In general the algorithm of K-means cluster is not stable, in term of accuracy, for that reason we develop another algorithm for clustering our space which gives a higher accuracy than K-means cluster, less ...

  13. Comparison of tree types of models for the prediction of final academic achievement

    Directory of Open Access Journals (Sweden)

    Silvana Gasar

    2002-12-01

    Full Text Available For efficient prevention of inappropriate secondary school choices and by that academic failure, school counselors need a tool for the prediction of individual pupil's final academic achievements. Using data mining techniques on pupils' data base and expert modeling, we developed several models for the prediction of final academic achievement in an individual high school educational program. For data mining, we used statistical analyses, clustering and two machine learning methods: developing classification decision trees and hierarchical decision models. Using an expert system shell DEX, an expert system, based on a hierarchical multi-attribute decision model, was developed manually. All the models were validated and evaluated from the viewpoint of their applicability. The predictive accuracy of DEX models and decision trees was equal and very satisfying, as it reached the predictive accuracy of an experienced counselor. With respect on the efficiency and difficulties in developing models, and relatively rapid changing of our education system, we propose that decision trees are used in further development of predictive models.

  14. Impact of an intra-cycle motion correction algorithm on overall evaluability and diagnostic accuracy of computed tomography coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Pontone, Gianluca; Bertella, Erika; Baggiano, Andrea; Mushtaq, Saima; Loguercio, Monica; Segurini, Chiara; Conte, Edoardo; Beltrama, Virginia; Annoni, Andrea; Formenti, Alberto; Petulla, Maria; Trabattoni, Daniela; Pepi, Mauro [Centro Cardiologico Monzino, IRCCS, Milan (Italy); Andreini, Daniele; Montorsi, Piero; Bartorelli, Antonio L. [Centro Cardiologico Monzino, IRCCS, Milan (Italy); University of Milan, Department of Cardiovascular Sciences and Community Health, Milan (Italy); Guaricci, Andrea I. [University of Foggia, Department of Cardiology, Foggia (Italy)

    2016-01-15

    The aim of this study was to evaluate the impact of a novel intra-cycle motion correction algorithm (MCA) on overall evaluability and diagnostic accuracy of cardiac computed tomography coronary angiography (CCT). From a cohort of 900 consecutive patients referred for CCT for suspected coronary artery disease (CAD), we enrolled 160 (18 %) patients (mean age 65.3 ± 11.7 years, 101 male) with at least one coronary segment classified as non-evaluable for motion artefacts. The CCT data sets were evaluated using a standard reconstruction algorithm (SRA) and MCA and compared in terms of subjective image quality, evaluability and diagnostic accuracy. The mean heart rate during the examination was 68.3 ± 9.4 bpm. The MCA showed a higher Likert score (3.1 ± 0.9 vs. 2.5 ± 1.1, p < 0.001) and evaluability (94%vs.79 %, p < 0.001) than the SRA. In a 45-patient subgroup studied by clinically indicated invasive coronary angiography, specificity, positive predictive value and accuracy were higher in MCA vs. SRA in segment-based and vessel-based models, respectively (87%vs.73 %, 50%vs.34 %, 85%vs.73 %, p < 0.001 and 62%vs.28 %, 66%vs.51 % and 75%vs.57 %, p < 0.001). In a patient-based model, MCA showed higher accuracy vs. SCA (93%vs.76 %, p < 0.05). MCA can significantly improve subjective image quality, overall evaluability and diagnostic accuracy of CCT. (orig.)

  15. A Framework for the Objective Assessment of Registration Accuracy

    Directory of Open Access Journals (Sweden)

    Francesca Pizzorni Ferrarese

    2014-01-01

    Full Text Available Validation and accuracy assessment are the main bottlenecks preventing the adoption of image processing algorithms in the clinical practice. In the classical approach, a posteriori analysis is performed through objective metrics. In this work, a different approach based on Petri nets is proposed. The basic idea consists in predicting the accuracy of a given pipeline based on the identification and characterization of the sources of inaccuracy. The concept is demonstrated on a case study: intrasubject rigid and affine registration of magnetic resonance images. Both synthetic and real data are considered. While synthetic data allow the benchmarking of the performance with respect to the ground truth, real data enable to assess the robustness of the methodology in real contexts as well as to determine the suitability of the use of synthetic data in the training phase. Results revealed a higher correlation and a lower dispersion among the metrics for simulated data, while the opposite trend was observed for pathologic ones. Results show that the proposed model not only provides a good prediction performance but also leads to the optimization of the end-to-end chain in terms of accuracy and robustness, setting the ground for its generalization to different and more complex scenarios.

  16. Design of interpolation functions for subpixel-accuracy stereo-vision systems.

    Science.gov (United States)

    Haller, Istvan; Nedevschi, Sergiu

    2012-02-01

    Traditionally, subpixel interpolation in stereo-vision systems was designed for the block-matching algorithm. During the evaluation of different interpolation strategies, a strong correlation was observed between the type of the stereo algorithm and the subpixel accuracy of the different solutions. Subpixel interpolation should be adapted to each stereo algorithm to achieve maximum accuracy. In consequence, it is more important to propose methodologies for interpolation function generation than specific function shapes. We propose two such methodologies based on data generated by the stereo algorithms. The first proposal uses a histogram to model the environment and applies histogram equalization to an existing solution adapting it to the data. The second proposal employs synthetic images of a known environment and applies function fitting to the resulted data. The resulting function matches the algorithm and the data as best as possible. An extensive evaluation set is used to validate the findings. Both real and synthetic test cases were employed in different scenarios. The test results are consistent and show significant improvements compared with traditional solutions. © 2011 IEEE

  17. Accuracy of maxillary positioning after standard and inverted orthognathic sequencing.

    Science.gov (United States)

    Ritto, Fabio G; Ritto, Thiago G; Ribeiro, Danilo Passeado; Medeiros, Paulo José; de Moraes, Márcio

    2014-05-01

    This study aimed to compare the accuracy of maxillary positioning after bimaxillary orthognathic surgery, using 2 sequences. A total of 80 cephalograms (40 preoperative and 40 postoperative) from 40 patients were analyzed. Group 1 included radiographs of patients submitted to conventional sequence, whereas group 2 patients were submitted to inverted sequence. The final position of the maxillary central incisor was obtained after vertical and horizontal measurements of the tracings, and it was compared with what had been planned. The null hypothesis, which stated that there would be no difference between the groups, was tested. After applying the Welch t test for comparison of mean differences between maxillary desired and achieved position, considering a statistical significance of 5% and a 2-tailed test, the null hypothesis was not rejected (P > .05). Thus, there was no difference in the accuracy of maxillary positioning between groups. Conventional and inverted sequencing proved to be reliable in positioning the maxilla after LeFort I osteotomy in bimaxillary orthognathic surgeries. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Accuracy of robotic patient positioners used in ion beam therapy

    International Nuclear Information System (INIS)

    Nairz, Olaf; Winter, Marcus; Heeg, Peter; Jäkel, Oliver

    2013-01-01

    In this study we investigate the accuracy of industrial six axes robots employed for patient positioning at the Heidelberg Ion Beam Therapy Center. In total 1018 patient setups were monitored with a laser tracker and subsequently analyzed. The measurements were performed in the two rooms with a fixed horizontal beam line. Both, the 3d translational errors and the rotational errors around the three table axes were determined. For the first room the 3d error was smaller than 0.72 mm in 95 percent of all setups. The standard deviation of the rotational errors was at most 0.026° for all axes. For the second room Siemens implemented an improved approach strategy to the final couch positions. The 95 percent quantile of the 3d error could in this room be reduced to 0.53 mm; the standard deviation of the rotational errors was also at most 0.026°. Robots are very flexible tools for patient positioning in six degrees of freedom. This study proved that the robots are able to achieve clinically acceptable accuracy in real patient setups, too

  19. Does methodology matter in eyewitness identification research? The effect of live versus video exposure on eyewitness identification accuracy.

    Science.gov (United States)

    Pozzulo, Joanna D; Crescini, Charmagne; Panton, Tasha

    2008-01-01

    The present study examined the effect of mode of target exposure (live versus video) on eyewitness identification accuracy. Adult participants (N=104) were exposed to a staged crime that they witnessed either live or on videotape. Participants were then asked to rate their stress and arousal levels prior to being presented with either a target-present or -absent simultaneous lineup. Across target-present and -absent lineups, mode of target exposure did not have a significant effect on identification accuracy. However, mode of target exposure was found to have a significant effect on stress and arousal levels. Participants who witnessed the crime live had higher levels of stress and arousal than those who were exposed to the videotaped crime. A higher level of arousal was significantly related to poorer identification accuracy for those in the video condition. For participants in the live condition however, stress and arousal had no effect on eyewitness identification accuracy. Implications of these findings in regards to the generalizability of laboratory-based research on eyewitness testimony to real-life crime are discussed.

  20. Ultrasound Indoor Positioning System Based on a Low-Power Wireless Sensor Network Providing Sub-Centimeter Accuracy

    Directory of Open Access Journals (Sweden)

    Ángel De la Torre

    2013-03-01

    Full Text Available This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm.

  1. New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein-Protein Interfaces.

    Science.gov (United States)

    Simões, Inês C M; Costa, Inês P D; Coimbra, João T S; Ramos, Maria J; Fernandes, Pedro A

    2017-01-23

    Knowing how proteins make stable complexes enables the development of inhibitors to preclude protein-protein (P:P) binding. The identification of the specific interfacial residues that mostly contribute to protein binding, denominated as hot spots, is thus critical. Here, we refine an in silico alanine scanning mutagenesis protocol, based on a residue-dependent dielectric constant version of the Molecular Mechanics/Poisson-Boltzmann Surface Area method. We have used a large data set of structurally diverse P:P complexes to redefine the residue-dependent dielectric constants used in the determination of binding free energies. The accuracy of the method was validated through comparison with experimental data, considering the per-residue P:P binding free energy (ΔΔG binding ) differences upon alanine mutation. Different protocols were tested, i.e., a geometry optimization protocol and three molecular dynamics (MD) protocols: (1) one using explicit water molecules, (2) another with an implicit solvation model, and (3) a third where we have carried out an accelerated MD with explicit water molecules. Using a set of protein dielectric constants (within the range from 1 to 20) we showed that the dielectric constants of 7 for nonpolar and polar residues and 11 for charged residues (and histidine) provide optimal ΔΔG binding predictions. An overall mean unsigned error (MUE) of 1.4 kcal mol -1 relative to the experiment was achieved in 210 mutations only with geometry optimization, which was further reduced with MD simulations (MUE of 1.1 kcal mol -1 for the MD employing explicit solvent). This recalibrated method allows for a better computational identification of hot spots, avoiding expensive and time-consuming experiments or thermodynamic integration/ free energy perturbation/ uBAR calculations, and will hopefully help new drug discovery campaigns in their quest of searching spots of interest for binding small drug-like molecules at P:P interfaces.

  2. Achievement goals, social goals, and motivational regulations in physical education settings.

    Science.gov (United States)

    Cecchini Estrada, José A; González González-Mesa, Carmen; Méndez-Giménez, Antonio; Fernández-Río, Javier

    2011-02-01

    This study examined the relationship between achievement and social goals, and explored how both goals affect students' level of informed self-determination in Physical Education. Participants were 395 high school students. Three scales were used to assess achievement, social goals, and motivation. Several hierarchical regression analyses revealed that mastery-approach goals were the greatest contributors to the individuals' levels of self-determination. Achievement and social goals were found to be separate predictors of students' levels of self-determination, and this highlights the importance of separating mastery and performance goals into avoidance and approach profiles. Girls reported significantly higher values than boys on responsibility, relationship, and mastery-avoidance goals, whereas boys scored higher on performance-approach goals. Researchers could use achievement and social goals to study students' motivation and achievement in Physical Education settings.

  3. The accuracy of new wheelchair users' predictions about their future wheelchair use.

    Science.gov (United States)

    Hoenig, Helen; Griffiths, Patricia; Ganesh, Shanti; Caves, Kevin; Harris, Frances

    2012-06-01

    This study examined the accuracy of new wheelchair user predictions about their future wheelchair use. This was a prospective cohort study of 84 community-dwelling veterans provided a new manual wheelchair. The association between predicted and actual wheelchair use was strong at 3 mos (ϕ coefficient = 0.56), with 90% of those who anticipated using the wheelchair at 3 mos still using it (i.e., positive predictive value = 0.96) and 60% of those who anticipated not using it indeed no longer using the wheelchair (i.e., negative predictive value = 0.60, overall accuracy = 0.92). Predictive accuracy diminished over time, with overall accuracy declining from 0.92 at 3 mos to 0.66 at 6 mos. At all time points, and for all types of use, patients better predicted use as opposed to disuse, with correspondingly higher positive than negative predictive values. Accuracy of prediction of use in specific indoor and outdoor locations varied according to location. This study demonstrates the importance of better understanding the potential mismatch between the anticipated and actual patterns of wheelchair use. The findings suggest that users can be relied upon to accurately predict their basic wheelchair-related needs in the short-term. Further exploration is needed to identify characteristics that will aid users and their providers in more accurately predicting mobility needs for the long-term.

  4. Danish aid to higher education

    DEFF Research Database (Denmark)

    Adriansen, Hanne Kirstine

    2016-01-01

    This piece comments on the role of higher education and universities in achieving the goals of Agenda 2030. It also asks if global academic collaboration is a new form of colonization or if researchers from the North can assist in decolonising the academy....

  5. Parietal and premotor cortices: activation reflects imitation accuracy during observation, delayed imitation and concurrent imitation.

    Science.gov (United States)

    Krüger, Britta; Bischoff, Matthias; Blecker, Carlo; Langhanns, Christine; Kindermann, Stefan; Sauerbier, Isabell; Reiser, Mathias; Stark, Rudolf; Munzert, Jörn; Pilgramm, Sebastian

    2014-10-15

    This study investigated whether activation within areas belonging to the action observation and imitation network reveals a linear relation to the subsequent accuracy of imitating a bimanual rhythmic movement measured via a motion capturing system. 20 participants were scanned with functional magnetic resonance imaging (fMRI) when asked to imitate observed bimanual movements either concurrently versus with a delay (2s) or simply to observe the movements without imitation. Results showed that action observation relates to activation within classic mirror-related areas. Activation patterns were more widespread when participants were asked to imitate the movement. During observation with concurrent imitation, activation in the left inferior parietal lobe (IPL) was associated negatively with imitation accuracy. During observation in the delayed imitation condition, higher subsequent imitation accuracy was coupled with higher activation in the right superior parietal lobe (SPL) and the left parietal operculum (POp). During the delayed imitation itself, a negative association between imitation accuracy and brain activation was revealed in the right ventral premotor cortex (vPMC). We conclude that the IPL is involved in online comparison and visuospatial attention processes during imitation, the SPL provides a kinesthetic blueprint during movement observation, the POp preserves body identity, and the vPMC recruits motor representations--especially when no concurrent visual guidance is possible. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Systematic review of discharge coding accuracy

    Science.gov (United States)

    Burns, E.M.; Rigby, E.; Mamidanna, R.; Bottle, A.; Aylin, P.; Ziprin, P.; Faiz, O.D.

    2012-01-01

    Introduction Routinely collected data sets are increasingly used for research, financial reimbursement and health service planning. High quality data are necessary for reliable analysis. This study aims to assess the published accuracy of routinely collected data sets in Great Britain. Methods Systematic searches of the EMBASE, PUBMED, OVID and Cochrane databases were performed from 1989 to present using defined search terms. Included studies were those that compared routinely collected data sets with case or operative note review and those that compared routinely collected data with clinical registries. Results Thirty-two studies were included. Twenty-five studies compared routinely collected data with case or operation notes. Seven studies compared routinely collected data with clinical registries. The overall median accuracy (routinely collected data sets versus case notes) was 83.2% (IQR: 67.3–92.1%). The median diagnostic accuracy was 80.3% (IQR: 63.3–94.1%) with a median procedure accuracy of 84.2% (IQR: 68.7–88.7%). There was considerable variation in accuracy rates between studies (50.5–97.8%). Since the 2002 introduction of Payment by Results, accuracy has improved in some respects, for example primary diagnoses accuracy has improved from 73.8% (IQR: 59.3–92.1%) to 96.0% (IQR: 89.3–96.3), P= 0.020. Conclusion Accuracy rates are improving. Current levels of reported accuracy suggest that routinely collected data are sufficiently robust to support their use for research and managerial decision-making. PMID:21795302

  7. Associations between children's intelligence and academic achievement: the role of sleep.

    Science.gov (United States)

    Erath, Stephen A; Tu, Kelly M; Buckhalt, Joseph A; El-Sheikh, Mona

    2015-10-01

    Sleep problems (long wake episodes, low sleep efficiency) were examined as moderators of the relation between children's intelligence and academic achievement. The sample was comprised of 280 children (55% boys; 63% European Americans, 37% African Americans; mean age = 10.40 years, SD = 0.65). Sleep was assessed during seven consecutive nights of actigraphy. Children's performance on standardized tests of intelligence (Brief Intellectual Ability index of the Woodcock-Johnson III) and academic achievement (Alabama Reading and Math Test) were obtained. Age, sex, ethnicity, income-to-needs ratio, single parent status, standardized body mass index, chronic illness and pubertal development were controlled in analyses. Higher intelligence was strongly associated with higher academic achievement across a wide range of sleep quality. However, the association between intelligence and academic achievement was slightly attenuated among children with more long wake episodes or lower sleep efficiency compared with children with higher-quality sleep. © 2015 European Sleep Research Society.

  8. AN EFFICIENT METHOD FOR DEEP WEB CRAWLER BASED ON ACCURACY -A REVIEW

    OpenAIRE

    Pranali Zade1, Dr.S.W.Mohod2

    2018-01-01

    As deep web grows at a very fast pace, there has been increased interest in techniques that help efficiently locate deep-web interfaces. However, due to the large volume of web resources and the dynamic nature of deep web, achieving wide coverage and high efficiency is a challenging issue. We propose a three-stage framework, for efficient harvesting deep web interfaces. Project experimental results on a set of representative domains show the agility and accuracy of our proposed crawler framew...

  9. Intensifying the intrinsic motivation by differentiating the teaching strategies in higher education

    Directory of Open Access Journals (Sweden)

    Tulbure, C.

    2011-01-01

    Full Text Available Learning motivation represents one of the most importantpredictors of academic achievement in higher education. In this empirical study, we have implemented a formative program to improve the university students’ academic achievement and their intrinsic learning motivation. To fully use their intellectual potential, students were treated according to their learning style, throughout one academic year. When we considered the within subject design, both intrinsic motivation and academic achievement significantly increased at the end of the study. Only intrinsic motivation proved to be significantly higher for the between subject comparison. Because our formative program proved to have a significant impact on students’ learning motivation, we recommend the differentiated teaching strategies to improve the academic achievement in higher education.

  10. The association of identity and motivation with students' academic achievement in higher education

    NARCIS (Netherlands)

    Meens, E.E.M.; Bakx, A.W.E.A.; Klimstra, T.A.; Denissen, J.J.A.

    2018-01-01

    Two main reasons for dropping out of higher education are making an erroneous educational choice (an identity commitment) and lack of motivation. This study examined whether identity formation and motivation among prospective students at the moment of choosing a bachelor's program (N = 8723)

  11. Class size, type of exam and student achievement

    DEFF Research Database (Denmark)

    Madsen, Erik

    Education as a road to growth has been on the political agenda in recent years and promoted not least by the institutions of higher education. At the same time the universities have been squeezed for resources for a long period and the average class size has increased as a result. However......, the production technology for higher education is not well known and this study highlights the relation between class size and student achievement using a large dataset of 80.000 gradings from the Aarhus School of Business. The estimations show a large negative effect of larger classes on the grade level...... of students. The type of exam also has a large and significant effect on student achievements and oral exam, take-home exam and group exam reward the student with a significantly higher grade compared with an on-site written exam....

  12. Class Size, Type of Exam and Student Achievement

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer

    2011-01-01

    Education as a road to growth has been on the political agenda in recent years and promoted not least by the institutions of higher education. At the same time the universities have been squeezed for resources for a long period and the average class size has increased as a result. However......, the production technology for higher education is not well known and this study highlights the relation between class size and student achievement using a large dataset of 80.000 gradings from the Aarhus School of Business. The estimations show a large negative effect of larger classes on the grade level...... of students. The type of exam also has a large and significant effect on student achievements and oral exam, take-home exam and group exam reward the student with a significantly higher grade compared with an on-site written exam....

  13. High-accuracy contouring using projection moiré

    Science.gov (United States)

    Sciammarella, Cesar A.; Lamberti, Luciano; Sciammarella, Federico M.

    2005-09-01

    Shadow and projection moiré are the oldest forms of moiré to be used in actual technical applications. In spite of this fact and the extensive number of papers that have been published on this topic, the use of shadow moiré as an accurate tool that can compete with alternative devices poses very many problems that go to the very essence of the mathematical models used to obtain contour information from fringe pattern data. In this paper some recent developments on the projection moiré method are presented. Comparisons between the results obtained with the projection method and the results obtained by mechanical devices that operate with contact probes are presented. These results show that the use of projection moiré makes it possible to achieve the same accuracy that current mechanical touch probe devices can provide.

  14. Evaluating the Quality, Accuracy, and Readability of Online Resources Pertaining to Hallux Valgus.

    Science.gov (United States)

    Tartaglione, Jason P; Rosenbaum, Andrew J; Abousayed, Mostafa; Hushmendy, Shazaan F; DiPreta, John A

    2016-02-01

    The Internet is one of the most widely utilized resources for health-related information. Evaluation of the medical literature suggests that the quality and accuracy of these resources are poor and written at inappropriately high reading levels. The purpose of our study was to evaluate the quality, accuracy, and readability of online resources pertaining to hallux valgus. Two search terms ("hallux valgus" and "bunion") were entered into Google, Yahoo, and Bing. With the use of scoring criteria specific to hallux valgus, the quality and accuracy of online information related to hallux valgus was evaluated by 3 reviewers. The Flesch-Kincaid score was used to determine readability. Statistical analysis was performed with t tests and significance was determined by P values hallux valgus" (P = .045). Quality and accuracy were significantly higher in resources authored by physicians as compared to nonphysicians (quality, P = .04; accuracy, P hallux valgus is poor and written at inappropriate reading levels. Furthermore, the search term used, authorship, and presence of commercial bias influence the value of these materials. It is important for orthopaedic surgeons to become familiar with patient education materials, so that appropriate recommendations can be made regarding valuable resources. Level IV. © 2015 The Author(s).

  15. How to address patients' defences: a pilot study of the accuracy of defence interpretations and alliance.

    Science.gov (United States)

    Junod, Olivier; de Roten, Yves; Martinez, Elena; Drapeau, Martin; Despland, Jean-Nicolas

    2005-12-01

    This pilot study examined the accuracy of therapist defence interpretations (TAD) in high-alliance patients (N = 7) and low-alliance patients (N = 8). TAD accuracy was assessed in the two subgroups by comparing for each case the patient's most frequent defensive level with the most frequent defensive level addressed by the therapist when making defence interpretations. Results show that in high-alliance patient-therapist dyads, the therapists tend to address accurate or higher (more mature) defensive level than patients most frequent level. On the other hand, the therapists address lower (more immature) defensive level in low-alliance dyads. These results are discussed along with possible ways to better assess TAD accuracy.

  16. Overlay accuracy on a flexible web with a roll printing process based on a roll-to-roll system.

    Science.gov (United States)

    Chang, Jaehyuk; Lee, Sunggun; Lee, Ki Beom; Lee, Seungjun; Cho, Young Tae; Seo, Jungwoo; Lee, Sukwon; Jo, Gugrae; Lee, Ki-yong; Kong, Hyang-Shik; Kwon, Sin

    2015-05-01

    For high-quality flexible devices from printing processes based on Roll-to-Roll (R2R) systems, overlay alignment during the patterning of each functional layer poses a major challenge. The reason is because flexible substrates have a relatively low stiffness compared with rigid substrates, and they are easily deformed during web handling in the R2R system. To achieve a high overlay accuracy for a flexible substrate, it is important not only to develop web handling modules (such as web guiding, tension control, winding, and unwinding) and a precise printing tool but also to control the synchronization of each unit in the total system. A R2R web handling system and reverse offset printing process were developed in this work, and an overlay between the 1st and 2nd layers of ±5μm on a 500 mm-wide film was achieved at a σ level of 2.4 and 2.8 (x and y directions, respectively) in a continuous R2R printing process. This paper presents the components and mechanisms used in reverse offset printing based on a R2R system and the printing results including positioning accuracy and overlay alignment accuracy.

  17. Passive fit and accuracy of three dental implant impression techniques.

    Science.gov (United States)

    Al Quran, Firas A; Rashdan, Bashar A; Zomar, AbdelRahman A Abu; Weiner, Saul

    2012-02-01

    To reassess the accuracy of three impression techniques relative to the passive fit of the prosthesis. An edentulous maxillary cast was fabricated in epoxy resin with four dental implants embedded and secured with heat-cured acrylic resin. Three techniques were tested: closed tray, open tray nonsplinted, and open tray splinted. One light-cured custom acrylic tray was fabricated for each impression technique, and transfer copings were attached to the implants. Fifteen impressions for each technique were prepared with medium-bodied consistency polyether. Subsequently, the impressions were poured in type IV die stone. The distances between the implants were measured using a digital micrometer. The statistical analysis of the data was performed with ANOVA and a one-sample t test at a 95% confidence interval. The lowest mean difference in dimensional accuracy was found within the direct (open tray) splinted technique. Also, the one-sample t test showed that the direct splinted technique has the least statistical significant difference from direct nonsplinted and indirect (closed tray) techniques. All discrepancies were less than 100 Μm. Within the limitations of this study, the best accuracy of the definitive prosthesis was achieved when the impression copings were splinted with autopolymerized acrylic resin, sectioned, and rejoined. However, the errors associated with all of these techniques were less than 100 Μm, and based on the current definitions of passive fit, they all would be clinically acceptable.

  18. Data accuracy assessment using enterprise architecture

    Science.gov (United States)

    Närman, Per; Holm, Hannes; Johnson, Pontus; König, Johan; Chenine, Moustafa; Ekstedt, Mathias

    2011-02-01

    Errors in business processes result in poor data accuracy. This article proposes an architecture analysis method which utilises ArchiMate and the Probabilistic Relational Model formalism to model and analyse data accuracy. Since the resources available for architecture analysis are usually quite scarce, the method advocates interviews as the primary data collection technique. A case study demonstrates that the method yields correct data accuracy estimates and is more resource-efficient than a competing sampling-based data accuracy estimation method.

  19. Accuracy of Visual Estimation of LASIK Flap Thickness.

    Science.gov (United States)

    Brenner, Jason E; Fadlallah, Ali; Hatch, Kathryn M; Choi, Catherine; Sayegh, Rony R; Kouyoumjian, Paul; Wu, Simon; Frangieh, George T; Melki, Samir A

    2017-11-01

    To assess the accuracy of surgeons' visual estimation of LASIK flap thickness when created by a femtosecond laser by comparing it to ultrasound measurements. Surgeons were asked to visually estimate the thickness of a femtosecond flap during the procedure. Total corneal thickness was measured by ultrasound pachymetry prior to the procedure and the stromal bed was similarly measured after flap lifting. The estimates from three experienced surgeons (cornea fellowship trained and more than 5 years in practice) were compared to those of three cornea fellows, with each surgeon evaluating 20 eyes (120 total). Surgeons were not told the thickness of the flaps unless required for safety reasons. The average difference between visual and ultrasonic estimation of LASIK flap thickness was 15.20 μm. The flap was 10 μm thicker than estimated in 37% of eyes, 20 μm thicker in 17% of eyes, and 30 μm thicker in 10% of eyes. The largest deviation was 53 μm. There was no statistically significant difference between the accuracy of experienced surgeons and fellows (P = .51). There are significant differences between surgeons' visual estimates and ultrasonic measurements of LASIK flap thickness. Relying on these visual estimates may lead to deeper excimer laser ablation than intended. This could lead to thinner residual stromal beds and higher percent tissue altered than planned. The authors recommend that surgeons measure flaps intraoperatively to maximize accuracy and safety. [J Refract Surg. 2017;33(11):765-767.]. Copyright 2017, SLACK Incorporated.

  20. Flipping College Algebra: Effects on Student Engagement and Achievement

    Science.gov (United States)

    Ichinose, Cherie; Clinkenbeard, Jennifer

    2016-01-01

    This study compared student engagement and achievement levels between students enrolled in a traditional college algebra lecture course and students enrolled in a "flipped" course. Results showed that students in the flipped class had consistently higher levels of achievement throughout the course than did students in the traditional…

  1. Evaluation of scanning 2D barcoded vaccines to improve data accuracy of vaccines administered.

    Science.gov (United States)

    Daily, Ashley; Kennedy, Erin D; Fierro, Leslie A; Reed, Jenica Huddleston; Greene, Michael; Williams, Warren W; Evanson, Heather V; Cox, Regina; Koeppl, Patrick; Gerlach, Ken

    2016-11-11

    Accurately recording vaccine lot number, expiration date, and product identifiers, in patient records is an important step in improving supply chain management and patient safety in the event of a recall. These data are being encoded on two-dimensional (2D) barcodes on most vaccine vials and syringes. Using electronic vaccine administration records, we evaluated the accuracy of lot number and expiration date entered using 2D barcode scanning compared to traditional manual or drop-down list entry methods. We analyzed 128,573 electronic records of vaccines administered at 32 facilities. We compared the accuracy of records entered using 2D barcode scanning with those entered using traditional methods using chi-square tests and multilevel logistic regression. When 2D barcodes were scanned, lot number data accuracy was 1.8 percentage points higher (94.3-96.1%, Pmanufacturer, month vaccine was administered, and vaccine type were associated with variation in accuracy for both lot number and expiration date. Two-dimensional barcode scanning shows promise for improving data accuracy of vaccine lot number and expiration date records. Adapting systems to further integrate with 2D barcoding could help increase adoption of 2D barcode scanning technology. Published by Elsevier Ltd.

  2. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  3. [The relationship between accommodative accuracy at different near-work distances and early-onset myopia].

    Science.gov (United States)

    Yu, Q W; Zhang, P; Zhou, S B; Hu, Y; Ji, M X; Luo, Y C; You, H L; Yao, Z X

    2016-07-01

    correction, than emmetropia. Wearing spectacles may improve the threshold and sensitivity of accommodations, and the accommodative accuracy at near-work distances (FCC (20 cm) is related to early-onset myopia. The higher the FCC value is, the higher the diopter is. (Chin J Ophthalmol, 2016, 52: 520-524).

  4. Complex-plane strategy for computing rotating polytropic models - efficiency and accuracy of the complex first-order perturbation theory

    International Nuclear Information System (INIS)

    Geroyannis, V.S.

    1988-01-01

    In this paper, a numerical method is developed for determining the structure distortion of a polytropic star which rotates either uniformly or differentially. This method carries out the required numerical integrations in the complex plane. The method is implemented to compute indicative quantities, such as the critical perturbation parameter which represents an upper limit in the rotational behavior of the star. From such indicative results, it is inferred that this method achieves impressive improvement against other relevant methods; most important, it is comparable to some of the most elaborate and accurate techniques on the subject. It is also shown that the use of this method with Chandrasekhar's first-order perturbation theory yields an immediate drastic improvement of the results. Thus, there is no neeed - for most applications concerning rotating polytropic models - to proceed to the further use of the method with higher order techniques, unless the maximum accuracy of the method is required. 31 references

  5. ANXIETY AND SCHOLASTIC ACHIEVEMENT OF MOROCCAN EFL COLLEGE LEARNERS

    Directory of Open Access Journals (Sweden)

    Akhajam Saad Eddine

    2016-05-01

    Full Text Available The main purpose of this study is to investigate the relationship between anxiety and scholastic achievement among students of English department at the faculty of Arts and Humanities of Meknes, Morocco. This study focuses on the level of anxiety among English department students and how they can reduce anxiety inside and outside the classroom in a foreign language speaking environment without instructors‟ intervention. This quantitative research used two instruments; Cattle‟s anxiety questionnaire to test the level of anxiety and achievement test to measure their scholastic achievement. The results revealed that girls are more anxious than boys, boys achieve higher marks in scholastic achievement, and there is no relationship between anxiety and scholastic achievement.

  6. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.

    Science.gov (United States)

    Wang, Liang; Li, Zishen; Zhao, Jiaojiao; Zhou, Kai; Wang, Zhiyu; Yuan, Hong

    2016-12-21

    Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10-20 m (achieved by the standard positioning services) to about 3-5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS) combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50-80 km/h) mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed) for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS) were better than 0.15 m (horizontal) and 0.25 m (vertical) for the static test, and 0.30 m (horizontal) and 0.45 m (vertical) for the kinematic test.

  7. Overview of Commercial Building Partnerships in Higher Education

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, Glenn [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-03-01

    Higher education uses less energy per square foot than most commercial building sectors. However, higher education campuses house energy-intensive laboratories and data centers that may spend more than this average; laboratories, in particular, are disproportionately represented in the higher education sector. The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems–including some considered too costly or technologically challenging–and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions.

  8. A model to improve the accuracy of US Poison Center data collection.

    Science.gov (United States)

    Krenzelok, E P; Reynolds, K M; Dart, R C; Green, J L

    2014-01-01

    Over 2 million human exposure calls are reported annually to United States regional poison information centers. All exposures are documented electronically and submitted to the American Association of Poison Control Center's National Poison Data System. This database represents the largest data source available on the epidemiology of pharmaceutical and non-pharmaceutical poisoning exposures. The accuracy of these data is critical; however, research has demonstrated that inconsistencies and inaccuracies exist. This study outlines the methods and results of a training program that was developed and implemented to enhance the quality of data collection using acetaminophen exposures as a model. Eleven poison centers were assigned randomly to receive either passive or interactive education to improve medical record documentation. A task force provided recommendations on educational and training strategies and the development of a quality-measurement scorecard to serve as a data collection tool to assess poison center data quality. Poison centers were recruited to participate in the study. Clinical researchers scored the documentation of each exposure record for accuracy. Results. Two thousand two hundred cases were reviewed and assessed for accuracy of data collection. After training, the overall mean quality scores were higher for both the passive (95.3%; + 1.6% change) and interactive intervention groups (95.3%; + 0.9% change). Data collection accuracy improved modestly for the overall accuracy score and significantly for the substance identification component. There was little difference in accuracy measures between the different training methods. Despite the diversity of poison centers, data accuracy, specifically substance identification data fields, can be improved by developing a standardized, systematic, targeted, and mandatory training process. This process should be considered for training on other important topics, thus enhancing the value of these data in

  9. Higher Order Corrections in the CoLoRFulNNLO Framework

    Science.gov (United States)

    Somogyi, G.; Kardos, A.; Szőr, Z.; Trócsányi, Z.

    We discuss the CoLoRFulNNLO method for computing higher order radiative corrections to jet cross sections in perturbative QCD. We apply our method to the calculation of event shapes and jet rates in three-jet production in electron-positron annihilation. We validate our code by comparing our predictions to previous results in the literature and present the jet cone energy fraction distribution at NNLO accuracy. We also present preliminary NNLO results for the three-jet rate using the Durham jet clustering algorithm matched to resummed predictions at NLL accuracy, and a comparison to LEP data.

  10. A Critical Analysis of Accountability in Higher Education: Its Relevance to Evaluation of Higher Education

    Science.gov (United States)

    Kai, Jiang

    2009-01-01

    Accountability, which is closely related to evaluation of efficiency, effectiveness, and performance, requires proving that higher education has achieved planned results and performance in an effective manner. Highlighting efficiency and effectiveness and emphasizing results and outcomes are the basic characteristics of accountability in higher…

  11. BUSINESS MODEL INNOVATION IN NIGERIAN HIGHER EDUCATION INSTITUTIONS

    OpenAIRE

    Nonso Ochinanwata; Patrick Oseloka Ezepue

    2017-01-01

    This paper explores business model innovation that aims to innovate the Nigerian higher education sector. A focus group and semi-structured interviews among higher education Nigerian academics, students and graduates are used to explore the new business model for Nigerian higher education. The study found that, to achieve efficient and effective innovation, Nigerian higher education institutions need to collaborate with industry, professionals and other stakeholders, such as company managemen...

  12. Testing Delays Resulting in Increased Identification Accuracy in Line-Ups and Show-Ups.

    Science.gov (United States)

    Dekle, Dawn J.

    1997-01-01

    Investigated time delays (immediate, two-three days, one week) between viewing a staged theft and attempting an eyewitness identification. Compared lineups to one-person showups in a laboratory analogue involving 412 subjects. Results show that across all time delays, participants maintained a higher identification accuracy with the showup…

  13. Improvement of Dimensional Accuracy of 3-D Printed Parts using an Additive/Subtractive Based Hybrid Prototyping Approach

    Science.gov (United States)

    Amanullah Tomal, A. N. M.; Saleh, Tanveer; Raisuddin Khan, Md.

    2017-11-01

    At present, two important processes, namely CNC machining and rapid prototyping (RP) are being used to create prototypes and functional products. Combining both additive and subtractive processes into a single platform would be advantageous. However, there are two important aspects need to be taken into consideration for this process hybridization. First is the integration of two different control systems for two processes and secondly maximizing workpiece alignment accuracy during the changeover step. Recently we have developed a new hybrid system which incorporates Fused Deposition Modelling (FDM) as RP Process and CNC grinding operation as subtractive manufacturing process into a single setup. Several objects were produced with different layer thickness for example 0.1 mm, 0.15 mm and 0.2 mm. It was observed that pure FDM method is unable to attain desired dimensional accuracy and can be improved by a considerable margin about 66% to 80%, if finishing operation by grinding is carried out. It was also observed layer thickness plays a role on the dimensional accuracy and best accuracy is achieved with the minimum layer thickness (0.1 mm).

  14. Can use of an administrative database improve accuracy of hospital-reported readmission rates?

    Science.gov (United States)

    Edgerton, James R; Herbert, Morley A; Hamman, Baron L; Ring, W Steves

    2018-05-01

    Readmission rates after cardiac surgery are being used as a quality indicator; they are also being collected by Medicare and are tied to reimbursement. Accurate knowledge of readmission rates may be difficult to achieve because patients may be readmitted to different hospitals. In our area, 81 hospitals share administrative claims data; 28 of these hospitals (from 5 different hospital systems) do cardiac surgery and share Society of Thoracic Surgeons (STS) clinical data. We used these 2 sources to compare the readmissions data for accuracy. A total of 45,539 STS records from January 2008 to December 2016 were matched with the hospital billing data records. Using the index visit as the start date, the billing records were queried for any subsequent in-patient visits for that patient. The billing records included date of readmission and hospital of readmission data and were compared with the data captured in the STS record. We found 1153 (2.5%) patients who had STS records that were marked "No" or "missing," but there were billing records that showed a readmission. The reported STS readmission rate of 4796 (10.5%) underreported the readmission rate by 2.5 actual percentage points. The true rate should have been 13.0%. Actual readmission rate was 23.8% higher than reported by the clinical database. Approximately 36% of readmissions were to a hospital that was a part of a different hospital system. It is important to know accurate readmission rates for quality improvement processes and institutional financial planning. Matching patient records to an administrative database showed that the clinical database may fail to capture many readmissions. Combining data with an administrative database can enhance accuracy of reporting. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  15. The Relationship Between Eyewitness Confidence and Identification Accuracy: A New Synthesis.

    Science.gov (United States)

    Wixted, John T; Wells, Gary L

    2017-05-01

    The U.S. legal system increasingly accepts the idea that the confidence expressed by an eyewitness who identified a suspect from a lineup provides little information as to the accuracy of that identification. There was a time when this pessimistic assessment was entirely reasonable because of the questionable eyewitness-identification procedures that police commonly employed. However, after more than 30 years of eyewitness-identification research, our understanding of how to properly conduct a lineup has evolved considerably, and the time seems ripe to ask how eyewitness confidence informs accuracy under more pristine testing conditions (e.g., initial, uncontaminated memory tests using fair lineups, with no lineup administrator influence, and with an immediate confidence statement). Under those conditions, mock-crime studies and police department field studies have consistently shown that, for adults, (a) confidence and accuracy are strongly related and (b) high-confidence suspect identifications are remarkably accurate. However, when certain non-pristine testing conditions prevail (e.g., when unfair lineups are used), the accuracy of even a high-confidence suspect ID is seriously compromised. Unfortunately, some jurisdictions have not yet made reforms that would create pristine testing conditions and, hence, our conclusions about the reliability of high-confidence identifications cannot yet be applied to those jurisdictions. However, understanding the information value of eyewitness confidence under pristine testing conditions can help the criminal justice system to simultaneously achieve both of its main objectives: to exonerate the innocent (by better appreciating that initial, low-confidence suspect identifications are error prone) and to convict the guilty (by better appreciating that initial, high-confidence suspect identifications are surprisingly accurate under proper testing conditions).

  16. Predictors of cultural capital on science academic achievement at the 8th grade level

    Science.gov (United States)

    Misner, Johnathan Scott

    The purpose of the study was to determine if students' cultural capital is a significant predictor of 8th grade science achievement test scores in urban locales. Cultural capital refers to the knowledge used and gained by the dominant class, which allows social and economic mobility. Cultural capital variables include magazines at home and parental education level. Other variables analyzed include socioeconomic status (SES), gender, and English language learners (ELL). This non-experimental study analyzed the results of the 2011 Eighth Grade Science National Assessment of Educational Progress (NAEP). The researcher analyzed the data using a multivariate stepwise regression analysis. The researcher concluded that the addition of cultural capital factors significantly increased the predictive power of the model where magazines in home, gender, student classified as ELL, parental education level, and SES were the independent variables and science achievement was the dependent variable. For alpha=0.05, the overall test for the model produced a R2 value of 0.232; therefore the model predicted 23.2% of variance in science achievement results. Other major findings include: higher measures of home resources predicted higher 2011 NAEP eighth grade science achievement; males were predicted to have higher 2011 NAEP 8 th grade science achievement; classified ELL students were predicted to score lower on the NAEP eight grade science achievement; higher parent education predicted higher NAEP eighth grade science achievement; lower measures of SES predicted lower 2011 NAEP eighth grade science achievement. This study contributed to the research in this field by identifying cultural capital factors that have been found to have statistical significance on predicting eighth grade science achievement results, which can lead to strategies to help improve science academic achievement among underserved populations.

  17. Improving shuffler assay accuracy

    International Nuclear Information System (INIS)

    Rinard, P.M.

    1995-01-01

    Drums of uranium waste should be disposed of in an economical and environmentally sound manner. The most accurate possible assays of the uranium masses in the drums are required for proper disposal. The accuracies of assays from a shuffler are affected by the type of matrix material in the drums. Non-hydrogenous matrices have little effect on neutron transport and accuracies are very good. If self-shielding is known to be a minor problem, good accuracies are also obtained with hydrogenous matrices when a polyethylene sleeve is placed around the drums. But for those cases where self-shielding may be a problem, matrices are hydrogenous, and uranium distributions are non-uniform throughout the drums, the accuracies are degraded. They can be greatly improved by determining the distributions of the uranium and then applying correction factors based on the distributions. This paper describes a technique for determining uranium distributions by using the neutron count rates in detector banks around the waste drum and solving a set of overdetermined linear equations. Other approaches were studied to determine the distributions and are described briefly. Implementation of this correction is anticipated on an existing shuffler next year

  18. Impact on cost accuracy and profitability from implementing product configuration system – A case-study

    DEFF Research Database (Denmark)

    Myrodia, Anna; Kristjansdottir, Katrin; Hvam, Lars

    2015-01-01

    This article aims at analyzing the impacts from implementing a product configuration system (PCS) on company profitability and improved cost estimations in the sales phase. Companies that have implemented PCSs have achieved substantial benefits in terms of being more in control of their product...... assortment, making the right decisions in the sales phase and increased sales of optimal products. Those benefits should have direct impact on improved profitability in terms of increased contribution ratios and more accurate cost estimations used to determine the price in the budgetary quotations...... and accuracy of the cost estimation in the sales phase can be achieved from implementing a PCS....

  19. Overinterpretation and misreporting of diagnostic accuracy studies: evidence of "spin".

    Science.gov (United States)

    Ochodo, Eleanor A; de Haan, Margriet C; Reitsma, Johannes B; Hooft, Lotty; Bossuyt, Patrick M; Leeflang, Mariska M G

    2013-05-01

    To estimate the frequency of distorted presentation and overinterpretation of results in diagnostic accuracy studies. MEDLINE was searched for diagnostic accuracy studies published between January and June 2010 in journals with an impact factor of 4 or higher. Articles included were primary studies of the accuracy of one or more tests in which the results were compared with a clinical reference standard. Two authors scored each article independently by using a pretested data-extraction form to identify actual overinterpretation and practices that facilitate overinterpretation, such as incomplete reporting of study methods or the use of inappropriate methods (potential overinterpretation). The frequency of overinterpretation was estimated in all studies and in a subgroup of imaging studies. Of the 126 articles, 39 (31%; 95% confidence interval [CI]: 23, 39) contained a form of actual overinterpretation, including 29 (23%; 95% CI: 16, 30) with an overly optimistic abstract, 10 (8%; 96% CI: 3%, 13%) with a discrepancy between the study aim and conclusion, and eight with conclusions based on selected subgroups. In our analysis of potential overinterpretation, authors of 89% (95% CI: 83%, 94%) of the studies did not include a sample size calculation, 88% (95% CI: 82%, 94%) did not state a test hypothesis, and 57% (95% CI: 48%, 66%) did not report CIs of accuracy measurements. In 43% (95% CI: 34%, 52%) of studies, authors were unclear about the intended role of the test, and in 3% (95% CI: 0%, 6%) they used inappropriate statistical tests. A subgroup analysis of imaging studies showed 16 (30%; 95% CI: 17%, 43%) and 53 (100%; 95% CI: 92%, 100%) contained forms of actual and potential overinterpretation, respectively. Overinterpretation and misreporting of results in diagnostic accuracy studies is frequent in journals with high impact factors. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120527/-/DC1. © RSNA, 2013.

  20. Accuracy of Genomic Prediction in Switchgrass (Panicum virgatum L. Improved by Accounting for Linkage Disequilibrium

    Directory of Open Access Journals (Sweden)

    Guillaume P. Ramstein

    2016-04-01

    Full Text Available Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height, and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs.

  1. On the Accuracy Potential in Underwater/Multimedia Photogrammetry.

    Science.gov (United States)

    Maas, Hans-Gerd

    2015-07-24

    Underwater applications of photogrammetric measurement techniques usually need to deal with multimedia photogrammetry aspects, which are characterized by the necessity of handling optical rays that are refracted at interfaces between optical media with different refractive indices according to Snell's Law. This so-called multimedia geometry has to be incorporated into geometric models in order to achieve correct measurement results. The paper shows a flexible yet strict geometric model for the handling of refraction effects on the optical path, which can be implemented as a module into photogrammetric standard tools such as spatial resection, spatial intersection, bundle adjustment or epipolar line computation. The module is especially well suited for applications, where an object in water is observed by cameras in air through one or more planar glass interfaces, as it allows for some simplifications here. In the second part of the paper, several aspects, which are relevant for an assessment of the accuracy potential in underwater/multimedia photogrammetry, are discussed. These aspects include network geometry and interface planarity issues as well as effects caused by refractive index variations and dispersion and diffusion under water. All these factors contribute to a rather significant degradation of the geometric accuracy potential in underwater/multimedia photogrammetry. In practical experiments, a degradation of the quality of results by a factor two could be determined under relatively favorable conditions.

  2. Climate Change Observation Accuracy: Requirements and Economic Value

    Science.gov (United States)

    Wielicki, Bruce; Cooke, Roger; Golub, Alexander; Baize, Rosemary; Mlynczak, Martin; Lukashin, Constantin; Thome, Kurt; Shea, Yolanda; Kopp, Greg; Pilewskie, Peter; hide

    2016-01-01

    This presentation will summarize a new quantitative approach to determining the required accuracy for climate change observations. Using this metric, most current global satellite observations struggle to meet this accuracy level. CLARREO (Climate Absolute Radiance and Refractivity Observatory) is a new satellite mission designed to resolve this challenge is by achieving advances of a factor of 10 for reflected solar spectra and a factor of 3 to 5 for thermal infrared spectra. The CLARREO spectrometers can serve as SI traceable benchmarks for the Global Satellite Intercalibration System (GSICS) and greatly improve the utility of a wide range of LEO and GEO infrared and reflected solar satellite sensors for climate change observations (e.g. CERES, MODIS, VIIIRS, CrIS, IASI, Landsat, etc). A CLARREO Pathfinder mission for flight on the International Space Station is included in the U.S. Presidentâ€"TM"s fiscal year 2016 budget, with launch in 2019 or 2020. Providing more accurate decadal change trends can in turn lead to more rapid narrowing of key climate science uncertainties such as cloud feedback and climate sensitivity. A new study has been carried out to quantify the economic benefits of such an advance and concludes that the economic value is $9 Trillion U.S. dollars. The new value includes the cost of carbon emissions reductions.

  3. Dimensional accuracy of aluminium extrusions in mechanical calibration

    Science.gov (United States)

    Raknes, Christian Arne; Welo, Torgeir; Paulsen, Frode

    2018-05-01

    Reducing dimensional variations in the extrusion process without increasing cost is challenging due to the nature of the process itself. An alternative approach—also from a cost perspective—is using extruded profiles with standard tolerances and utilize downstream processes, and thus calibrate the part within tolerance limits that are not achievable directly from the extrusion process. In this paper, two mechanical calibration strategies for the extruded product are investigated, utilizing the forming lines of the manufacturer. The first calibration strategy is based on global, longitudinal stretching in combination with local bending, while the second strategy utilizes the principle of transversal stretching and local bending of the cross-section. An extruded U-profile is used to make a comparison between the two methods using numerical analyses. To provide response surfaces with the FEA program, ABAQUS is used in combination with Design of Experiment (DOE). DOE is conducted with a two-level fractional factorial design to collect the appropriate data. The aim is to find the main factors affecting the dimension accuracy of the final part obtained by the two calibration methods. The results show that both calibration strategies have proven to reduce cross-sectional variations effectively form standard extrusion tolerances. It is concluded that mechanical calibration is a viable, low-cost alternative for aluminium parts that demand high dimensional accuracy, e.g. due to fit-up or welding requirements.

  4. Accuracy of the diagnosis of pleural effusion on supine chest X-ray

    International Nuclear Information System (INIS)

    Emamian, S.A.; Kaasboel, M.A.; Olsen, J.F.; Pedersen, J.F.

    1997-01-01

    Diagnosis of pleural effusion (PE) on supine chest X-ray (SCXR) is considered difficult. This study aimed at evaluating the accuracy of the diagnosis of PE on SCXR and was performed in two phases. At phase 1, a formula for the sonographic estimation of the volume of PE was established by correlating 24 measurements (in 7 patients in whom complete drainage was achieved) with the drained volumes. At phase two, 112 consecutive SCXRs were supplemented by sonography of the chest. The films were evaluated for the presence of PE and for the presence of different radiologic signs of PE. Sonography showed PE in 41 right and 30 left hemithoraces. The overall accuracy of the diagnosis of PE on SCXR was 82 %. Only one of the undiagnosed PEs had a volume of > 300 ml. The most accurate signs were increased density of the hemithorax, blunted costophrenic angle, and loss of the hemidiaphragm silhouette. (orig.). With 2 figs., 3 tabs

  5. Influence of Ephemeris Error on GPS Single Point Positioning Accuracy

    Science.gov (United States)

    Lihua, Ma; Wang, Meng

    2013-09-01

    The Global Positioning System (GPS) user makes use of the navigation message transmitted from GPS satellites to achieve its location. Because the receiver uses the satellite's location in position calculations, an ephemeris error, a difference between the expected and actual orbital position of a GPS satellite, reduces user accuracy. The influence extent is decided by the precision of broadcast ephemeris from the control station upload. Simulation analysis with the Yuma almanac show that maximum positioning error exists in the case where the ephemeris error is along the line-of-sight (LOS) direction. Meanwhile, the error is dependent on the relationship between the observer and spatial constellation at some time period.

  6. Accuracy and impact of spatial aids based upon satellite enumeration to improve indoor residual spraying spatial coverage.

    Science.gov (United States)

    Bridges, Daniel J; Pollard, Derek; Winters, Anna M; Winters, Benjamin; Sikaala, Chadwick; Renn, Silvia; Larsen, David A

    2018-02-23

    Indoor residual spraying (IRS) is a key tool in the fight to control, eliminate and ultimately eradicate malaria. IRS protection is based on a communal effect such that an individual's protection primarily relies on the community-level coverage of IRS with limited protection being provided by household-level coverage. To ensure a communal effect is achieved through IRS, achieving high and uniform community-level coverage should be the ultimate priority of an IRS campaign. Ensuring high community-level coverage of IRS in malaria-endemic areas is challenging given the lack of information available about both the location and number of households needing IRS in any given area. A process termed 'mSpray' has been developed and implemented and involves use of satellite imagery for enumeration for planning IRS and a mobile application to guide IRS implementation. This study assessed (1) the accuracy of the satellite enumeration and (2) how various degrees of spatial aid provided through the mSpray process affected community-level IRS coverage during the 2015 spray campaign in Zambia. A 2-stage sampling process was applied to assess accuracy of satellite enumeration to determine number and location of sprayable structures. Results indicated an overall sensitivity of 94% for satellite enumeration compared to finding structures on the ground. After adjusting for structure size, roof, and wall type, households in Nchelenge District where all types of satellite-based spatial aids (paper-based maps plus use of the mobile mSpray application) were used were more likely to have received IRS than Kasama district where maps used were not based on satellite enumeration. The probability of a household being sprayed in Nchelenge district where tablet-based maps were used, did not differ statistically from that of a household in Samfya District, where detailed paper-based spatial aids based on satellite enumeration were provided. IRS coverage from the 2015 spray season benefited from

  7. TIMSS 2011 Student and Teacher Predictors for Mathematics Achievement Explored and Identified via Elastic Net

    Directory of Open Access Journals (Sweden)

    Jin Eun Yoo

    2018-03-01

    Full Text Available A substantial body of research has been conducted on variables relating to students' mathematics achievement with TIMSS. However, most studies have employed conventional statistical methods, and have focused on selected few indicators instead of utilizing hundreds of variables TIMSS provides. This study aimed to find a prediction model for students' mathematics achievement using as many TIMSS student and teacher variables as possible. Elastic net, the selected machine learning technique in this study, takes advantage of both LASSO and ridge in terms of variable selection and multicollinearity, respectively. A logistic regression model was also employed to predict TIMSS 2011 Korean 4th graders' mathematics achievement. Ten-fold cross-validation with mean squared error was employed to determine the elastic net regularization parameter. Among 162 TIMSS variables explored, 12 student and 5 teacher variables were selected in the elastic net model, and the prediction accuracy, sensitivity, and specificity were 76.06, 70.23, and 80.34%, respectively. This study showed that the elastic net method can be successfully applied to educational large-scale data by selecting a subset of variables with reasonable prediction accuracy and finding new variables to predict students' mathematics achievement. Newly found variables via machine learning can shed light on the existing theories from a totally different perspective, which in turn propagates creation of a new theory or complement of existing ones. This study also examined the current scale development convention from a machine learning perspective.

  8. TIMSS 2011 Student and Teacher Predictors for Mathematics Achievement Explored and Identified via Elastic Net.

    Science.gov (United States)

    Yoo, Jin Eun

    2018-01-01

    A substantial body of research has been conducted on variables relating to students' mathematics achievement with TIMSS. However, most studies have employed conventional statistical methods, and have focused on selected few indicators instead of utilizing hundreds of variables TIMSS provides. This study aimed to find a prediction model for students' mathematics achievement using as many TIMSS student and teacher variables as possible. Elastic net, the selected machine learning technique in this study, takes advantage of both LASSO and ridge in terms of variable selection and multicollinearity, respectively. A logistic regression model was also employed to predict TIMSS 2011 Korean 4th graders' mathematics achievement. Ten-fold cross-validation with mean squared error was employed to determine the elastic net regularization parameter. Among 162 TIMSS variables explored, 12 student and 5 teacher variables were selected in the elastic net model, and the prediction accuracy, sensitivity, and specificity were 76.06, 70.23, and 80.34%, respectively. This study showed that the elastic net method can be successfully applied to educational large-scale data by selecting a subset of variables with reasonable prediction accuracy and finding new variables to predict students' mathematics achievement. Newly found variables via machine learning can shed light on the existing theories from a totally different perspective, which in turn propagates creation of a new theory or complement of existing ones. This study also examined the current scale development convention from a machine learning perspective.

  9. Implementing an ultrasound-based protocol for diagnosingappendicitis while maintaining diagnostic accuracy

    International Nuclear Information System (INIS)

    Van Atta, Angela J.; Baskin, Henry J.; Maves, Connie K.; Dansie, David M.; Rollins, Michael D.; Bolte, Robert G.; Mundorff, Michael B.; Andrews, Seth P.

    2015-01-01

    The use of ultrasound to diagnose appendicitis in children is well-documented but not universally employed outside of pediatric academic centers, especially in the United States. Various obstacles make it difficult for institutions and radiologists to abandon a successful and accurate CT-based imaging protocol in favor of a US-based protocol. To describe how we overcame barriers to implementing a US-based appendicitis protocol among a large group of nonacademic private-practice pediatric radiologists while maintaining diagnostic accuracy and decreasing medical costs. A multidisciplinary team of physicians (pediatric surgery, pediatric emergency medicine and pediatric radiology) approved an imaging protocol using US as the primary modality to evaluate suspected appendicitis with CT for equivocal cases. The protocol addressed potential bias against US and accommodated for institutional limitations of radiologist and sonographer experience and availability. Radiologists coded US reports according to the probability of appendicitis. Radiology reports were compared with clinical outcomes to assess diagnostic accuracy. During the study period, physicians from each group were apprised of the interim US protocol accuracy results. Problematic cases were discussed openly. A total of 512 children were enrolled and underwent US for evaluation of appendicitis over a 30-month period. Diagnostic accuracy was comparable to published results for combined US/CT protocols. Comparing the first 12 months to the last 12 months of the study period, the proportion of children achieving an unequivocal US result increased from 30% (51/169) to 53% (149/282) and the proportion of children undergoing surgery based solely on US findings increased from 55% (23/42) to 84% (92/109). Overall, 63% (325/512) of patients in the protocol did not require a CT. Total patient costs were reduced by $30,182 annually. We overcame several barriers to implementing a US protocol. During the study period our

  10. Implementing an ultrasound-based protocol for diagnosingappendicitis while maintaining diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Van Atta, Angela J. [University of Utah School of Medicine, Salt Lake City, UT (United States); Baskin, Henry J.; Maves, Connie K.; Dansie, David M. [Primary Children' s Hospital, Department of Radiology, Salt Lake City, UT (United States); Rollins, Michael D. [University of Utah School of Medicine, Department of Surgery, Division of Pediatric Surgery, Salt Lake City, UT (United States); Bolte, Robert G. [University of Utah School of Medicine, Department of Pediatrics, Division of Pediatric Emergency Medicine, Salt Lake City, UT (United States); Mundorff, Michael B.; Andrews, Seth P. [Primary Children' s Hospital, Systems Improvement, Salt Lake City, UT (United States)

    2015-05-01

    The use of ultrasound to diagnose appendicitis in children is well-documented but not universally employed outside of pediatric academic centers, especially in the United States. Various obstacles make it difficult for institutions and radiologists to abandon a successful and accurate CT-based imaging protocol in favor of a US-based protocol. To describe how we overcame barriers to implementing a US-based appendicitis protocol among a large group of nonacademic private-practice pediatric radiologists while maintaining diagnostic accuracy and decreasing medical costs. A multidisciplinary team of physicians (pediatric surgery, pediatric emergency medicine and pediatric radiology) approved an imaging protocol using US as the primary modality to evaluate suspected appendicitis with CT for equivocal cases. The protocol addressed potential bias against US and accommodated for institutional limitations of radiologist and sonographer experience and availability. Radiologists coded US reports according to the probability of appendicitis. Radiology reports were compared with clinical outcomes to assess diagnostic accuracy. During the study period, physicians from each group were apprised of the interim US protocol accuracy results. Problematic cases were discussed openly. A total of 512 children were enrolled and underwent US for evaluation of appendicitis over a 30-month period. Diagnostic accuracy was comparable to published results for combined US/CT protocols. Comparing the first 12 months to the last 12 months of the study period, the proportion of children achieving an unequivocal US result increased from 30% (51/169) to 53% (149/282) and the proportion of children undergoing surgery based solely on US findings increased from 55% (23/42) to 84% (92/109). Overall, 63% (325/512) of patients in the protocol did not require a CT. Total patient costs were reduced by $30,182 annually. We overcame several barriers to implementing a US protocol. During the study period our

  11. Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling.

    Science.gov (United States)

    Li, Wei; Liu, Jian Guo; Zhu, Ning Hua

    2015-04-15

    We report a novel optical vector network analyzer (OVNA) with improved accuracy based on polarization modulation and stimulated Brillouin scattering (SBS) assisted polarization pulling. The beating between adjacent higher-order optical sidebands which are generated because of the nonlinearity of an electro-optic modulator (EOM) introduces considerable error to the OVNA. In our scheme, the measurement error is significantly reduced by removing the even-order optical sidebands using polarization discrimination. The proposed approach is theoretically analyzed and experimentally verified. The experimental results show that the accuracy of the OVNA is greatly improved compared to a conventional OVNA.

  12. High Accuracy Mass Measurement of the Dripline Nuclides $^{12,14}$Be

    CERN Multimedia

    2002-01-01

    State-of-the art, three-body nuclear models that describe halo nuclides require the binding energy of the halo neutron(s) as a critical input parameter. In the case of $^{14}$Be, the uncertainty of this quantity is currently far too large (130 keV), inhibiting efforts at detailed theoretical description. A high accuracy, direct mass deterlnination of $^{14}$Be (as well as $^{12}$Be to obtain the two-neutron separation energy) is therefore required. The measurement can be performed with the MISTRAL spectrometer, which is presently the only possible solution due to required accuracy (10 keV) and short half-life (4.5 ms). Having achieved a 5 keV uncertainty for the mass of $^{11}$Li (8.6 ms), MISTRAL has proved the feasibility of such measurements. Since the current ISOLDE production rate of $^{14}$Be is only about 10/s, the installation of a beam cooler is underway in order to improve MISTRAL transmission. The projected improvement of an order of magnitude (in each transverse direction) will make this measureme...

  13. How does language model size effects speech recognition accuracy for the Turkish language?

    Directory of Open Access Journals (Sweden)

    Behnam ASEFİSARAY

    2016-05-01

    Full Text Available In this paper we aimed at investigating the effect of Language Model (LM size on Speech Recognition (SR accuracy. We also provided details of our approach for obtaining the LM for Turkish. Since LM is obtained by statistical processing of raw text, we expect that by increasing the size of available data for training the LM, SR accuracy will improve. Since this study is based on recognition of Turkish, which is a highly agglutinative language, it is important to find out the appropriate size for the training data. The minimum required data size is expected to be much higher than the data needed to train a language model for a language with low level of agglutination such as English. In the experiments we also tried to adjust the Language Model Weight (LMW and Active Token Count (ATC parameters of LM as these are expected to be different for a highly agglutinative language. We showed that by increasing the training data size to an appropriate level, the recognition accuracy improved on the other hand changes on LMW and ATC did not have a positive effect on Turkish speech recognition accuracy.

  14. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Youshan, E-mail: ysliu@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Teng, Jiwen, E-mail: jwteng@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Xu, Tao, E-mail: xutao@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101 (China); Badal, José, E-mail: badal@unizar.es [Physics of the Earth, Sciences B, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)

    2017-05-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  15. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    International Nuclear Information System (INIS)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José

    2017-01-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  16. Integrated three-dimensional digital assessment of accuracy of anterior tooth movement using clear aligners

    OpenAIRE

    Zhang, Xiao-Juan; He, Li; Guo, Hong-Ming; Tian, Jie; Bai, Yu-Xing; Li, Song

    2015-01-01

    Objective To assess the accuracy of anterior tooth movement using clear aligners in integrated three-dimensional digital models. Methods Cone-beam computed tomography was performed before and after treatment with clear aligners in 32 patients. Plaster casts were laser-scanned for virtual setup and aligner fabrication. Differences in predicted and achieved root and crown positions of anterior teeth were compared on superimposed maxillofacial digital images and virtual models and analyzed by St...

  17. Promoting Creative Thinking Ability Using Contextual Learning Model in Technical Drawing Achievement

    Science.gov (United States)

    Mursid, R.

    2018-02-01

    The purpose of this study is to determine whether there is influence; the differences in the results between students that learn drawing techniques taught by the Contextual Innovative Model (CIM) and taught by Direct Instructional Model (DIM), the differences in achievement among students of technical drawing that have High Creative Thinking Ability (HCTA) with Low Creative Thinking Ability (LCTA), and the interaction between the learning model with the ability to think creatively to the achievement technical drawing. Quasi-experimental research method. Results of research appoint that: the achievement of students that learned technical drawing by using CIM is higher than the students that learned technical drawing by using DIM, the achievement of students of technical drawings HCTA is higher than the achievement of students who have technical drawing LCTA, and there are interactions between the use of learning models and creative thinking abilities in influencing student achievement technical drawing.

  18. Testing the accuracy and stability of spectral methods in numerical relativity

    International Nuclear Information System (INIS)

    Boyle, Michael; Lindblom, Lee; Pfeiffer, Harald P.; Scheel, Mark A.; Kidder, Lawrence E.

    2007-01-01

    The accuracy and stability of the Caltech-Cornell pseudospectral code is evaluated using the Kidder, Scheel, and Teukolsky (KST) representation of the Einstein evolution equations. The basic 'Mexico City tests' widely adopted by the numerical relativity community are adapted here for codes based on spectral methods. Exponential convergence of the spectral code is established, apparently limited only by numerical roundoff error or by truncation error in the time integration. A general expression for the growth of errors due to finite machine precision is derived, and it is shown that this limit is achieved here for the linear plane-wave test

  19. Accuracy of determination of trace metals in soil and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Ackers, C J [Central Regional Council, St. Ninians Road, Stirling FK8 2 HB (United Kingdom); Gardner, M J [WRc, Henley Road, Medmenham, Marlow SL7 2HD (United Kingdom); Ravenscroft, J E [WRc, Henley Road, Medmenham, Marlow SL7 2HD (United Kingdom)

    1996-03-01

    Errors in the analysis of liquid samples are often large enough to be important. For solid materials, additional potential complications arise in separating the determinand from the sample matrix and in controlling possible interferences from co-extracted species. These considerations have led to the development of a stepwise, co-ordinated approach by which a group of laboratories have achieved predefined standards of accuracy. Sample digestion has been examined. The analysis of digests has then been addressed; the control of analytical precision has been emphasised. Finally, a demonstration of overall comparability has been undertaken. The results are presented. (orig.). With 1 fig., 2 tabs.

  20. Higher order harmonics of reactor neutron equation

    International Nuclear Information System (INIS)

    Li Fu; Hu Yongming; Luo Zhengpei

    1996-01-01

    The flux mapping method using the higher order harmonics of the neutron equation is proposed. Based on the bi-orthogonality of the higher order harmonics, the process and formulas for higher order harmonics calculation are derived via the source iteration method with source correction. For the first time, not only any order harmonics for up-to-3-dimensional geometry are achieved, but also the preliminary verification to the capability for flux mapping have been carried out

  1. Metric Accuracy Evaluation of Dense Matching Algorithms in Archeological Applications

    Directory of Open Access Journals (Sweden)

    C. Re

    2011-12-01

    Full Text Available In the cultural heritage field the recording and documentation of small and medium size objects with very detailed Digital Surface Models (DSM is readily possible by through the use of high resolution and high precision triangulation laser scanners. 3D surface recording of archaeological objects can be easily achieved in museums; however, this type of record can be quite expensive. In many cases photogrammetry can provide a viable alternative for the generation of DSMs. The photogrammetric procedure has some benefits with respect to laser survey. The research described in this paper sets out to verify the reconstruction accuracy of DSMs of some archaeological artifacts obtained by photogrammetric survey. The experimentation has been carried out on some objects preserved in the Petrie Museum of Egyptian Archaeology at University College London (UCL. DSMs produced by two photogrammetric software packages are compared with the digital 3D model obtained by a state of the art triangulation color laser scanner. Intercomparison between the generated DSM has allowed an evaluation of metric accuracy of the photogrammetric approach applied to archaeological documentation and of precision performances of the two software packages.

  2. A synthetic visual plane algorithm for visibility computation in consideration of accuracy and efficiency

    Science.gov (United States)

    Yu, Jieqing; Wu, Lixin; Hu, Qingsong; Yan, Zhigang; Zhang, Shaoliang

    2017-12-01

    Visibility computation is of great interest to location optimization, environmental planning, ecology, and tourism. Many algorithms have been developed for visibility computation. In this paper, we propose a novel method of visibility computation, called synthetic visual plane (SVP), to achieve better performance with respect to efficiency, accuracy, or both. The method uses a global horizon, which is a synthesis of line-of-sight information of all nearer points, to determine the visibility of a point, which makes it an accurate visibility method. We used discretization of horizon to gain a good performance in efficiency. After discretization, the accuracy and efficiency of SVP depends on the scale of discretization (i.e., zone width). The method is more accurate at smaller zone widths, but this requires a longer operating time. Users must strike a balance between accuracy and efficiency at their discretion. According to our experiments, SVP is less accurate but more efficient than R2 if the zone width is set to one grid. However, SVP becomes more accurate than R2 when the zone width is set to 1/24 grid, while it continues to perform as fast or faster than R2. Although SVP performs worse than reference plane and depth map with respect to efficiency, it is superior in accuracy to these other two algorithms.

  3. Geoid undulation accuracy

    Science.gov (United States)

    Rapp, Richard H.

    1993-01-01

    The determination of the geoid and equipotential surface of the Earth's gravity field, has long been of interest to geodesists and oceanographers. The geoid provides a surface to which the actual ocean surface can be compared with the differences implying information on the circulation patterns of the oceans. For use in oceanographic applications the geoid is ideally needed to a high accuracy and to a high resolution. There are applications that require geoid undulation information to an accuracy of +/- 10 cm with a resolution of 50 km. We are far from this goal today but substantial improvement in geoid determination has been made. In 1979 the cumulative geoid undulation error to spherical harmonic degree 20 was +/- 1.4 m for the GEM10 potential coefficient model. Today the corresponding value has been reduced to +/- 25 cm for GEM-T3 or +/- 11 cm for the OSU91A model. Similar improvements are noted by harmonic degree (wave-length) and in resolution. Potential coefficient models now exist to degree 360 based on a combination of data types. This paper discusses the accuracy changes that have taken place in the past 12 years in the determination of geoid undulations.

  4. Accuracy of Referring Provider and Endoscopist Impressions of Colonoscopy Indication.

    Science.gov (United States)

    Naveed, Mariam; Clary, Meredith; Ahn, Chul; Kubiliun, Nisa; Agrawal, Deepak; Cryer, Byron; Murphy, Caitlin; Singal, Amit G

    2017-07-01

    Background: Referring provider and endoscopist impressions of colonoscopy indication are used for clinical care, reimbursement, and quality reporting decisions; however, the accuracy of these impressions is unknown. This study assessed the sensitivity, specificity, positive and negative predictive value, and overall accuracy of methods to classify colonoscopy indication, including referring provider impression, endoscopist impression, and administrative algorithm compared with gold standard chart review. Methods: We randomly sampled 400 patients undergoing a colonoscopy at a Veterans Affairs health system between January 2010 and December 2010. Referring provider and endoscopist impressions of colonoscopy indication were compared with gold-standard chart review. Indications were classified into 4 mutually exclusive categories: diagnostic, surveillance, high-risk screening, or average-risk screening. Results: Of 400 colonoscopies, 26% were performed for average-risk screening, 7% for high-risk screening, 26% for surveillance, and 41% for diagnostic indications. Accuracy of referring provider and endoscopist impressions of colonoscopy indication were 87% and 84%, respectively, which were significantly higher than that of the administrative algorithm (45%; P 90%) for determining screening (vs nonscreening) indication, but specificity of the administrative algorithm was lower (40.3%) compared with referring provider (93.7%) and endoscopist (84.0%) impressions. Accuracy of endoscopist, but not referring provider, impression was lower in patients with a family history of colon cancer than in those without (65% vs 84%; P =.001). Conclusions: Referring provider and endoscopist impressions of colonoscopy indication are both accurate and may be useful data to incorporate into algorithms classifying colonoscopy indication. Copyright © 2017 by the National Comprehensive Cancer Network.

  5. Acquired Apraxia of Speech: The Effects of Repeated Practice and Rate/Rhythm Control Treatments on Sound Production Accuracy

    Science.gov (United States)

    Wambaugh, Julie L.; Nessler, Christina; Cameron, Rosalea; Mauszycki, Shannon C.

    2012-01-01

    Purpose: This investigation was designed to elucidate the effects of repeated practice treatment on sound production accuracy in individuals with apraxia of speech (AOS) and aphasia. A secondary purpose was to determine if the addition of rate/rhythm control to treatment provided further benefits beyond those achieved with repeated practice.…

  6. Filipino students' reported parental socialization of academic achievement by socioeconomic group.

    Science.gov (United States)

    Bernardo, Allan B I

    2009-10-01

    Academic achievement of students differs by socioeconomic group. Parents' socialization of academic achievement in their children was explored in self-reports of 241 students from two socioeconomic status (SES) groups in the Philippines, using a scale developed by Bempechat, et al. Students in the upper SES group had higher achievement than their peers in the middle SES group, but had lower scores on most dimensions of parental socialization of academic achievement. Regression analyses indicate that reported parental attempts to encourage more effort to achieve was associated with lower achievement in students with upper SES.

  7. Mergers in European Higher Education

    DEFF Research Database (Denmark)

    Rocha, Vera; Teixeira, Pedro N.; Biscaia, Ricardo

    2018-01-01

    In recent years, mergers have been widely used in higher education (HE) to achieve a variety of purposes, ranging from problems of institutional fragmentation to the lack of financial and academic viability, and low institutional efficiency and quality. However, despite a large stream of HE...... literature addressing those issues, there has been little attention to the link between funding-related problems and merger processes. Moreover, there is very little comparative research among different higher education systems experiencing those processes. In this paper, we map and characterize the recent...

  8. Accuracy of tablet splitting and liquid measurements: an examination of who, what and how.

    Science.gov (United States)

    Abu-Geras, Dana; Hadziomerovic, Dunja; Leau, Andrew; Khan, Ramzan Nazim; Gudka, Sajni; Locher, Cornelia; Razaghikashani, Maryam; Lim, Lee Yong

    2017-05-01

    To examine factors that might affect the ability of patients to accurately halve tablets or measure a 5-ml liquid dose. Eighty-eight participants split four different placebo tablets by hand and using a tablet splitter, while 85 participants measured 5 ml of water, 0.5% methylcellulose (MC) and 1% MC using a syringe and dosing cup. Accuracy of manipulation was determined by mass measurements. The general population was less able than pharmacy students to break tablets into equal parts, although age, gender and prior experience were insignificant factors. Greater accuracy of tablet halving was observed with tablet splitter, with scored tablets split more equally than unscored tablets. Tablet size did not affect the accuracy of splitting. However, >25% of small scored tablets failed to be split by hand, and 41% of large unscored tablets were split into >2 portions in the tablet splitter. In liquid measurement, the syringe provided more accurate volume measurements than the dosing cup, with higher accuracy observed for the more viscous MC solutions than water. Formulation characteristics and manipulation technique have greater influences on the accuracy of medication modification and should be considered in off-label drug use in vulnerable populations. © 2016 Royal Pharmaceutical Society.

  9. The Assessment of Quality, Accuracy, and Readability of Online Educational Resources for Platelet-Rich Plasma.

    Science.gov (United States)

    Ghodasra, Jason H; Wang, Dean; Jayakar, Rohit G; Jensen, Andrew R; Yamaguchi, Kent T; Hegde, Vishal V; Jones, Kristofer J

    2018-01-01

    To critically evaluate the quality, accuracy, and readability of readily available Internet patient resources for platelet-rich plasma (PRP) as a treatment modality for musculoskeletal injuries. Using the 3 most commonly used Internet search engines (Google, Bing, Yahoo), the search term "platelet rich plasma" was entered, and the first 50 websites from each search were reviewed. The website's affiliation was identified. Quality was evaluated using 25-point criteria based on guidelines published by the American Academy of Orthopaedic Surgeons, and accuracy was assessed with a previously described 12-point grading system by 3 reviewers independently. Readability was evaluated using the Flesch-Kincaid (FK) grade score. A total of 46 unique websites were identified and evaluated. The average quality and accuracy was 9.4 ± 3.4 (maximum 25) and 7.9 ± 2.3 (maximum 12), respectively. The average FK grade level was 12.6 ± 2.4, which is several grades higher than the recommended eighth-grade level for patient education material. Ninety-one percent (42/46) of websites were authored by physicians, and 9% (4/46) contained commercial bias. Mean quality was significantly greater in websites authored by health care providers (9.8 ± 3.1 vs 5.9 ± 4.7, P = .029) and in websites without commercial bias (9.9 ± 3.1 vs 4.5 ± 3.2, P = .002). Mean accuracy was significantly lower in websites authored by health care providers (7.6 ± 2.2 vs 11.0 ± 1.2, P = .004). Only 24% (11/46) reported that PRP remains an investigational treatment. The accuracy and quality of online patient resources for PRP are poor, and the information overestimates the reading ability of the general population. Websites authored by health care providers had higher quality but lower accuracy. Additionally, the majority of websites do not identify PRP as an experimental treatment, which may fail to provide appropriate patient understanding and expectations. Physicians should educate patients that many online

  10. Accuracy assessment of digital surface models based on a small format action camera in a North-East Hungarian sample area

    Directory of Open Access Journals (Sweden)

    Barkóczi Norbert

    2017-01-01

    Full Text Available The use of the small format digital action cameras has been increased in the past few years in various applications, due to their low budget cost, flexibility and reliability. We can mount these small cameras on several devices, like unmanned air vehicles (UAV and create 3D models with photogrammetric technique. Either creating or receiving these kind of databases, one of the most important questions will always be that how accurate these systems are, what the accuracy that can be achieved is. We gathered the overlapping images, created point clouds, and then we generated 21 different digital surface models (DSM. The differences based on the number of images we used in each model, and on the flight height. We repeated the flights three times, to compare the same models with each other. Besides, we measured 129 reference points with RTK-GPS, to compare the height differences with the extracted cell values from each DSM. The results showed that higher flight height has lower errors, and the optimal air base distance is one fourth of the flying height in both cases. The lowest median was 0.08 meter, at the 180 meter flight, 50 meter air base distance model. Raising the number of images does not increase the overall accuracy. The connection between the amount of error and distance from the nearest GCP is not linear in every case.

  11. Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery

    Directory of Open Access Journals (Sweden)

    Chinsu Lin

    2015-05-01

    Full Text Available Changes of Land Use and Land Cover (LULC affect atmospheric, climatic, and biological spheres of the earth. Accurate LULC map offers detail information for resources management and intergovernmental cooperation to debate global warming and biodiversity reduction. This paper examined effects of pansharpening and atmospheric correction on LULC classification. Object-Based Support Vector Machine (OB-SVM and Pixel-Based Maximum Likelihood Classifier (PB-MLC were applied for LULC classification. Results showed that atmospheric correction is not necessary for LULC classification if it is conducted in the original multispectral image. Nevertheless, pansharpening plays much more important roles on the classification accuracy than the atmospheric correction. It can help to increase classification accuracy by 12% on average compared to the ones without pansharpening. PB-MLC and OB-SVM achieved similar classification rate. This study indicated that the LULC classification accuracy using PB-MLC and OB-SVM is 82% and 89% respectively. A combination of atmospheric correction, pansharpening, and OB-SVM could offer promising LULC maps from WorldView-2 multispectral and panchromatic images.

  12. Improving Accuracy of Intrusion Detection Model Using PCA and optimized SVM

    Directory of Open Access Journals (Sweden)

    Sumaiya Thaseen Ikram

    2016-06-01

    Full Text Available Intrusion detection is very essential for providing security to different network domains and is mostly used for locating and tracing the intruders. There are many problems with traditional intrusion detection models (IDS such as low detection capability against unknown network attack, high false alarm rate and insufficient analysis capability. Hence the major scope of the research in this domain is to develop an intrusion detection model with improved accuracy and reduced training time. This paper proposes a hybrid intrusiondetection model by integrating the principal component analysis (PCA and support vector machine (SVM. The novelty of the paper is the optimization of kernel parameters of the SVM classifier using automatic parameter selection technique. This technique optimizes the punishment factor (C and kernel parameter gamma (γ, thereby improving the accuracy of the classifier and reducing the training and testing time. The experimental results obtained on the NSL KDD and gurekddcup dataset show that the proposed technique performs better with higher accuracy, faster convergence speed and better generalization. Minimum resources are consumed as the classifier input requires reduced feature set for optimum classification. A comparative analysis of hybrid models with the proposed model is also performed.

  13. Accuracy of 3 different impression techniques for internal connection angulated implants.

    Science.gov (United States)

    Tsagkalidis, George; Tortopidis, Dimitrios; Mpikos, Pavlos; Kaisarlis, George; Koidis, Petros

    2015-10-01

    Making implant impressions with different angulations requires a more precise and time-consuming impression technique. The purpose of this in vitro study was to compare the accuracy of nonsplinted, splinted, and snap-fit impression techniques of internal connection implants with different angulations. An experimental device was used to allow a clinical simulation of impression making by means of open and closed tray techniques. Three different impression techniques (nonsplinted, acrylic-resin splinted, and indirect snap-fit) for 6 internal-connected implants at different angulations (0, 15, 25 degrees) were examined using polyether. Impression accuracy was evaluated by measuring the differences in 3-dimensional (3D) position deviations between the implant body/impression coping before the impression procedure and the coping/laboratory analog positioned within the impression, using a coordinate measuring machine. Data were analyzed by 2-way ANOVA. Means were compared with the least significant difference criterion at Pimpression technique exhibited a higher accuracy than the other techniques studied when increased implant angulations at 25 degrees were involved. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Three-dimensional accuracy of different impression techniques for dental implants

    Directory of Open Access Journals (Sweden)

    Mohammadreza Nakhaei

    2015-01-01

    Full Text Available Background: Accurate impression making is an essential prerequisite for achieving a passive fit between the implant and the superstructure. The aim of this in vitro study was to compare the three-dimensional accuracy of open-tray and three closed-tray impression techniques. Materials and Methods: Three acrylic resin mandibular master models with four parallel implants were used: Biohorizons (BIO, Straumann tissue-level (STL, and Straumann bone-level (SBL. Forty-two putty/wash polyvinyl siloxane impressions of the models were made using open-tray and closed-tray techniques. Closed-tray impressions were made using snap-on (STL model, transfer coping (TC (BIO model and TC plus plastic cap (TC-Cap (SBL model. The impressions were poured with type IV stone, and the positional accuracy of the implant analog heads in each dimension (x, y and z axes, and the linear displacement (ΔR were evaluated using a coordinate measuring machine. Data were analyzed using ANOVA and post-hoc Tukey tests (α = 0.05. Results: The ΔR values of the snap-on technique were significantly lower than those of TC and TC-Cap techniques (P < 0.001. No significant differences were found between closed and open impression techniques for STL in Δx, Δy, Δz and ΔR values (P = 0.444, P = 0.181, P = 0.835 and P = 0.911, respectively. Conclusion: Considering the limitations of this study, the snap-on implant-level impression technique resulted in more three-dimensional accuracy than TC and TC-Cap, but it was similar to the open-tray technique.

  15. Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package

    International Nuclear Information System (INIS)

    Wallace, Jonathan; Wang, Martha O; Kim, Kyobum

    2014-01-01

    This study tested the accuracy of tissue engineering scaffold rendering via the continuous digital light processing (cDLP) light-based additive manufacturing technology. High accuracy (i.e., <50 µm) allows the designed performance of features relevant to three scale spaces: cell-scaffold, scaffold-tissue, and tissue-organ interactions. The biodegradable polymer poly (propylene fumarate) was used to render highly accurate scaffolds through the use of a dye-initiator package, TiO 2  and bis (2,4,6-trimethylbenzoyl)phenylphosphine oxide. This dye-initiator package facilitates high accuracy in the Z dimension. Linear, round, and right-angle features were measured to gauge accuracy. Most features showed accuracies between 5.4–15% of the design. However, one feature, an 800 µm diameter circular pore, exhibited a 35.7% average reduction of patency. Light scattered in the x, y directions by the dye may have reduced this feature's accuracy. Our new fine-grained understanding of accuracy could be used to make further improvements by including corrections in the scaffold design software. Successful cell attachment occurred with both canine and human mesenchymal stem cells (MSCs). Highly accurate cDLP scaffold rendering is critical to the design of scaffolds that both guide bone regeneration and that fully resorb. Scaffold resorption must occur for regenerated bone to be remodeled and, thereby, achieve optimal strength. (paper)

  16. Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package.

    Science.gov (United States)

    Wallace, Jonathan; Wang, Martha O; Thompson, Paul; Busso, Mallory; Belle, Vaijayantee; Mammoser, Nicole; Kim, Kyobum; Fisher, John P; Siblani, Ali; Xu, Yueshuo; Welter, Jean F; Lennon, Donald P; Sun, Jiayang; Caplan, Arnold I; Dean, David

    2014-03-01

    This study tested the accuracy of tissue engineering scaffold rendering via the continuous digital light processing (cDLP) light-based additive manufacturing technology. High accuracy (i.e., <50 µm) allows the designed performance of features relevant to three scale spaces: cell-scaffold, scaffold-tissue, and tissue-organ interactions. The biodegradable polymer poly (propylene fumarate) was used to render highly accurate scaffolds through the use of a dye-initiator package, TiO2 and bis (2,4,6-trimethylbenzoyl)phenylphosphine oxide. This dye-initiator package facilitates high accuracy in the Z dimension. Linear, round, and right-angle features were measured to gauge accuracy. Most features showed accuracies between 5.4-15% of the design. However, one feature, an 800 µm diameter circular pore, exhibited a 35.7% average reduction of patency. Light scattered in the x, y directions by the dye may have reduced this feature's accuracy. Our new fine-grained understanding of accuracy could be used to make further improvements by including corrections in the scaffold design software. Successful cell attachment occurred with both canine and human mesenchymal stem cells (MSCs). Highly accurate cDLP scaffold rendering is critical to the design of scaffolds that both guide bone regeneration and that fully resorb. Scaffold resorption must occur for regenerated bone to be remodeled and, thereby, achieve optimal strength.

  17. Coaching bioethically with the purpose of achieving sustainable development

    Directory of Open Access Journals (Sweden)

    Striedinger-Meléndez, Martha Patricia

    2016-12-01

    Full Text Available The present article analyzes the problematic of teaching and learning bioethics in the context of higher education, with an emphasis in medicine and aiming towards sustainable development. The objective is to expose that one of the alternatives to get to know bioethics in higher education institutions, is to coach each community bioethically. This means that the educator must be a role model for the students: not only teaching, but, living bioethically. In the beginning, it makes reference to the general aspects of bioethics and sustainable development to explain the evolution of these concepts, its situation in the present and the challenges of the future. Further, it focuses on the methodological strategies in the process of educating bio ethically, directed in leading students of higher education institutions with the purpose of achieving sustainable development. Yet, not achieving it in a traditional manner, since sustainable development also refers to wellbeing. Thus, coaching bioethically, which improves the way society functions. The conclusion is that institutions must give educators and students the tools for problem solving the priorities of humanity, such sustainable development. This can be achieved through bioethics.

  18. The association between educational achievements, career aspirations, achievement motives and oral hygiene behavior among dental students of Udaipur, India.

    Science.gov (United States)

    Asawa, Kailash; Chaturvedi, Pulkit; Tak, Mridula; Nagarajappa, Ramesh; Bhat, Nagesh; Bapat, Salil; Gupta, Vivek; Jalihal, Sagar

    2014-10-01

    There are several factors which influence oral hygiene behavior of an individual. Educational achievements, career aspirations and achievement motives of individuals are some of those factors. The objective of this study was to investigate whether educational achievements, career aspirations and achievement motives have associations with oral hygiene behavior among dental students of Udaipur, India. A descriptive cross-sectional study was conducted among all (n=200) 1st year dental students from all dental colleges of Udaipur City, India. Self-administered structured questions were used to assess their educational achievements, career aspirations and oral hygiene behavior (OHB). Achievement motives were assessed using Achievement Motive Scale developed by Lang and Fries (2006). Chi-square test and multivariate logistic regression tests were used in data analysis. Confidence level and level of significance were set at 95% and 5% respectively. Students with better educational achievements undergone regular dental check-up (30.48%) (p=0.03) and used other oral hygiene aids (90.24%) (p=0.01). Tooth brushing frequency, time and replacement time of tooth brush were found to be significantly associated with career aspiration (p=0.007; p=0.002; p=0.00 respectively). Achievement motives did not have statistically significant association with oral hygiene behavior. Educational achievements and career aspirations appear to be associated with oral hygiene behavior of young dental students. Students with higher career aspirations practiced better oral hygiene behavior. There was no significant relationship between achievement motives and oral hygiene behavior.

  19. Comparison of accuracy of fibrosis degree classifications by liver biopsy and non-invasive tests in chronic hepatitis C.

    Science.gov (United States)

    Boursier, Jérôme; Bertrais, Sandrine; Oberti, Frédéric; Gallois, Yves; Fouchard-Hubert, Isabelle; Rousselet, Marie-Christine; Zarski, Jean-Pierre; Calès, Paul

    2011-11-30

    Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test.

  20. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2016-12-01

    Full Text Available Using mobile smart devices to provide urban location-based services (LBS with sub-meter-level accuracy (around 0.5 m is a major application field for future global navigation satellite system (GNSS development. Real-time kinematic (RTK positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10–20 m (achieved by the standard positioning services to about 3–5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50–80 km/h mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS were better than 0.15 m (horizontal and 0.25 m (vertical for the static test, and 0.30 m (horizontal and 0.45 m (vertical for the kinematic test.

  1. Manipulating Atoms with Light Achievements and Perspectives

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    During the last few decades spectacular progress has been achieved in the control of atomic systems by light. It will be shown how it is possible to use the basic conservation laws in atom-photon interactions for polarizing atoms, for trapping them, for cooling them to extremely low temperatures, in the microkelvin, and even in the nanokelvin range. A review will be given of recent advances in this field and of new applications, including atomic clocks with very high relative stability and accuracy, atomic interferometers allowing precise measurement of rotation speeds and gravitational fields, the realization of new states of matter such as Bose-Einstein condensates, matter waves and atom lasers, ultracold molecules. New perspectives opened by these results will be also briefly discussed.

  2. Test expectancy affects metacomprehension accuracy.

    Science.gov (United States)

    Thiede, Keith W; Wiley, Jennifer; Griffin, Thomas D

    2011-06-01

    Theory suggests that the accuracy of metacognitive monitoring is affected by the cues used to judge learning. Researchers have improved monitoring accuracy by directing attention to more appropriate cues; however, this is the first study to more directly point students to more appropriate cues using instructions regarding tests and practice tests. The purpose of the present study was to examine whether the accuracy metacognitive monitoring was affected by the nature of the test expected. Students (N= 59) were randomly assigned to one of two test expectancy groups (memory vs. inference). Then after reading texts, judging learning, completed both memory and inference tests. Test performance and monitoring accuracy were superior when students received the kind of test they had been led to expect rather than the unexpected test. Tests influence students' perceptions of what constitutes learning. Our findings suggest that this could affect how students prepare for tests and how they monitoring their own learning. ©2010 The British Psychological Society.

  3. Accuracy of visual wave observation from merchant ships and estimated wave loads; Accuracy of visual wave observation from merchant ships and estimated wave loads

    Energy Technology Data Exchange (ETDEWEB)

    Kawabe, H. [National Defense Academy, Kanagawa (Japan); Masaoka, K. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1998-06-01

    There is a large number of studies on discussions concerning accuracy of visual observation of waves and the correction method thereon. This paper give considerations on observation accuracy placing a viewpoint on that by merchant ships. Based on ship meteorological observation tables reported to the Meteorological Agency of Japan on meteorology in North Pacific during 14 years from 1976 to1989, wave observation values taken by merchant ships and observation ships were compared statistically to investigate the accuracy of visual wave observations carried out by merchant ships. With regard to wave heights, the observation values taken by the observation ships and the merchant ships have strong correlation, where the merchant ships evaluate them somewhat higher than the observation ships. Regarding wave cycles of wind waves, the merchant ships tend to have the observation values on longer cycle side. Correlation between the observations values by the merchant ships and the observation ships is weak both in wind waves and swells. There is not much of variation in accuracy of observations during daytime and at night performed by the merchant ships. It will be necessary in the future to give considerations on a method to correct the observation values on wave cycles taken by the merchant ship, and on a correction method in which both of the wave cycles and the wave heights are corrected simultaneously to make the observation values of the merchant ship equal to those of the observation ships. Thus, the observation values reported by general merchant ships in a large number every year will have to be utilized more effectively. 11 refs., 21 figs., 2 tabs.

  4. The impact of pushed output on accuracy and fluency of Iranian EFL learners’ speaking

    Directory of Open Access Journals (Sweden)

    Aram Reza Sadeghi Beniss

    2014-07-01

    Full Text Available The current study attempted to establish baseline quantitative data on the impacts of pushed output on two components of speaking (i.e., accuracy and fluency. To achieve this purpose, 30 female EFL learners were selected from a whole population pool of 50 based on the standard test of IELTS interview and were randomly assigned into an experimental group and a control group. The participants in the experimental group received pushed output treatment while the students in the control group received non-pushed output instruction. The data were collected through IELTS interview and then the interview of each participant was separately tape-recorded and later transcribed and coded to measure accuracy and fluency. Then, the independent samples t-test was employed to analyze the collected data. The results revealed that the experimental group outperformed the control group in accuracy. In contrast, findings substantiated that pushed output had no impact on fluency. The positive impact of pushed output demonstrated in this study is consistent with the hypothesized function of Swain’s (1985 pushed output. The results can provide some useful insights into syllabus design and English language teaching.

  5. Detection Accuracy of Collective Intelligence Assessments for Skin Cancer Diagnosis.

    Science.gov (United States)

    Kurvers, Ralf H J M; Krause, Jens; Argenziano, Giuseppe; Zalaudek, Iris; Wolf, Max

    2015-12-01

    Incidence rates of skin cancer are increasing globally, and the correct classification of skin lesions (SLs) into benign and malignant tissue remains a continuous challenge. A collective intelligence approach to skin cancer detection may improve accuracy. To evaluate the performance of 2 well-known collective intelligence rules (majority rule and quorum rule) that combine the independent conclusions of multiple decision makers into a single decision. Evaluations were obtained from 2 large and independent data sets. The first data set consisted of 40 experienced dermoscopists, each of whom independently evaluated 108 images of SLs during the Consensus Net Meeting of 2000. The second data set consisted of 82 medical professionals with varying degrees of dermatology experience, each of whom evaluated a minimum of 110 SLs. All SLs were evaluated via the Internet. Image selection of SLs was based on high image quality and the presence of histopathologic information. Data were collected from July through October 2000 for study 1 and from February 2003 through January 2004 for study 2 and evaluated from January 5 through August 7, 2015. For both collective intelligence rules, we determined the true-positive rate (ie, the hit rate or specificity) and the false-positive rate (ie, the false-alarm rate or 1 - sensitivity) and compared these rates with the performance of single decision makers. Furthermore, we evaluated the effect of group size on true- and false-positive rates. One hundred twenty-two medical professionals performed 16 029 evaluations. Use of either collective intelligence rule consistently outperformed single decision makers. The groups achieved an increased true-positive rate and a decreased false-positive rate. For example, individual decision makers in study 1, using the pattern analysis as diagnostic algorithm, achieved a true-positive rate of 0.83 and a false-positive rate of 0.17. Groups of 3 individuals achieved a true-positive rate of 0.91 and a

  6. Accuracy of prognosis estimates by four palliative care teams: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Costantini Massimo

    2002-03-01

    Full Text Available Abstract Background Prognosis estimates are used to access services, but are often inaccurate. This study aimed to determine the accuracy of giving a prognosis range. Methods and measurements A prospective cohort study in four multi-professional palliative care teams in England collected data on 275 consecutive cancer referrals who died. Prognosis estimates (minimum – maximum at referral, patient characteristics, were recorded by staff, and later compared with actual survival. Results Minimum survival estimates ranged Conclusions Offering a prognosis range has higher levels of accuracy (about double than traditional estimates, but is still very often inaccurate, except very close to death. Where possible clinicians should discuss scenarios with patients, rather than giving a prognosis range.

  7. The need for accurate deuterium analysis in a heavy water plant and its achievement

    International Nuclear Information System (INIS)

    Singh, R.R.; Pradhan, D.G.

    1979-01-01

    Importance of Mass Spectrometer as an analytical tool for deuterium analysis in heavy water plants is discussed. Some of the important requirements such as memory effect and H 3 + correction are described with reference to the Mass Spectrometer used at HWP (Talcher). For achieving the accuracy required, use of international deuterium standards and error estimation found by intercalibration are discussed. (auth.)

  8. "Even with Higher Education You Remain a Woman": A Gender Perspective on Higher Education and Social Change in the Toliara Region of Madagascar

    Science.gov (United States)

    Skjortnes, Marianne; Zachariassen, Heidi Holt

    2010-01-01

    This article investigates some issues related to gender and education based on a qualitative, empirical study of women in higher education in the Toliara region of Madagascar. The focus is on how women's participation in higher education has created changes in gender relations, and how these women have succeeded in achieving higher education. In…

  9. Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA

    Energy Technology Data Exchange (ETDEWEB)

    Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Vermilion, Christopher K.; Walsh, Jonathan R.; Zuberi, Saba [California Univ., Berkeley, CA (United States). Ernest Orlando Lawrence Berkeley National Laboratory; Hornig, Andrew [Washington Univ., Seattle, WA (United States). Dept. of Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2012-11-15

    We extend the lowest-order matching of tree-level matrix elements with parton showers to give a complete description at the next higher perturbative accuracy in {alpha}{sub s} at both small and large jet resolutions, which has not been achieved so far. This requires the combination of the higher-order resummation of large Sudakov logarithms at small values of the jet resolution variable with the full next-to-leading order (NLO) matrix-element corrections at large values. As a by-product, this combination naturally leads to a smooth connection of the NLO calculations for different jet multiplicities. In this paper, we focus on the general construction of our method and discuss its application to e{sup +}e{sup -} and pp collisions. We present first results of the implementation in the GENEVA Monte Carlo framework. We employ N-jettiness as the jet resolution variable, combining its next-to-next-to-leading logarithmic resummation with fully exclusive NLO matrix elements, and PYTHIA 8 as the backend for further parton showering and hadronization. For hadronic collisions, we take Drell-Yan production as an example to apply our construction. For e{sup +}e{sup -} {yields} jets, taking {alpha}{sub s}(m{sub Z}) = 0.1135 from fits to LEP thrust data, together with the PYTHIA 8 hadronization model, we obtain good agreement with LEP data for a variety of 2-jet observables.

  10. Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases

    International Nuclear Information System (INIS)

    Herfarth, K.K.; Debus, J.; Lohr, F.; Bahner, M.L.; Fritz, P.; Hoess, A.; Schlegel, W. Ph.D.; Wannenmacher, M.F.

    2000-01-01

    Purpose: Patients with liver metastases might benefit from high-dose conformal radiation therapy. A high accuracy of repositioning and a reduction of target movement are necessary for such an approach. The set-up accuracy of patients with liver metastases treated with stereotactic single dose radiation was evaluated. Methods and Materials: Twenty-four patients with liver metastases were treated with single dose radiation therapy on 26 occasions using a self-developed stereotactic frame. Liver movement was reduced by abdominal pressure. The effectiveness was evaluated under fluoroscopy. CT scans were performed on the planning day and directly before treatment. Representative reference marks were chosen and the coordinates were calculated. In addition, the target displacement was quantitatively evaluated after treatment. Results: Diaphragmal movement was reduced to median 7 mm (range: 3-13 mm). The final set-up accuracy of the body was limited to all of median 1.8 mm in latero-lateral direction (range: 0.3-5.0 mm) and 2.0 mm in anterior-posterior direction (0.8-3.8 mm). Deviations of the body in cranio-caudal direction were always less than the thickness of one CT slice (<5 mm). However, a repositioning was necessary in 16 occasions. The final target shift was median 1.6 mm (0.2-7.0 mm) in latero-lateral and 2.3 mm in anterior-posterior direction (0.0-6.3 mm). The median shift in cranio-caudal direction was 4.4 mm (0.0-10.0 mm). Conclusions: In patients with liver metastases, a high set-up accuracy of the body and the target can be achieved. This allows a high-dose focal radiotherapy of these lesions. However, a control CT scan should be performed directly before therapy to confirm set-up accuracy and possibly prompt necessary corrections

  11. Achievement in Boys' Schools 2010-12

    Science.gov (United States)

    Wylie, Cathy; Berg, Melanie

    2014-01-01

    This report explores the achievement of school leavers from state and state-integrated boys' schools. The analysis from 2010 to 2012 shows school leavers from state boys' schools had higher qualifications than their male counterparts who attended state co-educational schools. The research was carried out for the Association of Boys' Schools of New…

  12. The mathematical model accuracy estimation of the oil storage tank foundation soil moistening

    Science.gov (United States)

    Gildebrandt, M. I.; Ivanov, R. N.; Gruzin, AV; Antropova, L. B.; Kononov, S. A.

    2018-04-01

    The oil storage tanks foundations preparation technologies improvement is the relevant objective which achievement will make possible to reduce the material costs and spent time for the foundation preparing while providing the required operational reliability. The laboratory research revealed the nature of sandy soil layer watering with a given amount of water. The obtained data made possible developing the sandy soil layer moistening mathematical model. The performed estimation of the oil storage tank foundation soil moistening mathematical model accuracy showed the experimental and theoretical results acceptable convergence.

  13. High-accuracy mass determination of unstable nuclei with a Penning trap mass spectrometer

    CERN Multimedia

    2002-01-01

    The mass of a nucleus is its most fundamental property. A systematic study of nuclear masses as a function of neutron and proton number allows the observation of collective and single-particle effects in nuclear structure. Accurate mass data are the most basic test of nuclear models and are essential for their improvement. This is especially important for the astrophysical study of nuclear synthesis. In order to achieve the required high accuracy, the mass of ions captured in a Penning trap is determined via their cyclotron frequency $ \

  14. Test Expectancy Affects Metacomprehension Accuracy

    Science.gov (United States)

    Thiede, Keith W.; Wiley, Jennifer; Griffin, Thomas D.

    2011-01-01

    Background: Theory suggests that the accuracy of metacognitive monitoring is affected by the cues used to judge learning. Researchers have improved monitoring accuracy by directing attention to more appropriate cues; however, this is the first study to more directly point students to more appropriate cues using instructions regarding tests and…

  15. Higher-accuracy van der Waals density functional

    DEFF Research Database (Denmark)

    Lee, Kyuho; Murray, Éamonn D.; Kong, Lingzhu

    2010-01-01

    We propose a second version of the van der Waals density functional of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)], employing a more accurate semilocal exchange functional and the use of a large-N asymptote gradient correction in determining the vdW kernel. The predicted binding energy...

  16. Transthoracic CT-guided biopsy with multiplanar reconstruction image improves diagnostic accuracy of solitary pulmonary nodules

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Takenaka, Daisuke; Imai, Masatake; Ohbayashi, Chiho; Sugimura, Kazuro

    2004-01-01

    Objective: To evaluate the utility of multiplanar reconstruction (MPR) image for CT-guided biopsy and determine factors of influencing diagnostic accuracy and the pneumothorax rate. Materials and methods: 390 patients with 396 pulmonary nodules underwent transthoracic CT-guided aspiration biopsy (TNAB) and transthoracic CT-guided cutting needle core biopsy (TCNB) as follows: 250 solitary pulmonary nodules (SPNs) underwent conventional CT-guided biopsy (conventional method), 81 underwent CT-fluoroscopic biopsy (CT-fluoroscopic method) and 65 underwent conventional CT-guided biopsy in combination with MPR image (MPR method). Success rate, overall diagnostic accuracy, pneumothorax rate and total procedure time were compared in each method. Factors affecting diagnostic accuracy and pneumothorax rate of CT-guided biopsy were statistically evaluated. Results: Success rates (TNAB: 100.0%, TCNB: 100.0%) and overall diagnostic accuracies (TNAB: 96.9%, TCNB: 97.0%) of MPR were significantly higher than those using the conventional method (TNAB: 87.6 and 82.4%, TCNB: 86.3 and 81.3%) (P<0.05). Diagnostic accuracy were influenced by biopsy method, lesion size, and needle path length (P<0.05). Pneumothorax rate was influenced by pathological diagnostic method, lesion size, number of punctures and FEV1.0% (P<0.05). Conclusion: The use of MPR for CT-guided lung biopsy is useful for improving diagnostic accuracy with no significant increase in pneumothorax rate or total procedure time

  17. Spatial accuracy of a simplified disaggregation method for traffic emissions applied in seven mid-sized Chilean cities

    Science.gov (United States)

    Ossés de Eicker, Margarita; Zah, Rainer; Triviño, Rubén; Hurni, Hans

    The spatial accuracy of top-down traffic emission inventory maps obtained with a simplified disaggregation method based on street density was assessed in seven mid-sized Chilean cities. Each top-down emission inventory map was compared against a reference, namely a more accurate bottom-up emission inventory map from the same study area. The comparison was carried out using a combination of numerical indicators and visual interpretation. Statistically significant differences were found between the seven cities with regard to the spatial accuracy of their top-down emission inventory maps. In compact cities with a simple street network and a single center, a good accuracy of the spatial distribution of emissions was achieved with correlation values>0.8 with respect to the bottom-up emission inventory of reference. In contrast, the simplified disaggregation method is not suitable for complex cities consisting of interconnected nuclei, resulting in correlation valuessituation to get an overview on the spatial distribution of the emissions generated by traffic activities.

  18. Impact of geometry and viewing angle on classification accuracy of 2D based analysis of dysmorphic faces.

    Science.gov (United States)

    Vollmar, Tobias; Maus, Baerbel; Wurtz, Rolf P; Gillessen-Kaesbach, Gabriele; Horsthemke, Bernhard; Wieczorek, Dagmar; Boehringer, Stefan

    2008-01-01

    Digital image analysis of faces has been demonstrated to be effective in a small number of syndromes. In this paper we investigate several aspects that help bringing these methods closer to clinical application. First, we investigate the impact of increasing the number of syndromes from 10 to 14 as compared to an earlier study. Second, we include a side-view pose into the analysis and third, we scrutinize the effect of geometry information. Picture analysis uses a Gabor wavelet transform, standardization of landmark coordinates and subsequent statistical analysis. We can demonstrate that classification accuracy drops from 76% for 10 syndromes to 70% for 14 syndromes for frontal images. Including side-views achieves an accuracy of 76% again. Geometry performs excellently with 85% for combined poses. Combination of wavelets and geometry for both poses increases accuracy to 93%. In conclusion, a larger number of syndromes can be handled effectively by means of image analysis.

  19. Recovery of the Earth's Gravity Field Based on Spaceborne Atom-interferometry and Its Accuracy Estimation

    Directory of Open Access Journals (Sweden)

    ZHU Zhu

    2017-09-01

    Full Text Available The electrostatic gravity gradiometer has been successfully applied as a core sensor in satellite gravity gradiometric mission GOCE, and its observations are used to recover the Earth's static gravity field with a degree and order above 200. The lifetime of GOCE has been over, and the next generation satellite gravity gradiometry with higher resolution is urgently required in order to recover the global steady-state gravity field with a degree and order of 200~360. High potential precision can be obtained in space by atom-interferometry gravity gradiometer due to its long interference time, and thus the atom-interferometry-based satellite gravity gradiometry has been proposed as one of the candidate techniques for the next satellite gravity gradiometric mission. In order to achieve the science goal for high resolution gravity field measurement in the future, a feasible scheme of atom-interferometry gravity gradiometry in micro-gravity environment is given in this paper, and the gravity gradient measurement can be achieved with a noise of 0.85mE/Hz1/2. Comparison and estimation of the Earth's gravity field recovery precision for different types of satellite gravity gradiometry is discussed, and the results show that the satellite gravity gradiometry based on atom-interferometry is expected to provide the global gravity field model with an improved accuracy of 7~8cm in terms of geoid height and 3×10-5 m/s2 in terms of gravity anomaly respectively at a degree and order of 252~290.

  20. Decision aids for improved accuracy and standardization of mammographic diagnosis

    International Nuclear Information System (INIS)

    D'Orsi, C.J.; Getty, D.J.; Swets, J.A.; Pickett, R.M.; Seltzer, S.E.; McNeil, B.J.

    1990-01-01

    This paper examines the gains in the accuracy of mammographic diagnosis of breast cancer achievable from a pair of decision aids. Twenty-three potentially relevant perceptual features of mammograms were identified through interviews, psychometric tests, and consensus meetings with mammography specialists. Statistical analyses determined the 12 independent features that were most information diagnostically and assigned a weight to each according to its importance. Two decision aids were developed: a checklist that solicits a scale value from the radiologist for each feature and a computer program that merges those values optimally in an advisory estimate of the probability of malignancy. Six radiologists read a set of 150 cases, first in their usual way and later with the aids

  1. Modeling higher twist contributions to deep inelastic scattering with diquarks

    International Nuclear Information System (INIS)

    Anselmino, M.

    1994-01-01

    The most recent detailed data on the unpolarized nucleon structure functions allow a precise determination of higher twist contributions. Quark-quark correlations induced by color forces are expected to be a natural explanation for such effects; indeed, a quark-diquark picture of the nucleon, previously introduced in the description of several exclusive processes at intermediate Q 2 values, is found to model the proton higher twist data with great accuracy. The resulting parameters are consistent with the diquark properties suggested by other experimental and theoretical analyses. (author)

  2. Accuracy of data processing in ceramics bend tests

    International Nuclear Information System (INIS)

    Grushevskij, Ya.L.

    1979-01-01

    Described is the approximation and differentiation technique for loading-deformation charts being used to determine the bending strength of ceramics with provision for the nonlinearity of the deformation charts and differences in mechanical behaviuor of material during tension and compression. A relation between the strength calculation accuracy and experimental data reading errors has been established for such ceramic mateirals as Al 2 O 3 +15 % ZrSiO 4 , Y 2 O 3 +2.8% Al, etc. The negligence of the found aspects of mechanical material behaviuor was shown to result in errors two or three times higher than those introduced by the experiment results processing method

  3. Improving Accuracy of Influenza-Associated Hospitalization Rate Estimates

    Science.gov (United States)

    Reed, Carrie; Kirley, Pam Daily; Aragon, Deborah; Meek, James; Farley, Monica M.; Ryan, Patricia; Collins, Jim; Lynfield, Ruth; Baumbach, Joan; Zansky, Shelley; Bennett, Nancy M.; Fowler, Brian; Thomas, Ann; Lindegren, Mary L.; Atkinson, Annette; Finelli, Lyn; Chaves, Sandra S.

    2015-01-01

    Diagnostic test sensitivity affects rate estimates for laboratory-confirmed influenza–associated hospitalizations. We used data from FluSurv-NET, a national population-based surveillance system for laboratory-confirmed influenza hospitalizations, to capture diagnostic test type by patient age and influenza season. We calculated observed rates by age group and adjusted rates by test sensitivity. Test sensitivity was lowest in adults >65 years of age. For all ages, reverse transcription PCR was the most sensitive test, and use increased from 65 years. After 2009, hospitalization rates adjusted by test sensitivity were ≈15% higher for children 65 years of age. Test sensitivity adjustments improve the accuracy of hospitalization rate estimates. PMID:26292017

  4. Achieving behavioral control with millisecond resolution in a high-level programming environment.

    Science.gov (United States)

    Asaad, Wael F; Eskandar, Emad N

    2008-08-30

    The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level software running on a limited range of hardware. Despite the availability of software that allows the coding of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust the temporal accuracy and resolution of programs running in such environments, especially when they run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed by the intricacy of the coding required and their dissemination across labs has been hampered by the various types of hardware needed. However, we demonstrate here that, when proper measures are taken to handle the various sources of temporal error, accuracy can be achieved at the 1 ms time-scale that is relevant for the alignment of behavioral and neural events.

  5. The Multi-center Evaluation of the Accuracy of the Contrast MEdium INduced Pd/Pa RaTiO in Predicting FFR (MEMENTO-FFR) Study.

    Science.gov (United States)

    Leone, Antonio Maria; Martin-Reyes, Roberto; Baptista, Sergio B; Amabile, Nicolas; Raposo, Luis; Franco Pelaez, Juan Antonio; Trani, Carlo; Cialdella, Pio; Basile, Eloisa; Zimbardo, Giuseppe; Burzotta, Francesco; Porto, Italo; Aurigemma, Cristina; Rebuzzi, Antonio G; Faustino, Mariana; Niccoli, Giampaolo; Abreu, Pedro F; Slama, Michel S; Spagnoli, Vincent; Telleria Arrieta, Miren; Amat Santos, Ignacio J; de la Torre Hernandez, Jose M; Lopez Palop, Ramon; Crea, Filippo

    2016-08-20

    Adenosine administration is needed for the achievement of maximal hyperaemia fractional flow reserve (FFR) assessment. The objective was to test the accuracy of Pd/Pa ratio registered during submaximal hyperaemia induced by non-ionic contrast medium (contrast FFR [cFFR]) in predicting FFR and comparing it to the performance of resting Pd/Pa in a collaborative registry of 926 patients enrolled in 10 hospitals from four European countries (Italy, Spain, France and Portugal). Resting Pd/Pa, cFFR and FFR were measured in 1,026 coronary stenoses functionally evaluated using commercially available pressure wires. cFFR was obtained after intracoronary injection of contrast medium, while FFR was measured after administration of adenosine. Resting Pd/Pa and cFFR were significantly higher than FFR (0.93±0.05 vs. 0.87±0.08 vs. 0.84±0.08, ptime and costs.

  6. Accuracy of hepatocellular carcinoma detection on multidetector CT in a transplant liver population with explant liver correlation

    International Nuclear Information System (INIS)

    Addley, H.C.; Griffin, N.; Shaw, A.S.; Mannelli, L.; Parker, R.A.; Aitken, S.; Wood, H.; Davies, S.; Alexander, G.J.; Lomas, D.J.

    2011-01-01

    Aim: To evaluate the diagnostic accuracy of multidetector computed tomography (MDCT) for hepatocellular carcinoma (HCC) in cirrhotic patients undergoing liver transplantation. Secondary aims were to examine the effect of radiologist experience and lesion size on diagnostic accuracy. Materials and methods: Thirty-nine patients (72% male with a mean age of 56.5 years) underwent liver transplantation following preoperative triple-phase MDCT examination of the liver. MDCT examinations were retrospectively independently reviewed by three radiologists for the presence and location of suspected HCCs, with the diagnostic confidence recorded using a five-point confidence scale. MDCT examinations were compared with explant specimens for histopathological correlation. Results: Histopathological results demonstrated 46 HCCs in 29 of the 39 patients. Analysis demonstrated a sensitivity of 65-75% and specificity of 47-88% for detection of HCC lesions. The sensitivity dropped to 48-57% for lesions of size ≤20 mm. As the diagnostic confidence increased, there was a further decrease in the sensitivity (4-26%). The radiologist with the greatest number of years experience was found to have a significantly higher accuracy of detection of HCC lesions compared with the least experienced radiologist. Conclusion: Larger lesion size of HCC and greater number of years experience of the radiologist resulted in significantly higher accuracy of HCC lesion detection. The overall sensitivity and specificity results for MDCT detection of HCC are comparable to previous helical CT imaging.

  7. Achievement goals and perfectionism of high school students

    Directory of Open Access Journals (Sweden)

    Milojević Milica

    2009-01-01

    Full Text Available This research has been investigating one of the most contemporary approaches of achievement motivation - Achievement Goal Theory, which uses the construct of achievement goals. The construct of achievement goals involves three types of achievement goals: mastery goals, performance approach goals and performance avoidance goals. The main goal of the research was to examine correlation between perfectionism and its aspects with particular types of achievement goals. Also, the goal was to investigate the difference concerning gender regarding the achievement goals. The sample consisted of 200 senior year high school participants. The following instruments were used: Multi-dimensional scale of perfectionism (MSP and Test of achievement goals (TCP. The research results indicate that there is significant positive correlation between: perfectionism with performance approach goals and performance avoidance goals, concern over mistakes and parental expectations with performance approach goals and performance avoidance goals, personal standards and organization with mastery goals and performance approach goals, parental criticism and doubts about action with performance avoidance goals. Significant negative correlation was found between parental criticism and mastery goals. The results concerning the second goal indicates the female subjects have higher average scores in mastery goals.

  8. Reported estimates of diagnostic accuracy in ophthalmology conference abstracts were not associated with full-text publication.

    Science.gov (United States)

    Korevaar, Daniël A; Cohen, Jérémie F; Spijker, René; Saldanha, Ian J; Dickersin, Kay; Virgili, Gianni; Hooft, Lotty; Bossuyt, Patrick M M

    2016-11-01

    To assess whether conference abstracts that report higher estimates of diagnostic accuracy are more likely to reach full-text publication in a peer-reviewed journal. We identified abstracts describing diagnostic accuracy studies, presented between 2007 and 2010 at the Association for Research in Vision and Ophthalmology (ARVO) Annual Meeting. We extracted reported estimates of sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and diagnostic odds ratio (DOR). Between May and July 2015, we searched MEDLINE and EMBASE to identify corresponding full-text publications; if needed, we contacted abstract authors. Cox regression was performed to estimate associations with full-text publication, where sensitivity, specificity, and AUC were logit transformed, and DOR was log transformed. A full-text publication was found for 226/399 (57%) included abstracts. There was no association between reported estimates of sensitivity and full-text publication (hazard ratio [HR] 1.09 [95% confidence interval {CI} 0.98, 1.22]). The same applied to specificity (HR 1.00 [95% CI 0.88, 1.14]), AUC (HR 0.91 [95% CI 0.75, 1.09]), and DOR (HR 1.01 [95% CI 0.94, 1.09]). Almost half of the ARVO conference abstracts describing diagnostic accuracy studies did not reach full-text publication. Studies in abstracts that mentioned higher accuracy estimates were not more likely to be reported in a full-text publication. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Registration accuracy and quality of real-life images.

    Directory of Open Access Journals (Sweden)

    Wei-Yen Hsu

    Full Text Available BACKGROUND: A common registration problem for the application of consumer device is to align all the acquired image sequences into a complete scene. Image alignment requires a registration algorithm that will compensate as much as possible for geometric variability among images. However, images captured views from a real scene usually produce different distortions. Some are derived from the optic characteristics of image sensors, and others are caused by the specific scenes and objects. METHODOLOGY/PRINCIPAL FINDINGS: An image registration algorithm considering the perspective projection is proposed for the application of consumer devices in this study. It exploits a multiresolution wavelet-based method to extract significant features. An analytic differential approach is then proposed to achieve fast convergence of point matching. Finally, the registration accuracy is further refined to obtain subpixel precision by a feature-based modified Levenberg-Marquardt method. Due to its feature-based and nonlinear characteristic, it converges considerably faster than most other methods. In addition, vignette compensation and color difference adjustment are also performed to further improve the quality of registration results. CONCLUSIONS/SIGNIFICANCE: The performance of the proposed method is evaluated by testing the synthetic and real images acquired by a hand-held digital still camera and in comparison with two registration techniques in terms of the squared sum of intensity differences (SSD and correlation coefficient (CC. The results indicate that the proposed method is promising in registration accuracy and quality, which are statistically significantly better than other two approaches.

  10. An output amplitude configurable wideband automatic gain control with high gain step accuracy

    International Nuclear Information System (INIS)

    He Xiaofeng; Ye Tianchun; Mo Taishan; Ma Chengyan

    2012-01-01

    An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented. The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs. And what's more, the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy. A zero, which is composed by the source feedback resistance and the source capacity, is introduced to compensate for the pole. The AGC is fabricated in a 0.18 μm CMOS process. The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB. The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA, and the die area is 800 × 300 μm 2 . (semiconductor integrated circuits)

  11. Accuracy of automated classification of major depressive disorder as a function of symptom severity.

    Science.gov (United States)

    Ramasubbu, Rajamannar; Brown, Matthew R G; Cortese, Filmeno; Gaxiola, Ismael; Goodyear, Bradley; Greenshaw, Andrew J; Dursun, Serdar M; Greiner, Russell

    2016-01-01

    Growing evidence documents the potential of machine learning for developing brain based diagnostic methods for major depressive disorder (MDD). As symptom severity may influence brain activity, we investigated whether the severity of MDD affected the accuracies of machine learned MDD-vs-Control diagnostic classifiers. Forty-five medication-free patients with DSM-IV defined MDD and 19 healthy controls participated in the study. Based on depression severity as determined by the Hamilton Rating Scale for Depression (HRSD), MDD patients were sorted into three groups: mild to moderate depression (HRSD 14-19), severe depression (HRSD 20-23), and very severe depression (HRSD ≥ 24). We collected functional magnetic resonance imaging (fMRI) data during both resting-state and an emotional-face matching task. Patients in each of the three severity groups were compared against controls in separate analyses, using either the resting-state or task-based fMRI data. We use each of these six datasets with linear support vector machine (SVM) binary classifiers for identifying individuals as patients or controls. The resting-state fMRI data showed statistically significant classification accuracy only for the very severe depression group (accuracy 66%, p = 0.012 corrected), while mild to moderate (accuracy 58%, p = 1.0 corrected) and severe depression (accuracy 52%, p = 1.0 corrected) were only at chance. With task-based fMRI data, the automated classifier performed at chance in all three severity groups. Binary linear SVM classifiers achieved significant classification of very severe depression with resting-state fMRI, but the contribution of brain measurements may have limited potential in differentiating patients with less severe depression from healthy controls.

  12. Superstorm Sandy and the academic achievement of university students.

    Science.gov (United States)

    Doyle, Matthew D; Lockwood, Brian; Comiskey, John G

    2017-10-01

    Much of the literature on the consequences of natural disasters has focused on their physical and psychological ramifications. Few researchers have considered how the impacts of a natural disaster can influence academic achievement. This study analyses data collected from nearly 300 students at a mid-sized, private university in the northeast United States to determine if the effects of Cyclone Sandy in 2012 are associated with measures of academic achievement. The findings reveal that experiencing headaches after the event resulted in a higher likelihood of students suffering a loss of academic motivation. In addition, experiencing headaches and a loss of academic motivation were correlated with a lower grade point average (GPA) during the semester in which Sandy made landfall. However, the more direct effects of the superstorm, including displacement and a loss of power, did not have a significant bearing on academic achievement. Lastly, the paper examines the implications for higher education policy and future research. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  13. Head and neck cancer information on the internet: type, accuracy and content.

    LENUS (Irish Health Repository)

    Ni Riordain, Richeal

    2009-08-01

    This study aimed to determine the type, accuracy and content of information available on the internet regarding head and neck cancer. The search engine Google was used to generate a list of the top 100 websites about head and neck cancer. The websites were evaluated using the DISCERN instrument and the JAMA benchmarks and whether the site displayed the Health on the Net seal was also recorded. The search yielded 1,650,000 sites on the Google website. Of the top 100 sites, a total of 33 sites were suitable for analysis due to duplicate links, non-functioning links and irrelevant website. 45% achieved all four JAMA benchmarks and 18% achieved only 1 benchmark. No website receiving the maximum mark on the overall score and four websites received the lowest overall score regarding the DISCERN instrument. The question with the poorest response score was \\'Does it describe how the treatment choices affect overall quality of life?\\' 39% of the websites displayed the Health on the Net (HON) seal. A wide variety of types of information are available on the internet regarding head and neck cancer with variable accuracy levels based on both Journal of the American Medical Association (JAMA) benchmarks and DISCERN. The onus lies with the practitioner to guide the patient regarding scientific reliability of information and to direct the patient in filtering the information sourced. The inclusion of quality of life related information is currently lacking and should be addressed to ensure a more comprehensive understanding for patients of treatment options.

  14. The accuracy of intramedullary tibial guide of sagittal alignment of PCL-substituting total knee arthroplasty.

    Science.gov (United States)

    Han, Hyuk-Soo; Kang, Seung-Baik; Jo, Chris H; Kim, Sun-Hong; Lee, Jung-Ha

    2010-10-01

    Experimental and clinical studies on the accuracy of the intramedullary alignment method have produced different results, and few have addressed accuracy in the sagittal plane. Reported deviations are not only attributable to the alignment method but also to radiological errors. The purpose of this study was to evaluate the accuracy of the intramedullary alignment method in the sagittal plane using computed tomography (CT) and 3-dimensional imaging software. Thirty-one TKAs were performed using an intramedullary alignment method involving the insertion of a long 8-mm diameter rod into the medullary canal to the distal metaphysis of the tibia. All alignment instruments were set to achieve an ideal varus/valgus angle of 0° in the coronal plane and a tibial slope of 0° in the sagittal plane. The accuracy of the intramedullary alignment system was assessed by measuring the coronal tibial component angle and sagittal tibial slope angles, i.e., angles between the tibial anatomical axis and the tangent to the medial and lateral tibial plateau or the cut-surface. The mean coronal tibial component angle was 88.5° ± 1.2° and the mean tibial component slope in the sagittal plane was 1.6° ± 1.2° without anterior slope. Our intramedullary tibial alignment method, which involves passing an 8-mm diameter long rod through the tibial shaft isthmus, showed good accuracy (less than 3 degrees of variation and no anterior slope) in the sagittal plane in neutral or varus knees.

  15. Diagnostic accuracy in virtual dermatopathology

    DEFF Research Database (Denmark)

    Mooney, E.; Kempf, W.; Jemec, G.B.E.

    2012-01-01

    Background Virtual microscopy is used for teaching medical students and residents and for in-training and certification examinations in the United States. However, no existing studies compare diagnostic accuracy using virtual slides and photomicrographs. The objective of this study was to compare...... diagnostic accuracy of dermatopathologists and pathologists using photomicrographs vs. digitized images, through a self-assessment examination, and to elucidate assessment of virtual dermatopathology. Methods Forty-five dermatopathologists and pathologists received a randomized combination of 15 virtual...... slides and photomicrographs with corresponding clinical photographs and information in a self-assessment examination format. Descriptive data analysis and comparison of groups were performed using a chi-square test. Results Diagnostic accuracy in dermatopathology using virtual dermatopathology...

  16. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    Directory of Open Access Journals (Sweden)

    Marques Haroldo Antonio

    2018-01-01

    Full Text Available GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP, where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  17. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    Science.gov (United States)

    Marques, Haroldo Antonio; Marques, Heloísa Alves Silva; Aquino, Marcio; Veettil, Sreeja Vadakke; Monico, João Francisco Galera

    2018-02-01

    GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS) with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP), where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  18. A new ultra-high-accuracy angle generator: current status and future direction

    Science.gov (United States)

    Guertin, Christian F.; Geckeler, Ralf D.

    2017-09-01

    Lack of an extreme high-accuracy angular positioning device available in the United States has left a gap in industrial and scientific efforts conducted there, requiring certain user groups to undertake time-consuming work with overseas laboratories. Specifically, in x-ray mirror metrology the global research community is advancing the state-of-the-art to unprecedented levels. We aim to fill this U.S. gap by developing a versatile high-accuracy angle generator as a part of the national metrology tool set for x-ray mirror metrology and other important industries. Using an established calibration technique to measure the errors of the encoder scale graduations for full-rotation rotary encoders, we implemented an optimized arrangement of sensors positioned to minimize propagation of calibration errors. Our initial feasibility research shows that upon scaling to a full prototype and including additional calibration techniques we can expect to achieve uncertainties at the level of 0.01 arcsec (50 nrad) or better and offer the immense advantage of a highly automatable and customizable product to the commercial market.

  19. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    Science.gov (United States)

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  20. INVESTIGATION THE FITTING ACCURACY OF CAST AND SLM CO-CR DENTAL BRIDGES USING CAD SOFTWARE

    Directory of Open Access Journals (Sweden)

    Tsanka Dikova

    2017-09-01

    Full Text Available The aim of the present paper is to investigate the fitting accuracy of Co-Cr dental bridges, manufactured by three technologies, with the newly developed method using CAD software. The four-part dental bridges of Co-Cr alloys were produced by conventional casting of wax models, casting with 3D printed patterns and selective laser melting. The marginal and internal fit of dental bridges was studied out by two methods – silicone replica test and CAD software. As the silicone replica test characterizes with comparatively low accuracy, a new methodology for investigating the fitting accuracy of dental bridges was developed based on the SolidWorks CAD software. The newly developed method allows the study of the marginal and internal adaptation in unlimited directions and high accuracy. Investigation the marginal fit and internal adaptation of Co-Cr four-part dental bridges by the two methods show that the technological process strongly influences the fitting accuracy of dental restorations. The fitting accuracy of the bridges, cast with 3D printed patterns, is the highest, followed by the SLM and conventionally cast bridges. The marginal fit of the three groups of bridges is in the clinically acceptable range. The internal gap values vary in different regions – it is highest on the occlusal surfaces, followed by that in the marginal and axial areas. The higher fitting accuracy of the bridges, manufactured by casting with 3D printed patterns and SLM, compared to the conventionally cast bridges is a good precondition for their successful implementation in the dental offices and laboratories.

  1. Diagnostic accuracy of contemporary multidetector computed tomography (MDCT) for the detection of lumbar disc herniation

    Energy Technology Data Exchange (ETDEWEB)

    Notohamiprodjo, S.; Stahl, R.; Braunagel, M.; Kazmierczak, P.M.; Thierfelder, K.M.; Treitl, K.M.; Wirth, S. [University Hospital of Munich, LMU Munich, Institute for Clinical Radiology, Munich (Germany); Notohamiprodjo, M. [University Hospital Tuebingen, Eberhard Karls University Tuebingen, Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2017-08-15

    To evaluate the diagnostic accuracy of multidetector CT (MDCT) for detection of lumbar disc herniation with MRI as standard of reference. Patients with low back pain underwent indicated MDCT (128-row MDCT, helical pitch), 60 patients with iterative reconstruction (IR) and 67 patients with filtered back projection (FBP). Lumbar spine MRI (1.5 T) was performed within 1 month. Signal-to-noise ratios (SNR) of cerebrospinal fluid (CSF), annulus fibrosus (AF) and the spinal cord (SC) were determined for all modalities. Two readers independently rated image quality (IQ), diagnostic confidence and accuracy in the diagnosis of lumbar disc herniation using MRI as standard of reference. Inter-reader correlation was assessed with weighted κ. Sensitivity, specificity, precision and accuracy of MDCT for disc protrusion were 98.8%, 96.5%, 97.1%, 97.8% (disc level), 97.7%, 92.9%, 98.6%, 96.9% (patient level). SNR of IR was significantly higher than FBP. IQ was significantly better in IR owing to visually reduced noise and improved delineation of the discs. κ (>0.90) was excellent for both algorithms. MDCT of the lumbar spine yields high diagnostic accuracy for detection of lumbar disc herniation. IR improves image quality so that the provided diagnostic accuracy is principally equivalent to MRI. (orig.)

  2. Fine motor skills and executive function both contribute to kindergarten achievement

    Science.gov (United States)

    Cameron, Claire E.; Brock, Laura L.; Murrah, William M.; Bell, Lindsay H.; Worzalla, Samantha L.; Grissmer, David; Morrison, Frederick J.

    2012-01-01

    This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on six standardized assessments in a sample of middle-SES kindergarteners. 3- and 4-year-olds’ (N=213) fine and gross motor skills were assessed in a home visit before kindergarten; EF was measured at fall of kindergarten; and Woodcock-Johnson III (WJ III) Tests of Academic Achievement were administered at fall and spring. Correlations indicated that EF and fine motor skills appeared distinct. Further, controlling for background variables, higher levels of both EF and fine motor skills, specifically design copy, predicted higher achievement on multiple subtests at kindergarten entry, as well as improvement from fall to spring. Implications for research on school readiness are discussed. PMID:22537276

  3. Modelling higher twist contributions to deep inelastic scattering with diquarks

    International Nuclear Information System (INIS)

    Anselmino, M.; Caruso, F.; Penna Firme, A.; Soares, J.; Mello Neto, J.R.T. de

    1994-08-01

    The most recent detailed data on the unpolarized nucleon structure functions allow a precise determination of higher twist contributions. Quark-quark correlations induced by colour forces are expected to be a natural explanation for such effects: indeed, a quark-diquark picture of the nucleon, previously introduced in the description of several exclusive processes at intermediate Q 2 values, is found to model the proton higher twist data with great accuracy. The resulting parameters are consistent with the diquark properties suggested by other experimental and theoretical analyses. (author). 15 refs, 5 figs

  4. Dimensional accuracy of internal cooling channel made by selective laser melting (SLM And direct metal laser sintering (DMLS processes in fabrication of internally cooled cutting tools

    Directory of Open Access Journals (Sweden)

    Ghani S. A. C.

    2017-01-01

    Full Text Available Selective laser melting(SLM and direct metal laser sintering(DMLS are preferred additive manufacturing processes in producing complex physical products directly from CAD computer data, nowadays. The advancement of additive manufacturing promotes the design of internally cooled cutting tool for effectively used in removing generated heat in metal machining. Despite the utilisation of SLM and DMLS in a fabrication of internally cooled cutting tool, the level of accuracy of the parts produced remains uncertain. This paper aims at comparing the dimensional accuracy of SLM and DMLS in machining internally cooled cutting tool with a special focus on geometrical dimensions such as hole diameter. The surface roughness produced by the two processes are measured with contact perthometer. To achieve the objectives, geometrical dimensions of identical tool holders for internally cooled cutting tools fabricated by SLM and DMLS have been determined by using digital vernier calliper and various magnification of a portable microscope. In the current study, comparing internally cooled cutting tools made of SLM and DMLS showed that generally the higher degree of accuracy could be obtained with DMLS process. However, the observed differences in surface roughness between SLM and DMLS in this study were not significant. The most obvious finding to emerge from this study is that the additive manufacturing processes selected for fabricating the tool holders for internally cooled cutting tool in this research are capable of producing the desired internal channel shape of internally cooled cutting tool.

  5. Improvement of Accuracy in Environmental Dosimetry by TLD Cards Using Three-dimensional Calibration Method

    Directory of Open Access Journals (Sweden)

    HosseiniAliabadi S. J.

    2015-06-01

    Full Text Available Background: The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. Objective: A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Method: Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. Result: The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. Conclusion: This system can be utilized in large scale environmental monitoring with a higher accuracy

  6. Academic achievement in children with epilepsy: a review.

    Science.gov (United States)

    Reilly, Colin; Neville, Brian G R

    2011-11-01

    To examine published studies which have focussed on academic achievement in children with epilepsy with respect to prevalence rates of academic difficulties and possible correlates of academic achievement. This review examines studies which have focussed on prevalence rates of academic difficulties and correlates of academic achievement in children with epilepsy from 1990 to 2010. Prevalence rates of low academic achievement and academic underachievement are reported and correlates of academic achievement including seizure/epilepsy variables, demographic variables, and child/family variables are examined with respect to published studies. Published studies suggest that low academic achievement is more common than academic underachievement (achievement below that expected on basis of IQ scores) and it is not clear from published studies if rates of academic underachievement are significantly higher than in the general population. Clear patterns with regard to the identification of correlates of academic underachievement have not emerged although low achievement may be influenced in many cases by lower than average levels of cognitive functioning. Most studies have not focussed on the IQ-achievement discrepancy definitions of (specific) learning disability. Children with epilepsy who are experiencing academic difficulties may not qualify for formal educational supports to address these difficulties if eligibility criteria for such supports stress an IQ-achievement discrepancy. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Friend Effects and Racial Disparities in Academic Achievement

    Directory of Open Access Journals (Sweden)

    Jennifer Flashman

    2014-07-01

    Full Text Available Racial disparities in achievement are a persistent fact of the US educational system. An often cited but rarely directly studied explanation for these disparities is that adolescents from different racial and ethnic backgrounds are exposed to different peers and have different friends. In this article I identify the impact of friends on racial and ethnic achievement disparities. Using data from Add Health and an instrumental variable approach, I show that the achievement characteristics of youths’ friends drive friend effects; adolescents with friends with higher grades are more likely to increase their grades compared to those with lower-achieving friends. Although these effects do not differ across race/ethnicity, given differences in friendship patterns, if black and Latino adolescents had friends with the achievement characteristics of white students, the GPA gap would be 17 to 19 percent smaller. Although modest, this effect represents an important and often overlooked source of difference among black and Latino youth.

  8. Kontrola tačnosti rezultata u simulacijama Monte Karlo / Accuracy control in Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Nebojša V. Nikolić

    2010-04-01

    Full Text Available U radu je demonstrirana primena metode automatizovanog ponavljanja nezavisnih simulacionih eksperimenata sa prikupljanjem statistike slučajnih procesa, u dostizanju i kontroli tačnosti simulacionih rezultata u simulaciji sistema masovnog opsluživanja Monte Karlo. Metoda se zasniva na primeni osnovnih stavova i teorema matematičke statistike i teorije verovatnoće. Tačnost simulacionih rezultata dovedena je u direktnu vezu sa brojem ponavljanja simulacionih eksperimenata. / The paper presents an application of the Automated Independent Replication with Gathering Statistics of the Stochastic Processes Method in achieving and controlling the accuracy of simulation results in the Monte Carlo queuing simulations. The method is based on the application of the basic theorems of the theory of probability and mathematical statistics. The accuracy of the simulation results is linked with a number of independent replications of simulation experiments.

  9. Analysis on the reconstruction accuracy of the Fitch method for inferring ancestral states

    Directory of Open Access Journals (Sweden)

    Grünewald Stefan

    2011-01-01

    Full Text Available Abstract Background As one of the most widely used parsimony methods for ancestral reconstruction, the Fitch method minimizes the total number of hypothetical substitutions along all branches of a tree to explain the evolution of a character. Due to the extensive usage of this method, it has become a scientific endeavor in recent years to study the reconstruction accuracies of the Fitch method. However, most studies are restricted to 2-state evolutionary models and a study for higher-state models is needed since DNA sequences take the format of 4-state series and protein sequences even have 20 states. Results In this paper, the ambiguous and unambiguous reconstruction accuracy of the Fitch method are studied for N-state evolutionary models. Given an arbitrary phylogenetic tree, a recurrence system is first presented to calculate iteratively the two accuracies. As complete binary tree and comb-shaped tree are the two extremal evolutionary tree topologies according to balance, we focus on the reconstruction accuracies on these two topologies and analyze their asymptotic properties. Then, 1000 Yule trees with 1024 leaves are generated and analyzed to simulate real evolutionary scenarios. It is known that more taxa not necessarily increase the reconstruction accuracies under 2-state models. The result under N-state models is also tested. Conclusions In a large tree with many leaves, the reconstruction accuracies of using all taxa are sometimes less than those of using a leaf subset under N-state models. For complete binary trees, there always exists an equilibrium interval [a, b] of conservation probability, in which the limiting ambiguous reconstruction accuracy equals to the probability of randomly picking a state. The value b decreases with the increase of the number of states, and it seems to converge. When the conservation probability is greater than b, the reconstruction accuracies of the Fitch method increase rapidly. The reconstruction

  10. INTERNATIONALIZATION IN HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    Catalina Crisan-Mitra

    2016-03-01

    Full Text Available Internationalization of higher education is one of the key trends of development. There are several approaches on how to achieve competitiveness and performance in higher education and international academic mobility; students’ exchange programs, partnerships are some of the aspects that can play a significant role in this process. This paper wants to point out the student’s perception regarding two main directions: one about the master students’ expectation regarding how an internationalized master should be organized and should function, and second the degree of satisfaction of the beneficiaries of internationalized master programs from Babe-Bolyai University. This article is based on an empirical qualitative research that was implemented to students of an internationalized master from the Faculty of Economics and Business Administration. This research can be considered a useful example for those preoccupied to increase the quality of higher education and conclusions drawn have relevance both theoretically and especially practically.

  11. Improving the accuracy of livestock distribution estimates through spatial interpolation.

    Science.gov (United States)

    Bryssinckx, Ward; Ducheyne, Els; Muhwezi, Bernard; Godfrey, Sunday; Mintiens, Koen; Leirs, Herwig; Hendrickx, Guy

    2012-11-01

    Animal distribution maps serve many purposes such as estimating transmission risk of zoonotic pathogens to both animals and humans. The reliability and usability of such maps is highly dependent on the quality of the input data. However, decisions on how to perform livestock surveys are often based on previous work without considering possible consequences. A better understanding of the impact of using different sample designs and processing steps on the accuracy of livestock distribution estimates was acquired through iterative experiments using detailed survey. The importance of sample size, sample design and aggregation is demonstrated and spatial interpolation is presented as a potential way to improve cattle number estimates. As expected, results show that an increasing sample size increased the precision of cattle number estimates but these improvements were mainly seen when the initial sample size was relatively low (e.g. a median relative error decrease of 0.04% per sampled parish for sample sizes below 500 parishes). For higher sample sizes, the added value of further increasing the number of samples declined rapidly (e.g. a median relative error decrease of 0.01% per sampled parish for sample sizes above 500 parishes. When a two-stage stratified sample design was applied to yield more evenly distributed samples, accuracy levels were higher for low sample densities and stabilised at lower sample sizes compared to one-stage stratified sampling. Aggregating the resulting cattle number estimates yielded significantly more accurate results because of averaging under- and over-estimates (e.g. when aggregating cattle number estimates from subcounty to district level, P interpolation to fill in missing values in non-sampled areas, accuracy is improved remarkably. This counts especially for low sample sizes and spatially even distributed samples (e.g. P <0.001 for a sample of 170 parishes using one-stage stratified sampling and aggregation on district level

  12. The Effect of Teaching Strategies and Curiosity on Students' Achievement in Reading Comprehension

    Science.gov (United States)

    Gurning, Busmin; Siregar, Aguslani

    2017-01-01

    The objectives of this study were to find out whether 1) students' achievement in reading comprehension taught by using INSERT strategy was higher than those taught by using SQ3R strategy, 2) Students' achievement in reading comprehension having high curiosity was higher than those having low curiosity, 3) there was an interaction between teaching…

  13. Special education and later academic achievement.

    Science.gov (United States)

    Ehrhardt, Jennifer; Huntington, Noelle; Molino, Janine; Barbaresi, William

    2013-02-01

    To determine whether grade at entry to special education is associated with improved reading achievement in children with reading disorders (RD) and whether the effect of grade at entry to special education differs by socioeconomic status (SES). The authors conducted a secondary data analysis using data from the Early Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K), a nationally representative cohort of children followed longitudinally from kindergarten through eighth grade (1998-2007). Using data from the fifth grade wave of ECLS-K, the authors identified children with RD (n = 290). The outcome of interest was change in score on the reading achievement test, which was developed by ECLS-K staff, between first and fifth grade. Using multiple linear regression, the authors modeled outcome as a function of a child's grade at entry to special education, controlling for several covariates. Early entry to special education (by first grade vs second or third grade) was associated with larger gains in reading achievement between first and fifth grade (p special education by first grade versus second grade gained 4.5 more points on the reading achievement test (p special education by first grade versus third grade gained 1.7 more points on the reading achievement test (p special education between children from families of low and higher SES. For children with RD, early entry to special education is associated with improved reading achievement during elementary school.

  14. Strategic Enrollment Management: Transforming Higher Education

    Science.gov (United States)

    Bontrager, Bob; Ingersoll, Doris; Ingersoll, Ronald

    2012-01-01

    As external forces demand change in the delivery of postsecondary education and institutions seek to take advantage of new opportunities, the potential for achieving higher levels of student and institutional success is vast. New technologies, communication tools, data use, and organizational constructs present key factors in improving the…

  15. A generalized polynomial chaos based ensemble Kalman filter with high accuracy

    International Nuclear Information System (INIS)

    Li Jia; Xiu Dongbin

    2009-01-01

    As one of the most adopted sequential data assimilation methods in many areas, especially those involving complex nonlinear dynamics, the ensemble Kalman filter (EnKF) has been under extensive investigation regarding its properties and efficiency. Compared to other variants of the Kalman filter (KF), EnKF is straightforward to implement, as it employs random ensembles to represent solution states. This, however, introduces sampling errors that affect the accuracy of EnKF in a negative manner. Though sampling errors can be easily reduced by using a large number of samples, in practice this is undesirable as each ensemble member is a solution of the system of state equations and can be time consuming to compute for large-scale problems. In this paper we present an efficient EnKF implementation via generalized polynomial chaos (gPC) expansion. The key ingredients of the proposed approach involve (1) solving the system of stochastic state equations via the gPC methodology to gain efficiency; and (2) sampling the gPC approximation of the stochastic solution with an arbitrarily large number of samples, at virtually no additional computational cost, to drastically reduce the sampling errors. The resulting algorithm thus achieves a high accuracy at reduced computational cost, compared to the classical implementations of EnKF. Numerical examples are provided to verify the convergence property and accuracy improvement of the new algorithm. We also prove that for linear systems with Gaussian noise, the first-order gPC Kalman filter method is equivalent to the exact Kalman filter.

  16. DNA barcode data accurately assign higher spider taxa

    Directory of Open Access Journals (Sweden)

    Jonathan A. Coddington

    2016-07-01

    Full Text Available The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios “barcodes” (whether single or multiple, organelle or nuclear, loci clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families—taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75–100%. Accurate assignment of higher taxa (PIdent above which errors totaled less than 5% occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However

  17. Evaluating the accuracy of low cost UAV generated topography and its effectiveness for geomorphic change detection

    Science.gov (United States)

    Cook, Kristen

    2015-04-01

    find that this simple UAV setup can yield point clouds with 78% of points within 20 cm and 60% within 10 cm of the Lidar point clouds, with the higher errors dominated by vegetation effects. Well-distributed and accurately located ground control points are critical, but we achieve good accuracy with even with relatively few ground control points (25) over a 150,000 sq m area. The large number of photographs taken during each flight also allows us to explore the reproducibility of the UAV-derived topography by generating point clouds from different subsets of photographs taken of the same area during a single survey. These results show the same pattern of higher errors due to vegetation, but bedrock surfaces generally have errors of less than 4 cm. These results suggest that even very basic UAV surveys can yield data suitable for measuring geomorphic change on the scale of a channel reach.

  18. Responses of Chinese Higher Education to the Information Society

    Science.gov (United States)

    Cai, Yuzhuo; Guo, Wenge

    2006-01-01

    Compared to the advanced industrial countries, the use of information technology in Chinese higher education came relatively late. Nevertheless, recent Chinese practices have achieved significant progress in the country's efforts to bridge the digital divide. This article focuses special attention on the responses of Chinese higher education to…

  19. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    Science.gov (United States)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José

    2017-05-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant-Friedrichs-Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  20. The Accuracy of Student Self-Assessments of English-Chinese Bidirectional Interpretation: A Longitudinal Quantitative Study

    Science.gov (United States)

    Han, Chao; Riazi, Mehdi

    2018-01-01

    The accuracy of self-assessment has long been examined empirically in higher education research, producing a substantial body of literature that casts light on numerous potential moderators. However, despite the growing popularity of self-assessment in interpreter training and education, very limited evidence-based research has been initiated to…

  1. Closing the achievement gap: the association of racial climate with achievement and behavioral outcomes.

    Science.gov (United States)

    Mattison, Erica; Aber, Mark S

    2007-09-01

    This study investigated the relationship between school racial climate and students' self-reports of academic and discipline outcomes, including whether racial climate mediated and/or moderated the relationship between race and outcomes. Using the Racial Climate Survey-High School Version (M. Aber et al., unpublished), data were gathered from African American (n = 382) and European American students (n = 1456) regarding their perceptions of racial climate. About 18% of the respondents were low-income and approximately 50% were male. Positive perceptions of the racial climate were associated with higher student achievement and fewer discipline problems. Further, race moderated the relationship between racial climate and both achievement and discipline outcomes. Finally, racial differences in students' grades and discipline outcomes were associated with differences in perceptions of racial climate. Results suggest careful attention should be given to the racial climate of secondary schools, particularly for adolescents who perceive schools as unfair.

  2. Determination of Solution Accuracy of Numerical Schemes as Part of Code and Calculation Verification

    Energy Technology Data Exchange (ETDEWEB)

    Blottner, F.G.; Lopez, A.R.

    1998-10-01

    This investigation is concerned with the accuracy of numerical schemes for solving partial differential equations used in science and engineering simulation codes. Richardson extrapolation methods for steady and unsteady problems with structured meshes are presented as part of the verification procedure to determine code and calculation accuracy. The local truncation error de- termination of a numerical difference scheme is shown to be a significant component of the veri- fication procedure as it determines the consistency of the numerical scheme, the order of the numerical scheme, and the restrictions on the mesh variation with a non-uniform mesh. Genera- tion of a series of co-located, refined meshes with the appropriate variation of mesh cell size is in- vestigated and is another important component of the verification procedure. The importance of mesh refinement studies is shown to be more significant than just a procedure to determine solu- tion accuracy. It is suggested that mesh refinement techniques can be developed to determine con- sistency of numerical schemes and to determine if governing equations are well posed. The present investigation provides further insight into the conditions and procedures required to effec- tively use Richardson extrapolation with mesh refinement studies to achieve confidence that sim- ulation codes are producing accurate numerical solutions.

  3. Weight Multispectral Reconstruction Strategy for Enhanced Reconstruction Accuracy and Stability With Cerenkov Luminescence Tomography.

    Science.gov (United States)

    Hongbo Guo; Xiaowei He; Muhan Liu; Zeyu Zhang; Zhenhua Hu; Jie Tian

    2017-06-01

    Cerenkov luminescence tomography (CLT) provides a novel technique for 3-D noninvasive detection of radiopharmaceuticals in living subjects. However, because of the severe scattering of Cerenkov light, the reconstruction accuracy and stability of CLT is still unsatisfied. In this paper, a modified weight multispectral CLT (wmCLT) reconstruction strategy was developed which split the Cerenkov radiation spectrum into several sub-spectral bands and weighted the sub-spectral results to obtain the final result. To better evaluate the property of the wmCLT reconstruction strategy in terms of accuracy, stability and practicability, several numerical simulation experiments and in vivo experiments were conducted and the results obtained were compared with the traditional multispectral CLT (mCLT) and hybrid-spectral CLT (hCLT) reconstruction strategies. The numerical simulation results indicated that wmCLT strategy significantly improved the accuracy of Cerenkov source localization and intensity quantitation and exhibited good stability in suppressing noise in numerical simulation experiments. And the comparison of the results achieved from different in vivo experiments further indicated significant improvement of the wmCLT strategy in terms of the shape recovery of the bladder and the spatial resolution of imaging xenograft tumors. Overall the strategy reported here will facilitate the development of nuclear and optical molecular tomography in theoretical study.

  4. Correlates of Academic Procrastination and Mathematics Achievement of University Undergraduate Students

    Science.gov (United States)

    Akinsola, Mojeed Kolawole; Tella, Adedeji; Tella, Adeyinka

    2007-01-01

    Procrastination is now a common phenomenon among students, particularly those at the higher level. And this is doing more harm to their academic achievement than good. Therefore, this study examined the correlates between academic procrastination and mathematics achievement among the university mathematics undergraduate students. The study used a…

  5. Aptitude Tests Versus School Exams as Selection Tools for Higher Education and the Case for Assessing Educational Achievement in Context

    Science.gov (United States)

    Stringer, Neil

    2008-01-01

    Advocates of using a US-style SAT for university selection claim that it is fairer to applicants from disadvantaged backgrounds than achievement tests because it assesses potential, not achievement, and that it allows finer discrimination between top applicants than GCEs. The pros and cons of aptitude tests in principle are discussed, focusing on…

  6. Study of the Relationship between Study Habits and Academic Achievement of Students: A Case of Spicer Higher Secondary School, India

    Science.gov (United States)

    Siahi, Evans Atsiaya; Maiyo, Julius K.

    2015-01-01

    The studies on the correlation of academic achievement have paved way for control and manipulation of related variables for quality results in schools. In spite of the facts that schools impart uniform classroom instructions to all students, wide range of difference is observed in their academic achievement. The study sought to determine the…

  7. Motivation and social contexts: a crossnational pilot study of achievement, power, and affiliation motives.

    Science.gov (United States)

    Xu, Xiaoyan; Xu, Yangang; Mellor, David; Duan, Liqiong

    2012-01-01

    Previous research suggests that there is a relationship between social contexts (e.g., economic growth, engagement in wars) and motives within populations. In particular, high achievement motive is associated with subsequent economic growth, which in turn increases power motive. Increased national achievement and power motives have been argued to precede social changes that lead to decreased affiliation motives, and engagement in wars. The present study aimed to examine differences in achievement, power, and affiliation motives between 266 college students in China (a nation with sustained high economic growth) and 255 college students in the USA (a nation with previously strong but now slowing economic growth, and engaged in war). Analysis of personal strivings suggested that Chinese college students showed significantly higher levels of achievement motive than the American college students, but American college students showed significantly higher levels of affiliation motive than Chinese college students. Overall, males exhibited higher achievement motivation than females. No significant interaction effects were found for gender by location for any of the three motives. The findings are discussed in relation to previous research.

  8. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers.

    Science.gov (United States)

    Parent, Francois; Loranger, Sebastien; Mandal, Koushik Kanti; Iezzi, Victor Lambin; Lapointe, Jerome; Boisvert, Jean-Sébastien; Baiad, Mohamed Diaa; Kadoury, Samuel; Kashyap, Raman

    2017-04-01

    We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.

  9. Both Reaction Time and Accuracy Measures of Intraindividual Variability Predict Cognitive Performance in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Björn U. Christ

    2018-04-01

    Full Text Available Dementia researchers around the world prioritize the urgent need for sensitive measurement tools that can detect cognitive and functional change at the earliest stages of Alzheimer's disease (AD. Sensitive indicators of underlying neural pathology assist in the early detection of cognitive change and are thus important for the evaluation of early-intervention clinical trials. One method that may be particularly well-suited to help achieve this goal involves the quantification of intraindividual variability (IIV in cognitive performance. The current study aimed to directly compare two methods of estimating IIV (fluctuations in accuracy-based scores vs. those in latency-based scores to predict cognitive performance in AD. Specifically, we directly compared the relative sensitivity of reaction time (RT—and accuracy-based estimates of IIV to cognitive compromise. The novelty of the present study, however, centered on the patients we tested [a group of patients with Alzheimer's disease (AD] and the outcome measures we used (a measure of general cognitive function and a measure of episodic memory function. Hence, we compared intraindividual standard deviations (iSDs from two RT tasks and three accuracy-based memory tasks in patients with possible or probable Alzheimer's dementia (n = 23 and matched healthy controls (n = 25. The main analyses modeled the relative contributions of RT vs. accuracy-based measures of IIV toward the prediction of performance on measures of (a overall cognitive functioning, and (b episodic memory functioning. Results indicated that RT-based IIV measures are superior predictors of neurocognitive impairment (as indexed by overall cognitive and memory performance than accuracy-based IIV measures, even after adjusting for the timescale of measurement. However, one accuracy-based IIV measure (derived from a recognition memory test also differentiated patients with AD from controls, and significantly predicted episodic memory

  10. Accuracy of full-arch scans using intraoral and extraoral scanners: an in vitro study using a new method of evaluation.

    Science.gov (United States)

    Muallah, Jonas; Wesemann, Christian; Nowak, Roxana; Robben, Jan; Mah, James; Pospiech, Peter; Bumann, Axel

    The aim of this study was to compare the accuracy of six intraoral scanners as regards clinically relevant distances using a new method of evaluation. An additional objective was to compare intraoral scanners with the indirect digitization of model scanners. A resin master model was created by 3D printing and drilled in five places to reflect the following distances: intermolar width (IMW), intercanine width (ICW), and arch length (AL). To determine a gold standard, the distances were measured with a coordinate measuring instrument (Zeiss O-Inspect 422). The master model was scanned 37 times with the following intraoral scanners: Apollo DI (Sirona), CS 3500 (Carestream Dental), iTero (Cadent), PlanScan (Planmeca), Trios (3Shape), and True Definition (3M Espe), and indirectly digitized with the OrthoX Scan (Dentaurum). The digital models were then measured, and deviations from the gold standard calculated. Significant differences were found between the devices. Among the intraoral scanners, Trios and iTero showed the most accurate results, although CS 3500, True Definition, and Apollo DI achieved comparable results. PlanScan demonstrated the highest deviations from the gold standard, and presented a high standard deviation (SD). Direct digitization revealed comparable (and, in fact, slightly higher) accuracy than indirect digitization. Both indirect digitization and most of the intraoral scanners were therefore demonstrated to be suitable for use in the orthodontic office, with the exception of PlanScan, which did not meet the demands of individual orthodontic treatment.

  11. Providing Higher Education to Socially Disadvantaged Populations.

    Science.gov (United States)

    Guri-Rosenblit, Sarah

    1989-01-01

    An examination of the philosophy and implementation of two special programs offered by the Open University of Israel to socially and educationally disadvantaged populations focuses on whether both values of quality and equity can be achieved in higher education. (Author/MSE)

  12. Sex-specific predictive power of 6-minute walk test in chronic heart failure is not enhanced using percent achieved of published reference equations.

    Science.gov (United States)

    Frankenstein, Lutz; Zugck, Christian; Nelles, Manfred; Schellberg, Dieter; Katus, Hugo; Remppis, Andrew

    2008-04-01

    The 6-minute walk test (6MWT) is an established prognostic tool in chronic heart failure. The strong influence of height, weight, age, and sex on 6MWT distance may be accounted for by using percentage achieved of predicted value rather than uncorrected 6MWT values. The study included 1069 patients (862 men) with a mean age 55.2 +/- 11.7 years and mean left ventricular ejection fraction of 29% +/- 10%, attending the heart failure clinic of the University of Heidelberg between 1995 and 2005. The predictive power and accuracy of 6MWT and achieved percentage values according to all available published equations for mortality and mortality or transplant combined were tested separately for each sex. The percentage values varied largely between equations. For all equations, women in New York Heart Association (NYHA) functional class I had higher values than men. Although the 6MWT significantly discriminated all NYHA classes for both sexes, only 1 equation discriminated all NYHA classes. No significant differences in the area under the receiver operating-characteristic curve were noted between achieved percentage values and 6MWT. Despite strong univariate significance, achieved percentage values did not retain multivariate significance. The 6MWT was independent from N-terminal brain natriuretic propeptide, NYHA, left ventricular ejection fraction, and peak oxygen uptake. We confirmed 6MWT to be a strong and independent risk predictor for both sexes. Because the prognostic power of 6MWT is not enhanced using percentage achieved of published reference equations, we suggest recalibration of these reference values rather than discarding this approach.

  13. Changes in heparin dose response slope during cardiac surgery: possible result in inaccuracy in predicting heparin bolus dose requirement to achieve target ACT.

    Science.gov (United States)

    Ichikawa, Junko; Mori, Tetsu; Kodaka, Mitsuharu; Nishiyama, Keiko; Ozaki, Makoto; Komori, Makiko

    2017-09-01

    The substantial interpatient variability in heparin requirement has led to the use of a heparin dose response (HDR) technique. The accuracy of Hepcon-based heparin administration in achieving a target activated clotting time (ACT) using an HDR slope remains controversial. We prospectively studied 86 adult patients scheduled for cardiac surgery requiring cardiopulmonary bypass. The total dose of calculated heparin required for patient and pump priming was administered simultaneously to achieve a target ACT of 450 s for HDR on the Hepcon HMS system. Blood samples were obtained after the induction of anesthesia, at 3 min after heparin administration and after the initiation of CPB to measure kaolin ACT, HDR slope, whole-blood heparin concentration based on the HDR slope and anti-Xa heparin concentration, antithrombin and complete blood count. The target ACT of 450 s was not achieved in 68.6% of patients. Compared with patients who achieved the target ACT, those who failed to achieve their target ACT had a significantly higher platelet count at baseline. Correlation between the HDR slope and heparin sensitivity was poor. Projected heparin concentration and anti-Xa heparin concentration are not interchangeable based on the Bland-Altman analysis. It can be hypothesized that the wide discrepancy in HDR slope versus heparin sensitivity may be explained by an inaccurate prediction of the plasma heparin level and/or the change in HDR of individual patients, depending on in vivo factors such as extravascular sequestration of heparin, decreased intrinsic antithrombin activity level and platelet count and/or activity.

  14. Accuracy of peripheral arterial tonometry in the diagnosis of obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    José Antonio Pinto

    2015-10-01

    Full Text Available ABSTRACT INTRODUCTION: The use of handheld devices that assess peripheral arterial tonometry has emerged as an auxiliary method for assessment and diagnosis of obstructive sleep apnea syndrome. OBJECTIVE: To evaluate the accuracy of peripheral arterial tonometry in the diagnosis of obstructive sleep apnea. METHODS: Contemporary cohort cross-sectional study. Thirty patients with suspected obstructive sleep apnea underwent peripheral arterial tonometry and assisted nocturnal polysomnography concomitantly. RESULTS: The mean apnea/hypopnea index by peripheral arterial tonometry was significantly higher than that by polysomnography (p < 0.001, but the values of both sleep studies were significantly correlated (r = 0.762. There was a high correlation between variables: minimum oxygen saturation (r = 0.842,p < 0.001, oxygen saturation < 90% (r = 0.799, p < 0.001, and mean heart rate (r = 0.951, p < 0.001. Sensitivity and specificity were 60% and 96.2% (AUC: 0.727;p = 0.113, respectively, when at a threshold value of 5 events/h. In severe cases (≥30 events/h, the result was a sensitivity of 77.8% and a specificity of 86.4% (AUC: 0.846, p = 0.003. CONCLUSION: Peripheral arterial tonometry is a useful portable device for the diagnosis of obstructive sleep apnea; its accuracy is higher in moderate and severe cases.

  15. Measurement and reproduction accuracy of computer-controlled grand pianos

    Science.gov (United States)

    Goebl, Werner; Bresin, Roberto

    2003-10-01

    The recording and reproducing capabilities of a Yamaha Disklavier grand piano and a Bösendorfer SE290 computer-controlled grand piano were tested, with the goal of examining their reliability for performance research. An experimental setup consisting of accelerometers and a calibrated microphone was used to capture key and hammer movements, as well as the acoustic signal. Five selected keys were played by pianists with two types of touch (``staccato'' and ``legato''). Timing and dynamic differences between the original performance, the corresponding MIDI file recorded by the computer-controlled pianos, and its reproduction were analyzed. The two devices performed quite differently with respect to timing and dynamic accuracy. The Disklavier's onset capturing was slightly more precise (+/-10 ms) than its reproduction (-20 to +30 ms); the Bösendorfer performed generally better, but its timing accuracy was slightly less precise for recording (-10 to 3 ms) than for reproduction (+/-2 ms). Both devices exhibited a systematic (linear) error in recording over time. In the dynamic dimension, the Bösendorfer showed higher consistency over the whole dynamic range, while the Disklavier performed well only in a wide middle range. Neither device was able to capture or reproduce different types of touch.

  16. Efficient control of servo pneumatic actuator system utilizing by-pass ...

    Indian Academy of Sciences (India)

    The issue of energy saving nowadays is very crucial. Pneumatic systems, constituting an important segment of almost every industry, represent large energy consumers. Also, a significant problem with servo pneumatic actuators is achieving accuracy in positioning. The higher the positioning accuracy, the higher the ...

  17. Achievement Goals and Achievement Emotions: A Meta-Analysis

    Science.gov (United States)

    Huang, Chiungjung

    2011-01-01

    This meta-analysis synthesized 93 independent samples (N = 30,003) in 77 studies that reported in 78 articles examining correlations between achievement goals and achievement emotions. Achievement goals were meaningfully associated with different achievement emotions. The correlations of mastery and mastery approach goals with positive achievement…

  18. Strengthening the Management of the Higher Education System in Africa: The Role of a Regional Higher Education Management Information Network System (RHEMINS)

    Science.gov (United States)

    Emetarom, Uche G.; Enyi, Dan

    2008-01-01

    Contemporary higher education managers, in Africa, seem to have found themselves in a changed environment, with increased and increasing challenges, to operate and achieve success. Although, there is the existence of diversity in the label and typology as well as in the priorities and emphasis among the higher education systems in Africa, there is…

  19. THE ACCURACY AND BIAS EVALUATION OF THE USA UNEMPLOYMENT RATE FORECASTS. METHODS TO IMPROVE THE FORECASTS ACCURACY

    Directory of Open Access Journals (Sweden)

    MIHAELA BRATU (SIMIONESCU

    2012-12-01

    Full Text Available In this study some alternative forecasts for the unemployment rate of USA made by four institutions (International Monetary Fund (IMF, Organization for Economic Co-operation and Development (OECD, Congressional Budget Office (CBO and Blue Chips (BC are evaluated regarding the accuracy and the biasness. The most accurate predictions on the forecasting horizon 201-2011 were provided by IMF, followed by OECD, CBO and BC.. These results were gotten using U1 Theil’s statistic and a new method that has not been used before in literature in this context. The multi-criteria ranking was applied to make a hierarchy of the institutions regarding the accuracy and five important accuracy measures were taken into account at the same time: mean errors, mean squared error, root mean squared error, U1 and U2 statistics of Theil. The IMF, OECD and CBO predictions are unbiased. The combined forecasts of institutions’ predictions are a suitable strategy to improve the forecasts accuracy of IMF and OECD forecasts when all combination schemes are used, but INV one is the best. The filtered and smoothed original predictions based on Hodrick-Prescott filter, respectively Holt-Winters technique are a good strategy of improving only the BC expectations. The proposed strategies to improve the accuracy do not solve the problem of biasness. The assessment and improvement of forecasts accuracy have an important contribution in growing the quality of decisional process.

  20. Accuracy Assessment of Different Digital Surface Models

    Directory of Open Access Journals (Sweden)

    Ugur Alganci

    2018-03-01

    Full Text Available Digital elevation models (DEMs, which can occur in the form of digital surface models (DSMs or digital terrain models (DTMs, are widely used as important geospatial information sources for various remote sensing applications, including the precise orthorectification of high-resolution satellite images, 3D spatial analyses, multi-criteria decision support systems, and deformation monitoring. The accuracy of DEMs has direct impacts on specific calculations and process chains; therefore, it is important to select the most appropriate DEM by considering the aim, accuracy requirement, and scale of each study. In this research, DSMs obtained from a variety of satellite sensors were compared to analyze their accuracy and performance. For this purpose, freely available Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER 30 m, Shuttle Radar Topography Mission (SRTM 30 m, and Advanced Land Observing Satellite (ALOS 30 m resolution DSM data were obtained. Additionally, 3 m and 1 m resolution DSMs were produced from tri-stereo images from the SPOT 6 and Pleiades high-resolution (PHR 1A satellites, respectively. Elevation reference data provided by the General Command of Mapping, the national mapping agency of Turkey—produced from 30 cm spatial resolution stereo aerial photos, with a 5 m grid spacing and ±3 m or better overall vertical accuracy at the 90% confidence interval (CI—were used to perform accuracy assessments. Gross errors and water surfaces were removed from the reference DSM. The relative accuracies of the different DSMs were tested using a different number of checkpoints determined by different methods. In the first method, 25 checkpoints were selected from bare lands to evaluate the accuracies of the DSMs on terrain surfaces. In the second method, 1000 randomly selected checkpoints were used to evaluate the methods’ accuracies for the whole study area. In addition to the control point approach, vertical cross