WorldWideScience

Sample records for achieve cost-effective energy

  1. Cost-effectiveness and incidence of renewable energy promotion in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph [Oldenburg Univ. (Germany). Dept. of Economics; Landis, Florian [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Tovar Reanos, Miguel Angel [Zentrum fuer Europaeische Wirtschaftsforschung GmbH (ZEW), Mannheim (Germany)

    2017-08-01

    Over the last decade Germany has boosted renewable energy in power production by means of massive subsidies. The flip side are very high electricity prices which raises concerns that the transition cost towards a renewable energy system will be mainly borne by poor households. In this paper, we combine computable general equilibrium and microsimulation analysis to investigate the cost-effectiveness and incidence of Germany's renewable energy promotion. We find that the regressive effects of renewable energy promotion could be ameliorated by alternative subsidy financing mechanisms which achieve the same level of electricity generation from renewable energy sources.

  2. Cutting costs by achieving energy efficiency using monitoring, targeting and teamwork

    Energy Technology Data Exchange (ETDEWEB)

    Dittburner, D. [Unilever Canada, Toronto, ON (Canada)

    2004-07-01

    Unilever is a world leader of consumer goods with annual sales of $70 billion. This paper focuses on energy management projects developed at Unilever's Rexdale Plant, where 180 million pounds of edible oils and margarine are produced annually. The project is a response to corporate and market pressures to reduce costs. An overview of Unilever's relationship with Natural Resources Canada was provided. Results of the overall project were highlighted and included: $3 million in annual savings from increased efficiency in operations and equipment retrofits. An outline of the energy team at Unilever was presented, with their mission statement, rules and achievements, as well the company's overall goal of total productive manufacturing. A list of awards and financial incentives was presented, as well as details of financial savings incurred at the Rexdale Plant. Total energy reductions were presented, with a natural gas year to year comparison and utility to production ratios from 1999 to the present. A statement concerning the issue of corporate support by the vice president was provided. Seven steps to savings were presented, as well as details of the company's implementation of the steps. Details of the extended team involved in the project were provided, as well as extensive details about the employee awareness program instigated by the company, including a database of ideas achieved since 2001, as well as details of specific projects accomplished, with estimated savings for each project. An outline of the company's business model and methodology was presented, along with details of reduced costs, risk and improved management and communications. An outline of scoping studies was presented as well as a flow chart of projects and target-setting goals. Success factors were reviewed. Montage applications included energy management; performance contracting; energy forecasting; emissions and waste minimization; and cost allocation. tabs., figs.

  3. City-scale analysis of water-related energy identifies more cost-effective solutions.

    Science.gov (United States)

    Lam, Ka Leung; Kenway, Steven J; Lant, Paul A

    2017-02-01

    Energy and greenhouse gas management in urban water systems typically focus on optimising within the direct system boundary of water utilities that covers the centralised water supply and wastewater treatment systems, despite a greater energy influence by the water end use. This work develops a cost curve of water-related energy management options from a city perspective for a hypothetical Australian city. It is compared with that from the water utility perspective. The curves are based on 18 water-related energy management options that have been implemented or evaluated in Australia. In the studied scenario, the cost-effective energy saving potential from a city perspective (292 GWh/year) is far more significant than that from a utility perspective (65 GWh/year). In some cases, for similar capital cost, if regional water planners invested in end use options instead of utility options, a greater energy saving potential at a greater cost-effectiveness could be achieved in urban water systems. For example, upgrading a wastewater treatment plant for biogas recovery at a capital cost of $27.2 million would save 31 GWh/year with a marginal cost saving of $63/MWh, while solar hot water system rebates at a cost of $28.6 million would save 67 GWh/year with a marginal cost saving of $111/MWh. Options related to hot water use such as water-efficient shower heads, water-efficient clothes washers and solar hot water system rebates are among the most cost-effective city-scale opportunities. This study demonstrates the use of cost curves to compare both utility and end use options in a consistent framework. It also illustrates that focusing solely on managing the energy use within the utility would miss substantial non-utility water-related energy saving opportunities. There is a need to broaden the conventional scope of cost curve analysis to include water-related energy and greenhouse gas at the water end use, and to value their management from a city perspective. This

  4. COST-EFFECTIVE TARGET FABRICATION FOR INERTIAL FUSION ENERGY

    International Nuclear Information System (INIS)

    GOODIN, D.T; NOBILE, A; SCHROEN, D.G; MAXWELL, J.L; RICKMAN, W.S

    2004-03-01

    A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The IFE target fabrication programs are focusing on methods that will scale to mass production, and working closely with target designers to make material selections that will satisfy a wide range of required and desirable characteristics. Targets produced for current inertial confinement fusion experiments are estimated to cost about $2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have found a cost requirement of about $0.25-0.30 each. While four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the paradigm shifts in target fabrication methodologies that will be needed to economically supply targets and presents the results of ''nth-of-a-kind'' plant layouts and concepts for IFE power plant fueling. Our engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for laser-driven and for heavy ion driven IFE

  5. Understanding Cost-Effectiveness of Energy Efficiency Programs

    Science.gov (United States)

    Discusses the five standard tests used to assess the cost-effectiveness of energy efficiency, how states are using these tests, and how the tests can be used to determine the cost-effectiveness of energy efficiency measures.

  6. Cost-Effectiveness of Comprehensive School Reform in Low Achieving Schools

    Science.gov (United States)

    Ross, John A.; Scott, Garth; Sibbald, Tim M.

    2012-01-01

    We evaluated the cost-effectiveness of Struggling Schools, a user-generated approach to Comprehensive School Reform implemented in 100 low achieving schools serving disadvantaged students in a Canadian province. The results show that while Struggling Schools had a statistically significant positive effect on Grade 3 Reading achievement, d = 0.48…

  7. Impacts of optimum cost effective energy efficiency standards

    International Nuclear Information System (INIS)

    Brancic, A.B.; Peters, J.S.; Arch, M.

    1991-01-01

    Building Codes are increasingly required to be responsive to social and economic policy concerns. In 1990 the State of Connecticut passes An Act Concerning Global Warming, Public Act 90-219, which mandates the revision of the state building code to require that buildings and building elements be designed to provide optimum cost-effective energy efficiency over the useful life of the building. Further, such revision must meet the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standard 90.1 - 1989. As the largest electric energy supplier in Connecticut, Northeast Utilities (NU) sponsored a pilot study of the cost effectiveness of alternative building code standards for commercial construction. This paper reports on this study which analyzed design and construction means, building elements, incremental construction costs, and energy savings to determine the optimum cost-effective building code standard. Findings are that ASHRAE 90.1 results in 21% energy savings and alternative standards above it result in significant additional savings. Benefit/cost analysis showed that both are cost effective

  8. Renewable portfolio standards and cost-effective energy-efficiency investment

    International Nuclear Information System (INIS)

    Mahone, A.; Woo, C.K.; Williams, J.; Horowitz, I.

    2009-01-01

    Renewable portfolio standards (RPSs) and mandates to invest in cost-effective energy efficiency (EE) are increasingly popular policy tools to combat climate change and dependence on fossil fuels. These supply-side and demand-side policies, however, are often uncoordinated. Using California as a case in point, this paper demonstrates that states could improve resource allocation if these two policies were coordinated by incorporating renewable-energy procurement cost into the cost-effectiveness determination for EE investment. In particular, if renewable energy is relatively expensive when compared to conventional energy, increasing the RPS target raises the cost-effective level of EE investment

  9. Methodology for Evaluating Cost-effectiveness of Commercial Energy Code Changes

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-31

    This document lays out the U.S. Department of Energy’s (DOE’s) method for evaluating the cost-effectiveness of energy code proposals and editions. The evaluation is applied to provisions or editions of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1 and the International Energy Conservation Code (IECC). The method follows standard life-cycle cost (LCC) economic analysis procedures. Cost-effectiveness evaluation requires three steps: 1) evaluating the energy and energy cost savings of code changes, 2) evaluating the incremental and replacement costs related to the changes, and 3) determining the cost-effectiveness of energy code changes based on those costs and savings over time.

  10. Measured energy savings and cost-effectiveness of conservation retrofits in commercial buildings

    International Nuclear Information System (INIS)

    Greely, K.M.; Harris, J.P.; Hatcher, A.M.

    1990-01-01

    In this study, the authors examine the measured savings and cost-effectiveness of 447 commercial retrofit projects in the US, Canada, and Europe, representing over 1,700 buildings. For these projects, they examine savings and cost-effectiveness by building type and retrofit strategy, savings from individual measures, peak electric demand savings, comparisons of measured vs. predicted savings, and the persistence of savings in the years following a retrofit. Median annual site energy savings amounted to 20 kBtu/ft 2 , or 18% of whole-building usage; median retrofit cost was $0.56/ft 2 (1988 $), the median payback time was 3.1 years, and the median cost of conserved energy was $3.10/site MBtu. When examined by retrofit strategy, they found that projects with only HVAC and/or lighting retrofits had median payback times of one to three years, while those affecting the building shell, either alone or in combination with other types of measures, had payback times of five or more years. Projects in which only maintenance practices were changed typically saved 12% of their pre-retrofit consumption, often using in-house labor. Their research suggests that, despite significant savings and short payback times for the majority of projects, optimum savings are often not being achieved, due to limited owner willingness to invest in all cost-effective measures, as well as to improper retrofit installation and/or maintenance. A comprehensive understanding of energy management as a process is needed, including both inspection and commissioning of installed retrofits and ongoing tracking of energy consumption as an indicator of operating problems

  11. A minimum achievable PV electrical generating cost

    International Nuclear Information System (INIS)

    Sabisky, E.S.

    1996-01-01

    The role and share of photovoltaic (PV) generated electricity in our nation's future energy arsenal is primarily dependent on its future production cost. This paper provides a framework for obtaining a minimum achievable electrical generating cost (a lower bound) for fixed, flat-plate photovoltaic systems. A cost of 2.8 $cent/kWh (1990$) was derived for a plant located in Southwestern USA sunshine using a cost of money of 8%. In addition, a value of 22 $cent/Wp (1990$) was estimated as a minimum module manufacturing cost/price

  12. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  13. Cost-optimal energy performance renovation measures of educational buildings in cold climate

    International Nuclear Information System (INIS)

    Niemelä, Tuomo; Kosonen, Risto; Jokisalo, Juha

    2016-01-01

    Highlights: • The proposed national nZEB target can be cost-effectively achieved in renovations. • Energy saving potential of HVAC systems is significant compared to the building envelope. • Modern renewable energy production technologies are cost-efficient and recommendable. • Improving the indoor climate conditions in deep renovations is recommendable. • Simulation-based optimization method is efficient in building performance analyzes. - Abstract: The paper discusses cost-efficient energy performance renovation measures for typical educational buildings built in the 1960s and 1970s in cold climate regions. The study analyzes the impact of different energy renovation measures on the energy efficiency and economic viability in a Finnish case study educational building located in Lappeenranta University of Technology (LUT) campus area. The main objective of the study was to determine the cost-optimal energy performance renovation measures to meet the proposed national nearly zero-energy building (nZEB) requirements, which are defined according to the primary energy consumption of buildings. The main research method of the study was simulation-based optimization (SBO) analysis, which was used to determine the cost-optimal renovation solutions. The results of the study indicate that the minimum national energy performance requirement of new educational buildings (E_p_r_i_m_a_r_y ⩽ 170 kWh/(m"2,a)) can be cost-effectively achieved in deep renovations of educational buildings. In addition, the proposed national nZEB-targets are also well achievable, while improving the indoor climate (thermal comfort and indoor air quality) conditions significantly at the same time. Cost-effective solutions included renovation of the original ventilation system, a ground source heat pump system with relatively small dimensioning power output, new energy efficient windows and a relatively large area of PV-panels for solar-based electricity production. The results and

  14. Achieving Energy Efficiency Through Real-Time Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Nesse, Ronald J.

    2011-09-01

    Through the careful implementation of simple behavior change measures, opportunities exist to achieve strategic gains, including greater operational efficiencies, energy cost savings, greater tenant health and ensuing productivity and an improved brand value through sustainability messaging and achievement.

  15. Achieving the Renewable Energy Target for Jamaica

    Directory of Open Access Journals (Sweden)

    Abdullahi Olabode ABDULKADRI

    2014-05-01

    Full Text Available ieving the Renewable Energy Target for Jamaica Abstract: The high cost of energy in Jamaica, one of the highest in the Caribbean region, is usually cited as a hindrance to industrial development and efficiency, especially in the manufacturing sector. High energy cost is also considered to be a national energy security issue and the government is taking steps to ensure adequate supply of energy at affordable prices. In the current National Development Plan, the government has set a target for renewable energy sources to supply 20% of the country's energy need by the year 2030. Using a linear programing model of energy planning, we examine how realistically this target could be achieved. Our findings indicate that the 20% renewable energy target is technically achievable with the optimal plan showing a mixture of wind power, hydropower and bagasse power but no solar power. However, when the timeline for investment in new generating capacities that will ensure the attainment of the target is considered, it becomes highly improbable that the target will be met. This study fills the gap that exists in evidence-based analysis of energy policy in Jamaica.

  16. Cost-effectiveness and incidence of renewable energy promotion in Germany

    OpenAIRE

    Böhringer, Christoph; Landis, Florian; Tovar Reaños, Miguel Angel

    2017-01-01

    Over the last decade Germany has boosted renewable energy in power production by means of massive subsidies. The flip side are very high electricity prices which raises concerns that the transition cost towards a renewable energy system will be mainly borne by poor households. In this paper, we combine computable general equilibrium and microsimulation analysis to investigate the cost-effectiveness and incidence of Germany's renewable energy promotion. We find that the regressive effects of r...

  17. The cost - effective solar energy applications in Canada

    International Nuclear Information System (INIS)

    Pape, A.

    1999-01-01

    This paper outlines several cost-effective solar energy application in Canada, and estimates the GHG emission reduction potential for each. The applications include: (1) passive solar building design; (2) solar water heating applications; (3) solar photovoltaics for remote power; and (4) solar assisted space heating and cooling in industrial buildings. Each technology is briefly profiled in terms of functionality, cost characteristics, energy production characteristics and potential emission reduction benefits. Real-life examples of each application are also included. Finally, the paper concludes on the potential role of solar energy in the reduction of Canadian GHG emissions. (author)

  18. Key Questions for Achieving EU Emission Reductions without Abandoning Other Energy Goals

    International Nuclear Information System (INIS)

    Stang, G.

    2014-01-01

    What considerations must be addressed to ensure that efforts to achieve the EU's new 2030 emissions and renewables targets are compatible with the other energy goals of the EU and its member states: energy security, and energy affordability? How should these other energy goals be addressed when pursuing energy efficiency improvements, upgrading electricity systems to handle different renewable energy sources, and developing policies to reduce overall CO2 emissions? Markets have been defined as being central to achieving all of Europe's energy goals - both the creation of an EU internal energy market and the use of the Emissions Trading System (ETS) to allow a market for managing a portion of the continent's greenhouse gas emissions. But once these markets are in place and operational, there will still be great variances among the goals, instruments, and level of market integration available for the different countries and regions of Europe. Choosing the most cost effective mechanisms for pursuing the new goals will require effective use of the flexibility that is available - an improved ETS, tradable national targets for non-ETS emissions, and a rapidly widening array of cost-effective renewable energy options. Sufficient use of this flexibility should facilitate the flow of energy investments toward energy system improvements where there is low-hanging fruit - anywhere in the continent - without requiring that local or continental energy security goals be sacrificed. (author).

  19. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    Science.gov (United States)

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  20. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

    2009-09-01

    A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that

  1. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  2. Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.

    Science.gov (United States)

    Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G

    2015-11-17

    Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.

  3. Ripple Effects: Budgets Grow Modestly, but Energy Costs Cloud the Horizon

    Science.gov (United States)

    Oder, Norman

    2006-01-01

    In this article, the author reports the ripple effects of the energy squeeze due to Hurricane Katrina and other factors that sent energy costs skyrocketing. Energy costs are a good part of why budget growth, which has been steady over the past five years, has been slowing down. The projected change from FY2005 to FY2006 is only 3.3%, compared to…

  4. Overall analysis of the cost key factors for the nuclear energy

    International Nuclear Information System (INIS)

    Caero, M.

    1996-01-01

    In 1995, 25,8 % of the world electricity consumption was of nuclear origin, while in the EU this figure is increased up to 50,6 %. In order to maintain and even to increase its share in the electricity generation, Nuclear Energy needs to achieve a good economic performance as a base load source when compared with its competitors, basically coal and gas fired plants. Fossil-fired generation costs have declined over the past ten years, mainly due to lower fossil fuel prices. This factor together with the recently observed tendency of higher discount rates to be applied are challenging the attractiveness of the nuclear energy. Nuclear energy is a capital intensive option. Taken into account extensive standardization programs has been established aiming at cost reductions as well as to increase efficiency of nuclear energy utilization, among their main purposes. Externalities play an important role, as they are already internalized in nuclear generation costs. This is not true for many existing coal-fired plants. Even a great uncertainly exists on greenhouse gas effects. Also decisions on greenhouse gas control and their impact on carbonaceous fuel generation costs cannot be clearly predicted, even in the immediate future. Macroeconomic factors like employment, competitiveness, energy conservation, energy availability, energy demand control, etc are positively influenced by the use of nuclear energy. A sustainable economic development cannot be achieved only relying on fossil fuel generation. As a wrap up sustainable development demands nuclear energy in order to cover the future objectives of energy availability, environmental control and energy cost control. (author)

  5. Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian A.; Rosenberg, Michael I.; Richman, Eric E.; Wang, Weimin; Xie, YuLong; Zhang, Jian; Cho, Heejin; Mendon, Vrushali V.; Athalye, Rahul A.; Liu, Bing

    2011-05-24

    This Technical Support Document presents the energy and cost savings analysis that PNNL conducted to measure the potential energy savings of 90.1-2010 relative to 90.1-2004. PNNL conducted this analysis with inputs from many other contributors and source of information. In particular, guidance and direction was provided by the Simulation Working Group under the auspices of the SSPC90.1. This report documents the approach and methodologies that PNNL developed to evaluate the energy saving achieved from use of ASHRAE/IES Standard 90.1-2010. Specifically, this report provides PNNL’s Progress Indicator process and methodology, EnergyPlus simulation framework, prototype model descriptions. This report covers the combined upgrades from 90.1-2004 to 90.1-2010, resulting in a total of 153 addenda. PNNL has reviewed and considered all 153 addenda for quantitative analysis in the Progress Indicator process. 53 of those are included in the quantitative analysis. This report provides information on the categorization of all of the addenda, a summary of the content, and deeper explanation of the impact and modeling of 53 identified addenda with quantitative savings.

  6. Pursuing Photovoltaic Cost-Effectiveness

    DEFF Research Database (Denmark)

    Yang, Yongheng; Koutroulis, Eftichios; Sangwongwanich, Ariya

    2017-01-01

    loading of the power devices. However, its feasibility is challenged by the associated energy losses. An increase of the inverter lifetime and a reduction of the energy yield can alter the cost of energy, demanding an optimization of the power limitation. Therefore, aiming at minimizing the Levelized Cost...... be flexibly performed. As an advanced control strategy, the Absolute Active Power Control (AAPC) can effectively solve the overloading issues by limiting the maximum possible PV power to a certain level (i.e., the power limitation), and also benefit the inverter reliability due to the reduction in the thermal...... performance in terms of LCOE and energy production can be obtained by enabling the AAPC strategy, compared to the conventional PV inverter operating only in the maximum power point tracking mode. In the presented case study, the minimum of the LCOE is achieved for the PV system when the power limit...

  7. Cost-effectiveness analysis of algae energy production in the EU

    International Nuclear Information System (INIS)

    Kovacevic, Vujadin; Wesseler, Justus

    2010-01-01

    Today's society relies heavily on fossil fuels as a main energy source. Global energy demand increase, energy security and climate change are the main drivers of the transition towards alternative energy sources. This paper analyses algal biodiesel production for the EU road transportation and compares it to the fossil fuels and 1st generation biofuels. A cost-effectiveness analysis was used to aggregate private and external costs and derive the social cost of each fuel. The following externalities were internalized: emissions (GHG and non-GHG), food prices impact, pesticides/fertilizers use and security of supply. Currently the social cost of producing algal biodiesel at 52.3 EUR GJ -1 is higher than rapeseed biodiesel (36.0 EUR GJ -1 ) and fossil fuels (15.8 EUR GJ -1 ). Biotechnology development, high crude oil prices and high carbon value are the key features of the scenario where algal biodiesel outcompetes all other fuels. A substantial investment into the biotechnology sector and comprehensive environmental research and policy are required to make that scenario a reality. (author)

  8. Accounting for Energy Cost When Designing Energy-Efficient Wireless Access Networks

    Directory of Open Access Journals (Sweden)

    Greta Vallero

    2018-03-01

    Full Text Available Because of the increase of the data traffic demand, wireless access networks, through which users access telecommunication services, have expanded, in terms of size and of capability and, consequently, in terms of power consumption. Therefore, costs to buy the necessary power for the supply of base stations of those networks is becoming very high, impacting the communication cost. In this study, strategies to reduce the amount of money spent for the purchase of the energy consumed by the base stations are proposed for a network powered by solar panels, energy batteries and the power grid. First, the variability of the energy prices is exploited. It provides a cost reduction of up to 30%, when energy is bought in advance. If a part of the base stations is deactivated when the energy price is higher than a given threshold, a compromise between the energy cost and the user coverage drop is needed. In the simulated scenario, the necessary energy cost can be reduced by more than 40%, preserving the user coverage by greater than 94%. Second, the network is introduced to the energy market: it buys and sells energy from/to the traditional power grid. Finally, costs are reduced by the reduction of power consumption of the network, achieved by using microcell base stations. In the considered scenario, up to a 31% cost reduction is obtained, without the deterioration of the quality of service, but a huge Capex expenditure is required.

  9. The German energy audit program for firms. A cost-effective way to improve energy efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Fleiter, T.; Eichhammer, W. [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Str. 48, 76139, Karlsruhe (Germany); Gruber, E. [Institute for Resource Efficiency and Energy Strategies IREES GmbH, Schoenfeldstr. 8, 76131, Karlsruhe (Germany); Worrell, E. [Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, 3584, Utrecht (Netherlands)

    2012-11-15

    In 2008, a program was established in Germany to provide grants for energy audits in small- and medium-sized enterprises. It aims to overcome barriers to energy efficiency, like the lack of information or a lack of capacity, and is intended to increase the adoption of energy efficiency measures. We evaluate the program's impact in terms of energy savings, CO2 mitigation, and cost-effectiveness. We find that firms adopt 1.7-2.9 energy efficiency measures, which they would not have adopted without the program. Taking a firm's perspective, the program shows a net present value ranging from -0.4 to 6 euro/MWh saved, which very likely implies a net benefit. For the government, each ton of CO2 mitigated costs between 1.8 and 4.1 euro. Each euro of public expenditure on audit grants led to 17-33 euro of private investment. The cost-effectiveness of the program for firms and the low share of public expenditure underline its value for the German energy efficiency policy mix and suggest that it should be expanded in Germany. Further, the good experiences with the program in Germany should encourage countries which have not yet established an audit program to do so.

  10. Social costs of energy consumption

    International Nuclear Information System (INIS)

    Hohmeyer, O.

    1988-01-01

    This study systematically compares the external costs and benefits of different electricity generating technologies. It covers environmental and employment effects, the depletion of natural resources, and public subsidies. Electricity production based on fossil fuels and nuclear energy compared with electricity production based on wind energy and photovoltaic systems. The study shows that wind and photovoltaic solar energy induce far less social costs than conventionally generated electricity. The impact of excluding social costs on the competitive position of the different energy technologies is analyzed. It is shown that the allocation process is seriously distorted resulting in sub-optimal investment decisions concerning competing energy technologies. This exclusion of social costs can delay the introduction of renewable energy sources by more than ten years and results in considerable losses to society. (orig./HSCH) With 17 figs., 24 tabs

  11. Cost Minimization for Joint Energy Management and Production Scheduling Using Particle Swarm Optimization

    Science.gov (United States)

    Shah, Rahul H.

    Production costs account for the largest share of the overall cost of manufacturing facilities. With the U.S. industrial sector becoming more and more competitive, manufacturers are looking for more cost and resource efficient working practices. Operations management and production planning have shown their capability to dramatically reduce manufacturing costs and increase system robustness. When implementing operations related decision making and planning, two fields that have shown to be most effective are maintenance and energy. Unfortunately, the current research that integrates both is limited. Additionally, these studies fail to consider parameter domains and optimization on joint energy and maintenance driven production planning. Accordingly, production planning methodology that considers maintenance and energy is investigated. Two models are presented to achieve well-rounded operating strategy. The first is a joint energy and maintenance production scheduling model. The second is a cost per part model considering maintenance, energy, and production. The proposed methodology will involve a Time-of-Use electricity demand response program, buffer and holding capacity, station reliability, production rate, station rated power, and more. In practice, the scheduling problem can be used to determine a joint energy, maintenance, and production schedule. Meanwhile, the cost per part model can be used to: (1) test the sensitivity of the obtained optimal production schedule and its corresponding savings by varying key production system parameters; and (2) to determine optimal system parameter combinations when using the joint energy, maintenance, and production planning model. Additionally, a factor analysis on the system parameters is conducted and the corresponding performance of the production schedule under variable parameter conditions, is evaluated. Also, parameter optimization guidelines that incorporate maintenance and energy parameter decision making in the

  12. Thermal cooling using low-temperature waste heat. A cost-effective way for industrial companies to improve energy efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Schall, D.; Hirzel, S. [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139 Karlsruhe (Germany)

    2012-11-15

    As a typical cross-cutting technology, cooling and refrigeration equipment is used for a variety of industrial applications. While cooling is often provided by electric compression cooling systems, thermal cooling systems powered by low-temperature waste heat could improve energy efficiency and promise a technical saving potential corresponding to 0.5 % of the total electricity demand in the German industry. In this paper, we investigate the current and future cost-effectiveness of thermal cooling systems for industrial companies. Our focus is on single-stage, closed absorption and adsorption cooling systems with cooling powers between 40 and 100 kW, which use low-temperature waste heat at temperature levels between 70C and 85C. We analyse the current and future cost-effectiveness of these alternative cooling systems using annual cooling costs (annuities) and payback times. For a forecast until 2015, we apply the concept of experience curves, identifying learning rates of 14 % (absorption machines) and 17 % (adsorption machines) by an expert survey of the German market. The results indicate that thermal cooling systems are currently only cost-effective under optimistic assumptions (full-time operation, high electricity prices) when compared to electric compression cooling systems. Nevertheless, the cost and efficiency improvements expected for this still young technology mean that thermal cooling systems could be more cost-effective in the future. However, depending on future electricity prices, a high number of operating hours is still crucial to achieve payback times substantially below 4 years which are usually required for energy efficiency measures to be widely adopted in the industry.

  13. Renewable energy costs, potentials, barriers: Conceptual issues

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Fischedick, Manfred; Moomaw, William; Weir, Tony; Nadai, Alain; Nilsson, Lars J.; Nyboer, John; Sathaye, Jayant

    2010-01-01

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies.

  14. THE COSTS OF ENERGY SUPPLY SECURITY

    Energy Technology Data Exchange (ETDEWEB)

    Rogner, H.H.; Langlois, L.M.; McDonald, A.; Weisser, D.; Howells, M.

    2007-07-01

    In general, increasing a country's energy supply security does not come for free. It costs money to build up a strategic reserve, to increase supply diversity or even to accelerate energy efficiency improvements. Nor are all investments in increasing energy supply security cost effective, even if the shocks they are designed to insure against can be predicted with 100% accuracy. The first half of the paper surveys different definitions and strategies associated with the concept of energy supply security, and compares current initiatives to establish an 'assured supply of nuclear fuel' to the International Energy Agency's (IEA's) system of strategic national oil reserves. The second half of the paper presents results from several case studies of the costs and effectiveness of selected energy supply security policies. One case study examines alternative strategies for Lithuania following the scheduled closure of the Ignalina-2 nuclear reactor in 2009. The second case study examines, for countries with different energy resources and demand structures, the effectiveness of a policy to increase supply diversity by expanding renewable energy supplies. (auth)

  15. Electricity cost effects of expanding wind power and integrating energy sectors

    DEFF Research Database (Denmark)

    Rodriguez, Victor Adrian Maxwell; Sperling, Karl; Hvelplund, Frede Kloster

    2015-01-01

    Recently, questions have arisen in Denmark as to how and why public funding should be allocated to wind power producers. This is, among other reasons, due to pressure from industrial electricity consumers who want their overall energy costs lowered. Utilising existing wind power subsidies across...... conditions which could allow wind power producers to reduce their reliance on subsidies. It is found that the strategy may be effective in lowering the overall energy costs of electricity consumers. Further, it is found possible to scale up this strategy and realise benefits on a national scale....

  16. Energy cost reduction in oil pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Limeira, Fabio Machado; Correa, Joao Luiz Lavoura; Costa, Luciano Macedo Josino da; Silva, Jose Luiz da; Henriques, Fausto Metzger Pessanha [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    One of the key questions of modern society consists on the rational use of the planet's natural resources and energy. Due to the lack of energy, many companies are forced to reduce their workload, especially during peak hours, because residential demand reaches its top and there is not enough energy to fulfill the needs of all users, which affects major industries. Therefore, using energy more wisely has become a strategic issue for any company, due to the limited supply and also for the excessive cost it represents. With the objective of saving energy and reducing costs for oil pipelines, it has been identified that the increase in energy consumption is primordially related to pumping stations and also by the way many facilities are operated, that is, differently from what was originally designed. Realizing this opportunity, in order to optimize the process, this article intends to examine the possibility of gains evaluating alternatives regarding changes in the pump scheme configuration and non-use of pump stations at peak hours. Initially, an oil pipeline with potential to reduce energy costs was chosen being followed by a history analysis, in order to confirm if there was sufficient room to change the operation mode. After confirming the pipeline choice, the system is briefly described and the literature is reviewed, explaining how the energy cost is calculated and also the main characteristics of a pumping system in series and in parallel. In that sequence, technically feasible alternatives are studied in order to operate and also to negotiate the energy demand contract. Finally, costs are calculated to identify the most economical alternative, that is, for a scenario with no increase in the actual transported volume of the pipeline and for another scenario that considers an increase of about 20%. The conclusion of this study indicates that the chosen pipeline can achieve a reduction on energy costs of up to 25% without the need for investments in new

  17. A fuzzy levelised energy cost method for renewable energy technology assessment

    International Nuclear Information System (INIS)

    Wright, Daniel G.; Dey, Prasanta K.; Brammer, John G.

    2013-01-01

    Renewable energy project development is highly complex and success is by no means guaranteed. Decisions are often made with approximate or uncertain information yet the current methods employed by decision-makers do not necessarily accommodate this. Levelised energy costs (LEC) are one such commonly applied measure utilised within the energy industry to assess the viability of potential projects and inform policy. The research proposes a method for achieving this by enhancing the traditional discounting LEC measure with fuzzy set theory. Furthermore, the research develops the fuzzy LEC (F-LEC) methodology to incorporate the cost of financing a project from debt and equity sources. Applied to an example bioenergy project, the research demonstrates the benefit of incorporating fuzziness for project viability, optimal capital structure and key variable sensitivity analysis decision-making. The proposed method contributes by incorporating uncertain and approximate information to the widely utilised LEC measure and by being applicable to a wide range of energy project viability decisions. -- Highlights: •Proposes a fuzzy levelised energy cost (F-LEC) methodology to support energy project development. •Incorporates the terms and cost of project finance into the F-LEC method. •Applies the F-LEC method to an example bioenergy project development case

  18. Co-emergence of multi-scale cortical activities of irregular firing, oscillations and avalanches achieves cost-efficient information capacity.

    Directory of Open Access Journals (Sweden)

    Dong-Ping Yang

    2017-02-01

    Full Text Available The brain is highly energy consuming, therefore is under strong selective pressure to achieve cost-efficiency in both cortical connectivities and activities. However, cost-efficiency as a design principle for cortical activities has been rarely studied. Especially it is not clear how cost-efficiency is related to ubiquitously observed multi-scale properties: irregular firing, oscillations and neuronal avalanches. Here we demonstrate that these prominent properties can be simultaneously observed in a generic, biologically plausible neural circuit model that captures excitation-inhibition balance and realistic dynamics of synaptic conductance. Their co-emergence achieves minimal energy cost as well as maximal energy efficiency on information capacity, when neuronal firing are coordinated and shaped by moderate synchrony to reduce otherwise redundant spikes, and the dynamical clusterings are maintained in the form of neuronal avalanches. Such cost-efficient neural dynamics can be employed as a foundation for further efficient information processing under energy constraint.

  19. The effects of rising energy costs and transportation mode mix on forest fuel procurement costs

    International Nuclear Information System (INIS)

    Rauch, Peter; Gronalt, Manfred

    2011-01-01

    Since fossil fuels have been broadly recognized as a non-renewable energy source that threatens the climate, sustainable and CO 2 neutral energy sources - such as forest fuels - are being promoted in Europe, instead. With the expeditiously growing forest fuel demand, the strategic problem of how to design a cost-efficient distribution network has evolved. This paper presents an MILP model, comprising decisions on modes of transportation and spatial arrangement of terminals, in order to design a forest fuel supply network for Austria. The MILP model is used to evaluate the impacts of rising energy costs on procurement sources, transport mix and procurement costs on a national scale, based on the example of Austria. A 20% increase of energy costs results in a procurement cost increase of 7%, and another 20% increase of energy costs would have similar results. While domestic waterways become more important as a result of the first energy cost increase, rail only does so after the second. One way to decrease procurement costs would be to reduce the share of empty trips with truck and trailer. Reducing this share by 10% decreases the average procurement costs by up to 20%. Routing influences the modal split considerably, and the truck transport share increases from 86% to 97%, accordingly. Increasing forest fuel imports by large CHPs lowers domestic competition and also enables smaller plants to cut their procurement costs. Rising forest fuel imports via ship will not significantly decrease domestic market shares, but they will reduce procurement costs considerably. (author)

  20. Facilitating Sound, Cost-Effective Federal Energy Management

    Energy Technology Data Exchange (ETDEWEB)

    FEMP

    2016-07-01

    Fact sheet offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  1. The evolution of energy costs and their effect on the competitiveness of Spanish industry

    International Nuclear Information System (INIS)

    Arocena, P.; Diaz, A. C.

    2015-01-01

    This paper analyzes the role of energy costs in the Spanish manufacturing and its evolution during the period 2000-2010. We carry out a descriptive analysis to firstly, determine the share of energy expenses on total operating expenses and personnel costs, and compare it with that registered in other European countries. Secondly, we analyze the evolution of the energy expenditure in relation to the output value created throughout the decade 2000-2010 and decompose such variation into a price effect and a quantity effect. (Author)

  2. International energy technology collaboration: benefits and achievements

    International Nuclear Information System (INIS)

    1996-01-01

    The IEA Energy Technology Collaboration Programme facilitates international collaboration on energy technology research, development and deployment. More than 30 countries are involved in Europe, America, Asia, Australasia and Africa. The aim is to accelerate the development and deployment of new energy technologies to meet energy security, environmental and economic development goals. Costs and resources are shared among participating governments, utilities, corporations and universities. By co-operating, they avoid unproductive duplication and maximize the benefits from research budgets. The IEA Programme results every year in hundreds of publications which disseminate information about the latest energy technology developments and their commercial utilisation. The IEA Energy Technology Collaboration Programme operates through a series of agreements among governments. This report details the activities and achievements of all 41 agreements, covering energy technology information centres and Research and Development projects in fossil fuels, renewable energy efficient end-use, and nuclear fusion technologies. (authors). 58 refs., 9 tabs

  3. Energy consumption and cost analysis of hybrid electric powertrain configurations for two wheelers

    International Nuclear Information System (INIS)

    Walker, Paul D.; Roser, Holger M.

    2015-01-01

    Highlights: • We analyse several driving cycles to for the preliminary design of hybrid two wheelers. • Simulation of alternate configurations to compare achievable driving range and economy. • Demonstrate that pure electric vehicles provide cost benefits over the vehicle life. • Hybrid and plug-in hybrid two wheelers have comparable costs to conventional vehicles. - Abstract: The development of hybrid electric two wheelers in recent years has targeted the reduction of on road emissions produced by these vehicles. However, added cost and complexity have resulted in the failure of these systems to meet consumer expectations. This paper presents a comparative study of the energy economy and essential costs of alternative forms of small two wheelers such as scooters or low capacity motorcycles. This includes conventional, hybrid, plug-in hybrid and electric variants. Through simulations of vehicle driving range using two popular driving cycles it is demonstrated that there is considerable benefit in fuel economy realised by hybridising such vehicles. However, the added costs associated with electrification, i.e. motor/generator, power electronics, and energy storage provide a significant cost obstacle to the purchase of such vehicles. Only the pure electric configuration is demonstrated to be cost effective over its life in comparison to conventional two wheelers. Both the hybrid electric and plug-in equivalents must overcome significant upfront costs to be cost competitive with conventional vehicles. This is demonstrated to be achieved if the annual driving range of the vehicle is increased substantially from the assumed mean. Given the shorter distances travelled by most two wheeler drivers it can therefore be concluded that the development of similar hybrid electric vehicles are unlikely to achieve the desired acceptance that pure electric or conventional equivalents currently achieve

  4. A new energy paradigm for Turkey: A political risk-inclusive cost analysis for sustainable energy

    International Nuclear Information System (INIS)

    Oksay, Serhan; Iseri, Emre

    2011-01-01

    Implementing sustainable development policies in order to achieve economic and social development while maintaining adequate environmental protection to minimize the damage inflicted by the constantly increasing world population must be a major priority in the 21st century. While the emerging global debate on potential cost-effective responses has produced potential solutions such as cap and trade systems and/or carbon taxes as part of evolving sustainable energy/environmental policies, this kind of intellectual inquiry does not seem to be an issue among Turkish policy-making elites. This is mainly due to their miscalculation that pursuing sustainable energy policies is much more expensive in comparison to the utilization of fossil fuels such as natural gas. Nevertheless, the pegged prices of an energy sector dominated by natural gas are illusive, as both the political risks and environmental damage have not been incorporated into the current cost calculations. This paper evaluates energy policies through a lens of risk management and takes an alternative approach to calculating energy costs by factoring in political risks. This formulation reveals that the cost of traditional fossil-based energy is in fact more expensive than renewable energy. In addition to being environmentally friendly, the paradigm shift towards renewable energy policies would provide Turkey with a significant opportunity to stimulate its economy by being one of the first countries to develop green technologies and as a result this burgeoning sector would prompt job creation as well; mainly due to the externalities. - Research highlights: → This paper evaluates Turkish energy policies through risk management scope and takes an alternative approach on calculating electricity costs by factoring in political risks. → The cost of traditional fossil-based energy turns out to be more expensive than renewable energy. → The paradigm shift towards renewable energy policies could provide Turkey

  5. A new energy paradigm for Turkey: A political risk-inclusive cost analysis for sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Oksay, Serhan, E-mail: serhano@khas.edu.t [Kadir Has University, Department of Business Administration (Turkey); Iseri, Emre, E-mail: eiseri@khas.edu.t [Kadir Has University, Department of International Relations, Cibali Campus, Kadir Has Caddesi 34083, Istanbul (Turkey)

    2011-05-15

    Implementing sustainable development policies in order to achieve economic and social development while maintaining adequate environmental protection to minimize the damage inflicted by the constantly increasing world population must be a major priority in the 21st century. While the emerging global debate on potential cost-effective responses has produced potential solutions such as cap and trade systems and/or carbon taxes as part of evolving sustainable energy/environmental policies, this kind of intellectual inquiry does not seem to be an issue among Turkish policy-making elites. This is mainly due to their miscalculation that pursuing sustainable energy policies is much more expensive in comparison to the utilization of fossil fuels such as natural gas. Nevertheless, the pegged prices of an energy sector dominated by natural gas are illusive, as both the political risks and environmental damage have not been incorporated into the current cost calculations. This paper evaluates energy policies through a lens of risk management and takes an alternative approach to calculating energy costs by factoring in political risks. This formulation reveals that the cost of traditional fossil-based energy is in fact more expensive than renewable energy. In addition to being environmentally friendly, the paradigm shift towards renewable energy policies would provide Turkey with a significant opportunity to stimulate its economy by being one of the first countries to develop green technologies and as a result this burgeoning sector would prompt job creation as well; mainly due to the externalities. - Research highlights: {yields} This paper evaluates Turkish energy policies through risk management scope and takes an alternative approach on calculating electricity costs by factoring in political risks. {yields} The cost of traditional fossil-based energy turns out to be more expensive than renewable energy. {yields} The paradigm shift towards renewable energy policies could

  6. Reported Energy and Cost Savings from the DOE ESPC Program: FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Bob S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy’s Energy Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 156 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For all 156 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $210.6 million, total reported cost savings were $215.1 million, and total guaranteed cost savings were $204.5 million. This means that on average: ESPC contractors guaranteed 97% of the estimated cost savings; projects reported achieving 102% of the estimated cost savings; and projects reported achieving 105% of the guaranteed cost savings. For 155 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 11.938 million MMBtu, and reported savings were 12.138 million MMBtu, 101.7% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 155 projects were 19.052 million MMBtu, and reported saving were 19.516 million MMBtu, 102.4% of the estimated energy savings.

  7. Energy Cost Optimization in a Water Supply System Case Study

    Directory of Open Access Journals (Sweden)

    Daniel F. Moreira

    2013-01-01

    Full Text Available The majority of the life cycle costs (LCC of a pump are related to the energy spent in pumping, with the rest being related to the purchase and maintenance of the equipment. Any optimizations in the energy efficiency of the pumps result in a considerable reduction of the total operational cost. The Fátima water supply system in Portugal was analyzed in order to minimize its operational energy costs. Different pump characteristic curves were analyzed and modeled in order to achieve the most efficient operation point. To determine the best daily pumping operational scheduling pattern, genetic algorithm (GA optimization embedded in the modeling software was considered in contrast with a manual override (MO approach. The main goal was to determine which pumps and what daily scheduling allowed the best economical solution. At the end of the analysis it was possible to reduce the original daily energy costs by 43.7%. This was achieved by introducing more appropriate pumps and by intelligent programming of their operation. Given the heuristic nature of GAs, different approaches were employed and the most common errors were pinpointed, whereby this investigation can be used as a reference for similar future developments.

  8. Improving cost-effectiveness and mitigating risks of renewable energy requirements

    Science.gov (United States)

    Griffin, James P.

    Policy makers at the federal and state levels of government are debating actions to reduce U.S. greenhouse gas emissions and dependence on oil as an energy source. Several concerns drive this debate: sharp rises in energy prices, increasing unease about the risks of climate change, energy security, and interest in expanding the domestic renewable energy industry. Renewable energy requirements are frequently proposed to address these concerns, and are currently in place, in various forms, at the federal and state levels of government. These policies specify that a certain portion of the energy supply come from renewable energy sources. This dissertation focuses on a specific proposal, known as 25 X 25, which requires 25% of electricity and motor vehicle transportation fuels supplied to U.S. consumers to come from renewable energy sources, such as wind power and ethanol, by 2025. This dissertation builds on prior energy policy analysis, and more specifically analyses of renewable energy requirements, by assessing the social welfare implications of a 25 x 25 policy and applying new methods of uncertainty analysis to multiple policy options decision makers can use to implement the policy. These methods identify policy options that can improve the cost-effectiveness and reduce the risks of renewable energy requirements. While the dissertation focuses on a specific policy, the research methods and findings are applicable to other renewable energy requirement policies. In the dissertation, I analyze six strategies for implementing a 25 x 25 policy across several hundred scenarios that represent plausible futures for uncertainties in energy markets, such as renewable energy costs, energy demand, and fossil fuel prices. The strategies vary in the availability of resources that qualify towards the policy requirement and the use of a "safety valve" that allows refiners and utilities to pay a constant fee after renewable energy costs reach a predetermined threshold. I test

  9. Assessing the Costs and Benefits of the Superior Energy Performance Program

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter; McKane, Aimee; Sabouini, Ridah; Evans, Tracy

    2013-07-01

    Industrial companies are seeking to manage energy consumption and costs, mitigate risks associated with energy, and introduce transparency into reports of their energy performance achievements. Forty industrial facilities are participating in the U.S. DOE supported Superior Energy Performance (SEP) program in which facilities implement an energy management system based on the ISO 50001 standard, and pursue third-party verification of their energy performance improvements. SEP certification provides industrial facilities recognition for implementing a consistent, rigorous, internationally recognized business process for continually improving energy performance and achievement of established energy performance improvement targets. This paper focuses on the business value of SEP and ISO 50001, providing an assessment of the costs and benefits associated with SEP implementation at nine SEP-certified facilities across a variety of industrial sectors. These cost-benefit analyses are part of the U.S. DOE?s contribution to the Global Superior Energy Performance (GSEP) partnership, a multi-country effort to demonstrate, using facility data, that energy management system implementation enables companies to improve their energy performance with a greater return on investment than business-as-usual (BAU) activity. To examine the business value of SEP certification, interviews were conducted with SEP-certified facilities. The costs of implementing the SEP program, including internal facility staff time, are described and a marginal payback of SEP certification has been determined. Additionally, more qualitative factors with regard to the business value and challenges related to SEP and ISO 50001 implementation are summarized.

  10. Application and importance of cost-benefit analysis in energy efficiency projects implemented in public buildings: The case of Serbia

    Directory of Open Access Journals (Sweden)

    Đurovic Dejan M.

    2012-01-01

    Full Text Available The main objective of this paper is to present the advantages of using Cost-Benefit analysis in energy efficiency projects implemented in public buildings, and to prove the hypothesis that Cost-Benefit analysis boosts the effectiveness and efficiency of the said type of projects. The paper offers theoretical and practical explanation of the implementation of Cost-Benefit analysis in the relevant area. Since energy efficiency projects in public buildings usually represent a part of a broader portfolio of similar projects and their implementation demands allocation of substantial financial resources, communities are often be interested in achieving maximal economic and non-economic benefits. This paper aims to demonstrate that Cost-Benefit analysis can represent an excellent contribution when attempting to select the projects for implementation within a broader portfolio of energy efficiency projects in public buildings. This hypothesis was demonstrated by putting a greater emphasis on non-economic benefits and the costs arising from implementation of the aforementioned types of projects. In addition, a practical test of this hypothesis was performed through the implementation of an energy efficiency portfolio in public buildings, worth several tens of millions of dollars - the Serbian Energy Efficiency Project. The paper concludes that the use of Cost-Benefit analysis can help us to effectively evaluate and manage projects of this type aimed at achieving maximum benefits for the community in question.

  11. Comparing the Mass, Energy, and Cost Effects of Lightweighting in Conventional and Electric Passenger Vehicles

    OpenAIRE

    Hofer, Johannes; Wilhelm, Erik; Schenler, Warren

    2014-01-01

    In this work the effect of weight reduction using advanced lightweight materials on the mass, energy use, and cost of conventional and battery electric passenger vehicles is compared. Analytic vehicle simulation is coupled with cost assessment to find the optimal degree of weight reduction minimizing manufacturing and total costs. The results show a strong secondary weight and cost saving potential for the battery electric vehicles, but a higher sensitivity of vehicle energy use to mass reduc...

  12. Achieving affordable housing through energy efficiency strategy

    International Nuclear Information System (INIS)

    Copiello, Sergio

    2015-01-01

    Cooperation between public and private sector has achieved a remarkable widespread, in the Italian context, over the last two decades. Nevertheless, the increasing difficulty in accessing the capital market and the rising cost of funding sources, both noticeable over the past few years, led to a slowdown of Public–Private Partnership (PPP) initiatives. Meanwhile, the community is expressing new needs to be satisfied, such as the conversion of brownfields, the recovery of housing stock dating back to former times, as well as the refurbishment of public offices or schools. Emerging priorities include the supply of affordable dwellings for low to medium income households. This essay aims to examine a case study in which PPP and buildings energy efficiency have been successfully combined, in order to jointly contribute to the achievement of a social housing settlement. Thanks to energy efficiency measures—concerning building envelope insulation, heating system and other installations—the agreed rent results far higher than social rent of protected tenancies, and furthermore above the range of fair rents characterising other regulated tenancies, but mildly lower than market rents. All this allows to achieve an equity yield rate satisfying from the perspective of a venture philanthropy investment. -- Highlights: •Provision of affordable dwellings is an emerging priority within Italian context. •Lack of public funds leads to promote Public–Private Partnership schemes. •Without public grants the adoption of a venture philanthropy approach is needed. •The examined case study allows to explain the role of buildings energy efficiency. •Buildings energy efficiency may boost feasibility of social housing transactions

  13. Determination of Cost-Effective Energy Efficiency Measures in Buildings with the Aid of Multiple Indices

    Directory of Open Access Journals (Sweden)

    Theodoros Zachariadis

    2018-01-01

    Full Text Available Energy refurbishments of buildings can substantially contribute to economy-wide energy efficiency improvements, leading to decarbonisation and additional sustainability benefits. Prioritising the most economically promising investments is not straightforward because apart from cost-effectiveness calculations, several real-world constraints have to be taken into account. This paper describes an approach to assess the economically viable energy efficiency potential in the building sector of the Mediterranean island of Cyprus, with a combination of detailed engineering modelling, cost-effectiveness calculations and real-world considerations of budgetary, technical, behavioural and market constraints. We examine diverse cost-effectiveness indices and come up with a proposal for prioritising specific energy investments such as the installation of heat pumps, insulation of roofs, and replacement of lighting and electronic equipment—without however ignoring other measures that may be economically less favourable but can realistically be implemented in a limited number of buildings. Finally we address the governance of energy efficiency policies, focusing on weaknesses of the current regulatory environment in Cyprus, which can be generalised for many other countries facing similar dilemmas.

  14. External Costs and Benefits of Energy. Methodologies, Results and Effects on Renewable Energies Competitivity

    International Nuclear Information System (INIS)

    Saez, R.; Cabal, H.; Varela, M.

    1999-01-01

    This study attempts to give a summarised vision of the concept of eternality in energy production, the social and economic usefulness of its evaluation and consideration as support to the political decision-marking in environmental regulation matters, technologies selection of new plants, priorities establishment on energy plans, etc. More relevant environmental externalisation are described, as are the effects on the health, ecosystems, materials and climate, as well as some of the socioeconomic externalisation such as the employment, increase of the GDP and the reduction and depletion of energy resources. Different methodologies used during the last years have been reviewed as well as the principals resulted obtained in the most relevant studies accomplished internationally on this topic. Special mention has deserved the European study National Implementation of the Extern E Methodology in the EU . Results obtained are represented in Table 2 of this study. Also they are exposed, in a summarised way, the results obtained in the evaluation of environmental externalisation of the Spanish electrical system in function of the fuel cycle. In this last case the obtained results are more approximated since have been obtained by extrapolation from the obtained for ten representative plants geographically distributed trough the Peninsula. Finally it has been analysed the influence that the internalization of the external costs of conventional energies can have in the competitiveness and in te market of renewable energy, those which originate less environmental effects and therefore produce much smaller external costs. The mechanisms of internalization and the consideration on the convenience or not of their incorporation in the price of energy have been also discussed. (Author) 30 refs

  15. Effect of fastskin suits on performance, drag, and energy cost of swimming.

    Science.gov (United States)

    Chatard, Jean-Claude; Wilson, Barry

    2008-06-01

    To investigate the effect of fastskin suits on 25- to 800-m performances, drag, and energy cost of swimming. The performances, stroke rate and distance per stroke, were measured for 14 competitive swimmers in a 25-m pool, when wearing a normal suit (N) and when wearing a full-body suit (FB) or a waist-to-ankle suit (L). Passive drag, oxygen uptake, blood lactate, and the perceived exertion were measured in a flume. There was a 3.2% +/- 2.4% performance benefit for all subjects over the six distances covered at maximal speed wearing FB and L when compared with N. When wearing L, the gain was significantly lower (1.8% +/- 2.5%, P energy cost of swimming was significantly reduced when wearing FB and L by 4.5% +/- 5.4% and 5.5% +/- 3.1%, respectively (P energy cost of submaximal swimming and an increased distance per stroke, at the same stroke rates, and reduced freestyle performance time.

  16. A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng

    2017-11-20

    Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Energy-dense fast food products cost less: an observational study of the energy density and energy cost of Australian fast foods.

    Science.gov (United States)

    Wellard, Lyndal; Havill, Michelle; Hughes, Clare; Watson, Wendy L; Chapman, Kathy

    2015-12-01

    To examine the association between energy cost and energy density of fast food products. Twenty Sydney outlets of the five largest fast food chains were surveyed four times. Price and kilojoule data were collected for all limited-time-only menu items (n=54) and a sample of standard items (n=67). Energy cost ($/kilojoule) and energy density (kilojoules/gram) of menu items were calculated. There was a significant inverse relationship between menu item energy density and energy cost (pFast food chains could provide a wider range of affordable, lower-energy foods, use proportional pricing of larger serve sizes, or change defaults in meals to healthier options. More research is required to determine the most effective strategy to reduce the negative impact of fast food on the population's diet. Current pricing in the fast food environment may encourage unhealthier purchases. © 2015 Public Health Association of Australia.

  18. The Cost of Enforcing Building Energy Codes: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vine, Ed [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-15

    The purpose of this study is to present key findings regarding costs associated with enforcing building energy code compliance–primarily focusing on costs borne by local government. Building codes, if complied with, have the ability to save a significant amount of energy. However, energy code compliance rates have been significantly lower than 100%. Renewed interest in building energy codes has focused efforts on increasing compliance, particularly as a result of the 2009 American Recovery and Reinvestment Act (ARRA) requirement that in order for states to receive additional energy grants, they must have “a plan for the jurisdiction achieving compliance with the building energy code…in at least 90 percent of new and renovated residential and commercial building space” by 2017 (Public Law 111-5, Section 410(2)(C)). One study by the Institute for Market Transformation (IMT) estimated the costs associated with reaching 90% compliance to be $810 million, or $610 million in additional funding over existing expenditures, a non-trivial value. [Majersik & Stellberg 2010] In this context, Lawrence Berkeley National Laboratory (LBNL) conducted a study to better pinpoint the costs of enforcement through a two-phase process.

  19. Estimating the Effects of Module Area on Thin-Film Photovoltaic System Costs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Silverman, Timothy J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Woodhouse, Michael A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Xingshu [Purdue University; Alam, Muhammad A [Purdue University

    2018-03-29

    We investigate the potential effects of module area on the cost and performance of photovoltaic systems. Applying a bottom-up methodology, we analyzed the costs associated with thin-film modules and systems as a function of module area. We calculate a potential for savings of up to 0.10 dollars/W and 0.13 dollars/W in module manufacturing costs for CdTe and CIGS respectively, with large area modules. We also find that an additional 0.04 dollars/W savings in balance-of-systems costs may be achieved. Sensitivity of the dollar/W cost savings to module efficiency, manufacturing yield, and other parameters is presented. Lifetime energy yield must also be maintained to realize reductions in the levelized cost of energy; the effects of module size on energy yield for monolithic thin-film modules are not yet well understood. Finally, we discuss possible non-cost barriers to adoption of large area modules.

  20. A decision model for cost effective design of biomass based green energy supply chains.

    Science.gov (United States)

    Yılmaz Balaman, Şebnem; Selim, Hasan

    2015-09-01

    The core driver of this study is to deal with the design of anaerobic digestion based biomass to energy supply chains in a cost effective manner. In this concern, a decision model is developed. The model is based on fuzzy multi objective decision making in order to simultaneously optimize multiple economic objectives and tackle the inherent uncertainties in the parameters and decision makers' aspiration levels for the goals. The viability of the decision model is explored with computational experiments on a real-world biomass to energy supply chain and further analyses are performed to observe the effects of different conditions. To this aim, scenario analyses are conducted to investigate the effects of energy crop utilization and operational costs on supply chain structure and performance measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Achieving Realistic Energy and Greenhouse Gas Emission Reductions in U.S. Cities

    Science.gov (United States)

    Blackhurst, Michael F.

    2011-12-01

    In recognizing that energy markets and greenhouse gas emissions are significantly influences by local factors, this research examines opportunities for achieving realistic energy greenhouse gas emissions from U.S. cities through provisions of more sustainable infrastructure. Greenhouse gas reduction opportunities are examined through the lens of a public program administrator charged with reducing emissions given realistic financial constraints and authority over emissions reductions and energy use. Opportunities are evaluated with respect to traditional public policy metrics, such as benefit-cost analysis, net benefit analysis, and cost-effectiveness. Section 2 summarizes current practices used to estimate greenhouse gas emissions from communities. I identify improved and alternative emissions inventory techniques such as disaggregating the sectors reported, reporting inventory uncertainty, and aligning inventories with local organizations that could facilitate emissions mitigation. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. Finally, I highlight the need to integrate growth (population and economic) and business as usual implications (such as changes to electricity supply grids) into climate action planning. I demonstrate how these techniques could improve decision making when planning reductions, help communities set meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring. Section 3 evaluates the costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach explicitly evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings

  2. Costs and cost-effectiveness of periviable care.

    Science.gov (United States)

    Caughey, Aaron B; Burchfield, David J

    2014-02-01

    With increasing concerns regarding rapidly expanding healthcare costs, cost-effectiveness analysis allows assessment of whether marginal gains from new technology are worth the increased costs. Particular methodologic issues related to cost and cost-effectiveness analysis in the area of neonatal and periviable care include how costs are estimated, such as the use of charges and whether long-term costs are included; the challenges of measuring utilities; and whether to use a maternal, neonatal, or dual perspective in such analyses. A number of studies over the past three decades have examined the costs and the cost-effectiveness of neonatal and periviable care. Broadly, while neonatal care is costly, it is also cost effective as it produces both life-years and quality-adjusted life-years (QALYs). However, as the gestational age of the neonate decreases, the costs increase and the cost-effectiveness threshold is harder to achieve. In the periviable range of gestational age (22-24 weeks of gestation), whether the care is cost effective is questionable and is dependent on the perspective. Understanding the methodology and salient issues of cost-effectiveness analysis is critical for researchers, editors, and clinicians to accurately interpret results of the growing body of cost-effectiveness studies related to the care of periviable pregnancies and neonates. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The real cost of energy

    International Nuclear Information System (INIS)

    Di Valdalbero, Domenico Rossetti

    2003-01-01

    Several studies have been carried out in recent years to assess the external costs (externalities) of energy, among them the European Commission's ExternE research project. An external cost occurs when the social or economic activities of one group of people have an impact on another group but that impact is not fully accounted for or compensated for by the first group. For example, a power station that generates emissions of pollutants and greenhouse gases imposes an external cost if these emissions cause damage to human health (fatal or non-fatal), contribute to global warming, or have adverse effects on crops and building materials. ExternE, which was carried out during the 1990s, is the most exhaustive study to date on the evaluation of the external costs associated with the production and consumption of energy and with energy-related activities. Despite the uncertainties associated with setting a value on external costs, the ExternE project has been successful in several ways and these are summarised together with the ways in which external costs to the environment and health can be taken into account or 'internalised'. One possibility is the imposition of eco-taxes. Another option would be to encourage or subsidise cleaner technologies, thereby avoiding socio-environmental costs. Renewable energy technologies, for example, have limited external costs. The results of ExternE have already been used as a basis for European Commission guidelines on state aid for environmental protection. The project's findings are also being used to support the Council of the European Union in formulating proposals for a Directive on the limits to be set for sulphur dioxide, nitrous oxides, particulates and lead in the atmosphere. In 2000, under the EU's Fifth Research and Technological Development Framework programme, a follow-up project was initiated. The purpose of NewExt (New Elements for the Assessment of External Costs from Energy Technologies) is to refine the methodology

  4. The effect of introduction of energy storage equipments and time-of-day rates on the supply cost of electric energy in each area

    International Nuclear Information System (INIS)

    Oyama, Tsutomu

    1992-01-01

    Load factors of power systems are decreasing in these days. Under the circumstances, it is considered that 'load management' is an effective method to cut down the production cost of electricity. On the other hand, the introduction of energy storage equipments increases the load factor. It can be said that 'load management' has almost similar effect as 'energy storage'. When 'load management' and/or 'energy storage' is considered to be introduced, it is very important to estimate the effect of each method on the production cost. Since each area has its own load profile, the effect of 'load management' or 'energy storage' on the area is different from that on the other area. In this paper, the relationship between the improvement of the production cost and the load profile is discussed. It is found that 'load management' is more effective on the area which has small load factor and large kWh operation factor and 'energy storage' is more effective on the area which has small skewness of load profile. (author)

  5. Cost-effectiveness of solar energy in energy-efficient buildings

    International Nuclear Information System (INIS)

    Kessler, S.; Iten, R.; Vettori, A.; Haller, A.; Ochs, M.; Keller, L.

    2005-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study that examined the potentials and restraints with respect to the use of solar energy in the new construction and refurbishment of residential buildings in Switzerland. The method used is based on a 'learning-curve' technique. The first part of the report deals with the development of prices for solar-collector installations from 1990 until now. The second part deals with today's costs and future developments up to the year 2030. A reference building is used as the basis for the comparison of eight system variants. A further eight variants combine solar technology with traditional heating installations such as oil, gas and wood boilers and heat-pumps. Scenarios for the market situation for solar energy in 2030 are discussed

  6. Operation optimization of a distributed energy system considering energy costs and exergy efficiency

    International Nuclear Information System (INIS)

    Di Somma, M.; Yan, B.; Bianco, N.; Graditi, G.; Luh, P.B.; Mongibello, L.; Naso, V.

    2015-01-01

    Highlights: • Operation optimization model of a Distributed Energy System (DES). • Multi-objective strategy to optimize energy cost and exergy efficiency. • Exergy analysis in building energy supply systems. - Abstract: With the growing demand of energy on a worldwide scale, improving the efficiency of energy resource use has become one of the key challenges. Application of exergy principles in the context of building energy supply systems can achieve rational use of energy resources by taking into account the different quality levels of energy resources as well as those of building demands. This paper is on the operation optimization of a Distributed Energy System (DES). The model involves multiple energy devices that convert a set of primary energy carriers with different energy quality levels to meet given time-varying user demands at different energy quality levels. By promoting the usage of low-temperature energy sources to satisfy low-quality thermal energy demands, the waste of high-quality energy resources can be reduced, thereby improving the overall exergy efficiency. To consider the economic factor as well, a multi-objective linear programming problem is formulated. The Pareto frontier, including the best possible trade-offs between the economic and exergetic objectives, is obtained by minimizing a weighted sum of the total energy cost and total primary exergy input using branch-and-cut. The operation strategies of the DES under different weights for the two objectives are discussed. The operators of DESs can choose the operation strategy from the Pareto frontier based on costs, essential in the short run, and sustainability, crucial in the long run. The contribution of each energy device in reducing energy costs and the total exergy input is also analyzed. In addition, results show that the energy cost can be much reduced and the overall exergy efficiency can be significantly improved by the optimized operation of the DES as compared with the

  7. Supply-cost curves for geographically distributed renewable-energy resources

    International Nuclear Information System (INIS)

    Izquierdo, Salvador; Dopazo, Cesar; Fueyo, Norberto

    2010-01-01

    The supply-cost curves of renewable-energy sources are an essential tool to synthesize and analyze large-scale energy-policy scenarios, both in the short and long terms. Here, we suggest and test a parametrization of such curves that allows their representation for modeling purposes with a minimal set of information. In essence, an economic potential is defined based on the mode of the marginal supply-cost curves; and, using this definition, a normalized log-normal distribution function is used to model these curves. The feasibility of this proposal is assessed with data from a GIS-based analysis of solar, wind and biomass technologies in Spain. The best agreement is achieved for solar energy.

  8. Pathways to achieve universal household access to modern energy by 2030

    Science.gov (United States)

    Pachauri, Shonali; van Ruijven, Bas J.; Nagai, Yu; Riahi, Keywan; van Vuuren, Detlef P.; Brew-Hammond, Abeeku; Nakicenovic, Nebojsa

    2013-06-01

    A lack of access to modern energy impacts health and welfare and impedes development for billions of people. Growing concern about these impacts has mobilized the international community to set new targets for universal modern energy access. However, analyses exploring pathways to achieve these targets and quantifying the potential costs and benefits are limited. Here, we use two modelling frameworks to analyse investments and consequences of achieving total rural electrification and universal access to clean-combusting cooking fuels and stoves by 2030. Our analysis indicates that these targets can be achieved with additional investment of US200565-86 billion per year until 2030 combined with dedicated policies. Only a combination of policies that lowers costs for modern cooking fuels and stoves, along with more rapid electrification, can enable the realization of these goals. Our results demonstrate the critical importance of accounting for varying demands and affordability across heterogeneous household groups in both analysis and policy setting. While the investments required are significant, improved access to modern cooking fuels alone can avert between 0.6 and 1.8 million premature deaths annually in 2030 and enhance wellbeing substantially.

  9. Pathways to achieve universal household access to modern energy by 2030

    International Nuclear Information System (INIS)

    Pachauri, Shonali; Nagai, Yu; Riahi, Keywan; Nakicenovic, Nebojsa; Van Ruijven, Bas J; Van Vuuren, Detlef P; Brew-Hammond, Abeeku

    2013-01-01

    A lack of access to modern energy impacts health and welfare and impedes development for billions of people. Growing concern about these impacts has mobilized the international community to set new targets for universal modern energy access. However, analyses exploring pathways to achieve these targets and quantifying the potential costs and benefits are limited. Here, we use two modelling frameworks to analyse investments and consequences of achieving total rural electrification and universal access to clean-combusting cooking fuels and stoves by 2030. Our analysis indicates that these targets can be achieved with additional investment of US$ 2005 65–86 billion per year until 2030 combined with dedicated policies. Only a combination of policies that lowers costs for modern cooking fuels and stoves, along with more rapid electrification, can enable the realization of these goals. Our results demonstrate the critical importance of accounting for varying demands and affordability across heterogeneous household groups in both analysis and policy setting. While the investments required are significant, improved access to modern cooking fuels alone can avert between 0.6 and 1.8 million premature deaths annually in 2030 and enhance wellbeing substantially. (letter)

  10. 10 CFR 436.18 - Measuring cost-effectiveness.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Measuring cost-effectiveness. 436.18 Section 436.18 Energy... Procedures for Life Cycle Cost Analyses § 436.18 Measuring cost-effectiveness. (a) In accordance with this section, each Federal agency shall measure cost-effectiveness by combining cost data established under...

  11. Energy management information systems : achieving improved energy efficiency : a handbook for managers, engineers and operational staff

    Energy Technology Data Exchange (ETDEWEB)

    Hooke, J.H.; Landry, B.J.; Hart, D. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    2004-07-01

    There are many opportunities for industrial and commercial facilities to improve energy efficiency by minimizing waste through process optimization. Large energy users can effectively reduce energy costs, improve profits and reduce greenhouse gas emissions by using computing and control equipment. This book covers all aspects of an Energy Management Information System (EMIS) including metering, data collection, data analysis, reporting and cost benefit analyses. EMIS provides relevant information to businesses that enables them to improve energy performance. EMIS deliverables include early detection of poor performance, support for decision making and effective energy reporting. EMIS also features data storage, calculation of effective targets for energy use and comparative energy consumption. Computer systems can be used to improve business performance in terms of finance, personnel, sales, resource planning, maintenance, process control, design and training. In the 1980s, the Canadian Industry Program for Energy Conservation (CIPEC) developed 2 versions of an energy accounting manual to help industrial, commercial and institutional sectors implement energy-accounting systems. The manual was revised in 1989 and is a useful energy management tool for business and other organizations. The EMIS examples described in this booklet reflect that energy is a variable operating cost, not a fixed overhead charge. 8 tabs., 38 figs.

  12. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  13. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    Directory of Open Access Journals (Sweden)

    Dongmin Yu

    2017-06-01

    Full Text Available Many combined heat and power (CHP units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity and heat loads are firstly used as sizing criteria in finding the best capacities of different types of CHP with the help of the maximum rectangle (MR method. Subsequently, the genetic algorithm (GA will be used to optimise the daily energy costs of the different cases. Then, heat and electricity loads are jointly considered for sizing different types of CHP and for optimising the daily energy costs through the GA method. The optimisation results show that the GA sizing method gives a higher average daily energy cost saving, which is 13% reduction compared to a building without installing CHP. However, to achieve this, there will be about 3% energy efficiency reduction and 7% input power to rated power ratio reduction compared to using the MR method and heat demand in sizing CHP.

  14. On the “cost-optimal levels” of energy performance requirements and its economic evaluation in Italy

    Directory of Open Access Journals (Sweden)

    Lamberto Tronchin

    2014-10-01

    Full Text Available The European energy policies about climate and energy package, known as the “20-20-20” targets define ambitious, but achievable, national energy objectives. As regards the Directives closely related to the 2020 targets, the EU Energy Performance of Buildings Directive (EPBD Recast- DIR 2010/31/EU is the main European legislative instrument for improving the energy performance of buildings, taking into account outdoor climatic and local conditions, as well as indoor climate requirements and cost-effectiveness. The EPBD recast now requests that Member States shall ensure that minimum energy performance requirements for buildings are set “with a view to achieving cost-optimal levels”. The cost optimum level shall be calculated in accordance with a comparative methodology framework, leaving the Member States to determine which of these calculations is to become the national benchmark against which national minimum energy performance requirements will be assessed. The European standards (ENs- Umbrella Document V7 (prCEN/TR 15615 are intended to support the EPBD by providing the calculation methods and associated material to obtain the overall energy performance of a building. For Italy the Energy Performance of Building Simulations EPBS must be calculated with standard UNITS 11300. The energy building behaviour is referred to standard and not to real use, nor climate or dynamic energy evaluation. Since retrofitting of existing buildings offers significant opportunities for reducing energy consumption and greenhouse gas emissions, a case study of retrofitting is described and the CostOptimal Level EU procedure in an Italian context is analysed. Following this procedure, it is shown not only that the energy cost depends on several conditions and most of them are not indexed at national level but also that the cost of improvement depends on local variables and contract tender. The case study highlights the difficulties to apply EU rules, and

  15. Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness

    International Nuclear Information System (INIS)

    Du, Jiuyu; Chen, Jingfu; Song, Ziyou; Gao, Mingming; Ouyang, Minggao

    2017-01-01

    Energy management strategy and battery capacity are the primary factors for the energy efficiency of range-extended electric buses (REEBs). To improve the energy efficiency of REEBs developed by Tsinghua University, an optimal design method of global optimization-based strategy is investigated. It is real-time and adaptive to variable traction battery capacities of series REEBs. For simulation, the physical model of REEB and key components are established. The optimal strategy is first extracted by the power split ratio (PSR) from REEB simulation result with dynamic program (DP) algorithm. The power distribution map is obtained by series simulations for variable battery capacity options. The control law for developing optimal strategy are achieved by cluster regression for power distribution data. To verify the effect of the proposed energy management strategy, characteristics of powertrain, energy efficiency, operating cost, and computing time are ultimately analyzed. Simulation results show that the energy efficiency of the global optimization-based strategy presented in this paper is similar to that of the DP strategy. Therefore, the overall energy efficiency can be significantly improved compared with that of the CDCS strategy, and operating costs can be substantially reduced. The feasibility of candidate control strategies is thereby assessed via the employment of variable parameters. - Highlights: • Analysis method of powertrain energy efficiency and power distribution is proposed. • The power distribution rules of strategy with variable battery capacities are achieved. • The parametric method of proposed PSR-RB strategy is presented. • The energy efficiency of powertrain is analysis by flow analysis method. • The energy management strategy is global optimization-based and real-time.

  16. 10 CFR 455.63 - Cost-effectiveness testing.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Cost-effectiveness testing. 455.63 Section 455.63 Energy..., Hospitals, Units of Local Government, and Public Care Institutions § 455.63 Cost-effectiveness testing. (a... paragraph (a) of this section, if the State plan requires the cost effectiveness of an energy conservation...

  17. Maximum power point tracking: a cost saving necessity in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Enslin, J H.R. [Stellenbosch Univ. (South Africa). Dept. of Electrical and Electronic Engineering

    1992-12-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking (MPPT) can improve cost effectiveness, has a higher reliability and can improve the quality of life in remote areas. A high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of between 15 and 25% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply (RAPS) systems. The advantages at large temperature variations and high power rated systems are much higher. Other advantages include optimal sizing and system monitor and control. (author).

  18. Understanding Cost-Effectiveness of Energy Efficiency Programs: Best Practices, Technical Methods, and Emerging Issues for Policy-Makers

    Science.gov (United States)

    Reviews the issues and approaches involved in considering and adopting cost-effectiveness tests for energy efficiency, including discussing each perspective represented by the five standard cost-effectiveness tests and clarifying key terms.

  19. Cost of photovoltaic energy systems as determined by balance-of-system costs

    Science.gov (United States)

    Rosenblum, L.

    1978-01-01

    The effect of the balance-of-system (BOS), i.e., the total system less the modules, on photo-voltaic energy system costs is discussed for multikilowatt, flat-plate systems. Present BOS costs are in the range of 10 to 16 dollars per peak watt (1978 dollars). BOS costs represent approximately 50% of total system cost. The possibility of future BOS cost reduction is examined. It is concluded that, given the nature of BOS costs and the lack of comprehensive national effort focussed on cost reduction, it is unlikely that BOS costs will decline greatly in the next several years. This prognosis is contrasted with the expectations of the Department of Energy National Photovoltaic Program goals and pending legislation in the Congress which require a BOS cost reduction of an order of magnitude or more by the mid-1980s.

  20. Energy efficiency of residential buildings. Energy consumption and investment costs of different building energy standards; Energieeffizienz von Wohngebaeuden. Energieverbraeuche und Investitionskosten energetischer Gebaeudestandards

    Energy Technology Data Exchange (ETDEWEB)

    Beecken, Christoph; Schulze, Stephan [Bow Ingenieure GmbH, Braunschweig (Germany)

    2011-12-15

    In view of the impending energy transition in Germany, turning away from fossil fuels and atomic power and leading to renewable energy sources, the construction of very energy efficient new buildings gains more and more in importance. Because the saving of energy with efficient buildings offers the highest potential to achieve the energy transition without loss of comfort and also complying with the climate protection target of limitation of the carbon dioxide emission. For new buildings in the initial project planning phase, the client needs qualified consulting concerning a reasonable energy standard for his building. The consulting should comprise the multitude of energy efficiency standards and the related financial incentives and not only cover the minimum standard of the German Building Energy Conservation Regulation EnEV (Energieeinsparverordnung). But the architect can hardly quantify the potentials to reduce energy consumption of buildings considering the multitude of existing standards with multifarious effects on energy consumption, technical requirements and building costs. With the help of an example multi-storey residential building in Hannover, current energy standards for residential buildings are compared. Besides the building construction also the building services like heating, hot water generation and ventilation are considered and the most important results concerning energy consumption and investment costs are compared.

  1. Introduction to cost-effectiveness analysis of risk reduction measures in energy systems

    International Nuclear Information System (INIS)

    1986-07-01

    The aim of this report is to introduce readers to methods of cost-effectiveness analysis and their application in risk reduction, especially in connection with the energy-producing industries. The background to the assessment of risk and the problems in estimating it quantitatively are outlined. The methodology of cost-effectiveness analysis is then described, particular attention being given to the way in which results are derived and the overall use that can be made of them. This is followed by a discussion of quantitative applications and an outline of the methods that may be used to derive estimates both of risk and the cost of reducing it. The use of cost-effectiveness analysis is illustrated in an appendix, which gives as a worked example a case study on the reduction of public risk associated with radioactive releases during normal operation of a PWR. After drawing some general conclusions the report recommends that such analyses should normally be used as an aid to risk management whenever several alternative risk reduction measures are under consideration

  2. Cost effectiveness of GHG mitigation options and policy implication

    Energy Technology Data Exchange (ETDEWEB)

    Lim, K. S. [Korea Institute for Industrial Economics and Trade, Seoul (Korea, Republic of)

    1998-04-01

    This paper represents the summary findings and conclusions of several studies implemented about microeconomics and macroeconomics marginal costs of GHG abatement policies. Financial, economic, and, where possible, environmental microeconomics costs of reducing GHGs are estimated by a World Bank team. Six energy-related CO{sub 2} mitigation policy options are applied to estimate the macroeconomics costs of GHG emission reduction, the macroeconomics impacts on the Chinese economy. In terms of policy, conservation is a better option to cope with a restrictive mitigation constraint, assuming a developing country can achieve planned energy-saving targets. Without a CO{sub 2} emission constraint or with less restrictive CO{sub 2} emission constraints, however, the simulation results indicate that a conservation strategy may be less attractive than fuel substitution in a developing country, mainly due to the economic dampening effect of reduced production in the energy sectors. This finding suggests that an often-cited costless or negative-cost energy conservation policy may not be a better option when a less restrictive mitigation target is in force. This does not mean that the potential for energy efficiency improvements in a developing country is not worthwhile, but that the overall macroeconomics impacts should be considered before implementing the policy option. (author). 9 refs., 3 figs., 3 tabs.

  3. Achieving energy efficiency through product policy: the UK experience

    International Nuclear Information System (INIS)

    Boardman, Brenda

    2004-01-01

    The focus of this paper is on energy efficiency of domestic equipment. It is contended that, in the UK and--by extension--elsewhere. Government has to take the lead in defining low-energy standards for products. In the absence of policy, manufacturers do not recognize the need for carbon reductions in the equipment they design and consumers are unaware of the variation in energy performance in the product range. At present, neither market pull nor technology push can be relied upon to deliver energy savings. The imposition of a weak minimum standard on domestic fridges and freezers in 1999 will, over the lifetime of the appliances already sold by December 2002, save 1 Mt C of carbon dioxide at nil cost to government or to the manufacturers, and a net benefit to consumers of pound 855 m: a highly cost-effective policy. The difference between energy efficiency and energy conservation is that it takes time for the cumulative benefits of an energy efficiency improvement to result in the maximum effect on energy demand reduction: the benefits of the 1999 energy efficiency standard will accumulate until at least 2020. This period is equivalent to the cycle of stock replacement for that particular object. The final level of energy conservation depends upon the offsetting effects of growth in ownership levels and the size of new equipment purchases

  4. GIS to support cost-effective decisions on renewable sources applications for low temperature geothermal energy

    CERN Document Server

    Gemelli, Alberto; Diamantini, Claudia; Longhi, Sauro

    2013-01-01

    Through the results of a developed case study of information system for low temperature geothermal energy, GIS to Support Cost-effective Decisions on Renewable Sources addresses the issue of the use of Geographic Information Systems (GIS) in evaluating cost-effectiveness of renewable resource exploitation regional scale. Focusing on the design of a Decision Support System, a process is presented aimed to transform geographic data into knowledge useful for analysis and decision-making on the economic exploitation of geothermal energy. This detailed description includes a literature review and technical issues related to data collection, data mining, decision analysis for the informative system developed for the case study. A multi-disciplinary approach to GIS design is presented which is also an innovative example of fusion of georeferenced data acquired from multiple sources including remote sensing, networks of sensors and socio-economic censuses. GIS to Support Cost-effective Decisions on Renewable Sources ...

  5. Comparing the Mass, Energy, and Cost Effects of Lightweighting in Conventional and Electric Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    Johannes Hofer

    2014-09-01

    Full Text Available In this work the effect of weight reduction using advanced lightweight materials on the mass, energy use, and cost of conventional and battery electric passenger vehicles is compared. Analytic vehicle simulation is coupled with cost assessment to find the optimal degree of weight reduction minimizing manufacturing and total costs. The results show a strong secondary weight and cost saving potential for the battery electric vehicles, but a higher sensitivity of vehicle energy use to mass reduction for the conventional vehicle. Generally, light weighting has the potential to lower vehicle costs, however, the results are very sensitive to parameters affecting lifetime fuel costs for conventional and battery costs for electric vehicles. Based on current technology cost estimates it is shown that the optimal amount of primary mass reduction minimizing total costs is similar for conventional and electric vehicles and ranges from 22% to 39%, depending on vehicle range and overall use patterns. The difference between the optimal solutions minimizing manufacturing versus total costs is higher for conventional than battery electric vehicles.

  6. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  7. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  8. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible

    DEFF Research Database (Denmark)

    Connolly, D.; Lund, Henrik; Mathiesen, Brian Vad

    2010-01-01

    energy- system to future energy costs by considering future fuel prices, CO2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy- system from a technical and economic perspective, as wind is the most promising fluctuating...... for the existing Irish energy-system is approximately 30% from both a technical and economic perspective based on 2020 energy prices. Future studies will use the model developed in this study to show that higher wind penetrations can be achieved if the existing energy-system is modified correctly. Finally...... renewable resource available in Ireland. It is concluded that the reference model simulates the Irish energy-system accurately, the annual fuel costs for Ireland’s energy could increase by approximately 58% from 2007 to 2020 if a business-as-usual scenario is followed, and the optimum wind penetration...

  9. The real cost of energy

    International Nuclear Information System (INIS)

    Hubbard, H.M.

    1991-01-01

    Gas prices only seem high. When you say fillerup, you pay but a fraction of the actual cost. Not included are the tens of billions (close to $50 for each barrel of oil) the military spends annually to protect oil fields in the Persian Gulf. Then tack on the hidden costs of environmental degradation, health effects, lost employment, government subsidies and more. Sooner or later, the public pays the entire price. Bringing market prices in line with energy's hidden burdens will be one of the great challenges of the coming decades. The author describes these hidden costs and makes estimates of them

  10. UK's climate change levy: cost effectiveness, competitiveness and environmental impacts

    International Nuclear Information System (INIS)

    Varma, Adarsh

    2003-01-01

    This paper intends to examine the cost effectiveness of UK's climate change levy (CCL), its implications on competitiveness of firms and the environmental impact. The paper briefly describes the levy and analyses it under the cannons of a good taxation policy. The economic implications of the levy are discussed with theoretical and empirical perspectives. Change in net exports, investment patterns and productivity and inclusion of compliance cost forms the basis for analysing the effect on competitiveness. It discusses the options available to firms to safeguard their competitiveness if it is adversely affected by the CCL. A description of the current scenario of the levy since its inception is also presented. The paper argues the need for a comprehensive policy involving the use of standards, emission trading as well as energy taxes to achieve emission and energy-use reductions. A focal point of this paper is to elucidate the pros and cons of the CCL (energy tax) with respect to an emission trading scheme

  11. DEPENDENCE OF ENERGY EFFICIENCY AND COST OF PRODUCTION

    Directory of Open Access Journals (Sweden)

    D. Sklyarov

    2016-01-01

    Full Text Available Economic systems exist on condition of receipt and spending of energy. Energy consumption is a necessary condition for the existence and functioning of the economic systems of any scale: macroeconomics, microeconomics, regional economy or the world economy.The economic system operates on the scale at which it is able to produce energy and get access to energy. Moreover, receipt and consumption of energy in the operation of the economic system is mainly determined by, the level of energy production from energy sources, since this level is determined by the level of energy consumption by industries and enterprises of the economy.Currently, the economic system does not produce energy in reserve. Thus, the question of energy effi ciency and energy saving was always acute.The article describes the energy efficiency and energy saving effect on the cost of production. Were used two methods: “costs and release” matrix and “price - value added” matrix. The result is the equation of dependence of energy efficiency and costs.

  12. Regional energy autarky: Potentials, costs and consequences for an Austrian region

    International Nuclear Information System (INIS)

    Schmidt, J.; Schönhart, M.; Biberacher, M.; Guggenberger, T.; Hausl, S.; Kalt, G.; Leduc, S.; Schardinger, I.; Schmid, E.

    2012-01-01

    Local actors at community level often thrive for energy autarky to decrease the dependence on imported energy resources. We assess the potentials and trade-offs between benefits and costs of increasing levels of energy autarky for a small rural region of around 21,000 inhabitants in Austria. We use a novel modeling approach which couples a regional energy system model with a regional land use optimization model. We have collected and processed data on the spatial distribution of energy demand and potentials of biomass, photovoltaics and solar thermal resources. The impacts of increasing biomass production on the agricultural sector are assessed with a land-use optimization model that allows deriving regional biomass supply curves. An energy system model is subsequently applied to find the least cost solution for supplying the region with energy resources. Model results indicate that fossil fuel use for heating can be replaced at low costs by increasing forestry and agricultural biomass production. However, autarky in the electricity and the heating sector would significantly increase biomass production and require a full use of the potentials of photovoltaics on roof tops. Attaining energy autarky implies high costs to consumers and a decline in the local production of food and feed. - Highlights: ► Energy autarky strong vision for many regional actors. ► Assessment of consequences of energy autarky for a rural region in Austria. ► Novel modeling approach coupling energy system model with land use model. ► Power and heat autarky causes high costs and decline in regional food and feed production. ► Heat autarky achievable at lower costs by utilizing regional forestry and agricultural biomass.

  13. Cost Perception and the Expectancy-Value Model of Achievement Motivation.

    Science.gov (United States)

    Anderson, Patricia N.

    The expectancy-value model of achievement motivation, first described by J. Atkinson (1957) and refined by J. Eccles and her colleagues (1983, 1992, 1994) predicts achievement motivation based on expectancy for success and perceived task value. Cost has been explored very little. To explore the possibility that cost is different from expectancy…

  14. Tradeable CO2 emission permits for cost-effective control of global warming

    International Nuclear Information System (INIS)

    Kosobud, R.F.; South, D.W.; Daly, T.A.; Quinn, K.G.

    1991-01-01

    Many current global warming mitigation policy proposals call for large, near-term reductions in CO 2 emissions, thereby entailing high initial carbon emission tax rates or permit prices. This paper claims that these high initial tax rates or permit prices are not cost-effective in achieving the desired degree of climate change control. A cost-effective permit system is proposed and described that, under certain assumptions, would allow markets to optimally lead permit prices along a gradually increasing trajectory over tie. This price path presents the Hotelling result and would ease the abrupt, inefficient, and costly adjustments imposed on the fossil fuel and other industries in current proposals. This finding is demonstrated using the Argonne Model, a linear programming energy- environmental-economic model that allows for intertemporal optimization of consumer energy well-being. 12 refs., 3 figs., 1 tab

  15. Renewable Energy Certificate and Perform, Achieve, Trade mechanisms to enhance the energy security for India

    International Nuclear Information System (INIS)

    Kumar, Rajesh; Agarwala, Arun

    2013-01-01

    The Renewable Energy Certificate and Perform Achieve Trade mechanisms in India are designed to target energy generation and saving, respectively, in line with Clean Development Mechanism implemented by United Nations Framework Convention on Climate Change. The Renewable Energy Certificate System is a voluntary regulation in India for renewable energy generators and is designed for effective implementation of inter-state transactions by introducing the Renewable Purchase Obligation regulation for consumers and a flexible trading platform for transactions across the country. Another initiative, the Perform Achieve Trade scheme, is an enhanced energy efficiency trading mechanism based on consumption targets that require large energy user sectors to improve efficiency by 1–2% per year. The Perform Achieve Trade programme has introduced mechanisms for the identification of industry sector, designated customer, specific energy consumption and target setting. The Perform Achieve Trade design issues are in test phase in the first cycle of the scheme which will run from 2012 to 2015. This paper discusses key design issues about boundary and target setting for Renewable Energy Certificate and Perform Achieve Trade energy saving certificate (ESCert) A data sharing and trading mechanism for Perform Achieve Trade is also proposed for review and coordination among regulator, designated consumers and traders in the market. - Highlights: ► Renewable Energy Certificate’ and ‘Perform Achieve Trade’ are energy certification programmes. ► REC and PAT programme implementation and the institutional network work are presented. ► The trading and communication network propose for possible linkage between REC, PAT and CDM. ► Independent associations in parallel with CERC and BEE are redefined for two tier review of scheme

  16. Housing, energy cost, and the poor: Counteracting effects in Germany's housing allowance program

    International Nuclear Information System (INIS)

    Groesche, Peter

    2010-01-01

    Adequate housing and affordable warmth are essential human needs, the lack of which may seriously harm people's health. Germany provides an allowance to low-income households, covering the housing as well as the space heating cost, to protect people from the consequences of poor housing conditions and fuel poverty. In order to limit public expenditures, payment recipients are required to choose low-cost dwellings, with the consequence that they probably occupy flats with a poor thermal performance. Recipients might therefore exhibit a lower per-square meter rent but in turn are likely to have a higher energy consumption and energy expenditures. Using a large data set of German households, this paper demonstrates that this financially counteracting effect is of negligible magnitude.

  17. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2009-07-16

    data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded

  18. Marginal costs for intensified energy-efficiency measures

    International Nuclear Information System (INIS)

    Jakob, J.; Jochem, E.; Christen, K.

    2002-01-01

    The costs and benefits of investments in measures designed to improve the energy efficiency of residential buildings (in particular investments in heat insulation) were calculated as a function of increasing energy efficiency for new and renovated buildings and for single-family homes and apartment buildings. These investments in measures to improve efficiency mostly involve with the building envelope and ventilation systems and aim to successively reduce the space-heating needs of the buildings. The measures range from present-day building and renovation methods through to the 'Minergie' and 'Passive House' ('Minergie-P' in Switzerland) standards for low and very-low energy consumption buildings. Cost-benefit ratios were determined for individual building components, individual building concepts and for the whole of Switzerland, using both the average-cost as well as the pure marginal-cost methods (energy-economics level). The collection of empirical data (especially on costs) was an integral and important part of the project. The marginal costs were then compared with the benefits arising from the costs for space heating that were avoided, and, using a few typical cases as examples, with the so-called co-benefits, which are to be implemented in part by private persons and companies. For their quantification, methods were developed and used in case studies; in addition, avoided external costs are also considered. The marginal costs were also calculated for periods of time in the future, whereby they were made dynamic, according to their share of innovation, using the learning-curve method (learning and scaling effects). As far as the findings are concerned, there can be no doubt that the potential to be opened up for increasing energy efficiency using heat insulation measures is high, both for renovations and new construction work. A large portion of this potential is already economically viable and even more so when the possible risks of energy price increases

  19. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Angelini, Tana; Masanet, Eric

    2010-07-27

    In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce energy consumption are available, and this Energy Guide discusses energy-efficiency practices and energy-efficient technologies that can be applied over a broad spectrum of companies. Strategies in the guide address hot water and steam, compressed air, pumps, motors, fans, lighting, refrigeration, and heating, ventilation, and air conditioning. This guide includes descriptions of expected energy and cost savings, based on real-world applications, typical payback periods, and references to more detailed information. The information in this Energy Guide is intended to help energy and plant managers achieve cost-effective energy reductions while maintaining product quality. Further research on the economics of all measures--as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  20. The Effects of Roof and Wall Insulation on the Energy Costs of Low Income Housing in Mexico

    Directory of Open Access Journals (Sweden)

    Jorge Lucero-Álvarez

    2016-06-01

    Full Text Available Environmental conditions, such as air temperature and solar radiation, have a complex relationship with the energy requirements for heating and cooling of residential buildings. In this work, a comparative analysis of the insulation methods most commonly applied to low income single-family houses in Mexico is presented, in order to find the most energy-efficient combinations of methods for the various climates in this country. A common kind of building, small houses built with hollow cinder block walls and concrete slab roofs, was analyzed considering three insulation scenarios: walls only, roof only and both. We used dynamic simulation to evaluate energy consumption under the climate conditions found in several Mexican cities. From the energy consumption data and the cost of electricity in Mexico, we calculated net annual energy costs, including both annual energy savings and the annualized cost of the initial investment in better insulation. Results of this analysis show that insulating both roof and walls is most effective in cities with cold winters; insulating just the roof is best for temperate climates; and insulating walls (combined with high-albedo roofs is most effective for cities with year-long warm weather.

  1. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  2. Encouraging energy conservation in multifamily housing: RUBS and other methods of allocating energy costs to residents

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, L

    1980-10-01

    Methods of encouraging energy conservation in multifamily housing by allocating energy costs to residents are discussed; specifically, methods appropriate for use in master metered buildings without equipment to monitor energy consumption in individual apartments are examined. Several devices available for monitoring individual energy consumption are also discussed plus methods of comparing the energy savings and cost effectiveness of monitoring devices with those of other means of promoting conservation. Specific information in Volume I includes a comparison study on energy use in master and individually metered buildings; types of appropriate conservation programs for master metered buildings; a description of the Resident Utility Billing System (RUBS); energy savings associated with RUBS; Resident reactions to RUBS; cost effectiveness of RUBS for property owners; potential abuses, factors limiting widespread use, and legal status of RUBS. Part I of Volume II contains a cost allocation decision guide and Part II in Volume II presents the RUBS Operations Manual. Pertinent appendices to some chapters are attached. (MCW)

  3. Developing macroeconomic energy cost indicators

    International Nuclear Information System (INIS)

    Oberndorfer, Ulrich

    2012-01-01

    Indicators are more and more drawn on for policy making and assessment. This is also true for energy policy. However, while numerous different energy price figures are available, subordinate energy cost indicators are lacking. This paper lays out a general concept for such indicator sets and presents a flexible framework for representative and consistent energy cost indicators with an underlying weighting principle based on consumption shares. Their application would provide interesting new insights into the relationship between energy cost burdens of different sectors and countries. It would allow for more rigorous analysis in the field of energy economics and policy, particularly with regard to market monitoring and impact assessment as well as ex-post-policy analysis.

  4. Achieving low latency and energy consumption by 5G TDD mode optimization

    DEFF Research Database (Denmark)

    Lähetkangas, Eeva; Pajukoski, Kari; Vihriälä, Jaakko

    2014-01-01

    and discussing on the consequent frame length limits. We then provide a description on how the achieved short TDD latency can further be utilized to enable remarkably low energy consumption. A numerical analysis comparing the battery life time of the suggested 5G TDD air interface and LTE is provided, showing......The target for a new 5G radio access technology is to support multi-Gbps and ms latency connectivity simultaneously at noticeably lower energy consumption and cost compared to the existing 4G technologies, such as LTE-Advanced. Extremely short air interface latency is required to achieve...... these requirements in a TDD-based local area network. In this paper, we discuss how the required short TDD latency can be achieved and further utilized in 5G physical air interface. First, we investigate the enablers and limits of TDD latency by analyzing the performance of OFDM in different channel environments...

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  6. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.

    Science.gov (United States)

    Bregman, D J J; van der Krogt, M M; de Groot, V; Harlaar, J; Wisse, M; Collins, S H

    2011-11-01

    In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot Orthoses are frequently prescribed. However, it is unknown what Ankle Foot Orthoses stiffness should be used to obtain the most efficient gait. The aim of this simulation study was to gain insights into the effect of variation in Ankle Foot Orthosis stiffness on the amount of energy stored in the Ankle Foot Orthosis and the energy cost of walking. We developed a two-dimensional forward-dynamic walking model with a passive spring at the ankle representing the Ankle Foot Orthosis and two constant torques at the hip for propulsion. We varied Ankle Foot Orthosis stiffness while keeping speed and step length constant. We found an optimal stiffness, at which the energy delivered at the hip joint was minimal. Energy cost decreased with increasing energy storage in the ankle foot orthosis, but the most efficient gait did not occur with maximal energy storage. With maximum storage, push-off occurred too late to reduce the impact of the contralateral leg with the floor. Maximum return prior to foot strike was also suboptimal, as push-off occurred too early and its effects were subsequently counteracted by gravity. The optimal Ankle Foot Orthosis stiffness resulted in significant push-off timed just prior to foot strike and led to greater ankle plantar-flexion velocity just before contralateral foot strike. Our results suggest that patient energy cost might be reduced by the proper choice of Ankle Foot Orthosis stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Cost-effectiveness analysis of sandhill crane habitat management

    Science.gov (United States)

    Kessler, Andrew C.; Merchant, James W.; Shultz, Steven D.; Allen, Craig R.

    2013-01-01

    Invasive species often threaten native wildlife populations and strain the budgets of agencies charged with wildlife management. We demonstrate the potential of cost-effectiveness analysis to improve the efficiency and value of efforts to enhance sandhill crane (Grus canadensis) roosting habitat. We focus on the central Platte River in Nebraska (USA), a region of international ecological importance for migrating avian species including sandhill cranes. Cost-effectiveness analysis is a valuation process designed to compare alternative actions based on the cost of achieving a pre-determined objective. We estimated costs for removal of invasive vegetation using geographic information system simulations and calculated benefits as the increase in area of sandhill crane roosting habitat. We generated cost effectiveness values for removing invasive vegetation on 7 land parcels and for the entire central Platte River to compare the cost-effectiveness of management at specific sites and for the central Platte River landscape. Median cost effectiveness values for the 7 land parcels evaluated suggest that costs for creating 1 additional hectare of sandhill crane roosting habitat totaled US $1,595. By contrast, we found that creating an additional hectare of sandhill crane roosting habitat could cost as much as US $12,010 for some areas in the central Platte River, indicating substantial cost savings can be achieved by using a cost effectiveness analysis to target specific land parcels for management. Cost-effectiveness analysis, used in conjunction with geographic information systems, can provide decision-makers with a new tool for identifying the most economically efficient allocation of resources to achieve habitat management goals.

  8. 10 CFR 436.13 - Presuming cost-effectiveness results.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Presuming cost-effectiveness results. 436.13 Section 436... Methodology and Procedures for Life Cycle Cost Analyses § 436.13 Presuming cost-effectiveness results. (a) If the investment and other costs for an energy or water conservation measure considered for retrofit to...

  9. Energy Hub’s Structural and Operational Optimization for Minimal Energy Usage Costs in Energy Systems

    Directory of Open Access Journals (Sweden)

    Thanh Tung Ha

    2018-03-01

    Full Text Available The structural and optimal operation of an Energy Hub (EH has a tremendous influence on the hub’s performance and reliability. This paper envisions an innovative methodology that prominently increases the synergy between structural and operational optimization and targets system cost affordability. The generalized energy system structure is presented theoretically with all selective hub sub-modules, including electric heater (EHe and solar sources block sub-modules. To minimize energy usage cost, an energy hub is proposed that consists of 12 kinds of elements (i.e., energy resources, conversion, and storage functions and is modeled mathematically in a General Algebraic Modeling System (GAMS, which indicates the optimal hub structure’s corresponding elements with binary variables (0, 1. Simulation results contrast with 144 various scenarios established in all 144 categories of hub structures, in which for each scenario the corresponding optimal operation cost is previously calculated. These case studies demonstrate the effectiveness of the suggested model and methodology. Finally, avenues for future research are also prospected.

  10. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  11. Import of renewable energy from biomass from Sweden by The Netherlands. Costs and macro-economic effects

    International Nuclear Information System (INIS)

    Agterberg, A.E.

    1997-12-01

    Import of renewable energy from biomass by the Netherlands is expected to be necessary to meet the objective for renewable energy set by the Dutch government. However, this import does not take place yet and there are many possibilities for import because several countries may serve as a supplier of biomass, there are several types of biomass available in these countries and this biomass can be transported to the Netherlands in many ways. Analysis is necessary to find out what are the best possibilities for import of renewable energy from biomass by the Netherlands. In this study the import of energy, produced in Sweden from biomass, by the Netherlands is analyzed. Sweden is selected as the biomass supplying country because it is expected to have a large potential of biomass. The aspects studied are costs and macro-economic effects (increase in employment and value added caused by the import operation). The objectives are: (1) Selection of likely export chains based on the different sources of biomass for energy in Sweden and the different energy carriers that can be exported; (1) Calculation of the costs for the delivery of 1 kWh of electricity to the main grid in the Netherlands for each chain, for the present and for the year 2010; (3) Calculation of macro-economic effects (changes in employment and value added) in Sweden and the Netherlands for the import of 10 PJ of energy from biomass per year for each chain; (4) Comparison of the chains based on both costs and macro-economic effects; and (5) Discussion of the method and recommendations for simplifications for application in situations with a lower data quality. 45 refs

  12. Cost-benefit analysis of Hydro-Quebec's energy conservation programs

    International Nuclear Information System (INIS)

    Arsenault, E.

    1993-09-01

    A cost-benefit analysis is presented of the energy conservation programs of Hydro-Quebec for 1991 to 2010. Three possible scenarios are simulated. In the first scenario, Hydro-Quebec data are used without modification. In the second, the simulation is carried out in the absence of the Hydro-Quebec programs, and in the third, it is assumed that any economies achieved are only for the short term. A comparison between these simulations allows determination of results concerning the advantages and the costs which the programs introduce for the three groups comprising society: the consumer, the producer, and the government. The results of these comparisons show that the consumer, the producer, and the whole society gain benefits from the energy conservation programs, while the government loses. 13 refs., 13 figs., 14 tabs

  13. A critical analysis of the 2014 IPCC report on capital cost of mitigation and of renewable energy

    International Nuclear Information System (INIS)

    Trainer, Ted

    2017-01-01

    The Report by the IPCC Working Group 3 on mitigation has been widely reported as showing that a 430 – 480 ppm emissions target can be achieved at a low investment cost in relation to GDP. However there are several reasons why the Report cannot be regarded as having established these claims, mainly to do with the very few sources referred to on the crucial cost issues, the problems evident in those sources, and difficulties encountered when investment sums allocated to various sectors are examined. An exploration of the possible investment required by the renewable energy sector indicates that the costs associated with achieving desired emissions targets would be very high. This strengthens the case that effective policies for dealing with climate and other global problems cannot be achieved unless there is transition from consumer societies committed to affluence and growth. - Highlights: • The logic and structure of the Report re clarified. • Only five pages in Chapter 16 deal with renewable system cost estimates. • The core conclusions are based on only about three references. • These studies are open to fundamental criticism. • An alternative approach indicates higher system costs than the Report claims.

  14. Overcoming energy injustice? Bulgaria’s renewable energy transition in times of crisis

    OpenAIRE

    Andreas, Jan-Justus; Burns, Charlotte Jennie; Touza-Montero, Julia Maria

    2018-01-01

    The effects of renewable energy transitions on energy costs and economic growth have led to cost concerns and a prioritisation of economic issues during the economic crisis. Bulgaria, the EU's poorest state has nevertheless already achieved its 2020 renewable energy targets. This achievement seems to challenge the widely held as- sumption that poorer countries struggle to meet environmental objectives. This paper analyses the drivers and implications of Bulgaria's renewables expansion in orde...

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  16. The Cost of Enforcing Building Energy Codes: Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vine, Ed [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sturges, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosenquist, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    The purpose of this literature review is to summarize key findings regarding the costs associated with enforcing building energy code compliance—primarily focusing on costs borne by local government. The review takes into consideration over 150 documents that discuss, to some extent, code enforcement. This review emphasizes those documents that specifically focus on costs associated with energy code enforcement. Given the low rates of building energy code compliance that have been reported in existing studies, as well as the many barriers to both energy code compliance and enforcement, this study seeks to identify the costs of initiatives to improve compliance and enforcement. Costs are reported primarily as presented in the original source. Some costs are given on a per home or per building basis, and others are provided for jurisdictions of a certain size. This literature review gives an overview of state-based compliance rates, barriers to code enforcement, and U.S. Department of Energy (DOE) and key stakeholder involvement in improving compliance with building energy codes. In addition, the processes and costs associated with compliance and enforcement of building energy codes are presented. The second phase of this study, which will be presented in a different report, will consist of surveying 34 experts in the building industry at the national and state or local levels in order to obtain additional cost information, building on the findings from the first phase, as well as recommendations for where to most effectively spend money on compliance and enforcement.

  17. Effects of economies of scale and experience on the costs of energy-efficient technologies. Case study of electric motors in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Jardot, D.; Eichhammer, W.; Fleiter, T. [Fraunhofer Institute for Systems and Innovation Research (ISI), Breslauer Str. 48, 76139 Karlsruhe (Germany)

    2010-11-15

    Increasing energy efficiency is discussed as an effective way to protect the climate, even though this is frequently associated with additional (investment) costs when compared to standard technologies. However, the investment costs of emerging energy-efficient technologies can be reduced by economies of scale and experience curve effects. This also brings about higher market penetration by lowering market barriers. Experience curves have already been analyzed in detail for renewable energy technologies, but are not as well documented for energy-efficient technologies despite their significance for energy and climate policy decisions. This work provides empirical evidence for effects of economies of scale and experience on the costs of energy-efficient electric motors. We apply a new methodology to the estimation of learning effects that is particularly promising for energy-efficient technologies where the very low data availability did not allow calculations of learning rates so far. Energy-efficient electric motors are a highly relevant energy technology that is responsible for about 55% of German electricity consumption. The analysis consists of three main steps. First, the calculation of composite price indices based on gross value added statistics for Germany which show the changes in cost components of electric motors over the period 1995 to 2006; second, an estimation of the corresponding learning rate which is, in a third step, compared with learning rates observed for other energy-efficient technologies in a literature review. Due to restrictions of data availability, it was not possible to calculate a learning rate for the differential costs of energy-efficient motors compared to standard motors. Still, we estimated a learning rate of 9% for 'Eff2' motors in a period when they penetrated the market and replaced the less efficient 'Eff3' motors. Furthermore, we showed the contribution of different effects to these cost reductions, like

  18. Nuclear energy achievements and prospects

    International Nuclear Information System (INIS)

    Lewiner, Colette

    1992-01-01

    Within half a century nuclear energy achieved very successful results. Only for European Community, nuclear energy represents 30% in electricity generation. At this stage, one state that the nuclear energy winning cards are competitiveness and Gentleness to the environment. Those winning cards will still be master cards for the 21st century, provided nuclear energy handles rigorously: Safety in concept and operation of power plants; radioactive waste management, and communication

  19. FUTURE FOSSIL FUEL PRICE IMPACTS ON NDC ACHIEVEMENT; ESTIMATION OF GHG EMISSIONS AND MITIGATION COSTS

    Directory of Open Access Journals (Sweden)

    Yosuke Arino

    2017-12-01

    Full Text Available The Shale Revolution in the US, a supply-side innovation in oil and gas production, has been dramatically changing the world’s fossil fuel energy markets – leading to a decrease in oil, gas and coal prices. Some projections suggest that low fossil fuel prices might continue at least over the next few decades. Uncertainty in fossil fuel prices might affect the levels of emission reductions expected from submitted nationally determined contributions (NDCs and/or influence the difficulty of achieving the NDCs. This paper evaluated the impact of different (high, medium, and low fossil fuel prices, sustained through to 2050, on worldwide GHG emissions reductions and associated costs (mainly marginal abatement costs (MACs. Total global GHG emissions were estimated to be 57.5-61.5 GtCO2eq by 2030, with the range shown reflecting uncertainties about fossil fuel prices and the target levels of several NDCs (i.e., whether their upper or lower targets were adopted. It was found that lower fuel prices not only diminished the environmental effectiveness of global NDCs but also widened regional differences of marginal and total abatement costs, thereby generating more room for carbon leakage. One possible policy direction in terms of abatement efficiency, fairness and environmental effectiveness would be to require countries with low marginal and total abatement costs but having a major influence on global GHG emissions (such as China and India to increase their mitigation efforts, especially in a low-fuelprice world.

  20. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  1. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  2. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-09-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  3. Cost-benefit assessment of energy storage for utility and customers: A case study in Malaysia

    International Nuclear Information System (INIS)

    Chua, Kein Huat; Lim, Yun Seng; Morris, Stella

    2015-01-01

    Highlights: • Energy storage can replace the peaking plants. • The cost of electricity for the plants with energy storage is as competitive as fossil fuel power plants. • Energy storage can reduce CO_2 emissions and defer the reinforcement of transmissions and distributions infrastructure. • Energy storage can reduce peak demand charge for customers. - Abstract: Under the existing commercial framework of electricity in Malaysia, commercial and industrial customers are required to pay for the peak power demand charge every month. Usually, the peak demand charge can contribute up to 30% to their electricity bills due to the use of open-cycle gas power plants that deliver expensive electricity to the customers. Therefore, alternative means are sought after in order to reduce the peak demand for the customers. Distributed small-scaled energy storage can offer a good option to reduce the peak. This paper aims to identify the financial benefits of the energy storage system for utility companies and customers. An energy dispatch model is developed in HOMER to determine the cost of electricity. The model considers the heat rates of power plants in calculating the costs of electricity under different regulatory frameworks of natural gas with various prices of battery components. Apart from that, the cost-benefit for the customers under various electric tariff structures is evaluated. Four battery storage technologies, namely lead acid, vanadium redox flow, zinc-bromine, and lithium-ion are considered. The simulation results show that the storage system with lead acid batteries is more cost-effective than other battery technologies. The customers can reduce their electricity bills with the payback period of 2.8 years. The generation cost for the power system with energy storage is lower than that without energy storage. Besides, the system with energy storage has lower greenhouse gas emissions than that without energy storage. The deferral of the reinforcement of

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  5. A cost optimization model for 100% renewable residential energy supply systems

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2012-01-01

    The concept of net zero energy buildings (Net ZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of these buildings. To achieve this, a holistic approach is needed which accounts for the i......The concept of net zero energy buildings (Net ZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of these buildings. To achieve this, a holistic approach is needed which accounts......'s involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system costs. It has been successfully applied...

  6. Metaldyne. Plant-Wide Assessment at Royal Oak Finds Opportunities to Improve Manufacturing Effciency, Reduce Energy Use, and Achieve Sigificant Cost Savings

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-05-01

    This case study prepared for the U.S. Department of Energy's Industrial Technologies Program describes a plant-wide energy assessment conducted at the Metaldyne, Inc., forging plant in Royal Oak, Michigan. The assessment focused on reducing the plant's operating costs, inventory, and energy use. If the company were to implement all the recommendations that came out of the assessment, its total annual energy savings for electricity would be about 11.5 million kWh and annual cost savings would be $12.6 million.

  7. Metaldyne: Plant-Wide Assessment at Royal Oak Finds Opportunities to Improve Manufacturing Efficiency, Reduce Energy Use, and Achieve Significant Cost Savings

    Energy Technology Data Exchange (ETDEWEB)

    2005-05-01

    This case study prepared for the U.S. Department of Energy's Industrial Technologies Program describes a plant-wide energy assessment conducted at the Metaldyne, Inc., forging plant in Royal Oak, Michigan. The assessment focused on reducing the plant's operating costs, inventory, and energy use. If the company were to implement all the recommendations that came out of the assessment, its total annual energy savings for electricity would be about 11.5 million kWh and annual cost savings would be $12.6 million.

  8. Electricity generation from renewable energy sources in Italy: the costs of the System Inefficiencies

    International Nuclear Information System (INIS)

    Bano, L.; Lorenzoni, A.

    2008-01-01

    The promotion of electricity from renewable energy sources (RES) is a high European Union (E U) priority for several reasons, including the security and diversification of energy supply, environmental protection and social and economic cohesion. The Eu Council's decision of 9 March 2007 points towards increasing renewable penetration to 20% of total primary energy supply by 2020 (binding target). There are both costs and benefits associated with the achievement of such an ambitious target. For renewable technologies, the industrial cost is often higher compared to other energy sources. however, due to learning curve effects and market diffusion, technology related costs are coming down considerably. In some cases, when the external costs are taken into account by the price system, renewable can now be close to competitive with fossil fuels. With particular reference to renewable electricity in Italy, its development is often hampered by burdensome and time consuming authorisation procedures with the consequence of a high mortality rate for the investments in the sector, leading to increased costs for the project management. Therefore, in these projects an important cost factor is the high cost of capital due to risk. The analysis of the various renewables' support mechanisms currently in place in the E U shows that some types of incentive have proven to be more efficient than others in reducing the risk perception of investors and financing institutions, therefore making projects less expensive by reducing the cost of capital (both debt and equity). Therefore the focus here is on the electricity generation costs of some renewable technologies and on the costs related to the additional risk perceived by investors/lenders in the sector. The authors estimate the additional cost of capital which investors pay when operating in a risky environment. Some policy indications are finally given to reduce the non-technology related costs for a faster and more efficient growth

  9. Nuclear energy: the cost of opting-out

    International Nuclear Information System (INIS)

    Mueller, U.

    2003-01-01

    This article discusses the results of a study made on the financial and ecological costs that would be incurred if Switzerland opted out of the use of nuclear energy. Figures are quoted for the costs if two Swiss popular initiatives on the subject of opting out of nuclear energy were accepted in voting. The disadvantages offered by the alternatives such as combined gas and steam-turbine power plant, photovoltaics and wind power are quoted. Possible negative effects of opting out on the Swiss economy are looked at and the political aspects of renewing operational permits for nuclear power stations are discussed

  10. Climate policy and energy-intensive manufacturing: A comprehensive analysis of the effectiveness of cost mitigation provisions in the American Energy and Security Act of 2009

    International Nuclear Information System (INIS)

    Bassi, Andrea M.; Yudken, Joel S.

    2011-01-01

    In response to the ongoing climate policy debates, this study examines the cost impacts of carbon-pricing legislation on selected US energy-intensive manufacturing industries. Specifically, it evaluates output-based rebate measures and the border adjustment provision specified in the bill, and tests the effectiveness of cost containment features of the policy, such as the international offsets, under various market assumptions. Results of the examination confirm that in all policy cases or industries, the output-based rebates would effectively mitigate the manufacturers' carbon-pricing costs in the short-to-medium term. However as the rebates decline after 2020, especially in a case where low-carbon electricity generation or international offsets are not readily available or implemented, these industries would suffer greater declines in profitability. At the same time, the study's findings were mixed concerning the effectiveness of the border adjustment measure in reducing cost impacts after 2020. While border adjustments could reduce costs to US manufacturing sectors, at least temporarily, they could create problems for domestic downstream producers and exports, under cost pass-along conditions. However at best, the output-based rebates, international offset, and border adjustment and measures primarily buy time for manufacturers. The only long-term solution is for EITE industries to invest in energy-saving and next-generation low-carbon technologies. - Highlights: → The output-based rebates would effectively mitigate the costs of carbon-pricing for EITE industries. → After 2021 economic impacts on the EITE industries would escalate. → The BA measure would support US firms passing through their emissions costs to their US customers. → The BA measure would not alleviate the higher production costs of US. EITE exports. → In the medium term the only true solution is for US. EITE manufacturers to invest in energy-saving technologies.

  11. UK's climate change levy: cost effectiveness, competitiveness and environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Varma, Adarsh [Hull Univ., School of Economic Studies, Hull (United Kingdom)

    2003-01-01

    This paper intends to examine the cost effectiveness of UK's climate change levy (CCL), its implications on competitiveness of firms and the environmental impact. The paper briefly describes the levy and analyses it under the canons of a good taxation policy. The economic implications of the levy are discussed with theoretical and empirical perspectives. Change in net exports, investment patterns and productivity and inclusion of compliance cost forms the basis for analysing the effect on competitiveness. It discusses the options available to firms to safeguard their competitiveness if it is adversely affected by the CCL. A description of the current scenario of the levy since its inception is also presented. The paper argues the need for a comprehensive policy involving the use of standards, emission trading as well as energy taxes to achieve emission and energy-use reductions. A focal point of this paper is to elucidate the pros and cons of the CCL (energy tax) with respect to an emission trading scheme. (Author)

  12. Aquifer thermal-energy-storage costs with a seasonal-chill source

    Science.gov (United States)

    Brown, D. R.

    1983-01-01

    The cost of energy supplied by an aquifer thermal energy storage (ATES) ystem from a seasonal chill source was investigated. Costs were estimated for point demand and residential development ATES systems using the computer code AQUASTOR. AQUASTOR was developed at PNL specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on the costs of ATES delivered chill were: system size; well flow rate; transmission distance; source temperature; well depth; and cost of capital. The effects of each parameter are discussed. Two primary constraints of ATES chill systems are the extremely low energy density of the storage fluid and the prohibitive costs of lengthly pipelines for delivering chill to residential users. This economic analysis concludes that ATES-delivered chill will not be competitive for residential cooling applications. The otherwise marginal attractiveness of ATES chill systems vanishes under the extremely low load factors characteristic of residential cooling systems. (LCL)

  13. Renewables vs. energy efficiency: The cost of carbon emissions reduction in Spain

    International Nuclear Information System (INIS)

    López-Peña, Álvaro; Pérez-Arriaga, Ignacio; Linares, Pedro

    2012-01-01

    While support instruments have succeeded to largely deploy renewables during the 1996–2008 period, little attention has been paid to energy efficiency measures, resulting in a high energy intensity and large growth of energy demand. Energy-related CO 2 emissions have increased significantly. At the same time, important investments in combined cycle gas turbines have taken place. This paper analyses whether, from a cost minimization viewpoint, renewable support has been the best policy for reducing emissions, when compared to the promotion of energy efficiency in sectors such as transportation or buildings. We use a model of the Spanish energy sector to examine its evolution in the time period considered under different policies. It is a bottom-up, static, partial equilibrium, linear programming model of the complete Spanish energy system. We conclude that demand side management (DSM) clearly dominates renewable energy (RE) support if the reduction of emissions at minimum cost is the only concern. We also quantify the savings that could have been achieved: a total of €5 billion per year, mainly in RE subsidies and in smaller costs of meeting the reduced demand (net of DSM implementation cost). - Highlights: ► Energy efficiency is cheaper than renewables for reducing carbon emissions. ► Energy efficiency measures could have saved more than €5 billion per year in Spain. ► Savings could have been bigger without overcapacity in gas combined cycles.

  14. Social costs of energy

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1990-01-01

    There have been many studies over the past 20 years which have looked at the environmental and other impacts of energy production, conversion and use. A number of these have attempted to put a monetary value to the external costs which are not reflected in the prices charged for energy. The topic has received increased attention recently as a direct result of the recognition of the potentially large social costs that might arise from the depletion of the ozone layer, the consequences of global warming and the continued releases of acid gases from fossil fuel combustion. The determination of external costs was attempted in the report for the European Economic Community, EUR11519, ''Social Costs of Energy Consumption'', by O Hohmeyer. Due to its official sponsorship, this report has been afforded greater respect than it deserves and is being used in some quarters to claim that the external costs of nuclear power are high relative to those of fossil fuels. The remainder of this note looks at some of the serious deficiencies of the document and why its conclusions offer no meaningful guidance to policy makers. So far as the present author is aware no serious criticism of the Hohmeyer study has previously appeared. (author)

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Adrian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-10-01

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  16. Minimizing the Levelized Cost of Energy in Single-Phase Photovoltaic Systems with an Absolute Active Power Control

    DEFF Research Database (Denmark)

    Yang, Yongheng; Koutroulis, Eftichios; Sangwongwanich, Ariya

    2015-01-01

    . An increase of the inverter lifetime and a reduction of the energy yield can alter the cost of energy, demanding an optimization of the power limitation. Therefore, aiming at minimizing the Levelized Cost of Energy (LCOE), the power limit is optimized for the AAPC strategy in this paper. The optimization...... control strategy, the Absolute Active Power Control (AAPC) can effectively solve the overloading issues by limiting the maximum possible PV power to a certain level (i.e., the power limitation), and also benefit the inverter reliability. However, its feasibility is challenged by the energy loss......, compared to the conventional PV inverter operating only in the maximum power point tracking mode. In the presented case study, the minimum of LCOE is achieved for the system when the power limit is optimized to a certain level of the designed maximum feed-in power (i.e., 3 kW). In addition, the proposed...

  17. Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian A.; Halverson, Mark A.; Myer, Michael; Cho, Hee Jin; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

    2013-06-18

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

  18. Software Cuts Homebuilding Costs, Increases Energy Efficiency

    Science.gov (United States)

    2015-01-01

    To sort out the best combinations of technologies for a crewed mission to Mars, NASA Headquarters awarded grants to MIT's Department of Aeronautics and Astronautics to develop an algorithm-based software tool that highlights the most reliable and cost-effective options. Utilizing the software, Professor Edward Crawley founded Cambridge, Massachussetts-based Ekotrope, which helps homebuilders choose cost- and energy-efficient floor plans and materials.

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  20. Device interactions in reducing the cost of tidal stream energy

    International Nuclear Information System (INIS)

    Vazquez, A.; Iglesias, G.

    2015-01-01

    Highlights: • Numerical modelling is used to estimate the levelised cost of tidal stream energy. • As a case study, a model of Lynmouth (UK) is implemented and successfully validated. • The resolution of the model allows the demarcation of individual devices on the model grid. • Device interactions reduce the available tidal resource and the cost increases significantly. - Abstract: The levelised cost of energy takes into account the lifetime generated energy and the costs associated with a project. The objective of this work is to investigate the effects of device interactions on the energy output and, therefore, on the levelised cost of energy of a tidal stream project, by means of numerical modelling. For this purpose, a case study is considered: Lynmouth (North Devon, UK), an area in the Bristol Channel in which the first tidal stream turbine was installed − a testimony of its potential as a tidal energy site. A state-of-the-art hydrodynamics model is implemented on a high-resolution computational grid, which allows the demarcation of the individual devices. The modification to the energy output resulting from interaction between turbines within the tidal farm is thus resolved for each individual turbine. The results indicate that significant changes in the levelised cost of energy values, of up to £0.221 kW h −1 , occur due to the aforementioned modifications, which should not be disregarded if the cost of tidal stream energy is to be minimised

  1. Effect of density and weight of load on the energy cost of carrying loads by donkeys and ponies.

    Science.gov (United States)

    Pearson, R A; Dijkman, J T; Krecek, R C; Wright, P

    1998-02-01

    Two experiments were designed to compare the energy used in carrying loads by donkeys and ponies. In the first experiment 3 donkeys and 3 ponies were compared on treadmills in the UK. Density of load (lead shot or straw) had no significant effect on the energy cost of carrying loads; however, the energy cost of carrying a load decreased significantly (p < 0.001) as the weight of the load increased (in donkeys 6.44, 4.35 and 3.03 J/kg load/m, in ponies 5.82, 3.75 and 3.68 J/kg load/m, for loads of 13, 20 and 27 kg/100 kg liveweight (M) respectively). Differences between species were not significant. In the second experiment energy expenditures were determined in 3 donkeys carrying loads equivalent to 40 kg/100 kg M over gently undulating gravel tracks in Tunisia. Energy costs of carrying the load were 2.34 (SE 0.07) J/kg load/m. The results of both experiments showed that provided the load is balanced, density does not significantly affect the energy cost of carrying; however, as the load increased then the unit energy cost of carrying it decreased. This suggest that it is more efficient in terms of energy used to carry loads equivalent to 27 to 40 kg/100 kg M than it is to carry lighter loads to less than 20 kg/100 kg M.

  2. Energy politics: Can we achieve a sustainable energy path?

    International Nuclear Information System (INIS)

    Nicklas, M.

    1993-01-01

    The political pressures affecting global energy choices are numerous, vary by country, and are significantly changing. In evaluating our energy future, one cannot escape recognition of three dominant areas where reality more than politics will dictate needs and directions. Within the next decade the magnitude and importance of population growth, energy resource availability, and the environmental and societal costs of energy will gradually increase and dominate global energy decisionmaking. This paper will discuss these major forces, how they have influenced past actions, and how they will shape our energy future

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  4. Transaction costs of raising energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, K.

    2003-07-01

    Part of the debate evolves around the existence and importance of energy saving potentials to reduce CO{sub 2} emissions that may be available at negative net costs, implying that the energy cost savings of one specific technology can actually more than offset the costs of investing into this technology and of using it. This so called ''no-regret'' potential would comprise measures that from a pure economic efficiency point of view would be ''worth undertaking whether or not there are climate-related reasons for doing so''. The existence of the no-regret potential is often denied by arguing, that the economic evaluation of the energy saving potentials did not take into account transaction costs. This paper will re-examine in more detail the concept of transaction costs as it is used in the current debate on no-regret potentials (section 1). Four practical examples are presented to illustrate how transaction costs and their determinants can be identified, measured and possibly influenced (section 2). In order to link the presented cases to modelling based evaluation approaches the implications for cost evaluations of energy saving measures, especially in the context of energy system modelling, will be shown (section 3). (author)

  5. The Cost-Effectiveness of NBPTS Teacher Certification

    Science.gov (United States)

    Yeh, Stuart S.

    2010-01-01

    A cost-effectiveness analysis of the National Board for Professional Teaching Standards (NBPTS) program suggests that Board certification is less cost-effective than a range of alternative approaches for raising student achievement, including comprehensive school reform, class size reduction, a 10% increase in per pupil expenditure, the use of…

  6. Hybrid modeling to support energy-climate policy: Effects of feed-in tariffs to promote renewable energy in Portugal

    International Nuclear Information System (INIS)

    Proença, Sara; St Aubyn, Miguel

    2013-01-01

    Feed-in tariffs have been the main policy instrument applied in Portugal for the promotion of electricity produced from renewable energy sources under the EU Directives on energy and climate regulation. In this paper, we provide an empirical impact assessment of the economic and environmental effects of Portugal's FITs policy to promote RES-E generation. Impact assessment of policy instruments plays a crucial role on decision-making process. For numerical simulations, we make use of a hybrid top-down/bottom-up general equilibrium modeling approach, which represents a reliable tool to analyze the complex interactions between economic, energy, and environmental issues related to energy policies. Numerical simulations confirm the empirical evidence that the FITs policy implemented by Portugal was both an effective and a cost-efficient way to increase the generation of electricity from renewable energy sources and thus to achieve the national RES-E target of 45% in 2010. Results show relatively modest macroeconomic impacts indicating potentially low economic adjustment costs. From an environmental perspective, the deployment of renewable energy source results in significant carbon emissions reductions. - Highlights: ► We provide an impact assessment of Portugal's FITs policy to promote RES-E generation. ► For numerical simulations, we make use of a hybrid top-down/bottom-up general equilibrium model. ► Portugal's FITs policy proved to be a cost-efficient way to increase generation of renewable electricity. ► Results show relatively modest macroeconomic effects indicating potentially low economic adjustment costs. ► The deployment of renewable energy sources results in significant carbon emission reductions

  7. The effect of life-cycle cost disclosure on consumer behavior

    Science.gov (United States)

    Deutsch, Matthias

    For more than 20 years, analysts have reported on the so-called "energy paradox" or the "energy efficiency gap", referring to the fact that economic agents could in principle lower their total cost at current prices by using more energy-efficient technology but, nevertheless, often decide not to do so. Theory suggests that providing information in a simplified way could potentially reduce this "efficiency gap". Such simplification may be achieved by providing the estimated monetary operating cost and life-cycle cost (LCC) of a given appliance---which has been a recurring theme within the energy policy and efficiency labeling community. Yet, little is known so far about the causal effects of LCC disclosure on consumer action because of the gap between the acquisition of efficiency information and consumer purchasing behavior in the real marketplace. This dissertation bridges the gap by experimentally integrating LCC disclosure into two major German commercial websites---a price comparison engine for cooling appliances, and an online shop for washing machines. Internet users arriving on these websites were randomly assigned to two experimental groups, and the groups were exposed to different visual stimuli. The control group received regular product price information, whereas the treatment group was, in addition, offered information about operating cost and total LCC. Click-stream data of consumers' shopping behavior was evaluated with multiple regression analysis by controlling for several product characteristics. This dissertation finds that LCC disclosure reduces the mean energy use of chosen cooling appliances by 2.5% (p<0.01), and the energy use of chosen washing machines by 0.8% (p<0.001). For the latter, it also reduces the mean water use by 0.7% (p<0.05). These effects suggest a potential role for public policy in promoting LCC disclosure. While I do not attempt to estimate the costs of such a policy, a simple quantification shows that the benefits amount to

  8. Classification of nuclear plant cost to energy

    International Nuclear Information System (INIS)

    Long, G.A.

    1983-01-01

    In order to understand why the fixed-cost/variable-cost method of classifying nuclear plant costs can lead to rate discontinuities, the author must examine the factors which lead to the decision to build a nuclear power plant and the interrelationship between demand (KW) and energy (KWH). The problems and inequities associated with the nuclear plants can be avoided by recognizing that fixed costs are related to both demand and energy and by using a costing methodology which closely relates to the functional purpose of the plant. Generally, this leads to classifying fixed costs of nuclear plants primarily to the energy function in an embedded cost-of-service study and through either implicit or explicit recognition of fuel savings in a marginal cost study. The large rate discontinuities which occurred in the scenario can be resolved. Costs associated with demand or energy charges remain relatively stable compared to actual capacity costs and customers would not experience large changes in their bills due solely to a particular costing convention

  9. Effective energy planning for improving the enterprise’s energy performance

    Directory of Open Access Journals (Sweden)

    Păunescu Carmen

    2016-09-01

    Full Text Available The global pressing need to protect the environment, save energy and reduce greenhouse gas emissions worldwide has prompted the enterprises to implementing both individual energy saving measures and a more systematic approach to improve the overall enterprise’s energy performance. Energy management is becoming a priority as enterprises strive to reduce energy costs, conform to regulatory requirements, and improve their corporate image. As such, enterprises are encouraged to manage their energy related matters in a systematic manner and a more harmonized way, to ensure continual improvement on their energy efficiency. Despite the increasing interest in energy management standards, a gap persists between energy management literature and current implementation practices. The release of the ISO 50001 international standard was meant to help the organizations develop sound energy management systems and effective process-based energy management structures that could be recognized through third-party certification. Building on the energy management literature and energy management standards, the current paper presents the essential steps the enterprises should take to practically design a sustainable energy management system. Also, by using multiple case studies of enterprises that have implemented an ISO 50001 energy management system, it introduces a structured approach that companies can use to effectively develop their energy planning and improve energy performance. The key components of the enterprise’s energy planning are discussed, as well as practical examples of energy objectives and performance indicators from various industries are offered. The paper shows that by establishing an effective energy planning system, this will efficiently meet demands for achieving energy performance indicators and international certification.

  10. How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?

    Directory of Open Access Journals (Sweden)

    David Bryngelsson

    2017-02-01

    Full Text Available We investigate how different global dietary scenarios affect the constraints on, and costs of, transforming the energy system to reach a global temperature stabilization limit of 2 °C above the pre-industrial level. A global food and agriculture model, World Food Supply Model (WOFSUM, is used to create three dietary scenarios and to calculate the CH4 and N2O emissions resulting from their respective food-supply chains. The diets are: (i a reference diet based on current trends; (ii a diet with high (reference-level meat consumption, but without ruminant products (i.e., no beef, lamb, or dairy, only pork and poultry; and (iii a vegan diet. The estimated CH4 and N2O emissions from food production are fed into a coupled energy and climate-system optimization model to quantify the energy system implications of the different dietary scenarios, given a 2 °C target. The results indicate that a phase-out of ruminant products substantially increases the emission space for CO2 by about 250 GtC which reduces the necessary pace of the energy system transition and cuts the net present value energy-system mitigation costs by 25%, for staying below 2 °C. Importantly, the additional cost savings with a vegan diet––beyond those achieved with a phase-out of ruminant products––are marginal (only one additional percentage point. This means that a general reduction of meat consumption is a far less effective strategy for meeting the 2 °C target than a reduction of beef and dairy consumption.

  11. Modelled Cost-Effectiveness of a Package Size Cap and a Kilojoule Reduction Intervention to Reduce Energy Intake from Sugar-Sweetened Beverages in Australia

    Science.gov (United States)

    Mantilla Herrera, Ana Maria; Neal, Bruce; Zheng, Miaobing; Lal, Anita; Sacks, Gary

    2017-01-01

    Interventions targeting portion size and energy density of food and beverage products have been identified as a promising approach for obesity prevention. This study modelled the potential cost-effectiveness of: a package size cap on single-serve sugar sweetened beverages (SSBs) >375 mL (package size cap), and product reformulation to reduce energy content of packaged SSBs (energy reduction). The cost-effectiveness of each intervention was modelled for the 2010 Australia population using a multi-state life table Markov model with a lifetime time horizon. Long-term health outcomes were modelled from calculated changes in body mass index to their impact on Health-Adjusted Life Years (HALYs). Intervention costs were estimated from a limited societal perspective. Cost and health outcomes were discounted at 3%. Total intervention costs estimated in AUD 2010 were AUD 210 million. Both interventions resulted in reduced mean body weight (package size cap: 0.12 kg; energy reduction: 0.23 kg); and HALYs gained (package size cap: 73,883; energy reduction: 144,621). Cost offsets were estimated at AUD 750.8 million (package size cap) and AUD 1.4 billion (energy reduction). Cost-effectiveness analyses showed that both interventions were “dominant”, and likely to result in long term cost savings and health benefits. A package size cap and kJ reduction of SSBs are likely to offer excellent “value for money” as obesity prevention measures in Australia. PMID:28878175

  12. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    . The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  13. Energy costs form European wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Milborrow, D [Windpower Monthly, Knebel (Denmark)

    1996-12-31

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  14. Energy costs form European wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Milborrow, D. [Windpower Monthly, Knebel (Denmark)

    1995-12-31

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  15. Energy costs form European wind farms

    International Nuclear Information System (INIS)

    Milborrow, D.

    1995-01-01

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  16. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.

    2011-12-01

    This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation

  17. National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian; Halverson, Mark A.; Myer, Michael; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

    2013-11-30

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

  18. The cost of preventing undernutrition: cost, cost-efficiency and cost-effectiveness of three cash-based interventions on nutrition outcomes in Dadu, Pakistan.

    Science.gov (United States)

    Trenouth, Lani; Colbourn, Timothy; Fenn, Bridget; Pietzsch, Silke; Myatt, Mark; Puett, Chloe

    2018-07-01

    Cash-based interventions (CBIs) increasingly are being used to deliver humanitarian assistance and there is growing interest in the cost-effectiveness of cash transfers for preventing undernutrition in emergency contexts. The objectives of this study were to assess the costs, cost-efficiency and cost-effectiveness in achieving nutrition outcomes of three CBIs in southern Pakistan: a 'double cash' (DC) transfer, a 'standard cash' (SC) transfer and a 'fresh food voucher' (FFV) transfer. Cash and FFVs were provided to poor households with children aged 6-48 months for 6 months in 2015. The SC and FFV interventions provided $14 monthly and the DC provided $28 monthly. Cost data were collected via institutional accounting records, interviews, programme observation, document review and household survey. Cost-effectiveness was assessed as cost per case of wasting, stunting and disability-adjusted life year (DALY) averted. Beneficiary costs were higher for the cash groups than the voucher group. Net total cost transfer ratios (TCTRs) were estimated as 1.82 for DC, 2.82 for SC and 2.73 for FFV. Yet, despite the higher operational costs, the FFV TCTR was lower than the SC TCTR when incorporating the participation cost to households, demonstrating the relevance of including beneficiary costs in cost-efficiency estimations. The DC intervention achieved a reduction in wasting, at $4865 per case averted; neither the SC nor the FFV interventions reduced wasting. The cost per case of stunting averted was $1290 for DC, $882 for SC and $883 for FFV. The cost per DALY averted was $641 for DC, $434 for SC and $563 for FFV without discounting or age weighting. These interventions are highly cost-effective by international thresholds. While it is debatable whether these resource requirements represent a feasible or sustainable investment given low health expenditures in Pakistan, these findings may provide justification for continuing Pakistan's investment in national social safety

  19. A cost-efficient and reliable energy management of a micro-grid using intelligent demand-response program

    International Nuclear Information System (INIS)

    Safamehr, Hossein; Rahimi-Kian, Ashkan

    2015-01-01

    Providing a cost-efficient and reliable energy is one of the main issues in human societies of the 21st century. In response to this demand, new features of micro grid technology have provided huge potentials, specifically by the capability of having an interactive coordination between energy suppliers and consumers. Accordingly, this paper offers an improved model for achieving an optimal Demand Response programing. To solve the proposed multi-objective optimization problem, Artificial Bee Colony algorithm and quasi-static technique are utilized. The considered objectives in this paper are minimizing the overall cost of energy consumption and also improving the technical parameters of micro grid over a time horizon. This optimization is subject to several constraints such as satisfying the energy balance and the operating constraints of each energy supply sources. Manageable load or load as source is another enabling feature existing in smart energy networks, which is considered in this paper and its effect on cost reduction and reliability improvement is studied. Trying to examine the performance of the proposed Demand Response Programing in real conditions, the uncertainties are also analyzed by stochastic methods. The results show significant improvements which are obtained by applying just intelligent programming and management. - Highlights: • This paper presents a cost-efficient and reliable energy management of a micro-grid. • New models of battery and manageable loads are formulated. • Artificial Bee Colony algorithm is used to solve the optimization problem. • Quasi-static technique is used to simplify the solving procedure. • The uncertainties are also analyzed by stochastic methods.

  20. The evolution of energy costs and their effect on the competitiveness of Spanish industry; La evolucion de los costes energeticos y su efecto en la competitividad de la industria espanola

    Energy Technology Data Exchange (ETDEWEB)

    Arocena, P.; Diaz, A. C.

    2015-07-01

    This paper analyzes the role of energy costs in the Spanish manufacturing and its evolution during the period 2000-2010. We carry out a descriptive analysis to firstly, determine the share of energy expenses on total operating expenses and personnel costs, and compare it with that registered in other European countries. Secondly, we analyze the evolution of the energy expenditure in relation to the output value created throughout the decade 2000-2010 and decompose such variation into a price effect and a quantity effect. (Author)

  1. What will abandonment of nuclear energy cost?

    International Nuclear Information System (INIS)

    Schneider, H.K.

    1988-01-01

    The Federal Republic of Germany holds position five on the list of the world's biggest energy consumers. This alone is a fact that puts special emphasis on the public discussion about the peaceful use of nuclear energy, in addition to the current events such as incidents and accidents in nuclear installations. A sober review of the pros and cons of nuclear energy for power generation has to take into account the economic effects and the costs to be borne by the national economy as a result of immediate abandonment of nuclear energy. The article in hand discusses chances, problems, and alternatives to nuclear energy (solar energy and wind power). (orig.) [de

  2. Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology

    International Nuclear Information System (INIS)

    Ballarini, Ilaria; Corrado, Vincenzo; Madonna, Francesco; Paduos, Simona; Ravasio, Franco

    2017-01-01

    The European residential building stock is largely composed of buildings with poor energy performance, therefore basic retrofit actions could lead to significant energy savings. However, energy refurbishment measures should be identified in accurate way, taking into account the technical viability and aiming both to increase the building energy performance and to restrain the costs. The present article investigates the effects of different measures applied to the Italian residential building stock by using the building typology, which consists of 120 building types, representative of six construction ages, four building sizes and five climatic zones. A quasi-steady state model has been used to calculate the energy performance; the economic evaluation has been carried out as specified in the EU cost-optimal comparative methodology (Directive 2010/31/EU). The most effective measures and packages of measures, in terms of energy saving and global cost reduction, are identified and discussed. The results are addressed to important purposes for energy policy, as for instance: (a) to provide political authorities with the most effective energy efficiency measures as to encourage retrofit processes through the allocation of financial incentives, (b) to offer a knowledge-base for developing energy refurbishment scenarios of residential building stocks and forecasting future energy resource demand. - Highlights: • Investigation of energy savings and cost effectiveness of the Italian housing stock refurbishments. • Application of the building typology approach of the IEE-TABULA project. • Knowledge-base for bottom-up models of the building stock energy performance. • Supporting the political authorities to promote effective refurbishment measures.

  3. Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan Office

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, Francis; Enscoe, Abby

    2010-04-19

    An installation in a Federal building tested the effectiveness of a highly-controlled, workstation-specific lighting retrofit. The study took place in an open-office area with 86 cubicles and low levels of daylight. Each cubicle was illuminated by a direct/indirectpendant luminaire with three 32 watt lamps, two dimmable DALI ballasts, and an occupancy sensor. A centralized control system programmed all three lamps to turn on and off according to occupancy on a workstation-by-workstation basis. Field measurements taken over the course of several monthsdemonstrated 40% lighting energy savings compared to a baseline without advanced controls that conforms to GSA's current retrofit standard. A photometric analysis found that the installation provided higher desktop light levels than the baseline, while an occupant survey found that occupants in general preferred the lighting system to thebaseline.Simple payback is fairly high; projects that can achieve lower installation costs and/or higher energy savings and those in which greenhouse gas reduction and occupant satisfaction are significant priorities provide the ideal setting for workstation-specific lighting retrofits.

  4. Energy and society. [Effects of energy development on natural and societal environments

    Energy Technology Data Exchange (ETDEWEB)

    Starr, C

    1976-04-01

    It is now clear that quality of life, material welfare, health, employment, and income are affected by energy availability and cost and there is no return to the cheap abundant energy of the past. This paper examines the feasibility of adjusting our energy systems so that we simultaneously decrease unemployment, costs, dependence on foreign resources, undesirable effluents and impacts on the biosphere. The major societal effects of energy systems developed by man can be related to four predominant technical sectors: first, the use of work animals; second, the direct conversion into mechanical work of inanimate stored solar energy (hydropower, wood, farm waste, and fossil fuels); third, the use of electricity as an energy form derived from these sources; and fourth, the use of nuclear energy as a primary source. Since the past and potential impacts of these developments are so many, only a few are explored here - chiefly those relationships of energy flow to the societal materialistic targets of health, security, social stability, upward mobility, and leisure. The traditional target of economic growth may be one of best composite means of achieving all of these materialistic goals, thus, industrial growth has been a prime objective. Other contributors to social development have been greater productivity in agriculture, improved transportation and communications, and shorter working hours. Two main topics discussed are: The Industrialization of Society and Food, Population, and Energy. (MCW)

  5. EDF decommissioning programme: A global commitment to safety, environment and cost efficiency of nuclear energy

    International Nuclear Information System (INIS)

    Grenouillet, J.-J.

    2002-01-01

    Nowadays, decommissioning of nuclear power plants has become a key issue for the nuclear industry in Europe. The phasing out of nuclear energy in Germany, Belgium and Sweden, as well as the early closure of nuclear units in applicant countries in the frame of EU enlargement, has largely contributed to consider decommissioning as the next challenge to face. The situation is slightly different in France: Nuclear energy is still considered as a safe, cost-effective and environment friendly energy source and EDF is still working on the development of a new generation of reactors to replace the existing ones. Nevertheless, to achieve this objective, it will be necessary to get the support of political decision-makers and the acceptance of public opinion. (author)

  6. Nonrenewable energy cost of corn-ethanol in China

    International Nuclear Information System (INIS)

    Yang, Q.; Chen, G.Q.

    2012-01-01

    Nonrenewable energy cost is accounted for the believed renewable biofuel of corn-ethanol in China. By a process-based energy analysis, nonrenewable energy cost in the corn-ethanol production process incorporating agricultural crop production, industrial conversion and wastewater treatment is conservatively estimated as 1.70 times that of the ethanol energy produced, corresponding to a negative energy return in contrast to the positive ones previously reported. Nonrenewable energy cost associated with wastewater treatment usually ignored in previous researches is shown important in the energy balance. Denoting the heavy nonrenewability of the produced corn-ethanol, the calculated nonrenewable energy cost would rise to 3.64 folds when part of the nonrenewable energy cost associated with water consumption, transportation and environmental remediation is included. Due to the coal dominated nonrenewable energy structure in China, corn-ethanol processes in China are mostly a conversion of coal to ethanol. Validations and discussions are also presented to reveal policy implications against corn based ethanol as an alternative energy in long term energy security planning. - Highlights: ► Nonrenewable energy (NE) cost is conservatively accounted for corn-ethanol in China. ► Corn cultivation, ethanol conversion and wastewater treatment are included. ► NE cost is estimated as 1.70 times that of the ethanol energy produced. ► Corn-ethanol processes in China are mostly a conversion of coal to ethanol.

  7. Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    There is mounting evidence that zero energy can, in many cases, be achieved within typical construction budgets. To ensure that the momentum behind zero energy buildings and other low-energy buildings will continue to grow, this guide assembles recommendations for replicating specific successes of early adopters who have met their energy goals while controlling costs. Contents include: discussion of recommended cost control strategies, which are grouped by project phase (acquisition and delivery, design, and construction) and accompanied by industry examples; recommendations for balancing key decision-making factors; and quick reference tables that can help teams apply strategies to specific projects.

  8. Effectiveness of policy measures in transforming the energy system

    International Nuclear Information System (INIS)

    Lund, P.D.

    2007-01-01

    The effectiveness of public policy measures in creating energy impacts were investigated through 20 policy cases on renewable energy and efficient energy use. The policies were grouped into subsidy-type and catalyzing measures based on the use of the public financial resources. The policy cost of subsidies ranged from 1 Euro/MWh up to over 100 Euro/MWh, the feed-in tariffs being clearly the most expensive choice. The public measures that strive for catalyzing market breakthroughs lie in the range 0.1-1 Euro/MWh, but some business driven and procurement type measures could come down to even 0.01 Euro/MWh. The policy costs observed could decrease by 25-60% if accounting for lagging energy impacts. The better policy efficiency of catalytic measures is most likely due to a stronger market and business sensitiveness, understanding of market needs, and focusing more on the end-use sector with active stakeholder involvement. The magnitude of the energy impacts were in average larger from the subsidy instruments but a few end-use technologies linked to catalytic measures reached even higher effects due to the strong market penetration achieved. (author)

  9. Effectiveness of policy measures in transforming the energy system

    International Nuclear Information System (INIS)

    Lund, P.D.

    2007-01-01

    The effectiveness of public policy measures in creating energy impacts were investigated through 20 policy cases on renewable energy and efficient energy use. The policies were grouped into subsidy-type and catalyzing measures based on the use of the public financial resources. The policy cost of subsidies ranged from 1 Euro /MWh up to over 100 Euro /MWh, the feed-in tariffs being clearly the most expensive choice. The public measures that strive for catalyzing market breakthroughs lie in the range 0.1-1 Euro /MWh, but some business driven and procurement type measures could come down to even 0.01 Euro /MWh. The policy costs observed could decrease by 25-60% if accounting for lagging energy impacts. The better policy efficiency of catalytic measures is most likely due to a stronger market and business sensitiveness, understanding of market needs, and focusing more on the end-use sector with active stakeholder involvement. The magnitude of the energy impacts were in average larger from the subsidy instruments but a few end-use technologies linked to catalytic measures reached even higher effects due to the strong market penetration achieved

  10. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible

    International Nuclear Information System (INIS)

    Connolly, D.; Leahy, M.; Lund, H.; Mathiesen, B.V.

    2010-01-01

    In this study a model of the Irish energy-system was developed using EnergyPLAN based on the year 2007, which was then used for three investigations. The first compares the model results with actual values from 2007 to validate its accuracy. The second illustrates the exposure of the existing Irish energy-system to future energy costs by considering future fuel prices, CO 2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy-system from a technical and economic perspective, as wind is the most promising fluctuating renewable resource available in Ireland. It is concluded that the reference model simulates the Irish energy-system accurately, the annual fuel costs for Ireland's energy could increase by approximately 58% from 2007 to 2020 if a business-as-usual scenario is followed, and the optimum wind penetration for the existing Irish energy-system is approximately 30% from both a technical and economic perspective based on 2020 energy prices. Future studies will use the model developed in this study to show that higher wind penetrations can be achieved if the existing energy-system is modified correctly. Finally, these results are not only applicable to Ireland, but also represent the issues facing many other countries. (author)

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  12. Energy cost of seed drying

    Directory of Open Access Journals (Sweden)

    Weerachet Jittanit

    2017-11-01

    Full Text Available In this work, the energy costs of drying corn, rice and wheat seeds between 3 drying options were compared. They consisted of 1 two-stage drying by using fluidised bed dryer (FBD in the 1st stage and in-store dryer (ISD in the 2nd stage, 2 single-stage drying by fixed bed dryer (FXD and 3 two-stage drying by using FXD in the 1st  stage and ISD in the 2nd  stage. The drying conditions selected for comparison were proved to be safe for seed viability by the previous studies. The results showed that the drying options 2 and 3 consumed less energy than option 1. However, the benefits from lower energy cost must be weighed against some advantages of using FBD. Furthermore, it appeared that running the burners of FXD and ISD for warming up the ambient air during humid weather condition could shorten drying time significantly with a little higher energy cost.

  13. Agricultural Business Strategy: Theory and Methods for Cost-Effectiveness Investment Analysis in Agro-Energy Production

    Directory of Open Access Journals (Sweden)

    Sonia Prestamburgo

    2016-04-01

    Full Text Available Environmental change is currently considered a high-priority matter, both in the scientific community at large and at the institutional level of national and international governing bodies. Actually, an all-out effort seeks to investigate and advance viable solutions to deal with the global emergencies regarding to anthropic climate change; increasing demands for renewable sources of energy, technological innovation and energy-saving systems, ecological and environmental sustainability of natural resources and land. At the core of this worldwide endeavour an increasingly significant role seems destined to the agricultural sector and to agro-energy production systems for the potential benefits in terms of production costs. In fact, the interest in unconventional and low-impact energy sources mandates thorough investigation not only into the advantages, in terms of availability and affordability, but also into the impact on the environment and the quality of the landscape, as well as the aspects regarding the overall measures that need be adopted so as to enable the supply on the market. Given this scenario, the wide-ranging agro-energy question would be incomplete without extensive economic sustainability analyses, serving as operational decision-support tools to measure cost-effectiveness regarding investments in agro-energy production and its use.

  14. Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues

    International Nuclear Information System (INIS)

    Llano-Paz, Fernando de; Martínez Fernandez, Paulino; Soares, Isabel

    2016-01-01

    The different energy sources, their costs and impacts on the environment determine the electricity production process. Energy planning must solve the existence of uncertainty through the diversification of power generation technologies portfolio. The European Union energy and environmental policy has been mainly based on promoting the security of supply, efficiency, energy savings and the promotion of Renewable Energy Sources. The recent European Commission communication “Towards an European Energy Union: A secure, sustainable, competitive and affordable energy for every European” establishes the path for the European future. This study deals with the analysis of the latest EU “Energy Union” goals through the application of Markowitz portfolio theory considering technological real assets. The EU targets are assessed under a double perspective: economic and environmental. The model concludes that implementing a high share of Renewable Energy target in the design of European Policies is not relevant: the maximization of Renewable Energy share could be achieved considering a sole Low Emissions of carbon dioxide policy. Additionally it is confirmed the need of Nuclear energy in 2030: a zero nuclear energy share in 2030 European Mix is not possible, unless the technological limits participation for Renewable Energy Sources were increased. - Highlights: • Implementing a high RES share target in European Policies could not be relevant. • Maximizing RES share could be achieved considering a sole Low Emissions policy. • The EU 2030 Nuclear energy 50% shutting down could be feasible. • Minimizing risk portfolio presents high diversification and energy security levels.

  15. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Laura [Lockheed Martin, Manassas, VA (United States); Smith, Paul [John Halkyard and Associates: Glosten Associates, Houston, TX (United States); Rizea, Steven [Makai Ocean Engineering, Waimanalo, HI (United States); Van Ryzin, Joe [Makai Ocean Engineering, Waimanalo, HI (United States); Morgan, Charles [Planning Solutions, Inc., Vancouver, WA (United States); Noland, Gary [G. Noland and Associates, Inc., Pleasanton, CA (United States); Pavlosky, Rick [Lockheed Martin, Manassas, VA (United States); Thomas, Michael [Lockheed Martin, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates: Glosten Associates, Houston, TX (United States)

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  16. U.S. Department of Energy Solar Decathlon: Challenging Students to Build Energy Efficient, Cost-Effective, and Attractive Solar-Powered Houses

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.

    2012-01-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. The paper discusses the solutions developed for the event. We believe that the solutions implemented for Solar Decathlon 2011 represent current trends and that by analyzing, critiquing, and exposing the solutions pursued, the industry can become better suited to address challenges of the future. Constructing a solar community using high-efficiency design and unique materials while remaining code compliant, safe, and effective results in solutions that are market relevant, important, and interesting to the industry as a whole.

  17. An energy and cost analysis of residential heat pumps in northern climates

    Science.gov (United States)

    Martin, J. K.; Oneal, D. L.

    1980-04-01

    Lack of natural gas and high oil prices, combined with the large energy costs of electric resistance heat have forced renewed attention to the heat pump in colder climates. The diversity in heating energy use and cost effectiveness of forty-one currently retailed heat pumps in three northern cities, Boston, Denver, and Minneapolis, were examined. Heat pump heating energy use and annualized life cycle costs were compared with other forms of space heating equipment in those same cities.

  18. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  19. Effect of increasing energy cost on arm coordination in elite sprint swimmers.

    Science.gov (United States)

    Komar, J; Leprêtre, P M; Alberty, M; Vantorre, J; Fernandes, R J; Hellard, P; Chollet, D; Seifert, L

    2012-06-01

    The purpose of this study was to analyze the changes in stroke parameters, motor organization and swimming efficiency with increasing energy cost in aquatic locomotion. Seven elite sprint swimmers performed a 6×300-m incremental swimming test. Stroke parameters (speed, stroke rate and stroke length), motor organization (arm stroke phases and arm coordination index), swimming efficiency (swimming speed squared and hand speed squared) and stroke index were calculated from aerial and underwater side-view cameras. The energy cost of locomotion was assessed by measuring oxygen consumption and blood lactate. Results showed that the increase in energy cost of locomotion was correlated to an increase in the index of coordination and stroke rate, and a decrease in stroke length (pstroke index did not change significantly with the speed increments (pstroke rate were observed, along with a decrease in stroke length, stroke index and hand speed squared with each increment, revealing an adaptation to the fatigue within the 300m. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades Versus Cost-Optimized Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yee, S. [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Milby, M. [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Baker, J. [Partnership for Advanced Residential Retrofit, Chicago, IL (United States)

    2014-06-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR® (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for 15 Chicagoland single family housing archetypes. In the present study, 800 IHP homes are first matched to one of these 15 housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost effectiveness.

  1. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  2. Energy Choices. The energy markets and the energy policy choices

    International Nuclear Information System (INIS)

    Bergman, Lars; Lindh, Hampus

    2009-03-01

    Well-functioning energy markets are in society's interests whatever the circumstances. Furthermore, supply, demand and the competitive situation in the various energy markets influence the effect of energy and climate change policy measures. There are therefore good reasons to examine and evaluate how the energy markets operate. In this report we specifically focus on the energy markets. The analysis has been carried out against the background of the overall objectives for energy and climate change policy in Sweden and the EU. However, for these goals to be attainable a number of concrete energy and climate change policy decisions will have to be taken in the coming years. Some of these are key issues that will prove decisive for the formulation of energy and climate change policy, and we therefore also discuss these. The first of these concerns which policy instruments should be chosen to influence the energy markets. The second key issue concerns the power companies' prospects for using nuclear power even in the future. We will also focus on the extent to which energy and climate change policy chooses to prioritise measures which mean that climate change policy objectives can be achieved at the lowest possible cost. We can briefly summarize our results in the following conclusions: The cost of achieving the climate change policy objectives set by Sweden and the EU will probably be very high. It is therefore important that the choices made ensure that climate change policy objectives are achieved at the lowest possible cost. Focusing on keeping costs to a minimum may in actual fact be the very thing that makes it at all possible to achieve these goals. The best solution then is as far as possible to base energy and climate change policy on so-called market-based instruments, such as emission charges and tradable emission permits. Emissions of carbon dioxide are easy to measure and the siting of emission sources is irrelevant in terms of the effect of the emissions

  3. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis.

    Science.gov (United States)

    Lo, Nathan C; Gurarie, David; Yoon, Nara; Coulibaly, Jean T; Bendavid, Eran; Andrews, Jason R; King, Charles H

    2018-01-23

    Schistosomiasis is a parasitic disease that affects over 240 million people globally. To improve population-level disease control, there is growing interest in adding chemical-based snail control interventions to interrupt the lifecycle of Schistosoma in its snail host to reduce parasite transmission. However, this approach is not widely implemented, and given environmental concerns, the optimal conditions for when snail control is appropriate are unclear. We assessed the potential impact and cost-effectiveness of various snail control strategies. We extended previously published dynamic, age-structured transmission and cost-effectiveness models to simulate mass drug administration (MDA) and focal snail control interventions against Schistosoma haematobium across a range of low-prevalence (5-20%) and high-prevalence (25-50%) rural Kenyan communities. We simulated strategies over a 10-year period of MDA targeting school children or entire communities, snail control, and combined strategies. We measured incremental cost-effectiveness in 2016 US dollars per disability-adjusted life year and defined a strategy as optimally cost-effective when maximizing health gains (averted disability-adjusted life years) with an incremental cost-effectiveness below a Kenya-specific economic threshold. In both low- and high-prevalence settings, community-wide MDA with additional snail control reduced total disability by an additional 40% compared with school-based MDA alone. The optimally cost-effective scenario included the addition of snail control to MDA in over 95% of simulations. These results support inclusion of snail control in global guidelines and national schistosomiasis control strategies for optimal disease control, especially in settings with high prevalence, "hot spots" of transmission, and noncompliance to MDA. Copyright © 2018 the Author(s). Published by PNAS.

  4. Comparison of cost effectiveness of risk reduction among different energy systems: French case studies. Final report of the co-ordinated research programme

    International Nuclear Information System (INIS)

    Lochard, Jacques

    1989-08-01

    This report presents the three French case studies performed in the framework of the coordinated research program on 'Comparison of Cost-effectiveness of Risk Reduction among different Energy Systems': Cost effectiveness of robotics and remote tooling for occupational risk reduction at a nuclear fuel fabrication facility; Cost-effectiveness of protection actions to reduce occupational exposures in underground uranium mines; Cost-effectiveness of safety measures to reduce public risk associated with the transportation of UF 6 by truck and trains

  5. Energy and GHG abatement cost curves

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Rafael [BHP Billiton Base Metals (Australia)

    2010-07-01

    Global warming due to various reasons but especially to emission of green house gases (GHGs) has become a cause for serious concern. This paper discusses the steps taken by BHP Billiton to reduce energy consumption and GHG emissions using cost curves. According to forecasts, global warming is expected to impact Chile badly and the rise in temperature could be between 1 and more than 5 degrees Celsius. Mining in Chile consumes a lot of energy, particularly electricity. Total energy and electricity consumption in 2007 was 13 and 36 % respectively. BHP base metals developed a set of abatement cost curves for energy and GHG in Chile and these are shown in figures. The methodology for the curves consisted of consultant visits to each mine operation. The study also includes mass energy balance and feasibility maps. The paper concludes that it is important to evaluate the potential for reducing emissions and energy and their associated costs.

  6. Achieving stringent climate targets. An analysis of the role of transport and variable renewable energies using energy-economy-climate models

    Energy Technology Data Exchange (ETDEWEB)

    Pietzcker, Robert Carl

    2014-07-01

    technologies photovoltaics (PV) and concentrating solar power (CSP) in REMIND confirms the dominant role of these variable renewable energies for the decarbonization of the power sector. Recent cost reductions have brought PV to cost-competitiveness in regions with high midday electricity demand and high solar irradiance. The representation of system integration costs in REMIND is found to have significant impact on the competition between PV and CSP in the model: the low integration requirements of CSP equipped with thermal storage and hydrogen co-firing make CSP competitive at high shares of variable renewable energies, which leads to substantial deployment of both PV and CSP in low stabilization scenarios. A cross-model study of transport sector decarbonization confirms the earlier finding that the transport sector is not very reactive to intermediate carbon price levels: Until 2050, transport decarbonization lags 10-30 years behind the decarbonization of other sectors, and liquid fuels dominate the transport sector. In the long term, however, transportation does not seem to be an insurmountable barrier to stringent climate targets: As the price signals on CO{sub 2} increase further, transport emissions can be reduced substantially - if either hydrogen fuel cells or electromobility open a route to low-carbon energy carriers, or second generation biofuels (possibly in combination with CCS) allow the use of liquid-based transport modes with low emissions. The last study takes up the fundamental question of this thesis and analyses the trade-off between the stringency of a climate target and the resulting techno-economic requirements and costs. We find that transforming the global energy-economy system to keep a two-thirds likelihood of limiting global warming to below 2 C is achievable at moderate economic implications. This result is contingent on the near-term implementation of stringent global climate policies and full availability of several technologies that are still in

  7. Offshore Wind Energy Cost Modeling Installation and Decommissioning

    CERN Document Server

    Kaiser, Mark J

    2012-01-01

    Offshore wind energy is one of the most promising and fastest growing alternative energy sources in the world. Offshore Wind Energy Cost Modeling provides a methodological framework to assess installation and decommissioning costs, and using examples from the European experience, provides a broad review of existing processes and systems used in the offshore wind industry. Offshore Wind Energy Cost Modeling provides a step-by-step guide to modeling costs over four sections. These sections cover: ·Background and introductory material, ·Installation processes and vessel requirements, ·Installation cost estimation, and ·Decommissioning methods and cost estimation.  This self-contained and detailed treatment of the key principles in offshore wind development is supported throughout by visual aids and data tables. Offshore Wind Energy Cost Modeling is a key resource for anyone interested in the offshore wind industry, particularly those interested in the technical and economic aspects of installation and decom...

  8. On the Costs of Nuclear Energy

    International Nuclear Information System (INIS)

    Cintra do Prado, L.

    1966-01-01

    In considering the use of nuclear energy as a primary source of electricity the important thing is not that it should be ''cheap'' in absolute terms but that it should be competitive, that is to say that the cost of nuclear electricity should be produced at a cost comparable with or less than that of electricity generated by conventional sources - hydroelectric plants or thermo-plants based on coal, natural gas or oil. If energy is vital to a country's development one must be prepared to pay what it is worth; the problem is to obtain the energy at the lowest possible cost

  9. On cost-effective communication network designing

    Science.gov (United States)

    Zhang, Guo-Qiang

    2010-02-01

    How to efficiently design a communication network is a paramount task for network designing and engineering. It is, however, not a single objective optimization process as perceived by most previous researches, i.e., to maximize its transmission capacity, but a multi-objective optimization process, with lowering its cost to be another important objective. These two objectives are often contradictive in that optimizing one objective may deteriorate the other. After a deep investigation of the impact that network topology, node capability scheme and routing algorithm as well as their interplays have on the two objectives, this letter presents a systematic approach to achieve a cost-effective design by carefully choosing the three designing aspects. Only when routing algorithm and node capability scheme are elegantly chosen can BA-like scale-free networks have the potential of achieving good tradeoff between the two objectives. Random networks, on the other hand, have the built-in character for a cost-effective design, especially when other aspects cannot be determined beforehand.

  10. Comparison of cost effectiveness of risk reduction among different energy systems: French case studies. Final report of the co-ordinated research programme

    Energy Technology Data Exchange (ETDEWEB)

    Lochard, Jacques [ed.

    1989-08-01

    This report presents the three French case studies performed in the framework of the coordinated research program on 'Comparison of Cost-effectiveness of Risk Reduction among different Energy Systems': Cost effectiveness of robotics and remote tooling for occupational risk reduction at a nuclear fuel fabrication facility; Cost-effectiveness of protection actions to reduce occupational exposures in underground uranium mines; Cost-effectiveness of safety measures to reduce public risk associated with the transportation of UF{sub 6} by truck and trains.

  11. Energy Cost Minimization in Heterogeneous Cellular Networks with Hybrid Energy Supplies

    Directory of Open Access Journals (Sweden)

    Bang Wang

    2016-01-01

    Full Text Available The ever increasing data demand has led to the significant increase of energy consumption in cellular mobile networks. Recent advancements in heterogeneous cellular networks and green energy supplied base stations provide promising solutions for cellular communications industry. In this article, we first review the motivations and challenges as well as approaches to address the energy cost minimization problem for such green heterogeneous networks. Owing to the diversities of mobile traffic and renewable energy, the energy cost minimization problem involves both temporal and spatial optimization of resource allocation. We next present a new solution to illustrate how to combine the optimization of the temporal green energy allocation and spatial mobile traffic distribution. The whole optimization problem is decomposed into four subproblems, and correspondingly our proposed solution is divided into four parts: energy consumption estimation, green energy allocation, user association, and green energy reallocation. Simulation results demonstrate that our proposed algorithm can significantly reduce the total energy cost.

  12. A Cost-Effective Electric Vehicle Charging Method Designed For Residential Homes with Renewable Energy

    Science.gov (United States)

    Lie, T. T.; Liang, Xiuli; Haque, M. H.

    2015-03-01

    Most of the electrical infrastructure in use around the world today is decades old, and may be illsuited to widespread proliferation of personal Electric Vehicles (EVs) whose charging requirements will place increasing strain on grid demand. In order to reduce the pressure on the grid and taking benefits of off peak charging, this paper presents a smart and cost effective EV charging methodology for residential homes equipped with renewable energy resources such as Photovoltaic (PV) panels and battery. The proposed method ensures slower battery degradation and prevents overcharging. The performance of the proposed algorithm is verified by conducting simulation studies utilizing running data of Nissan Altra. From the simulation study results, the algorithm is shown to be effective and feasible which minimizes not only the charging cost but also can shift the charging time from peak value to off-peak time.

  13. The future cost of electrical energy storage based on experience rates

    Science.gov (United States)

    Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I.

    2017-08-01

    Electrical energy storage could play a pivotal role in future low-carbon electricity systems, balancing inflexible or intermittent supply with demand. Cost projections are important for understanding this role, but data are scarce and uncertain. Here, we construct experience curves to project future prices for 11 electrical energy storage technologies. We find that, regardless of technology, capital costs are on a trajectory towards US$340 ± 60 kWh-1 for installed stationary systems and US$175 ± 25 kWh-1 for battery packs once 1 TWh of capacity is installed for each technology. Bottom-up assessment of material and production costs indicates this price range is not infeasible. Cumulative investments of US$175-510 billion would be needed for any technology to reach 1 TWh deployment, which could be achieved by 2027-2040 based on market growth projections. Finally, we explore how the derived rates of future cost reduction influence when storage becomes economically competitive in transport and residential applications. Thus, our experience-curve data set removes a barrier for further study by industry, policymakers and academics.

  14. Quality, energy requirement and costs of drying tarragon (Artemisia dracunculus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, A.A.A.

    2005-11-07

    Tarragon (Artemisia dracunculus L.) is a favorite herbal and medicinal plant. Drying is necessary to achieve longer shelf life with high quality, preserving the original flavor. Essential oil content and color are the most important parameters that define the quality of herbal and medicinal plants. Hot air batch drying is the most common drying method for these plants but affects the essential oil content and color. The drying conditions affect essential oil content and color as well as the energy consumption and costs. Process engineers and farmers need to know how they have to dry to obtain the best quality. The objective of this work is to investigate the conditions for optimal drying in terms of quality, energy consumption and costs. Adsorption and desorption experiments were done to find the equilibrium moisture content and water exchange between the material and surrounding air during drying and storage at temperatures of 25C to 70C and relative humidities of 5% to 90%. Drying of tarragon leaves and chopped plants was investigated separately and the best model was selected from the drying equations in literature. The effect of drying temperature and relative humidity on the essential oil content and color change was studied. Experiments were done at temperatures of 40C to 90C and the optimal conditions were. Long-term effects of the drying conditions were also investigated during the storage time. Material dried at 45, 60 and 90C was stored and the essential oil content and color of the material was measured after 15, 30, 60 and 120 days of storage. Drying at 45C was found as the best condition based on the changes of essential oil and color during drying and storage. Optimization of drying of tarragon was studied based on the results of the sorption isotherms, drying equations and the changes of essential oil content and color during drying and storage. Models were made for the drying process, energy consumption and cost calculation. The current conditions

  15. The effects of utility cost reduction on residential energy consumption in Hungary – a decomposition analysis

    Directory of Open Access Journals (Sweden)

    Tekla Sebestyén Szép

    2017-01-01

    Full Text Available The residential energy consumption is influenced by a lot of factors. Understanding and calculating these factors is essential to making conscious energy policy decisions and feedbacks. Since 2013 the energy prices for households have been controlled by the government in Hungary and as a result of the utility cost reduction program a sharp decline can be observed in residential electricity, district heating and natural gas prices. This paper applies the LMDI (~Logarithmic Mean Division Index method to decompose the absolute change of the residential energy consumption during the period of 2010-2015. We calculate the price, the intensive structure (it means the change of energy expenditure share on energy sources, the extensive structure (it is in connection with the change of energy expenditure share in total expenditure, expenditure (it is the change of per capita total expenditure and population effect. All of that shows the impact of the specific factor on the residential energy consumption by income deciles. Our results have verified the preliminary expectations: the decreasing energy prices for households have a positive impact on energy use and it has been strengthened by the expenditure effect as well. However, the intensive structure, the extensive structure and the population effect have largely offset it.

  16. Energy and life-cycle cost analysis of a six-story office building

    Science.gov (United States)

    Turiel, I.

    1981-10-01

    An energy analysis computer program, DOE-2, was used to compute annual energy use for a typical office building as originally designed and with several energy conserving design modifications. The largest energy use reductions were obtained with the incorporation of daylighting techniques, the use of double pane windows, night temperature setback, and the reduction of artificial lighting levels. A life-cycle cost model was developed to assess the cost-effectiveness of the design modifications discussed. The model incorporates such features as inclusion of taxes, depreciation, and financing of conservation investments. The energy conserving strategies are ranked according to economic criteria such as net present benefit, discounted payback period, and benefit to cost ratio.

  17. 2015 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Mone, Christopher; Hand, Maureen; Bolinger, Mark; Rand, Joseph; Heimiller, Donna; Ho, Jonathan

    2017-04-05

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2015. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections, goals, and improvement opportunities.

  18. 2014 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Mone, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States); Settle, Edward [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2014. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections, goals, and improvement opportunities.

  19. 76 FR 64931 - Building Energy Codes Cost Analysis

    Science.gov (United States)

    2011-10-19

    ...-0046] Building Energy Codes Cost Analysis AGENCY: Office of Energy Efficiency and Renewable Energy... reopening of the time period for submitting comments on the request for information on Building Energy Codes... the request for information on Building Energy Code Cost Analysis and provide docket number EERE-2011...

  20. Achieving Energy Efficiency in Accordance with Bioclimatic Architecture Principles

    Science.gov (United States)

    Bajcinovci, Bujar; Jerliu, Florina

    2016-12-01

    By using our natural resources, and through inefficient use of energy, we produce much waste that can be recycled as a useful resource, which further contributes to climate change. This study aims to address energy effective bioclimatic architecture principles, by which we can achieve a potential energy savings, estimated at thirty-three per cent, mainly through environmentally affordable reconstruction, resulting in low negative impact on the environment. The study presented in this paper investigated the Ulpiana neighbourhood of Prishtina City, focusing on urban design challenges, energy efficiency and air pollution issues. The research methods consist of empirical observations through the urban spatial area using a comparative method, in order to receive clearer data and information research is conducted within Ulpiana's urban blocks, shapes of architectural structures, with the objective focusing on bioclimatic features in terms of the morphology and microclimate of Ulpiana. Energy supply plays a key role in the economic development of any country, hence, bioclimatic design principles for sustainable architecture and energy efficiency, present an evolutive integrated strategy for achieving efficiency and healthier conditions for Kosovar communities. Conceptual findings indicate that with the integrated design strategy: energy efficiency, and passive bioclimatic principles will result in a bond of complex interrelation between nature, architecture, and community. The aim of this study is to promote structured organized actions to be taken in Prishtina, and Kosovo, which will result in improved energy efficiency in all sectors, and particularly in the residential housing sector.

  1. Achieving Energy Efficiency in Accordance with Bioclimatic Architecture Principles

    Directory of Open Access Journals (Sweden)

    Bajcinovci Bujar

    2016-12-01

    Full Text Available By using our natural resources, and through inefficient use of energy, we produce much waste that can be recycled as a useful resource, which further contributes to climate change. This study aims to address energy effective bioclimatic architecture principles, by which we can achieve a potential energy savings, estimated at thirty-three per cent, mainly through environmentally affordable reconstruction, resulting in low negative impact on the environment. The study presented in this paper investigated the Ulpiana neighbourhood of Prishtina City, focusing on urban design challenges, energy efficiency and air pollution issues. The research methods consist of empirical observations through the urban spatial area using a comparative method, in order to receive clearer data and information research is conducted within Ulpiana’s urban blocks, shapes of architectural structures, with the objective focusing on bioclimatic features in terms of the morphology and microclimate of Ulpiana. Energy supply plays a key role in the economic development of any country, hence, bioclimatic design principles for sustainable architecture and energy efficiency, present an evolutive integrated strategy for achieving efficiency and healthier conditions for Kosovar communities. Conceptual findings indicate that with the integrated design strategy: energy efficiency, and passive bioclimatic principles will result in a bond of complex interrelation between nature, architecture, and community. The aim of this study is to promote structured organized actions to be taken in Prishtina, and Kosovo, which will result in improved energy efficiency in all sectors, and particularly in the residential housing sector.

  2. The Cost-Effectiveness of Raising Teacher Quality

    Science.gov (United States)

    Yeh, Stuart S.

    2009-01-01

    Econometric studies suggest that student achievement may be improved if high-performing teachers are substituted for low-performing teachers. Drawing upon a recent study linking teacher performance on licensure exams with gains in student achievement, an analysis was conducted to determine the cost-effectiveness of requiring teacher applicants to…

  3. An IMS-Based Middleware Solution for Energy-Efficient and Cost-Effective Mobile Multimedia Services

    Science.gov (United States)

    Bellavista, Paolo; Corradi, Antonio; Foschini, Luca

    Mobile multimedia services have recently become of extreme industrial relevance due to the advances in both wireless client devices and multimedia communications. That has motivated important standardization efforts, such as the IP Multimedia Subsystem (IMS) to support session control, mobility, and interoperability in all-IP next generation networks. Notwithstanding the central role of IMS in novel mobile multimedia, the potential of IMS-based service composition for the development of new classes of ready-to-use, energy-efficient, and cost-effective services is still widely unexplored. The paper proposes an original solution for the dynamic and standard-compliant redirection of incoming voice calls towards WiFi-equipped smart phones. The primary design guideline is to reduce energy consumption and service costs for the final user by automatically switching from the 3G to the WiFi infrastructure whenever possible. The proposal is fully compliant with the IMS standard and exploits the recently released IMS presence service to update device location and current communication opportunities. The reported experimental results point out that our solution, in a simple way and with full compliance with state-of-the-art industrially-accepted standards, can significantly increase battery lifetime without negative effects on call initiation delay.

  4. Near Zero Energy House (NZEH) Design Optimization to Improve Life Cycle Cost Performance Using Genetic Algorithm

    Science.gov (United States)

    Latief, Y.; Berawi, M. A.; Koesalamwardi, A. B.; Supriadi, L. S. R.

    2018-03-01

    Near Zero Energy House (NZEH) is a housing building that provides energy efficiency by using renewable energy technologies and passive house design. Currently, the costs for NZEH are quite expensive due to the high costs of the equipment and materials for solar panel, insulation, fenestration and other renewable energy technology. Therefore, a study to obtain the optimum design of a NZEH is necessary. The aim of the optimum design is achieving an economical life cycle cost performance of the NZEH. One of the optimization methods that could be utilized is Genetic Algorithm. It provides the method to obtain the optimum design based on the combinations of NZEH variable designs. This paper discusses the study to identify the optimum design of a NZEH that provides an optimum life cycle cost performance using Genetic Algorithm. In this study, an experiment through extensive design simulations of a one-level house model was conducted. As a result, the study provide the optimum design from combinations of NZEH variable designs, which are building orientation, window to wall ratio, and glazing types that would maximize the energy generated by photovoltaic panel. Hence, the design would support an optimum life cycle cost performance of the house.

  5. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades Versus Cost-Optimized Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yee, S.; Milby, M.; Baker, J.

    2014-06-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR(R) (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  6. Energy Prices and Internal Costs in Croatian Energy System Restructuring

    International Nuclear Information System (INIS)

    Potocnik, V. , Magdic, M.

    1995-01-01

    After social and political changes in 1990, energy prices in Croatia have been getting closer to the West European averages, faster than in the most European countries in transition. The energy prices for industry are almost at the West European level, while the energy prices of electricity and natural gas for households and those of the gasoline are well behind. If the population purchasing power parity (PPP) is taken into account, these relations change. While the internalization of external energy costs is under way in the developed world, it has not practically started yet in Croatia. The Croatian energy system restructuring shall require gradual adjustment of energy prices, together with multistage internalization of external energy costs. (author). 6 refs., 3 tabs., 2 figs

  7. Enabling optimal energy options under the Clean Development Mechanism

    International Nuclear Information System (INIS)

    Gilau, Asmerom M.; Van Buskirk, Robert; Small, Mitchell J.

    2007-01-01

    This paper addresses the cost effectiveness of renewable energy technologies in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism (CDM). According to the results of our optimal energy option's analysis, at project scale, compared with a diesel-only energy option, photovoltaic (PV)-diesel (PVDB), wind-diesel (WDB) and PV-wind-diesel (PVWDB) hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy, including 100% renewables, have the lowest net present cost and they are already cost effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries, among others. Thus, in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market-oriented approach to investigating how to facilitate renewable energy projects through barrier removal. Thus, we recommend that further research should focus on how to efficiently remove renewable energy implementation barriers as a means to improve developing countries' participation in meaningful emission reduction while at the same time meeting the needs of sustainable economic development

  8. Life cycle cost analysis of commercial buildings with energy efficient approach

    Directory of Open Access Journals (Sweden)

    Nilima N. Kale

    2016-09-01

    Full Text Available In any construction project, cost effectiveness plays a crucial role. The Life Cycle Cost (LCC analysis provides a method of determining entire cost of a structure over its expected life along with operational and maintenance cost. LCC can be improved by adopting alternative modern techniques without much alteration in the building. LCC effectiveness can be calculated at various stages of entire span of the building. Moreover this provides decision makers with the financial information necessary for maintaining, improving, and constructing facilities. Financial benefits associated with energy use can also be calculated using LCC analysis. In the present work, case study of two educational buildings has been considered. The LCC of these buildings has been calculated with existing condition and with proposed energy efficient approach (EEA using net present value method. A solar panel having minimum capacity as well as solar panel with desired capacity as per the requirements of the building has been suggested. The comparison of LCC of existing structure with proposed solar panel system shows that 4% of cost can be reduced in case of minimum capacity solar panel and 54% cost can be reduced for desired capacity solar panel system, along with other added advantages of solar energy.

  9. Long-term cost targets for nuclear energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2004-01-01

    In 2000 the International Atomic Energy Agency (IAEA) began the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) to help guide nuclear R and D strategies targeted on anticipated mid-century energy system needs. One part of INPRO seeks to develop cost targets for new designs to be competitive in mid-century markets. The starting point was the 40 scenarios of the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change. This paper summarizes four of the SRES scenarios, one from each of the four SRES scenario families. It discusses their implications for nuclear energy, including cost targets, and develops for each an 'aggressive nuclear' variant. The aggressive nuclear variants estimate the potential market for nuclear energy if, by improving faster than assumed by the SRES authors, nuclear energy can make inroads into vulnerable market shares projected for its competitors. In addition to projected demands for nuclear generated electricity, hydrogen and heat, the aggressive variants include prospective demand for nuclear desalination and use in upgrading fossil fuels. The paper then presents learning rates and implied cost targets consistent with the aggressive nuclear variants of the SRES scenarios. One provocative initial result is that many of the scenarios with substantial nuclear expansion do not seem to require big reductions in nuclear investment costs. One interpretation discussed at the end of the paper highlights the difference between cost reductions consistent with long-term energy system optimization based on perfect foresight, and cost reductions necessary to attract private investment in today's 'deregulating' and uncertain energy markets. (orig.)

  10. Costs comparison of electric energy in Brazil

    International Nuclear Information System (INIS)

    Goncalves, D.; Menegassi, J.

    1981-01-01

    A cost comparison study of various sources of electric energy generation was performed using uniform analysis criteria. The results indicate higher costs for coal, followed by nuclear and hidro. It was verified that presently, large hidro-power plants can only be located far from the load centers, with increasing costs of hidro-power energy in Brazil. These costs become higher than the nuclear plant if the hidro plant is located at distances exceeding 1000 Km. (Author) [pt

  11. An Evaluation of the Consumer Costs and Benefits of Energy Efficiency Resource Standards

    Science.gov (United States)

    Lessans, Mark D.

    Of the modern-day policies designed to encourage energy efficiency, one with a significant potential for impact is that of Energy Efficiency Resource Standards (EERS). EERS policies place the responsibility for meeting an efficiency target on the electric and gas utilities, typically setting requirements for annual reductions in electricity generation or gas distribution to customers as a percentage of sales. To meet these requirements, utilities typically implement demand-side management (DSM) programs, which encourage energy efficiency at the customer level through incentives and educational initiatives. In Maryland, a statewide EERS has provided for programs which save a significant amount of energy, but is ultimately falling short in meeting the targets established by the policy. This study evaluates residential DSM programs offered by Pepco, a utility in Maryland, for cost-effectiveness. However, unlike most literature on the topic, analysis focuses on the costs-benefit from the perspective of the consumer, and not the utility. The results of this study are encouraging: the majority of programs analyzed show that the cost of electricity saved, or levelized cost of saved energy (LCSE), is less expensive than the current retail cost of electricity cost in Maryland. A key goal of this study is to establish a metric for evaluating the consumer cost-effectiveness of participation in energy efficiency programs made available by EERS. In doing so, the benefits of these programs can be effectively marketed to customers, with the hope that participation will increase. By increasing consumer awareness and buy-in, the original goals set out through EERS can be realized and the policies can continue to receive support.

  12. Integrated energy optimisation for the cement industry: A case study perspective

    International Nuclear Information System (INIS)

    Swanepoel, Jan Adriaan; Mathews, Edward Henry; Vosloo, Jan; Liebenberg, Leon

    2014-01-01

    Highlights: • Integration of all energy-intensive components of a cement plant production process in a simulation package. • Uniquely, the simulation model incorporates constraints such as maintenance, production and dynamic energy costs. • The system was implemented on four different cement plants and a total energy cost saving of 7.1% was achieved. - Abstract: Energy costs play a major role in the cement production process. As much as 60% of total cost is allocated to energy and 18% to the consumption of electrical energy. Historically, energy cost savings were achieved by large infrastructure upgrades. These upgrades are often costly and lead to interruptions in production. In this paper the operation of all the energy intensive components of the cement production process are identified, modelled, integrated and optimised for minimum operational costs while meeting production targets. This integrated approach allows for simulation of the collective effect of individual production components. The system incorporates constraints such as maintenance, production and dynamic energy costs. No published research could be found where these constraints are incorporated into a single operational solution. The system was implemented on four cement plants and a total energy cost saving of 7% was achieved. This highlights the practical significance of an integrated approach to energy cost savings

  13. An Assessment Of The Effectiveness Of Collaborative Cost ...

    African Journals Online (AJOL)

    This paper presents the effects of Collaborative Cost Reduction Model (CCRM) as a control Approach to reduce the high cost implication that causes the slow pace of migration process from IPV4 to IPV6 in Nigeria. This study reveals that CCRM can be applied to achieve Cost Reduction in collocation efforts in ...

  14. Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul; Margolis, Robert

    2016-08-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generators under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.

  15. Cost-effective treatment of swine wastes through recovery of energy and nutrients.

    Science.gov (United States)

    Amini, Adib; Aponte-Morales, Veronica; Wang, Meng; Dilbeck, Merrill; Lahav, Ori; Zhang, Qiong; Cunningham, Jeffrey A; Ergas, Sarina J

    2017-11-01

    Wastes from concentrated animal feeding operations (CAFOs) are challenging to treat because they are high in organic matter and nutrients. Conventional swine waste treatment options in the U.S., such as uncovered anaerobic lagoons, result in poor effluent quality and greenhouse gas emissions, and implementation of advanced treatment introduces high costs. Therefore, the purpose of this paper is to evaluate the performance and life cycle costs of an alternative system for treating swine CAFO waste, which recovers valuable energy (as biogas) and nutrients (N, P, K + ) as saleable fertilizers. The system uses in-vessel anaerobic digestion (AD) for methane production and solids stabilization, followed by struvite precipitation and ion exchange (IX) onto natural zeolites (chabazite or clinoptilolite) for nutrient recovery. An alternative approach that integrated struvite recovery and IX into a single reactor, termed STRIEX, was also investigated. Pilot- and bench-scale reactor experiments were used to evaluate the performance of each stage in the treatment train. Data from these studies were integrated into a life cycle cost analysis (LCCA) to assess the cost-effectiveness of various process alternatives. Significant improvement in water quality, high methane production, and high nutrient recovery (generally over 90%) were observed with both the AD-struvite-IX process and the AD-STRIEX process. The LCCA showed that the STRIEX system can provide considerable financial savings compared to conventional systems. AD, however, incurs high capital costs compared to conventional anaerobic lagoons and may require larger scales to become financially attractive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. New Department of Energy policy and guidance for cost-effectiveness in nuclear materials control and accountability programs

    International Nuclear Information System (INIS)

    Van Ryn, G.L.; Zack, N.R.

    1994-01-01

    Recent Department of Energy (DOE) initiatives have given Departmental nuclear facilities the opportunity to take more credit for certain existing safeguards and security systems in determining operational program protection requirements. New policies and guidance are coupled with these initiatives to enhance systems performance in a cost effective and efficient manner as well as to reduce operational costs. The application of these methods and technologies support safety, the reduction of personnel radiation exposure, emergency planning, and inspections by international teams. This discussion will review guidance and policies that support advanced systems and programs to decrease lifetime operational costs without increasing risk

  17. South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2014-01-01

    South Korea is an important case study for understanding the future role of nuclear power in countries with on-going economic growth, and limited renewable energy resources. We compared quantitatively the sustainability of two ‘future-mapping’ exercises (the ‘Governmental’ scenario, which relies on fossil fuels, and the Greenpeace scenario, which emphasises renewable energy and excludes nuclear power). The comparison was based on a range of environmental and technological perspectives, and contrasted against two additional nuclear scenarios that instead envisage a dominant role for nuclear energy. Sustainability metrics included energy costs, external costs (greenhouse-gas emissions, air pollutants, land transformation, water consumption and discharge, and safety) and additional costs. The nuclear-centred scenarios yielded the lowest total cost per unit of final energy consumption by 2050 ($14.37 GJ −1 ), whereas the Greenpeace scenario has the highest ($25.36 GJ −1 ). We used probabilistic simulations based on multi-factor distributional sampling of impact and cost metrics to estimate the overlapping likelihoods among scenarios to understand the effect of parameter uncertainty on the integrated recommendations. Our simulation modelling implies that, despite inherent uncertainties, pursuing a large-scale expansion of nuclear-power capacity offers the most sustainable pathway for South Korea, and that adopting a nuclear-free pathway will be more costly and produce more greenhouse-gas emissions. - Highlights: • Nuclear power has a key role to play in mitigating greenhouse-gas emissions. • The Greenpeace scenario has higher total external cost than the nuclear scenarios. • The nuclear-centred scenarios offer the most sustainable option for South Korea. • The similar conclusions are likely to apply to other Asian countries

  18. Analysis of the energy and environmental effects of green car deployment by an integrating energy system model with a forecasting model

    International Nuclear Information System (INIS)

    Lee, Duk Hee; Park, Sang Yong; Hong, Jong Chul; Choi, Sang Jin; Kim, Jong Wook

    2013-01-01

    Highlights: ► A new methodology for improving energy system analysis models was proposed. ► The MARKAL model was integrated with the diffusion model. ► The new methodology was applied to green car technology. ► The ripple effect of green car technology on the energy system can be analyzed. -- Abstract: By 2020, Korea has set itself the challenging target of reducing nationwide greenhouse gas emissions by 30%, more than the BAU (Business as Usual) scenario, as the implementation goal required to achieve the new national development paradigm of green growth. To achieve such a target, it is necessary to diffuse innovative technologies with the capacity to drastically reduce greenhouse gas emissions. To that end, the ripple effect of diffusing innovative technologies on the energy and environment must be quantitatively analyzed using an energy system analysis model such as the MARKAL (Market Allocation) model. However, energy system analysis models based on an optimization methodology have certain limitations in that a technology with superior cost competitiveness dominates the whole market and non-cost factors cannot be considered. Therefore, this study proposes a new methodology for overcoming problems associated with the use of MARKAL models, by interfacing with a forecasting model based on the discrete-choice model. The new methodology was applied to green car technology to verify its usefulness and to study the ripple effects of green car technology on greenhouse gas reduction. The results of this study can be used as a reference when establishing a strategy for effectively reducing greenhouse gas emissions in the transportation sector, and could be of assistance to future studies using the energy system analysis model.

  19. Hybrid 21 MW wind-solar system to limit energy costs at an industrial plant

    International Nuclear Information System (INIS)

    López, C.

    2016-01-01

    Ereda has undertaken a project that aims to analyse the possibility of limiting the cost of the energy supply to a medium-sized industrial plant, with an installed capacity of over 26 MW, located in the south-west of Kazakhstan. The cost of electricity for its processes accounts for an important part of its production cost, achieving values in excess of 40%. The price of electricity in the country is expected to rise over the coming years. In addition, the plant is now required to reduce CO2 emissions from its industrial activity, which is why a further cost arising from the acquisition of emissions rights is expected in future. (Author)

  20. The “cost of not doing” energy planning: The Spanish energy bubble

    International Nuclear Information System (INIS)

    Gómez, Antonio; Dopazo, César; Fueyo, Norberto

    2016-01-01

    The Spanish power generation sector is facing dire problems: generation overcapacity, various tariff hikes over recent years, uncertainty over the financial viability of many power plants and a regulatory framework that lacks stability. This situation is the consequence of both poor energy policies and the economic crisis in the late 2000s and early 2010s. In this paper we analyze the following three points from an energy planning perspective: how the country has arrived at this situation; whether other alternatives would have been possible through adequate planning; and the quantitative benefits that would have been accrued from such planning. We do so by developing a LEAP model, and building three scenarios that allow to segregate the costs of the economic crisis from the costs of the lack of planning. We find that appropriate energy planning could have reduced investments in the Spanish power sector by 2010€28.6 billion without compromising on performance in terms of sustainability or energy security, while improving affordability. The main causes of these surplus investments were two supply bubbles: those of gas combined cycles and of solar technologies. The results of this work highlight the value of rigorous, quantitative energy planning, and the high costs of not doing it. - Highlights: • We analyze the costs of the lack of quantitative planning for energy-policy making. • We separate the costs of the economic crisis in Spain from the cost of not planning. • We find the “cost of not doing” energy planning to be 28.6 billion 2010EUR.

  1. Immediate challenge of combating climate change: Effective implementation of energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Morvaj, Zoran; Bukarica, Vesna

    2010-09-15

    Energy efficiency is the most readily available, rapid and cost-effective way to achieve desired greenhouse gases reductions. Therefore, it is the focus of energy and climate change policies world wide. The results of these policies are still missing in the desired extent, even in the EU, which has the most advanced energy efficiency policy. The main reason behind this policy failure is a complete lack of focus on implementing capacities that would ensure full policy uptake. Embracing full-scale energy management systems in public and business sectors and mobilisation of and cooperation between all stakeholders are the way towards higher efficiency.

  2. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. [Reserved] 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN... Water used to achieve energy efficiency. [Reserved] ...

  3. Life cycle cost-based risk model for energy performance contracting retrofits

    Science.gov (United States)

    Berghorn, George H.

    Buildings account for 41% of the primary energy consumption in the United States, nearly half of which is accounted for by commercial buildings. Among the greatest energy users are those in the municipalities, universities, schools, and hospitals (MUSH) market. Correctional facilities are in the upper half of all commercial building types for energy intensity. Public agencies have experienced reduced capital budgets to fund retrofits; this has led to the increased use of energy performance contracts (EPC), which are implemented by energy services companies (ESCOs). These companies guarantee a minimum amount of energy savings resulting from the retrofit activities, which in essence transfers performance risk from the owner to the contractor. Building retrofits in the MUSH market, especially correctional facilities, are well-suited to EPC, yet despite this potential and their high energy intensities, efficiency improvements lag behind that of other public building types. Complexities in project execution, lack of support for data requests and sub-metering, and conflicting project objectives have been cited as reasons for this lag effect. As a result, project-level risks must be understood in order to support wider adoption of retrofits in the public market, in particular the correctional facility sub-market. The goal of this research is to understand risks related to the execution of energy efficiency retrofits delivered via EPC in the MUSH market. To achieve this goal, in-depth analysis and improved understanding was sought with regard to ESCO risks that are unique to EPC in this market. The proposed work contributes to this understanding by developing a life cycle cost-based risk model to improve project decision making with regard to risk control and reduction. The specific objectives of the research are: (1) to perform an exploratory analysis of the EPC retrofit process and identify key areas of performance risk requiring in-depth analysis; (2) to construct a

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  5. Cost optimal building performance requirements. Calculation methodology for reporting on national energy performance requirements on the basis of cost optimality within the framework of the EPBD

    Energy Technology Data Exchange (ETDEWEB)

    Boermans, T.; Bettgenhaeuser, K.; Hermelink, A.; Schimschar, S. [Ecofys, Utrecht (Netherlands)

    2011-05-15

    On the European level, the principles for the requirements for the energy performance of buildings are set by the Energy Performance of Buildings Directive (EPBD). Dating from December 2002, the EPBD has set a common framework from which the individual Member States in the EU developed or adapted their individual national regulations. The EPBD in 2008 and 2009 underwent a recast procedure, with final political agreement having been reached in November 2009. The new Directive was then formally adopted on May 19, 2010. Among other clarifications and new provisions, the EPBD recast introduces a benchmarking mechanism for national energy performance requirements for the purpose of determining cost-optimal levels to be used by Member States for comparing and setting these requirements. The previous EPBD set out a general framework to assess the energy performance of buildings and required Member States to define maximum values for energy delivered to meet the energy demand associated with the standardised use of the building. However it did not contain requirements or guidance related to the ambition level of such requirements. As a consequence, building regulations in the various Member States have been developed by the use of different approaches (influenced by different building traditions, political processes and individual market conditions) and resulted in different ambition levels where in many cases cost optimality principles could justify higher ambitions. The EPBD recast now requests that Member States shall ensure that minimum energy performance requirements for buildings are set 'with a view to achieving cost-optimal levels'. The cost optimum level shall be calculated in accordance with a comparative methodology. The objective of this report is to contribute to the ongoing discussion in Europe around the details of such a methodology by describing possible details on how to calculate cost optimal levels and pointing towards important factors and

  6. Cost-effectiveness considerations in reducing occupational radiation exposure in nuclear power plants

    International Nuclear Information System (INIS)

    Lochard, J.; Maccia, C.; Pages, P.

    1983-01-01

    This article outlines a method of applying the as-low-as-reasonably-achievable principle to occupational radiation exposures in nuclear power stations. A set of protective actions already taken at French pressurized-water reactors now in operation were selected, and their cost and effectiveness were assessed, allowing for the possible interdependence of protection and energy-production objectives. The usefulness of such quantitative evaluation is discussed with regard to the problem of using monetary values of the man-sievert in optimization procedures

  7. Cost-effectiveness and the socialization of health care.

    Science.gov (United States)

    Musgrove, P

    1995-01-01

    The more health care is socialized, the more cost-effectiveness is an appropriate criterion for expenditure. Utility-maximizing individuals, facing divisibility of health care purchases and declining marginal health gains, and complete information about probable health improvements, should buy health care according to its cost-effectiveness. Absent these features, individual health spending will not be cost-effective; and in any case, differences in personal utilities and risk aversion will not lead to the same ranking of health care interventions for everyone. Private insurance frees consumers from concern for cost, which undermines cost-effectiveness, but lets them emphasize effectiveness, which favors value for money. This is most important for costly and cost-effective interventions, especially for poor people. Cost-effectiveness is more appropriate and easier to achieve under second-party insurance. More complete socialization of health care, via public finance, can yield greater efficiency by making insurance compulsory. Cost-effectiveness is also more attractive when taxpayers subsidize others' care: needs (effectiveness) take precedence over wants (utility). The gain in effectiveness may be greater, and the welfare loss from Pareto non-optimality smaller, in poor countries than in rich ones.

  8. Costs of renewable energies in France. Release 2016

    International Nuclear Information System (INIS)

    Guillerminet, Marie-Laure; Marchal, David; Gerson, Raphael; Berrou, Yolene; Grouzard, Patrice

    2016-12-01

    For each renewable energy, this study reports the assessment of the range of the theoretical variation of costs with respect to the most important parameters of the concerned sector. Low range notably corresponds to particularly favourable financing modalities added to a good field quality and to low investment costs. At the opposite, the capital cost is particularly high for high ranges. Thus, after a presentation of the adopted methodology, the report addresses the costs of electric power generation for on-shore wind energy, offshore wind energy, sea hydraulics, photovoltaic, thermodynamic solar, and geothermal energy. The next part addresses heat production costs in the case of individuals (biomass, individual thermal solar, individual heat pumps) and of collective housing and office and industrial buildings (collective biomass with or without heat network, industrial biomass, thermal solar in collective housing of in network, collective geothermal heat pumps, deep geothermal energy). The fourth chapter addresses the cost of power and heat production by co-generation (biomass co-generation, methanization). Appendices provide computation hypotheses, and reference data

  9. Energy conservation achievements by New Shorrock Mills, Ahmedabad

    International Nuclear Information System (INIS)

    Rawal, N.L.; Trivedi, R.M.

    1994-01-01

    The New Shorrock Mills, Ahmedabad is a textile mill manufacturing cloth. Managerial practices like energy auditing and energy conservation monitoring introduced to conserve energy are described. Various measures implemented to conserve energy in machines power; carding, winding, warping and sizing operations; auto looms and lighting power are described. Cost reduction in terms of rupees is given. (N.B.)

  10. Cost-effective conservation planning: lessons from economics.

    Science.gov (United States)

    Duke, Joshua M; Dundas, Steven J; Messer, Kent D

    2013-08-15

    Economists advocate that the billions of public dollars spent on conservation be allocated to achieve the largest possible social benefit. This is "cost-effective conservation"-a process that incorporates both monetized benefits and costs. Though controversial, cost-effective conservation is poorly understood and rarely implemented by planners. Drawing from the largest publicly financed conservation programs in the United States, this paper seeks to improve the communication from economists to planners and to overcome resistance to cost-effective conservation. Fifteen practical lessons are distilled, including the negative implications of limiting selection with political constraints, using nonmonetized benefit measures or benefit indices, ignoring development risk, using incomplete cost measures, employing cost measures sequentially, and using benefit indices to capture costs. The paper highlights interrelationships between benefits and complications such as capitalization and intertemporal planning. The paper concludes by identifying the challenges at the research frontier, including incentive problems associated with adverse selection, additionality, and slippage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Strategy on energy saving reconstruction of distribution networks based on life cycle cost

    Science.gov (United States)

    Chen, Xiaofei; Qiu, Zejing; Xu, Zhaoyang; Xiao, Chupeng

    2017-08-01

    Because the actual distribution network reconstruction project funds are often limited, the cost-benefit model and the decision-making method are crucial for distribution network energy saving reconstruction project. From the perspective of life cycle cost (LCC), firstly the research life cycle is determined for the energy saving reconstruction of distribution networks with multi-devices. Then, a new life cycle cost-benefit model for energy-saving reconstruction of distribution network is developed, in which the modification schemes include distribution transformers replacement, lines replacement and reactive power compensation. In the operation loss cost and maintenance cost area, the operation cost model considering the influence of load season characteristics and the maintenance cost segmental model of transformers are proposed. Finally, aiming at the highest energy saving profit per LCC, a decision-making method is developed while considering financial and technical constraints as well. The model and method are applied to a real distribution network reconstruction, and the results prove that the model and method are effective.

  12. 2015 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Moné, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, Maureen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rand, Joseph [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-27

    This report uses representative utility-scale projects to estimate the levelized cost of energy (LCOE) for land-based and offshore wind plants in the United States. Data and results detailed here are derived from 2015 commissioned plants. More specifically, analysis detailed here relies on recent market data and state-of-the-art modeling capabilities to maintain an up-to-date understanding of wind energy cost trends and drivers. It is intended to provide insight into current component-level costs as well as a basis for understanding variability in LCOE across the industry. This publication reflects the fifth installment of this annual report.

  13. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    Science.gov (United States)

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Poor energy poor: Energy saving obligations, distributional effects, and the malfunction of the priority group

    International Nuclear Information System (INIS)

    Moser, Simon

    2013-01-01

    The European Union’s Energy Efficiency Directive forces the Member States to install energy efficiency obligation schemes. In a first step, this paper identifies the distributional effects caused by this policy instrument which occur when energy efficiency measures are implemented (phase of delivery) and when its costs are passed on to the society (phase of financing). In the phase of delivery, suppliers prefer to implement measures at the property of those customers which enable them to minimise their costs, i.e. enterprises with large energy savings potentials and high-income households who can contribute a greater share of the costs. In the phase of financing, distributional effects occur when the costs of the scheme are passed on from the obliged suppliers to their customers, primarily affecting less competitive customers, i.e. households and small enterprises. In the British scheme, the so-called priority group was installed in order to decrease distributional effects and to support energy poor households. In a second step, this paper evaluates approaches to reduce energy poverty and indicates ineffectiveness, high transaction costs and incoherency with the aims of the obligation scheme. Alternative approaches to tackle energy poverty are briefly described. - Highlights: • The paper discusses distributional effects of energy efficiency obligations. • Significant distributional effects occur when measures are implemented. • Significant distributional effects occur when costs are passed on to the customers. • Suppliers face problems to identify energy poor households. • The priority group contradicts the scheme’s intention of cost minimisation

  15. Quantifying the uncertainty of wave energy conversion device cost for policy appraisal: An Irish case study

    International Nuclear Information System (INIS)

    Farrell, Niall; Donoghue, Cathal O’; Morrissey, Karyn

    2015-01-01

    Wave Energy Conversion (WEC) devices are at a pre-commercial stage of development with feasibility studies sensitive to uncertainties surrounding assumed input costs. This may affect decision making. This paper analyses the impact these uncertainties may have on investor, developer and policymaker decisions using an Irish case study. Calibrated to data present in the literature, a probabilistic methodology is shown to be an effective means to carry this out. Value at Risk (VaR) and Conditional Value at Risk (CVaR) metrics are used to quantify the certainty of achieving a given cost or return on investment. We analyse the certainty of financial return provided by the proposed Irish Feed-in Tariff (FiT) policy. The influence of cost reduction through bulk discount is also discussed, with cost reduction targets for developers identified. Uncertainty is found to have a greater impact on the profitability of smaller installations and those subject to lower rates of cost reduction. This paper emphasises that a premium is required to account for cost uncertainty when setting FiT rates. By quantifying uncertainty, a means to specify an efficient premium is presented. - Highlights: • Probabilistic model quantifies uncertainty for wave energy feasibility analyses. • Methodology presented and applied to an Irish case study. • A feed-in tariff premium of 3–4 c/kWh required to account for cost uncertainty. • Sensitivity of uncertainty and cost to rates of technological change analysed. • Use of probabilistic model for investors and developers also demonstrated

  16. Electrostatic direct energy converter performance and cost scaling laws

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1977-08-01

    This study is concerned with electrostatic type direct energy converters for direct recovery of a large fraction of the plasma ion energy from fusion reactors. Simplified equations are presented for each of the important loss mechanisms in both single-stage direct converters and multistage ''Venetian Blind'' type direct converters. These equations can be used to estimate the efficiency and electric power output of the direct converter subsystem. Scaling relations for the cost of each major component in the direct converter subsystem are also given; these include the vacuum tank, direct converter modules, the DC power conditioning equipment, cryogenic vacuum pumping system and the thermal bottoming plant. The performance and cost scaling laws have been developed primarily for use in overall fusion power plant systems codes. However, to illustrate their utility, cost-effectiveness studies of two specific reference direct converter designs are presented in terms of the specific capital costs (i.e., the capital cost per unit electric power produced) for the Direct Converter Subsystem alone. Some examples of design improvements which can significantly reduce the specific capital costs of the Direct Converter Subsystem are also given

  17. Chemistry of cost effective water treatment programme in HWP (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Laxmana Prasad, K.

    2008-01-01

    In order to develop a water treatment programme following points must be kept in mind: Effectiveness to achieve desired water quality objectives; Compliance with regulatory requirements; Cost minimization; Safety; Easy operation and protection to equipments. Heavy Water Plant (Manuguru) laboratory has developed treatment programs to treat raw water and cooling water which satisfy the above requirements and has been in use for last several years successfully without any problem. These treatment programs have been given to other plants in Heavy Water Board for implementation. This paper describes the chemistry of the treatment program and cost minimization achieved. Further these treatments have helped the plant in achieving ΦZero Discharge and indirectly reduced the production cost. The chemistry parameters are monitored regularly to ascertain the effectiveness of these treatments. The areas where significant benefits derived are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and development of in-house cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments helped the plant in achieving Zero discharge and indirectly reduced production cost of heavy water. The dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15 - 20 Lakhs in a year besides other advantages. The changeover of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs. 1.4 Crore a year along with other advantages. The change over of proprietary formulation to in-house formulation in cooling water treatment has resulted a saving about Rs. 11 Lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored (author)

  18. The German energy transition. Design, implementeation, cost and lessons

    Energy Technology Data Exchange (ETDEWEB)

    Unnerstall, Thomas

    2017-07-01

    The book presents a comprehensive and systematic account of the concept, the current status and the costs of the German energy transition: the Energiewende. Written by an insider who has been working in the German energy industry for over 20 years, it follows a strictly non-political, neutral approach and clearly outlines the most relevant facts and figures. In particular, it describes the main impacts of the Energiewende on the German power system and Germany's national economy. Furthermore, it addresses questions that are of global interest with respect to energy transitions, such as the cost to the national economy, the financial burden on private households and companies and the actual effects on CO{sub 2} emissions. The book also discusses what could have been done better in terms of planning and implementing the Energiewende, and identifies important lessons for other countries that are considering a similar energy transition.

  19. The German energy transition. Design, implementeation, cost and lessons

    International Nuclear Information System (INIS)

    Unnerstall, Thomas

    2017-01-01

    The book presents a comprehensive and systematic account of the concept, the current status and the costs of the German energy transition: the Energiewende. Written by an insider who has been working in the German energy industry for over 20 years, it follows a strictly non-political, neutral approach and clearly outlines the most relevant facts and figures. In particular, it describes the main impacts of the Energiewende on the German power system and Germany's national economy. Furthermore, it addresses questions that are of global interest with respect to energy transitions, such as the cost to the national economy, the financial burden on private households and companies and the actual effects on CO 2 emissions. The book also discusses what could have been done better in terms of planning and implementing the Energiewende, and identifies important lessons for other countries that are considering a similar energy transition.

  20. Analyzing the Effects of the Iranian Energy Subsidy Reform Plan on Short- Run Marginal Generation Cost of Electricity Using Extended Input-Output Price Model

    Directory of Open Access Journals (Sweden)

    Zohreh Salimian

    2012-01-01

    Full Text Available Subsidizing energy in Iran has imposed high costs on country's economy. Thus revising energy prices, on the basis of a subsidy reform plan, is a vital remedy to boost up the economy. While the direct consequence of cutting subsidies on electricity generation costs can be determined in a simple way, identifying indirect effects, which reflect higher costs for input factors such as labor, is a challenging problem. In this paper, variables such as compensation of employees and private consumption are endogenized by using extended Input-Output (I-O price model to evaluate direct and indirect effects of electricity and fuel prices increase on economic subsectors. The determination of the short-run marginal generation cost of electricity using I-O technique with taken into account the Iranian targeted subsidy plan's influences is the main goal of this paper. Marginal cost of electricity, in various scenarios of price adjustment of energy, is estimated for three conventional categories of thermal power plants. Our results show that the raising the price of energy leads to an increase in the electricity production costs. Accordingly, the production costs will be higher than 1000 Rials per kWh until 2014 as predicted in the beginning of the reform plan by electricity suppliers.

  1. Past and Future Cost of Wind Energy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Hand, M.; Wiser, R.

    2012-08-01

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

  2. Can the Clean Development Mechanism attain both cost-effectiveness and sustainable development objectives?

    International Nuclear Information System (INIS)

    Kolshus, Hans H; Vevatne, Jonas; Torvanger, Asbjoern; Aunan, Kristin

    2001-06-01

    The Clean Development Mechanism (CDM), as defined in the Kyoto Protocol, has two objectives: to promote sustainable development in host developing countries, and to improve global cost-effectiveness by assisting developed countries in meeting their Kyoto targets. The aim of this paper is to explore the background of the CDM and discuss to what extent its current design allows it to achieve its dual objective. The first part of the paper is a literature review that includes descriptions of the flexibility mechanisms under the Kyoto Protocol; the CDM's market potential, and the issues of cost-effectiveness and sustainable development. In the second part of the paper, we discuss to what extent there is a conflict between cost-effectiveness and sustain ability, and whether the two objectives of the CDM can be achieved simultaneously. We develop a set of indicators to evaluate non-carbon benefits of CDM projects on the environment, development, and. equity, and show how these indicators can be used in practice by looking at case studies of CDM project candidates in the energy sector from Brazil and China. We demonstrate that for some CDM projects there is a trade-off between cost-effectiveness, in terms of a low quota price, and a high score on sustain ability indicators. We have reason to believe that the size of the CDM market in some studies is over-estimated since transaction costs and the challenge of promoting sustainable development are not fully accounted for. Also, we find that the proposed set of indicators can be a necessary tool to assure that sustain ability impacts of CDM projects are taken into consideration. (author)

  3. Can the Clean Development Mechanism attain both cost-effectiveness and sustainable development objectives?

    Energy Technology Data Exchange (ETDEWEB)

    Kolshus, Hans H; Vevatne, Jonas; Torvanger, Asbjoern; Aunan, Kristin

    2001-06-01

    The Clean Development Mechanism (CDM), as defined in the Kyoto Protocol, has two objectives: to promote sustainable development in host developing countries, and to improve global cost-effectiveness by assisting developed countries in meeting their Kyoto targets. The aim of this paper is to explore the background of the CDM and discuss to what extent its current design allows it to achieve its dual objective. The first part of the paper is a literature review that includes descriptions of the flexibility mechanisms under the Kyoto Protocol; the CDM's market potential, and the issues of cost-effectiveness and sustainable development. In the second part of the paper, we discuss to what extent there is a conflict between cost-effectiveness and sustain ability, and whether the two objectives of the CDM can be achieved simultaneously. We develop a set of indicators to evaluate non-carbon benefits of CDM projects on the environment, development, and. equity, and show how these indicators can be used in practice by looking at case studies of CDM project candidates in the energy sector from Brazil and China. We demonstrate that for some CDM projects there is a trade-off between cost-effectiveness, in terms of a low quota price, and a high score on sustain ability indicators. We have reason to believe that the size of the CDM market in some studies is over-estimated since transaction costs and the challenge of promoting sustainable development are not fully accounted for. Also, we find that the proposed set of indicators can be a necessary tool to assure that sustain ability impacts of CDM projects are taken into consideration. (author)

  4. 2011 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

    2013-03-01

    This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

  5. Low energy, low cost, efficient CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Trachtenberg; Lihong Bao; David A. Smith; Remy Dumortier [Carbozyme, Inc., Monmouth Junction, NJ (United States)

    2006-07-01

    This paper discusses the development and some characteristics of a new, enzyme-based, contained liquid membrane contactor to capture CO{sub 2}. The enzyme carbonic anhydrase catalyzes the removal of CO{sub 2} while the membrane contactor increases the surface area to allow the reduction of the size of the system. The modular system design is easily scaled to any required size reducing the investment costs. The system captures CO{sub 2} at a low energy and low cost promising to be a cost effective technology for CO{sub 2} capture. 5 refs., 7 figs.

  6. Evaluation of the external costs of energy production in the Helsinki metropolitan area

    International Nuclear Information System (INIS)

    Otterstroem, T.

    1995-01-01

    The aim of the research is to evaluate the external costs of energy production at Helsinki metropolitan area (Helsinki, Espoo, Vantaa). The previously developed valorization method for effects on population centres is adjusted. All the main health, material and environmental effects will be taken into account in the research. The effects of emissions of the energy production of the Helsinki metropolitan area on concentrations of the impurities in the air and through them on human and environment will be evaluated. The estimates will be based on the relativistic fuels consumption and the emission data of Helsinki metropolitan area. Life-cycle reasoning will be applied so that the emissions of the main components of the fuels used in the metropolitan area will be included in the estimation. The cost-effectiveness of the investments will be estimated by comparing the environmental investments of energy boards with the external costs. The methods of this work can be applied to estimation of the profitability of energy production plants from the point of view of national economy also elsewhere in the country

  7. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  8. 2016 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Stehly, Tyler J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-29

    This report uses representative utility-scale projects to estimate the levelized cost of energy (LCOE) for land-based and offshore wind power plants in the United States. Data and results detailed here are derived from 2016 commissioned plants. More specifically, analysis detailed here relies on recent market data and state-of-the-art modeling capabilities to maintain an up-to-date understanding of wind energy cost trends and drivers. This report is intended to provide insight into current component-level costs as well as a basis for understanding variability in LCOE across the country. This publication represents the sixth installment of this annual report.

  9. Project appraisal for small and medium size wind energy installation: The Italian wind energy policy effects

    International Nuclear Information System (INIS)

    Fera, M.; Iannone, R.; Macchiaroli, R.; Miranda, S.; Schiraldi, M.M.

    2014-01-01

    In the last few years, the distributed energy production from small wind turbines (i.e.<200 kWp) has developed into a relevant business opportunity for different investors in Italy. The market, especially in Italy, has rapidly grown, achieving 9 MWp only in 2011, with an increase from 1.5 MW in 2009 to 13.3 MW at the end of 2011. This paper reports the results of a case study on the installation of several small wind turbines. It aims to provide an analysis of the conditions in Italy that make it possible to install these machines and offer a reliable reference for designing, planning, and controlling small wind turbine projects while focusing on the strategic variables of time, cost, and quality used by typical enterprises in the investment projects. The results are relevant to investors as well as engineering, procurement, and construction companies involved in this new sector, which must understand Italy’s renewable energy policy and its effects in practice. Moreover, certain national energy policy conclusions are reported and discussed in this paper. To properly study the sector, the data on time, cost and quality are analysed using typical project management tools. - Highlights: • Focus on the Italian wind energy sector. • Analysis of Italian policy effects. • Focus on small/medium size wind energy machines

  10. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    Energy Technology Data Exchange (ETDEWEB)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  11. Low cost energy in Canada: The view from downstream

    International Nuclear Information System (INIS)

    Irving, K.

    1993-01-01

    The key cost determinants of energy in Canada are analyzed and recommendations are made to ensure the competitiveness of Canadian energy costs and energy-consuming industries in the North American and world markets. Oil supplies 45% of world energy and has a key role in determining prices of all other energy forms since it serves as an incremental source of energy: its consumption changes according to economic growth, changes in weather patterns, and other factors. North America currently accounts for about a third of world oil consumption. North American oil demand is expected to remain flat over the next few decades. As Canada only produces ca 3% of world oil supply, it cannot determine oil prices. However, with an efficient downstream industry, Canada can influence the end-user price of energy. The cost structure of refined products in Canada is analyzed. The cost of raw materials is the single biggest determinant of the final product cost, followed by taxes, operating costs, and profit margin. For gasoline in Ontario, taxes account for half the retail cost, crude oil prices ca 30%, and refining costs ca 4%. Refining costs comprise about two thirds labor costs and one third energy costs. Refiner margins have not exceeded 2 cents/l since 1981, creating reluctance to invest in the refining sector. By 1994, some 200,000 bbl/d of refining capacity is expected to be shut down in Canada. Compared to refineries in the USA, Canadian refineries are smaller and have a much lower capacity to upgrade residual fuel oil to light products. Future challenges to the industry include a projected need for $5 billion in investment, largely to fund new environmental initiatives. Such an investment cannot be met through current industry profits. 12 figs., 3 tabs

  12. Renewable Energy Cost Modeling. A Toolkit for Establishing Cost-Based Incentives in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, Jason S. [Sustainable Energy Advantage, LLC, Framington, MA (United States); Grace, Robert C. [Sustainable Energy Advantage, LLC, Framington, MA (United States); Rickerson, Wilson H. [Meister Consultants Group, Inc., Boston, MA (United States)

    2011-05-01

    This report serves as a resource for policymakers who wish to learn more about levelized cost of energy (LCOE) calculations, including cost-based incentives. The report identifies key renewable energy cost modeling options, highlights the policy implications of choosing one approach over the other, and presents recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, FITs, or similar policies. These recommendations shaped the design of NREL's Cost of Renewable Energy Spreadsheet Tool (CREST), which is used by state policymakers, regulators, utilities, developers, and other stakeholders to assist with analyses of policy and renewable energy incentive payment structures. Authored by Jason S. Gifford and Robert C. Grace of Sustainable Energy Advantage LLC and Wilson H. Rickerson of Meister Consultants Group, Inc.

  13. The effectiveness of advance organiser model on students' academic achievement in learning work and energy

    Science.gov (United States)

    Gidena, Asay; Gebeyehu, Desta

    2017-11-01

    The purpose of this study was to investigate the effectiveness of the advance organiser model (AOM) on students' academic achievement in learning work and energy. The design of the study was quasi-experimental pretest-posttest nonequivalent control groups. The total population of the study was 139 students of three sections in Endabaguna preparatory school in Tigray Region, Ethiopia. Two sections with equivalent means on the pretest were taken to participate in the study purposely and one section assigned as the experimental group and the other section assigned as the control group randomly. The experimental group was taught using the lesson plan based on the AOM, and the control group was taught using the lesson plan based on the conventional teaching method. Pretest and posttest were administered before and after the treatment, respectively. Independent sample t-test was used to analyse the data at the probability level of 0.05. The findings of the study showed that the AOM was more effective than the conventional teaching method with effect size of 0.49. This model was also effective to teach male and female students and objectives namely understanding and application. However, both methods were equally important to teach work and energy under the objective knowledge level.

  14. The energy cost of playing active video games in children with obesity and children of a healthy weight.

    Science.gov (United States)

    O'Donovan, C; Roche, E F; Hussey, J

    2014-08-01

    Increasing physical activity and reducing sedentary behaviour form a large part of the treatment of paediatric obesity. However, many children today spend prolonged periods of time playing sedentary video games. Active video games (AVGs) represent a novel and child friendly form of physical activity. To measure the energy cost of playing two AVGs in children with obesity and healthy age- and gender-matched children. The energy cost of gaming and heart rates achieved during gaming conditions were compared between groups. AVG play can result in light-to-moderate intensity physical activity (2.7-5.4 metabolic equivalents). When corrected for fat-free mass those with obesity expended significantly less energy than healthy weight peers playing Nintendo Wii Fit Free Jogging (P = 0.017). No significant difference was seen between groups in the energy cost of playing Boxing. Certain AVGs, particularly those that require lower limb movement, could be used to increase total energy expenditure, replace more sedentary activities, or achieve moderate intensity physical activity among children with obesity. There seems to be some differences in how children with obesity and children of a healthy weight play AVGs. This could result in those with obesity expending less energy than their lean peers during AVG play. © 2013 The Authors. Pediatric Obesity © 2013 International Association for the Study of Obesity.

  15. Distributional effects of the Australian Renewable Energy Target (RET) through wholesale and retail electricity price impacts

    International Nuclear Information System (INIS)

    Cludius, Johanna; Forrest, Sam; MacGill, Iain

    2014-01-01

    The Australian Renewable Energy Target (RET) has spurred significant investment in renewable electricity generation, notably wind power, over the past decade. This paper considers distributional implications of the RET for different energy users. Using time-series regression, we show that the increasing amount of wind energy has placed considerable downward pressure on wholesale electricity prices through the so-called merit order effect. On the other hand, RET costs are passed on to consumers in the form of retail electricity price premiums. Our findings highlight likely significant redistributive transfers between different energy user classes under current RET arrangements. In particular, some energy-intensive industries are benefiting from lower wholesale electricity prices whilst being largely exempted from contributing to the costs of the scheme. By contrast, many households are paying significant RET pass through costs whilst not necessarily benefiting from lower wholesale prices. A more equitable distribution of RET costs and benefits could be achieved by reviewing the scope and extent of industry exemptions and ensuring that methodologies to estimate wholesale price components in regulated electricity tariffs reflect more closely actual market conditions. More generally, these findings support the growing international appreciation that policy makers need to integrate distributional assessments into policy design and implementation. - Highlights: • The Australian RET has complex yet important distributional impacts on different energy users. • Likely wealth transfers from residential and small business consumers to large energy-intensive industry. • Merit order effects of wind likely overcompensate exempt industry for contribution to RET costs. • RET costs for households could be reduced if merit order effects were adequately passed through. • Need for distributional impact assessments when designing and implementing clean energy policy

  16. Implementing a solar energy technology in Canada: The costs, benefits, and role of government

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, M K

    1978-01-01

    Canadian studies on the cost of solar energy to the user are described. Realistic estimates are developed of the initial capital cost and comparative lifetime costs of solar and conventional heating systems. Interfacing solar home heating with electric utilities is also discussed, along with the social benefits of solar space and water heating. Results are presented of a Canada-wide survey of public attitudes to the energy situation in general and to solar energy in particular. A computer simulation was used to examine the cost to the government and effects on the lifetime cost to the user of various incentive schemes to encourage solar use. Optimal government strategy is suggested and recommendations implied by the analyses in this study are made. It was found that not only is a package-designed solar heating system cost-effective when compared with conventional systems, but the public is eager and receptive to large-scale solar use. 14 refs.

  17. Listen, wind energy costs nothing

    International Nuclear Information System (INIS)

    Poizat, F.

    2008-09-01

    The author discusses the affirmation of the ADEME and the Environmental and sustainable development Ministry: the french wind park will costs in 2008 0,5 euro year for each household. He criticizes strongly this calculi, bringing many data on energy real cost today and in the next 10 years. Many references are provided. (A.L.B.)

  18. Efficient Solutions and Cost-Optimal Analysis for Existing School Buildings

    Directory of Open Access Journals (Sweden)

    Paolo Maria Congedo

    2016-10-01

    Full Text Available The recast of the energy performance of buildings directive (EPBD describes a comparative methodological framework to promote energy efficiency and establish minimum energy performance requirements in buildings at the lowest costs. The aim of the cost-optimal methodology is to foster the achievement of nearly zero energy buildings (nZEBs, the new target for all new buildings by 2020, characterized by a high performance with a low energy requirement almost covered by renewable sources. The paper presents the results of the application of the cost-optimal methodology in two existing buildings located in the Mediterranean area. These buildings are a kindergarten and a nursery school that differ in construction period, materials and systems. Several combinations of measures have been applied to derive cost-effective efficient solutions for retrofitting. The cost-optimal level has been identified for each building and the best performing solutions have been selected considering both a financial and a macroeconomic analysis. The results illustrate the suitability of the methodology to assess cost-optimality and energy efficiency in school building refurbishment. The research shows the variants providing the most cost-effective balance between costs and energy saving. The cost-optimal solution reduces primary energy consumption by 85% and gas emissions by 82%–83% in each reference building.

  19. 2010 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwabe, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  20. 2010 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  1. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  2. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  3. Energy saving effects of wireless sensor networks: a case study of convenience stores in Taiwan.

    Science.gov (United States)

    Chen, Chih-Sheng; Lee, Da-Sheng

    2011-01-01

    Wireless sensor network (WSN) technology has been successfully applied to energy saving applications in many places, and plays a significant role in achieving power conservation. However, previous studies do not discuss WSN costs and cost-recovery. The application of WSNs is currently limited to research and laboratory experiments, and not mass industrial production, largely because business owners are unfamiliar with the possible favorable return and cost-recovery on WSN investments. Therefore, this paper focuses on the cost-recovery of WSNs and how to reduce air conditioning energy consumption in convenience stores. The WSN used in this study provides feedback to the gateway and adopts the predicted mean vote (PMV) and computational fluid dynamics (CFD) methods to allow customers to shop in a comfortable yet energy-saving environment. Four convenience stores in Taipei have used the proposed WSN since 2008. In 2008, the experiment was initially designed to optimize air-conditioning for energy saving, but additions to the set-up continued beyond 2008, adding the thermal comfort and crowds peak, off-peak features in 2009 to achieve human-friendly energy savings. Comparison with 2007 data, under the same comfort conditions, shows that the power savings increased by 40% (2008) and 53% (2009), respectively. The cost of the WSN equipment was 500 US dollars. Experimental results, including three years of analysis and calculations, show that the marginal energy conservation benefit of the four convenience stores achieved energy savings of up to 53%, recovering all costs in approximately 5 months. The convenience store group participating in this study was satisfied with the efficiency of energy conservation because of the short cost-recovery period.

  4. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity

  5. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2011-03-10

    ... average unit costs of residential energy in a Federal Register notice entitled, ``Energy Conservation... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  6. Exploring No-Cost Opportunities for Public Sector Information Systems Energy Efficiency: A Tennessee Application

    Directory of Open Access Journals (Sweden)

    Kendra Abkowitz Brooks

    2015-11-01

    Full Text Available The Tennessee Department of Environment and Conservation (TDEC completed a pilot project within its Central Office spaces to test the utilization of computer power management (CPM technologies to implement power saving settings on state-owned, network-connected computer equipment. Currently, the State of Tennessee has no clear protocol regarding energy-conserving power settings on state-owned machines. Activation of monitor sleep modes and system standby and hibernation modes on 615 Central Office computers over an 18-month period reduced energy consumption by an estimated 8093 kWh and $526 per month, amounting to approximately $6312 in cost savings for Tennessee annually. If implemented throughout State of Tennessee executive agencies across the state, energy cost savings could amount to an estimated $323,341 annually. The research endeavored to understand both positive and negative impacts that strategic power management approaches can have on energy consumption, worker productivity, network security, and state budgets. Nearly all impacts discussed were positive. Based on successful results within TDEC Central Office spaces in Tennessee Tower, and considering the potential cost savings that could be achieved, expansion of the implementation of computer power management policies to machines in offices across the state was recommended.

  7. Training effectiveness vs. cost effectiveness: The next millennium challenge

    International Nuclear Information System (INIS)

    Coe, Richard P.

    2003-01-01

    With the advent of the new millennium and energy deregulation, organizations will be challenged to be cost competitive and profitable. Deregulation in the US energy industry will force utilities and, more specifically, commercial nuclear power production to unprecedented cost control measures. It will also renew the fires of debate about costs vs. safety. With personnel costs being the single largest expenditure for most organizations management will be faced with constant dilemmas of competition for scarce resources. Salaries, benefits and training costs will be under greater scrutiny. Training resources and programs will face increased pressure to be job related, based on conservative requirements and more cost effective than in the past. For nearly two decades the US National Academy for Nuclear Training (NANT) has developed and used industry-wide accreditation and evaluation standards based on the Systematic Approach to Training (SAT). This process assures that existing and emerging technical training is constantly reviewed and evaluated against standardized criteria to assure job relatedness and enhanced job performance. The process also requires management to approve, actively participate in and support the training of NPP personnel. Instructors must be highly skilled and well trained in the SAT process and various instructional strategies. The SAT process is grounded in five interlocking keystone steps; Analysis - Design - Development - Implementation - Evaluation (ADDIE). Evaluation of training is often said to be the most crucial and most difficult step. Here is where an organization determines if the training is effective and meeting the legitimate needs of all of the stakeholders. This QA/QC aspect of training must be an ongoing process involving management, instructors and the students. It is only through the discipline of an SAT based evaluation process that an organization can truly determine if the training is efficient, effective, cost effective and

  8. Least cost energy services for Australia: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Australian electricity industry is in the process of major structural reforms, the most significant of its 100 year history. The industry is being separated into generation, transmission, distribution and retail supply businesses. Competition will be introduced to the wholesale (generation) and retail supply markets. The remaining monopoly elements of the industry, the networks and retail franchise businesses, will be regulated. This report considers a range of mechanisms to incorporate integrated resource planning (IRP) and demand management (DM) into the proposed competitive electricity markets in Australia. The mechanisms are analysed in terms of international experience and their application in the reformed Australian energy sector. The advantages and disadvantages of a range of mechanisms are discussed in relation to achieving a least cost energy services outcome, pricing reforms, regulation of utilities, and other DM activities outside the utilities. The paper concludes with recommendations for a national approach to DM and IRP in the electricity sector. (author). 22 tabs.

  9. Cost and primary energy efficiency of small-scale district heating systems

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed minimum-cost options for small-scale DHSs under different contexts. • District heat production cost increases with reduced DHS scales. • Fewer technical options are suitable for small-scale DHSs. • Systems with combined technologies are less sensitive to changes in fuel prices. - Abstract: Efficient district heat production systems (DHSs) can contribute to achieving environmental targets and energy security for countries that have demands for space and water heating. The optimal options for a DHS vary with the environmental and social-political contexts and the scale of district heat production, which further depends on the size of the community served and the local climatic conditions. In this study, we design a small-scale, minimum-cost DHS that produces approximately 100 GWh heat per year and estimate the yearly production cost and primary energy use of this system. We consider conventional technologies, such as heat-only boilers, electric heat pumps and combined heat and power (CHP) units, as well as emerging technologies, such as biomass-based organic Rankine cycle (BORC) and solar water heating (SWH). We explore how different environmental and social-political situations influence the design of a minimum-cost DHS and consider both proven and potential technologies for small-scale applications. Our calculations are based on the real heat load duration curve for a town in southern Sweden. We find that the district heat production cost increases and that the potential for cogeneration decreases with smaller district heat production systems. Although the selection of technologies for a minimum-cost DHS depends on environmental and social-political contexts, fewer technical options are suitable for small-scale systems. Emerging technologies such as CHP-BORC and SWH improve the efficiency of primary energy use for heat production, but these technologies are more costly than conventional heat-only boilers. However, systems with

  10. Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.

    Science.gov (United States)

    Lee, Dong-Yeon; Thomas, Valerie M; Brown, Marilyn A

    2013-07-16

    We compare electric and diesel urban delivery trucks in terms of life-cycle energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership (TCO). The relative benefits of electric trucks depend heavily on vehicle efficiency associated with drive cycle, diesel fuel price, travel demand, electric drive battery replacement and price, electricity generation and transmission efficiency, electric truck recharging infrastructure, and purchase price. For a drive cycle with frequent stops and low average speed such as the New York City Cycle (NYCC), electric trucks emit 42-61% less GHGs and consume 32-54% less energy than diesel trucks, depending upon vehicle efficiency cases. Over an array of possible conditions, the median TCO of electric trucks is 22% less than that of diesel trucks on the NYCC. For a drive cycle with less frequent stops and high average speed such as the City-Suburban Heavy Vehicle Cycle (CSHVC), electric trucks emit 19-43% less GHGs and consume 5-34% less energy, but cost 1% more than diesel counterparts. Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively.

  11. Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin; Johnson, Brian; Zhang, Yingchen; Gevorgian, Vahan; Denholm, Paul; Hodge, Bri-Mathias; Hannegan, Bryan

    2017-03-01

    What does it mean to achieve a 100% renewable grid? Several countries already meet or come close to achieving this goal. Iceland, for example, supplies 100% of its electricity needs with either geothermal or hydropower. Other countries that have electric grids with high fractions of renewables based on hydropower include Norway (97%), Costa Rica (93%), Brazil (76%), and Canada (62%). Hydropower plants have been used for decades to create a relatively inexpensive, renewable form of energy, but these systems are limited by natural rainfall and geographic topology. Around the world, most good sites for large hydropower resources have already been developed. So how do other areas achieve 100% renewable grids? Variable renewable energy (VRE), such as wind and solar photovoltaic (PV) systems, will be a major contributor, and with the reduction in costs for these technologies during the last five years, large-scale deployments are happening around the world.

  12. External Costs and Benefits of Energy. Methodologies, Results and Effects on Renewable Energies Competitivity; Costes y Beneficios Externos de la Energia. Metodologias, Resultados e Influencia sobre la Competitividad de las Energias Renovables

    Energy Technology Data Exchange (ETDEWEB)

    Saez, R; Cabal, H; Varela, M [CIEMAT. Madrid (Spain)

    1999-09-01

    This study attempts to give a summarised vision of the concept of externally in energy production, the social and economic usefulness of its evaluation and consideration as support to the political decision-marking in environmental regulation matters, technologies selection of new plants, priorities establishment on energy plans, etc. More relevant environmental externalities are described, as are the effects on the health, ecosystems, materials and climate, as well as some of the socioeconomic externalities such as the employment, increase of the GDP and the reduction and depletion of energy resources. Different methodologies used during the last years have been reviewed as well as the principals results obtained in the most relevant studies accomplished internationally on this topic. Special mention has deserved the European study National Implementation of the ExternE Methodology in the EU. Results obtained are represented in Table 2 of this study. Also they are exposed, in a summarised way, the results obtained in the evaluation of environmental externalities of the Spanish electrical system in function of the fuel cycle. In this last case the obtained results are more approximated since have been obtained by extrapolation from the obtained for ten representative plants geographically distributed trough the Peninsula. Finally it has been analysed the influence that the internalization of the external costs of conventional energies can have in the competitiveness and in the market of renewable energy, those which originate less environmental effects and therefore produce much smaller external costs. The mechanisms of internalization and the consideration on the convenience or not of their incorporation in the price of energy have been also discussed. (Author) 30 refs.

  13. 78 FR 17648 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2013-03-22

    ... Conservation Program for Consumer Products: Representative Average Unit Costs of Energy'', dated April 26, 2012... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  14. The business value and cost-effectiveness of genomic medicine.

    Science.gov (United States)

    Crawford, James M; Aspinall, Mara G

    2012-05-01

    Genomic medicine offers the promise of more effective diagnosis and treatment of human diseases. Genome sequencing early in the course of disease may enable more timely and informed intervention, with reduced healthcare costs and improved long-term outcomes. However, genomic medicine strains current models for demonstrating value, challenging efforts to achieve fair payment for services delivered, both for laboratory diagnostics and for use of molecular information in clinical management. Current models of healthcare reform stipulate that care must be delivered at equal or lower cost, with better patient and population outcomes. To achieve demonstrated value, genomic medicine must overcome many uncertainties: the clinical relevance of genomic variation; potential variation in technical performance and/or computational analysis; management of massive information sets; and must have available clinical interventions that can be informed by genomic analysis, so as to attain more favorable cost management of healthcare delivery and demonstrate improvements in cost-effectiveness.

  15. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030

    International Nuclear Information System (INIS)

    Xiao, He; Wei, Qingpeng; Wang, Hailin

    2014-01-01

    China achieved an energy savings of 67.5 Mtce in the building sector at the end of the 11th Five-Year Plan and set a new target of 116 Mtce by the end of the 12th Five-Year Plan. In this paper, an improved bottom-up model is developed to assess the carbon abatement potential and marginal abatement cost (MAC) of 34 selected energy-saving technologies/measures for China's building sector. The total reduction potential is 499.8 million t-CO 2 by 2030. 4.8 Gt-CO 2 potential will be achieved cumulatively to 2030. By 2030, total primary energy consumption of Chinese building sector will rise continuously to 1343 Mtce in the reference scenario and 1114 Mtce in the carbon reduction scenario. Total carbon dioxide emission will rise to 2.39 Gt-CO 2 and 1.9 Gt-CO 2 in two scenarios separately. The average carbon abatement cost of the aforementioned technologies is 19.5 $/t-CO 2 . The analysis reveals that strengthening successfully energy-saving technologies is important, especially for the residential building sector. The central government's direct investments in such technologies should be reduced without imposing significant negative effects. - Highlights: • MAC of 34 energy-saving technologies of China's building sector is calculated. • Energy use and CO 2 emission of China's building sector by 2030 is forecasted. • The reference and the carbon reduction scenarios are compared

  16. An integrated model for estimating energy cost of a tidal current turbine farm

    International Nuclear Information System (INIS)

    Li, Ye; Lence, Barbara J.; Calisal, Sander M.

    2011-01-01

    A tidal current turbine is a device for harnessing energy from tidal currents and functions in a manner similar to a wind turbine. A tidal current turbine farm consists of a group of tidal current turbines distributed in a site where high-speed current is available. The accurate prediction of energy cost of a tidal current turbine farm is important to the justification of planning and constructing such a farm. However, the existing approaches used to predict energy cost of tidal current turbine farms oversimplify the hydrodynamic interactions between turbines in energy prediction and oversimplify the operation and maintenance strategies involved in cost estimation as well as related fees. In this paper, we develop a model, which integrates a marine hydrodynamic model with high accuracy for predicting energy output and a comprehensive cost-effective operation and maintenance model for estimating the cost that may be incurred in producing the energy, to predict energy cost from a tidal current turbine farm. This model is expected to be able to simulate more complicated cases and generate more accurate results than existing models. As there is no real tidal current turbine farm, we validate this model with offshore wind studies. Finally, case studies about Vancouver are conducted with a scenario-based analysis. We minimize the energy cost by minimizing the total cost and maximizing the total power output under constraints related to the local conditions (e.g., geological and labor information) and the turbine specifications. The results suggest that tidal current energy is about ready to penetrate the electricity market in some major cities in North America if learning curve for the operational and maintenance is minimum. (author)

  17. Energy costs and performance of transfemoral amputees and non-amputees during walking and running: A pilot study.

    Science.gov (United States)

    Mengelkoch, Larry J; Kahle, Jason T; Highsmith, M Jason

    2017-10-01

    Limited information is available concerning the effects of prosthetic foot components on energy costs and ambulatory performance for transfemoral amputees. Compare energy costs (VO 2 ; gait economy) and ambulatory performance (self-selected walking speeds, self-selected running speeds, peak running speeds) differences during walking and running for transfemoral amputees and matched, non-amputee runners. Repeated measures. Transfemoral amputees were accommodated and tested with three prosthetic feet: conventional foot, solid-ankle cushioned heel (SACH); energy storing and return foot, Renegade; and running-specific energy storing and return foot, Nitro. During walking, VO 2 was similar between transfemoral amputees but was increased compared to controls. Self-selected walking speeds were slower for SACH compared to Renegade and Nitro. For transfemoral amputees, gait economy was decreased and self-selected walking speeds were slower compared to controls. During fixed running speeds, transfemoral amputees ran using Nitro, and VO 2 was greater compared to controls. Transfemoral amputees ran at self-selected running speeds using Renegade and Nitro. Self-selected running speeds were slower for Renegade compared to Nitro. For transfemoral amputees, gait economy was decreased and self-selected running speeds were slower compared to controls. VO 2 peak was similar between transfemoral amputees and controls, but controls achieved greater peak running speeds and % grade. Energy costs were greater and ambulatory performance was lower for transfemoral amputees compared to matched, non-amputee controls for all prosthetic foot conditions. Clinical relevance Both types of energy storing and return feet may improve walking performance for transfemoral amputees by providing faster self-selected walking speeds. For transfemoral amputees interested in performing vigorous running (exercise and running competition), clinicians should recommend a running-specific energy storing and

  18. Impact of mild alkali dosage on immobilized Exiguobacterium spp. mediated cost and energy efficient sludge disintegration.

    Science.gov (United States)

    Rajesh Banu, J; Ushani, U; Rajkumar, M; Naresh Kumar, R; Parthiba Karthikeyan, O

    2017-12-01

    Approaches to (extracellular polymeric substance) EPS removal were studied with major aim to enhance the biodegradability and sludge solubilization. In this study, a novel approach of entrapment of bacterial strain was carried out to achieve long term activity of protease secreting bacteria Exiguobacterium sp. A mild treatment of potassium hydroxide (KOH) was applied to remove EPS which was followed by entrapment under the biological pretreatment. The efficiency of Exiguobacterium was predicted through dissolvable organic and suspended solids (SS) reduction. The maximum dissolvable organic matter released was 2300mg/L with the solubilization of 23% which was obtained for sludge without EPS (SWOE). For dissolvable organic release, SWOE showed higher final methane production of 232mL/g COD at the production rate of 16.2mL/g COD.d. The SWOE pretreatment was found to be cost effective and less energy intensive beneficial in terms of energy and cost (43.9KWh and -8.2USD) when compared to sludge with EPS (SWE) pretreatment (-177.6KWh and -91.23USD). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Class Size Reduction or Rapid Formative Assessment?: A Comparison of Cost-Effectiveness

    Science.gov (United States)

    Yeh, Stuart S.

    2009-01-01

    The cost-effectiveness of class size reduction (CSR) was compared with the cost-effectiveness of rapid formative assessment, a promising alternative for raising student achievement. Drawing upon existing meta-analyses of the effects of student-teacher ratio, evaluations of CSR in Tennessee, California, and Wisconsin, and RAND cost estimates, CSR…

  20. Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review

    Directory of Open Access Journals (Sweden)

    Maria Ferrara

    2018-06-01

    Full Text Available Since the introduction of the recast of the EPBD European Directive 2010/31/EU, many studies on the cost-effective feasibility of nearly zero-energy buildings (NZEBs were carried out either by academic research bodies and by national bodies. In particular, the introduction of the cost-optimal methodology has given a strong impulse to research in this field. This paper presents a comprehensive and significant review on scientific works based on the application of cost-optimal analysis applications in Europe since the EPBD recast entered into force, pointing out the differences in the analyzed studies and comparing their outcomes before the new recast of EPBD enters into force in 2018. The analysis is conducted with special regard to the methods used for the energy performance assessment, the global cost calculation, and for the selection of the energy efficiency measures leading to design optimization. A critical discussion about the assumptions on which the studies are based and the resulting gaps between the resulting cost-optimal performance and the zero energy target is provided together with a summary of the resulting cost-optimal set of technologies to be used for cost-optimal NZEB design in different contexts. It is shown that the cost-optimal approach results as an effective method for delineating the future of NZEB design throughout Europe while emerging criticalities and open research issues are presented.

  1. Energy subsidies and costs in urban Ethiopia: The cases of kerosene and electricity

    Energy Technology Data Exchange (ETDEWEB)

    Kebede, Bereket [School of Development Studies, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2006-10-15

    Making energy affordable to the poor is a widely cited reason for subsidies. Whether subsidies achieve this objective is rarely analysed. In this article, the significance of kerosene and electricity subsidies in relation to the purchasing power of Ethiopian urban households is examined. The results indicate that subsidies on kerosene prices and electricity tariffs do not significantly change the overall costs for households. Even poor households on the average have the purchasing power to access unsubsidised kerosene. The overall costs-including fixed costs-of accessing electricity are very high relative to purchasing power even for the well to do urban households if down payments are made. But when costs are spread over the lifespan of fixed components, even the average poor have the purchasing power to access electricity. These results underscore the importance of a mechanism that spreads fixed costs over longer periods of time. Spreading fixed costs over electricity bills and providing credit facilities are two options that can ameliorate the condition. (author)

  2. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  3. Energy Savings Measure Packages. Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the United States. These packages are optimized for minimum cost to homeowners for source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home; this typically amounts to $300 - $700/year.

  4. Modelling the costs of energy crops. A case study of US corn and Brazilian sugar cane

    International Nuclear Information System (INIS)

    Mejean, Aurelie; Hope, Chris

    2010-01-01

    High crude oil prices, uncertainties about the consequences of climate change and the eventual decline of conventional oil production raise the prospects of alternative fuels, such as biofuels. This paper describes a simple probabilistic model of the costs of energy crops, drawing on the user's degree of belief about a series of parameters as an input. This forward-looking analysis quantifies the effects of production constraints and experience on the costs of corn and sugar cane, which can then be converted to bioethanol. Land is a limited and heterogeneous resource: the crop cost model builds on the marginal land suitability, which is assumed to decrease as more land is taken into production, driving down the marginal crop yield. Also, the maximum achievable yield is increased over time by technological change, while the yield gap between the actual yield and the maximum yield decreases through improved management practices. The results show large uncertainties in the future costs of producing corn and sugar cane, with a 90% confidence interval of 2.9-7.2$/GJ in 2030 for marginal corn costs, and 1.5-2.5$/GJ in 2030 for marginal sugar cane costs. The influence of each parameter on these supply costs is examined. (author)

  5. Solar Irradiance Measurements Using Smart Devices: A Cost-Effective Technique for Estimation of Solar Irradiance for Sustainable Energy Systems

    Directory of Open Access Journals (Sweden)

    Hussein Al-Taani

    2018-02-01

    Full Text Available Solar irradiance measurement is a key component in estimating solar irradiation, which is necessary and essential to design sustainable energy systems such as photovoltaic (PV systems. The measurement is typically done with sophisticated devices designed for this purpose. In this paper we propose a smartphone-aided setup to estimate the solar irradiance in a certain location. The setup is accessible, easy to use and cost-effective. The method we propose does not have the accuracy of an irradiance meter of high precision but has the advantage of being readily accessible on any smartphone. It could serve as a quick tool to estimate irradiance measurements in the preliminary stages of PV systems design. Furthermore, it could act as a cost-effective educational tool in sustainable energy courses where understanding solar radiation variations is an important aspect.

  6. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy- Efficient Wood-Plastic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Emerick, Robert W.; England, Alfred B.; Flanders, James P.; Loge, Frank J.; Wiedeman, Katherine A.; Wolcott, Michael P.

    2010-03-31

    In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic composite products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systems—without cell debris removal—is a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of

  7. Deregulation and Nuclear Training: Cost Effective Alternatives

    International Nuclear Information System (INIS)

    Richard P. Coe; Patricia A. Lake

    2000-01-01

    Training is crucial to the success of any organization. It is also expensive, with some estimates exceeding $50 billion annually spent on training by U.S. corporations. Nuclear training, like that of many other highly technical organizations, is both crucial and costly. It is unlikely that the amount of training can be significantly reduced. If anything, current trends indicate that training needs will probably increase as the industry and workforce ages and changes. With the advent of energy deregulation in the United States, greater pressures will surface to make the costs of energy more cost-competitive. This in turn will drive businesses to more closely examine existing costs and find ways to do things in a more cost-effective way. The commercial nuclear industry will be no exception, and nuclear training will be equally affected. It is time for nuclear training and indeed the entire nuclear industry to begin using more aggressive techniques to reduce costs. This includes the need for nuclear training to find alternatives to traditional methods for the delivery of cost-effective high-quality training that meets regulatory requirements and produces well-qualified personnel capable of working in an efficient and safe manner. Computer-based and/or Web-based training are leading emerging technologies

  8. Effect of balance support on the energy cost of walking after stroke

    NARCIS (Netherlands)

    IJmker, Trienke; Houdijk, Han; Lamoth, Claudine J.; Jarbandhan, Ameerani V.; Rijntjes, Danielle; Beek, Peter J.; van der Woude, Lucas H.

    Objective: To examine the influence of balance support on the energy cost of treadmill and overground walking in ambulatory patients with stroke. Design: Cross-sectional. Setting: Research laboratory at a rehabilitation center. Participants: Patients with stroke depending on a walking aid in daily

  9. Comparison of cost effectiveness of risk reduction among different energy systems: French case studies. Final report for the period 1 May 1982 - 20 February 1988

    International Nuclear Information System (INIS)

    Lochard, J.

    1989-08-01

    The report presents the three French case studies performed in the framework of the co-ordinated research programme on ''Comparison of Cost-Effectiveness of Risk Reduction Among Different Energy Systems'': cost-effectiveness of robotics and remote tooling for occupational risk reduction at a nuclear fuel fabrication facility; cost-effectiveness of protection actions to reduce occupational exposure in underground uranium mines; cost effectiveness of safety measures to reduce public risk associated with the transportation of UF 6 by truck and trains. Figs and tabs

  10. Comparative environmental effects and cost analysis between conventional and non-conventional energy sources - A case for objective analysis and decision making in Nigeria's Energy Policy

    International Nuclear Information System (INIS)

    Akinbami, J. F. K.

    1997-01-01

    Energy, which is simply 'ability to do work' is the central cross-sectoral issue which affects all human activities either directly or indirectly. It is a vital input to economic growth and development of any economy, developing or developed. However, as there are two sides to a coin, so is the issue of energy use. While it contributes to the economic growth and development of a nation, its usage has with it attendant environmental consequences. At every stage along the chain, from resource delineation and extraction, through conversion, transportation, and end-use, the energy industry faces environmental challenges. Each of these stages and even the associated environmental burdens is not without a cost. This paper therefore sets out to review and compare the environmental effects as well as the cost analysis of both the conventional and non-conventional energy resources generally and with particular emphasis on Nigeria. This hopefully should then inform the citizenry in their drive for energy consumption as well as the nation's planners and decision makers in their efforts at adequate energy planning and management for both economic and environmental sustainability in the country

  11. 10 CFR 436.17 - Establishing energy or water cost data.

    Science.gov (United States)

    2010-01-01

    ... with § 436.14(c). (b) When energy costs begin to accrue in the base year, the present value of energy... present value of energy costs over the delay, calculated using the adjusted, modified uniform present worth factor for the period of delay, from the present value of energy costs over the study period or...

  12. Russian energy prices, taxes and costs 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Russian energy industry may be the country's most promising exporter, but it is struggling to free itself from the heavy regulation and economic distortions inherited from the Soviet era. This analysis examines Russian price and tax policies as well as production costs in 1993, and their effect on supply and demand in the oil, coal, gas and electricity sectors. The study underscores the broad consensus among both Western and Russian experts that primary energy prices should be lifted to world levels. It offers a framework for addressing the great question about how fast this should be done in a country undergoing a tremendous social and political transformation

  13. Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand

    International Nuclear Information System (INIS)

    Nguyen, Thu Lan Thi; Gheewala, Shabbir H.; Garivait, Savitri

    2007-01-01

    Since 2001, in order to enhance ethanol's cost competitiveness with gasoline, the Thai government has approved the exemption of excise tax imposed on ethanol, controlling the retail price of gasohol (a mixture of ethanol and gasoline at a ratio of 1:9) to be less than that of octane 95 gasoline, within a range not exceeding 1.5 baht a litre. The policy to promote ethanol for transport is being supported by its positive effects on energy security and climate change mitigation. An analysis of energy, greenhouse gas (GHG) balances and GHG abatement cost was done to evaluate fuel ethanol produced from cassava in Thailand. Positive energy balance of 22.4 MJ/L and net avoided GHG emission of 1.6 kg CO 2 eq./L found for cassava-based ethanol (CE) proved that it would be a good substitute for gasoline, effective in fossil energy saving and GHG reduction. With a GHG abatement cost of US$99 per tonne of CO 2 , CE is rather less cost effective than the many other climate strategies relevant to Thailand in the short term. Opportunities for improvements are discussed to make CE a reasonable option for national climate policy

  14. The effect of simulating weight gain on the energy cost of walking in unimpaired children and children with cerebral palsy.

    Science.gov (United States)

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm

    2008-12-01

    To examine the effect of simulating weight gain on the energy cost of walking in children with cerebral palsy (CP) compared with unimpaired children. Repeated measures, matched subjects, controlled. University hospital clinical gait and movement analysis laboratory. Children (n=42) with CP and unimpaired children (n=42). Addition of 10% of body mass in weight belt. Energy cost of walking parameters consisting of walking speed, Physiological Cost Index, Total Heart Beat Index, oxygen uptake (VO2), gross oxygen cost, nondimensional net oxygen cost, and net oxygen cost with speed normalized to height were measured by using a breath-by-breath gas analysis system (K4b2) and a light beam timing gate system arranged around a figure 8 track. Two walking trials were performed in random order, with and the other without wearing a weighted belt. Children with CP and their unimpaired counterparts responded in fundamentally different ways to weight gain. The unimpaired population maintained speed and VO2 but the children with CP trended toward a drop in their speed and an increase in their VO2. The oxygen consumption of children with CP showed a greater dependence on mass than the unimpaired group (P=.043). An increase of a relatively small percentage in body mass began to significantly impact the energy cost of walking in children with CP. This result highlights the need for weight control to sustain the level of functional walking in these children.

  15. A compilation of energy costs of physical activities.

    Science.gov (United States)

    Vaz, Mario; Karaolis, Nadine; Draper, Alizon; Shetty, Prakash

    2005-10-01

    There were two objectives: first, to review the existing data on energy costs of specified activities in the light of the recommendations made by the Joint Food and Agriculture Organization/World Health Organization/United Nations University (FAO/WHO/UNU) Expert Consultation of 1985. Second, to compile existing data on the energy costs of physical activities for an updated annexure of the current Expert Consultation on Energy and Protein Requirements. Electronic and manual search of the literature (predominantly English) to obtain published data on the energy costs of physical activities. The majority of the data prior to 1955 were obtained using an earlier compilation of Passmore and Durnin. Energy costs were expressed as physical activity ratio (PAR); the energy cost of the activity divided by either the measured or predicted basal metabolic rate (BMR). The compilation provides PARs for an expanded range of activities that include general personal activities, transport, domestic chores, occupational activities, sports and other recreational activities for men and women, separately, where available. The present compilation is largely in agreement with the 1985 compilation, for activities that are common to both compilations. The present compilation has been based on the need to provide data on adults for a wide spectrum of human activity. There are, however, lacunae in the available data for many activities, between genders, across age groups and in various physiological states.

  16. Simple Levelized Cost of Energy (LCOE) Calculator Documentation | Energy

    Science.gov (United States)

    ;M, performance and fuel costs. Note that this doesn't include financing issues, discount issues ). This means that the LCOE is the minimum price at which energy must be sold for an energy project to the balance between debt-financing and equity-financing, and an assessment of the financial risk

  17. Exergy costing for energy saving in combined heating and cooling applications

    International Nuclear Information System (INIS)

    Nguyen, Chan; Veje, Christian T.; Willatzen, Morten; Andersen, Peer

    2014-01-01

    Highlights: • We investigate the basis for cost apportioning of simultaneous heating and cooling. • Two thermoeconomic methods based on energy and exergy costing is demonstrated. • The unit cost of heating and cooling for a heat pump system is found and compared. • Energy costing may obstruct efficient use of energy. • Exergy costing provides the most rational cost apportioning for energy saving. - Abstract: The aim of this study is to provide a price model that motivates energy saving for a combined district heating and cooling system. A novel analysis using two thermoeconomic methods for apportioning the costs to heating and cooling provided simultaneously by an ammonia heat pump is demonstrated. In the first method, referred to as energy costing, a conventional thermoeconomic analysis is used. Here the ammonia heat pump is subject to a thermodynamic analysis with mass and energy balance equations. In the second method referred to as exergy costing, an exergy based economic analysis is used, where exergy balance equations are used in conjunction with mass and energy balance equations. In both costing methods the thermodynamic analysis is followed by an economic analysis which includes investment and operating costs. For both methods the unit costs of heating and cooling are found and compared. The analysis shows that the two methods yield significantly different results. Rather surprisingly, it is demonstrated that the exergy costing method results in about three times higher unit cost for heating than for cooling as opposed to equal unit costs when using the energy method. Further the exergy-based cost for heating changes considerably with the heating temperature while that of cooling is much less affected

  18. 2013 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Mone, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    This report uses representative project types to estimate the levelized cost of wind energy (LCOE) in the United States for 2013. Scheduled to be published on an annual basis, it relies on both market and modeled data to maintain a current understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed from this analysis are used to inform wind technology cost projections, goals, and improvement opportunities.

  19. Cost-time management for environmental restoration activities at the Department of Energy`s Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Nash, C.L. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1992-05-22

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy`s goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO).

  20. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    International Nuclear Information System (INIS)

    Lutz, James; Lekov, Alex; Chan, Peter; Whitehead, Camilla Dunham; Meyers, Steve; McMahon, James

    2006-01-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered

  1. Assessing Cost-Effectiveness in Obesity (ACE-Obesity: an overview of the ACE approach, economic methods and cost results

    Directory of Open Access Journals (Sweden)

    Swinburn Boyd

    2009-11-01

    Full Text Available Abstract Background The aim of the ACE-Obesity study was to determine the economic credentials of interventions which aim to prevent unhealthy weight gain in children and adolescents. We have reported elsewhere on the modelled effectiveness of 13 obesity prevention interventions in children. In this paper, we report on the cost results and associated methods together with the innovative approach to priority setting that underpins the ACE-Obesity study. Methods The Assessing Cost Effectiveness (ACE approach combines technical rigour with 'due process' to facilitate evidence-based policy analysis. Technical rigour was achieved through use of standardised evaluation methods, a research team that assembles best available evidence and extensive uncertainty analysis. Cost estimates were based on pathway analysis, with resource usage estimated for the interventions and their 'current practice' comparator, as well as associated cost offsets. Due process was achieved through involvement of stakeholders, consensus decisions informed by briefing papers and 2nd stage filter analysis that captures broader factors that influence policy judgements in addition to cost-effectiveness results. The 2nd stage filters agreed by stakeholders were 'equity', 'strength of the evidence', 'feasibility of implementation', 'acceptability to stakeholders', 'sustainability' and 'potential for side-effects'. Results The intervention costs varied considerably, both in absolute terms (from cost saving [6 interventions] to in excess of AUD50m per annum and when expressed as a 'cost per child' estimate (from Conclusion The use of consistent methods enables valid comparison of potential intervention costs and cost-offsets for each of the interventions. ACE-Obesity informs policy-makers about cost-effectiveness, health impact, affordability and 2nd stage filters for important options for preventing unhealthy weight gain in children. In related articles cost-effectiveness results and

  2. International bioenergy transport costs and energy balance

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N.; Suurs, Roald A.A.; Faaij, Andre P.C.

    2005-01-01

    To supply biomass from production areas to energy importing regions, long-distance international transport is necessary, implying additional logistics, costs, energy consumption and material losses compared to local utilisation. A broad variety of bioenergy chains can be envisioned, comprising different biomass feedstock production systems, pre-treatment and conversion operations, and transport of raw and refined solid biomass and liquid bio-derived fuels. A tool was developed to consistently compare the possible bioenergy supply chains and assess the influence of key parameters, such as distance, timing and scale on performance. Chains of European and Latin American bioenergy carriers delivered to Western Europe were analysed using generic data. European biomass residues and crops can be delivered at 90 and 70 euros/tonne dry (4.7 and 3.7 euros/GJ HHV ) when shipped as pellets. South American crops are produced against much lower costs. Despite the long shipping distance, the costs in the receiving harbour can be as low as 40 euros/tonne dry or 2.1 euros/GJ HHV ; the crop's costs account for 25-40% of the delivered costs. The relatively expensive truck transport from production site to gathering point restricts the size of the production area; therefore, a high biomass yield per hectare is vital to enable large-scale systems. In all, 300 MW HHV Latin American biomass in biomass integrated gasification/combined cycle plants may result in cost of electricity as little as 3.5 euros cent/kWh, competitive with fossil electricity. Methanol produced in Latin America and delivered to Europe may cost 8-10 euros/GJ HHV , when the pellets to methanol conversion is done in Europe the delivered methanol costs are higher. The energy requirement to deliver solid biomass from both crops and residues from the different production countries is 1.2-1.3 MJ primary /MJ delivered (coal ∼ 1.1 MJ/MJ). International bioenergy trade is possible against low costs and modest energy loss

  3. Transaction costs of raising energy efficiency. Working paper

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, K. [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Centre International de Recherche sur l' Environnement et le Developpement (CIRED), 94 - Nogent sur Marne (France)

    1999-05-01

    In the face of the uncertainties concerning the importance and the actual impacts of anthropogeneous climate change the extent to which measures should be adopted to avoid greenhouse gas emissions (GHG) already today and in the near future is highly controversial. More specifically, part of the debate evolves around the existence and importance of energy saving potentials to reduce CO{sub 2} emissions that may be available at negative net costs, implying that the energy cost savings of one specific technology can actually more than offset the costs of investing into this technology and of using it. This so called 'no-regret' potential would comprise measures that from a pure economic efficiency point of view would be 'worth undertaking whether or not there are climate-related reasons for doing so' (Bruce et al. 1996, p. 271). The existence of the no-regret potential is often denied by arguing, that the economic evaluation of the energy saving potentials did not take into account transaction costs (Grubb et al. 1993). This paper will examine in more detail the concept of transaction costs as it is used in the current debate on no-regret potentials (section 1). Four practical examples are presented to illustrate how transaction costs and their determinants can be identified, measured and possibly influenced (section 2). In order to link the presented cases to modelling based evaluation approaches the implications for cost evaluations of energy saving measures especially in the context of energy system modelling will be shown (section 3). (orig.)

  4. Least cost analysis of renewable energy projects

    International Nuclear Information System (INIS)

    Cosgrove-Davies, M.; Cabraal, A.

    1994-01-01

    This paper describes the methodology for evaluating dispersed and centralized rural energy options on a least cost basis. In defining the load to be served, each supply alternative must provide equivalent levels of service. The village to be served is defined by the number of loads, load density, distance from the nearest power distribution line, and load growth. Appropriate rural energy alternatives are identified and sized to satisfy the defined load. Lastly, a net present value analysis (including capital, installation, O and M, fuel, and replacement costs, etc.) is performed to identify the least cost option. A spreadsheet-based analytical tool developed by the World Bank's Asia Alternative Energy Unit (ASTAE) incorporates this approach and has been applied to compare photovoltaic solar home systems with other rural energy supply options in Indonesia. Load size and load density are found to be the critical factors in choosing between a grid and off-grid solution

  5. Levelized Cost of Energy of the Weptos wave energy converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the cost of energy calculations of a wave energy array of 90 MW, consisting of 25 x 3.6 MW Weptos wave energy converters. The calculation has been made in analogy with a publically available document presented by the UK government, covering the case of a similar size wind...

  6. Sources, availability and costs of future energy

    International Nuclear Information System (INIS)

    Hart, R.G.

    1977-08-01

    An attempt is made to put the future energy scene in perspective by quantitatively examining energy resources, energy utilization and energy costs. Available data on resources show that conventional oil and gas are in short supply and that alternative energy sources are going to have to replace oil and gas in the not too distant future. Cost/applications assessments indicate that a mix of energy sources are likely to best meet our energy needs of the future. Hydro, nuclear and coal are all practical alternatives for meeting electrical needs and electricity is a practical alternative for space heating. Coal appears to be the most practical alternative for meeting much of the industrial energy need and frontier oil or oil from the tar sands appear to be the most practical alternatives for meeting the transportation need. Solar energy shows promise of meeting some of the space heating load in Canada if economical energy storage systems can be developed. The general conclusion is that the basic energy problem is energy conversion. (author)

  7. Characterizing Synergistic Water and Energy Efficiency at the Residential Scale Using a Cost Abatement Curve Approach

    Science.gov (United States)

    Stillwell, A. S.; Chini, C. M.; Schreiber, K. L.; Barker, Z. A.

    2015-12-01

    Energy and water are two increasingly correlated resources. Electricity generation at thermoelectric power plants requires cooling such that large water withdrawal and consumption rates are associated with electricity consumption. Drinking water and wastewater treatment require significant electricity inputs to clean, disinfect, and pump water. Due to this energy-water nexus, energy efficiency measures might be a cost-effective approach to reducing water use and water efficiency measures might support energy savings as well. This research characterizes the cost-effectiveness of different efficiency approaches in households by quantifying the direct and indirect water and energy savings that could be realized through efficiency measures, such as low-flow fixtures, energy and water efficient appliances, distributed generation, and solar water heating. Potential energy and water savings from these efficiency measures was analyzed in a product-lifetime adjusted economic model comparing efficiency measures to conventional counterparts. Results were displayed as cost abatement curves indicating the most economical measures to implement for a target reduction in water and/or energy consumption. These cost abatement curves are useful in supporting market innovation and investment in residential-scale efficiency.

  8. Comparison of cost effectiveness of risk reduction among different energy systems: French case studies. Final report for the period 1 May 1982 - 20 February 1988

    Energy Technology Data Exchange (ETDEWEB)

    Lochard, J [CEPN Centre d` Etude sur l` Evaluation de la Protection dans le Domaine Nucleaire, Fontenay-Aux-Roses (France)

    1989-08-01

    The report presents the three French case studies performed in the framework of the co-ordinated research programme on ``Comparison of Cost-Effectiveness of Risk Reduction Among Different Energy Systems``: cost-effectiveness of robotics and remote tooling for occupational risk reduction at a nuclear fuel fabrication facility; cost-effectiveness of protection actions to reduce occupational exposure in underground uranium mines; cost effectiveness of safety measures to reduce public risk associated with the transportation of UF{sub 6} by truck and trains. Figs and tabs.

  9. Assessing the value of mepolizumab for severe eosinophilic asthma: a cost-effectiveness analysis.

    Science.gov (United States)

    Whittington, Melanie D; McQueen, R Brett; Ollendorf, Daniel A; Tice, Jeffrey A; Chapman, Richard H; Pearson, Steven D; Campbell, Jonathan D

    2017-02-01

    Adding mepolizumab to standard treatment with inhaled corticosteroids and controller medications could decrease asthma exacerbations and use of long-term oral steroids in patients with severe disease and increased eosinophils; however, mepolizumab is costly and its cost effectiveness is unknown. To estimate the cost effectiveness of mepolizumab. A Markov model was used to determine the incremental cost per quality-adjusted life year (QALY) gained for mepolizumab plus standard of care (SoC) and for SoC alone. The population, adults with severe eosinophilic asthma, was modeled for a lifetime time horizon. A responder scenario analysis was conducted to determine the cost effectiveness for a cohort able to achieve and maintain asthma control. Over a lifetime treatment horizon, 23.96 exacerbations were averted per patient receiving mepolizumab plus SoC. Avoidance of exacerbations and decrease in long-term oral steroid use resulted in more than $18,000 in cost offsets among those receiving mepolizumab, but treatment costs increased by more than $600,000. Treatment with mepolizumab plus SoC vs SoC alone resulted in a cost-effectiveness estimate of $386,000 per QALY. To achieve cost effectiveness of approximately $150,000 per QALY, mepolizumab would require a more than 60% price discount. At current pricing, treating a responder cohort yielded cost-effectiveness estimates near $160,000 per QALY. The estimated cost effectiveness of mepolizumab exceeds value thresholds. Achieving these thresholds would require significant discounts from the current list price. Alternatively, treatment limited to responders improves the cost effectiveness toward, but remains still slightly above, these thresholds. Payers interested in improving the efficiency of health care resources should consider negotiations of the mepolizumab price and ways to predict and assess the response to mepolizumab. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All

  10. Costs and benefits of relaunching nuclear energy in Italy

    OpenAIRE

    Ivan Faiella; Luciano Lavecchia

    2012-01-01

    This paper supplies elements for assessing the costs and benefits of electronuclear energy in order to pursue three objectives: security of supply, cost reduction, and environmental sustainability. The study reached the following conclusions: 1) the use of nuclear energy increases the diversification of the energy mix and of energy suppliers, raising energy security levels, but it does not reduce Italy�s dependence on foreign energy; 2) the use of nuclear energy would not imply a reduction ...

  11. Marginal costs and co-benefits of energy efficiency investments

    International Nuclear Information System (INIS)

    Jakob, Martin

    2006-01-01

    Key elements of present investment decision-making regarding energy efficiency of new buildings and the refurbishment of existing buildings are the marginal costs of energy efficiency measures and incomplete knowledge of investors and architects about pricing, co-benefits and new technologies. This paper reports on a recently completed empirical study for the Swiss residential sector. It empirically quantifies the marginal costs of energy efficiency investments (i.e. additional insulation, improved window systems, ventilation and heating systems and architectural concepts). For the private sector, first results on the economic valuation of co-benefits such as improved comfort of living, improved indoor air quality, better protection against external noise, etc. may amount to the same order of magnitude as the energy-related benefits are given. The cost-benefit analysis includes newly developed technologies that show large variations in prices due to pioneer market pricing, add-on of learning costs and risk components of the installers. Based on new empirical data on the present cost-situation and past techno-economic progress, the potential of future cost reduction was estimated applying the experience curve concept. The paper shows, for the first time, co-benefits and cost dynamics of energy efficiency investments, of which decision makers in the real estate sector, politics and administrations are scarcely aware

  12. Energy balance and cost analysis for raisin production in Aegean Region in Turkey

    Directory of Open Access Journals (Sweden)

    Uysal Hülya

    2016-01-01

    Full Text Available The aim of this study is to determine energy consumption of input and output used in raisin production and making a cost analysis in Aegean Region. Energy output-input analysis is generally done to determine the scope of environment and energy efficiency of agricultural production. In this study the cost of raisin production was calculated by Manisa Viticulture Research Institute's records in 2015. Costs of inputs and prices of raisin were obtained from various sources such as Turkish Statistical Institute, Aegean Exporters' Association and Turkish Ministry of Food, Agriculture and Livestock. The total energy input necessity for raisin production was 39,066.91 MJ/ha. The research results indicated that the total energy input used for raisin was mainly dependent on non-renewable energy forms (%97. The high ratio of non-renewable energy in the total used energy inputs causes negative effects on the sustainability in agricultural production. Among input energy sources, diesel oil, chemical fertilizers and electricity contained highest energy shares with 34.30%, 26.96%, and 22.50% respectively. The energy ratio and energy productivity were found to be 6.04 and 0.51 kg/MJ. Gross production value and total variable costs for raisin were $ 8,600 and $ 4,528.25, respectively. As a result of cost analysis, gross margin was calculated as $ 4,071.75.

  13. Cost of supplying energy from New Zealand resources

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Robert G.

    1977-10-15

    The kinds of costs which face the community when a power project is promoted are broadly discussed. Sometimes, costs such as social, economic, and environmental impacts do not appear often in budgetary form. The growth of public participation is discussed. Components (investigation costs, development costs, distribution costs, social costs, environmental costs, etc.) which contribute to the cost of energy production and supply are examined in some detail.

  14. Annual Energy Usage Reduction and Cost Savings of a School: End-Use Energy Analysis

    Science.gov (United States)

    Alghoul, M. A.; Bakhtyar, B.; Asim, Nilofar; Sopian, K.

    2014-01-01

    Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school's usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m2/year, but can theoretically be reduced to 40.19 kWh/mm2/year. PMID:25485294

  15. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    Energy Technology Data Exchange (ETDEWEB)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  16. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J.; Lekov, A.; Chan, P.; Dunham Whitehead, C.; Meyers, S.; McMahon, J. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Environmental Energy Technologies Div.

    2006-03-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered. (author)

  17. Renewable energies: the cost of intermittency

    International Nuclear Information System (INIS)

    Crassous, Renaud; Roques, Fabien

    2013-01-01

    The authors indicate the different adaptations which will be required for the electric system to cope with the intermittency of solar and wind energy production, and propose an approximate assessment of the associated costs. Different types of adaptation are addressed: secure production in case of absence of wind or sun (electricity imports, construction of additional power stations), use of more flexible production means (gas turbines), grid extensions (connection to offshore production sites, routing of production one part of the country to the other). They think that beyond a 20 per cent share for renewable energies, these costs could rapidly increase

  18. Innovative approach for achieving of sustainable urban water supply system by using of solar photovoltaic energy

    Directory of Open Access Journals (Sweden)

    Jure Margeta

    2017-01-01

    Full Text Available Paper describes and analyses new and innovative concept for possible integration of solar photovoltaic (PV energy in urban water supply system (UWSS. Proposed system consists of PV generator and invertor, pump station and water reservoir. System is sized in such a manner that every his part is sized separately and after this integrated into a whole. This integration is desirable for several reasons, where the most important is the achievement of the objectives of sustainable living in urban areas i.e. achieving of sustainable urban water supply system. The biggest technological challenge associated with the use of solar, wind and other intermittent renewable energy sources RES is the realization of economically and environmentally friendly electric energy storage (EES. The paper elaborates the use of water reservoires in UWSS as EES. The proposed solution is still more expensive than the traditional and is economically acceptable today in the cases of isolated urban water system and special situations. Wider application will depend on the future trends of energy prices, construction costs of PV generators and needs for CO2 reduction by urban water infrastructure.

  19. Health and economic costs of alternative energy sources

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Manne, A.S.

    1977-01-01

    National energy policy requires realistic totaling of costs in assessing energy alternatives. The Biomedical and Environmental Assessment Division (BEAD) at Brookhaven is estimating biomedical and environmental costs of energy production and use. All forms of energy, including new technologies, are being considered. Beginning with a compilation of pollutants from the energy system, the various paths to man are traced and health effects evaluated. Excess mortality and morbidity in the U.S. attributable to a total fuel cycle to produce 6.6x10 9 kwh - about a year's production of a 1000-MWe power plant - are being estimated. Where enough information is available, estimates are quantitative. In some instances only the nature of the potential hazard can be described. This assessment aims at providing initial estimates of relative impacts to identify where the important health hazards in each fuel cycle arise, thereby identifying key areas for judging the total costs of alternative energy sources, and those areas of research likely to improve the accuracy of the estimates. It was thus estimated that the production of electric power from all sources in the U.S. in 1975 was associated with between two to nineteen thousand deaths and twenty-nine to fourty-eight thousand disabilities; this is roughly between 0.2 and 2% of total deaths in U.S. ages 1-74. The estimated health effects associated with a total fuel cycle standardized to produce 10 10 kwh electric power were: from coal estimated deaths 20-200, estimated disabilities 300-500; from oil estimated deaths 3-150, estimated disabilities 150-300; from gas estimated deaths 0.2, estimated disabilities 20; from nuclear estimated deaths 1-3, estimated disabilities 8-30. The differences in the year 2000 between health impacts of the U.S. energy system under normal growth expectations and under conditions of a nuclear moratorium were estimated. On the assumption that the nuclear moratorium would require 320 additional 1000-MWe

  20. Marginal abatement cost curves for policy recommendation – A method for energy system analysis

    International Nuclear Information System (INIS)

    Tomaschek, Jan

    2015-01-01

    The transport sector is seen as one of the key factors for driving future energy consumption and greenhouse gas (GHG) emissions. In order to rank possible measures marginal abatement cost curves have become a tool to graphically represent the relationship between abatement costs and emission reduction. This paper demonstrates how to derive marginal abatement cost curves for well-to-wheel GHG emissions of the transport sector considering the full energy provision chain and the interlinkages and interdependencies within the energy system. Presented marginal abatement cost curves visualize substitution effects between measures for different marginal mitigation costs. The analysis makes use of an application of the energy system model generator TIMES for South Africa (TIMES-GEECO). For the example of Gauteng province, this study exemplary shows that the transport sector is not the first sector to address for cost-efficient reduction of GHG emissions. However, the analysis also demonstrates that several options are available to mitigate transport related GHG emissions at comparable low marginal abatement costs. This methodology can be transferred to other economic sectors as well as to other regions in the world to derive cost-efficient GHG reduction strategies

  1. A parametric costing model for wave energy technology

    International Nuclear Information System (INIS)

    1992-01-01

    This document describes the philosophy and technical approach to a parametric cost model for offshore wave energy systems. Consideration is given both to existing known devices and other devices yet to be conceptualised. The report is complementary to a spreadsheet based cost estimating model. The latter permits users to derive capital cost estimates using either inherent default data or user provided data, if a particular scheme provides sufficient design definition for more accurate estimation. The model relies on design default data obtained from wave energy device designs and a set of specifically collected cost data. (author)

  2. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  3. Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation

    International Nuclear Information System (INIS)

    Šarauskis, Egidijus; Buragienė, Sidona; Masilionytė, Laura; Romaneckas, Kęstutis; Avižienytė, Dovile; Sakalauskas, Antanas

    2014-01-01

    To achieve energy independence, Lithuania and other Baltic countries are searching for new ways to produce energy. Maize is a crop that is suitable for both food and forage, as well as for the production of bioenergy. The objective of this work was to assess the energy efficiency of maize cultivation technologies in different systems of reduced tillage. The experimental research and energy assessment was carried out for five different tillage systems: DP (deep ploughing), SP (), DC (deep cultivation), SC (shallow cultivation) and NT (no tillage). The assessment of the fuel inputs for these systems revealed that the greatest amount of diesel fuel (67.2 l ha −1 ) was used in the traditional DP system. The reduced tillage systems required 12–58% less fuel. Lower fuel consumption reduces the costs of technological operations and reduces CO 2 emissions, which are associated with the greenhouse effect. The agricultural machinery used in reduced tillage technologies emits 107–223 kg ha −1 of CO 2 gas into the environment, whereas DP emits 253 kg ha −1 of CO 2 . The energy analysis conducted in this study showed that the greatest total energy input (approximately 18.1 GJ ha −1 ) was associated with the conventional deep-ploughing tillage technology. The energy inputs associated with the reduced-tillage technologies, namely SP, DC and SC, ranged from 17.1 to 17.6 GJ ha −1 . The lowest energy input (16.2 GJ ha −1 ) was associated with the NT technology. Energy efficiency ratios for the various technologies were calculated as a function of the yield of maize grain and biomass. The best energy balance and the highest energy efficiency ratio (14.0) in maize cultivation was achieved with the NT technology. The energy efficiency ratios for DP, SP, DC and SC were 12.4, 13.4, 11.3 and 12.0, respectively. - Highlights: • Energetical and economic analysis of maize cultivation was done. • Reduced tillage technology reduces working time, fuel consumption

  4. Cost-effectiveness of varenicline for smoking cessation

    DEFF Research Database (Denmark)

    Keiding, Hans

    2009-01-01

    Smoking cessation therapies are among the most cost-effective preventive healthcare measures. Varenicline is a relatively new drug developed especially for this purpose, and it has been shown to achieve better quit rates than nicotine replacement therapies and the non-nicotine-based drug, bupropion...

  5. Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO2 targets: connections between transportation and other energy sectors.

    Science.gov (United States)

    Grahn, M; Azar, C; Williander, M I; Anderson, J E; Mueller, S A; Wallington, T J

    2009-05-01

    The regionalized Global Energy Transition (GET-R 6.0) model has been modified to include a detailed description of light-duty vehicle options and used to investigate the potential impact of carbon capture and storage (CCS) and concentrating solar power (CSP) on cost-effective fuel/vehicle technologies in a carbon-constrained world. Total CO2 emissions were constrained to achieve stabilization at 400-550 ppm, by 2100, at lowesttotal system cost The dominantfuel/vehicle technologies varied significantly depending on CO2 constraint future cost of vehicle technologies, and availability of CCS and CSP. For many cases, no one technology dominated on a global scale. CCS provides relatively inexpensive low-CO2 electricity and heatwhich prolongs the use of traditional ICEVs. CSP displaces fossil fuel derived electricity, prolongs the use of traditional ICEVs, and promotes electrification of passenger vehicles. In all cases considered, CCS and CSP availability had a major impact on the lowest cost fuel/vehicle technologies, and alternative fuels are needed in response to expected dwindling oil and natural gas supply potential by the end of the century.

  6. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  7. Cost-effectiveness of high-efficiency appliances in the U.S. residential sector: A case study

    International Nuclear Information System (INIS)

    McNeil, Michael A.; Bojda, Nicholas

    2012-01-01

    This paper presents an analysis of the cost-effectiveness of high-efficiency appliances in the U.S. residential sector using cost and efficiency data developed as part of the regulatory process of the U.S. Department of Energy's Appliances and Commercial Equipment Standards Program. These data are presented as a case study in the development of an ‘efficiency technology database’ which can be expanded and published as a resource to other researchers and policy makers seeking scenarios that optimize efficiency policies and forecast their likely impacts on energy demand and greenhouse gas emissions. The use of this data to evaluate cost-effectiveness according to a variety of metrics is demonstrated using the example of one refrigerator–freezer product class. Cost-effectiveness is then evaluated in terms of cost of conserved energy for refrigerators, room air conditioners, water heaters, cooking equipment, central air conditioners and gas furnaces. The resulting potential of cost-effective improvement ranges from 1% to 53% of energy savings, with a typical potential of 15–20%. - Highlights: ► We determined the potential for cost-effective efficiency for residential appliances. ► We cover 6 appliance groups using cost of conserved energy as a metric for cost-effectiveness. ► Data are source from the DOE's Appliance and Commercial Equipment Standards Program. ► Between 15% and 20% additional cost-effective efficiency improvement is possible.

  8. The delivery of low-cost, low-carbon rural energy services

    Energy Technology Data Exchange (ETDEWEB)

    Casillas, Christian E., E-mail: cecasillas@berkeley.edu [Energy and Resources Group, University of California, Berkeley (United States); Kammen, Daniel M. [Energy and Resources Group, University of California, Berkeley (United States); Goldman School of Public Policy, University of California, Berkeley, CA 94720 (United States); The World Bank, Washington, DC 20433 (United States)

    2011-08-15

    The provision of both electrical and mechanical energy services can play a critical role in poverty alleviation for the almost two billion rural users who currently lack access to electricity. Distributed generation using diesel generators remains a common means of electricity provision for rural communities throughout the world. Due to rising fuel costs, the need to address poverty, and consequences of global warming, it is necessary to develop cost efficient means of reducing fossil fuel consumption in isolated diesel microgrids. Based on a case study in Nicaragua, a set of demand and supply side measures are ordered by their annualized costs in order to approximate an energy supply curve. The curve highlights significant opportunities for reducing the costs of delivering energy services while also transitioning to a carbon-free electrical system. In particular, the study demonstrates the significant cost savings resulting from the implementation of conventional metering, efficient residential lighting, and electricity generation using renewable energy sources. - Highlights: > We present a case study of conservation measures implemented in a diesel microgrid. > An energy conservation and supply curve is constructed using additional measures. > Energy efficiency and renewable energy result in cost savings and carbon abatement. > We discuss weaknesses of energy supply and carbon abatement curve calculations

  9. Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses.

    Directory of Open Access Journals (Sweden)

    Gottfried Sachs

    Full Text Available Albatrosses do something that no other birds are able to do: fly thousands of kilometres at no mechanical cost. This is possible because they use dynamic soaring, a flight mode that enables them to gain the energy required for flying from wind. Until now, the physical mechanisms of the energy gain in terms of the energy transfer from the wind to the bird were mostly unknown. Here we show that the energy gain is achieved by a dynamic flight manoeuvre consisting of a continually repeated up-down curve with optimal adjustment to the wind. We determined the energy obtained from the wind by analysing the measured trajectories of free flying birds using a new GPS-signal tracking method yielding a high precision. Our results reveal an evolutionary adaptation to an extreme environment, and may support recent biologically inspired research on robotic aircraft that might utilize albatrosses' flight technique for engineless propulsion.

  10. Pricing district heating by marginal cost

    International Nuclear Information System (INIS)

    Difs, Kristina; Trygg, Louise

    2009-01-01

    A vital measure for industries when redirecting the energy systems towards sustainability is conversion from electricity to district heating (DH). This conversion can be achieved for example, by replacing electrical heating with DH and compression cooling with heat-driven absorption cooling. Conversion to DH must, however, always be an economically attractive choice for an industry. In this paper the effects for industries and the local DH supplier are analysed when pricing DH by marginal cost in combination with industrial energy efficiency measures. Energy audits have shown that the analysed industries can reduce their annual electricity use by 30% and increase the use of DH by 56%. When marginal costs are applied as DH tariffs and the industrial energy efficiency measures are implemented, the industrial energy costs can be reduced by 17%. When implementing the industrial energy efficiency measures and also considering a utility investment in the local energy system, the local DH supplier has a potential to reduce the total energy system cost by 1.6 million EUR. Global carbon dioxide emissions can be reduced by 25,000 tonnes if the industrial energy efficiency measures are implemented and when coal-condensing power is assumed to be the marginal electricity source

  11. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  12. Literature Review of Data on the Incremental Costs to Design and Build Low-Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, W. D.

    2008-05-14

    This document summarizes findings from a literature review into the incremental costs associated with low-energy buildings. The goal of this work is to help establish as firm an analytical foundation as possible for the Building Technology Program's cost-effective net-zero energy goal in the year 2025.

  13. Energy transition. A complete view on costs, performance, flexibility and prices of energies - Journal nr 11

    International Nuclear Information System (INIS)

    Boncorps, Jean-Claude; Larzilliere, Marc; Bomo, Nicole; Bruder, Michel; Buscailhon, Jean-Marie; Cappe, Daniel; DobiaS, Georges; Fregere, Jean-Pierre; Garipuy, Yves; Hougueres, Gerard; Martin, Jean-Loup; Mollard, Dominique; Moncomble, Jean-Eudes; Wiltz, Bruno; Roudier, Jacques

    2013-02-01

    This publication aims at proposing information on the issues of energy prices, of energy production costs and of energy delivery costs, and at showing their complexity while clearing up some wrong ideas about them. After an introduction on the addressed problematic, on information sources and on uncertainties, the authors give a general overview of the definitions of a cost, of a price, of primary, secondary and final energies, of user diversity and energy demand variation in time, of energy production variations in time, and present energy taxing in France and in the European Union, the CO 2 market, and energy savings in France in various sectors (transports, buildings, industry). Then, they address the various primary energies (coal, oil, natural gas, biomass, geothermal heat, thermal solar) and secondary energies (nuclear, hydroelectricity, ground-based wind energy, renewable sea energies, geothermal electricity, electricity grids, heat networks and co-generation) and discuss for each or some of them issues like: world market, costs and pricing, perspectives, resources and constraints, technologies

  14. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    International Nuclear Information System (INIS)

    Custer, W.R. Jr.; Messick, C.D.

    1996-01-01

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies

  15. Achieving Energy Efficient Ship Operations Under Third Party Management

    DEFF Research Database (Denmark)

    Taudal Poulsen, René; Sornn-Friese, Henrik

    2015-01-01

    Profitable energy saving measures are often not fully implemented in shipping, causing energy efficiency gaps. The paper identifies energy efficiency gaps in ship operations, and explores their causes. Lack of information on energy efficiency, lack of energy training at sea and onshore and lack...... of time to produce and provide reliable energy efficiency information cause energy efficiency gaps. The paper brings together the energy efficiency and ship management literatures, demonstrating how ship management models influence energy efficiency in ship operations. Achieving energy efficiency in ship...

  16. Energy saving and cost saving cooling; Energie und Kosten sparende Kuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Klaus W. [Architektur- und Fachpressebuero Klaus W. Koenig, Ueberlingen (Germany)

    2012-07-01

    In the case of cost reduction, energy conservation and resource savings, rain water is an ideal medium offering more advantages in comparison to the cooling with drinking water. There are no fees for the drinking water and drainage of rain water. It is not necessary to soften rain water so that further operational costs for the treatment and drainage of waste water can be saved. The avoidance of the related material flows and necessary energy is a practiced environmental protection and climate protection.

  17. The analysis of security cost for different energy sources

    International Nuclear Information System (INIS)

    Jun, Eunju; Kim, Wonjoon; Chang, Soon Heung

    2009-01-01

    Global concerns for the security of energy have steadily been on the increase and are expected to become a major issue over the next few decades. Urgent policy response is thus essential. However, little attempt has been made at defining both energy security and energy metrics. In this study, we provide such metrics and apply them to four major energy sources in the Korean electricity market: coal, oil, liquefied natural gas, and nuclear. In our approach, we measure the cost of energy security in terms of supply disruption and price volatility, and we consider the degree of concentration in energy supply and demand using the Hirschman-Herfindahl index (HHI). Due to its balanced fuel supply and demand, relatively stable price, and high abundance, we find nuclear energy to be the most competitive energy source in terms of energy security in the Korean electricity market. LNG, on the other hand, was found to have the highest cost in term of energy security due to its high concentration in supply and demand, and its high price volatility. In addition, in terms of cost, we find that economic security dominates supply security, and as such, it is the main factor in the total security cost. Within the confines of concern for global energy security, our study both broadens our understanding of energy security and enables a strategic approach in the portfolio management of energy consumption.

  18. Large-scale offshore wind energy. Cost analysis and integration in the Dutch electricity market

    International Nuclear Information System (INIS)

    De Noord, M.

    1999-02-01

    The results of analysis of the construction and integration costs of large-scale offshore wind energy (OWE) farms in 2010 are presented. The integration of these farms (1 and 5 GW) in the Dutch electricity distribution system have been regarded against the background of a liberalised electricity market. A first step is taken for the determination of costs involved in solving integration problems. Three different types of foundations are examined: the mono-pile, the jacket and a new type of foundation: the concrete caisson pile: all single-turbine-single-support structures. For real offshore applications (>10 km offshore, at sea-depths >20 m), the concrete caisson pile is regarded as the most suitable. The price/power ratios of wind turbines are analysed. It is assumed that in 2010 turbines in the power range of 3-5 MW are available. The main calculations have been conducted for a 3 MW turbine. The main choice in electrical infrastructure is for AC or DC. Calculations show that at distances of 30 km offshore and more, the use of HVDC will result in higher initial costs but lower operating costs. The share of operating and maintenance (O ampersand M) costs in the kWh cost price is approximately 3.3%. To be able to compare the two farms, a base case is derived with a construction time of 10 years for both. The energy yield is calculated for a wind regime offshore of 9.0 m/s annual mean wind speed. Per 3 MW turbine this results in an annual energy production of approximately 12 GWh. The total farm efficiency amounts to 82%, resulting in a total farm capacity factor of 38%. With a required internal rate of return of 15%, the kWh cost price amounts to 0.24 DFl and 0.21 DFl for the 1 GW and 5 GW farms respectively in the base case. The required internal rate of return has a large effect on the kWh cost price, followed by costs of subsystems. O ampersand M costs have little effect on the cost price. Parameter studies show that a small cost reduction of 5% is possible when

  19. Estimation of cost and value of energy from wind turbines

    International Nuclear Information System (INIS)

    Tande, J.O.; Fransden, S.

    1995-01-01

    The International Energy Agency expert group on recommended practices for wind turbine testing and evaluation is finalizing a second edition of the E stimation of cost of energy from wind energy conversion systems . This paper summarizes those recommendations. Further, the value of wind energy in terms of the associated savings is discussed, and a case study is undertaken to illustrate wind energy cost/benefit analyses. The paper concludes that while the recommended practices on cost estimation may be useful in connection with wind energy feasibility studies there is still a need for further international agreement upon guidelines on how to assess wind energy benefits. (author)

  20. Investigations of a Cost-Optimal Zero Energy Balance

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Nørgaard, Jesper; Heiselberg, Per

    2012-01-01

    The Net Zero Energy Building (Net ZEB) concept is worldwide recognised as a promising solution for decreasing buildings’ energy use. Nevertheless, a consistent definition of the Net ZEB concept is constantly under discussion. One of the points on the Net ZEB agenda is the zero energy balance...... and taken a view point of private building owner to investigate what types of energy uses should be included in the cost-optimal zero energy balance. The analysis is conducted for five renewable energy supply systems and five user profiles with a study case of a multi-storey residential Net ZEB. The results...... have indicated that with current energy prices and technology, a cost-optimal Net ZEB zero energy balance accounts for only the building related energy use. Moreover, with high user related energy use is even more in favour of excluding appliances from the zero energy balance....

  1. Nuclear energy: the real cost

    International Nuclear Information System (INIS)

    Spencer, K.; Marshall, R.; Sweet, C.; Prior, M.; Welsh, I.; Bunyard, P.; Goldsmith, E.; Hildyard, N.; Jeffery, J.W.

    1981-01-01

    This report on the discussions within a small group of academics falls under the headings: chairman's foreword; summary and recommendations; the government's nuclear power programme and its implications; the CEGB's planning record; the past performance of Britain's nuclear power stations - a guide for the future (query); nuclear power -early uncertainties; historic costs - 'the fraud inherent in all inflationary finance'; current cost accounting; fuel costs - coal stays steady, nuclear rises; net effective cost and the rationale for nuclear power; reinterpreting net effective costs; other considerations; conclusions and recommendations; references. (U.K.)

  2. Impact of generic alendronate cost on the cost-effectiveness of osteoporosis screening and treatment.

    Directory of Open Access Journals (Sweden)

    Smita Nayak

    Full Text Available Since alendronate became available in generic form in the Unites States in 2008, its price has been decreasing. The objective of this study was to investigate the impact of alendronate cost on the cost-effectiveness of osteoporosis screening and treatment in postmenopausal women.Microsimulation cost-effectiveness model of osteoporosis screening and treatment for U.S. women age 65 and older. We assumed screening initiation at age 65 with central dual-energy x-ray absorptiometry (DXA, and alendronate treatment for individuals with osteoporosis; with a comparator of "no screening" and treatment only after fracture occurrence. We evaluated annual alendronate costs of $20 through $800; outcome measures included fractures; nursing home admission; medication adverse events; death; costs; quality-adjusted life-years (QALYs; and incremental cost-effectiveness ratios (ICERs in 2010 U.S. dollars per QALY gained. A lifetime time horizon was used, and direct costs were included. Base-case and sensitivity analyses were performed.Base-case analysis results showed that at annual alendronate costs of $200 or less, osteoporosis screening followed by treatment was cost-saving, resulting in lower total costs than no screening as well as more QALYs (10.6 additional quality-adjusted life-days. When assuming alendronate costs of $400 through $800, screening and treatment resulted in greater lifetime costs than no screening but was highly cost-effective, with ICERs ranging from $714 per QALY gained through $13,902 per QALY gained. Probabilistic sensitivity analyses revealed that the cost-effectiveness of osteoporosis screening followed by alendronate treatment was robust to joint input parameter estimate variation at a willingness-to-pay threshold of $50,000/QALY at all alendronate costs evaluated.Osteoporosis screening followed by alendronate treatment is effective and highly cost-effective for postmenopausal women across a range of alendronate costs, and may be cost

  3. In Brief: Hidden environment and health costs of energy

    Science.gov (United States)

    Showstack, Randy

    2009-10-01

    The hidden costs of energy production and use in the United States amounted to an estimated $120 billion in 2005, according to a 19 October report by the U.S. National Research Council. The report, “Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use,” examines hidden costs, including the cost of air pollution damage to human health, which are not reflected in market prices of energy sources, electricity, or gasoline. The report found that in 2005, the total annual external damages from sulfur dioxide, nitrogen oxides, and particulate matter created by coal-burning power plants that produced 95% of the nation's coal-generated electricity were about $62 billion, with nonclimate damages averaging about 3.2 cents for every kilowatt-hour of energy produced. It is estimated that by 2030, nonclimate damages will fall to 1.7 cents per kilowatt-hour. The 2030 figure assumes that new policies already slated for implementation are put in place.

  4. Assessing the Cost of Energy Independence

    NARCIS (Netherlands)

    Jongerden, M.R.; Hüls, Jannik; Haverkort, Boudewijn R.H.M.; Remke, Anne Katharina Ingrid

    Battery management strategies that reserve a certain capacity for power outages are able to increase the energy independence of a smart home. However, such strategies come at a certain cost, since these storage strategies are less flexible and energy from the grid may have to be bought at a high

  5. Site specific optimization of wind turbines energy cost: Iterative approach

    International Nuclear Information System (INIS)

    Rezaei Mirghaed, Mohammad; Roshandel, Ramin

    2013-01-01

    Highlights: • Optimization model of wind turbine parameters plus rectangular farm layout is developed. • Results show that levelized cost for single turbine fluctuates between 46.6 and 54.5 $/MW h. • Modeling results for two specific farms reported optimal sizing and farm layout. • Results show that levelized cost of the wind farms fluctuates between 45.8 and 67.2 $/MW h. - Abstract: The present study was aimed at developing a model to optimize the sizing parameters and farm layout of wind turbines according to the wind resource and economic aspects. The proposed model, including aerodynamic, economic and optimization sub-models, is used to achieve minimum levelized cost of electricity. The blade element momentum theory is utilized for aerodynamic modeling of pitch-regulated horizontal axis wind turbines. Also, a comprehensive cost model including capital costs of all turbine components is considered. An iterative approach is used to develop the optimization model. The modeling results are presented for three potential regions in Iran: Khaf, Ahar and Manjil. The optimum configurations and sizing for a single turbine with minimum levelized cost of electricity are presented. The optimal cost of energy for one turbine is calculated about 46.7, 54.5 and 46.6 dollars per MW h in the studied sites, respectively. In addition, optimal size of turbines, annual electricity production, capital cost, and wind farm layout for two different rectangular and square shaped farms in the proposed areas have been recognized. According to the results, optimal system configuration corresponds to minimum levelized cost of electricity about 45.8 to 67.2 dollars per MW h in the studied wind farms

  6. Controlling Healthcare Costs: Just Cost Effectiveness or "Just" Cost Effectiveness?

    Science.gov (United States)

    Fleck, Leonard M

    2018-04-01

    Meeting healthcare needs is a matter of social justice. Healthcare needs are virtually limitless; however, resources, such as money, for meeting those needs, are limited. How then should we (just and caring citizens and policymakers in such a society) decide which needs must be met as a matter of justice with those limited resources? One reasonable response would be that we should use cost effectiveness as our primary criterion for making those choices. This article argues instead that cost-effectiveness considerations must be constrained by considerations of healthcare justice. The goal of this article will be to provide a preliminary account of how we might distinguish just from unjust or insufficiently just applications of cost-effectiveness analysis to some healthcare rationing problems; specifically, problems related to extraordinarily expensive targeted cancer therapies. Unconstrained compassionate appeals for resources for the medically least well-off cancer patients will be neither just nor cost effective.

  7. Study on measuring analysis for estimating effect of energy saving policy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joong Ku; Park, Jeong Soon [Korea Energy Economics Institute, Euiwang (Korea)

    1999-12-01

    Since the study on measuring analysis for estimating effect of energy saving policy is too broad to implement all industries, so it limited its study only on manufacturing industry. This study is concentrated on its effort to measure energy saving using energy saving model by putting energy saving policy as an input and regarding its result as energy saving. It used B/C theory for positive analysis methodology and the result of analysis is investment effect on manufacturing industry. The total cost invested on manufacturing sector from 1982 to 1996 was 5,871 billion won based on constant cost in 1990, and the energy saving cost directly acquired from it reached 1,534.5 billion won based on constant cost in 1990, so B/C rate reached 2.56. Particularly, if you separated the amount supported by the government policy, energy saving support cost reached 3,904.2 billion won (based on constant cost in 1990) and the total benefit was 10,146.4 billion won (based on constant cost in 1990) by adding saving cost 9,997.9 billion won and environmental improvement effect 223.2 billion won. (author). 51 refs., 17 figs., 35 tabs.

  8. Acid rain abatement in Belgium: lessons in cost-effectiveness studies

    International Nuclear Information System (INIS)

    Cuijpers, C.; Proost, S.

    1992-01-01

    In this paper a cost-effectiveness analysis is presented for combating emissions of acid precursors. The focus of concern is to reach the environmental quality goal at least cost. Two cost-effective approaches are elaborated. Firstly, the maximum allowable emission of each acid precursor seperately is allocated in a cost-effective way across the economic sectors. Secondly, the maximum allowable emissions of acid precursors are allocated in a cost-effective way across the three considered acid precursors as well as across the economic sectors. It is argued that not only the energy consumption but also the agricultural sector could play an important role in a cost-effective strategy by curtailing its ammonia emissions. 6 refs., 8 figs., 1 tab

  9. Optimizing Data Centre Energy and Environmental Costs

    Science.gov (United States)

    Aikema, David Hendrik

    Data centres use an estimated 2% of US electrical power which accounts for much of their total cost of ownership. This consumption continues to grow, further straining power grids attempting to integrate more renewable energy. This dissertation focuses on assessing and reducing data centre environmental and financial costs. Emissions of projects undertaken to lower the data centre environmental footprints can be assessed and the emission reduction projects compared using an ISO-14064-2-compliant greenhouse gas reduction protocol outlined herein. I was closely involved with the development of the protocol. Full lifecycle analysis and verifying that projects exceed business-as-usual expectations are addressed, and a test project is described. Consuming power when it is low cost or when renewable energy is available can be used to reduce the financial and environmental costs of computing. Adaptation based on the power price showed 10--50% potential savings in typical cases, and local renewable energy use could be increased by 10--80%. Allowing a fraction of high-priority tasks to proceed unimpeded still allows significant savings. Power grid operators use mechanisms called ancillary services to address variation and system failures, paying organizations to alter power consumption on request. By bidding to offer these services, data centres may be able to lower their energy costs while reducing their environmental impact. If providing contingency reserves which require only infrequent action, savings of up to 12% were seen in simulations. Greater power cost savings are possible for those ceding more control to the power grid operator. Coordinating multiple data centres adds overhead, and altering at which data centre requests are processed based on changes in the financial or environmental costs of power is likely to increase this overhead. Tests of virtual machine migrations showed that in some cases there was no visible increase in power use while in others power use

  10. Exploration of energy conservation opportunities through energy audit

    International Nuclear Information System (INIS)

    Swain, R.K.; Swain, A.K.; Subudhi, B.

    1995-01-01

    Developing countries like India, has to cater to the imbalance of energy between the supply and demand in almost all the sectors, so as to devise energy conservation strategies. Electricity is one of the most convenient form of energy gifted to the mankind. The raising cost of electricity and the need to raise large resources to meet the required demand is only at the cost of other important assets of the country. This gap between demand and supply can be partially met by appropriate energy conservation schemes through energy audit- a scientific approach for balancing the supply and demand. India has to go a long way ahead in it, therefore, energy audit has been initiated at vulnerable energy consuming places. This paper presents the effectiveness of energy audit strategy in achieving energy conservation. The energy audit of Shrama Shakti Bhavan, an office complex at New Delhi, has been taken as a case study. (author). 2 refs., 12 tabs

  11. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University.

    Science.gov (United States)

    Okeniyi, Joshua O; Atayero, Aderemi A; Popoola, Segun I; Okeniyi, Elizabeth T; Alalade, Gbenga M

    2018-04-01

    This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT). Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment.

  12. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University

    Directory of Open Access Journals (Sweden)

    Joshua O. Okeniyi

    2018-04-01

    Full Text Available This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT. Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment. Keywords: Smart campus, Energy consumption, Energy efficiency, Load forecasting, Energy management, Learning analytics, Nigerian university, Education data mining

  13. Evaluation of energy efficiency policy instruments effectiveness : case study Croatia

    International Nuclear Information System (INIS)

    Bukarica, V.

    2007-01-01

    This paper proposed a theoretical basis for evaluating energy efficiency policy in the Republic of Croatia and corroborated it with the analysis of energy efficiency market development and transformation. The current status of the market was evaluated and policy instruments were adapted to achieve optimal results. In particular, the energy efficiency market in Croatia was discussed in terms of micro and macro environment factors that influence policy making processes and the choice of policy instruments. The macro environment for energy efficiency market in Croatia is the process of European Union pre-integration with all related national and international legislation, political and economical factors and potential to use financial funds. The micro environment consists of government institutions, local financing institutions and a range of market players on the supply and demand side. Energy efficiency is the most powerful and cost-effective way for achieving goals of sustainable development. Policy instruments developed to improve energy efficiency are oriented towards a cleaner environment, better standard of living, more competitive industry and improved security of energy supply. Energy efficiency is much harder to implement and requires policy interventions. In response to recent trends in the energy sector, such as deregulation and open competition, policy measures aimed at improving energy efficiency should shift from an end-users oriented approach towards a whole market approach. The optimal policy instruments mix should be designed to meet defined targets. However, market dynamics must be taken into consideration. 9 refs., 4 figs

  14. Report on investigations in fiscal 2000 on the global warming prevention related investigations in cooperative fundamental project of investigating improvement in international energy consumption efficiency. Analysis and comparison centering on cost effectiveness in relation with greenhouse gas (GHG) reduction in Japan; 2000 nendo kokusai energy shohi koritsuka chosanado kyoryoku kiso jigyo chikyu ondanka boshi kanren chosa hokokusho. Kokunai deno GHG sakyugen ni kansuru hiyo tai koka wo chushin to shita bunseki hikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The present investigative research is intended to grasp the whole image of cost effectiveness of the energy saving and new energy technologies to suppress and reduce CO2 emission in Japan. Furthermore, the research considers the cost effectiveness and discusses the efficiency and the directionality of reducing CO2 emission from an estimation of the social introduction cost of individual technologies and quantity of CO2 emission reduction. These activities are intended to provide the fundamental items of information when discussing the measures to achieve the emission reduction target imposed on Japan. The research divides the whole aspect into energy conversion, industrial, consumer and transportation departments for discussion, and calculates the technological items that can be introduced by 2010 and the quantity of the introduction thereof, as well as the effect of reducing CO2 emission. Calculations are also performed on 27 elementary technologies in total and the CO2 emission reducing effect, assuming technological possibilities. Subsequently, analyses are carried out from the viewpoint of cost effectiveness by departments. It is shown that the average cost effectiveness is distributed in the range from 108,000 yen/ton to 1,129,000 yen/ton. Scenarios of reducing CO2 emission are discussed from the analyses of the cost effectiveness. (NEDO)

  15. A model for energy pricing with stochastic emission costs

    International Nuclear Information System (INIS)

    Elliott, Robert J.; Lyle, Matthew R.; Miao, Hong

    2010-01-01

    We use a supply-demand approach to value energy products exposed to emission cost uncertainty. We find closed form solutions for a number of popularly traded energy derivatives such as: forwards, European call options written on spot prices and European Call options written on forward contracts. Our modeling approach is to first construct noisy supply and demand processes and then equate them to find an equilibrium price. This approach is very general while still allowing for sensitivity analysis within a valuation setting. Our assumption is that, in the presence of emission costs, traditional supply growth will slow down causing output prices of energy products to become more costly over time. However, emission costs do not immediately cause output price appreciation, but instead expose individual projects, particularly those with high emission outputs, to much more extreme risks through the cost side of their profit stream. Our results have implications for hedging and pricing for producers operating in areas facing a stochastic emission cost environment. (author)

  16. Building Energy and Cost Performance: An Analysis of Thirty Melbourne Case Studies

    Directory of Open Access Journals (Sweden)

    Yu Lay Langston

    2012-11-01

    Full Text Available This study investigates the energy and cost performance of thirty recent buildings in Melbourne, Australia. Commonly, building design decisions are based on issues pertaining to construction cost, and consideration of energy performance is made only within the context of the initial project budget. Even where energy is elevated to more importance, operating energy is seen as the focus and embodied energy is nearly always ignored. For the first time, a large sample of buildings has been assembled and analyzed to improve the understanding of both energy and cost performance over their full life cycle, which formed the basis of a wider doctoral study into the inherent relationship between energy and cost. The aim of this paper is to report on typical values for embodied energy, operating energy, capital cost and operating cost per square metre for a range of building functional types investigated in this research. The conclusion is that energy and cost have quite different profiles across projects, and yet the mean GJ/m2 or cost/m2 have relatively low coefficients of variation and therefore may be useful as benchmarks of typical building performance.  

  17. The cost of treatment failure: resource use and costs incurred by hepatitis C virus genotype 1-infected patients who do or do not achieve sustained virological response to therapy.

    Science.gov (United States)

    Backx, M; Lewszuk, A; White, J R; Cole, J; Sreedharan, A; van Sanden, S; Diels, J; Lawson, A; Neal, K R; Wiselka, M J; Ito, T; Irving, W L

    2014-03-01

    Chronic hepatitis C virus (HCV) infection places a considerable economic burden on health services. Cost-effectiveness analyses of antiviral treatment for patients with chronic HCV infection are dependent on assumptions about cost reductions following sustained virological response (SVR) to therapy. This study quantified the medium-term difference in health resource usage and costs depending on treatment outcome. Retrospective chart review of patients with HCV genotype 1 infection who had received at least 2 months pegylated interferon and ribavirin therapy, with known treatment outcome was conducted. Disease status was categorized as chronic hepatitis, cirrhosis or decompensated liver disease. Health resource use was documented for each patient in each disease state. Unit costs were from the NHS 'Payment by Results' database and the British National Formulary. One hundred and ninety three patients (108 SVR, 85 non-SVR) with mean follow-up of 3.5 (SVR) and 4.9 (non-SVR) years were enrolled. No SVR patient progressed to a more severe liver disease state. Annual transition rates for non-SVR patients were 7.4% (chronic hepatitis to cirrhosis) and 4.9% (cirrhosis to decompensated liver disease). By extrapolation of modelled data over a 5-year post-treatment period, failure of patients with chronic hepatitis to achieve SVR was associated with a 13-fold increase (roughly £2300) in costs, whilst for patients who were retreated, the increase was 56-fold, equating to more than £10 000. Achievement of an SVR has significant effects on health service usage and costs. This work provides real-life data for future cost-effectiveness analyses related to the treatment for chronic HCV infection. © 2013 John Wiley & Sons Ltd.

  18. Methodology to Calculate the Costs of a Floating Offshore Renewable Energy Farm

    Directory of Open Access Journals (Sweden)

    Laura Castro-Santos

    2016-04-01

    Full Text Available This paper establishes a general methodology to calculate the life-cycle cost of floating offshore renewable energy devices, applying it to wave energy and wind energy devices. It is accounts for the contributions of the six main phases of their life-cycle: concept definition, design and development, manufacturing, installation, exploitation and dismantling, the costs of which have been defined. Moreover, the energy produced is also taken into account to calculate the Levelized Cost of Energy of a floating offshore renewable energy farm. The methodology proposed has been applied to two renewable energy devices: a floating offshore wave energy device and a floating offshore wind energy device. Two locations have been considered: Aguçadoura and São Pedro de Moel, both in Portugal. Results indicate that the most important cost in terms of the life-cycle of a floating offshore renewable energy farm is the exploitation cost, followed by the manufacturing and the installation cost. In addition, the best area in terms of costs is the same independently of the type of floating offshore renewable energy considered: Aguçadoura. However, the results in terms of Levelized Cost of Energy are different: Aguçadoura is better when considering wave energy technology and the São Pedro de Moel region is the best option when considering floating wind energy technology. The method proposed aims to give a direct approach to calculate the main life-cycle cost of a floating offshore renewable energy farm. It helps to assess its feasibility and evaluating the relevant characteristics that influence it the most.

  19. Research with respect to environmental-friendly energy prospects: experiences with energy system models

    International Nuclear Information System (INIS)

    Kram, T.

    1994-01-01

    The costs and the effects of four basic options with respect to the reduction of CO 2 -emissions are evaluated. The dominant strategy for the nuclear option consists in the substitution of fossil fuel by nuclear energy. At a 50 percent reduction of CO 2 emissions, heating by natural gas is replaced electric power and conventional cars will be replaced by cars. In the carbon dioxide fixation option, fossil fuel remains the dominant energy vector. In this option, CO 2 emissions can be reduced by replacing coal by natural gas, and by introducing carbon dioxide fixation technology in power plants. The option renewable energy sources favours the use of off-shore wind energy and biogas, resulting in a reduction of carbon dioxide emissions up to 40 percent. Higher reduction rates can only be achieved by the use of more expensive technologies such as geothermal and solar energy. In the option rational use of energy, the reduction of carbon dioxide emissions is achieved by energy saving and, among others, the use of fuel cells. The results of the modelling can contribute to identify the most effective or cost-efficient options in view of reducing carbon dioxide emissions. It is concluded that energy saving alone can not contribute to considerable carbon dioxide emission reductions. Carbon dioxide fixations is technically feasible and appears to be the cheapest option. The substitution of fossil fuel by nuclear energy is only cost-efficient for traditional markets. The public acceptance of nuclear energy, its risks and the disposal of radioactive waste have also to be taken into account. (A.S.)

  20. EDF decommissioning programme: A global commitment to safety, environment and cost efficiency of nuclear energy

    International Nuclear Information System (INIS)

    Chatry, Jean-Paul

    2002-01-01

    Nowadays, decommissioning of nuclear power plants has become a key issue for nuclear industry in Europe. The phasing out of nuclear energy in Germany, Belgium and Sweden, as well as the early closure of nuclear units in applicant countries in the frame of EU enlargement, has largely contributed to consider decommissioning as the next challenge to face. The situation is slightly different in France: nuclear energy is still considered as a safe, cost-effective and environment friendly energy source and EDF is still working on the development of a new generation of reactor to replace the existing one. Nevertheless, to achieve this objective, it will be necessary to get the support of political decision-makers and the acceptance of public opinion. The increasing mobilisation of EDF for the decommissioning of its already shutdown NPPs shows its willingness to demonstrate its capacity to control the nuclear life cycle from end to end. The successful implementation of its decommissioning programme will not mean the end of nuclear energy as an efficient way to generate electricity but it will constitute a prerequisite for the erection of new nuclear power plants in France

  1. Optimization of energy consumption and cost effectiveness of modular buildings by using renewable energy sources

    Directory of Open Access Journals (Sweden)

    Peter Tauš

    2015-10-01

    Full Text Available Problems of the temporary structures are generally dealt with by the use of modular buildings. These actually meet the terms of low costs, as appose to the terms of convenience of use, or energy efficiency in operation. Using the latest technologies in the production of the modular buildings has improved the operation sufficiently; it is now possible to use them entirely for purposes associated with the use of the buildings. Office buildings, warehouses, and conference rooms have become common standard. In Slovakia, we can already see it as a normal part of cities and municipalities: social housing, schools, and kindergartens, which were all built using this technology. During the assessment phase of these buildings, energy efficiency is always the priority. This article is aimed at establishing the economic potential of modular buildings in the field of use of renewable energy sources. For the formulation of the problem and the definition of borders of studied parameters, we proposed a four-dimensional competency decision-making space. This determines the examination process that should identify areas in which it is appropriate to consider and assess the use of renewable energy sources.

  2. Energy tax harmonization in the European Union: a proposal based on the internalization of environmental external costs

    International Nuclear Information System (INIS)

    Dorigoni, S.; Gulli, F.

    2002-01-01

    Energy tax harmonization is a crucial step towards the creation of a single market. In this article the possibility of achieving such an objective is discussed. The paper consists of two sections. In the first the European taxation on energy products is analysed. This analysis is useful in showing the differences that exist between the European countries that account for the difficulties met so far in the process of harmonization. In this respect we comment on the recent proposal of the Directive of the European Union, which lays down the obligation of minimum levels of taxation in all European member states. In the second section, after simulating the effects related to the adoption of a common environmental taxation (a first best solution based on the internalization of environmental external costs), we propose, as a second best solution, an excise tax harmonization model taking into consideration the specificity of each country and being, as far as possible, coherent with the environmental objective. This model proposes: the introduction of a minimum level of taxation on all products equal to the external cost due to the greenhouse effect (a common carbon tax); the possibility, given to the member states, of deviating from such minimum levels, in accordance with their specific requirements, internalizing in the price of the different products, by means of taxes additional to that CO 2 minimum, the external costs associated with other pollutant agents (the same in all countries); the opportunity, in case it should be necessary to exceed the entire external cost, for the member states to apply increases that are in accordance with the environmental objective. (author)

  3. Running behavior and its energy cost in mice selectively bred for high voluntary locomotor activity.

    Science.gov (United States)

    Rezende, Enrico L; Gomes, Fernando R; Chappell, Mark A; Garland, Theodore

    2009-01-01

    Locomotion is central to behavior and intrinsic to many fitness-critical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from "postural costs" (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S

  4. Cost evolution of electric energy in Brazil

    International Nuclear Information System (INIS)

    Oliveira, A. de; Contreras, E.C.A.

    1981-01-01

    An analysis of electric energy costs in Brazil is presented. Hydro, coal and nuclear costs are analysed and the final conclusion seems to indicate that nuclear power plants are not economically interesting untill the Brazilian electric capacity attains 110 GW average power. (Author) [pt

  5. Cost-effectiveness of reduction of off-site dose

    International Nuclear Information System (INIS)

    McGrath, J.J.; Macphee, R.; Arbeau, N.; Miskin, J.; Scott, C.K.; Winters, E.

    1988-03-01

    Since the early 1970's, nuclear power plants have been designed and operated with a target of not releasing more than one percent of the licensed limits (derived emission limits) in liquid and gaseous effluents. The AECB initiated this study of the cost-effectiveness of the reduction of off-site doses as part of a review to determine if further measures to reduce off-site doses might be reasonably achievable. Atlantic Nuclear has estimated the cost of existing technology options that can be applied for a further reduction of radioactive effluents from future CANDU nuclear power plants. Detritiation, filtration, ion exchange and evaporation are included in the assessment. The costs are presented in 1987 Canadian dollars, and include capital and operating costs for a reference 50 year plant life. Darlington NGS and Point Lepreau NGS are the reference nuclear power plant types and locations. The effect resulting from the hypothetical application of each technology has been calculated as the resulting reduction in world collective radiation dose detriment. The CSA N288.1 procedure was used for local pathway analysis and the global dispersion model developed by the NEA (OECD) group of experts was used for dose calculations. The reduction in the 'collective effective dose equivalent commitment' was assumed to exist for 10,000 years, the expected life-span of solid waste repositories. No attempt was made to model world population dynamics. The collective dose reductions were calculated for a nominal world population of 10 billion persons. The estimated cost and effect of applying the technology options are summarized in a tabular form for input to further consideration of 'reasonably achievable off-site dose levels'

  6. A Method for Estimating Potential Energy and Cost Savings for Cooling Existing Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Van Geet, Otto

    2017-04-24

    NREL has developed a methodology to prioritize which data center cooling systems could be upgraded for better efficiency based on estimated cost savings and economics. The best efficiency results are in cool or dry climates where 'free' economizer or evaporative cooling can provide most of the data center cooling. Locations with a high cost of energy and facilities with high power usage effectiveness (PUE) are also good candidates for data center cooling system upgrades. In one case study of a major cable provider's data centers, most of the sites studied had opportunities for cost-effective cooling system upgrades with payback period of 5 years or less. If the cable provider invested in all opportunities for upgrades with payback periods of less than 15 years, it could save 27% on annual energy costs.

  7. Structure of production costs of different energy sources (fossile fuels and nuclear energy) (group 11)

    International Nuclear Information System (INIS)

    Girard, Ph.

    2002-01-01

    This article is the work of a group of students from the ''Ecole Nationale d'Administration'', they had to study the structure of the costs of the different energy sources. This analysis shows some common features between the energy sources. The cost is very dependent on the partial costs of technological constraints due to exploration, production, transport and distribution. For primary energies the market appears to be not very competitive, the price depends strongly on the market power of the operator and benefits are generally important. In France, taxes play a role to assure competitiveness of gas and coal against oil. Uranium fuel presents the lowest production and transformation costs at the same energy content. Transport costs are important for natural gas which implies a strong mutual dependence between gas producers and consumers. The irreplaceable use of oil in transport assures regular high revenues for oil companies. (A.C.)

  8. Costs and profitability of renewable energies in metropolitan France - ground-based wind energy, biomass, solar photovoltaic. Analysis

    International Nuclear Information System (INIS)

    2014-04-01

    After a general presentation of the framework of support to renewable energies and co-generation (purchasing obligation, tendering, support funding), of the missions of the CRE (Commission for Energy Regulation) within the frame of the purchasing obligation, and of the methodology adopted for this analysis, this document reports an analysis of production costs for three different renewable energy sectors: ground-based wind energy, biomass energy, and solar photovoltaic energy. For each of them, the report recalls the context (conditions of purchasing obligation, winning bid installations, installed fleet in France at the end of 2012), indicates the installations taken into consideration in this study, analyses the installation costs and funding (investment costs, exploitation and maintenance costs, project funding, production costs), and assesses the profitability in terms of capital and for stakeholders

  9. Cost-optimal levels for energy performance requirements

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike

    2011-01-01

    The CA conducted a study on experiences and challenges for setting cost optimal levels for energy performance requirements. The results were used as input by the EU Commission in their work of establishing the Regulation on a comparative methodology framework for calculating cost optimal levels...... of minimum energy performance requirements. In addition to the summary report released in August 2011, the full detailed report on this study is now also made available, just as the EC is about to publish its proposed Regulation for MS to apply in their process to update national building requirements....

  10. Symmetric Sodium-Ion Capacitor Based on Na0.44MnO2 Nanorods for Low-Cost and High-Performance Energy Storage.

    Science.gov (United States)

    Chen, Zhongxue; Yuan, Tianci; Pu, Xiangjun; Yang, Hanxi; Ai, Xinping; Xia, Yongyao; Cao, Yuliang

    2018-04-11

    Batteries and electrochemical capacitors play very important roles in the portable electronic devices and electric vehicles and have shown promising potential for large-scale energy storage applications. However, batteries or capacitors alone cannot meet the energy and power density requirements because rechargeable batteries have a poor power property, whereas supercapacitors offer limited capacity. Here, a novel symmetric sodium-ion capacitor (NIC) is developed based on low-cost Na 0.44 MnO 2 nanorods. The Na 0.44 MnO 2 with unique nanoarchitectures and iso-oriented feature offers shortened diffusion path lengths for both electronic and Na + transport and reduces the stress associated with Na + insertion and extraction. Benefiting from these merits, the symmetric device achieves a high power density of 2432.7 W kg -1 , an improved energy density of 27.9 Wh kg -1 , and a capacitance retention of 85.2% over 5000 cycles. Particularly, the symmetric NIC based on Na 0.44 MnO 2 permits repeatedly reverse-polarity characteristics, thus simplifying energy management system and greatly enhancing the safety under abuse condition. This cost-effective, high-safety, and high-performance symmetric NIC can balance the energy and power density between batteries and capacitors and serve as an electric power source for future low-maintenance large-scale energy storage systems.

  11. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  12. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian [ITN Energy Systems, Inc., Littleton, CO (United States); Hollingsworth, Russell [ITN Energy Systems, Inc., Littleton, CO (United States)

    2015-03-31

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of

  13. 76 FR 57982 - Building Energy Codes Cost Analysis

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2011-BT-BC-0046] Building Energy Codes Cost Analysis Correction In notice document 2011-23236 beginning on page...-23236 Filed 9-16-11; 8:45 am] BILLING CODE 1505-01-P ...

  14. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    OpenAIRE

    Dongmin Yu; Yuanzhu Meng; Gangui Yan; Gang Mu; Dezhi Li; Simon Le Blond

    2017-01-01

    Many combined heat and power (CHP) units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity ...

  15. Reduction in energy consumption and operating cost in a dried corn warehouse using logistics techniques

    Directory of Open Access Journals (Sweden)

    Korrakot Y. Tippayawong

    2013-06-01

    Full Text Available Corn is one of the major economic crops in Thailand. Corn postharvest operation involves various practices that consume a large amount of energy. Different energy conservation measures have been implemented but logistics consideration is not normally employed. In this work, attempt has been made to demonstrate that logistics techniques can offer a significant reduction in energy and cost. The main objective of this work is to identify and demonstrate possible approaches to improving energy efficiency and reducing operating cost for a dried corn warehouse operator. Three main problems are identified: (i relatively high fuel consumption for internal transfer process, (ii low quality of dried corn, and (iii excess expenditure on outbound transportation. Solutions are proposed and implemented using logistics operations. Improvement is achieved using plant layout and shortest path techniques, resulting in a reduction of almost 50% in energy consumption for the internal transfer process. Installation of an air distributor in the grain storage unit results in a decrease in loss due to poor-quality dried corn from 17% to 10%. Excess expenditure on dried corn distribution is reduced by 6% with application of a global positioning system.

  16. A budget-impact and cost-effectiveness model for second-line treatment of major depression.

    Science.gov (United States)

    Malone, Daniel C

    2007-07-01

    Depressed patients who initially fail to achieve remission when placed on a selective serotonin reuptake inhibitor (SSRI) may require a second treatment. The purpose of this study was to evaluate the effectiveness, cost, cost-effectiveness, and budget impact of second-line pharmacologic treatment for major depressive disorder (MDD). A cost-effectiveness analysis was conducted to evaluate second-line therapies (citalopram, escitalopram, fluoxetine, paroxetine, paroxetine controlled release [CR], sertraline, and venlafaxine extended release [XR]) for the treatment of depression. Effectiveness data were obtained from published clinical studies. The primary outcome was remission defined as a score of 7 or less on the Hamilton Rating Scale for Depression (HAM-D) or a score of 10 or less on the montgomery-Asberg Depression Rating Scale (MADRS) depression rating scales. The wholesale acquisition cost (WAC) for medications and medical treatment costs for depression were included. The perspective was derived from a managed care organization (MCO) with 500,000 members, a 1.9% annual incidence of depression, and treatment duration of 6 months. Assumptions included: second-line treatment is not as effective as first-line treatment, WAC price reflects MCO costs, and side effects were identical. Sensitivity analyses were conducted to determine variables that influenced the results. Second-line remission rates were 20.4% for venlafaxine XR, 16.9% for sertraline, 16.4% for escitalopram, 15.1% for generic SSRIs (weighted average), and 13.6% for paroxetine CR. Pharmacy costs ranged from $163 for generic SSRIs to $319 for venlafaxine SR. Total cost per patient achieving remission was $14,275 for venlafaxine SR, followed by $16,100 for escitalopram. The incremental cost-effectiveness ratio (ICER) for venlafaxine SR compared with generic SSRIs was $2,073 per patient achieving remission, followed by escitalopram with an ICER of $3,566. The model was most sensitive to other therapies

  17. What costs the development of renewable energies in power generation actually?; Was kostet der Ausbau erneuerbarer Energien in der Stromerzeugung tatsaechlich?

    Energy Technology Data Exchange (ETDEWEB)

    Nitsch, Joachim

    2013-03-30

    Additional costs of the energy transition can only be termed when the present state of the power system is considered as a benchmark for future raised previous achievements. An energy policy that has an effective climate protection goal, must endeavor to change the market design of the energy market so as to align the price signals at the expense of those technologies that are able to provide energy without emissions and significant use of fossil resources. The derivable overall economic benefits of energy transition is significant. This is illustrated by the example of the differential cost for the annex of renewable energies in the electricity sector. A further development of renewable energy sources in combination with an effective electricity market design leads to an overall economic benefit of around 460 billion Euros in 2050. [German] Von zusaetzlichen Kosten der Energiewende kann nur gesprochen werden, wenn der heutige Zustand des Energiesystems als Massstab fuer zukuenftig aufzubringende Vorleistungen betrachtet wird. Eine Energiewende, die einen effektiven Klimaschutz zum Ziel hat, muss jedoch bestrebt sein, das Marktdesign des Energiemarkts so zu veraendern, dass sich die Preissignale an den Kosten derjenigen Technologien ausrichten, die in der Lage sind, Energie emissionsfrei und ohne wesentliche Inanspruchnahme fossiler Ressourcen bereitzustellen. Der daraus ableitbare gesamtwirtschaftliche Nutzen der Energiewende ist erheblich. Es wird hier am Beispiel der Differenzkosten des Zubaus erneuerbarer Energien im Stromsektor erlaeutert. Ein konsequenter weiterer Erneuerbare Energien-Zubau in Kombination mit einem effektiven Strommarktdesign fuehrt zu einem gesamtwirtschaftlichen Nutzen von rund 460 Mrd. Euro im Jahr 2050.

  18. Regional-employment impact of rapidly escalating energy costs. [Riverside-San Bernardino SMSA

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, D X

    1983-04-01

    This paper presents a methodology for incorporating price-induced technological substitution into a regional input-output forecasting model. The model was used to determine the employment impacts of rapidly escalating energy costs on the Riverside-San Bernardino (California) SMSA. The results indicate that the substitution effect between energy and other goods was dominated by the income effect. A reallocation of consumer expenditures from labor-intensive to energy-intensive goods occurred, resulting in a two- to threefold increase in the unemployment rate among low-skilled individuals. 18 references, 5 tables.

  19. Cost-benefit analysis: introducing energy efficient and renewable energy appliances in Lebanese households

    Energy Technology Data Exchange (ETDEWEB)

    Ruble, Isabella [American University of Beirut, Department of Economics (Lebanon)], E-mail: economics.ir@gmail.com

    2011-07-01

    In Lebanon, neglect of the electricity sector has led to a serious shortage in installed capacity. Recently, the government of Lebanon declared its intention to raise the share of renewable energy (RE) year by year in order to reduce energy consumption. This paper gave a cost-benefit analysis and reviewed the replacement of five major traditional household appliances with their energy efficient (EE) or renewable energy counterparts. This initiative would mostly be felt in three main areas: electricity consumption, consumer costs, and government expenditure. There is a strong possibility that the electricity demand of the 1.2 million Lebanese households can be reduced by introduction of these EE household appliances. Benefits would also accrue to the government in the form of avoided subsidies and reduced need for installed capacity. This paper finds that the benefits to be expected from these policy recommendations largely outweigh the costs.

  20. Superconducting magnetic energy storage for electric utility load leveling: A study of cost vs. stored energy

    International Nuclear Information System (INIS)

    Luongo, C.A.; Loyd, R.J.

    1987-01-01

    Superconducting Magnetic Energy Storage (SMES) is a promising technology for electric utility load leveling. This paper presents the results of a study to establish the capital cost of SMES as a function of stored energy. Energy-related coil cost and total installed plant cost are given for construction in nominal soil and in competent rock. Economic comparisons are made between SMES and other storage technologies and peaking gas turbines. SMES is projected to be competitive at stored energies as low as 1000 MWh

  1. Can a Costly Intervention Be Cost-effective?

    Science.gov (United States)

    Foster, E. Michael; Jones, Damon

    2009-01-01

    Objectives To examine the cost-effectiveness of the Fast Track intervention, a multi-year, multi-component intervention designed to reduce violence among at-risk children. A previous report documented the favorable effect of intervention on the highest-risk group of ninth-graders diagnosed with conduct disorder, as well as self-reported delinquency. The current report addressed the cost-effectiveness of the intervention for these measures of program impact. Design Costs of the intervention were estimated using program budgets. Incremental cost-effectiveness ratios were computed to determine the cost per unit of improvement in the 3 outcomes measured in the 10th year of the study. Results Examination of the total sample showed that the intervention was not cost-effective at likely levels of policymakers' willingness to pay for the key outcomes. Subsequent analysis of those most at risk, however, showed that the intervention likely was cost-effective given specified willingness-to-pay criteria. Conclusions Results indicate that the intervention is cost-effective for the children at highest risk. From a policy standpoint, this finding is encouraging because such children are likely to generate higher costs for society over their lifetimes. However, substantial barriers to cost-effectiveness remain, such as the ability to effectively identify and recruit such higher-risk children in future implementations. PMID:17088509

  2. Measuring energy security. Can the United States achieve oil independence?

    International Nuclear Information System (INIS)

    Greene, David L.

    2010-01-01

    Stochastic simulation of the direct economic costs of oil dependence in an uncertain future is proposed as a useful metric of oil dependence. The market failure from which these costs arise is imperfect competition in the world oil market, chiefly as a consequence of the use of market power by the Organization of the Petroleum Exporting Countries (OPEC) cartel. Oil dependence costs can be substantial. It is estimated that oil dependence costs to the US economy in 2008 will exceed $500 billion. Other costs, such as military expenditures or foreign policy constraints are deemed to be largely derivative of the actual or potential economic costs of oil dependence. The use of quantifiable economic costs as a security metric leads to a measurable definition of oil independence, or oil security, which can be used to test the ability of specific policies to achieve oil independence in an uncertain future. (author)

  3. Assessing the cost-effectiveness of electric vehicles in European countries using integrated modeling

    International Nuclear Information System (INIS)

    Seixas, J.; Simões, S.; Dias, L.; Kanudia, A.; Fortes, P.; Gargiulo, M.

    2015-01-01

    Electric vehicles (EVs) are considered alternatives to internal combustion engines due to their energy efficiency and contribution to CO 2 mitigation. The adoption of EVs depends on consumer preferences, including cost, social status and driving habits, although it is agreed that current and expected costs play a major role. We use a partial equilibrium model that minimizes total energy system costs to assess whether EVs can be a cost-effective option for the consumers of each EU27 member state up to 2050, focusing on the impact of different vehicle investment costs and CO 2 mitigation targets. We found that for an EU-wide greenhouse gas emission reduction cap of 40% and 70% by 2050 vis-à-vis 1990 emissions, battery electric vehicles (BEVs) are cost-effective in the EU only by 2030 and only if their costs are 30% lower than currently expected. At the EU level, vehicle costs and the capability to deliver both short- and long-distance mobility are the main drivers of BEV deployment. Other drivers include each state’s national mobility patterns and the cost-effectiveness of alternative mitigation options, both in the transport sector, such as plug-in hybrid electric vehicles (PHEVs) or biofuels, and in other sectors, such as renewable electricity. - Highlights: • Electric vehicles were assessed through the minimization of the total energy systems costs. • EU climate policy targets could act as a major driver for PHEV adoption. • Battery EV is an option before 2030 if costs will drop by 30% from expected costs. • EV deployment varies per country depending on each energy system configuration. • Incentives at the country level should consider specific cost-effectiveness factors

  4. Impact of solar energy cost on water production cost of seawater desalination plants in Egypt

    International Nuclear Information System (INIS)

    Lamei, A.; Zaag, P. van der; Munch, E.

    2008-01-01

    Many countries in North Africa and the Middle East are experiencing localized water shortages and are now using desalination technologies with either reverse osmosis (RO) or thermal desalination to overcome part of this shortage. Desalination is performed using electricity, mostly generated from fossil fuels with associated greenhouse gas emissions. Increased fuel prices and concern over climate change are causing a push to shift to alternative sources of energy, such as solar energy, since solar radiation is abundant in this region all year round. This paper presents unit production costs and energy costs for 21 RO desalination plants in the region. An equation is proposed to estimate the unit production costs of RO desalination plants as a function of plant capacity, price of energy and specific energy consumption. This equation is used to calculate unit production costs for desalinated water using photovoltaic (PV) solar energy based on current and future PV module prices. Multiple PV cells are connected together to form a module or a panel. Unit production costs of desalination plants using solar energy are compared with conventionally generated electricity considering different prices for electricity. The paper presents prices for both PV and solar thermal energy. The paper discusses at which electricity price solar energy can be considered economical to be used for RO desalination; this is independent of RO plant capacity. For countries with electricity prices of 0.09 US$/kWh, solar-generated electricity (using PV) can be competitive starting from 2 US$/W p (W p is the number of Watts output under standard conditions of sunlight). For Egypt (price of 0.06 US$/kWh), solar-generated electricity starts to be competitive from 1 US$/W p . Solar energy is not cost competitive at the moment (at a current module price for PV systems including installation of 8 US$/W p ), but advances in the technology will continue to drive the prices down, whilst penalties on usage

  5. Cost of New Technologies in Prostate Cancer Treatment: Systematic Review of Costs and Cost Effectiveness of Robotic-assisted Laparoscopic Prostatectomy, Intensity-modulated Radiotherapy, and Proton Beam Therapy.

    Science.gov (United States)

    Schroeck, Florian Rudolf; Jacobs, Bruce L; Bhayani, Sam B; Nguyen, Paul L; Penson, David; Hu, Jim

    2017-11-01

    Some of the high costs of robot-assisted radical prostatectomy (RARP), intensity-modulated radiotherapy (IMRT), and proton beam therapy may be offset by better outcomes or less resource use during the treatment episode. To systematically review the literature to identify the key economic trade-offs implicit in a particular treatment choice for prostate cancer. We systematically reviewed the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement and protocol. We searched Medline, Embase, and Web of Science for articles published between January 2001 and July 2016, which compared the treatment costs of RARP, IMRT, or proton beam therapy to the standard treatment. We identified 37, nine, and three studies, respectively. RARP is costlier than radical retropubic prostatectomy for hospitals and payers. However, RARP has the potential for a moderate cost advantage for payers and society over a longer time horizon when optimal cancer and quality-of-life outcomes are achieved. IMRT is more expensive from a payer's perspective compared with three-dimensional conformal radiotherapy, but also more cost effective when defined by an incremental cost effectiveness ratio new versus traditional technologies is costlier. However, given the low quality of evidence and the inconsistencies across studies, the precise difference in costs remains unclear. Attempts to estimate whether this increased cost is worth the expense are hampered by the uncertainty surrounding improvements in outcomes, such as cancer control and side effects of treatment. If the new technologies can consistently achieve better outcomes, then they may be cost effective. We review the cost and cost effectiveness of robot-assisted radical prostatectomy, intensity-modulated radiotherapy, and proton beam therapy in prostate cancer treatment. These technologies are costlier than their traditional counterparts. It remains unclear whether their use is associated

  6. Use of cost-effective construction technologies in India to mitigate climate change

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, N. [Forum of Scientists, Engineers and Technologists, Kolkata (India)

    2008-01-10

    Concentration of greenhouse gases plays a major role in raising the earth's temperature. Carbon dioxide, produced from burning of fossil fuels, is the principle greenhouse gas and efforts are being made at international level to reduce its emission through adoption of energy-efficient technologies. The UN Conference on Environment and Development, 1992 made a significant development in this field by initiating the discussion on sustainable development under the Agenda 21. Cost-effective construction technologies can bring down the embodied energy level associated with production of building materials by lowering use of energy-consuming materials. This embodied energy is a crucial factor for sustainable construction practices and effective reduction of the same would contribute in mitigating global warming. The cost-effective construction technologies would emerge as the most acceptable case of sustainable technologies in India both in terms of cost and environment.

  7. Growth of pipelines : the critical enabler in achieving our energy potential

    International Nuclear Information System (INIS)

    MacInnis, D.

    2005-01-01

    Issues concerning pipeline infrastructure and development in relation to the Canadian Energy Pipeline Association (CEPA) were discussed. Ninety-five per cent of the crude oil and natural gas produced in Canada is transported by members of CEPA, which represents 2.4 mm bbl/d of oil and 16.2 Bcf/d of gas. Assets of CEPA's members are worth over CDN$20 billion, with a projected capital investment of CDN$20 billion over the next 20 years. Growth in consumer demand and issues concerning security of North American gas supply to 2025 were discussed. It was anticipated that while new sources of gas will be more costly, new supply will contribute to more moderate prices. New infrastructure needs will build on existing systems. However, timely investment will be critical to connect to supply markets. North American natural gas transmission and distribution networks will require investments of approximately $US301 billion. Ineffective regulatory processes, labour shortages and the search for competitively priced capital will result in higher energy costs to consumers. Issues concerning pipeline construction projects in Alaska and northern Canada were reviewed. The projected economic benefits of pipeline construction were examined, including details of employment created through pipeline investment. The costs to Canadian consumers of delaying pipeline construction were also outlined. It was concluded that efficient and effective policies and regulations are needed to secure energy supply in a timely manner. In addition, a competitive investment environment is needed, in which safety and sustainability are balanced by economic viability and productive trade relationships. tabs., figs

  8. Strategies and costs for reducing CO2 emissions in Finland

    International Nuclear Information System (INIS)

    Lehtilae, A.; Pirilae, P.

    1993-01-01

    In this study cost-efficient measures for the abatement of energy-related CO 2 emissions in Finland are analyzed, and the direct costs of such measures are estimated. The time frame considered is the period up to the year 2010. Furthermore, the probable impacts of an energy/CO 2 -tax on the Finnish energy system are worked out, and an attempt is made to assess the effectiveness of a tax scheme as an economic instrument for achieving CO 2 emission targets. The primary methodological tool in the analyses has been the model of the Finnish energy system developed at the Technical Research Centre of Finland (VTT) within the project. The model facilitates the search for cost-efficient emission control strategies over a period of several decades. Structural and technological changes in the energy system, e.g. fuel and technology substitution, new technologies, efficiency improvements, and energy-saving measures have been allowed for in the model. The results of the analyses show that achieving the target of returning the CO 2 emissions to the 1990 level by the year 2000 would be very difficult and costly in Finland. In the case of a nuclear moratorium it would be reasonable to delay the target by ten years. Even in the delayed cases achieving the target would require extensive structural changes and substantial energy-saving measures in the absence of additional nuclear energy. Coal use would have to be severely restricted, whereas the use of biomass and natural gas should be more than doubled compared to the 1990 levels. According to the results, a CO 2 tax would clearly be a more efficient instrument than a tax based on the energy content of a fuel

  9. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    Directory of Open Access Journals (Sweden)

    A. D. Chukalla

    2017-07-01

    Full Text Available Reducing the water footprint (WF of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha−1 per season or to a certain WF benchmark (expressed in m3  t−1 of crop. This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip; irrigation strategy (full or deficit irrigation; and mulching practice (no, organic or synthetic mulching. The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour. Different cases are considered, including three crops (maize, tomato and potato; four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel; three hydrologic years (wet, normal and dry years and three soil types (loam, silty clay loam and sandy loam. For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF

  10. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    Science.gov (United States)

    Chukalla, Abebe D.; Krol, Maarten S.; Hoekstra, Arjen Y.

    2017-07-01

    Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha-1 per season) or to a certain WF benchmark (expressed in m3  t-1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by reducing water

  11. Atmospheric and geological CO2 damage costs in energy scenarios

    International Nuclear Information System (INIS)

    Smekens, K.E.L.; Van der Zwaan, B.C.C.

    2006-05-01

    Geological carbon dioxide capture and storage (CCS) is currently seriously considered for addressing, in the near term, the problem of climate change. CCS technology is available today and is expected to become an increasingly affordable CO2 abatement alternative. Whereas the rapidly growing scientific literature on CCS as well as experimental and commercial practice demonstrate the technological and economic feasibility of implementing this clean fossil fuel option on a large scale, relatively little attention has been paid so far to the risks and environmental externalities of geological storage of CO2. This paper assesses the effects of including CCS damage costs in a long-term energy scenario analysis for Europe. An external cost sensitivity analysis is performed with a bottom-up energy technology model that accounts not only for CCS technologies but also for their external costs. Our main conclusion is that in a business-as-usual scenario (i.e. without climate change intervention or externality internalisation), CCS technologies are likely to be deployed at least to some extent, mainly in the power generation sector, given the economic benefits of opportunities such as enhanced coal bed methane, oil and gas recovery. Under a strict climate (CO2 emissions) constraint, CCS technologies are deployed massively. With the simultaneous introduction of both CO2 and CCS taxation in the power sector, designed to internalise the external atmospheric and geological effects of CO2 emissions and storage, respectively, we find that CCS will only be developed if the climate change damage costs are at least of the order of 100 euro/t CO2 or the CO2 storage damage costs not more than a few euro/t CO2. When the internalised climate change damage costs are as high as 67 euro/t CO2, the expensive application of CCS to biomass-fuelled power plants (with negative net CO2 emissions) proves the most effective CCS alternative to reduce CO2 emissions, rather than CCS applied to fossil

  12. Exergy costing for energy saving in combined heating and cooling applications

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian T.; Willatzen, Morten

    2014-01-01

    . In the first method, referred to as energy costing, a conventional thermoeconomic analysis is used. Here the ammonia heat pump is subject to a thermodynamic analysis with mass and energy balance equations. In the second method referred to as exergy costing, an exergy based economic analysis is used, where...... exergy balance equations are used in conjunction with mass and energy balance equations. In both costing methods the thermodynamic analysis is followed by an economic analysis which includes investment and operating costs. For both methods the unit costs of heating and cooling are found and compared...

  13. Harvesting forest biomass for energy in Minnesota: An assessment of guidelines, costs and logistics

    Science.gov (United States)

    Saleh, Dalia El Sayed Abbas Mohamed

    The emerging market for renewable energy in Minnesota has generated a growing interest in utilizing more forest biomass for energy. However, this growing interest is paralleled with limited knowledge of the environmental impacts and cost effectiveness of utilizing this resource. To address environmental and economic viability concerns, this dissertation has addressed three areas related to biomass harvest: First, existing biomass harvesting guidelines and sustainability considerations are examined. Second, the potential contribution of biomass energy production to reduce the costs of hazardous fuel reduction treatments in these trials is assessed. Third, the logistics of biomass production trials are analyzed. Findings show that: (1) Existing forest related guidelines are not sufficient to allow large-scale production of biomass energy from forest residue sustainably. Biomass energy guidelines need to be based on scientific assessments of how repeated and large scale biomass production is going to affect soil, water and habitat values, in an integrated and individual manner over time. Furthermore, such guidelines would need to recommend production logistics (planning, implementation, and coordination of operations) necessary for a potential supply with the least site and environmental impacts. (2) The costs of biomass production trials were assessed and compared with conventional treatment costs. In these trials, conventional mechanical treatment costs were lower than biomass energy production costs less income from biomass sale. However, a sensitivity analysis indicated that costs reductions are possible under certain site, prescriptions and distance conditions. (3) Semi-structured interviews with forest machine operators indicate that existing fuel reduction prescriptions need to be more realistic in making recommendations that can overcome operational barriers (technical and physical) and planning and coordination concerns (guidelines and communications

  14. Cost effectiveness of risk-based closures at UST sites

    International Nuclear Information System (INIS)

    Scruton, K.M.; Baker, J.N.

    1995-01-01

    Risk-based closures have been achieved at Underground Storage Tank (UST) sites throughout the country for a major transportation company. The risk-based closures were cost-effective because a streamlined risk-based approach was used instead of the generic baseline risk assessment approach. USEPA has recently provided guidance encouraging the use of risk-based methodology for achieving closure at UST sites. The risk-based approach used in achieving the site closures involved an identification of potential human and ecological receptors and exposure pathways, and a comparison of maximum onsite chemical concentrations to applicable or relevant and appropriate requirements (ARARs). The ARARs used in the evaluation included Federal and/or State Maximum Contaminant Levels (MCLs) for groundwater and risk-based screening levels for soils. If the maximum concentrations were above the screening levels, a baseline risk assessment was recommended. In several instances, however, the risk-based approach resulted in a regulatory agency acceptance of a ''no further action'' alternative at UST sites which did not pose a significant threat to human health and the environment. The cost of the streamlined risk-based approach is approximately $3,500, while a baseline risk assessment for the same UST site could cost up to $10,000 or more. The use of the streamlined risk-based approach has proven to be successful for achieving a ''no further action'' outcome for the client at a reasonable cost

  15. The portfolio of renewable energy sources for achieving the three E policy goals

    International Nuclear Information System (INIS)

    Shen, Yung-Chi; Chou, Chiyang James; Lin, Grace T.R.

    2011-01-01

    Renewable energy is considered by many policy-makers to contribute to achieving at least three major policy goals: the energy goal, the environmental goal, and the economic goal (3E goals). As an innovation-oriented island country with scarce natural resources, Taiwan announced the Sustainable Energy Policy Principles in 2008 that stated that Taiwan's renewable energy policy should accomplish the 3E goals. Several studies point out that specific renewable energy policy goals lead to specific renewable energy sources and technologies because each type of renewable energy has different features. In order to achieve the renewable energy policy goals, this research aims to examine how different policy goals lead to corresponding renewable energy sources. The relative importance of each goal is evaluated by using analytic hierarchy process (AHP). The weight of each policy goal is adjusted separately to construct policy scenarios by the sensitivity analysis. According to the results, non-pumped storage hydropower, wind energy, and solar energy are three sources that could meet the three policy goals at the same time. -- Highlights: →This study aims to propose a portfolio of renewable energy sources to achieve energy, environmental, and economic policy goals for Taiwan. →Non-pumped storage hydropower performs best to achieve energy and environmental goals. →Wind energy performs well to accomplish environmental goal. →Solar energy is the most preferred alternative to achieve economic goal. →The portfolio of non-pumped storage hydropower, wind energy, and solar energy can accomplish the three E policy goals at the same time.

  16. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. [Reserved] 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...

  17. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    Science.gov (United States)

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  18. Energy cost of walking: solving the paradox of steady state in the presence of variable walking speed.

    Science.gov (United States)

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm

    2009-02-01

    Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.

  19. Offshore wind energy storage concept for cost-of-rated-power savings

    International Nuclear Information System (INIS)

    Qin, Chao; Saunders, Gordon; Loth, Eric

    2017-01-01

    Highlights: •Investigated CAES + HPT system concept for offshore wind energy; •Validated cost model for offshore wind farm including CAPEX and OPEX items; •Quantified cost-of-rated-power savings associated with CAES + HPT concept; •Estimated savings of 21.6% with CAES + HPT for a sample $2.92 billion project. -- Abstract: The size and number of off-shore wind turbines over the next decade is expected to rapidly increase due to the high wind energy potential and the ability of such farms to provide utility-scale energy. In this future, inexpensive and efficient on-site wind energy storage can be critical to address short-time (hourly) mismatches between wind supply and energy demand. This study investigates a compressed air energy storage (CAES) and hydraulic power transmission (HPT) system concept. To assess cost impact, the NREL Cost and Scaling Model was modified to improve accuracy and robustness for offshore wind farms with large turbines. Special attention was paid to the support structure, installation, electrical interface and connections, land leasing, and operations and maintenance cost items as well as specific increased/reduced costs reductions associated with CAES + HPT systems. This cost model was validated and applied to a sample $2.92 billion project Virginia Offshore case It was found that adaption of CAES + HPT can lead to a substantial savings of 21.6% of this 20-year lifetime cost by dramatically reducing capital and operating cost of the generator and power transmission components. However, there are several additional variables that can impact the off-shore energy policy and planning for this new CAES + HPT concept. Furthermore, these cost-savings are only first-order estimates based on linear mass-cost relationships, and thus detailed engineering and economic analysis are recommended.

  20. Virtual Machine Replication on Achieving Energy-Efficiency in a Cloud

    Directory of Open Access Journals (Sweden)

    Subrota K. Mondal

    2016-07-01

    Full Text Available The rapid growth in cloud service demand has led to the establishment of large-scale virtualized data centers in which virtual machines (VMs are used to handle user requests for service. A user’s request cannot be completed if the VM fails. Replication mechanisms can be used to mitigate the impact of failures. Further, data centers consume a large amount of energy resulting in high operating costs and contributing to significant greenhouse gas (GHG emissions. In this paper, we focus on Infrastructure as a Service (IaaS cloud where user job requests are processed by VMs and analyze the effectiveness of VM replications in terms of job completion time performance as well as energy consumption. Three different schemes: cold, warm, and hot replications are considered. The trade-offs between job completion time and energy consumption in different replication schemes are characterized through comprehensive analytical models which capture VM state transitions and associated power consumption patterns. The effectiveness of replication schemes are demonstrated through experimental results. To verify the validity of the proposed analytical models, we extend the widely used cloud simulator CloudSim and compare the simulation results with analytical solutions.

  1. Life Cycle Cost optimization of a BOLIG+ Zero Energy Building

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, A.J.

    2011-12-15

    Buildings consume approximately 40% of the world's primary energy use. Considering the total energy consumption throughout the whole life cycle of a building, the energy performance and supply is an important issue in the context of climate change, scarcity of energy resources and reduction of global energy consumption. An energy consuming as well as producing building, labelled as the Zero Energy Building (ZEB) concept, is seen as one of the solutions that could change the picture of energy consumption in the building sector, and thus contribute to the reduction of the global energy use. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private building owners' approach to it. For this particular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took the perspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that is balanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition should further specify: (1) the connection or the lack of it to the energy infrastructure, (2) the unit of the balance, (3) the period of the balance, (4) the types of energy use included in the balance, (5) the minimum energy performance requirements (6) the renewable energy supply options, and if applicable (7) the requirements of the building-grid interaction. Moreover, the study revealed that the future ZEB definitions applied in Denmark should mostly be focused on grid

  2. External costs in the global energy optimization models. A tool in favour of sustain ability

    International Nuclear Information System (INIS)

    Cabal Cuesta, H.

    2007-01-01

    The aim of this work is the analysis of the effects of the GHG external costs internalization in the energy systems. This may provide a useful tool to support decision makers to help reaching the energy systems sustain ability. External costs internalization has been carried out using two methods. First, CO 2 externalities of different power generation technologies have been internalized to evaluate their effects on the economic competitiveness of these present and future technologies. The other method consisted of analysing and optimizing the global energy system, from an economic and environmental point of view, using the global energy optimization model generator, TIMES, with a time horizon of 50 years. Finally, some scenarios regarding environmental and economic strategic measures have been analysed. (Author)

  3. Real energy cost

    International Nuclear Information System (INIS)

    Vinogradova, I.

    1992-01-01

    Different methods of calculating the real power cost in the USA taking account of damage brought to the environment, public health expenses etc., are considered. Application of complex methods allowing one to directly determine the costs linked with ecology has shown that the most expensive power is generated at the new NPPs and thermal plants using coal. Activities on power saving and increasing the capacity of the existing hydroelectrotechnical equipment are considered to be the most effective from the viewpoint of expenses

  4. Can delivery systems use cost-effectiveness analysis to reduce healthcare costs and improve value?

    Science.gov (United States)

    Savitz, Lucy A; Savitz, Samuel T

    2016-01-01

    Understanding costs and ensuring that we demonstrate value in healthcare is a foundational presumption as we transform the way we deliver and pay for healthcare in the U.S. With a focus on population health and payment reforms underway, there is increased pressure to examine cost-effectiveness in healthcare delivery. Cost-effectiveness analysis (CEA) is a type of economic analysis comparing the costs and effects (i.e. health outcomes) of two or more treatment options. The result is expressed as a ratio where the denominator is the gain in health from a measure (e.g. years of life or quality-adjusted years of life) and the numerator is the incremental cost associated with that health gain. For higher cost interventions, the lower the ratio of costs to effects, the higher the value. While CEA is not new, the approach continues to be refined with enhanced statistical techniques and standardized methods. This article describes the CEA approach and also contrasts it to optional approaches, in order for readers to fully appreciate caveats and concerns. CEA as an economic evaluation tool can be easily misused owing to inappropriate assumptions, over reliance, and misapplication. Twelve issues to be considered in using CEA results to drive healthcare delivery decision-making are summarized. Appropriately recognizing both the strengths and the limitations of CEA is necessary for informed resource allocation in achieving the maximum value for healthcare services provided.

  5. Sustained Energy Savings Achieved through Successful Industrial Customer Interaction with Ratepayer Programs: Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Amelie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hedman, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Taylor, Robert P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Russell, Christopher [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Many states have implemented ratepayer-funded programs to acquire energy efficiency as a predictable and reliable resource for meeting existing and future energy demand. These programs have become a fixture in many U.S. electricity and natural gas markets as they help postpone or eliminate the need for expensive generation and transmission investments. Industrial energy efficiency (IEE) is an energy efficiency resource that is not only a low cost option for many of these efficiency programs, but offers productivity and competitive benefits to manufacturers as it reduces their energy costs. However, some industrial customers are less enthusiastic about participating in these programs. IEE ratepayer programs suffer low participation by industries across many states today despite a continual increase in energy efficiency program spending across all types of customers, and significant energy efficiency funds can often go unused for industrial customers. This paper provides four detailed case studies of companies that benefited from participation in their utility’s energy efficiency program offerings and highlights the business value brought to them by participation in these programs. The paper is designed both for rate-payer efficiency program administrators interested in improving the attractiveness and effectiveness of industrial efficiency programs for their industrial customers and for industrial customers interested in maximizing the value of participating in efficiency programs.

  6. Cost efficient utilisation of biomass in the German energy system in the context of energy and environmental policies

    International Nuclear Information System (INIS)

    Koenig, Andreas

    2011-01-01

    The possible uses of biomass for energy provision are manifold. Gaseous, liquid and solid bioenergy carriers can be alternatively converted into heat, power or transport fuel. The contribution of the different utilisation pathways to environmental political targets for greenhouse gas (GHG) emission reduction and energy political targets for the future share of renewable energy vary accordingly to their techno-economic characteristics. The aim of the presented study is to assess the different biomass options against the background of energy and environmental political targets based on a system analytical approach for the future German energy sector. The results show that heat generation and to a lower extent combined heat and power (CHP) production from solid biomass like wood and straw are the most cost effective ways to contribute to the emission reduction targets. The use of energy crops in fermentation biogas plants (maize) and for production of 1st generation transportation fuels, like biodiesel from rapeseed and ethanol from grain or sugar beet, are less favourable. Optimisation potentials lie in a switch to the production of 2nd generation biofuels and the enhanced use of either biomass residues or low production intensive energy crops. - Research Highlights: → Heat generation and CHP generation from biomass can contribute cost efficiently to emission reduction targets. → Biofuel production represenst the least cost efficient option for emission reduction when using biomass energetically. → The energetical use of biomass shows a high potential to contribute to energy and envirnoment political targets.

  7. Future-Proofed Energy Design Approaches for Achieving Low-Energy Homes: Enhancing the Code for Sustainable Homes

    Directory of Open Access Journals (Sweden)

    Maria Christina Georgiadou

    2014-09-01

    Full Text Available Under the label “future-proofing”, this paper examines the temporal component of sustainable construction as an unexplored, yet fundamental ingredient in the delivery of low-energy domestic buildings. The overarching aim is to explore the integration of future-proofed design approaches into current mainstream construction practice in the UK, focusing on the example of the Code for Sustainable Homes (CSH tool. Regulation has been the most significant driver for achieving the 2016 zero-carbon target; however, there is a gap between the appeal for future-proofing and the lack of effective implementation by building professionals. Even though the CSH was introduced as the leading tool to drive the “step-change” required for achieving zero-carbon new homes by 2016 and the single national standard to encourage energy performance beyond current statutory minima, it lacks assessment criteria that explicitly promote a futures perspective. Based on an established conceptual model of future-proofing, 14 interviews with building practitioners in the UK were conducted to identify the “feasible” and “reasonably feasible” future-proofed design approaches with the potential to enhance the “Energy and CO2 Emissions” category of the CSH. The findings are categorised under three key aspects; namely: coverage of sustainability issues; adopting lifecycle thinking; and accommodating risks and uncertainties and seek to inform industry practice and policy-making in relation to building energy performance.

  8. Analysis of the performance and cost effectiveness of nine small wind energy conversion systems funded by the DOE small grants program

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Joshua [Univ. of California, Berkeley, CA (United States)

    1982-04-01

    This report presents an analysis of the technical performance and cost effectiveness of nine small wind energy conversion systems (SWECS) funded during FY 1979 by the U.S. Department of Energy. Chapter 1 gives an analytic framework with which to evaluate the systems. Chapter 2 consists of a review of each of the nine projects, including project technical overviews, estimates of energy savings, and results of economic analysis. Chapter 3 summarizes technical, economic, and institutional barriers that are likely to inhibit widespread dissemination of SWECS technology.

  9. Long distance bioenergy logistics. An assessment of costs and energy consumption for various biomass energy transport chains

    International Nuclear Information System (INIS)

    Suurs, R.

    2002-01-01

    In order to create the possibility of obtaining an insight in the key factors of the title system, a model has been developed, taking into account different production systems, pretreatment operations and transport options. Various transport chains were constructed, which were subjected to a sensitivity analysis with respect to factors like transport distance, fuel prices and equipment operation times. Scenarios are analysed for Latin-America and Europe for which the distinguishing parameters were assumed to be the transport distances and biomass prices. For both regions the analysis concerns a situation where ship transports are applied for a coastal and for an inland biomass supply. For European biomass a train transport was considered as well. In order to explore possibilities for improvement, the effects of these variables on costs and energy consumption within a chain, were assessed. Delivered biomass can be converted to power or methanol. Model results are as follows: Total costs for European bioenergy range from 11.2-21.2 euro/GJ MeOH for methanol and 17.4-28.0 euro/GJ e for electricity. For Latin-America, costs ranges are 11.3-21.8 euro/GJ MeOH for methanol and 17.4-28.7 euro/GJ e for electricity. The lower end of these ranges is represented by transport chains that are characterised by the use of high density energy carriers such as logs, pellets or liquid fuels (these are the most attractive for all scenarios considered). The transport of chips should be avoided categorically due to their low density and high production costs. Transport chains based on the early production of liquid energy carriers such as methanol or pyrolysis oil seem to be promising alternatives as well. With respect to energy consumption, the transport of chips is highly unfavourable for the same reasons as stated above. The use of pelletizing operations implies a high energy input, however due to energy savings as a result of more efficient transport operations, this energy loss is

  10. Synergies in the Asian energy system: Climate change, energy security, energy access and air pollution

    International Nuclear Information System (INIS)

    Vliet, Oscar van; Krey, Volker; McCollum, David; Pachauri, Shonali; Nagai, Yu; Rao, Shilpa; Riahi, Keywan

    2012-01-01

    We use the MESSAGE model to examine multiple dimensions of sustainable development for three Asian regions in a set of scenarios developed for the Asian Modelling Exercise. Using climate change mitigation as a starting point for the analysis, we focus on the interaction of climate and energy with technology choice, energy security, energy access, and air pollution, which often have higher policy priority than climate change. Stringent climate policies drive the future energy supply in Asia from being dominated by coal and oil to a more diversified system based mostly on natural gas, coal with CCS, nuclear and renewable energy. The increase in diversity helps to improve the energy security of individual countries and regions. Combining air pollution control policies and universal energy access policies with climate policy can further help to reduce both outdoor and indoor air pollution related health impacts. Investments into the energy system must double by 2030 to achieve stringent climate goals, but are largely offset by lower costs for O and M and air pollution abatement. Strong focus on end-use efficiency also helps lowering overall total costs and allows for limiting or excluding supply side technologies from the mitigation portfolio. Costs of additional energy access policies and measures are a small fraction of total energy system costs. - Highlights: ► Half of added investments in energy offset by lower costs for O and M and air pollution. ► Costs for achieving universal energy access much smaller than energy system costs. ► Combined emissions and access policies further reduce air pollution impacts on health. ► Strong focus on end-use efficiency allows for more flexibility on energy sources. ► Stringent climate policy can improve energy security of Asian regions.

  11. Effect of scale and quantity on the cost and performance of energy technologies: a literature review

    International Nuclear Information System (INIS)

    Hill, D.

    1983-11-01

    Traditionally, a six-tenths power law stated that cost increased by only half with a doubling of plant size, reducing cost per unit of capacity to 75%. Problems during construction in the past two decades have largely nullified the expected savings. Thermal efficiency improves with size in both coal and nuclear plants, but plant availability declines. These trends suggest that an optimal size for nuclear plants may be somewhat less than 1000 MW(e). Judged by a study of the cost of electricity generated during the 1970s, however, operational savings substantially restored economies of scale to nuclear plants but not to coal plants. The alternative to building larger plants is to build more small plants. In field construction, a second plant at the same site costs about 90% of the first, and a doubling of the number of plants built by an architect-engineer appears to reduce average cost to about 93%. In a variety of manufacturing industries, the learning curve is steeper. In the few cases where learning curves are mentioned in manufacturing studies of new energy technologies, however, a reduction in cost to only about 90% with a doubling of quantity is assumed. Most of the cost of new energy technologies such as photovoltaic arrays and fuel cells will be due to conventional equipment, structure, and manufacturing methods. It should therefore be possible to estimate size-quantity cost tradeoffs with some confidence to help establish optimal plant or module sizes

  12. Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring.

    Science.gov (United States)

    Elliott, Kyle Hamish; Chivers, Lorraine S; Bessey, Lauren; Gaston, Anthony J; Hatch, Scott A; Kato, Akiko; Osborne, Orla; Ropert-Coudert, Yan; Speakman, John R; Hare, James F

    2014-01-01

    Windscapes affect energy costs for flying animals, but animals can adjust their behavior to accommodate wind-induced energy costs. Theory predicts that flying animals should decrease air speed to compensate for increased tailwind speed and increase air speed to compensate for increased crosswind speed. In addition, animals are expected to vary their foraging effort in time and space to maximize energy efficiency across variable windscapes. We examined the influence of wind on seabird (thick-billed murre Uria lomvia and black-legged kittiwake Rissa tridactyla) foraging behavior. Airspeed and mechanical flight costs (dynamic body acceleration and wing beat frequency) increased with headwind speed during commuting flights. As predicted, birds adjusted their airspeed to compensate for crosswinds and to reduce the effect of a headwind, but they could not completely compensate for the latter. As we were able to account for the effect of sampling frequency and wind speed, we accurately estimated commuting flight speed with no wind as 16.6 ms(?1) (murres) and 10.6 ms(?1) (kittiwakes). High winds decreased delivery rates of schooling fish (murres), energy (murres) and food (kittiwakes) but did not impact daily energy expenditure or chick growth rates. During high winds, murres switched from feeding their offspring with schooling fish, which required substantial above-water searching, to amphipods, which required less above-water searching. Adults buffered the adverse effect of high winds on chick growth rates by switching to other food sources during windy days or increasing food delivery rates when weather improved.

  13. State of Oregon 4th biennial energy plan

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    State law directs the Oregon Department of Energy (ODOE) to prepare an energy plan every two years. This is the Fourth Biennial Energy Plan. The Plan is a policy blueprint for how to best meet Oregon's future energy needs. It identifies the key energy issues facing the state and sets forth policies and actions to achieve our energy goals of reliable, least-cost, and environmentally safe supply. This book presents: Oregon's demand and supply picture today. The progress Oregon has made toward energy efficiency. Oregon's energy demand and supply outlook for the next 20 years. Estimates of cost-effective conservation and other resources that could contribute to the state's energy supply. The major energy-related health, safety, and environmental issues facing the state. A strategy to reduce greenhouse gas emissions 20 percent from 1988 levels by 2005. A two-year Action Plant that spells out ODOE's recommended actions for achieving Oregon's energy goals

  14. Incentives for solar energy in industry

    Science.gov (United States)

    Bergeron, K. D.

    1981-05-01

    Several issues are analyzed on the effects that government subsidies and other incentives have on the use of solar energy in industry, as well as on other capital-intensive alternative energy supplies. Discounted cash flow analysis is used to compare tax deductions for fuel expenses with tax credits for capital investments for energy. The result is a simple expression for tax equity. The effects that market penetration of solar energy has on conventional energy prices are analyzed with a free market model. It is shown that net costs of a subsidy program to the society can be significantly reduced by price. Several government loan guarantee concepts are evaluated as incentives that may not require direct outlays of government funds; their relative effectiveness in achieving loan leverage through project financing, and their cost and practicality, are discussed.

  15. A study of the rebound effect on China's current energy conservation and emissions reduction: Measures and policy choices

    International Nuclear Information System (INIS)

    Lin, Boqiang; Yang, Fang; Liu, Xia

    2013-01-01

    Energy efficiency improvement leads to a reduction in the real cost of energy services per unit, thus bringing about an increase in the demand for energy services. Therefore, the potential energy savings and emission reduction from efficiency improvements might be offset, which is known as “the rebound effect”. This study disaggregates the effect into the direct and indirect effects based on the Slutsky Equation and finds that the rebound effect of Chinese urban households is approximately 22%. It is found that the indirect effect is stronger than the direct effect. These findings prove that the initial goals of the government on energy conservation and emission reduction could not be achieved by improving energy efficiency alone, but need to be supplemented with relevant energy pricing reforms. - Highlights: • This study disaggregates the effect into the direct and indirect effects. • The rebound effect of Chinese urban households is approximately 22%. • The indirect effect is stronger than the direct effect. • Energy pricing reform is needed to mitigate the rebound effect

  16. Construction Performance Optimization toward Green Building Premium Cost Based on Greenship Rating Tools Assessment with Value Engineering Method

    Science.gov (United States)

    Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Riswanto; Budiman, Rachmat

    2017-07-01

    Green building concept becomes important in current building life cycle to mitigate environment issues. The purpose of this paper is to optimize building construction performance towards green building premium cost, achieving green building rating tools with optimizing life cycle cost. Therefore, this study helps building stakeholder determining building fixture to achieve green building certification target. Empirically the paper collects data of green building in the Indonesian construction industry such as green building fixture, initial cost, operational and maintenance cost, and certification score achievement. After that, using value engineering method optimized green building fixture based on building function and cost aspects. Findings indicate that construction performance optimization affected green building achievement with increasing energy and water efficiency factors and life cycle cost effectively especially chosen green building fixture.

  17. An approach to costs and energy consumption in private urban Spanish Mediterranean landscapes from a simplified model in sprinkle irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Arbat, G.; Pujol, J.; Pelegri, M.; Puig-Bargues, J.; Duran-Ros, M.; Ramirez de Cartagena, F.

    2013-05-01

    The number of private gardens has increased in recent years, creating a more pleasant urban model, but not without having an environmental impact, including increased energy consumption, which is the focus of this study. The estimation of costs and energy consumption for the generic typology of private urban gardens is based on two simplifying assumptions: square geometry with surface areas from 25 to 500 m{sup 2} and hydraulic design with a single pipe. In total, eight sprinkler models have been considered, along with their possible working pressures, and 31 pumping units grouped into 5 series that adequately cover the range of required flow rates and pressures, resulting in 495 hydraulic designs repeated for two climatically different locations in the Spanish Mediterranean area (Girona and Elche). Mean total irrigation costs for the locality with lower water needs (Girona) and greater needs (Elche) were {epsilon} 2,974 ha{sup -}1 yr-1 and {epsilon}3,383 ha{sup -}1 yr{sup -}1, respectively. Energy costs accounted for 11.4% of the total cost for the first location, and 23.0% for the second. While a suitable choice of the hydraulic elements of the setup is essential, as it may provide average energy savings of 77%, due to the low energy cost in relation to the cost of installation, the potential energy savings do not constitute a significant incentive for the irrigation system design. The low efficiency of the pumping units used in this type of garden is the biggest obstacle and constraint to achieving a high quality energy solution. (Author) 32 refs.

  18. An approach to costs and energy consumption in private urban Spanish Mediterranean landscapes from a simplified model in sprinkle irrigation

    Directory of Open Access Journals (Sweden)

    G. Arbat

    2013-02-01

    Full Text Available The number of private gardens has increased in recent years, creating a more pleasant urban model, but not without having an environmental impact, including increased energy consumption, which is the focus of this study. The estimation of costs and energy consumption for the generic typology of private urban gardens is based on two simplifying assumptions: square geometry with surface areas from 25 to 500 m2 and hydraulic design with a single pipe. In total, eight sprinkler models have been considered, along with their possible working pressures, and 31 pumping units grouped into 5 series that adequately cover the range of required flow rates and pressures, resulting in 495 hydraulic designs repeated for two climatically different locations in the Spanish Mediterranean area (Girona and Elche. Mean total irrigation costs for the locality with lower water needs (Girona and greater needs (Elche were € 2,974 ha-1 yr-1 and € 3,383 ha-1 yr-1, respectively. Energy costs accounted for 11.4% of the total cost for the first location, and 23.0% for the second. While a suitable choice of the hydraulic elements of the setup is essential, as it may provide average energy savings of 77%, due to the low energy cost in relation to the cost of installation, the potential energy savings do not constitute a significant incentive for the irrigation system design. The low efficiency of the pumping units used in this type of garden is the biggest obstacle and constraint to achieving a high quality energy solution.

  19. Reliability and cost evaluation of small isolated power systems containing photovoltaic and wind energy

    Science.gov (United States)

    Karki, Rajesh

    Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates

  20. The impact of relative energy prices on industrial energy consumption in China: a consideration of inflation costs.

    Science.gov (United States)

    He, Lingyun; Ding, Zhihua; Yin, Fang; Wu, Meng

    2016-01-01

    Significant effort has been exerted on the study of economic variables such as absolute energy prices to understand energy consumption and economic growth. However, this approach ignores general inflation effects, whereby the prices of baskets of goods may rise or fall at different rates from those of energy prices. Thus, it may be the relative energy price, not the absolute energy price, that has most important effects on energy consumption. To test this hypothesis, we introduce a new explanatory variable, the domestic relative energy price, which we define as "the ratio of domestic energy prices to the general price level of an economy," and we test the explanatory power of this new variable. Thus, this paper explores the relationship between relative energy prices and energy consumption in China from the perspective of inflation costs over the period from 1988 to 2012. The direct, regulatory and time-varying effects are captured using methods such as ridge regression and the state-space model. The direct impacts of relative energy prices on total energy consumption and intensity are -0.337 and -0.250, respectively; the effects of comprehensive regulation on energy consumption through the economic structure and the energy structure are -0.144 and -0.148, respectively; and the depressing and upward effects of rising and falling energy prices on energy consumption are 0.3520 and 0.3564, respectively. When economic growth and the energy price level were stable, inflation persisted; thus, rising energy prices benefitted both the economy and the environment. Our analysis is important for policy makers to establish effective energy-pricing policies that ensure both energy conservation and the stability of the pricing system.

  1. Effects of a prior high-intensity knee-extension exercise on muscle recruitment and energy cost: a combined local and global investigation in humans.

    Science.gov (United States)

    Layec, Gwenael; Bringard, Aurélien; Le Fur, Yann; Vilmen, Christophe; Micallef, Jean-Paul; Perrey, Stéphane; Cozzone, Patrick J; Bendahan, David

    2009-06-01

    The effects of a priming exercise bout on both muscle energy production and the pattern of muscle fibre recruitment during a subsequent exercise bout are poorly understood. The purpose of the present study was to determine whether a prior exercise bout which is known to increase O(2) supply and to induce a residual acidosis could alter energy cost and muscle fibre recruitment during a subsequent heavy-intensity knee-extension exercise. Fifteen healthy subjects performed two 6 min bouts of heavy exercise separated by a 6 min resting period. Rates of oxidative and anaerobic ATP production, determined with (31)P-magnetic resonance spectroscopy, and breath-by-breath measurements of pulmonary oxygen uptake were obtained simultaneously. Changes in muscle oxygenation and muscle fibre recruitment occurring within the quadriceps were measured using near-infrared spectroscopy and surface electromyography. The priming heavy-intensity exercise increased motor unit recruitment (P exercise bout but did not alter muscle energy cost. We also observed a reduced deoxygenation time delay, whereas the deoxygenation amplitude was increased (P exercise led to an increased recruitment of motor units in the early part of the second bout of heavy exercise. Considering the increased oxidative cost and the unaltered energy cost, one could suggest that our results illustrate a reduced metabolic strain per fibre.

  2. Assessment of electricity generation and energy cost of wind energy conversion systems in north-central Nigeria

    International Nuclear Information System (INIS)

    Adaramola, M.S.; Paul, S.S.; Oyedepo, S.O.

    2011-01-01

    Highlights: → The wind energy potential and economic analysis in selected six locations in north central part of Nigeria are investigated. → Economical evaluation of the wind energy in the selected sites was made by using the levelised cost method. → Locations that are suitable electricity generation and small scale applications are identified. - Abstract: In this study, the wind energy potential and economic analysis in selected six locations in north central part of Nigeria were investigated using wind speed data that span between 19 and 37 years measured at 10 m height. The performance of small to medium size commercial wind turbine models were examined and economic evaluation of the wind energy in the selected sites was made by using the levelised cost method. The results showed that the cost of energy production per kWh for the selected sites vary between cents 4.02 and cents 166.79. It was shown that Minna is most viable site while Bida is found to be least among the sites considered. Using three selected wind turbine models (in Minna) as case study, an increase in the escalation rate of operating and maintenance cost from 0% to 10%, lead to an increase in the unit energy cost by about 7%. It was further shown that by increasing the escalation rate of inflation from 0% to 5%, the cost of energy decreases by about 29% while the discount rate (return on investment) decreases from 11.54% to 6.23%.

  3. The hidden costs of nuclear energy

    International Nuclear Information System (INIS)

    Sweet, C.

    1978-01-01

    A lynch pin of the pro-nuclear argument is that atomic energy provides cheap electricity. Many are sceptical of such claims, realising that a lot of figures have been omitted from the accounting - the cost of R and D, of dismantling the obsolete stations and of waste management - but having no access to all the figures, such scepticism has remained little more than a hunch. Using conventional economic accounting it is shown that nuclear power must be considerably more costly than has ever been admitted by any of the authorities. The CEGB claims that reprocessing amounts to no more than 8 per cent of the total costs of nuclear generated electricity. According to the present author the costs are 20 per cent - and that 20 per cent is of a much higher figure. (author)

  4. Group Home Energy Efficiency Retrofit for 30% Energy Savings: Washington, D.C. (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-11-01

    Energy efficiency retrofits (EERs) face many challenges on the path to scalability. Limited budgets, cost effectiveness, risk factors, and accessibility impact the type and the extent of measures that can be implemented feasibly to achieve energy savings goals. Group home retrofits can face additional challenges than those in single family homes - such as reduced access (occupant-in-place restrictions) and lack of incentives for occupant behavioral change. This project studies the specification, implementation, and energy savings from an EER in a group home, with an energy savings goal of 30%. This short term test report chronicles the retrofit measures specified, their projected cost-effectiveness using building energy simulations, and the short term test results that were used to characterize pre-retrofit and post-retrofit conditions. Additionally, the final report for the project will include analysis of pre- and post-retrofit performance data on whole building energy use, and an assessment of the energy impact of occupant interface with the building (i.e., window operation). Ultimately, the study's results will be used to identify cost effective EER measures that can be implemented in group homes, given constraints that are characteristic of these buildings. Results will also point towards opportunities for future energy savings.

  5. Cost Effective Polymer Solar Cells Research and Education

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Sam-Shajing [Norfolk State Univ, Norfolk, VA (United States)

    2015-10-13

    The technical or research objective of this project is to investigate and develop new polymers and polymer based optoelectronic devices for potentially cost effective (or cost competitive), durable, lightweight, flexible, and high efficiency solar energy conversion applications. The educational objective of this project includes training of future generation scientists, particularly young, under-represented minority scientists, working in the areas related to the emerging organic/polymer based solar energy technologies and related optoelectronic devices. Graduate and undergraduate students will be directly involved in scientific research addressing issues related to the development of polymer based solar cell technology.

  6. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs across Europe

    Directory of Open Access Journals (Sweden)

    Delia D'Agostino

    2018-04-01

    Full Text Available This data article refers to the research paper A model for the cost-optimal design of Nearly Zero Energy Buildings (NZEBs in representative climates across Europe [1]. The reported data deal with the design optimization of a residential building prototype located in representative European locations. The study focus on the research of cost-optimal choices and efficiency measures in new buildings depending on the climate. The data linked within this article relate to the modelled building energy consumption, renewable production, potential energy savings, and costs. Data allow to visualize energy consumption before and after the optimization, selected efficiency measures, costs and renewable production. The reduction of electricity and natural gas consumption towards the NZEB target can be visualized together with incremental and cumulative costs in each location. Further data is available about building geometry, costs, CO2 emissions, envelope, materials, lighting, appliances and systems.

  7. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs) across Europe.

    Science.gov (United States)

    D'Agostino, Delia; Parker, Danny

    2018-04-01

    This data article refers to the research paper A model for the cost-optimal design of Nearly Zero Energy Buildings (NZEBs) in representative climates across Europe [1]. The reported data deal with the design optimization of a residential building prototype located in representative European locations. The study focus on the research of cost-optimal choices and efficiency measures in new buildings depending on the climate. The data linked within this article relate to the modelled building energy consumption, renewable production, potential energy savings, and costs. Data allow to visualize energy consumption before and after the optimization, selected efficiency measures, costs and renewable production. The reduction of electricity and natural gas consumption towards the NZEB target can be visualized together with incremental and cumulative costs in each location. Further data is available about building geometry, costs, CO 2 emissions, envelope, materials, lighting, appliances and systems.

  8. Nuclear energy: the real costs; and reply

    International Nuclear Information System (INIS)

    Jeffery, J.W.; Jones, P.M.S.

    1982-01-01

    Comments are made on a review by Jones (Atom. 306 April 1982) of 'Nuclear Energy: the Real Costs' - a special report by the Committee for the Study of the Economics of Nuclear Electricity, and criticisms contained in the review of the analysis of nuclear costs presented in the report are discussed. Dr Jones replies. (U.K.)

  9. New technology adoption for Russian energy generation: What does it cost? A case study for Moscow

    International Nuclear Information System (INIS)

    Bratanova, Alexandra; Robinson, Jacqueline; Wagner, Liam

    2016-01-01

    Highlights: • Power generation cost is modelled for a Russian region under two gas price scenarios. • Conventional, new and renewable technologies are compared based on levelised cost. • Regional energy system is shown to be crucially dependent on natural gas prices. • We conclude that new gas-fired technology adoption is feasible and cost-competitive. • Biomass demonstrates cost competitiveness, whereas solar appears infeasible. - Abstract: Russia is frequently referred to as a country with substantial energy efficiency and renewable energy potential. In 2000–2008 energy-gross domestic product (GDP) ratios were improved by 35%, however, the contribution of technological progress accounts for only 1% of the energy-GDP ratio reduction. At the same time, although new policy mechanisms to stimulate renewable energy development have been recently introduced, renewable technology deployment has not yet taken off. Economic theory suggests that there is no better incentive for industry development than cost signals. This paper adapts the levelised cost of energy methodology to examine the cost structures associated with electricity generation by conventional and new technology types for a Russian region (Moscow). The model, run for two fuel price scenarios, allowed us to conclude that the regional energy supply system is heavily dependent on the natural gas price and that the diversification provided by technology development will be beneficial for the energy security of the region. We conclude that new and renewable technologies become cost-effective for electricity generation as domestic natural gas prices reach parity with export prices. However, strong political and financial support is needed to boost technological development and renewables application in Russia.

  10. The effect of costs on the future of nuclear power

    International Nuclear Information System (INIS)

    Walske, C.

    1984-01-01

    The author discusses the future of the nuclear power industry from an economics and cost-factor point of view, from the point of view of plant management, as it affects and requires personnel training, as R and D cost and competition is involved, as end-user cost is involved, and as efficiency and cost effectiveness of nuclear power fare in comparison with other sources of electrical energy

  11. Cost-effectiveness of solar energy in energy-efficient buildings; Kosten und Nutzen von Solarenergie in energieeffizienten Bauten

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, S.; Iten, R.; Vettori, A. [Infras, Zuerich (Switzerland); Haller, A.; Ochs, M. [Ernst Schweizer AG, Hedingen (Switzerland); Keller, L. [Bureau d' Etudes Keller-Burnier, Lavigny (Switzerland)

    2005-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study that examined the potentials and restraints with respect to the use of solar energy in the new construction and refurbishment of residential buildings in Switzerland. The method used is based on a 'learning-curve' technique. The first part of the report deals with the development of prices for solar-collector installations from 1990 until now. The second part deals with today's costs and future developments up to the year 2030. A reference building is used as the basis for the comparison of eight system variants. A further eight variants combine solar technology with traditional heating installations such as oil, gas and wood boilers and heat-pumps. Scenarios for the market situation for solar energy in 2030 are discussed.

  12. Quantifying the costs and benefits of energy

    International Nuclear Information System (INIS)

    Lindell, B.

    1975-06-01

    A number of principles which have been developed for cost-benefit assessments in the radiation field are applied to the more general cost-benefit assessment of energy production. Sources of energy may be assessed in relation to a reference practice. If this is done for one and the same electricity production, the main objective is to assess detriments in comparable terms. Detriment rates may be integrated in space and time and might also be expressed in equivalent monetary units. Although there are several practical limitations to any theoretical treatment of the problem, the basic principles may form a useful background to more realistic although more complicated approaches to the task. (author)

  13. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  14. A Cost-Effectiveness Analysis for Incineration or Recycling of Dutch Household Plastics

    NARCIS (Netherlands)

    R.H.J.M. Gradus (Raymond); R. van Koppen (Rick); E. Dijkgraaf (Elbert); P. Nillesen (Paul)

    2016-01-01

    textabstractThe cost-effectiveness of plastic recycling is compared to energy recovery from plastic incineration in a waste-to-energy plant using data for the Netherlands. Both options have specific benefits and costs. The benefits of recycling are the avoidance of both CO2 that otherwise would be

  15. Energy for rural India

    International Nuclear Information System (INIS)

    Urban, Frauke; Benders, Rene M.J.; Moll, Henri C.

    2009-01-01

    About 72 million households in rural India do not have access to electricity and rely primarily on traditional biofuels. This research investigates how rural electrification could be achieved in India using different energy sources and what the effects for climate change mitigation could be. We use the Regional Energy Model (REM) to develop scenarios for rural electrification for the period 2005-2030 and to assess the effects on greenhouse gas emissions, primary energy use and costs. We compare the business-as-usual scenario (BAU) with different electrification scenarios based on electricity from renewable energy, diesel and the grid. Our results indicate that diesel systems tend to have the highest CO 2 emissions, followed by grid systems. Rural electrification with primarily renewable energy-based end-uses could save up to 99% of total CO 2 emissions and 35% of primary energy use in 2030 compared to BAU. Our research indicates that electrification with decentralised diesel systems is likely to be the most expensive option. Rural electrification with renewable energy tends to be the most cost-effective option when end-uses are predominantly based on renewable energy, but turns out to be more costly than grid extensions when electric end-use devices are predominantly used. This research therefore elaborates whether renewable energy is a viable option for rural electrification and climate change mitigation in rural India and gives policy recommendations.

  16. Cost considerations for an ionising energy treatment facility

    International Nuclear Information System (INIS)

    Culpitt, R.A.

    1985-01-01

    Variables influencing the cost of food irradiation can be included under three broad headings: the physical characteristics of products to be treated; the operational characteristics of the plant to be used; costs of establishment and operation of an ionising energy treatment

  17. Cost/benefit comparison of thermal solar energy systems in Switzerland

    International Nuclear Information System (INIS)

    Suter, J.M.

    1991-10-01

    A comparison is made between thermal solar energy systems of different size for five different applications in the three main climatic zones in Switzerland. Conventional ways of energy conservation are also included in the comparison. A cost/benefit ratio is calculated for each system. The investment is used as a cost indicator whereas the useful solar heat or the conventional energy saving is chosen as benefit. It is shown that the most systems sold today in Switzerland - combined hot water and space heating systems for single family houses - have the poorest cost/benefit ratio among all systems considered in the analysis. Four applications with more favourable cost/benefit ratio are identified. Large systems have generally a better cost/benefit ratio than smaller ones, although the total investment is higher. Photovoltaics is even less favourable than all thermal systems considered. The large scale penetration of technologies with good cost/benefit ratio lies in the public interest. Supporting activities should consider the priority set by the cost/benefit ratio. (author) 1 fig., 14 refs

  18. SAGD CO2 mitigation through energy efficiency improvements

    International Nuclear Information System (INIS)

    Plessis du, D.

    2010-01-01

    An evaluation of the carbon dioxide (CO 2 ) emissions reductions achieved using energy efficiency measures in steam assisted gravity drainage (SAGD) operations was presented. The efficiency of a typical SAGD operation was analyzed using an indexing tool based on the Carnot cycle efficiency to develop an ideal SAGD heat cycle. The benefits of using an organic Rankine cycle (ORC) technology to convert waste heat to electrical power were also investigated. A CO 2 abatement curve was used to identify the economic benefits and costs of various greenhouse gas (GHG) reductions. The level of recovered energy was determined in relation to energy prices, capital costs, and carbon penalties in order to determine the most efficient means of decreasing energy usage. The study demonstrated that energy efficiency can be improved by up to 20 percent, and water loss reductions of up to 50 percent can be achieved using cost-effective energy efficiency measures. Results of the study can be used to guide government policy and provide industry with practical tools to benchmark performance and improve efficiencies. 4 refs., 1 tab., 10 figs.

  19. Achieving energy efficiency through behaviour change: what does it take?

    Energy Technology Data Exchange (ETDEWEB)

    Barbu, A.-D. [European Environment Agency (EEA), Copenhagen (Denmark); Griffiths, N.; Morton, G. [Ricardo-AEA (United Kingdom)

    2013-04-15

    be to receive society's views on the issues raised. This EEA report provides a review of available literature on measures targeting consumer behaviour in order to achieve energy savings. The report focuses on: 1) Energy efficiency measures and behaviour change; 2) Structural factors - such as the impact of liberalisation and the energy mix and energy tariff structures; 3) The rebound effect. (Author)

  20. Annual meeting on nuclear technology '96. Technical session: Energy costs

    International Nuclear Information System (INIS)

    1996-08-01

    The two papers of this session deal with the costs of two different energy generation systems, one is based on photovoltaic energy conversion, and the other is the nuclear fuel cycle and nuclear energy generation. The author shows that the costs of these two energy systems in Germany are much more governed by decisions taken in the political domain than is the case in other countries. Although German science and technology in these two engineering fields hold a top rank worldwide, the high costs that seem inevitable in Germany are expected to be a major reason why the photovoltaic industry will have to leave the country and go abroad to exploit the better chances there. (DG) [de

  1. Energy audit: A case study to reduce lighting cost for an industrial site

    CSIR Research Space (South Africa)

    Dzobo, O

    2017-06-01

    Full Text Available were done using lux meter. 2. Data Analysis: Detailed analysis of collected data was done from the database that was generated. This forms the baseline case which is used later to quantify any energy cost savings achieved as a result of recommended... in the plant and selected offices were measured during day time by using a lux/light meter. Measurements were taken at a number of points and averaged. For offices the light levels were also determined with the lights OFF and window-blinds fully open...

  2. The energy cost of quantum information losses

    Science.gov (United States)

    Romanelli, Alejandro; de Lima Marquezino, Franklin; Portugal, Renato; Donangelo, Raul

    2018-05-01

    We explore the energy cost of the information loss resulting from the passage of an initial density operator to a reduced one. We use the concept of entanglement temperature in order to obtain a lower bound for the energy change associated with this operation. We determine the minimal energy required for the case of the information losses associated with the trace over the space coordinates of a two-dimensional quantum walk.

  3. 12 New England Organizations Honored for Outstanding Achievements in Energy Efficiency

    Science.gov (United States)

    EPA and the U.S. Department of Energy (DOE) are honoring 12 New England businesses and organizations for their commitment to saving energy, saving money, and protecting the environment through superior energy efficiency achievements.

  4. Directions of organisational and low-cost energy saving of engineering enterprises

    Directory of Open Access Journals (Sweden)

    Dzhedzhula Viacheslav V.

    2014-01-01

    Full Text Available The article analyses directions of energy saving of industrial enterprises. Taking into account the tendency to continuous growth of cost of energy resources, introduction of measures that would allow reduction of energy consumption of enterprises is an urgent task. One of the most important obstacles in the process of introduction of energy efficient solutions are fund limits and low awareness of owners and managers of industrial enterprises. The article offers a new classification of energy saving measures: apart from traditional expense and organisation measures it introduces the low-cost measures notion. It offers to consider low-cost those measures that are realised by the enterprise by means of own funds, moreover, their repayment term is not more than one year. It offers analytical expression for identification of annual funds saving from introduction of low-cost measures. It considers the process of identification of saving of funds from introduction of some of the main low-cost measures in detail: replacement of lighting units, balancing of ventilation networks and elimination of water leakages from pipelines and water supply equipment. Based on the analysis of bibliography information the article provides a list of main measures on energy saving, which could be referred to the low-cost ones. The proposed approaches would allow paying more attention to practical aspects of realisation of the concept of energy saving in the industry.

  5. The avoided external costs of using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, A [Harvard Inst. for International Development, Cambridge, MA (United States)

    1996-12-31

    This article discusses the external costs of electricity generated by conventional fossil fuel sources, such as coal and nuclear power. It compares the costs of electricity generated with coal with that generated with wind. A measure of the benefits of wind energy is the difference between these two external costs. The methodology used for the estimation of the external costs, as well as the estimates of these costs, are taken from the EC ExternE study, financed by DGXII of the European Commission. The present author was a lead economist for that study. (author)

  6. The avoided external costs of using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, A. [Harvard Inst. for International Development, Cambridge, MA (United States)

    1995-12-31

    This article discusses the external costs of electricity generated by conventional fossil fuel sources, such as coal and nuclear power. It compares the costs of electricity generated with coal with that generated with wind. A measure of the benefits of wind energy is the difference between these two external costs. The methodology used for the estimation of the external costs, as well as the estimates of these costs, are taken from the EC ExternE study, financed by DGXII of the European Commission. The present author was a lead economist for that study. (author)

  7. The avoided external costs of using wind energy

    International Nuclear Information System (INIS)

    Markandya, A.

    1995-01-01

    This article discusses the external costs of electricity generated by conventional fossil fuel sources, such as coal and nuclear power. It compares the costs of electricity generated with coal with that generated with wind. A measure of the benefits of wind energy is the difference between these two external costs. The methodology used for the estimation of the external costs, as well as the estimates of these costs, are taken from the EC ExternE study, financed by DGXII of the European Commission. The present author was a lead economist for that study. (author)

  8. Low-Cost In-Fill Installation for High-Energy-Saving, Dynamic Windows

    Science.gov (United States)

    2017-07-01

    increase 2% annually. This is consistent with national recognized energy prediction models. Electrical Labor costs: Electrical labor cost for wiring...Technology Description: ................................................................................................ 3 2.1.2 Energy Consumption ...22 Figure 15. Energy Consumption for the Calibration Period of 9/2/2015 - 9/16/2015

  9. Fair Division of Costs in Green Energy Markets

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Kronborg, Dorte; Smilgins, Aleksandrs

    2017-01-01

    This paper considers cost allocation in networks where agents are characterized by stochastic demand and supply of a non-storable good, e.g. green energy. The grid itself creates possibilities of exchanging energy between agents and we propose to allocate common costs in proportion to the economi...... gain of being part of the grid. Our model includes a set of fundamental requirements for the associated trading platform. In particular, it is argued that a suitable mechanism deviates from a traditional market. The approach is illustrated by simulations....

  10. Energy mix and employment effects

    International Nuclear Information System (INIS)

    Wodopia, F.J.

    2005-01-01

    ''Energy Mix and Employment Effects'' is a subject not to be reduced to the so-called ''job argument''. It also involves the question whether it will be possible to achieve consensus again about the composition of a balanced sustainable energy mix. This term must not be interpreted in a static sense; after all, the framework conditions of energy policy are changing. However, this must not render energy policy unsteady. This requirement should be imposed on economic policy in general, i.e. political interventions, it they are really unavoidable, must be predictable on a long term. This contribution also examines the meaning of the term ''energy mix.'' Aspects of the debate about the climate, especially potential factors influencing the climate, are discussed against the backdrop of scientific validity. Other key points covered are the description and analysis of the energy policy framework. One major aspect under study are all kinds of ''subsidies'' of energy resources and the consequences to the whole economy arising from these financial support mechanisms. The findings are projected onto the employment effects. Finally, the question is raised how to design an energy mix sustainable for the future, and how to achieve it politically and in society. (orig.)

  11. Integrated cost-effectiveness analysis of greenhouse gas emission abatement. The case of Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lehtilae, A.; Tuhkanen, S. [VTT Energy, Espoo (Finland). Energy Systems

    1999-11-01

    In Finland greenhouse gas emissions are expected to increase during the next decades due to economic growth, particularly in the energy intensive industrial sectors. The role of these industries is very central in the national economy. The emission control according to the Kyoto Protocol will therefore be quite difficult and costly. The study analyses the cost-effectiveness of different technical options for reducing the emissions of carbon dioxide, methane, and nitrous oxide in Finland. The analysis is performed with the help of a comprehensive energy system model for Finland, which has been extended to cover all major sources of methane and nitrous oxide emissions in the energy sector, industry, waste management and agriculture. The focus being on technical options, no consideration is given to possible policy measures, emission trading or joint implementation in the study. Under the boundary conditions given for the development of the Finnish energy economy, cost-effective technical measures in the energy system include increases in the use of wood biomass, natural gas and wind energy, increases in the contribution of CHP to the power supply, and intensified energy conservation in all end-use sectors. Additional cost-effective measures are landfill gas recovery, utilisation of the combustible fraction of waste and catalytic conversion of N{sub 2}O in nitric acid production. With baseline assumptions, the direct annual costs of emission abatement are calculated to be about 2000 MFIM (330 M{epsilon}) in 2010. The marginal costs are estimated to be about 230 FIM (40 {epsilon}) per tonne of CO{sub 2}-equivalent in 2010. The cost curie derived from the analysis could be used in further analyses concerning emissions trading. (orig.) 109 refs. SIHTI Research Programme

  12. Audit of the management and cost of the Department of Energy`s protective forces

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The Department of Energy`s safeguards and security program is designed to provide appropriate, efficient, and effective protection of the Department`s nuclear weapons, nuclear materials, facilities, and classified information. These items must be protected against theft, sabotage, espionage, and terrorist activity, with continuing emphasis on protection against the insider threat. The purpose of the audit was to determine if protective forces were efficiently managed and appropriately sized in light of the changing missions and current budget constraints. The authors found that the cost of physical security at some sites had grown beyond those costs incurred when the site was in full production. This increase was due to a combination of factors, including concerns about the adequacy of physical security, reactions to the increase in terrorism in the early 1980s with the possibility of hostile attacks, and the selection of security system upgrades without adequate consideration of cost effectiveness. Ongoing projects to upgrade security systems were not promptly reassessed when missions changed and levels of protection were not determined in a way which considered the attractiveness of the material being protected. The authors also noted several opportunities for the Department to improve the operational efficiency of its protective force operations, including, eluminating overtime paid to officers prior to completion of the basic 40-hour workweek, paying hourly wages of unarmed guards which are commensurate with their duties, consolidating protective force units, transferring law enforcement duties to local law agencies, eliminating or reducing paid time to exercise, and standardizing supplies and equipment used by protective force members.

  13. Is renewable energy effective in promoting growth?

    International Nuclear Information System (INIS)

    Marques, António Cardoso; Fuinhas, José Alberto

    2012-01-01

    This paper applies panel data techniques to analyze the role of the various energy sources in economic growth, for a set of 24 European countries (1990–2007), controlling for energy consumption and energy dependency. The results suggest that the negative effect of the use of renewables supplants the positive effect of creating income by exploiting a natural resource locally, and thus growth does not appear to improve with the change towards renewables. The high costs of promoting renewables are probably being placed excessively upon the economy, namely by increasing the costs of electricity tariffs, thus inducing a deceleration in economic activity. Fossil fuels lead to dissimilar effects on growth while natural gas does not appear to be relevant in explaining growth. Coal hampers the capacity for growth, whereas the use of oil stimulates that growth. This is in line with productive structures that are deeply grounded in fossil fuels, particularly oil. - Highlights: ► We empirically test the distinct effects of decomposing energy by source on growth. ► We focus on 24 European Countries (1990–1907) by applying a panel data approach. ► Fossil fuels lead to dissimilar effects on growth. Coal hampers and oil stimulates it. ► Economic growth does not appear to improve with the paradigm change to renewable. ► High costs of promotion of renewables are being placed excessively upon the economy.

  14. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

    2014-04-01

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

  15. Marginal abatement cost curves for NOx that account for ...

    Science.gov (United States)

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their respective cost effectiveness. Alternative measures, such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS), are not considered as it is difficult to quantify their abatement potential. In this paper, we demonstrate the use of an energy system model to develop a MACC for nitrogen oxides (NOx) that incorporates both end-of-pipe controls and these alternative measures. We decompose the MACC by sector, and evaluate the cost-effectiveness of RE/EE/FS relative to end-of-pipe controls. RE/EE/FS are shown to produce considerable emission reductions after end-of-pipe controls have been exhausted. Furthermore, some RE/EE/FS are shown to be cost-competitive with end-of-pipe controls. Demonstrate how the MARKAL energy system model can be used to evaluate the potential role of renewable electricity, energy efficiency and fuel switching (RE/EE/FS) in achieving NOx reductions. For this particular analysis, we show that RE/EE/FSs are able to increase the quantity of NOx reductions available for a particular marginal cost (ranging from $5k per ton to $40k per ton) by approximately 50%.

  16. Maui energy storage study.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  17. Costs and results of federal incentives for commercial nuclear energy

    International Nuclear Information System (INIS)

    Bezdek, R.H.; Wendling, R.M.

    1991-01-01

    This paper (1) estimates the total costs of federal expenditures in support of incentives for the development of commercial nuclear energy through 1988, and (2) analyzes the results and benefits to the nation of this federal investment. The federal incentives analyzed include research and development, regulation of commercial nuclear energy, tax incentives, waste management and disposal, enrichment plants, liability insurance, the uranium mining industry, and all other federal support activities. The authors estimate that net federal incentives totaled about $45-50 billion (1988 dollars). They estimate the results of the federal incentives, focusing on six categories, namely, electric energy produced, the total (direct plus indirect) economic benefits of the industry created, R and D program benefits, value of energy imports displaced, environmental effects, and health, safety, and risk effects. The results total $1.9 trillion, with approximately $250-300 billion identified as net benefits. The authors conclude that the high return on the investment justified federal incentives for nuclear energy development over the past four decades and that the federal government and the nation have received a significant return on the incentives investment

  18. Reducing Operating Costs and Energy Consumption at Water Utilities

    Science.gov (United States)

    Due to their unique combination of high energy usage and potential for significant savings, utilities are turning to energy-efficient technologies to help save money. Learn about cost and energy saving technologies from this brochure.

  19. Analyzing grid extension and stand-alone photovoltaic systems for the cost-effective electrification of Kenya

    NARCIS (Netherlands)

    Zeyringer, Marianne; Pachauri, Shonali; Schmid, Erwin; Schmidt, Johannes; Worrell, Ernst|info:eu-repo/dai/nl/106856715; Morawetz, Ulrich B.

    2015-01-01

    The declaration of 2014-2024 as the Decade of Sustainable Energy for All has catalyzed actions towards achieving universal electricity access. The high costs of building electric infrastructure are a major impediment to improved access, making stand-alone photovoltaic (PV) systems an attractive

  20. Energy analysis handbook. CAC document 214. [Combining process analysis with input-output analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, C. W.; Penner, P. S.; Pilati, D. A.

    1976-10-01

    Methods are presented for calculating the energy required, directly and indirectly, to produce all types of goods and services. Procedures for combining process analysis with input-output analysis are described. This enables the analyst to focus data acquisition cost-effectively, and to achieve a specified degree of accuracy in the results. The report presents sample calculations and provides the tables and charts needed to perform most energy cost calculations, including the cost of systems for producing or conserving energy.

  1. How much electricity really costs. Comparison of the state subsidisation and overall social costs of conventional and renewable energy resources

    International Nuclear Information System (INIS)

    Kuechler, Swantje; Meyer, Bettina

    2012-01-01

    This study explains how the costs of electricity are an aggregate of different components. The electricity price paid by the end consumer contains not only the actual costs of energy production, which make up only about a third of the actual price in an average household, but also different surcharges such as network charges, electricity tax, value added tax and the concession levy. It furthermore contains the allocation charge stipulated by the Renewable Energy Law (EEG reallocation charge) as a means of allocating the costs of the subsidisation of electricity from renewable resources to the consumers. On the other hand conventional energy resources such as nuclear energy, hard coal and brown coal have substantially benefited over many decades from state subsidies in the form of financial aids, tax rebates and other promotive measures. The main difference between this and the subsidisation of renewable energy is that the costs of conventional energy resources are largely charged to the state budget rather than being made transparent in the electricity price. Based on an evaluation of the literature, data, interviews and the authors' own methodological deliberations this study makes a systematic comparison of the direct as well as indirect state subsidisation of renewable and conventional energy resources during the period from 1970 until 2012. The annual totals obtained for each energy resources are then set in relation to the share of that resource in overall electricity production, yielding specific subsidisation rates in terms of cents per kWh for each resource. This does not yet take into account the high consequential costs in the form of environmental damage and climate-related damage caused by fossil and nuclear fuels as well as the risks associated with the latter (collectively referred to as ''external costs''), all of which are charged to the polluters only at a small fraction of the true amount. The two cost categories of state

  2. An analysis of energy conservation measure costs

    International Nuclear Information System (INIS)

    Jones, R.; Ellis, R.; Gellineau, D.

    1990-01-01

    This paper reports on a Denver Support Office project to evaluate cost estimation in the Institutional Conservation Program. Unit cost characteristics and cost prediction accuracy were evaluated from 1,721 Energy Conservation Measures (ECMs) and 390 Technical Assistance (TA) reports funded in the last six years. This information is especially useful to state and DOE review engineers in determining the reasonableness of future cost estimates. The estimated cost provisions for TA report grants were generally adequate to cover the actual costs. Individually, there was a tendency for TA reports to cost less than estimated by about 10%. TA report unit costs averaged $.09 to $.11 per square foot, and decreased as the building size increased. Individually, there was a tendency for ECMs to cost more than estimated by about 17%. Overall, the estimated costs of the 1,721 measures were $20.4 minion, while the actual costs were $21.4 million. This 4.6% difference indicates that, overall, ECM cost estimates have provided a reasonable basis for grant awards. There was a high variation in ECM unit costs. The data did not support speculation that there is a tendency to manipulate cost estimates to fit ECMs within the simple payback eligibility criteria of 2 to 10 years

  3. The Cost-Effectiveness of Replacing the Bottom Quartile of Novice Teachers through Value-Added Teacher Assessment

    Science.gov (United States)

    Yeh, Stuart S.; Ritter, Joseph

    2009-01-01

    A cost-effectiveness analysis was conducted of Gordon, Kane, and Staiger's (2006) proposal to raise student achievement by identifying and replacing the bottom quartile of novice teachers, using value-added assessment of teacher performance. The cost effectiveness of this proposal was compared to the cost effectiveness of voucher programs, charter…

  4. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the design energy consumption and design... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design Energy Consumption shall be calculated by modeling the Proposed Design using the same methods...

  5. Cost, energy use and GHG emissions for forest biomass harvesting operations

    International Nuclear Information System (INIS)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang; Yu, Chunxia

    2016-01-01

    For forest-based biomass to become a significant contribution to the United States' energy portfolio, harvesting operations must be physically feasible and economically viable. An assessment of cost, energy and greenhouse gas (GHG) emissions of forest biomass harvesting was conducted. The assessment differentiates harvesting systems by cut-to-length and whole tree; harvest types of 30%, 70%, and 100% cut; and forest types of hardwoods, softwoods, mixed hardwood/softwood, and softwood plantations. Harvesting cost models were developed for economic assessment and life cycle energy and emission assessment was applied to calculate energy and emissions for different harvesting scenarios, considering material and energy inputs (machinery, diesel, etc.) and outputs (GHG emissions) for each harvesting process (felling, forwarding/skidding, etc.). The developed harvesting cost models and the life cycle energy and emission assessment method were applied in Michigan, U.S. using information collected from different sources. A sensitivity analysis was performed for selected input variables for the harvesting operations in order to explore their relative importance. The results indicated that productivity had the largest impact on harvesting cost followed by machinery purchase price, yearly scheduled hours, and expected utilization. Productivity and fuel use, as well as fuel factors, are the most influential environmental impacts of harvesting operations. - Highlights: • Life cycle energy and emissions for forest biomass harvesting operations. • Harvesting cost models were developed for economic assessment. • Productivity had the largest impact on harvesting cost. • Fuel use contributes the most emissions while lubricants contribute the least.

  6. The costs and effects of a nationwide insecticide-treated net programme: the case of Malawi

    Directory of Open Access Journals (Sweden)

    Ortiz Juan

    2005-05-01

    Full Text Available Abstract Background Insecticide-treated nets (ITNs are a proven intervention to reduce the burden of malaria, yet there remains a debate as to the best method of ensuring they are universally utilized. This study is a cost-effectiveness analysis of an intervention in Malawi that started in 1998, in Blantyre district, before expanding nationwide. Over the 5-year period, 1.5 million ITNs were sold. Methods The costs were calculated retrospectively through analysis of expenditure data. Costs and effects were measured as cost per treated-net year (cost/TNY and cost per net distributed. Results The mean cost/TNY was calculated at $4.41, and the mean cost/ITN distributed at $2.63. It also shows evidence of economies of scale, with the cost/TNY falling from $7.69 in year one (72,196 ITN to $3.44 in year five (720,577 ITN. Cost/ITN distributed dropped from $5.04 to $1.92. Conclusion Combining targeting and social marketing has the potential of being both cost-effective and capable of achieving high levels of coverage, and it is possible that increasing returns to scale can be achieved.

  7. The effects of utility DSM programs on electricity costs and prices

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, E.

    1991-11-01

    More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity? This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a ``base`` that is typical of US utilities; a ``surplus`` utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a ``deficit`` utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

  8. Costs, CO{sub 2}- and primary energy balances of forest-fuel recovery systems at different forest productivity

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lisa; Gustavsson, Leif [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-05-15

    Here we examine the cost, primary energy use, and net carbon emissions associated with removal and use of forest residues for energy, considering different recovery systems, terrain, forwarding distance and forest productivity. We show the potential recovery of forest fuel for Sweden, its costs and net carbon emissions from primary energy use and avoided fossil carbon emissions. The potential annual net recovery of forest fuel is about 66 TWh, which would cost one billion EUR{sub 2005} to recover and would reduce fossil emissions by 6.9 Mt carbon if coal were replaced. Of the forest fuel, 56% is situated in normal terrain with productivity of >30 t dry-matter ha{sup -1} and of this, 65% has a forwarding distance of <400 m. In normal terrain with >30 t dry-matter ha{sup -1} the cost increase for the recovery of forest fuel, excluding stumps, is around 4-6% and 8-11% for medium and longer forwarding distances, respectively. The stump and small roundwood systems are less cost-effective at lower forest fuel intensity per area. For systems where loose material is forwarded, less dry-matter per hectare increases costs by 6-7%, while a difficult terrain increases costs by 3-4%. Still, these systems are quite cost-effective. The cost of spreading ash is around 40 EUR{sub 2005} ha{sup -1}, while primary energy use for spreading ash in areas where logging residues, stumps, and small roundwood are recovered is about 0.025% of the recovered bioenergy. (author)

  9. Assessing energy supply security: Outage costs in private households

    International Nuclear Information System (INIS)

    Praktiknjo, Aaron J.; Hähnel, Alexander; Erdmann, Georg

    2011-01-01

    The objective of this paper is to contribute to the topic of energy supply security by proposing a Monte Carlo-based and a survey based model to analyze the costs of power interruptions. Outage cost estimations are particularly important when deciding on investments to improve supply security (e.g. additional transmission lines) in order to compare costs to benefits. But also other policy decisions on measures that have direct or indirect consequences for the supply security (e.g. a phasing out of nuclear energy) need to be based on results from outage cost estimations. The main focus of this paper lies with residential consumers, but the model is applied to commercial, industrial and governmental consumers as well. There are limited studies that have approached the problem of evaluating outage cost. When comparing the results of these studies, they often display a high degree of diversification. As consumers have different needs and dependencies towards the supply of electricity because of varying circumstances and preferences, a great diversity in outage cost is a logical consequence. To take the high degree of uncertainties into account, a Monte Carlo simulation was conducted in this study for the case of private households in Germany. - Highlights: ► A macroeconomic model to assess outage cost is proposed. ► Possibilities for substitution are considered by analyzing individual preferences for the time-use. ► Uncertainties are taken into account by using a Monte Carlo simulation. ► This study reveals the distribution of outage costs to different electricity consumers. ► Implications for energy policy decisions are discussed.

  10. How accurate are forecasts of costs of energy? A methodological contribution

    International Nuclear Information System (INIS)

    Siddons, Craig; Allan, Grant; McIntyre, Stuart

    2015-01-01

    Forecasts of the cost of energy are typically presented as point estimates; however forecasts are seldom accurate, which makes it important to understand the uncertainty around these point estimates. The scale of the differences between forecasts and outturns (i.e. contemporary estimates) of costs may have important implications for government decisions on the appropriate form (and level) of support, modelling energy scenarios or industry investment appraisal. This paper proposes a methodology to assess the accuracy of cost forecasts. We apply this to levelised costs of energy for different generation technologies due to the availability of comparable forecasts and contemporary estimates, however the same methodology could be applied to the components of levelised costs, such as capital costs. The estimated “forecast errors” capture the accuracy of previous forecasts and can provide objective bounds to the range around current forecasts for such costs. The results from applying this method are illustrated using publicly available data for on- and off-shore wind, Nuclear and CCGT technologies, revealing the possible scale of “forecast errors” for these technologies. - Highlights: • A methodology to assess the accuracy of forecasts of costs of energy is outlined. • Method applied to illustrative data for four electricity generation technologies. • Results give an objective basis for sensitivity analysis around point estimates.

  11. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by

  12. Policy on energy pricing

    Energy Technology Data Exchange (ETDEWEB)

    Webb, M. G.

    1977-10-15

    Some economic principles of energy pricing in a market type economy in which there is consumer sovereignty are discussed. Thus resources will be allocated via the production processes in line with the preferences of consumers as revealed by their purchases of goods and services. Prices play the crucial role of coordinating instruments in this allocative process. It is assumed that all the energy industries are in the public sector. The following topics are discussed: the specification of objectives for the energy sector; marginal cost pricing; problems associated with the measurement of marginal costs; some aspects of the environmental costs associated with energy production and use, and some issues related to time differentiated tariffs; the modification of prices to achieve financial targets; and the use of energy prices to achieve income distribution objectives.

  13. Effect of prospective reimbursement on nursing home costs.

    Science.gov (United States)

    Coburn, A F; Fortinsky, R; McGuire, C; McDonald, T P

    1993-04-01

    This study evaluates the effect of Maine's Medicaid nursing home prospective payment system on nursing home costs and access to care for public patients. The implementation of a facility-specific prospective payment system for nursing homes provided the opportunity for longitudinal study of the effect of that system. Data sources included audited Medicaid nursing home cost reports, quality-of-care data from state facility survey and licensure files, and facility case-mix information from random, stratified samples of homes and residents. Data were obtained for six years (1979-1985) covering the three-year period before and after implementation of the prospective payment system. This study used a pre-post, longitudinal analytical design in which interrupted, time-series regression models were estimated to test the effects of prospective payment and other factors, e.g., facility characteristics, nursing home market factors, facility case mix, and quality of care, on nursing home costs. Prospective payment contributed to an estimated $3.03 decrease in total variable costs in the third year from what would have been expected under the previous retrospective cost-based payment system. Responsiveness to payment system efficiency incentives declined over the study period, however, indicating a growing problem in achieving further cost reductions. Some evidence suggested that cost reductions might have reduced access for public patients. Study findings are consistent with the results of other studies that have demonstrated the effectiveness of prospective payment systems in restraining nursing home costs. Potential policy trade-offs among cost containment, access, and quality assurance deserve further consideration, particularly by researchers and policymakers designing the new generation of case mix-based and other nursing home payment systems.

  14. Distribution effects of the renewable energies act; Verteilungswirkungen des EEG

    Energy Technology Data Exchange (ETDEWEB)

    Bardt, Hubertus; Niehues, Judith [Institut der deutschen Wirtschaft Koeln, Koeln (Germany)

    2013-09-15

    The Renewal Energies Act has so far been one of the cornerstones of the energy revolution. As a result of the Act the production of electricity from renewable sources has been considerably increased. As the most expensive forms of renewable energies have grown fastest, average costs have not shrunk but have risen significantly. The ongoing growth led to increasing subsidies for renewable energies and growing costs for electricity consumers in business and private households. It would be insufficient to look at absolute cost developments only, as distribution effects may be critical. As electricity consumption only slightly depends on household income, higher income leads to lower significance of electricity costs. Therefore, low income households bear a relatively higher burden of costs for renewable energies. Furthermore, wealthy households could benefit from the subsidies as they can invest in renewable energy systems.

  15. Cost-effective conservation of an endangered frog under uncertainty.

    Science.gov (United States)

    Rose, Lucy E; Heard, Geoffrey W; Chee, Yung En; Wintle, Brendan A

    2016-04-01

    How should managers choose among conservation options when resources are scarce and there is uncertainty regarding the effectiveness of actions? Well-developed tools exist for prioritizing areas for one-time and binary actions (e.g., protect vs. not protect), but methods for prioritizing incremental or ongoing actions (such as habitat creation and maintenance) remain uncommon. We devised an approach that combines metapopulation viability and cost-effectiveness analyses to select among alternative conservation actions while accounting for uncertainty. In our study, cost-effectiveness is the ratio between the benefit of an action and its economic cost, where benefit is the change in metapopulation viability. We applied the approach to the case of the endangered growling grass frog (Litoria raniformis), which is threatened by urban development. We extended a Bayesian model to predict metapopulation viability under 9 urbanization and management scenarios and incorporated the full probability distribution of possible outcomes for each scenario into the cost-effectiveness analysis. This allowed us to discern between cost-effective alternatives that were robust to uncertainty and those with a relatively high risk of failure. We found a relatively high risk of extinction following urbanization if the only action was reservation of core habitat; habitat creation actions performed better than enhancement actions; and cost-effectiveness ranking changed depending on the consideration of uncertainty. Our results suggest that creation and maintenance of wetlands dedicated to L. raniformis is the only cost-effective action likely to result in a sufficiently low risk of extinction. To our knowledge we are the first study to use Bayesian metapopulation viability analysis to explicitly incorporate parametric and demographic uncertainty into a cost-effective evaluation of conservation actions. The approach offers guidance to decision makers aiming to achieve cost-effective

  16. Integrated cost-effectiveness analysis of agri-environmental measures for water quality.

    Science.gov (United States)

    Balana, Bedru B; Jackson-Blake, Leah; Martin-Ortega, Julia; Dunn, Sarah

    2015-09-15

    This paper presents an application of integrated methodological approach for identifying cost-effective combinations of agri-environmental measures to achieve water quality targets. The methodological approach involves linking hydro-chemical modelling with economic costs of mitigation measures. The utility of the approach was explored for the River Dee catchment in North East Scotland, examining the cost-effectiveness of mitigation measures for nitrogen (N) and phosphorus (P) pollutants. In-stream nitrate concentration was modelled using the STREAM-N and phosphorus using INCA-P model. Both models were first run for baseline conditions and then their effectiveness for changes in land management was simulated. Costs were based on farm income foregone, capital and operational expenditures. The costs and effects data were integrated using 'Risk Solver Platform' optimization in excel to produce the most cost-effective combination of measures by which target nutrient reductions could be attained at a minimum economic cost. The analysis identified different combination of measures as most cost-effective for the two pollutants. An important aspect of this paper is integration of model-based effectiveness estimates with economic cost of measures for cost-effectiveness analysis of land and water management options. The methodological approach developed is not limited to the two pollutants and the selected agri-environmental measures considered in the paper; the approach can be adapted to the cost-effectiveness analysis of any catchment-scale environmental management options. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. National Energy with Weather System Simultator (NEWS) Sets Bounds on Cost Effective Wind and Solar PV Deployment in the USA without the Use of Storage.

    Science.gov (United States)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. In 2009, we began a large-scale investigation into the characteristics of weather-driven renewables. The project utilized the best available weather data assimilation model to compute high spatial and temporal resolution power datasets for the renewable resources of wind and solar PV. The weather model used is the Rapid Update Cycle for the years of 2006-2008. The team also collated a detailed electrical load dataset for the contiguous USA from the Federal Energy Regulatory Commission for the same three-year period. The coincident time series of electrical load and weather data allows the possibility of temporally correlated computations for optimal design over large geographic areas. The past two years have seen the development of a cost optimization mathematic model that designs electric power systems. The model plans the system and dispatches it on an hourly timescale. The system is designed to be reliable, reduce carbon, reduce variability of renewable resources and move the electricity about the whole domain. The system built would create the infrastructure needed to reduce carbon emissions to 0 by 2050. The advantages of the system is reduced water demain, dual incomes for farmers, jobs for construction of the infrastructure, and price stability for energy. One important simplified test that was run included existing US carbon free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an

  18. No Cost – Low Cost Compressed Air System Optimization in Industry

    Science.gov (United States)

    Dharma, A.; Budiarsa, N.; Watiniasih, N.; Antara, N. G.

    2018-04-01

    Energy conservation is a systematic, integrated of effort, in order to preserve energy sources and improve energy utilization efficiency. Utilization of energy in efficient manner without reducing the energy usage it must. Energy conservation efforts are applied at all stages of utilization, from utilization of energy resources to final, using efficient technology, and cultivating an energy-efficient lifestyle. The most common way is to promote energy efficiency in the industry on end use and overcome barriers to achieve such efficiency by using system energy optimization programs. The facts show that energy saving efforts in the process usually only focus on replacing tools and not an overall system improvement effort. In this research, a framework of sustainable energy reduction work in companies that have or have not implemented energy management system (EnMS) will be conducted a systematic technical approach in evaluating accurately a compressed-air system and potential optimization through observation, measurement and verification environmental conditions and processes, then processing the physical quantities of systems such as air flow, pressure and electrical power energy at any given time measured using comparative analysis methods in this industry, to provide the potential savings of energy saving is greater than the component approach, with no cost to the lowest cost (no cost - low cost). The process of evaluating energy utilization and energy saving opportunities will provide recommendations for increasing efficiency in the industry and reducing CO2 emissions and improving environmental quality.

  19. Renewable energies in the transport sector: Costs and possibilities

    International Nuclear Information System (INIS)

    Ajanovic, Amela; Haas, Reinhard

    2007-01-01

    Alternative fuels based on renewable energy sources, such as biodiesel, bioethanol and hydrogen from RES, have potential to reduce greenhouse gas emissions, climate change, to increase supply security and energy diversity. Transition from a fossil fuels based transport to future sustainable and clean transport is a long term and cost intensive process, especially for hydrogen use in transport. Hydrogen infrastructure is missing and most of hydrogen technologies are still at developing stage.This paper examines the economics of biofuels (bioethanol and biodiesel) and hydrogen production from renewable energy sources. The current and future costs of alternative fuels as well as the costs of the provided energy services are analysed in a dynamic framework till the year 2050. The goal is to identify the market chance of alternative fuels in a long term (till 2050). A rapid increase of fuel cell vehicles with hydrogen on the market is not expected before 2030, mainly because the costs of the fuel cells are still very high and because their efficiency, as well as the travelling range, is rather moderate.However, the use of alternative fuels in transport sector is very dependent on the political will. If political preferences, like e.g. zero-emission-vehicles, gain strong relevance this new fuels could accelerate its market penetration significantly

  20. A spreadsheet-based microcomputer application for determining cost-effectiveness of commercial lighting retrofit opportunities

    International Nuclear Information System (INIS)

    Spain, T.K.

    1992-01-01

    Lighting accounts for 20-25% of electricity use in the United States. With estimates of 50-70% potential reductions being made by energy engineers, lighting is a promising area for cost-effective energy conservation projects in commercial buildings. With an extensive array of alternatives available to replace or modify existing lighting systems, simple but effective calculation tools are needed to help energy auditors evaluate lighting retrofits. This paper describes a spreadsheet-based microcomputer application for determining the cost-effectiveness of commercial lighting retrofits. Developed to support walk-through energy audits conducted by the Industrial Energy Advisory Service (IdEAS), the spreadsheet provides essential comparative data for evaluating the payback of alternatives. The impact of alternatives on environmental emissions is calculated to help communicate external costs and sell the project, if appropriate. The methodology and calculations are fully documented to allow the user to duplicate the spreadsheet and modify it as needed

  1. Mind your step: Energy cost while walking at an enforced gait pattern

    NARCIS (Netherlands)

    Wezenberg, D.; de Haan, A.; van Bennekom, C.A.M.; Houdijk, J.H.P.

    2011-01-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement

  2. Mind your step: metabolic energy cost while walking an enforced gait pattern

    NARCIS (Netherlands)

    Wezenberg, D.; de Haan, A.; van Bennekom, C. A. M.; Houdijk, H.

    2011-01-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement

  3. Cost Assessment Methodology and Economic Viability of Tidal Energy Projects

    Directory of Open Access Journals (Sweden)

    Eva Segura

    2017-11-01

    Full Text Available The exploitation of technologies with which to harness the energy from ocean currents will have considerable possibilities in the future thanks to their enormous potential for electricity production and their high predictability. In this respect, the development of methodologies for the economic viability of these technologies is fundamental to the attainment of a consistent quantification of their costs and the discovery of their economic viability, while simultaneously attracting investment in these technologies. This paper presents a methodology with which to determine the economic viability of tidal energy projects, which includes a technical study of the life-cycle costs into which the development of a tidal farm can be decomposed: concept and definition, design and development, manufacturing, installation, operation and maintenance and dismantling. These cost structures are additionally subdivided by considering their sub-costs and bearing in mind the main components of the tidal farm: the nacelle, the supporting tidal energy converter structure and the export power system. Furthermore, a technical study is developed in order to obtain an estimation of the annual energy produced (and, consequently, the incomes generated if the electric tariff is known by considering its principal attributes: the characteristics of the current, the ability of the device to capture energy and its ability to convert and export the energy. The methodology has been applied (together with a sensibility analysis to the particular case of a farm composed of first generation tidal energy converters in one of the Channel Island Races, the Alderney Race, in the U.K., and the results have been attained by means of the computation of engineering indexes, such as the net present value, the internal rate of return, the discounted payback period and the levelized cost of energy, which indicate that the proposed project is economically viable for all the case studies.

  4. Energy management technologies: special focus on textile industry

    International Nuclear Information System (INIS)

    Dayo, F.B.O.

    2000-08-01

    Energy is a very important component of most manufacturing activities. Its level of importance depends on whether or not the manufacturing processes employed are energy intensive. For less energy intensive manufacturing activities, energy costs contribute only a small portion of total cost of production. Even in this case, it has been shown that considerable scope for cost savings through more efficient utilization of energy exist. Small investments in energy efficiency measures have been known to bring significant savings in production costs, and consequently improved profit margins. The advantages of better and efficient use of energy in an energy - intensive manufacturing outfit have been extensively demonstrated in many nations over the past few decades. For these groups, profitability improvement is usually more apparent, and the scope for achieving a cost savings through improved energy use efficiency, more considerable. Cost savings or profitability improvement is not the only reason for considering energy use efficiency improvement in a manufacturing facility. Energy use efficiency improvement is also the most effective way of reducing environmental pollutant emission such as greenhouse gases. Actual cost savings achievable will depend on factors such as: the production process; the age of the facilities; its design and maintenance; and the extent of pasts efforts in energy use efficiency improvements. Evidence suggests that for facilities where energy management has not been practiced, saving of between 10% to 20% on energy bills are possible, through simple measures, with quick payback period. When a manufacturing facility addresses issues of energy efficiency, through the institution of a viable energy management systems, it also takes a very necessary step towards obtaining international accreditation. Such accreditation include: the Eco-Management and Audit Scheme (EMAS); or the International Standard Organisation's ISO 14001. This is becoming a vital

  5. Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Margaret [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fujita, K. Sydny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-17

    In 2011, energy used by federal buildings cost approximately $7 billion. Reducing federal energy use could help address several important national policy goals, including: (1) increased energy security; (2) lowered emissions of greenhouse gases and other air pollutants; (3) increased return on taxpayer dollars; and (4) increased private sector innovation in energy efficient technologies. This report estimates the impact of efficient product procurement on reducing the amount of wasted energy (and, therefore, wasted money) associated with federal buildings, as well as on reducing the needless greenhouse gas emissions associated with these buildings.

  6. Assessing Potential Energy Cost Savings from Increased Energy Code Compliance in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.; Zhang, Jian; Wang, Weimin

    2016-02-15

    The US Department of Energy’s most recent commercial energy code compliance evaluation efforts focused on determining a percent compliance rating for states to help them meet requirements under the American Recovery and Reinvestment Act (ARRA) of 2009. That approach included a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. With its binary approach to compliance determination, the previous methodology failed to answer some important questions. In particular, how much energy cost could be saved by better compliance with the commercial energy code and what are the relative priorities of code requirements from an energy cost savings perspective? This paper explores an analytical approach and pilot study using a single building type and climate zone to answer those questions.

  7. Evolving energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.

    1991-04-01

    This thesis presents scenarios of future energy systems, a cost-benefit analysis of measures to avoid greenhouse-gas emissions, an analysis of the effect of energy prices on end-use efficiencies and fuel choices, and an evaluation of financial-incentive programs designed to induce investments in efficient energy use. Twelve integrated energy supply/demand scenarios for the Swedish heat-and-power sector are presented to illustrate the potential for improvements in end-use efficiency and increased utilization of renewable energy sources. The results show that greenhouse-gas emissions could be reduced by 35 per cent from 1987 levels by 2010, with a net economic benefit compared to a business-as-usual scenario. A generalized methodology for calculating the net costs of reducing greenhouse-gas emissions is applied to a variety of fuel choices and energy end-use technologies. A key finding is that a combination of increased end-use efficiencies and use of renewable energy systems is required to achieve maximum cost-effective emissions reductions. End-use efficiencies and inter-fuel competition in Denmark and Sweden are compared during a time period in which real electricity prices were declining in Sweden and increasing in Denmark. Despite these different price environments, efficiencies and choices of heating fuels did not generally develop as expected according to economic theory. The influences of counter-price and non-price factors are important in understanding this outcome. Relying on prices alone injects considerable uncertainty into the energy planning process, and precludes efficiency improvements and fuel choices attainable with other mechanisms. Incentive programs can be used to promote energy-efficient technologies. Utilities in Europe have recently offered financial incentives intended to stimulate the adoption of compact-fluorescent lamps. These programs have been cost-effective in comparison to new electric supply. (au).

  8. Energy-saving behavior and marginal abatement cost for household CO2 emissions

    International Nuclear Information System (INIS)

    Hamamoto, Mitsutsugu

    2013-01-01

    This paper attempts to measure consumers' perceived net benefits (or net costs) of energy-saving measures in using energy-consuming durable goods. Using the estimated net costs and the volume of CO 2 reduced by the measures, a marginal abatement cost (MAC) curve for the average household's CO 2 emissions is produced. An analysis using the curve suggests that in order to provide households with an incentive to take actions that can lead to CO 2 emission reductions in using energy-consuming durables, a high level of carbon price is needed. In addition, a regression analysis reveals that the net benefits of the measures are larger for households that put a higher priority on energy saving, for those living in detached houses, for those with a smaller number of persons living together, and for those with less income. The result of the analysis using the MAC curve may suggest that promoting energy-saving behavior will require not only a policy to provide economic incentives but also interventions to influence psychological factors of household behavior. - Highlights: • Consumers' perceived net costs of energy-saving measures in using energy-consuming durables are measured. • Using the estimated net costs, a marginal abatement cost (MAC) curve for the average household's CO 2 emissions is produced. • A high carbon price is needed in order to provide households with an incentive to take actions for energy-savings. • Households' attributes affecting their energy-saving behavior are revealed by a regression analysis

  9. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of California

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of California. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  10. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Arizona. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  11. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Georgia. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  12. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Florida

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Florida. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  13. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Arkansas. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  14. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Connecticut. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  15. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Hawaii. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  16. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the District of Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the District of Columbia. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  17. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Alaska. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  18. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Colorado. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  19. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Delaware. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  20. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Alabama. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.