WorldWideScience

Sample records for acetylcholinesterase inhibitory activity

  1. 4-Phenylcoumarins from Mesua elegans with acetylcholinesterase inhibitory activity.

    Science.gov (United States)

    Awang, Khalijah; Chan, Gomathi; Litaudon, Marc; Ismail, Nor Hadiani; Martin, Marie-Thérèse; Gueritte, Françoise

    2010-11-15

    A significant acetylcholinesterase (AChE) inhibitory activity was observed for the hexane extract from the bark of Mesua elegans (Clusiaceae). Thus, the hexane extract was subjected to chemical investigation, which led to the isolation of nine 4-phenylcoumarins, in which three are new; mesuagenin A (1), mesuagenin C (3), mesuagenin D (4) and one new natural product; mesuagenin B (2). The structures of the isolated compounds were characterized by spectroscopic data interpretation, especially 1D and 2D NMR. Four compounds showed significant AChE inhibitory activity, with mesuagenin B (2) being the most potent (IC(50)=0.7μM). Copyright © 2010. Published by Elsevier Ltd.

  2. Acetylcholinesterase-inhibitory activities of the extracts from sponges collected in mauritius waters.

    Science.gov (United States)

    Beedessee, Girish; Ramanjooloo, Avin; Surnam-Boodhun, Rashmee; van Soest, Rob W M; Marie, Daniel E P

    2013-03-01

    Patients diagnosed with Alzheimer's disease (AD) show a characteristic neurochemical deficit of acetylcholine, especially in the basal forebrains. The use of acetylcholinesterase (AChE) inhibitors to retard the hydrolysis of acetylcholine has been suggested as a promising strategy for AD treatment. In this study, we evaluated the acetylcholinesterase inhibitory (AChEI) activities of 134 extracts obtained from 45 species of marine sponges. Thin-layer chromatography (TLC) and microplate assays reveal potent acetylcholinsterase inhibitory activities of two AcOEt extracts from the sponges Pericharax heteroraphis and Amphimedon navalis PULITZER-FINALI. We further investigated the inhibitory kinetics of the extracts and found them to display mixed competitive/noncompetitive inhibition and associated their inhibitory activity partly to terpenoids. Acetylcholinesterase inhibitors from marine organisms have been rarely studied, and this study demonstrated the potential of marine sponges as a source of pharmaceutical leads against neurodegenerative diseases.

  3. Quality control evaluation and acetylcholinesterase inhibitory activity of Galanthus woronowii Losinsk

    Directory of Open Access Journals (Sweden)

    Ahmet Emir

    2011-05-01

    Full Text Available Aerial and underground parts ofGalanthus woronowiiLosinsk., a wild growingspecies in north-eastern Anatolia, were collected during flowering period. Quality controland acetylcholinesterase inhibitory activity determinations were carried out on Bulbus andHerba Galanthi prepared from plants collected from two different localities. In the context ofquality control studies, contents of humidity, total ash, sulphated ash, acid-insoluble ash and total alkaloids of the drug specimens were determined and found to range between8.463-9.343 %, 6.950-14.947 %, 9.743-17.930 %, 1.102-3.565 % and 0.247-0.499 %, respectively. Additionally, acetylcholinesterase inhibitory activity of the alkaloidal extracts prepared fromthe drug specimens were determined by using Thin Layer Chromatography (TLC combined with a bioautographic assay based onin vitro Ellman method. All of the alkaloidal extractsdisplayed acetylcholinesterase inhibitory activity

  4. Synthesis and acetylcholinesterase inhibitory activity of polyhydroxylated sulfated steroids: structure/activity studies.

    Science.gov (United States)

    Richmond, Victoria; Murray, Ana P; Maier, Marta S

    2013-11-01

    Disulfated and trisulfated steroids have been synthesized from cholesterol and their acetylcholinesterase inhibitory activity has been evaluated. In our studies we have found that the activity was not only dependent on the location of the sulfate groups but on their configurations. 2β,3α,6α-trihydroxy-5α-cholestan-6-one trisulfate (18) was the most active steroid with an IC50 value of 15.48 μM comparable to that of 2β,3α-dihydroxy-5α-cholestan-6-one disulfate (1). Both compounds were found to be less active than the reference compound eserine. The butyrylcholinesterase activity of 1 and 18 was one magnitude lower than that against acetylcholinesterase revealing a selective inhibitor profile.

  5. Evaluating the antioxidant and acetylcholinesterase inhibitory activity of three Centaurea species

    Directory of Open Access Journals (Sweden)

    H. Hajimehdipoor

    2014-01-01

    Full Text Available Factors such as oxidative stress and reduced acetylcholine level have been implicated in Alzheimer’s disease (AD pathology and recently there has been a trend towards natural product research to find potential sources of antioxidants and acetylcholinesterase inhibitors in the plants kingdom. Centaurea is a genus with about 500 species world wild, many of them have shown to possess biologic activity; Centaurea albonites, C. aucheri and C. pseudoscabiosa are three species which little investigation has been carried out about their biological properties. In the present study, the antioxidant and acetylcholinesterase inhibitory activity of the above mentioned species have been evaluated. The ability of the total extract and methanol fraction of the plants to scavenge free radicals has been assessed through DPPH radical scavenging assay, and the acetylcholinesterase inhibitory property has been evaluated by Ellman method. The total extract of all species exhibited moderate antioxidant activity whereas the extracts of C. pseudoscabiosa showed the strongest antioxidant property; its total extract also demonstrated the highest acetylcholinesterase inhibitory activity among the evaluated samples (19.2% inhibition. The results suggest the species as potential sources of natural antioxidants which could be focused in future studies of Alzheimer’s disease.

  6. Screening for acetylcholinesterase inhibitory activity in cyanobacteria of the genus Nostoc.

    Science.gov (United States)

    Zelík, Petr; Lukesová, Alena; Voloshko, Ludmila N; Stys, Dalibor; Kopecký, Jirí

    2009-04-01

    Fifty-four cyanobacterial strains of the genus Nostoc from different habitats were screened for acetylcholinesterase inhibitory activity. Water-methanolic extracts from freeze-dried biomasses were tested for inhibitory activity using Ellman's spectrophotometric method. Acetylcholinesterase inhibitory activity higher than 90% was found in the crude extracts of Nostoc sp. str. Lukesova 27/97 and Nostoc ellipsosporum Rabenh. str. Lukesova 51/91. Extracts from Nostoc ellipsosporum str. Lukesova 52/91 and Nostoc linckia f. muscorum (Ag.) Elenk. str. Gromov, 1988, CALU-980 inhibited AChE activity by 84.9% and 65.3% respectively. Moderate AChE inhibitory activity (29.1-37.5%) was found in extracts of Nostoc linckia Roth. str. Gromov, 1962/10, CALU-129, Nostoc muscorum Ag. str. Lukesova 127/97, Nostoc sp. str. Lhotsky, CALU-327 and Nostoc sp. str. Gromov, CALU-998. Extracts from another seven strains showed weak anti-AChE activities. The active component responsible for acetylcholinesterase inhibition was identified in a crude extract of Nostoc sp. str. Lukesova 27/97 using HPLC and found to occur in one single peak.

  7. Chemical Constituents of Jacaranda oxyphylla and their Acetylcholinesterase Inhibitory and Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Vinicius Viana Pereira

    2016-05-01

    Full Text Available This study evaluated chemical composition of Jacaranda oxyphylla, acetylcholinesterase inhibitory and antimicrobial activities of the isolated compounds. Phytochemical investigation of leaves extract yielded three classes of substances: fatty compounds, sterols and triterpenes. Butyl hexadecanoate (1, fatty alcohol (2, 2-(4-hydroxyphenylethyl triacontanoate (3, β -sitosterol (4, sitosterol-3-O- β- D -glucoside (5, 6'-palmitoyl-sitosterol-3-O- β- D -glucoside (6, oleanolic acid (7, ursolic acid (8 and corosolic acid (9 were obtained from n-hexane, CHCl 3 and EtOH extracts of J. oxyphylla. It was found a pronounced acetylcholinesterase inhibitory activity for the fatty compounds 1-3 and sterols 5 and 6, with values between 60 to 77%. Substances 7-9 presented a high antibacterial action against Bacillus cereus and Salmonella typhimurium, with values of growth inhibition in the range of 84 to 90%.

  8. GC-MS investigation and acetylcholinesterase inhibitory activity of Galanthus rizehensis.

    Science.gov (United States)

    Sarikaya, Buket Bozkurt; Somer, Nehir Unver; Kaya, Gulen Irem; Onur, Mustafa Ali; Bastida, Jaume; Berkov, Strahil

    2013-01-01

    GC-MS (gas chromatography-mass spectrometry) analyses of alkaloids in the aerial parts and bulbs of Galanthus rizehensis Stern (Amaryllidaceae), collected during two different vegetation periods, was performed. Twenty three alkaloids were identified in four different alkaloid extracts. Acetylcholinesterase (AChE) inhibitory activities of the alkaloid extracts were tested. Both the highest alkaloid diversity and the most potent inhibitory activity (IC50 12.94 microg/ml) were obtained in extracts from the bulbs of G. rizehensis collected during the fruiting period.

  9. Inhibitory effect of some natural and semisynthetic phenolic lipids upon acetylcholinesterase activity.

    Science.gov (United States)

    Stasiuk, Maria; Bartosiewicz, Dominika; Kozubek, Arkadiusz

    2008-06-01

    The effect of phenolic lipids isolated from rye grains and cashew nut shell liquid (CNSL) from Anacardium occidentale and their semisynthetic derivatives on erythrocyte ghost's acetylcholinesterase activity was studied. It has been shown that all tested compounds decreased the enzymatic activity of acetylcholinesterase. This effect depends on the type of studied compounds. Three of them completely inhibit acetylcholinesterase activity at the micromolar concentration.

  10. Alkaloid profiles and acetylcholinesterase inhibitory activities of Fumaria species from Bulgaria.

    Science.gov (United States)

    Vrancheva, Radka Z; Ivanov, Ivan G; Aneva, Ina Y; Dincheva, Ivayla N; Badjakov, Ilian K; Pavlov, Atanas I

    2016-01-01

    GC-MS analysis of alkaloid profiles of five Fumaria species, naturally grown in Bulgaria (F. officinalis, F. thuretii, F. kralikii, F. rostellata and F. schrammii) and analysis of acetylcholinesterase inhibitory activity of alkaloid extracts were performed. Fourteen isoquinoline alkaloids were identified, with the principle ones being protopine, cryptopine, sinactine, parfumine, fumariline, fumarophycine, and fumaritine. Protopine contents, defined by HPLC analysis varied between 210.6 ± 8.8 μg/g DW (F. schrammii) and 334.5 ± 7.1 μg/g DW. (F. rostellata). While all of the investigated alkaloid extracts significantly inhibited acetylcholinesterase activity, the F. kralikii demonstrated the highest level of inhibition (IC(50) 0.13 ± 0.01 mg extract/mL).

  11. 8-hydroxydihydrochelerythrine and 8-hydroxydihydrosanguinarine with a potent acetylcholinesterase inhibitory activity from Chelidonium majus L.

    Science.gov (United States)

    Cho, Kyung-Mi; Yoo, Ick-Dong; Kim, Won-Gon

    2006-11-01

    Ethanol extract of the aerial portion of Chelidonium majus L. inhibited acetylcholinesterase (AChE) activity without a significant inhibition of butyrylcholinesterase (BuChE). Using mass spectrometry and NMR studies, three active constituents were isolated and identified: 8-hydroxydihydrochelerythrine (1), 8-hydroxydihydrosanguinarine (2), and berberine (3). Compounds 1-3 showed potent inhibitory activity against AChE, with IC50 (microM) values of 0.61-1.85. Compound 1 exhibited competitive and selective inhibition for AChE.

  12. Acetylcholinesterase inhibitory activity of pyrrolizidine alkaloids from Echium confusum Coincy.

    Science.gov (United States)

    Benamar, Houari; Tomassini, Lamberto; Venditti, Alessandro; Marouf, Abderrazak; Bennaceur, Malika; Serafini, Mauro; Nicoletti, Marcello

    2017-06-01

    Four pyrrolizidine alkaloids, namely 7-O-angeloyllycopsamine N-oxide 1, echimidine N-oxide 2, echimidine 3 and 7-O-angeloylretronecine 4, were isolated for the first time from the whole plant ethanolic extract of Echium confusum Coincy, through bioassay-guided approach. Their structures were determined by spectroscopic means. All the isolates compounds showed moderate activities in inhibiting AChE, with IC50 0.276-0.769.

  13. Acetylcholinesterase Inhibitory Activities of Flavonoids from the Leaves of Ginkgo biloba against Brown Planthopper

    Directory of Open Access Journals (Sweden)

    Xiao Ding

    2013-01-01

    Full Text Available Ginkgo biloba is a traditional Chinese medicinal plant which has potent insecticidal activity against brown planthopper. The MeOH extract was tested in the acetylcholinesterase (AChE inhibitory assay with IC50 values of 252.1 μg/mL. Two ginkgolides and thirteen flavonoids were isolated from the leaves of Ginkgo biloba. Their structures were established on the basis of spectroscopic data interpretation. It revealed that the 13 isolated flavonoids were found to inhibit AChE with IC50 values ranging from 57.8 to 133.1 μg/mL in the inhibitory assay. AChE was inhibited dose dependently by all tested flavonoids, and compound 6 displayed the highest inhibitory effect against AChE with IC50 values of 57.8 μg/mL.

  14. Acetylcholinesterase inhibitory activity of Thai traditional nootropic remedy and its herbal ingredients.

    Science.gov (United States)

    Tappayuthpijarn, Pimolvan; Itharat, Arunporn; Makchuchit, Sunita

    2011-12-01

    The incidence of Alzheimer disease (AD) is increasing every year in accordance with the increasing of elderly population and could pose significant health problems in the future. The use of medicinal plants as an alternative prevention or even for a possible treatment of the AD is, therefore, becoming an interesting research issue. Acetylcholinesterase (AChE) inhibitors are well-known drugs commonly used in the treatment of AD. The aim of the present study was to screen for AChE inhibitory activity of the Thai traditional nootropic recipe and its herbal ingredients. The results showed that ethanolic extracts of four out of twenty-five herbs i.e. Stephania pierrei Diels. Kaempfera parviflora Wall. ex Baker, Stephania venosa (Blume) Spreng, Piper nigrum L at 0.1 mg/mL showed % AChE inhibition of 89, 64, 59, 50; the IC50 were 6, 21, 29, 30 microg/mL respectively. The other herbs as well as combination of the whole recipe had no synergistic inhibitory effect on AChE activity. However some plants revealed antioxidant activity. More research should have be performed on this local wisdom remedy to verify the uses in scientific term.

  15. Novel polyacetylene derivatives and their inhibitory activities on acetylcholinesterase obtained from Panax ginseng roots.

    Science.gov (United States)

    Murata, Kazuya; Iida, Daiki; Ueno, Yoshihiro; Samukawa, Keiichi; Ishizaka, Toshihiko; Kotake, Takeshi; Matsuda, Hideaki

    2017-01-01

    In our research program to identify cholinesterase and β-secretase inhibitors, we investigated Ginseng (root of Panax ginseng), a crude drug described as a multifunctional drug in the ancient Chinese herbal book Shennong Ben Cao Jing. Results from hexane and methanol extracts showed moderate inhibitory activities. This suggests that ginseng roots may be effective for the prevention of and therapy for dementia. We then focused on hexane extracts of raw ginseng root and dried ginseng root since the determination of hexane extract constituents has not been studied extensively. Activity-guided fractionation and purification led to the isolation of 4 polyacetylene compounds; homopanaxynol, homopanaxydol, (9Z)-heptadeca-1, 9-diene-4,6-diyn-3-one, and (8E)-octadeca-1,8-diene-4,6-diyn-3,10-diol. The chemical structures of these compounds, including stereochemistry, were determined. This is the first study to identify the structure of homopanaxynol and homopanaxydol. Moreover, the modes of action of some compounds were characterized as competitive inhibitors. This study showed, for the first time, that polyacetylene compounds possess acetylcholinesterase inhibitory activities.

  16. acetylcholinesterase inhibitory potential and insecticidal activity of an endophytic Alternaria sp. from Ricinus communis.

    Science.gov (United States)

    Singh, Bahaderjeet; Thakur, Abhinay; Kaur, Sanehdeep; Chadha, B S; Kaur, Amarjeet

    2012-11-01

    Keeping in view the vast potential of endophytic fungi to produce bioactive molecules, this study aimed at isolating and screening endophytes for the production of acetylcholinesterase inhibitors. Fifty-four endophytic fungi were isolated from Ricinus communis and screened for their AChE inhibitory activity using Ellman's colorimetric assay method. Six isolates were found to possess AChE inhibitory activity with maximum inhibition of 78 % being evinced by culture Cas1 which was identified to be Alternaria sp. on the basis of molecular as well as microscopic methods. Optimization of inhibitor production was carried out using one factor at a time approach. Maximum production of inhibitor was obtained on potato dextrose broth after 10 days incubation. The IC(50) of the chloroform extract was observed to be 40 μg/ml. The extract was purified on silica gel and eluted stepwise with a gradient of chloroform/methanol. The insecticidal potential of the extract was evaluated by feeding the larvae of Spodoptera litura on diet containing varying concentrations of the extract. It was observed that with increase in the concentration of the extract, mortality of the larvae increased. The culture has the potential of being exploited in medicine as well as a biocontrol agent.

  17. Acetylcholinesterase inhibitory, antioxidant, and antimicrobial activities of Salvia tomentosa Mill. essential oil

    Directory of Open Access Journals (Sweden)

    ANDREY MARCHEV

    2015-08-01

    Full Text Available Chemical composition and bioactivity of essential oil from Salvia tomentosa Mill. natively grown in Bulgaria were investigated. GC-MS analysis identified 60 compounds which represented 98% of the oil constituents. The prevalent constituents were monoterpenes with eight dominant compounds being identified: borneol (10.3%, β-pinene (9%, camphor (7.9%, α-pinene (6%, camphene (4%, 1.8-cineole (3.8%, α-limonene (3.5% and β-caryophyllene (3%. The essential oil showed considerable acetylcholinesterase inhibitory activity (IC50=0.28±0.06 µg/mL, comparable with that of galanthamine. Study of antioxidant activity strongly suggested that the hydrogen atom transfer reaction was preferable over the electron transfer (ORAC=175.0±0.40 µM Trolox equivalents/g oil and FRAP=1.45±0.21 mM Trolox equivalents/g oil. The essential oil showed moderate antifungal and antibacterial activities against Candida albicans and Gram-positive bacteria, whereas it was almost inactive against the investigated Gram-negative strains. The results suggested that the essential oil of Bulgarian S. tomentosa could be considered as a prospective active ingredient for prevention of oxidative stress-related and neurodegenerative disorders in aromatherapy. Because of the high antioxidant capacity, the oil could be considered as natural supplement or antioxidant in cosmetics and food products.

  18. Chemical Composition and Acetylcholinesterase Inhibitory Activity of Essential Oils from Piper Species.

    Science.gov (United States)

    Xiang, Cai-Peng; Han, Jia-Xin; Li, Xing-Cong; Li, Yun-Hui; Zhang, Yi; Chen, Lin; Qu, Yan; Hao, Chao-Yun; Li, Hai-Zhou; Yang, Chong-Ren; Zhao, San-Jun; Xu, Min

    2017-05-10

    The essential oils (EOs) derived from aromatic plants such as Piper species are considered to play a role in alleviating neuronal ailments that are associated with inhibition of acetylcholinesterase (AChE). The chemical compositions of 23 EOs prepared from 16 Piper spp. were analyzed by both gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 76 compounds were identified in the EOs from the leaves and stems of 19 samples, while 30 compounds were detected in the EOs from the fruits of four samples. Sesquiterpenes and phenylpropanoids were found to be rich in these EOs, of which asaricin, caryophyllene, caryophyllene oxide, isospathulenol, (+)-spathulenol, and β-bisabolene are the major constituents. The EOs from the leaves and stems of Piper austrosinense, P. puberulum, P. flaviflorum, P. betle, and P. hispidimervium showed strong AChE inhibitory activity with IC50 values in the range of 1.51 to 13.9 mg/mL. A thin-layer chromatography (TLC) bioautography assay was employed to identify active compound(s) in the most active EO from P. hispidimervium. The active compound was isolated and identified as asaricin, which gave an IC50 value of 0.44 ± 0.02 mg/mL against AChE, comparable to galantamine with an IC50 0.15 ± 0.01 mg/mL.

  19. Antimicrobial and acetylcholinesterase inhibitory activities of Buddleja salviifolia (L.) Lam. leaf extracts and isolated compounds.

    Science.gov (United States)

    Pendota, S C; Aderogba, M A; Ndhlala, A R; Van Staden, J

    2013-07-09

    Buddleja salviifolia leaves are used for the treatment of eye infections and neurodegenerative conditions by various tribes in South Africa. This study was designed to isolate the phenolic constituents from the leaf extracts of Buddleja salviifolia and evaluate their antimicrobial and acetylcholinesterase (AChE) activities. Three phenolic compounds were isolated from the ethyl acetate fraction of a 20% aqueous methanol leaf extract of Buddleja salviifolia using Sephadex LH-20 and silica gel columns. Structure elucidation of the isolated compounds was carried out using spectroscopic techniques: mass spectrometry (ESI-TOF-MS) and NMR (1D and 2D). The extracts and isolated compounds were evaluated for antimicrobial and acetylcholinesterase activities using the microdilution technique. The bacteria used for the antimicrobial assays were Gram-positive Bacillus subtilis and Staphylococcus aureus and Gram-negative Escherichia coli and Klebsiella pneumoniae. The isolated compounds were characterized as: 4'-hydroxyphenyl ethyl vanillate (1) a new natural product, acteoside (2) and quercetin (3). The crude extract, fractions and the isolated compounds from the leaves of the plant exhibited a broad spectrum of antibacterial activity. The EtOAc fraction exhibited good activity against Bacillus subtilis and Staphylococcus aureus with MIC values ranging from 780.0 to 390.0 µg/mL. Isolated compound 2 exhibited good activity against Staphylococcus aureus with an MIC value of 62.5 µg/mL. The hexane and DCM fractions of leaves showed the best activity against Candida albicans with MIC and MFC values of 390.0 µg/mL. In the AChE inhibitory test, among the tested extracts, the hexane fraction was the most potent with an IC50 value of 107.4 µg/mL, whereas for the isolated compounds, it was compound (3) (quercetin) with an IC50 value of 66.8 µg/mL. Activities demonstrated by the extracts and isolated compounds support the ethnopharmacological use of Buddleja salviifolia against eye

  20. Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products.

    Science.gov (United States)

    Rollinger, Judith M; Hornick, Ariane; Langer, Thierry; Stuppner, Hermann; Prast, Helmut

    2004-12-02

    For the targeting selection of acetylcholinesterase (AChE) inhibitors from natural sources we generated a structure-based pharmacophore model utilizing an in silico filtering experiment for the discovery of promising candidates out of a 3D multiconformational database consisting of more than 110,000 natural products. In our study, scopoletin (1) and its glucoside scopolin (2) emerged as potential AChE inhibitors by the virtual screening procedure. They were isolated by different chromatographic methods from the medicinal plant Scopolia carniolica Jaqc. and tested in an enzyme assay using Ellman's reagent. They showed moderate, but significant, dose-dependent and long-lasting inhibitory activities. In the in vivo experiments (icv application of 2 micromol) 1 and 2 increased the extracellular acetylcholine (ACh) concentration in rat brain to about 170% and 300% compared to basal release, respectively. At the same concentration, the positive control galanthamine increased the ACh concentration to about the same level as 1. These are the first in vivo results indicating an effect of coumarins on brain ACh.

  1. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some selected Nigerian medicinal plants

    Directory of Open Access Journals (Sweden)

    Taiwo O. Elufioye

    2010-09-01

    Full Text Available Plants have been found to be useful as memory enhansers as well as antiaging. Twenty two of such plants from sixteen families were investigated for their acetylcholinesterase (AChE and butyrylcholinesterase (BuChE inhibitory activities using the in vitro Ellman's spectrophotometric and in situ bioautographic methods with physostigmine as standard. At least three morphological parts were examined for each of the plants investigated and the test concentration was 42.5 µg/ mL. Some plants were active on both enzymes though with some morphological parts being more active than others. The root bark of Spondias mombin showed the highest activity to the two enzymes; 64.77% and 83.94% on AChE and BuChE respectively. Other plant parts of the selected plants exhibited some remarkable selectivity in their actions. Those selectively active against AChE were Alchornia laxiflora stem bark (41.12% and root bark, Callophyllum inophyllurn root bark (56.52%. The leaves of C. jagus (74.25%, Morinda lucida leaves (40.15%, Peltophorum pterocarpum leaves and stem bark (49.5% and 68.85%, respectively, physiostigmine gave 90.31% inhibition. Generally higher activities were found against BuChE. Bombax bromoposenze leaves, root bark and stem bark were particularly active. The inhibition was over 80%. Other selective plant parts are the leaves Antiaris africana, Cissampelos owarensis aerial parts (78.96%, Combretum molle leaves and stem bark (90.42% and 88.13%, respectively, Dioscorea dumentorum root bark and tuber (over 87%, G. kola leaves, Markhamia tomentosa root bark, Pycnanthus angolensis stem bark and Tetrapleura tetraptera leaves. Most of these plants are taken as food or are food ingredients in Nigeria and may account for the low incidence of Alzheimer's disease in the country and may play certain roles in the mediation of the disease.

  2. Acetylcholinesterase inhibitory activity of lycopodane-type alkaloids from the Icelandic Lycopodium annotinum ssp. alpestre

    DEFF Research Database (Denmark)

    Halldórsdóttir, Elsa Steinunn; Jaroszewski, Jerzy W; Olafsdottir, Elin Soffia

    2010-01-01

    determined. Conformation of acrifoline was characterized using NOESY spectroscopy and molecular modelling. The isolated alkaloids were evaluated for their in vitro inhibitory activity against acetylcholinesterase and butyrylcholinesterase. Ligand docking studies based on mutated 3D structure of Torpedo...

  3. Acetylcholinesterase Inhibitory and Antioxidant Properties of Euphorbiacharacias Latex

    Directory of Open Access Journals (Sweden)

    Francesca Pintus

    2013-03-01

    Full Text Available The aim of the present study was to evaluate the acetylcholinesterase inhibitory capacity and the antioxidant properties of extracts of Euphorbia characias latex, a Mediterranean shrub. We performed a new extraction method involving the use of the trichloroacetic acid. The extract showed high antioxidant activity, was rich in total polyphenolic and flavonoid content and exhibited substantial inhibition of acetylcholinesterase activity.

  4. Chemical Constituents from Sonneratia ovata Backer and their in vitro Cytotoxicity and Acetylcholinesterase Inhibitory Activities

    DEFF Research Database (Denmark)

    Nguyen, Thi Hoai Thu; Huu Viet Thong, Phamb; Nguyen, KimTuyen Phamc

    2015-01-01

    -benzyl-β-d-glucopyranose (21) isolated from the leaves of Sonneratia ovata. Their chemical structures were established by spectroscopic data, as well as high resolution mass spectra and comparison with literature data. The in vitro acetylcholinesterase (AChE) inhibition and cytotoxic activities against HeLa (human epithelial...... carcinoma), NCI-H460 (human lung cancer), MCF-7 (human breast cancer) cancer cell lines and PHF (primary human fibroblast) cell were evaluated on some extracts and purified compounds at a concentration of 100 μg/mL. Compounds (5, 6, 23) exhibited cytotoxicity against the MCF-7 cell line with the IC50 values...

  5. Chemical composition and acetylcholinesterase inhibitory activity of essential oils of Myrceugenia myrcioides(Cambess.) O. Berg and Eugenia riedelianaO. Berg, Myrtaceae

    OpenAIRE

    2010-01-01

    The chemical composition of volatile oils from two Myrtaceae species, Myrceugenia myrcioidesand Eugenia riedeliana, both native from the Brazilian Atlantic Rain Forest, was analyzed by GC-MS. Acetylcholinesterase inhibitory activity was colorimetrically evaluated for these oils. For M. myrcioides, monoterpene hydrocarbons represented the major class in the volatile oil, with α-pinene as the most abundant component and a weak inhibitory activity was observed, whilst for E. riedeliana sesq...

  6. Characterization of Lignanamides from Hemp (Cannabis sativa L.) Seed and Their Antioxidant and Acetylcholinesterase Inhibitory Activities.

    Science.gov (United States)

    Yan, Xiaoli; Tang, Jiajing; dos Santos Passos, Carolina; Nurisso, Alessandra; Simões-Pires, Claudia Avello; Ji, Mei; Lou, Hongxiang; Fan, Peihong

    2015-12-16

    Hemp seed is known for its content of fatty acids, proteins, and fiber, which contribute to its nutritional value. Here we studied the secondary metabolites of hemp seed aiming at identifying bioactive compounds that could contribute to its health benefits. This investigation led to the isolation of 4 new lignanamides, cannabisin M (2), cannabisin N (5), cannabisin O (8), and 3,3'-demethyl-heliotropamide (10), together with 10 known lignanamides, among which 4 was identified for the first time from hemp seed. Structures were established on the basis of NMR, HR-MS, UV, and IR as well as by comparison with the literature data. Lignanamides 2, 7, and 9-14 showed good antioxidant activity, among which 7, 10, and 13 also inhibited acetylcholinesterase in vitro. The newly identified compounds in this study add to the diversity of hemp seed composition, and the bioassays implied that hemp seed, with lignanamides as nutrients, may be a good source of bioactive and protective compounds.

  7. Alkaloid metabolite profiles by GC/MS and acetylcholinesterase inhibitory activities with binding-mode predictions of five Amaryllidaceae plants.

    Science.gov (United States)

    Cortes, Natalie; Alvarez, Rafael; Osorio, Edison H; Alzate, Fernando; Berkov, Strahil; Osorio, Edison

    2015-01-01

    Acetylcholinesterase (AChE) enzymatic inhibition is an important target for the management of Alzheimer disease (AD) and AChE inhibitors are the mainstay drugs for its treatment. In order to discover new sources of potent AChE inhibitors, a combined strategy is presented based on AChE-inhibitory activity and chemical profiles by GC/MS, together with in silico studies. The combined strategy was applied on alkaloid extracts of five Amaryllidaceae species that grow in Colombia. Fifty-seven alkaloids were detected using GC/MS, and 21 of them were identified by comparing their mass-spectral fragmentation patterns with standard reference spectra in commercial and private library databases. The alkaloid extracts of Zephyranthes carinata exhibited a high level of inhibitory activity (IC50 = 5.97 ± 0.24 μg/mL). Molecular modeling, which was performed using the structures of some of the alkaloids present in this extract and the three-dimensional crystal structures of AChE derived from Torpedo californica, disclosed their binding configuration in the active site of this AChE. The results suggested that the alkaloids 3-epimacronine and lycoramine might be of interest for AChE inhibition. Although the galanthamine group is known for its potential utility in treating AD, the tazettine-type alkaloids should be evaluated to find more selective compounds of potential benefit for AD.

  8. Ultrahigh pressure-assisted enzymatic extraction maximizes the yield of longan pulp polysaccharides and their acetylcholinesterase inhibitory activity in vitro.

    Science.gov (United States)

    Bai, Yajuan; Liu, Lei; Zhang, Ruifen; Huang, Fei; Deng, Yuanyuan; Zhang, Mingwei

    2017-03-01

    An extraction method employing ultrahigh pressure-assisted enzymatic treatment was developed and optimized by response surface methodology to increase the yield of longan pulp polysaccharides (LP-UE). A maximum polysaccharides yield of 8.55% was obtained under the optimal conditions of 407MPa ultrahigh pressure maintained for 6min with an enzyme to pretreated material ratio of 1:100, an enzymolysis time of 1.7h and a water to pretreated material ratio of 42ml/g. Subsequently, the physicochemical properties and acetylcholinesterase (AChE) inhibitory activity of LP-UE were compared to those of longan pulp polysaccharides (LP) extracted by hot water (LP-H), ultrahigh pressure (LP-U) or enzymatic treatment (LP-E). Results demonstrated that the extraction yield, hexuronic acid content and AChE inhibitory activity of LP-UE was the highest among the four LP samples. LP-UE was primarily made up of arabinose, glucose, and galactose and was linked mainly by β-type glycosidic linkage. The FTIR spectrum of LP-UE was very similar to those of LP-H, LP-U, and LP-E. In summary, ultrahigh pressure-assisted enzymatic treatment is a more efficient technique for extracting LP with considerable improvement of both yield and memory enhancement function. Copyright © 2016. Published by Elsevier B.V.

  9. In vitro and in vivo metabolism and inhibitory activities of vasicine, a potent acetylcholinesterase and butyrylcholinesterase inhibitor.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Vasicine (VAS, a potential natural cholinesterase inhibitor, exhibited promising anticholinesterase activity in preclinical models and has been in development for treatment of Alzheimer's disease. This study systematically investigated the in vitro and in vivo metabolism of VAS in rat using ultra performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry. A total of 72 metabolites were found based on a detailed analysis of their 1H- NMR and 13C NMR data. Six key metabolites were isolated from rat urine and elucidated as vasicinone, vasicinol, vasicinolone, 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, 9-oxo-1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, and 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-β-D-glucuronide. The metabolic pathway of VAS in vivo and in vitro mainly involved monohydroxylation, dihydroxylation, trihydroxylation, oxidation, desaturation, sulfation, and glucuronidation. The main metabolic soft spots in the chemical structure of VAS were the 3-hydroxyl group and the C-9 site. All 72 metabolites were found in the urine sample, and 15, 25, 45, 18, and 11 metabolites were identified from rat feces, plasma, bile, rat liver microsomes, and rat primary hepatocyte incubations, respectively. Results indicated that renal clearance was the major excretion pathway of VAS. The acetylcholinesterase (AChE and butyrylcholinesterase (BChE inhibitory activities of VAS and its main metabolites were also evaluated. The results indicated that although most metabolites maintained potential inhibitory activity against AChE and BChE, but weaker than that of VAS. VAS undergoes metabolic inactivation process in vivo in respect to cholinesterase inhibitory activity.

  10. Antioxidant activity, acetylcholinesterase inhibitory potential and phytochemical analysis of Sarcocephalus latifolius Sm. bark used in traditional medicine in Sudan.

    Science.gov (United States)

    Osama, Alsiddig; Awadelkarim, Sufyan; Ali, Amna

    2017-05-18

    Sarcocephalus latifolius is used as a traditional medicine for curing many diseases in Sudan. The main objective of the current study was to determine the antioxidant activity and acetylcholinesterase inhibition (AChEI) of S. latifolius, and to estimate its total phenolic and flavonoid contents. Antioxidant activity of the tested plant extracts was carried out by determining their ability to scavenge the 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radical. On the other hand, AChE inhibitory activity was determined spectrophotometrically using the Ellman's colorimetric method. The levels of total phenols and flavonoids were determined quantitatively using spectrophotometric methods. MTT assay was consumed to assess the cytotoxic effect of the most active fractions. These fractions were subjected to phytochemical analysis using GC-MS techniques to determine thier chemical composition. Hexane and chloroform fractions exhibited the highest antioxidant activity with IC50 values of (0.098 ± 0.08 and 0.099 ± 0.029 mg/ml) respectively. Standard propyl gallate had the lowest IC50 value of 0.0414 ± 0.11 mg/ml. The ethanolic crude extract showed low AChEI activity with 40.2 ± 0.10%. High concentrations of phenolic and flavonoid contents were observed. GCMS revealed the presence of well-known antioxidants compounds e.g. Vitamin E and caffeic acid. The ethanolic extract of bark of S. latifolius showed potent antioxidant effects and low AChEI activity, high phenolic and flavonoid contents and presence of pharmacologically active compounds. These findings explain its wide usages in traditional medicine.

  11. Antioxidant activity, acetylcholinesterase inhibitory potential and phytochemical analysis of Sarcocephalus latifolius Sm. bark used in traditional medicine in Sudan

    OpenAIRE

    Osama, Alsiddig; Awadelkarim, Sufyan; Ali, Amna

    2017-01-01

    Background Sarcocephalus latifolius is used as a traditional medicine for curing many diseases in Sudan. The main objective of the current study was to determine the antioxidant activity and acetylcholinesterase inhibition (AChEI) of S. latifolius, and to estimate its total phenolic and flavonoid contents. Methods Antioxidant activity of the tested plant extracts was carried out by determining their ability to scavenge the 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radical. On the other hand,...

  12. Synthesis of Benzofuran Derivatives via Rearrangement and Their Inhibitory Activity on Acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Ling-Yi Kong

    2010-11-01

    Full Text Available During a synthesis of coumarins to obtain new candidates for treating Alzheimer’s Disease (AD, an unusual rearrangement of a benzopyran group to a benzofuran group occurred, offering a novel synthesis pathway of these benzofuran derivatives. The possible mechanism of the novel rearrangement was also discussed. All of the benzofuran derivatives have weak anti-AChE activities compared with the reference compound, donepezil.

  13. Acetylcholinesterase inhibitory effects of some plants from Rosaceae

    Directory of Open Access Journals (Sweden)

    S. Esmaeili

    2015-10-01

    Full Text Available Background and objectives: Alzheimer's disease (AD is an age dependent disorder. AD is associated with decrease of brain acetylcholine level. Nowadays, one of the methods for progression inhibition of AD is using acetylcholinesterase inhibitors. Rosaceae is a large plant family. Different biological effects of some species of this family have been reported. The aim of the present study was to assess the acetylcholinesterase inhibitory (AChEI activity of the selected plants belonging to Rosaceae family. Methods: AChEI activity of six species from Rosaceae including Cotoneaster nummularia, Cerasus microcarpa, Amygdalus scoparia, Agrimonia eupatoria, Rosa canina and Rosa damascena were evaluated based on Ellman’s method in concentration of 300 µg/mL using total extracts and methanol fractions which were obtained by maceration. Results: The results showed that the total extract and methanol fraction of the aerial parts of A. eupatoria demonstrated significant AChEI activity with 46.5% and 56.2% inhibition of the enzyme, respectively. Conclusion: According to the results of the AChEI activity of the methanol fraction of A. eupatoria, it seems that the polar components of the species such as flavonoids may be responsible for its effectiveness.

  14. Acetylcholinesterase inhibitory effect of lignans isolated from Schizandra chinensis.

    Science.gov (United States)

    Hung, Tran Manh; Na, MinKyun; Min, Byung Sun; Ngoc, Tran Minh; Lee, IkSoo; Zhang, XinFeng; Bae, KiHwan

    2007-06-01

    The hexane extract of the fruit of Schizandra chinensis (Schisandraceae) was found to show significant inhibition of the activity of acetylcholinesterase enzyme (AChE). In further studies, fourteen lignans were isolated, and evaluated for their inhibitory effect on AChE. The compounds having both aromatic methylenedioxy and hydroxyl groups on their cyclooctadiene ring, such as gomisin C (6), gomisin G (7), gomisin D (8), schisandrol B (11) and gomisin A (13), entirely inhibited AChE in dose dependent manners, with IC50 values of 6.71 +/- 0.53, 6.55 +/- 0.31, 7.84 +/- 0.62, 12.57 +/- 1.07 and 13.28 +/- 1.68 microM, respectively. These results indicate that the lignans could potentially be a potent class of AChE inhibitors.

  15. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Chelidonium majus (Papaveraceae).

    Science.gov (United States)

    Cahlíková, Lucie; Opletal, Lubomír; Kurfürst, Milan; Macáková, Katerina; Kulhánková, Andrea; Hostálková, Anna

    2010-11-01

    The roots and aerial parts of Chelidonium majus L. were extracted with EtOH and fractionated using CHCl3 and EtOH. Repeated column chromatography, preparative TLC and crystallization led to the isolation of five isoquinoline alkaloids, stylopine (3), chelidonine (4), homochelidonine (5), protopine (6), and allocryptopine (7), along with two isolation artifacts 6-ethoxydihydrosanguinarine (1) and 6-ethoxydihydrochelerythrine (2). All isolated compounds were tested for human blood acetylcholinesterase (HuAChE) and human plasma butyrylcholinesterase (HuBuChE) inhibitory activity. The isolation artifacts exhibited the highest activity against HuAChE and HuBuChE with IC50 values of 0.83 +/- 0.04 microM and 4.20 +/- 0.19 microM for 6-ethoxydihydrochelerythrine and 3.25 +/- 0.24 microM and 4.51 +/- 0.31 microM for 6-ethoxydihydrosanguinarine. The most active of the naturally-occurring alkaloids was chelidonine, which inhibited both HuAChE and HuBuChE in a dose-dependent manner with IC50 values of 26.8 +/- 1.2 microM and 31.9 +/- 1.4 microM, respectively.

  16. In-vitro screening of acetylcholinesterase inhibitory activity of extracts from Palestinian indigenous flora in relation to the treatment of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Mohammed Saleem Ali-Shtayeh

    2014-09-01

    Full Text Available Background: Cholinesterase inhibitory therapy serves as a strategy for the treatment of Alzheimer’s disease (AD. Several acetylcholinesterase inhibitors (AChEIs are used for the symptomatic treatment of AD. These compounds have been reported to have adverse effects, including gastrointestinal disturbances. This study was therefore partly aimed at investigating in vitro possible AChEIs in herbal medicines traditionally used in Palestine to treat cognitive disorders, and to point out the role of these plants as potential sources for development of newly potent and safe natural therapeutic agents of AD. Assay of AChE activity plays an important role in vitro characterization of drugs including potential treatments for AD. The most widely used method, is based on Ellman’s method. The reactant used in this method shows chemical reactivity with oxime antidots and thiol leading to false positive reactions. A new alternative assay could be of high interest. Methods: The effect on AChE activity of 92 extracts of 47 medicinal plants were evaluated using a new micro-well plate AChE activity (NA-FB and Ellman’s assays. In addition, antioxidant activity using DPPH was determined. Results: The main advantages of the new method (NA-FB is that the colorimetric change is better observable visually allowing spectrophotometric as well as colorimetric assay, and does not show any chemical reactivity with thiol. 67.4% and 37% of extracts inhibited AChE by >50% using the NA-FB and Ellman’s assays, respectively. Using NA-FB assay, 84 extracts interacted reversibly with the enzyme, of which Mentha spicata (94.8%, Foeniculum vulgare (89.81, and Oxalis pes-caprae (89.21 were most potent, and 8 showed irreversible inhibition of which leaves of Lupinus pilosus (92.02% were most active. Antioxidant activity was demonstrated by 73 extracts Majorana syriaca (IC50 0.21mg/ml, and Rosmarinus officinalis (0.38 were the most active. Conclusions: NA-FB assay has shown to be

  17. Potent acetylcholinesterase inhibitory compounds from Myristica fragrans.

    Science.gov (United States)

    Cuong, To Dao; Hung, Tran Manh; Han, Hyoung Yun; Roh, Hang Sik; Seok, Ji-Hyeon; Lee, Jong Kwon; Jeong, Ja Young; Choi, Jae Sue; Kim, Jeong Ah; Min, Byung Sun

    2014-04-01

    The anti-cholinesterase activity was evaluated of the ethyl acetate fraction of the methanol extract of Myristica fragrans Houtt (Myristicaceae) seeds and of compounds isolated from it by various chromatographic techniques. The chemical structures of the compounds were determined from spectroscopic analyses (NMR data). Thirteen compounds (1-13) were isolated and identified. Compound 8 { [(7S)-8'-(4'-hydroxy-3'-methoxyphenyl)-7-hydroxypropyl]benzene-2,4-diol) showed the most effective activity with an IC50 value of 35.1 microM, followed by compounds 2 [(8R,8'S)-7'-(3',4'-methylenedioxyphenyl)-8,8'-dimethyl-7-(3,4-dihydroxyphenyl)-butane] and 11 (malabaricone C) with IC50 values of 42.1 and 44.0 pM, respectively. This is the first report of significant anticholinesterase properties of M. fragrans seeds. The findings demonstrate that M. fragrans could be used beneficially in the treatment of Alzheimer's disease.

  18. Micropropagation of Ficus religiosa L. via leaf explants and comparative evaluation of acetylcholinesterase inhibitory activity in the micropropagated and conventionally grown plants.

    Science.gov (United States)

    Siwach, Priyanka; Gill, Anita Rani

    2014-10-01

    A high-frequency, season-independent, in vitro regeneration of Ficusreligiosa was developed, followed by comparative acetylcholinesterase inhibitory (AChEI) activity assay of the in vitro raised and conventionally grown plants. The use of AChEI activity is the most accepted strategy for the treatment of Alzheimer disease. Fully expanded, mature leaves were cut into different segments to initiate the cultures. The middle section of the leaf in vertical orientation with cut portion inserted inside the medium was found most suitable for direct shoot regeneration. Leaf explants responded with nearly consistent frequency (60-66.67 %) throughout the year. To obtain high frequency response with enhanced shoot multiplication rate, 32 plant growth regulator regimes were screened amongst which benzylaminopurine at 5.0 mg/l was found most suitable, yielding 100 % response and maximum number of shoots per explant (7.93); same concentration was also most supportive for repeated multiplication (6.53 shoots). The quality of the shoots and multiplication rate could be significantly enhanced (24.35 shoots) when adenine sulphate, glutamine and phloroglucinol, in an optimised concentration, were additionally supplemented. The clonal nature of the micropropagated plants was confirmed by random amplified polymorphic DNA analysis. A comparative analysis of AChEI activity was carried out amongst the methanolic extracts of stem segments of the mother plant, randomly selected seedlings of different age (4 and 6 months old) of the same mother plant and randomly selected micropropagated plants of different age (3 and 6 months age). The mother plant sample showed effective AChEI activity, with IC50 of 66.46 μg/ml while seedlings, of different age groups, performed poorly (6-month-old seedlings, Se-16M, yielded IC50 of 20,538.46 μg/ml, while two randomly selected 4 months' aged seedlings, Se-24M and Se-34M exhibited IC50 of 19,341.03 and 24,281.70 μg/ml). On the other hand, various

  19. Laboratory and Simulated Field Bioassays to Evaluate Larvicidal Activity of Pinus densiflora Hydrodistillate, Its Constituents and Structurally Related Compounds against Aedes albopictus, Aedes aegypti and Culex pipiens pallens in Relation to Their Inhibitory Effects on Acetylcholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Young-Joon Ahn

    2013-05-01

    Full Text Available The toxicity of Pinus densiflora (red pine hydrodistillate, its 19 constituents and 28 structurally related compounds against early third-instar larvae of Aedes albopictus (Ae. albopictus, Aedes aegypti (Ae. aegypti and Culex pipiens palles (Cx. p. pallens was examined using direct-contact bioassays. The efficacy of active compounds was further evaluated in semi-field bioassays using field-collected larval Cx. p. pallens. Results were compared with those of two synthetic larvicides, temephos and fenthion. In laboratory bioassays, Pinus densiflora hydrodistillate was found to have 24 h LC50 values of 20.33, 21.01 and 22.36 mg/L against larval Ae. albopictus, Ae. aegypti and Cx. p. pallens respectively. Among the identified compounds, thymol, δ-3-carene and (+-limonene exhibited the highest toxicity against all three mosquito species. These active compounds were found to be nearly equally effective in field trials as well. In vitro bioassays were conducted to examine the acetylcholinesterase (AChE inhibitory activity of 10 selected compounds. Results showed that there is a noticeable correlation between larvicidal activity and AChE inhibitory activity. In light of global efforts to find alternatives for currently used insecticides against disease vector mosquitoes, Pinus densiflora hydrodistillate and its constituents merit further research as potential mosquito larvicides.

  20. Laboratory and Simulated Field Bioassays to Evaluate Larvicidal Activity of Pinus densiflora Hydrodistillate, Its Constituents and Structurally Related Compounds against Aedes albopictus, Aedes aegypti and Culex pipiens pallens in Relation to Their Inhibitory Effects on Acetylcholinesterase Activity.

    Science.gov (United States)

    Lee, Dong Chan; Ahn, Young-Joon

    2013-05-30

    The toxicity of Pinus densiflora (red pine) hydrodistillate, its 19 constituents and 28 structurally related compounds against early third-instar larvae of Aedes albopictus (Ae. albopictus), Aedes aegypti (Ae. aegypti) and Culex pipiens palles (Cx. p. pallens) was examined using direct-contact bioassays. The efficacy of active compounds was further evaluated in semi-field bioassays using field-collected larval Cx. p. pallens. Results were compared with those of two synthetic larvicides, temephos and fenthion. In laboratory bioassays, Pinus densiflora hydrodistillate was found to have 24 h LC50 values of 20.33, 21.01 and 22.36 mg/L against larval Ae. albopictus, Ae. aegypti and Cx. p. pallens respectively. Among the identified compounds, thymol, δ-3-carene and (+)-limonene exhibited the highest toxicity against all three mosquito species. These active compounds were found to be nearly equally effective in field trials as well. In vitro bioassays were conducted to examine the acetylcholinesterase (AChE) inhibitory activity of 10 selected compounds. Results showed that there is a noticeable correlation between larvicidal activity and AChE inhibitory activity. In light of global efforts to find alternatives for currently used insecticides against disease vector mosquitoes, Pinus densiflora hydrodistillate and its constituents merit further research as potential mosquito larvicides.

  1. In vitro inhibitory potential of methanolic extract of Celosia argentea var. cristata on tyrosinase, acetylcholinesterase and butyrylcholinesterase enzymes

    Directory of Open Access Journals (Sweden)

    Fatima Saqib

    2015-06-01

    Full Text Available In the current study, methanol extract of Celosia argentea var. cristata was tested for its inhibitory potential against tyrosinase, acetylcholinesterase and butyrylcholinesterase enzymes at the concentration of 0.5 mM by ELISA microtiter plate assays. A significant tyrosinase inhibitory activity (63.6%, acetylcholinesterase inhibitory activity (80.3% and butyrylcholinesterse inhibitory activity (68.24% was shown by crude methanolic extract of C. argentea var. cristata with respective IC50 values of 268.5 ± 0.2 µg/mL, 73.6 ± 0.1 µg/mL and 132.8 ± 0.9 µg/mL. The result of this study reveals the use of C. argentea var. cristata in skin hyperpigmentation, Parkinson’s disease and neurodegenerative disorders like Alzheimer’s disease and dementia.

  2. Acetylcholinesterase inhibitory dimeric indole derivatives from the marine actinomycetes Rubrobacter radiotolerans.

    Science.gov (United States)

    Li, Jian Lin; Huang, Lei; Liu, Juan; Song, Yan; Gao, Jie; Jung, Jee H; Liu, Yonghong; Chen, Guangtong

    2015-04-01

    Investigation of the bioactive secondary metabolites of the marine actinomycetes Rubrobacter radiotolerans led to the isolation and characterization of two naturally rare dimeric indole derivatives (1 and 2). The structures of these new compounds were elucidated by spectroscopic data interpretation, and the absolute configurations were assigned by CD calculations. The acetylcholinesterase (AchE) inhibitory activity of compounds 1 and 2 was evaluated, both of which showed moderate activity with IC50 values of 11.8 and 13.5μM, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Chemical composition and acetylcholinesterase inhibitory activity of essential oils of Myrceugenia myrcioides(Cambess.) O. Berg and Eugenia riedelianaO. Berg, Myrtaceae Composição química e atividade inibidora de acetilcolinesterase de óleos voláteis de Myrceugenia myrcioides(Cambess.) O. Berg and Eugenia riedeliana O. Berg, Myrtaceae

    OpenAIRE

    2010-01-01

    The chemical composition of volatile oils from two Myrtaceae species, Myrceugenia myrcioidesand Eugenia riedeliana, both native from the Brazilian Atlantic Rain Forest, was analyzed by GC-MS. Acetylcholinesterase inhibitory activity was colorimetrically evaluated for these oils. For M. myrcioides, monoterpene hydrocarbons represented the major class in the volatile oil, with α-pinene as the most abundant component and a weak inhibitory activity was observed, whilst for E. riedeliana sesq...

  4. Synthesis and in vitro acetylcholinesterase and butyrylcholinesterase inhibitory potential of hydrazide based Schiff bases.

    Science.gov (United States)

    Rahim, Fazal; Ullah, Hayat; Taha, Muhammad; Wadood, Abdul; Javed, Muhammad Tariq; Rehman, Wajid; Nawaz, Mohsan; Ashraf, Muhammad; Ali, Muhammad; Sajid, Muhammad; Ali, Farman; Khan, Muhammad Naseem; Khan, Khalid Mohammed

    2016-10-01

    To discover multifunctional agents for the treatment of Alzheimer's disease, a series of hydrazide based Schiff bases were designed and synthesized based on multitarget-directed strategy. We have synthesized twenty-eight analogs of hydrazide based Schiff bases, characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase and butyrylcholinesterase inhibition. All compounds showed varied degree of acetylcholinesterase and butyrylcholinesterase inhibition when compared with standard Eserine. Among the series, compounds 10, 3 and 24 having IC50 values 4.12±0.01, 8.12±0.01 and 8.41±0.06μM respectively showed potent acetylcholinesterase inhibition when compared with Eserine (IC50=0.85±0.0001μM). Three compounds 13, 24 and 3 having IC50 values 6.51±0.01, 9.22±0.07 and 37.82±0.14μM respectively showed potent butyrylcholinesterase inhibition by comparing with eserine (IC50=0.04±0.0001μM). The remaining compounds also exhibited moderate to weak inhibitory potential. Structure activity relationship has been established. Through molecular docking studies the binding interaction was confirmed.

  5. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe).

    Science.gov (United States)

    Seo, Seon-Mi; Kim, Junheon; Kang, Jaesoon; Koh, Sang-Hyun; Ahn, Young-Joon; Kang, Kyu-Suk; Park, Il-Kwon

    2014-07-01

    This study investigated the fumigant toxicity of 4 Asteraceae plant essential oils and their constituents against the Japanese termite Reticulitermes speratus Kolbe. Fumigant toxicity varied with plant essential oils or constituents, exposure time, and concentration. Among the tested essential oils, those from Chamaemelum nobile exhibited the strongest fumigant toxicity, followed by those from Santolina chamaecyparissus, Ormenis multicaulis, and Eriocephalus punctulatus at 2 days after treatment. In all, 15, 24, 19, and 9 compounds were identified in the essential oils from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus, respectively, by using gas chromatography, gas chromatography-mass spectrometry, or open-column chromatography. The identified compounds were tested individually for their fumigant toxicity against Japanese termites. Among the test compounds, trans-pinocarveol, caryophyllene oxide, sabinene hydrate, and santolina alcohol showed strong fumigant toxicity against Japanese termites. Acetylcholinesterase (AChE) inhibition activity of the identified compounds from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus essential oils were tested to determine the mode of their action. The IC50 values of (+)-α-pinene, (-)-limonene, (-)-α-pinene, β-pinene, and β-phellandrene against Japanese termite AChE were 0.03, 0.13, 0.41, 0.42, and 0.67mg/mL, respectively. Further studies are warranted to determine the potential of these essential oils and their constituents as fumigants for termite control. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Acetylcholinesterase Inhibitory, Antioxidant and Phytochemical Properties of Selected Medicinal Plants of the Lamiaceae Family

    Directory of Open Access Journals (Sweden)

    Sanda Vladimir-Knežević

    2014-01-01

    Full Text Available The present study aimed to evaluate acetylcholinesterase (AChE inhibitory and antioxidant activities of Lamiaceae medicinal plants growing wild in Croatia. Using Ellman’s colorimetric assay all tested ethanolic extracts and their hydroxycinnamic acid constituents demonstrated in vitro AChE inhibitory properties in a dose dependent manner. The extracts of Mentha x piperita, M. longifolia, Salvia officinalis, Satureja montana, Teucrium arduini, T. chamaedrys, T. montanum, T. polium and Thymus vulgaris at 1 mg/mL showed strong inhibitory activity against AChE. The antioxidant potential of the investigated Lamiaceae species was assessed by DPPH• scavenging activity and total antioxidant capacity assays, in comparison with hydroxycinnamic acids and trolox. The extracts differed greatly in their total hydroxycinnamic derivatives content, determined spectrophotometrically. Rosmarinic acid was found to be the predominant constituent in most of the investigated medicinal plants (by RP-HPLC and had a substantial influence on their AChE inhibitory and antioxidant properties, with the exception of Teucrium species. These findings indicate that Lamiaceae species are a rich source of various natural AChE inhibitors and antioxidants that could be useful in the prevention and treatment of Alzheimer’s and other related diseases.

  7. Screening of plants used in the European traditional medicine to treat memory disorders for acetylcholinesterase inhibitory activity and anti amyloidogenic activity

    DEFF Research Database (Denmark)

    Lobbens, Eva S B; Vissing, Karina J.; Jorgensen, Lene

    2017-01-01

    Ethnopharmacological relevance Plants used in the traditional medicine of Europe to treat memory dysfunction and/or to enhance memory were investigated for activity against the underlying mechanisms of Alzheimer's disease. Aim of the study To investigate 35 ethanolic extracts of plants, selected...

  8. 5,6,7,8-Tetrahydro-2-(2-phenylethyl)chromones from artificial agarwood of Aquilaria sinensis and their inhibitory activity against acetylcholinesterase.

    Science.gov (United States)

    Liao, Ge; Mei, Wen-Li; Kong, Fan-Dong; Li, Wei; Yuan, Jing-Zhe; Dai, Hao-Fu

    2017-07-01

    Thirteen previously undescribed 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromones named tetrahydrochromone A-M, together with nine known ones, were isolated from artificial agarwood (induced by holing) originating from Aquilaria sinensis (Lour.) Gilg. The structures of these compounds were unambiguously determined based on extensive NMR spectroscopic analyses, and the absolute configuration was resolved by CD analyses, X-ray crystallographic, chemical and Mosher's method. Tetrahydrochromone A, B, K-M, and Oxidoagarochromone An exhibited inhibitory activity against AChE with the percentage inhibition range from 17.5% to 47.9% (with Tacrine as the positive control; inhibition ratio: 66.7%) when tested at 50 μg/mL. Tetrahydrochromone A-E, F-J feature one methoxy and three hydroxys linked at the cyclohexene ring rather than usual four hydroxys, and tetrahydrochromone K-M represent the first examples of 7,8-epoxy tetrahydrochromones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Acetylcholinesterase inhibitory properties of some benzoic acid derivatives

    Science.gov (United States)

    Yildiz, Melike; Kiliç, Deryanur; Ünver, Yaǧmur; Şentürk, Murat; Askin, Hakan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Acetylcholinesterase (AChE) hydrolyses the neurotransmitter acetylcholine to acetic acid and choline. AChE inhibitors are used in treatment of several neurodegeneartive disorder and Alzheimer's disease. In the present study, inhibition of AChE with some benzoic acid derivatives were investigated. 3-Chloro-benzoic acid (1), 2-hydroxy-5-sulfobenzoic acid (2), 2-(sulfooxy) benzoic acid (3), 2-hydroxybenzoic acid (4), 2,3-dimethoxybenzoic (5), and 3,4,5-trimethoxybenzoic (6) were calculated IC50 values AChE enzyme. Kinetic investigations showed that similarly to AChE inhibitors. Benzoic acid derivatives (1-6) investigated are encouraging agents which may be used as lead molecules in order to derivative novel AChE inhibitors that might be useful in medical applications.

  10. A Mechanism-based 3D-QSAR Approach for Classification and Prediction of Acetylcholinesterase Inhibitory Potency of Organophosphate and Carbamate Analogs

    Science.gov (United States)

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understandi...

  11. Antioxidant Activity and Acetylcholinesterase Inhibition of Grape Skin Anthocyanin (GSA

    Directory of Open Access Journals (Sweden)

    Mehnaz Pervin

    2014-07-01

    Full Text Available We aimed to investigate the antioxidant and acetylcholinesterase inhibitory activities of the anthocyanin rich extract of grape skin. Grape skin anthocyanin (GSA neutralized free radicals in different test systems, such as 2,-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and 2,2-diphenyl-1-picrylhydrazyl (DPPH assays, to form complexes with Fe2+ preventing 2,2'-azobis(2-amidinopropane dihydrochloride (AAPH-induced erythrocyte hemolysis and oxidative DNA damage. Moreover, GSA decreased reactive oxygen species (ROS generation in isolated mitochondria thus inhibiting 2',-7'-dichlorofluorescin (DCFH oxidation. In an in vivo study, female BALB/c mice were administered GSA, at 12.5, 25, and 50 mg per kg per day orally for 30 consecutive days. Herein, we demonstrate that GSA administration significantly elevated the level of antioxidant enzymes in mice sera, livers, and brains. Furthermore, GSA inhibited acetylcholinesterase (AChE in the in vitro assay with an IC50 value of 363.61 µg/mL. Therefore, GSA could be an excellent source of antioxidants and its inhibition of cholinesterase is of interest with regard to neurodegenerative disorders such as Alzheimer’s disease.

  12. Chemical composition and acetylcholinesterase inhibitory activity of essential oils of Myrceugenia myrcioides(Cambess. O. Berg and Eugenia riedelianaO. Berg, Myrtaceae Composição química e atividade inibidora de acetilcolinesterase de óleos voláteis de Myrceugenia myrcioides(Cambess. O. Berg and Eugenia riedeliana O. Berg, Myrtaceae

    Directory of Open Access Journals (Sweden)

    Amanda de Souza

    2010-05-01

    Full Text Available The chemical composition of volatile oils from two Myrtaceae species, Myrceugenia myrcioidesand Eugenia riedeliana, both native from the Brazilian Atlantic Rain Forest, was analyzed by GC-MS. Acetylcholinesterase inhibitory activity was colorimetrically evaluated for these oils. For M. myrcioides, monoterpene hydrocarbons represented the major class in the volatile oil, with α-pinene as the most abundant component and a weak inhibitory activity was observed, whilst for E. riedeliana sesquiterpenes were found in higher amounts, being valerianol the major compound, and this oil presented a strong acetylcholinesterase inhibition.A composição química dos óleos voláteis de duas espécies de Myrtaceae, Myrceugenia myrcioidese Eugenia riedeliana, ambas nativas da Mata Atlântica, foi analisada por CG-EM. A atividade inibidora de acetilcolinesterase foi determinada colorimetricamente para estes óleos. Em M. myrcioides, hidrocarbonetos monoterpênicos representaram a classe majoritária de compostos presentes no óleo volátil, sendo α-pineno o componente mais abundante e a atividade inibidora de acetilcolinesterase foi baixa, enquanto para E. riedelianaos sesquiterpenos foram observados em maiores concentrações, sendo o valerianol o componente majoritário, e este óleo apresentou uma forte atividade inibidora da enzima.

  13. Acetylcholinesterase activity in marine gastropods as biomarker of neurotoxic contaminants

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Gaitonde, D.C.S.; Vashistha, D.

    The acetylcholinesterase (AchE) activity was measured in three different species of marine gastropods namely Cronia contracta, Morula granulata and Planaxis sulcatus collected from selected stations (Arambol, Anjuna, Dona Paula, Vasco and Velsao...

  14. Acetylcholinesterase Inhibition and in Vitro and in Vivo Antioxidant Activities of Ganoderma lucidum Grown on Germinated Brown Rice

    Directory of Open Access Journals (Sweden)

    Beong Ou Lim

    2013-06-01

    Full Text Available In this study, the acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice (GLBR were evaluated. In antioxidant assays in vitro, GLBR was found to have strong metal chelating activity, DPPH, ABTS, hydroxyl and superoxide radical scavenging activity. Cell-based antioxidant methods were used, including lipid peroxidation on brain homogenate and AAPH-induced erythrocyte haemolysis. In antioxidant assays in vivo, mice were administered with GLBR and this significantly enhanced the activities of antioxidant enzymes in the mice sera, livers and brains. The amount of total phenolic and flavonoid compounds were 43.14 mg GAE/g and 13.36 mg CE/g dry mass, respectively. GLBR also exhibited acetylcholinesterase inhibitory activity. In addition, HPLC analyses of GLBR extract revealed the presence of different phenolic compounds. These findings demonstrate the remarkable potential of GLBR extract as valuable source of antioxidants which exhibit interesting acetylcholinesterase inhibitory activity.

  15. Synthesis and anti-acetylcholinesterase activity of benzotriazinone-triazole systems

    Indian Academy of Sciences (India)

    SETAREH MOGHIMI; FERESHTEH GOLI-GARMROODI; HEDIEH PILALI; MOHAMMAD MAHDAVI; LOGHMAN FIROOZPOUR; HAMID NADRI; ALIREZA MORADI; ALI ASADIPOUR; ABBAS SHAFIEE; ALIREZA FOROUMADI

    2016-09-01

    An approach for the construction of benzotriazinone-triazole system is described. The synthesis is based on diazonium chemistry and subsequent intramolecular heteroatom-heteroatom bond formation. The introduction of triazole moiety occurred via click reaction catalyzed by nano-sized copper, supported on modified silica mesopore KIT-5 leading to the desired products in excellent yield. Also, in vitro acetylcholinesterase(AChE) inhibitory activities of the target compounds were screened by Ellman’s method.

  16. In vitro antioxidant properties, HIV-1 reverse transcriptase and acetylcholinesterase inhibitory effects of traditional herbal preparations sold in South Africa.

    Science.gov (United States)

    Ndhlala, Ashwell R; Finnie, Jeffrey F; Van Staden, Johannes

    2010-10-08

    The antioxidant potentials for fourteen multipurpose traditional herbal preparations sold in South Africa were determined using the DPPH radical scavenging, ferric reducing power and β-carotene-linoleic acid model system, the anti-HIV-1 reverse transcriptase (RT) enzyme inhibitory effects using an ELISA kit and acetylcholinesterase (AChE) enzyme inhibition using the microtitre plate assay. Nine of the herbal mixtures (Umzimba omubi, Umuthi wekukhwehlela ne zilonda, Mvusa ukunzi, Umpatisa inkosi, Imbiza ephuzwato, Vusa umzimba, Supreme one hundred, Sejeso herbal mixture Ingwe® and Ingwe® special muti) exhibited higher antioxidant potentials, while only four (Imbiza ephuzwato, Ingwe® muthi mixture, Sejeso herbal mixture Ingwe® and African potato extract™ showed potent activity against the RT enzyme. Nine mixtures (Imbiza ephuzwato, Umpatisa inkosi, African potato extract™, Sejeso herbal mixture Ingwe®, Vusa umzimba; Ingwe® muthi mixture, Ibhubezi™, Lion izifozonke Ingwe® and Ingwe® special muti) showed AChE enzyme inhibitory activity greater than 50%. The observed activity exhibited by some of the herbal mixtures gives some credence to the manufacturers' claims and goes part of the way towards validating their use against certain conditions such as oxidative stress, HIV/AIDS proliferation and some mental conditions. It is however, desirable to carry out further studies to determine the effects of mixing plant species/parts in one mixture on the antioxidant potency as well as isolating active constituents from the herbal mixtures.

  17. Inhibition of acetylcholinesterase activity in brain and behavioral analysis in adult rats after chronic administration of fenproporex.

    Science.gov (United States)

    Rezin, Gislaine T; Scaini, Giselli; Ferreira, Gabriela K; Cardoso, Mariane R; Gonçalves, Cinara L; Constantino, Larissa S; Deroza, Pedro F; Ghedim, Fernando V; Valvassori, Samira S; Resende, Wilson R; Quevedo, João; Zugno, Alexandra I; Streck, Emilio L

    2012-12-01

    Fenproporex is an amphetamine-based anorectic and it is rapidly converted in vivo into amphetamine. It elevates the levels of extracellular dopamine in the brain. Acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine. Thus, we investigated whether the effects of chronic administration of fenproporex in adult rats alters acquisition and retention of avoidance memory and acetylcholinesterase activity. Adult male Wistar rats received repeated (14 days) intraperitoneal injection of vehicle or fenproporex (6.25, 12.5 or 25 mg/kg i.p.). For behavioral assessment, animals were submitted to inhibitory avoidance (IA) tasks and continuous multiple trials step-down inhibitory avoidance (CMIA). Acetylcholinesterase activity was measured in the prefrontal cortex, hippocampus, hypothalamus and striatum. The administration of fenproporex (6.25, 12.5 and 25 mg/kg) did not induce impairment in short and long-term IA or CMIA retention memory in rats. In addition, longer periods of exposure to fenproporex administration decreased acetylcholinesterase activity in prefrontal cortex and striatum of rats, but no alteration was verified in the hippocampus and hypothalamus. In conclusion, the present study showed that chronic fenproporex administration decreased acetylcholinesterase activity in the rat brain. However, longer periods of exposure to fenproporex did not produce impairment in short and long-term IA or CMIA retention memory in rats.

  18. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    Science.gov (United States)

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL.

  19. In Vitro Antioxidant Properties, HIV-1 Reverse Transcriptase and Acetylcholinesterase Inhibitory Effects of Traditional Herbal Preparations Sold in South Africa

    OpenAIRE

    2010-01-01

    The antioxidant potentials for fourteen multipurpose traditional herbal preparations sold in South Africa were determined using the DPPH radical scavenging, ferric reducing power and β-carotene-linoleic acid model system, the anti-HIV-1 reverse transcriptase (RT) enzyme inhibitory effects using an ELISA kit and acetylcholinesterase (AChE) enzyme inhibition using the microtitre plate assay. Nine of the herbal mixtures (Umzimba omubi, Umuthi wekukhwehlela ne zilonda, Mvusa ukunzi, Umpatisa inko...

  20. The effects of a food product containing lactic acid on the activity of acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Andre-Michael Beer

    2012-06-01

    Full Text Available Objective: Patients reported that a food product containing lactic acid improved their memory and thought processes. The ingredients of the tested food product are compound substances and smooth muscle fibre, the appropriate medium in which to analyse their effects. Acetylcholinesterase inhibitors are used to treat memory loss and failing thought performance. The aim of this study was to compare the effects of the lactic acid food product with the effects of acetylcholinesterase inhibitors. Methods: In this in vitro study the effects of the food product containing lactic acid on smooth muscle fibres of guinea pig stomach were investigated. Results: The results show that the lactic acid food product contains substances that can inhibit the activity of both acetylcholinesterase and butyrylcholinesterase. This inhibitory effect was compared to the inhibitory effects of galantamine (Nivalin®, pyridostigmine bromide (Kalymin® and donepezil hydrochloride (Donepezil®, which are clinically used for the pharmacological treatment of dementia. We observed a 5% to 20% less potency factor difference with the lactic acid food product compared to that of the pharmaceutical drugs. Conclusions: This proves that the lactic acid food product can also have an impact on memory and thought performance and that these results should promote clinical trials to test efficacy. [J Exp Integr Med 2012; 2(3.000: 207-212

  1. 2-(2-(4-Benzoylpiperazin-1-ylethylisoindoline-1,3-dione derivatives: Synthesis, docking and acetylcholinesterase inhibitory evaluation as anti-alzheimer agents

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammadi-Farani

    2017-01-01

    Full Text Available Objective(s: Alzheimer’s disease (AD as progressive cognitive decline and the most common form of dementia is due to degeneration of the cholinergic neurons in the brain. Therefore, administration of the acetylcholinesterase (AChE inhibitors such as donepezil is the first choice for treatment of the AD. In the present study, we focused on the synthesis and anti-cholinesterase evaluation of new donepezil like analogs. Materials and Methods: A new series of phthalimide derivatives (compounds 4a-4j were synthesized via Gabriel protocol and subsequently amidation reaction was performed using various benzoic acid derivatives. Then, the corresponding anti-acetylcholinesterase activity of the prepared derivatives (4a-4j was assessed by utilization of the Ellman's test and obtained results were compared to donepezil. Besides, docking study was also carried out to explore the likely in silico binding interactions.  Results: According to the obtained results, electron withdrawing groups (Cl, F at position 3 and an electron donating group (methoxy at position 4 of the phenyl ring enhanced the acetylcholinesterase inhibitory activity. Compound 4e (m-Fluoro, IC50 = 7.1 nM and 4i (p-Methoxy, IC50 = 20.3 nM were the most active compounds in this series and exerted superior potency than donepezil (410 nM. Moreover, a similar binding mode was observed in silico for all ligands in superimposition state with donepezil into the active site of acetylcholinesterase. Conclusion: Studied compounds could be potential leads for discovery of novel anti-Alzheimer agents in the future.

  2. L-tyrosine administration increases acetylcholinesterase activity in rats.

    Science.gov (United States)

    Ferreira, Gabriela K; Carvalho-Silva, Milena; Gonçalves, Cinara L; Vieira, Júlia S; Scaini, Giselli; Ghedim, Fernando V; Deroza, Pedro F; Zugno, Alexandra I; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-12-01

    Tyrosinemia is a rare genetic disease caused by mutations on genes that codify enzymes responsible for tyrosine metabolism. Considering that tyrosinemics patients usually present symptoms associated with central nervous system alterations that ranges from slight decreases in intelligence to severe mental retardation, we decided to investigate whether acute and chronic administration of L-tyrosine in rats would affect acetylcholinesterase mRNA expression and enzymatic activity during their development. In our acute protocol, Wistar rats (10 and 30 days old) were killed one hour after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old) and rats were killed 12 h after last injection. Acetylcholinesterase activity was measured by Ellman's method and acetylcholinesterase expression was carried out by a semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay. We observed that acute (10 and 30 days old rats) and chronic L-tyrosine administration increased acetylcholinesterase activity in serum and all tested brain areas (hippocampus, striatum and cerebral cortex) when compared to control group. Moreover, there was a significant decrease in mRNA levels of acetylcholinesterase in hippocampus was observed after acute protocol (10 and 30 days old rats) and in striatum after chronic protocol. In case these alterations also occur in the brain of the patients, our results may explain, at least in part, the neurological sequelae associated with high plasma concentrations of tyrosine seen in patients affected by tyrosinemia type II.

  3. Antioxidant and anti-acetylcholinesterase activities of extracts and secondary metabolites from Acacia cyanophylla

    Institute of Scientific and Technical Information of China (English)

    Lotfi Ghribia; Hatem Ghouilaa; Amel Omrib; Malek Besbesb; Hichem Ben Janneta

    2014-01-01

    Objective: To investigate the antioxidant potential and anti-acetycholinesterase activity of compounds and extracts from Acacia cyanophylla (A. cyanophylla). Methods: Three polyphenolic compounds were isolated from ethyl acetate extract of A.cyanophylla flowers. They have been identified as isosalipurposide 1, quercetin 2 and naringenin 3. Their structures were elucidated by extensive spectroscopic methods including 1D and 2D NMR experiments as well as ES-MS. The prepared extracts and the isolated compounds 1-3 were tested for their antioxidant activity using 1’-1’-diphenylpicrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging assays and reducing power. They have been also investigated for inhibitory effect against acetylcholinesterase using the microplate assay.Results:(67.26 µg/mL). Isosalipurposide 1 showed a significant antiradical power against DPPH (81.9 µg/mL). All extracts showed a dose-dependent acetylcholinesterase inhibition. In terms of the IC50 value, the butanolic extract (16.03 µg/mL) was the most potent sample. Isosalipurposide 1 was found to be active against AChE with an IC50 value of 52.04 µg/mL. In the DPPH test, the EtOAc extract of flowers exhibited the highest antioxidant effect Conclusions: The results demonstrated the important antioxidant and anti-acetylcholinesterase activity of pure compounds and extracts from A. cyanophylla.

  4. Inhibitory and enzyme-kinetic investigation of chelerythrine and lupeol isolated from Zanthoxylum rhoifolium against krait snake venom acetylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mustaq, E-mail: mushtaq213@yahoo.com [University of Science and Technology, Bannu, (Pakistan). Department of Biotechnology; Weber, Andrea D.; Zanon, Graciane; Tavares, Luciana de C.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F., E-mail: ademirfariasm@gmail.com [Universidade Federal de Santa Maria, RS (Brazil). Dept. de Quimica

    2014-01-15

    The in vitro activity of chelerythrine and lupeol, two metabolites isolated from Zanthoxylum rhoifolium were studied against the venom of the snake Bungarus sindanus (Elapidae). The venom, which is highly toxic to humans, consists mainly by the enzyme acetylcholinesterase (AChE). Both compounds showed activity against the venom, and the alkaloid chelerythrine presented higher activity than did triterpene lupeol. (author)

  5. Acetylcholinesterase activity in the cerebrospinal fluid of dogs with seizures.

    Science.gov (United States)

    Chai, Orit; Sommer, Adi; Zimmerman, Gabriel; Soreq, Hermona; Friedman, Alon; Bdolah-Abram, Tali; Aroch, Itamar; Shamir, Merav H

    2013-10-01

    Recent studies in animal models have focused on the role of cholinergic elements, mainly acetylcholinesterase (AChE) and the 'readthrough' acetylcholinesterase isoform (AChE-R), in seizures. A prospective double-masked study was conducted to assess the activity of AChE and AChE-R in cerebrospinal fluid (CSF) of 26 dogs post-seizure, 28 dogs with intervertebral disc disease (IVDD) and 16 healthy dogs. AChE was also measured in the serum in the post-seizure and IVDD groups. The results showed no significant differences in CSF AChE among the three groups. AChE-R was not detected in any dog and AChE in the serum was similar between groups. This preliminary study provides new information on AChE and AChE-R in the CSF and sera of dogs following naturally-occurring seizures.

  6. Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature.

    Science.gov (United States)

    Stepurska, K V; Soldatkin, Capital O Cyrillic О; Kucherenko, I S; Arkhypova, V M; Dzyadevych, S V; Soldatkin, A P

    2015-01-07

    This study was aimed at the development of a conductometric biosensor based on acetylcholinesterase considering the feasibility of its application for the inhibitory analysis of various toxicants. In this paper, the optimum conditions for enzyme immobilization on the transducer surface are selected as well as the optimum concentration of substrate for inhibitory analysis. Sensitivity of the developed biosensor to different classes of toxic compounds (organophosphorus pesticides, heavy metal ions, surfactants, aflatoxin, glycoalkaloids) was tested. It is shown that the developed biosensor can be successfully used for the analysis of pesticides and mycotoxins, as well as for determination of total toxicity of the samples. A new method of biosensor analysis of toxic substances of different classes in complex multicomponent aqueous samples is proposed.

  7. Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking.

    Science.gov (United States)

    Imramovsky, Ales; Stepankova, Sarka; Vanco, Jan; Pauk, Karel; Monreal-Ferriz, Juana; Vinsova, Jarmila; Jampilek, Josef

    2012-08-24

    A series of twenty-five novel salicylanilide N-alkylcarbamates were investigated as potential acetylcholinesterase inhibitors. The compounds were tested for their ability to inhibit acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.). Experimental lipophilicity was determined, and the structure-activity relationships are discussed. The mode of binding in the active site of AChE was investigated by molecular docking. All the discussed compounds expressed significantly higher AChE inhibitory activity than rivastigmine and slightly lower than galanthamine. Disubstitution by chlorine in C'(₃,₄) of the aniline ring and the optimal length of hexyl-undecyl alkyl chains in the carbamate moiety provided the most active AChE inhibitors. Monochlorination in C'(₄) exhibited slightly more effective AChE inhibitors than in C'(₃). Generally it can be stated that compounds with higher lipophilicity showed higher inhibition, and the activity of the compounds is strongly dependent on the length of the N-alkyl chain.

  8. Acetylcholinesterase-Inhibiting Activity of Salicylanilide N-Alkylcarbamates and Their Molecular Docking

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2012-08-01

    Full Text Available A series of twenty-five novel salicylanilide N-alkylcarbamates were investigated as potential acetylcholinesterase inhibitors. The compounds were tested for their ability to inhibit acetylcholinesterase (AChE from electric eel (Electrophorus electricus L.. Experimental lipophilicity was determined, and the structure-activity relationships are discussed. The mode of binding in the active site of AChE was investigated by molecular docking. All the discussed compounds expressed significantly higher AChE inhibitory activity than rivastigmine and slightly lower than galanthamine. Disubstitution by chlorine in C'(3,4 of the aniline ring and the optimal length of hexyl-undecyl alkyl chains in the carbamate moiety provided the most active AChE inhibitors. Monochlorination in C'(4 exhibited slightly more effective AChE inhibitors than in C'(3. Generally it can be stated that compounds with higher lipophilicity showed higher inhibition, and the activity of the compounds is strongly dependent on the length of the N-alkyl chain.

  9. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal.

    Science.gov (United States)

    Ferreira, A; Proença, C; Serralheiro, M L M; Araújo, M E M

    2006-11-03

    Essential oil, ethanolic extract and decoction of 10 plant species from interior Portugal were analyzed for their activity towards acetylcholinesterase (AChE) enzyme and their antioxidant activity. Of these, Melissa officinalis, Paronychia argentea, Sanguisorba minor, Hypericum undulatum and Malva silvestris are used in herbal medicine, Laurus nobilis and Mentha suaveolens as condiments, and Salvia officinalis, Lavandula angustifolia and Lavandula pedunculata also as aromatics. Melissa officinalis and Mentha suaveolens showed AChE inhibitory capacity higher then 50% in the essential oil fraction. Laurus nobilis, Hypericum undulatum, and Sanguisorba minor showed a high inhibition value of AChE in the ethanolic fraction, 64% (1 mg ml(-1)) 68% (0.5 mg ml(-1)), and 78% (1 mg ml(-1)), respectively. Higher values of AChE inhibitory activity were found using decoctions of Lavandula pedunculata, Mentha suaveolens and Hypericum undulatum, 68, 69 and 82% (at a concentration of 5mg dry plant ml(-1) of assay), respectively. The free radical scavenger activity was higher for the polar extracts. In the water extracts most of the plants showed values around 90%. When antioxidant activity was measured with the beta-carotene-linoleic acid assay high activity (65-95%) was also found in the water extracts. Hypericum undulatum, Melissa officinalis and Laurus nobilis showed both high AChE inhibitory capacity and antioxidant activity.

  10. Synthesis and Acetylcholinesterase Inhibitory Evaluation of 4-(1,3-Dioxoisoindolin-2-yl)-N-Phenyl Benzamide Derivatives as Potential Anti-Alzheimer Agents

    Science.gov (United States)

    Mohammadi-Farani, Ahmad; Soltani Darbandi, Samira; Aliabadi, Alireza

    2016-01-01

    Alzheimer᾽s disease is characterized by cognitive deficits, impaired long-term potentiation of learning and memory. A progressive reduction in cholinergic neurons in some areas of the brain such as cortex and hippocampus is related to the deficits in memory and cognitive function in Alzheimer’s disease (AD). In the current project a new series of phthalimide derivatives were synthesized. Phthalic anhydride was reacted with 4-aminobenzoic acid in the presence of triethylamine under reflux condition. Then, the obtained acidic derivative was utilized for preparation of final compounds via an amidation reaction through a carbodiimde coupling reaction. Anti-acetylcholinesterase activity of synthesized derivatives was assessed by Ellman᾽s test. Compound 4g in this series exhibited the highest inhibitory potency (IC50 = 1.1 ± 0.25 µM) compared to donepezil (IC50 = 0.41 ± 0.12 µM) as reference drug. PMID:27980565

  11. A mechanism-based 3D-QSAR approach for classification and prediction of acetylcholinesterase inhibitory potency of organophosphate and carbamate analogs

    Science.gov (United States)

    Lee, Sehan; Barron, Mace G.

    2016-04-01

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understanding, there has been no mechanism-based in silico approach for classification and prediction of the inhibitory potency of ether OPs or carbamates. This prompted us to develop a three dimensional prediction framework for OPs, carbamates, and their analogs. Inhibitory structures of a compound that can form the covalent bond were identified through analysis of docked conformations of the compound and its metabolites. Inhibitory potencies of the selected structures were then predicted using a previously developed three dimensional quantitative structure-active relationship. This approach was validated with a large number of structurally diverse OP and carbamate compounds encompassing widely used insecticides and structural analogs including OP flame retardants and thio- and dithiocarbamate pesticides. The modeling revealed that: (1) in addition to classical OP metabolic activation, the toxicity of carbamate compounds can be dependent on biotransformation, (2) OP and carbamate analogs such as OP flame retardants and thiocarbamate herbicides can act as AChEI, (3) hydrogen bonds at the oxyanion hole is critical for AChE inhibition through the covalent bond, and (4) π-π interaction with Trp86 is necessary for strong inhibition of AChE. Our combined computation approach provided detailed understanding of the mechanism of action of OP and carbamate compounds and may be useful for screening a diversity of chemical structures for AChE inhibitory potency.

  12. ACETYLCHOLINESTERASE INHIBITION ACTIVITY OF SOME QUINOLINYL SUBSTITUTED TRIAZOLOTHIADIAZOLE DERIVATIVES.

    Science.gov (United States)

    Rafiq, Muhammad; Abbas, Qamar; Saleem, Muhammad; Hanif, Muhammad; Lee, Ki Hwan; Seo, Sung-Yum

    2015-01-01

    A series of aralkanoic acids was converted into aralkanoic acid hydrazides through their esters formation. The aralkanoic acid hydrazides upon treatment with carbon disulfide and methanolic potassium hydroxide yielded potassium dithiocarbazinate salts, which on refluxing with aqueous hydrazine hydrate yielded 5-aralkyl-4-amino-3-mercapto-1,2,4-triazoles. The target compounds, 3-aralkyl-6-(substitutedquinolinyl)[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles, were synthesized by condensing various quinolinyl substituted carboxylic acids with 5-aralkyl-4-amino-3-mercapto-1,2,4-triazoles in phosphorus oxychloride. The structures of the newly synthesized triazolothiadiazoles were characterized by IR, 1H NMR, 13C NMR, and elemental analysis studies. The structure of one of the 5-aralkyl-4-amino-3-mercapto-1,2,4-triazoles was unambiguously deduced by single crystal X-ray diffraction analysis. All the synthesized compounds were screened for their acetylcholinesterase inhibition activities. Four of the triazolothiadiazoles exhibited excellent acetylcholinesterase inhibition activities as compared to the reference inhibitor.

  13. Finding of polysaccharide-peptide complexes in Cordyceps militaris and evaluation of its acetylcholinesterase inhibition activity

    Directory of Open Access Journals (Sweden)

    Cheng-Han Tsai

    2015-03-01

    Full Text Available Acetylcholinesterase (AChE inhibition enhances learning and cognitive ability for treatment of Alzheimer's disease. Polysaccharide–peptide complexes were identified in Cordyceps militaris (CPSPs and characterized for their AChE inhibitory properties. Three polymers (CPSP-F1, -F2, and -F3 were extracted and separated by ultrasound-assisted extraction and diethylaminoethanol (DEAE–Sepharose CL-6B column chromatography. Polysaccharide–peptide complexes were identified by DEAE–Sepharose CL-6B column chromatography and high-performance gel-filtration chromatography, Fourier transform infrared spectra, amino sugar composition analysis, and β-elimination reaction to identify polysaccharide–peptide bond categories. Separation of CPSP can increase AChE inhibitory activity from the crude polysaccharide of C. militaris. CPSP-F1 and CPSP-F2 exhibited half maximal inhibitory concentrations of 32.2 ± 0.2 mg/mL and 5.3 ± 0.0 mg/mL. Thus, we identified polysaccharide–peptide complexes from C. militaris and suggest CPSP has great potential in AChE inhibition bioassay.

  14. Sub-acute Toxicity of Carbofuran on Acetylcholinesterase Activity in the Freshwater Catfish, Clarias batrachus

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The inhibition of acetylcholinesterase (ACHE) activity has been widely used as a biomarker in an animal exposed to the pesticides. However, the interaction of extensively used organocarbamate insecticide, carbofuran, with the nervous system of the aquatic organisms is not properly studied. AChE is a key enzyme which catalyses the hydrolysis of acetylcholine, a neurotransmitter at the neuromuscular junctions, and thus regulates the neurotransmission system. In the present study, we have evaluated the impact of sub-acute concentrations (0.01 and 0.02 mg/L i.e. 1/20th and 1/10th of LC50) of carbofuran on the activity of acetylcholinesterase,from different tissues of Clarias batrachus, a fresh water teleost, after 96 hr and 15 days exposure periods in vivo. The carbofuran significantly reduced the activity of AChE in different tissues of C. batrachus at both concentrations and periods of exposure. The greater inhibition of AChE activities were recorded in fish tissues at higher carbofuran concentration (0.02 mg/L) after longer (15days) treatment period. The inhibition of AChE activity in all fish tissues tested was dependent on pesticide concentration and the duration of treatment. AChE from the tissues of C. batrachus was found to be a true cholinesterase as it was completely inhibited by the small concentration (nM) of eserine as tested in vitro. It was found that carbofuran at very low concentration exerted significant inhibitory effect on AChE activity in fish tissues.

  15. Plant-derived acetylcholinesterase inhibitory alkaloids for the treatment of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Dall'Acqua S

    2013-01-01

    Full Text Available Stefano Dall'AcquaDepartment of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, ItalyAbstract: The inhibition of acetylcholinesterase (AChE has been one of the most used strategies for the treatment of Alzheimer's disease (AD. The AChE inhibitors (AChE-I produce not only short-term symptomatic effects, but can also play a role in other pathological mechanisms of the disease (eg, formation of amyloid-β plaques, which has renewed interest in the discovery of such inhibitors. Four of the five currently prescribed treatments for AD are AChE-I. Natural alkaloids such as galantamine or alkaloid-related synthetic compounds (such as rivastigmine are considered beneficial for patients with mild-to-moderate AD. However, there is a need for the discovery of more effective compounds and for this reason, plants can still be a potential source of new AChE-I. Findings and advances in knowledge about natural alkaloids as potential new drugs acting as AChE-I will be summarized in this paper.Keywords: quinolizidine, steroidal, indole, isoquinoline

  16. Synthesis, Characterization, Acetylcholinesterase Inhibition, Molecular Modeling and Antioxidant Activities of Some Novel Schiff Bases Derived from 1-(2-Ketoiminoethylpiperazines

    Directory of Open Access Journals (Sweden)

    A. Hamid A. Hadi

    2011-11-01

    Full Text Available Some novel Schiff bases derived from 1-(2-ketoiminoethylpiperazines were synthesized and characterized by mass spectroscopy, FTIR, UV-Visible, 1H and 13C-NMR. The compounds were tested for inhibitory activities on human acetylcholinesterase (hAChE, antioxidant activities, acute oral toxicity and further studied by molecular modeling techniques. The study identified the compound (DHP to have the highest activity among the series in hAChE inhibition and DPPH assay while the compound LP revealed the highest activity in the FRAP assay. The hAChE inhibitory activity of DHP is comparable with that of propidium, a known AChE inhibitor. This high activity of DHP was checked by molecular modeling which showed that DHP could not be considered as a bivalent ligand due to its incapability to occupy the esteratic site (ES region of the 3D crystal structure of hAChE. The antioxidant study unveiled varying results in 1,1-diphenyl-1-picrylhydrazyl (DPPH and ferric reducing antioxidant power (FRAP assays. This indicates mechanistic variations of the compounds in the two assays. The potential therapeutic applications and safety of these compounds were suggested for use as human acetylcholinesterase inhibitors and antioxidants.

  17. EEG SPECTRA, BEHAVIORAL STATES AND MOTOR ACTIVITY IN RATS EXPOSED TO ACETYLCHOLINESTERASE INHIBITOR CHLORPYRIFOS.

    Science.gov (United States)

    Exposure to organophosphate pesticides (OP) has been associated with sleep disorders: insomnia and ?excessive dreaming'. However neuronal mechanisms of these effects have not been analyzed. OP inhibit acetylcholinesterase activity leading to a hyperativity of the brain cholin...

  18. Phenolic Lipids Affect the Activity and Conformation of Acetylcholinesterase from Electrophorus electricus (Electric eel)

    OpenAIRE

    Maria Stasiuk; Alicja Janiszewska; Arkadiusz Kozubek

    2014-01-01

    Phenolic lipids were isolated from rye grains, cashew nutshell liquid (CNSL) from Anacardium occidentale, and fruit bodies of Merrulius tremellosus, and their effects on the electric eel acetylcholinesterase activity and conformation were studied. The observed effect distinctly depended on the chemical structure of the phenolic lipids that were available for interaction with the enzyme. All of the tested compounds reduced the activity of acetylcholinesterase. The degree of inhibition varied, ...

  19. Flavanone glycosides as acetylcholinesterase inhibitors: Computational and experimental evidence

    Directory of Open Access Journals (Sweden)

    C Remya

    2014-01-01

    Full Text Available Acetylcholinesterase hydrolyzes the neurotransmitter called acetylcholine and is crucially involved in the regulation of neurotransmission. One of the observable facts in the neurodegenerative disorders like Alzheimer′s disease is the decrease in the level of acetylcholine. Available drugs that are used for the treatment of Alzheimer′s disease are primarily acetylcholinesterase inhibitors with multiple activities. They maintain the level of acetylcholine in the brain by inhibiting the acetylcholinesterase function. Hence acetylcholinesterase inhibitors can be used as lead compounds for the development of drugs against AD. In the present study, the binding potential of four flavanone glycosides such as naringin, hesperidin, poncirin and sakuranin against acetylcholinesterase was analysed by using the method of molecular modeling and docking. The activity of the top scored compound, naringin was further investigated by enzyme inhibition studies and its inhibitory concentration (IC 50 towards acetylcholinesterase was also determined.

  20. Flavanone glycosides as acetylcholinesterase inhibitors: computational and experimental evidence.

    Science.gov (United States)

    Remya, C; Dileep, K V; Tintu, I; Variyar, E J; Sadasivan, C

    2014-01-01

    Acetylcholinesterase hydrolyzes the neurotransmitter called acetylcholine and is crucially involved in the regulation of neurotransmission. One of the observable facts in the neurodegenerative disorders like Alzheimer's disease is the decrease in the level of acetylcholine. Available drugs that are used for the treatment of Alzheimer's disease are primarily acetylcholinesterase inhibitors with multiple activities. They maintain the level of acetylcholine in the brain by inhibiting the acetylcholinesterase function. Hence acetylcholinesterase inhibitors can be used as lead compounds for the development of drugs against AD. In the present study, the binding potential of four flavanone glycosides such as naringin, hesperidin, poncirin and sakuranin against acetylcholinesterase was analysed by using the method of molecular modeling and docking. The activity of the top scored compound, naringin was further investigated by enzyme inhibition studies and its inhibitory concentration (IC50) towards acetylcholinesterase was also determined.

  1. Assay of Acetylcholinesterase Activity and Electrochemical Determination of Fenthion in Oil-in-water Emulsion

    Institute of Scientific and Technical Information of China (English)

    Sun Kai; He JingJing; Miao YuQing

    2009-01-01

    @@ Organophosphates (OPs) have been widely used as pesticides,insecticides or even chemical warfare agents.Acetylcholinesterase (ACHE) inhibition has been employed to develop verious assay methods for detection of pesticides with the advantages of low cost,simple procedure and quick assay time.The study of acetylcholinesterase (ACHE) activity and OPs inhibition in the solution containing organic solvent is extremely important owing to poor solubility of Ops in water and a higher solubility in organic solvents.

  2. Acute administration of fenproporex increased acetylcholinesterase activity in brain of young rats

    Directory of Open Access Journals (Sweden)

    BRENA P. TEODORAK

    2015-08-01

    Full Text Available Fenproporex is the second most commonly amphetamine-based anorectic consumed worldwide; this drug is rapidly converted into amphetamine, in vivo, and acts by increasing dopamine levels in the synaptic cleft. Considering that fenproporex effects on the central nervous system are still poorly known and that acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine, the present study investigated the effects of acute administration of fenproporex on acetylcholinesterase activity in brain of young rats. Young male Wistar rats received a single injection of fenproporex (6.25, 12.5 or 25mg/kg i.p. or vehicle (2% Tween 80. Two hours after the injection, the rats were killed by decapitation and the brain was removed for evaluation of acetylcholinesterase activity. Results showed that fenproporex administration increased acetylcholinesterase activity in the hippocampus and posterior cortex, whereas in the prefrontal cortex, striatum and cerebellum the enzyme activity was not altered. In conclusion, in the present study we demonstrated that acute administration of fenproporex exerts an effect in the cholinergic system causing an increase in the activity of acetylcholinesterase in a dose-dependent manner in the hippocampus and posterior cortex. Thus, we suggest that the imbalance in cholinergic homeostasis could be considered as an important pathophysiological mechanism underlying the brain damage observed in patients who use amphetamines such as fenproporex.

  3. Structure-activity approach in the reactivation of tabun-phosphorylated human acetylcholinesterase with bispyridinium para-aldoximes.

    Science.gov (United States)

    Kovarik, Zrinka; Calić, Maja; Sinko, Goran; Bosak, Anita

    2007-06-01

    We investigated interactions of bispyridinium para-aldoximes N,N'-(propano)bis(4-hydroxyiminomethyl) pyridinium bromide (TMB-4), N,N'-(ethano)bis(4-hydroxyiminomethyl)pyridinium methanosulphonate (DMB-4), and N,N'-(methano)bis(4-hydroxyiminomethyl)pyridinium chloride (MMB-4) with human erythrocyte acetylcholinesterase phosphorylated by tabun. We analysed aldoxime conformations to determine the flexibility of aldoxime as an important feature for binding to the acetylcholinesterase active site. Tabun-inhibited human erythrocyte acetylcholinesterase was completely reactivated only by the most flexible bispyridinium aldoxime - TMB-4 with a propylene chain between two rings. Shorter linkers than propylene (methylene or ethylene) as in MMB-4 and DMB-4 did not allow appropriate orientation in the active site, and MMB-4 and DMB-4 were not efficient reactivators of tabun-phosphorylated acetylcholinesterase. Since aldoximes are also reversible inhibitors of native acetylcholinesterase, we determined dissociation constants and their protective index against acetylcholinesterase inactivation by tabun.

  4. Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity

    Science.gov (United States)

    Benfeito, Sofia; Silva, Tiago; Garrido, Jorge; Andrade, Paula B.; Sottomayor, M. J.; Borges, Fernanda; Garrido, E. Manuela

    2014-01-01

    Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode. PMID:24795892

  5. Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Sofia Benfeito

    2014-01-01

    Full Text Available Persistent pesticide transformation products (TPs are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode.

  6. Effects of chlorophenoxy herbicides and their main transformation products on DNA damage and acetylcholinesterase activity.

    Science.gov (United States)

    Benfeito, Sofia; Silva, Tiago; Garrido, Jorge; Andrade, Paula B; Sottomayor, M J; Borges, Fernanda; Garrido, E Manuela

    2014-01-01

    Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode.

  7. BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos.

    Science.gov (United States)

    Jung, Hyun Ah; Karki, Subash; Kim, Ji Hye; Choi, Jae Sue

    2015-06-01

    The aim of the present study was to evaluate the comparative anti-Alzheimer's disease (AD) activities of different parts of Nelumbo nucifera (leaves, de-embryo seeds, embryos, rhizomes, and stamens) in order to determine the selectivity and efficient use of its individual components. Anti-AD activities of different parts of N. nucifera were evaluated via inhibitory activities on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) along with scavenging activity on peroxynitrite (ONOO(-)). Among the evaluated parts of N. nucifera, the embryo extract exhibited significant inhibitory potential against BACE1 and BChE as well as scavenging activity against ONOO(-). Thus, the embryo extract was selected for detailed investigation on anti-AD activity using BACE1- and ChEs-inhibitory assays. Among the different solvent-soluble fractions, the dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and n-butanol (n-BuOH) fractions showed promising ChEs and BACE1 inhibitory activities. Repeated column chromatography of the CH2Cl2, EtOAc and n-BuOH fractions yielded compounds 1-5, which were neferine (1), liensinine (2), vitexin (3), quercetin 3-O-glucoside (4) and northalifoline (5). Compound 2 exhibited potent inhibitory activities on BACE1, AChE, and BChE with respective IC50 values of 6.37 ± 0.13, 0.34 ± 0.02, and 9.96 ± 0.47 µM. Likewise, compound 1 showed potent inhibitory activities on BACE1, AChE, and BChE with IC50 values of 28.51 ± 4.04, 14.19 ± 1.46, and 37.18 ± 0.59 µM, respectively; the IC50 values of 3 were 19.25 ± 3.03, 16.62 ± 1.43, and 11.53 ± 2.21 µM, respectively. In conclusion, we identified potent ChEs- and BACE1-inhibitory activities of N. nucifera as well as its isolated constituents, which may be further explored to develop therapeutic and preventive agents for AD and oxidative stress related diseases.

  8. Phenolic lipids affect the activity and conformation of acetylcholinesterase from Electrophorus electricus (Electric eel).

    Science.gov (United States)

    Stasiuk, Maria; Janiszewska, Alicja; Kozubek, Arkadiusz

    2014-04-30

    Phenolic lipids were isolated from rye grains, cashew nutshell liquid (CNSL) from Anacardium occidentale, and fruit bodies of Merrulius tremellosus, and their effects on the electric eel acetylcholinesterase activity and conformation were studied. The observed effect distinctly depended on the chemical structure of the phenolic lipids that were available for interaction with the enzyme. All of the tested compounds reduced the activity of acetylcholinesterase. The degree of inhibition varied, showing a correlation with changes in the conformation of the enzyme tested by the intrinsic fluorescence of the Trp residues of the protein.

  9. Phenolic Lipids Affect the Activity and Conformation of Acetylcholinesterase from Electrophorus electricus (Electric eel

    Directory of Open Access Journals (Sweden)

    Maria Stasiuk

    2014-04-01

    Full Text Available Phenolic lipids were isolated from rye grains, cashew nutshell liquid (CNSL from Anacardium occidentale, and fruit bodies of Merrulius tremellosus, and their effects on the electric eel acetylcholinesterase activity and conformation were studied. The observed effect distinctly depended on the chemical structure of the phenolic lipids that were available for interaction with the enzyme. All of the tested compounds reduced the activity of acetylcholinesterase. The degree of inhibition varied, showing a correlation with changes in the conformation of the enzyme tested by the intrinsic fluorescence of the Trp residues of the protein.

  10. Phenolic Lipids Affect the Activity and Conformation of Acetylcholinesterase from Electrophorus electricus (Electric eel)

    Science.gov (United States)

    Stasiuk, Maria; Janiszewska, Alicja; Kozubek, Arkadiusz

    2014-01-01

    Phenolic lipids were isolated from rye grains, cashew nutshell liquid (CNSL) from Anacardium occidentale, and fruit bodies of Merrulius tremellosus, and their effects on the electric eel acetylcholinesterase activity and conformation were studied. The observed effect distinctly depended on the chemical structure of the phenolic lipids that were available for interaction with the enzyme. All of the tested compounds reduced the activity of acetylcholinesterase. The degree of inhibition varied, showing a correlation with changes in the conformation of the enzyme tested by the intrinsic fluorescence of the Trp residues of the protein. PMID:24787269

  11. Large litters rearing changes brain expression of GLUT3 and acetylcholinesterase activity in adult rats.

    Science.gov (United States)

    de Vasconcelos, Vivian Sarmento; Machado, Sonia Salgueiro; Guedes, Rubem Carlos Araújo; Bandeira, Bruno Carneiro; Ximenes-da-Silva, Adriana

    2012-09-06

    Effects of malnutrition in the brain are more pronounced during the period of growth spurt, corresponding to the suckling in rodents. Neuronal glucose transporter GLUT3 expression and acetylcholinesterase activity were studied in the brain of adult young rats (84 days old) suckled in litters formed by 6 (control group) or 12 pups (malnourished group). In the adult rats, brain weight, blood glucose levels and GLUT3 expression were decreased in malnourished group (5%, 18%, 58%, respectively, Pmalnutrition during suckling period decreased GLUT3 expression and increased acetylcholinesterase activity in the rat brain that could contribute to possible cognitive deficits and changes of brain metabolic activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Synthesis, characterization, acetylcholinesterase inhibition, molecular modeling and antioxidant activities of some novel Schiff bases derived from 1-(2-ketoiminoethyl)piperazines.

    Science.gov (United States)

    Salga, Saleh M; Ali, Hapipah M; Abdullah, Mahmood A; Abdelwahab, Siddig I; Wai, Lam Kok; Buckle, Michael J C; Sukumaran, Sri Devi; Hadi, A Hamid A

    2011-11-07

    Some novel Schiff bases derived from 1-(2-ketoiminoethyl)piperazines were synthesized and characterized by mass spectroscopy, FTIR, UV-Visible, 1H and 13C-NMR. The compounds were tested for inhibitory activities on human acetylcholinesterase (hAChE), antioxidant activities, acute oral toxicity and further studied by molecular modeling techniques. The study identified the compound (DHP) to have the highest activity among the series in hAChE inhibition and DPPH assay while the compound LP revealed the highest activity in the FRAP assay. The hAChE inhibitory activity of DHP is comparable with that of propidium, a known AChE inhibitor. This high activity of DHP was checked by molecular modeling which showed that DHP could not be considered as a bivalent ligand due to its incapability to occupy the esteratic site (ES) region of the 3D crystal structure of hAChE. The antioxidant study unveiled varying results in 1,1-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. This indicates mechanistic variations of the compounds in the two assays. The potential therapeutic applications and safety of these compounds were suggested for use as human acetylcholinesterase inhibitors and antioxidants.

  13. Determination of Acetylcholinesterase activities in marine gastropod (Morula granulata) as a biomarker of neurotoxic contaminants along the Goan coast.

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Tegur, P.M.; Jana, S.; Rao, P.V.S.S.D.P.

    Acetylcholinesterase (AChE) is an enzyme that degrades the neurotransmitter acetylcholine, producing choline and acetate. group. It is mainly found at neuromuscular junctions and cholinergic synapses in the central nervous system, where its activity...

  14. Methyl jasmonate enhances memory performance through inhibition of oxidative stress and acetylcholinesterase activity in mice.

    Science.gov (United States)

    Eduviere, Anthony T; Umukoro, S; Aderibigbe, Adegbuyi O; Ajayi, Abayomi M; Adewole, Folashade A

    2015-07-01

    Current research effort focuses on the development of safer natural compounds with multipronged mechanisms of action that could be used to ameliorate memory deficits in patients with Alzheimer's disease, as cure for the disease still remains elusive. In this study, we evaluated the effect of methyl jasmonate (MJ), a naturally occurring bioactive compound on memory, acetylcholinesterase activity and biomarkers of oxidative stress in mice. Male Swiss mice were treated with intraperitoneal injection of MJ (10-40 mg/kg) alone or in combination with scopolamine (3mg/kg) once daily for 7 days. Thirty minutes after the last treatment, memory functions were assessed using Y-maze and object recognition tests. Thereafter, acetylcholinesterase activity and levels of biomarkers of oxidative stress were assessed in mice brains using standard biochemical procedures. MJ significantly enhanced memory performance and reversed scopolamine-induced cognitive impairment in mice. MJ demonstrated significant inhibition of acetylcholinesterase activity suggesting increased cholinergic neurotransmission. It further decreased malondialdehyde concentrations in mouse brain indicating antioxidant activity. Moreover, MJ significantly increased glutathione levels and activity of antioxidant enzymes (catalase and superoxide dismutase) in mice brains. The increased oxidative stress; evidenced by elevated levels of malondialdehyde and decreased antioxidant defense systems in scopolamine-treated mice was attenuated by MJ. The results of this study suggest that MJ may be useful in conditions associated with memory dysfunctions or age-related cognitive decline. The positive effect of MJ on memory may be related to inhibition of oxidative stress and enhancement of cholinergic neurotransmission through inhibition of acetylcholinesterase activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Intracerebroventricular D-galactose administration impairs memory and alters activity and expression of acetylcholinesterase in the rat.

    Science.gov (United States)

    Rodrigues, André Felipe; Biasibetti, Helena; Zanotto, Bruna Stela; Sanches, Eduardo Farias; Pierozan, Paula; Schmitz, Felipe; Parisi, Mariana Migliorini; Barbé-Tuana, Florencia; Netto, Carlos Alexandre; Wyse, Angela T S

    2016-05-01

    Tissue accumulation of galactose is a hallmark in classical galactosemia. Cognitive deficit is a symptom of this disease which is poorly understood. The aim of this study was to investigate the effects of intracerebroventricular administration of galactose on memory (inhibitory avoidance and novel object recognition tasks) of adult rats. We also investigated the effects of galactose on acetylcholinesterase (AChE) activity, immunocontent and gene expression in hippocampus and cerebral cortex. Wistar rats received a single injection of galactose (4mM) or saline (control). For behavioral parameters, galactose was injected 1h or 24h previously to the testing. For biochemical assessment, animals were decapitated 1h, 3h or 24h after galactose or saline injection; hippocampus and cerebral cortex were dissected. Results showed that galactose impairs the memory formation process in aversive memory (inhibitory avoidance task) and recognition memory (novel object recognition task) in rats. The activity of AChE was increased, whereas the gene expression of this enzyme was decreased in hippocampus, but not in cerebral cortex. These findings suggest that these changes in AChE may, at least in part, to lead to memory impairment caused by galactose. Taken together, our results can help understand the etiopathology of classical galactosemia.

  16. Design, synthesis and structure-activity relationships of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer's disease.

    Science.gov (United States)

    Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi

    2003-05-01

    We have designed and synthesized a dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT) as a novel class of treatment drugs for Alzheimer's disease on the basis of a hypothetical model of the AChE active site. Dual inhibitions of AChE and SERT would bring about greater therapeutic effects than AChE inhibition alone and avoid adverse peripheral effects caused by excessive AChE inhibition. Compound (S)-6j exhibited potent inhibitory activities against AChE (IC(50)=101 nM) and SERT (IC(50)=42 nM). Furthermore, (S)-6j showed inhibitory activities of both AChE and SERT in mice brain following oral administration.

  17. Acetylcholinesterase activity in the brain of dystonia musculorum (Dst(dt-J)) mutant mice.

    Science.gov (United States)

    Clément, C; Lalonde, R; Strazielle, C

    2012-01-01

    The dystonia musculorum (Dst(dt-J)) mutant mouse suffers from severe motor coordination deficits, characterized, among various symptoms, by a spastic ataxia and dystonic movements, indicating central defects in motor structures in addition to dystrophy of peripheral sensory tracts and partial degeneration of spinocerebellar tracts. Neurochemical alterations, notably in dopaminergic and noradrenergic systems, were previously observed in basal ganglia and cerebellum. A quantitative histochemical cartography of brain acetylcholinesterase activity in Dst(dt-J) mutants, in comparison with controls, revealed increases in the neostriatum, the habenula-interpeduncular pathway, the cholinergic pedunculopontine nucleus and its target structures, the thalamus, major regions of the basal ganglia, such as substantia nigra, ventral tegmental area, globus pallidum, and subthalamic nucleus, as well as in associated extrapyramidal regions, such as red nucleus, brainstem reticular formation, and superior colliculus. These acetylcholinesterase changes may play a role in motor deficits, particularly the dystonic symptomatology observed in the mutation.

  18. Cholinesterase inhibitory activity and structure elucidation of a new phytol derivative and a new cinnamic acid ester from Pycnanthus angolensis

    Directory of Open Access Journals (Sweden)

    Taiwo O. Elufioye

    Full Text Available ABSTRACT The leaves of Pycnanthus angolensis (Welw. Warb., Myristicaceae, are used as memory enhancer and anti-ageing in Nigerian ethnomedicine. This study aimed at evaluating the cholinesterase inhibitory property as well as isolates the bioactive compounds from the plant. The acetylcholinesterase and butyrylcholinesterase inhibitory potentials of extracts, fractions, and isolated compounds were evaluated by colorimetric and TLC bioautographic assay techniques. The extract inhibited both enzymes with activity increasing with purification, ethyl acetate fraction being most active fraction at 65.66 ± 1.06% and 49.38 ± 1.66% against acetylcholinesterase and butyrylcholinesterase, respectively while the supernatant had 77.44 ± 1.18 inhibition against acetylcholinesterase. Two new bioactive compounds, (2E, 18E-3,7,11,15,18-pentamethylhenicosa-2,18-dien-1-ol (named eluptol and [12-(4-hydroxy-3-methyl-oxo-cyclopenta-1,3-dien-1yl-11-methyl-dodecyl](E-3-(3,4-dimethylphenylprop-2-enoate (named omifoate A were isolated from the plant with IC50 of 22.26 µg/ml (AChE, 34.61 µg/ml (BuChE and 6.51 µg/ml (AChE, 9.07 µg/ml (BuChE respectively. The results showed that the plant has cholinesterase inhibitory activity which might be responsible for its memory enhancing action, thus justifying its inclusion in traditional memory enhancing preparations

  19. Synthesis of Novel Chalcones as Acetylcholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Thanh-Dao Tran

    2016-07-01

    Full Text Available A new series of benzylaminochalcone derivatives with different substituents on ring B were synthesized and evaluated as inhibitors of acetylcholinesterase. The study is aimed at identification of novel benzylaminochalcones capable of blocking acetylcholinesterase activity for further development of an approach to Alzheimer’s disease treatment. These compounds were produced in moderate to good yields via Claisen-Schmidt condensation and subjected to an in vitro acetylcholinesterase inhibition assay, using Ellman’s method. The in silico docking procedure was also employed to identify molecular interactions between the chalcone compounds and the enzyme. Compounds with ring B bearing pyridin-4-yl, 4-nitrophenyl, 4-chlorophenyl and 3,4-dimethoxyphenyl moieties were discovered to exhibit significant inhibitory activities against acetylcholinesterase, with IC50 values ranging from 23 to 39 µM. The molecular modeling studies are consistent with the hypothesis that benzylaminochalcones could exert their effects as dual-binding-site acetylcholinesterase inhibitors, which might simultaneously enhance cholinergic neurotransmission and inhibit β-amyloid aggregation through binding to both catalytic and peripheral sites of the enzyme. These derivatives could be further developed to provide novel leads for the discovery of new anti-Alzheimer drugs in the future.

  20. Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes)

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, M.L. [Facultad de Ciencias Exactas, Fisicas y Naturales, Catedra Diversidad Animal II, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, 5000 Cordoba (Argentina); Durando, P.E. [Facultad de Ciencias Exactas, Fisicas y Naturales, Departamento de Biologia, Catedra de Fisiologia Animal, Universidad Nacional de San Juan, Complejo ' Islas Malvinas' , Av. Jose I. de la Roza y Meglioli, Rivadavia, San Juan (Argentina); Nores, M.L. [Facultad de Ciencias Medicas, Universidad Nacional de Cordoba-CONICET, Ciudad Universitaria, Cordoba (Argentina); Diaz, M.P. [Facultad de Ciencias Medicas, Catedra de Estadistica y Bioestadistica, Escuela de Nutricion, Universidad Nacional de Cordoba, Pabellon Chile, Ciudad Universitaria, 5000 Cordoba (Argentina); Bistoni, M.A., E-mail: mbistoni@com.uncor.ed [Facultad de Ciencias Exactas, Fisicas y Naturales, Catedra Diversidad Animal II, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, 5000 Cordoba (Argentina); Wunderlin, D.A. [Facultad de Ciencias Quimicas, Dto. Bioquimica Clinica-CIBICI, Universidad Nacional de Cordoba-CONICET, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-05-15

    We assessed changes in spontaneous swimming activity and acetylcholinesterase (AchE) activity of Jenynsia multidentata exposed to Endosulfan (EDS). Females of J. multidentata were exposed to 0.072 and 1.4 mug L{sup -1} EDS. Average speed and movement percentage were recorded during 48 h. We also exposed females to EDS at five concentrations between 0.072 and 1.4 mug L{sup -1} during 24 h, and measured the AchE activity in brain and muscle. At 0.072 mug L{sup -1} EDS swimming motility decreased relative to the control group after 45 h, while at 1.4 mug L{sup -1} EDS swimming motility decreased after 24 h. AchE activity significantly decreased in muscle when J. multidentata were exposed to EDS above 0.072 mug L{sup -1}, while no significant changes were observed in brain. Thus, changes in swimming activity and AchE activity in muscle are good biomarkers of exposure to EDS in J. multidentata. - This work reports changes observed in spontaneous swimming activity and AchE activity of Jenynsia multidentata exposed to sublethal concentrations of Endosulfan.

  1. Brain antioxidant markers, cognitive performance and acetylcholinesterase activity of rats: efficiency of Sonchus asper

    Directory of Open Access Journals (Sweden)

    Khan Rahmat

    2012-05-01

    Full Text Available Abstract Background Sonchus asper (SA is traditionally used as a folk medicine to treat mental disorders in Pakistan. The aim of this study was to investigate the effect of polyphenolic rich methanolic fraction of SA on cognitive performance, brain antioxidant activities and acetylcholinesterase activity in male rats. Methods 30 male Sprague–Dawley rats were equally divided into three groups in this study. Animals of group I (control received saline (vehicle, group II received SA (50 mg/kg body weight (b.w., and group III treated with SA (100 mg/kg b.w., orally in dimethyl sulphoxide (DMSO for 7 days. The effect of SA was checked on rat cognitive performance, brain antioxidatant and acetylcholinesterase activities. Evaluation of learning and memory was assessed by a step-through a passive avoidance test on day 6 after two habituation trials and an initial acquisition trial on day 5. Antioxidant potential was determined by measuring activities of superoxide dismutase (SOD, catalase (CAT, contents of thiobarbituric acid reactive substances (TBARS and reduced glutathione (GSH in whole-brain homogenates. Acetylcholinesterase (AChE activity was determined by the colorimetric method. Results Results showed that 100 mg/kg b.w., SA treated rats exhibited a significant improvement in learning and memory (step-through latency time. SA administration reduced lipid peroxidation products and elevated glutathione levels in the SA100-treated group. Furthermore, salt and detergent soluble AChE activity was significantly decreased in both SA-treated groups. Short-term orally supplementation of SA showed significant cognitive enhancement as well as elevated brain antioxidant enzymes and inhibited AChE activity. Conclusion These findings stress the critical impact of Sonchus asper bioactive components on brain function.

  2. Cholinesterase inhibitory activity and chemical constituents of Stenochlaena palustris fronds at two different stages of maturity

    Directory of Open Access Journals (Sweden)

    Nelson Jeng-Yeou Chear

    2016-04-01

    Full Text Available Stenochlaena palustris fronds are popular as a vegetable in Southeast Asia. The objectives of this study were to evaluate the anticholinesterase properties and phytochemical profiles of the young and mature fronds of this plant. Both types of fronds were found to have selective inhibitory effect against butyrylcholinesterase compared with acetylcholinesterase. However, different sets of compounds were responsible for their activity. In young fronds, an antibutyrylcholinesterase effect was observed in the hexane extract, which was comprised of a variety of aliphatic hydrocarbons, fatty acids, and phytosterols. In the mature fronds, inhibitory activity was observed in the methanol extract, which contained a series of kaempferol glycosides. Our results provided novel information concerning the ability of S. palustris to inhibit cholinesterase and its phytochemical profile. Further research to investigate the potential use of this plant against Alzheimer's disease is warranted, however, young and mature fronds should be distinguished due to their phytochemical differences.

  3. Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa.

    Science.gov (United States)

    Jung, Mankil; Park, Moonso

    2007-09-03

    In a bioassay-guided search for acetylcholinesterase (AChE) inhibitors from 180 medicinal plants, an ethyl acetate extract of whole plants of Agrimonia pilosa ledeb yielded tiliroside (1), 3-methoxy quercetin (2), quercitrin (3) and quercetin (4). We report herein for the first time that all four flavonol compounds showed significant inhibitory effects on AChE, particularly quercetin (4), which showed twice the activity of dehydroevodiamine (DHED).

  4. Acetylcholinesterase Inhibition by Flavonoids from Agrimonia pilosa

    Directory of Open Access Journals (Sweden)

    Moonso Park

    2007-09-01

    Full Text Available In a bioassay-guided search for acetylcholinesterase (AChE inhibitors from 180 medicinal plants, an ethyl acetate extract of whole plants of Agrimonia pilosa ledeb yielded tiliroside (1, 3-methoxy quercetin (2, quercitrin (3 and quercetin (4. We report herein for the first time that all four flavonol compounds showed significant inhibitory effects on AChE, particularly quercetin (4, which showed twice the activity of dehydroevodiamine (DHED.

  5. Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases.

    Science.gov (United States)

    Abou-Taleb, Hamdy K; Mohamed, Magdy I E; Shawir, Mohamed S; Abdelgaleil, Samir A M

    2016-01-01

    Essential oils from 20 Egyptian plants were obtained by using hydrodistillation. The chemical composition of the isolated oils was identified by gas chromatograph/mass spectrometer. Fumigant and contact toxicities of the essential oils were evaluated against the adults of Tribolium castaneum. In fumigation assays, the oil of Origanum vulgare (LC50 = 9.97 mg/L air) displayed the highest toxicity towards the adults of T. castaneum. In contact assays, the oils of Artemisia monosperma (LC50 = 0.07 mg/cm(2)) and O. vulgare (LC50 = 0.07 mg/cm(2)) were the most potent toxicants against the adults of T. castaneum. Biochemical studies showed that the tested oils caused pronounced inhibition of acetylcholinesterase (AChE) and adenosine triphosphatases (ATPases) isolated from the larvae of T. castaneum. The oil Cupressus macrocarpa (IC50 = 12.3 mg/L) was the most potent inhibitor of AChE, while the oil of Calistemon viminals (IC50 = 4.4 mg/L) was the most potent inhibitor of ATPases.

  6. Structure-activity relationship for the reactivators of acetylcholinesterase inhibited by nerve agent VX.

    Science.gov (United States)

    Kuca, Kamil; Musilek, Kamil; Jun, Daniel; Karasova, Jana; Soukup, Ondrej; Pejchal, Jaroslav; Hrabinova, Martina

    2013-08-01

    Nerve agents such as sarin, VX and tabun are organophosphorus compounds able to inhibit an enzyme acetylcholinesterase (AChE). AChE reactivators and anticholinergics are generally used as antidotes in the case of intoxication with these agents. None from the known AChE reactivators is able to reactivate AChE inhibited by all kinds of nerve agents. In this work, reactivation potency of seventeen structurally different AChE reactivators was tested in vitro and subsequently, relationship between their chemical structure and biological activity was outlined. VX was chosen as appropriate member of the nerve agent family.

  7. THE EFFECTS OF OXIMES IN THE ASSAY OF ACETYLCHOLINESTERASE ACTIVITY IN LYSED ERYTHROCYTES IN VITRO

    Directory of Open Access Journals (Sweden)

    M. Abdollahi.

    1997-06-01

    Full Text Available Organophosphorus compounds are known to inhibit the esteratic site of acetylcholinesterase by phosphorylation. The phosphorylated esteratic site of acetylcholinesterase undergoes hydrolytic regeneration at a slow or negligible rate. Nucleophilic agents such as hydroxytamine, hydroxamic acids, and oximes reactivate the enzyme more erapidfy than does spontaneous hydrolysis. The red cell cholinesterose activity was assayed using dithio bis-2-nitrobenzoic acid (DTNB commonly known as Ellman's reagent. The principle of this assay method is the rate of hydrolysis of acetylthiocholine (substrate by a red celt suspension. Thiocholine that is produced, forms a yellow complex, when EUman's reagent (DTNB is used in the assay. This was tested in vitro in lysed erythrocyte samples of 35 healthy persons who had no known exposure to cholinesterose inhibitors, after the observation of immediate increase in absorption of light at 440 nm. All of data were statistically analyzed using one-way ANOVA and student t-test. A value of p<0.01 was considered. Results of this study show an increased absorbance in 440 nm, for pretreated samples with pratidoxime. This was observed by doses of (0.1, 0.5, 1,2 mmol, p<0.01. It was also a good dose dependent increase in absorbance at 440 nm for pralidoxime, (r=0.940, p<0.01. Also there is a significant increase in absorbance at 440 nm for samples pretreated by obidoxime at doses of (0.1, 0.5, 1,2 mmol. There is also a good correlation between absorbance at 440 nm and variou doses of obidoxime (r=0.946 , p<0.01. It is concluded that oximes can hydrofyzes the substrate, which then would be a source of error in determination of acetylcholinesterase activity and must be token into account.

  8. Oxidative stress biomarkers and acetylcholinesterase activity in human erythrocytes exposed to clomazone (in vitro).

    Science.gov (United States)

    Santi, Adriana; Menezes, Charlene; Duarte, Marta Maria F; Leitemperger, Jossiele; Lópes, Thais; Loro, Vania L

    2011-09-01

    The aim of this study was to investigate the effect of clomazone herbicide on oxidative stress biomarkers and acetylcholinesterase activity in human erythrocytes in in vitro conditions. The activity of catalase (CAT), superoxide dismutase (SOD) and acetylcholinesterase (AChE), as well as the levels of thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) were measured in human erythrocytes exposed (in vitro) to clomazone at varying concentrations in the range of 0, 100, 250 and 500 µg/L for 1 h at 37 °C.TBARS levels were significantly higher in erythrocytes incubated with clomazone at 100, 250 and 500 µg/L. However, erythrocyte CAT and AChE activities were decreased at all concentrations tested. SOD activity was increased only at 100 µg/L of clomazone. GSH levels did not change with clomazone exposure. These results clearly showed clomazone to induce oxidative stress and AChE inhibition in human erythrocytes (in vitro). We, thus, suggest a possible role of ROS on toxicity mechanism induced by clomazone in humans.

  9. Effects of immature cashew nut-shell liquid (Anacardium occidentale) against oxidative damage in Saccharomyces cerevisiae and inhibition of acetylcholinesterase activity.

    Science.gov (United States)

    De Lima, S G; Feitosa, C M; Citó, A M G L; Moita Neto, J M; Lopes, J A D; Leite, A S; Brito, M C; Dantas, S M M; Cavalcante, A A C Melo

    2008-09-09

    The cashew tree (Anacardium occidentale) represents one of the major cheapest sources of non-isoprenoid phenolic lipids, which have a variety of biological properties: they can act as molluscicides, insecticides, fungicides, have anti-termite properties, have medicinal applications, and demonstrate antioxidant activity in vitro. Immature cashew nut-shell liquid (iCNSL) is a unique natural source of unsaturated long-chain phenols. Their use has stimulated much research in order to prepare drug analogues for application in several fields. The objective of the present study was to determine whether iCNSL has antioxidant properties when used in strains of the yeast Saccharomyces cerevisiae and to measure the inhibitory activity of acetylcholinesterase. The constituents were identified using thin-layer chromatography, gas chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and (1)H and (13)C nuclear magnetic resonance. The iCNSL contains anacardic acid, cardanol, cardol, and 2-methyl cardol. Immature cashew nut oil contains triacylglycerols, fatty acids, alkyl-substituted phenols, and cholesterol. The main constituents of the free fatty acids are palmitic (C(16:0)) and oleic acid (C(18:1)). iCNSL has excellent protective activities in strains of S. cerevisiae against oxidative damage induced by hydrogen peroxide and inhibits acetylcholinesterase activity. iCNSL may have an important role in protecting DNA against damage induced by reactive oxygen species, as well as hydrogen peroxide, generated by intra- and extracellular mechanisms.

  10. Interleukin 6 modulates acetylcholinesterase activity of brain neurons; Effet de l`interleukine 6 sur l`activite de l`acetylcholinesterase des neurones centraux

    Energy Technology Data Exchange (ETDEWEB)

    Clarencon, D.; Multon, E.; Galonnier, M.; Estrade, M.; Fournier, C.; Mathieu, J.; Mestries, J.C.; Testylier, G.; Fatome, M.

    1995-12-31

    Classically, radiation injuries results in a peripheral inflammatory process, and we have previously observed an early systemic interleukin 6 (IL-6) release following whole-body irradiation. Besides, we have demonstrated an early decrease of rat or primate brain acetylcholinesterase (AChE) activity a gamma exposure. The object of the present study is to find possible IL-6 systemic effects on the brain AChE activity. We show that, though intravenous (i.v.) or intra-cerebro-ventricular (ICV) injection of IL-6 can induce a drop in rat brain AChE activity, this cytokine induces only a slight decrease of the AChE release in cultured brain cells. (author). 3 refs.

  11. Phytochemicals content, antioxidant activity and acetylcholinesterase inhibition properties of indigenous Garcinia parvifolia fruit.

    Science.gov (United States)

    Ali Hassan, Siti Hawa; Fry, Jeffrey R; Abu Bakar, Mohd Fadzelly

    2013-01-01

    Garcinia parvifolia belongs to the same family as mangosteen (Garcinia mangostana), which is known locally in Sabah as "asam kandis" or cherry mangosteen. The present study was conducted to determine the phytochemicals content (total phenolic, flavonoid, anthocyanin, and carotenoid content) and antioxidant and acetylcholinesterase inhibition activity of the flesh and peel of G. parvifolia. All samples were freeze-dried and extracted using 80% methanol and distilled water. For the 80% methanol extract, the flesh of G. parvifolia displayed higher phenolic and flavonoid contents than the peel, with values of 7.2 ± 0.3 mg gallic acid equivalent (GAE)/g and 5.9 ± 0.1 mg rutin equivalent (RU)/g, respectively. Anthocyanins were detected in the peel part of G. parvifolia but absent in the flesh. The peel of G. parvifolia displayed higher total carotenoid content as compared to the flesh part with the values of 17.0 ± 0.3 and 3.0 ± 0.0 mg β-carotene equivalents (BC)/100 g, respectively. The free-radical scavenging, ferric reducing, and acetylcholinesterase inhibition effect of the flesh were higher as compared to the peel in both extracts. These findings suggested that the edible part of G. parvifolia fruit has a potential as a natural source of antioxidant and anti-Alzheimer's agents.

  12. Phytochemicals Content, Antioxidant Activity and Acetylcholinesterase Inhibition Properties of Indigenous Garcinia parvifolia Fruit

    Directory of Open Access Journals (Sweden)

    Siti Hawa Ali Hassan

    2013-01-01

    Full Text Available Garcinia parvifolia belongs to the same family as mangosteen (Garcinia mangostana, which is known locally in Sabah as “asam kandis” or cherry mangosteen. The present study was conducted to determine the phytochemicals content (total phenolic, flavonoid, anthocyanin, and carotenoid content and antioxidant and acetylcholinesterase inhibition activity of the flesh and peel of G. parvifolia. All samples were freeze-dried and extracted using 80% methanol and distilled water. For the 80% methanol extract, the flesh of G. parvifolia displayed higher phenolic and flavonoid contents than the peel, with values of 7.2±0.3 mg gallic acid equivalent (GAE/g and 5.9±0.1 mg rutin equivalent (RU/g, respectively. Anthocyanins were detected in the peel part of G. parvifolia but absent in the flesh. The peel of G. parvifolia displayed higher total carotenoid content as compared to the flesh part with the values of 17.0±0.3 and 3.0±0.0 mg β-carotene equivalents (BC/100 g, respectively. The free-radical scavenging, ferric reducing, and acetylcholinesterase inhibition effect of the flesh were higher as compared to the peel in both extracts. These findings suggested that the edible part of G. parvifolia fruit has a potential as a natural source of antioxidant and anti-Alzheimer’s agents.

  13. Zephycandidine A, the First Naturally Occurring Imidazo[1,2-f]phenanthridine Alkaloid from Zephyranthes candida, Exhibits Significant Anti-tumor and Anti-acetylcholinesterase Activities

    Science.gov (United States)

    Zhan, Guanqun; Qu, Xiaolan; Liu, Junjun; Tong, Qingyi; Zhou, Junfei; Sun, Bin; Yao, Guangmin

    2016-09-01

    Zephycandidine A (1), the first naturally occurring imidazo[1,2-f]phenanthridine alkaloid, was isolated from Zephyranthes candida (Amaryllidaceae). The structure of 1 was elucidated by spectroscopic analyses and NMR calculation, and a plausible biogenetic pathway for zephycandidine A (1) was proposed. Zephycandidine A (1) exhibited significant cytotoxicity against five cancer cell lines with IC50 values ranging from 1.98 to 7.03 μM with selectivity indices as high as 10 when compared to the normal Beas-2B cell. Further studies suggested that zephycandidine A (1) induces apoptosis in leukemia cells by the activation of caspase-3, upregulation of Bax, downregulation of Bcl-2, and degradation of PARP expression. In addition, zephycandidine A (1) showed acetylcholinesterase (AChE) inhibitory activity, and the docking studies of zephycandidine A (1) and galanthamine (2) with AChE revealed that interactions with W286 and Y337 are necessary.

  14. Synthesis, Docking and Acetylcholinesterase Inhibitory Assessment of 2-(2-(4-Benzylpiperazin-1-YlEthylIsoindoline-1,3-Dione Derivatives with Potential Anti-Alzheimer Effects

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammadi-Farani

    2013-06-01

    Full Text Available Background:Alzheimer’s disease (AD as neurodegenerative disorder, is the most common form of dementia accounting for about 50-60% of the overall cases of dementia among persons over 65 years of age. Low acetylcholine (ACh concentration in hippocampus and cortex areas of the brain is one of the main reasons for this disease. In recent years, acetylcholinesterase (AChE inhibitors like donepezil with prevention of acetylcholine hydrolysis can enhance the duration of action of acetylcholine in synaptic cleft and improve the dementia associated with Alzheimer’s disease.Results:Design, synthesis and assessment of anticholinesterase activity of 2-(2-(4-Benzylpiperazin-1-ylethylisoindoline-1,3-dione derivatives showed prepared compounds can function as potential acetylcholinesterase inhibitor. Among 12 synthesized derivatives, compound 4a with ortho chlorine moiety as electron withdrawing group exhibited the highest potency in these series (IC50 = 0.91 ± 0.045 μM compared to donepezil (IC50 = 0.14 ± 0.03 μM. The results of the enzyme inhibition test (Ellman test showed that electron withdrawing groups like Cl, F and NO2 can render the best effect at position ortho and para of the phenyl ring. But compound 4g with methoxy group at position 3(meta afforded a favorable potency (IC50 = 5.5 ± 0.7 μM. Furthermore, docking study confirmed a same binding mode like donepezil for compound 4a.Conclusions:Synthesized compounds 4a-4l could be proposed as potential anticholinesterase agents.

  15. Synthesis, characterization and cholinesterase enzymes inhibitory activity of 1-[3-methyl-5-(2,6,6-trimethyl-cyclohex-1-enyl)-4,5-dihydro-pyrazol-1-yl]-ethanone

    Science.gov (United States)

    Mehdi, Sayed Hasan; Ghalib, Raza Murad; Hashim, Rokiah; da Silva, M. Fátima C. Guedes; Sulaiman, Othman; Murugaiyah, Vikneswaran; Marimuthu, Mani Maran; Naqvi, Mehnaz

    2013-10-01

    The crystal structure of the title compound, 1-[3-methyl-5-(2,6,6-trimethyl-cyclohex-1-enyl)-4,5-dihydro-pyrazol-1-yl]-ethanone has been determined by single crystal X-ray diffraction. It crystallizes in the orthorhombic space group P212121. The FTIR as well as the 1H and 13C NMR spectra of the compound were also recorded and briefly discussed. Compound 1 demonstrated good inhibitory activity against butyrylcholinesterase (BChE; IC50 = 46.42 μM) comparable to physostigmine. However it showed moderate inhibitory activity against acetylcholinesterase (AChE; IC50 = 157.31 μM). It showed moderate inhibitory activity against acetylcholinesterase and selective inhibitory activity towards butyrylcholinesterase enzyme.

  16. Inhibition effect of graphene oxide on the catalytic activity of acetylcholinesterase enzyme.

    Science.gov (United States)

    Wang, Yong; Gu, Yao; Ni, Yongnian; Kokot, Serge

    2015-11-01

    Variations in the enzyme activity of acetylcholinesterase (AChE) in the presence of the nano-material, graphene oxide (GO), were investigated with the use of molecular spectroscopy UV-visible and fluorescence methods. From these studies, important kinetic parameters of the enzyme were extracted; these were the maximum reaction rate, Vm , and the Michaelis constant, Km . A comparison of these parameters indicated that GO inhibited the catalytic activity of the AChE because of the presence of the AChE-GO complex. The formation of this complex was confirmed with the use of fluorescence data, which was resolved with the use of the MCR-ALS chemometrics method. Furthermore, it was found that the resonance light-scattering (RLS) intensity of AChE changed in the presence of GO. On this basis, it was demonstrated that the relationship between AChE and GO was linear and such models were used for quantitative analyses of GO.

  17. Effects of Green Tea Extract on Learning, Memory, Behavior and Acetylcholinesterase Activity in Young and Old Male Rats

    Science.gov (United States)

    Kaur, Tranum; Pathak, C. M.; Pandhi, P.; Khanduja, K. L.

    2008-01-01

    Objective: To study the effects of green tea extract administration on age-related cognition in young and old male Wistar rats. Methods: Young and old rats were orally administered 0.5% green tea extract for a period of eight weeks and were evaluated by passive avoidance, elevated maze plus paradigm and changes in acetylcholinesterase activity.…

  18. Effects of Green Tea Extract on Learning, Memory, Behavior and Acetylcholinesterase Activity in Young and Old Male Rats

    Science.gov (United States)

    Kaur, Tranum; Pathak, C. M.; Pandhi, P.; Khanduja, K. L.

    2008-01-01

    Objective: To study the effects of green tea extract administration on age-related cognition in young and old male Wistar rats. Methods: Young and old rats were orally administered 0.5% green tea extract for a period of eight weeks and were evaluated by passive avoidance, elevated maze plus paradigm and changes in acetylcholinesterase activity.…

  19. Water Extractable Phytochemicals from Peppers (Capsicum spp. Inhibit Acetylcholinesterase and Butyrylcholinesterase Activities and Prooxidants Induced Lipid Peroxidation in Rat Brain In Vitro

    Directory of Open Access Journals (Sweden)

    Omodesola O. Ogunruku

    2014-01-01

    Full Text Available Background. This study sought to investigate antioxidant capacity of aqueous extracts of two pepper varieties (Capsicum annuum var. accuminatum (SM and Capsicum chinense (RO and their inhibitory effect on acetylcholinesterase and butyrylcholinesterase activities. Methods. The antioxidant capacity of the peppers was evaluated by the 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS radical scavenging ability and ferric reducing antioxidant property. The inhibition of prooxidant induced lipid peroxidation and cholinesterase activities in rat brain homogenates was also evaluated. Results. There was no significant difference (P>0.05 in the total phenol contents of the unripe and ripe Capsicum spp. extracts. Ripe and unripe SM samples had significantly higher (P<0.05 ABTS* scavenging ability than RO samples, while the ripe fruits had significantly higher (P<0.05 ferric reducing properties in the varieties. Furthermore, the extracts inhibited Fe2+ and quinolinic acid induced lipid peroxidation in rats brain homogenates in a dose-dependent manner. Ripe and unripe samples from SM had significantly higher AChE inhibitory abilities than RO samples, while there was no significant difference in the BuChE inhibitory abilities of the pepper samples. Conclusion. The antioxidant and anticholinesterase properties of Capsicum spp. may be a possible dietary means by which oxidative stress and symptomatic cognitive decline associated with neurodegenerative conditions could be alleviated.

  20. Conformation-activity studies on the interaction of berberine with acetylcholinesterase:Physical chemistry approach

    Institute of Scientific and Technical Information of China (English)

    Jin Xiang; Changping Yu; Fang Yang; Ling Yang; Hong Ding

    2009-01-01

    Berberine has been reported as an acetylcholinesterase (AChE) inhibitor.With significantly low cytotoxicity,berberine will be developed for the clinical treatment of Alzheimer disease (AD) with higher efficacy and fewer side effects.This work investigated the structure change events of AChE that occur during the interaction with berberine by isothermal titration calorimetry (ITC),fluorescence titration,and circular dichroism (CD).The results show that the binding of berberine to AChE is mainly driven by a favorable entropy increase with a less weak affinity.Berberine causes a loss in enzymatic activity at a concentration much below the concentration which gradually exposed the tryptophan residues to a more hydrophilic environment and unfolded the protein,which indicates that the inhibition of AChE with berberine includes the main contributions of interaction and minor conformation change of the protein induced by the alkaloid.

  1. Effect of chlorpyrifos and monocrotophos on locomotor behaviour and acetylcholinesterase activity of subterranean termites, Odontotermes obesus.

    Science.gov (United States)

    Venkateswara Rao, J; Parvathi, K; Kavitha, P; Jakka, N M; Pallela, R

    2005-04-01

    The acute toxicity of chlorpyrifos and monocrotophos to subterranean termites, Odontotermes obesus (Rambur), has been studied by a paper contact method. The LC50 values for chlorpyrifos and monocrotophos were 0.046 and 0.148 microg cm(-2), respectively. Chlorpyrifos was 3.22-fold more toxic than monocrotophos. The effect of the pesticides on locomotor behaviour (velocity) and head acetylcholinesterase (AChE: EC 3.1.1.7) activity was estimated in LC50-exposed termites at intervals of 4, 8, 12, 16, 20 and 24 h. Chlorpyrifos- and monocrotophos-treated termites showed, respectively, 97 and 88% reduction in locomotor behaviour (velocity) after 24 h. At all time intervals the chlorpyrifos-treated termites exhibited more AChE inhibition and showed greater distorted behaviour than those exposed to monocrotophos. In vitro studies indicated that the I50 value (50% inhibition) for chlorpyrifos against AChE was 8.75 times that of monocrotophos.

  2. Structural and kinetic effects of mobile phone microwaves on acetylcholinesterase activity.

    Science.gov (United States)

    Barteri, Mario; Pala, Alessandro; Rotella, Simona

    2005-03-01

    The present study provides evidence that "in vitro" simple exposure of an aqueous solution of electric eel acetylcholinesterase (EeAChE; EC 3.1.1.7.) to cellular phone emission alters its enzymatic activity. This paper demonstrates, by combining different experimental techniques, that radio frequency (RF) radiations irreversibly affect the structural and biochemical characteristics of an important CNS enzyme. These results were obtained by using a commercial cellular phone to reproduce the reality of the human exposition. This experimental procedure provided surprising effects collected practically without experimental errors because they were obtained comparing native and irradiated sample of the same enzyme solution. Although these results cannot be used to conclude whether exposure to RF during the use of cellular phone can lead to any hazardous health effect, they may be a significant first step towards further verification of these effects on other "ex vivo" or "in vivo" biological systems.

  3. Abietane-type diterpenoids from the roots of Caryopteris mongolica and their cholinesterase inhibitory activities.

    Science.gov (United States)

    Murata, Toshihiro; Ishikawa, Yoshinobu; Saruul, Erdenebileg; Selenge, Erdenechimeg; Sasaki, Kenroh; Umehara, Kaoru; Yoshizaki, Fumihiko; Batkhuu, Javzan

    2016-10-01

    Eleven abietane-type diterpenoids and two known abietanes were isolated from the roots of Caryopteris mongolica, and their structures were characterized. The absolute configurations at C-5 and C-10 were determined from the NMR data, including from the nuclear Overhauser effect and CD spectra, and the absolute configuration of C-16 in the hydroxypropyl group was determined via a modified Mosher's method. Furthermore, the previously unknown absolute configuration of the C-15 of cyrtophyllone B was determined to be in an R-configuration using X-ray crystallography. To estimate the preventive effects of the isolates for neurodegenerative disease development, their inhibitory activities against acetylcholinesterase (AChE) from human erythrocytes and butyrylcholinesterase (BChE) from horse serum were evaluated.

  4. Distributions of choline acetyltransferase and acetylcholinesterase activities in the retinal layers of the red-tailed hawk and road runner.

    Science.gov (United States)

    White, L E; Ross, C D; Godfrey, D A

    1991-01-01

    The activities of choline acetyltransferase and acetylcholinesterase were assayed in submicrogram samples from layers of red-tailed hawk and road runner retina. Both enzyme activities were concentrated in and near the inner plexiform layer. Within the inner plexiform layers of both species, activities of each enzyme were concentrated in two bands, one in each half of this layer. Little choline acetyltransferase activity was found superficial to the middle third of the inner nuclear layer. The distributions of acetylcholinesterase activities corresponded well to those of choline acetyltransferase, except in the outer plexiform layer and the outer margin of the inner nuclear layer of the hawk. These distributions of enzyme activities indicate that populations of amacrine cells in the retinae of these species are cholinergic. In addition to these same cells and presumably cholinoceptive amacrine and ganglion cells, acetylcholinesterase activity in the hawk was associated with a population of horizontal cells that may be unrelated to synaptic cholinergic neurotransmission. Choline acetyltransferase activities associated with amacrine somata and processes were about four times greater in the hawk than in the road runner, suggesting important differences in the density and function of cholinergic elements between species. Possible synaptic relationships in the inner plexiform layer consistent with the interspecies differences in enzyme activities are considered.

  5. Alterations of ectonucleotidases and acetylcholinesterase activities in lymphocytes of Down syndrome subjects: relation with inflammatory parameters.

    Science.gov (United States)

    Rodrigues, Rodrigo; Debom, Gabriela; Soares, Fabiano; Machado, Caroline; Pureza, Jéssica; Peres, William; de Lima Garcias, Gilberto; Duarte, Marta Frescura; Schetinger, Maria Rosa Chitolina; Stefanello, Francieli; Braganhol, Elizandra; Spanevello, Roselia

    2014-06-10

    Subjects with Down syndrome (DS) have an increased susceptibility to infections and autoimmune disorders. ATP, adenosine, and acetylcholine contribute to the immune response regulation, and NTPDase, adenosine deaminase (ADA) and acetylcholinesterase (AChE) are important enzymes in the control of the extracellular levels of these molecules. We evaluated the activities of these enzymes and the cytokine levels in samples of DS individuals. The population consisted of 23 subjects with DS and 23 healthy subjects. Twelve milliliters of blood was obtained from each subject and used for lymphocyte and serum preparation. Lymphocytes were separated on Ficoll density gradients. After isolation, NTPDase and AChE activities were determined. The NTPDase activity using ADP as substrate was increased in lymphocytes of DS patients compared to control (P<0.05); however, no alterations were observed in the ATP hydrolysis. An increase was observed in the AChE activity in lymphocytes and in ADA activity in serum of DS patients when compared to healthy subjects (P<0.05). In DS subjects, an increase in the levels of IL-1β, IL-6, TNF-α and IFN-γ and a decrease in the IL-10 levels were also observed (P<0.05). Alterations in the NTPDase, ADA and AChE activities as well changes in the cytokine levels may contribute to immunological alterations observed in DS. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effect of carbaryl (carbamate insecticide) on acetylcholinesterase activity of two strains of Daphnia magna (Crustacea, Cladocera).

    Science.gov (United States)

    Toumi, Hela; Bejaoui, Mustapha; Touaylia, Samir; Burga Perez, Karen F; Ferard, Jean François

    2016-11-01

    The present study was designed to investigate the effect of carbaryl (carbamate insecticide) on the acetylcholinesterase activity in two strains (same clone A) of the crustacean cladoceran Daphnia magna. Four carbaryl concentrations (0.4, 0.9, 1.8 and 3.7 µg L(-1)) were compared against control AChE activity. Our results showed that after 48 h of carbaryl exposure, all treatments induced a significant decrease of AChE activities whatever the two considered strains. However, different responses were registered in terms of lowest observed effect concentrations (LOEC: 0.4 µg L(-1) for strain 1 and 0.9 µg L(-1) for strains 2) revealing differences in sensitivity among the two tested strains of D. magna. These results suggest that after carbaryl exposure, the AChE activity responses can be also used as a biomarker of susceptibility. Moreover, our results show that strain1 is less sensitive than strain 2 in terms of IC50-48 h of AChE activity. Comparing the EC50-48 h of standard ecotoxicity test and IC50-48 h of AChE inhibition, there is the same order of sensitivity with both strains.

  7. Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo.

    Science.gov (United States)

    Feng, Xinchi; Wang, Xin; Liu, Youping; Di, Xin

    2015-01-01

    Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in-vitro and ex-vivo. Ellman's colorimetric method was used for the determination of AChE inhibitory activity in mouse brain. In-vitro assays revealed that linarin inhibited AChE activity with an IC50 of 3.801 ± 1.149 μM. Ex-vivo study showed that the AChE activity was significantly reduced in both the cortex and hippocampus of mice treated intraperitoneally with various doses of linarin (35, 70 and 140 mg/Kg). The inhibition effects produced by high dose of linarin were the same as that obtained after huperzine A treatment (0.5 mg/Kg). Molecular docking study revealed that both 4'-methoxyl group and 7-O-sugar moiety of linarin played important roles in ligand-receptor binding and thus they are mainly responsible for AChE inhibitory activity. In view of its potent AChE inhibitory activity, linarin may be a promising therapeutic agent for the treatment of some diseases associated with AChE, such as glaucoma, myasthenia gravis, gastric motility and Alzheimer's disease.

  8. Effects of carbofuran and deltamethrin on acetylcholinesterase activity in brain and muscle of the common carp.

    Science.gov (United States)

    Ensibi, Cherif; Hernández-Moreno, David; Míguez Santiyán, M Prado; Daly Yahya, Mohamed Néjib; Rodríguez, Francisco Soler; Pérez-López, Marcos

    2014-04-01

    This work investigated the effect from exposure to insecticides carbofuran and deltamethrin on acetylcholinesterase (AChE) activity in the brain and muscle of common carp (Cyprinus carpio). Both pesticides were evaluated through two separate experiments, and carp were exposed in a semi-static system to three different concentrations of carbofuran (10, 50, and 100 μg/L) and deltamethrin (0.08, 0.4, and 0.8 μg/L) during a month with sampling times at 0, 4, 15, and 30 days (n = 7 from each aquarium). AChE activity was significantly inhibited in both organs of carps exposed to carbofuran at all sampling times depending on dose and time, reaching inhibition values of 73.5 and 67.1%, in brain and muscle tissues respectively, after 30 days with the highest concentration. On the contrary, AChE activity was not significantly affected after deltamethrin exposure at all concentrations and times of the assay. This study shows that the measurement of brain and muscle AChE activity in Cyprinus carpio is a useful biomarker of carbamates exposure and/or effects, but has no application with pyrethroids.

  9. Monoamine oxidase inhibitory activities of heterocyclic chalcones.

    Science.gov (United States)

    Minders, Corné; Petzer, Jacobus P; Petzer, Anél; Lourens, Anna C U

    2015-11-15

    Studies have shown that natural and synthetic chalcones (1,3-diphenyl-2-propen-1-ones) possess monoamine oxidase (MAO) inhibition activities. Of particular importance to the present study is a report that a series of furanochalcones acts as MAO-B selective inhibitors. Since the effect of heterocyclic substitution, other than furan (and more recently thiophene, piperidine and quinoline) on the MAO inhibitory properties of the chalcone scaffold remains unexplored, the aim of this study was to synthesise and evaluate further heterocyclic chalcone analogues as inhibitors of the human MAOs. For this purpose, heterocyclic chalcone analogues that incorporate pyrrole, 5-methylthiophene, 5-chlorothiophene and 6-methoxypyridine substitution were examined. Seven of the nine synthesised compounds exhibited IC50 values chalcones are reversible and competitive MAO inhibitors. 4h, however, may exhibit tight-binding to MAO-B, a property linked to its thiophene moiety. We conclude that high potency chalcones such as 4h represent suitable leads for the development of MAO-B inhibitors for the treatment of Parkinson's disease and possibly other neurodegenerative disorders.

  10. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  11. Effect of pesticide exposure on acetylcholinesterase activity in subsistence farmers from Campeche, Mexico.

    Science.gov (United States)

    Rendón von Osten, Jaime; Epomex, Centro; Tinoco-Ojanguren, Rolando; Soares, Amadeu M V M; Guilhermino, Lucia

    2004-08-01

    The authors surveyed agricultural production methods and pesticide use among subsistence farmers (campesinos) in 4 rural communities of Campeche, Mexico. Self-reports of symptoms of poisoning resulting from occupational pesticide exposure were elicited by questionnaire (N = 121), and acetylcholinesterase (AChE) activity during insecticide use was evaluated from blood samples (N = 127). In individuals from 2 of the 4 communities, AChE activity was significantly lower (p < 0.05) than the mean of activity determined for individuals in a reference group. Results of this study show that erythrocyte AChE inhibition provides a good biomarker of exposure to organophosphate pesticides in field studies with human populations. Carbamates, particularly carbofuran, seem to be more associated with exuberant and diversified symptomatology of pesticide exposure than organophosphates. Studies in field communities where both carbamates and organophosphates are suspected to exist should include blood AChE determinations, symptomatology surveys, and socioeconomic questionnaires. The authors recommend that the Mexican National Health Ministry authorities specify additional provisions regarding the use of protective equipment and the adoption of other safety practices during field work, increase information campaigns about the risks of pesticide use and the value of safety practices, and increase programs of medical monitoring and assistance for rural communities dealing with pesticides.

  12. Alkaloids from Peumus boldus and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase inhibition activity.

    Science.gov (United States)

    Hošt'álková, Anna; Opletal, Lubomír; Kuneš, Jiří; Novák, Zdeněk; Hrabinová, Martina; Chlebek, Jakub; Čegan, Lukáš; Cahlíková, Lucie

    2015-04-01

    Eleven isoquinoline alkaloids (1-11) were isolated from dried leaves of Peumus boldus Mol. by standard chromatographic methods. The chemical structures were elucidated by MS, and 1D and 2D NMR spectroscopic analysis, and by comparison with literature data. Compounds isolated in sufficient amount were evaluated for their acetylcholinesterase, and butyrylcholinesterase inhibition activity using Ellman's method. In the prolyl oligopeptidase assay, Z-Gly-Pro-p-nitroanilide was used as substrate. Promising butyrylcholinesterase inhibition activities were demonstrated by two benzylisoquinoline alkaloids, reticuline (8) and N-methylcoclaurine (9), with IC50 values of 33.6 ± 3.0 µM and 15.0 ± 1.4 µM, respectively. Important prolyl oligopeptidase inhibition activities were shown by N-methyllaurotetanine (6) and sinoacutine (4) with IC50 values of 135.4 ± 23.2 µM and 143.1 ± 25.4 µM, respectively. Other tested compounds were considered inactive.

  13. Inhibition of acetylcholinesterase and cytochrome oxidase activity in Fasciola gigantica cercaria by phytoconstituents.

    Science.gov (United States)

    Sunita, Kumari; Habib, Maria; Kumar, P; Singh, Vinay Kumar; Husain, Syed Akhtar; Singh, D K

    2016-02-01

    Fasciolosis is an important cattle and human disease caused by Fasciola hepatica and Fasciola gigantica. One of the possible methods to control this problem is to interrupt the life cycle of Fasciola by killing its larva (redia and cercaria) in host snail. Molecular identification of cercaria larva of F. gigantica was done by comparing the nucleotide sequencing with adult F. gigantica. It was noted that nucleotide sequencing of cercaria larva and adult F. gigantica were 99% same. Every month during the year 2011-2012, in vivo treatment with 60% of 4 h LC50 of phyto cercaricides citral, ferulic acid, umbelliferone, azadirachtin and allicin caused significant inhibition of acetylcholinesterase (AChE) and cytochrome oxidase activity in the treated cercaria larva of F. gigantica. Whereas, activity of both enzymes were not significantly altered in the nervous tissues of vector snail Lymnaea acuminata exposed to same treatments. Maximum reduction in AChE (1.35% of control in month of June) and cytochrome oxidase (3.71% of control in the month of July) activity were noted in the cercaria exposed to 60% of 4 h LC50 of azadirachtin and allicin, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity.

    Science.gov (United States)

    Tsakiris, Stylianos; Giannoulia-Karantana, Aglaia; Simintzi, Irene; Schulpis, Kleopatra H

    2006-01-01

    Studies have implicated aspartame (ASP) with neurological problems. The aim of this study was to evaluate acetylcholinesterase (AChE) activity in human erythrocyte membranes after incubation with the sum of ASP metabolites, phenylalanine (Phe), methanol (met) and aspartic acid (aspt), or with each one separately. Erythrocyte membranes were obtained from 12 healthy individuals and were incubated with ASP hydrolysis products for 1 h at 37 degrees C. AChE was measured spectrophotometrically. Incubation of membranes with ASP metabolites corresponding with 34 mg/kg, 150 mg/kg or 200 mg/kg of ASP consumption resulted in an enzyme activity reduction by -33%, -41%, and -57%, respectively. Met concentrations 0.14 mM, 0.60 mM, and 0.80 mM decreased the enzyme activity by -20%, -32% or -40%, respectively. Aspt concentrations 2.80 mM, 7.60 mM or 10.0 mM inhibited membrane AChE activity by -20%, -35%, and -47%, respectively. Phe concentrations 0.14 mM, 0.35 mM or 0.50mM reduced the enzyme activity by -11%, -33%, and -35%, respectively. Aspt or Phe concentrations 0.82 mM or 0.07 mM, respectively, did not alter the membrane AChE activity. It is concluded that low concentrations of ASP metabolites had no effect on the membrane enzyme activity, whereas high or toxic concentrations partially or remarkably decreased the membrane AChE activity, respectively. Additionally, neurological symptoms, including learning and memory processes, may be related to the high or toxic concentrations of the sweetener metabolites.

  15. α-Isocubebenol alleviates scopolamine-induced cognitive impairment by repressing acetylcholinesterase activity.

    Science.gov (United States)

    Song, Sung Hwa; Choi, Seong Mi; Kim, Ji Eun; Sung, Ji Eun; Lee, Hyun Ah; Choi, Yung Hyun; Bae, Chang Joon; Choi, Young Whan; Hwang, Dae Youn

    2017-01-18

    α-Isocubebenol (ICO) isolated from Schisandra chinensis fruit was recently shown to exert neuroprotective properties with significant anti-neuroinflammatory effects. Here, we present evidence of the novel effects of ICO on alleviation of cognitive impairment. To confirm these effects, ICR mice were pretreated with two different doses of ICO for 3 weeks and scopolamine (SP) to induce memory impairment for the last 7days of the period. A passive avoidance test showed that ICO pretreatment recovered memory impairment in SP treated mice, although there was no difference between the two doses. Acetylcholinesterase (AChE) activity was significantly decreased in the SP+ICO treated group compared with the SP+Vehicle treated group. Additionally, significant recovery of the number of apoptotic cells and the ratio of apoptosis proteins (Bcl-2/Bax) were detected in the SP+ICO treated group than the SP+Vehicle treated group. Moreover, ICO treatment attenuated the decrease of ERK phosphorylation by SP treatment. These results indicate that ICO from S. chinensis fruit could be applied as an active pharmaceutical ingredient for cognitive improvement in Alzheimer's disease (AD). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Short-term effects of Quirlan (chlorfenvinphos) on the behavior and acetylcholinesterase activity of Gambusia holbrooki.

    Science.gov (United States)

    Sismeiro-Vivas, J; Abrantes, N; Pereira, J L; Castro, B B; Gonçalves, F

    2007-04-01

    Chlorfenvinphos is a widespread organophosphorous (OP) insecticide and it is a reported hazardous chemical for aquatic nontarget organisms. This study intended to evaluate the effects of sublethal concentrations of Quirlan(R) (commercial formulation of chlorfenvinphos) on several behavioral parameters of the mosquitofish, Gambusia holbrooki. The insecticide showed high toxicity to G. holbrooki by significantly impairing all the behavioral responses (location in the test vessel, activity/excitability, swimming, and feeding), exhibiting a time-dependent pattern. Behavioral EC50s, after a 96-h exposure, ranged from 5.2 to 9.0 microg L(-1). As OP pesticides are acutely neurotoxic, acetylcholinesterase (AChE) activity was also selected for use as a biomarker in this study for the establishment of a relationship with the observed behavior abnormalities. A strong inhibition of AChE was observed in fish exposed to chlorfenvinphos (IC50 = 3.55 microg L(-1)). Behavioral impairment was registered in fish with >40% AChE inhibition levels, while mortality was only observable in fish exhibiting AChE inhibition levels >80%. Additionally, significant correlations were found between behavioral impairment and AChE inhibition, suggesting a mechanistic link. These results show the usefulness of integrating biochemical and individual endpoints in a small-sized model species, and confirm a potential hazard of chlorfenvinphos to nontarget aquatic organisms. (c) 2007 Wiley Periodicals, Inc.

  17. [Effect of acetylcholine and acetylcholinesterase on the activity of contractile vacuole of Amoeba proteus].

    Science.gov (United States)

    Bagrov, Ia Iu; Manusova, N B

    2011-01-01

    Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.

  18. Formulation and characterization of novel functional beverages with antioxidant and anti-acetylcholinesterase activities

    Directory of Open Access Journals (Sweden)

    Suree Nanasombat

    2015-01-01

    beverages B1, B2, B3, B4 and B5 in the ratio of 60:40 to prepare alcoholic beverages W1, W2, W3, W4 and W5, respectively. Two different fermentation conditions (fermentation with or without pieces of sliced medicinal plant residue, PMPR were compared. After fermenting, racking and aging, all alcoholic beverages, as well as all non-alcoholic beverages,were analyzed for some phytochemical properties. Results: Grape fermented with PMPR had higher anti-acetylcholinesterase and antioxidant activities, and total phenolics, flavonoids and tannins, compared to the others. Among all nonalcoholic beverages, the beverage B3 contained the highest anti-acetylcholinesterase (22.78% inhibition at 1:10,000 dilution and antioxidant activities (reducing capacity, 4.22 mmol Fe(II/100 mL, total phenolics, flavonoids, and tannins (494.44 mg gallic acid equivalents (GAE, 383.22 mg catechin equivalents (CE and 338.29 mg tannic acid equivalents ((TAE/100 mL, respectively. Among all alcoholic beverages, the beverage W3 (fermented with PMPR exhibited the highest antioxidant activity (DPPH radical inhibition, 95.99 mg trolox equivalents and reducing capacity, 3.57 mmol Fe(II /100 mL, total phenolics, flavonoids and tannins (239.71 mg GAE, 372.67 mg CE and 157.67 mg TAE/100 mL, respectively. The beverage W2 (fermented with PMPR had the highest anti-acetylcholinesterase activity (21.35% inhibition at 1:10,000 dilution. Conclusion: The beverages B3, W2 and W3 contained valuable sources of natural antioxidants and acetylcholinesterase inhibitors, and may provide health benefits when consumed.

  19. Morphometry and acetylcholinesterase activity of the myenteric plexus of the wild mouse Calomys callosus

    Directory of Open Access Journals (Sweden)

    L.B.M. Maifrino

    1997-05-01

    Full Text Available The myenteric plexus of the digestive tract of the wild mouse Calomys callosus was examined using a histochemical method that selectively stains nerve cells, and the acetylcholinesterase (AChE histochemical technique in whole-mount preparations. Neuronal density was 1,500 ± 116 neurons/cm2 (mean ± SEM in the esophagus, 8,900 ± 1,518 in the stomach, 9,000 ± 711 in the jejunum and 13,100 ± 2,089 in the colon. The difference in neuronal density between the esophagus and other regions was statistically significant. The neuron profile area ranged from 45 to 1,100 µm2. The difference in nerve cell size between the jejunum and other regions was statistically significant. AChE-positive nerve fibers were distributed within the myenteric plexus which is formed by a primary meshwork of large nerve bundles and a secondary meshwork of finer nerve bundles. Most of the nerve cells displayed AChE activity in the cytoplasm of different reaction intensities. These results are important in order to understand the changes occurring in the myenteric plexus in experimental Chagas' disease

  20. Flavonoids, Antioxidant Potential, and Acetylcholinesterase Inhibition Activity of the Extracts from the Gametophyte and Archegoniophore of Marchantia polymorpha L.

    Science.gov (United States)

    Wang, Xin; Cao, Jianguo; Wu, Yuhuan; Wang, Quanxi; Xiao, Jianbo

    2016-03-17

    Marchantia polymorpha L. is a representative bryophyte used as a traditional Chinese medicinal herb for scald and pneumonia. The phytochemicals in M. polymorpha L. are terpenoids and flavonoids, among which especially the flavonoids show significant human health benefits. Many researches on the gametophyte of M. polymorpha L. have been reported. However, as the reproductive organ of M. polymorpha L., the bioactivity and flavonoids profile of the archegoniophore have not been reported, so in this work the flavonoid profiles, antioxidant and acetylcholinesterase inhibition activities of the extracts from the archegoniophore and gametophyte of M. polymorpha L. were compared by radical scavenging assay methods (DPPH, ABTS, O(2-)), reducing power assay, acetylcholinesterase inhibition assay and LC-MS analysis. The results showed that the total flavonoids content in the archegoniophore was about 10-time higher than that of the gametophyte. Differences between the archegoniophore and gametophyte of M. polymorpha L. were observed by LC-MS analysis. The archegoniophore extracts showed stronger bio-activities than those of the gametophyte. The archegoniophore extract showed a significant acetylcholinesterase inhibition, while the gametophyte extract hardly inhibited it.

  1. Flavonoids, Antioxidant Potential, and Acetylcholinesterase Inhibition Activity of the Extracts from the Gametophyte and Archegoniophore of Marchantia polymorpha L.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-03-01

    Full Text Available Marchantia polymorpha L. is a representative bryophyte used as a traditional Chinese medicinal herb for scald and pneumonia. The phytochemicals in M. polymorpha L. are terpenoids and flavonoids, among which especially the flavonoids show significant human health benefits. Many researches on the gametophyte of M. polymorpha L. have been reported. However, as the reproductive organ of M. polymorpha L., the bioactivity and flavonoids profile of the archegoniophore have not been reported, so in this work the flavonoid profiles, antioxidant and acetylcholinesterase inhibition activities of the extracts from the archegoniophore and gametophyte of M. polymorpha L. were compared by radical scavenging assay methods (DPPH, ABTS, O2−, reducing power assay, acetylcholinesterase inhibition assay and LC-MS analysis. The results showed that the total flavonoids content in the archegoniophore was about 10-time higher than that of the gametophyte. Differences between the archegoniophore and gametophyte of M. polymorpha L. were observed by LC-MS analysis. The archegoniophore extracts showed stronger bio-activities than those of the gametophyte. The archegoniophore extract showed a significant acetylcholinesterase inhibition, while the gametophyte extract hardly inhibited it.

  2. Complete blood count and acetylcholinesterase activity of lymphocytes of demyelinated and ovariectomized rats treated with resveratrol.

    Science.gov (United States)

    Martins, Danieli B; Mazzanti, Cinthia M; Costa, Márcio M; França, Raqueli; Pagnoncelli, Marcielen; Maciel, Roberto M; Schmatz, Roberta; Oliveira, Lizielle; Morsch, Vera; Facco, Grasiela; Visentini, Diandra; Mann, Thais; Mazzanti, Alexandre; Lopes, Sonia T A

    2012-12-01

    Resveratrol is a phytoestrogen that has many beneficial actions. This study aimed to evaluate the effect of resveratrol on the complete blood count (CBC) and the acetylcholinesterase (AChE) activity of lymphocytes of ovariectomized rats experimentally demyelinated by ethidium bromide (EB). Forty adult female Wistar rats (60 days, 200-220 g) were divided randomly into five groups (n = 4) to evaluate the demyelination phase and five groups (n = 4) to evaluate the remyelination phase. In each phase, the groups consisted of sham rats-G1; ovariectomized rats, not demyelinated, treated only with vehicle (ethanol 25%)-G2; demyelinated ovariectomized rats treated only with vehicle-G3; ovariectomized rats, not demyelinated, treated with resveratrol-G4; and demyelinated ovariectomized rats treated with resveratrol-G5. Only during the remyelination phase, CBC showed a significant difference (p < 0.05) in the number of monocytes between G2 and G5 groups. In the demyelination phase, there was a significant decrease (p < 0.05) in the AChE activity in the G4 group, while the G5 group was statistically similar to the G1, G2 and G4 groups. In the remyelination phase, there were no significant differences in the AChE activity among the groups. The treatment for 7 days with resveratrol with or without the experimental demyelization with EB appears to influence the AChE activity of lymphocytes, without changing the number of these cells in the circulation. However, in the remyelination phase, there seems to be stabilization in its effect on the lymphocyte AChE activity.

  3. Effects of acetylcholinesterase gene silencing on its activity in cultured human skeletal muscle.

    Science.gov (United States)

    Mis, Katarina; Mars, Tomaz; Golicnik, Marko; Jevsek, Marko; Grubic, Zoran

    2006-01-01

    In spite of several reports demonstrating that acetylcholinesterase (AChE [EC 3.1.1.7]) expression is importantly regulated at the level of its mRNA, we still know little about the relationship between AChE mRNA level and the level of mature, catalytically active enzyme in the cell. Better insight into this relationship is, however, essential for our understanding of the molecular pathways underlying AChE synthesis in living cells. We have approached this problem previously (Grubic et al., 1995; Brank et al., 1998; Mis et al., 2003; Jevsek et al., 2004); however, recently introduced small interfering RNA (siRNA) methodology, which allows blockade of gene expression at the mRNA level, opens new possibilities in approaching the AChE mRNA-AChE activity relationship. With this technique one can eliminate AChE mRNA in the cell, specifically and at selected times, and follow the effects of such treatment at the mature enzyme level. In this study we followed AChE activity in siRNA-treated cultured human myoblasts. Our aim was to find out how the temporal profile of the AChE mRNA decrease is reflected at the level of AChE activity under normal conditions and after inhibition of preexisting AChE by diisopropyl phosphorofluoridate (DFP).AChE activity was determined at selected time intervals after siRNA treatment in both myoblast homogenates and in culture medium to follow the effects of siRNA treatment at the level of intracellular AChE synthesis and at the level of AChE secreted from the cell.

  4. Salvia leriifolia Benth (Lamiaceae) extract demonstrates in vitro antioxidant properties and cholinesterase inhibitory activity.

    Science.gov (United States)

    Loizzo, Monica R; Tundis, Rosa; Conforti, Filomena; Menichini, Federica; Bonesi, Marco; Nadjafi, Farsad; Frega, Natale Giuseppe; Menichini, Francesco

    2010-12-01

    The object of the present study was to investigate the in vitro antioxidant properties and cholinesterase inhibitory activity of Salvia leriifolia Benth extracts and fractions. The functional role of herbs and spices and their constituents is a hot topic in food-related plant research. Salvia species have been used since ancient times in folk medicine for cognitive brain function and have been subjected to extensive research. Thus, we hypothesize that S leriifolia, because of its functional properties, would be a good candidate to use as a nutraceutical product for improving memory in the elderly or patients affected by Alzheimer disease (ad). To test this hypothesis, we examined the cholinesterase inhibitory activity using the modified colorimetric Ellman's method against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The n-hexane exhibited the highest activity, with inhibitory concentration 50% (IC(50)) values of 0.59 and 0.21 mg/mL, for AChE and BChE, respectively. This extract was fractionated, and 9 of these fractions (A-I) were obtained and tested. Fraction G, characterized by the presence of sesquiterpenes as major components, was the most active against AChE (IC(50) = 0.05 mg/mL). Because oxidative stress is a critical event in the pathogenesis of AD, we decided to screen the antioxidant activity (AA) using 2,2-diphenyl-1-picrylhydrazyl test, β-carotene bleaching test, and bovine brain peroxidation (thiobarbituric acid) assay. The ethyl acetate extract showed the highest activity, with IC(50) values of 2 and 33 μg/mL on β-carotene bleaching test and thiobarbituric acid test, respectively. These results suggest potential health benefits of S leriifolia extracts. However, this finding requires additional investigation in vivo.

  5. Copper acutely impairs behavioral function and muscle acetylcholinesterase activity in zebrafish (Danio rerio).

    Science.gov (United States)

    Haverroth, Gabriela M B; Welang, Chariane; Mocelin, Riciéri N; Postay, Daniela; Bertoncello, Kanandra T; Franscescon, Francini; Rosemberg, Denis B; Dal Magro, Jacir; Dalla Corte, Cristiane L

    2015-12-01

    Copper is a heavy metal found at relatively high concentrations in surface waters around the world. Copper is a micronutrient at low concentrations and is essential to several organisms. At higher concentrations copper can become toxic, which reveal the importance of studying the toxic effects of this metal on the aquatic life. Thus, the objective of this study was to evaluate the toxic effects of copper on the behavior and biochemical parameters of zebrafish (Danio rerio). Zebrafish were exposed for 24h at a concentration of 0.006 mg/L Cu. After the exposure period, behavioral profile of animals was recorded through 6 min using two different apparatuses tests: the Novel Tank and the Light-Dark test. After behavioral testing, animals were euthanized with a solution of 250 mg/L of tricaine (MS-222). Brain, muscle, liver and gills were extracted for analysis of parameters related to oxidative stress and accumulation of copper in these tissues. Acetylcholinesterase (AChE) activity was determined in brain and muscle. Results showed acute exposure to copper induces significant changes in behavioral profile of zebrafish by changing locomotion and natural tendency to avoid brightly lit area. On the other hand, there were no significant effects on parameters related to oxidative stress. AChE activity decreased significantly in zebrafish muscle, but there were no significant changes in cerebral AChE activity. Copper levels in tissues did not increase significantly compared to the controls. Taken together, these results indicate that a low concentration of copper can acutely affect behavioral profile of adult zebrafish which could be partially related to an inhibition on muscle AChE activity. These results reinforce the need of additional tests to establishment of safe copper concentrations to aquatic organisms and the importance of behavioral parameters in ecotoxicological studies.

  6. Effect of ions on the activity of brain acetylcholinesterase from tropical fish

    Directory of Open Access Journals (Sweden)

    Caio Rodrigo Dias Assis

    2015-07-01

    Full Text Available Objective: To investigate the effect of ions on brain acetylcholinesterase (AChE; EC 3.1.1.7 activities from economic important fish [pirarucu, Arapaima gigas; tambaqui, Colossoma macropomum; cobia, Rachycentron canadum (R. canadum and Nile tilapia, Oreochromis niloticus (O. niloticus] comparing with a commercial enzyme from electric eel [Electrophorus electricus (E. electricus]. Methods: The in vitro exposure was performed at concentrations ranging from 0.001 to 10 mmol/L (except for ethylene diamine tetraacetic acid; up to 150 mmol/L. Inhibition kinetics on R. canadum and O. niloticus were also observed through four methods (Michaelis-Menten, Lineweaver-Burk, Dixon and Cornish-Bowden plots in order to investigate the type of inhibition produced by some ions. Results: Hg 2+ , As 3+ , Cu 2+ , Zn 2+ , Cd 2+ caused inhibition in all the species under study. Ca 2+ , Mg 2+ and Mn 2+ induced slight activation in R. canadum enzyme while Pb 2+ , Ba 2+ , Fe 2+ , Li + inhibited the AChE from some of the analyzed species. The lowest IC 50 and Ki values were estimated for E. electricus AChE in presence of Hg 2+ , Pb 2+ , Zn 2+ . Under our experimental conditions, the results for R. canadum and O. niloticus, As 3+ , Cu 2+ , Cd 2+ , Pb 2+ and Zn 2+ showed a non- competitive/mixed-type inhibition, while Hg 2+ inhibited the enzyme in a mixed/competitive- like manner. Conclusions: E. electricus AChE activity was affected by ten of fifteen ions under study showing that this enzyme could undergo interference by these ions when used as pesticide biosensor in environmental analysis. This hindrance would be less relevant for the crude extracts.

  7. Effect of ions on the activity of brain acetylcholinesterase from tropical ifsh

    Institute of Scientific and Technical Information of China (English)

    Caio Rodrigo Dias Assis; Amanda Guedes Linhares; Vagne Melo Oliveira; Renata Cristina Penha Frana; Juliana Ferreira Santos; Ranilson Souza Bezerra; Luiz Bezerra Carvalho Jr

    2015-01-01

    Objective:To investigate the effect of ions on brain acetylcholinesterase (AChE; EC 3.1.1.7) activities from economic important fish [pirarucu,Arapaima gigas; tambaqui,Colossoma macropomum; cobia,Rachycentron canadum (R. canadum) and Nile tilapia,Oreochromis niloticus(O. niloticus)] comparing with a commercial enzyme from electric eel [Electrophorus electricus(E. electricus)]. Methods: Thein vitro exposure was performed at concentrations ranging from 0.001 to 10 mmol/L (except for ethylene diamine tetraacetic acid; up to 150 mmol/L). Inhibition kinetics onR. canadum andO. niloticus were also observed through four methods (Michaelis-Menten, Lineweaver-Burk, Dixon and Cornish-Bowden plots) in order to investigate the type of inhibition produced by some ions. Results: Hg2+, As3+, Cu2+, Zn2+, Cd2+ caused inhibition in all the species under study. Ca2+, Mg2+ and Mn2+ induced slight activation inR. canadum enzyme while Pb2+, Ba2+, Fe2+, Li+ inhibited the AChE from some of the analyzed species. The lowest IC50 and Ki values were estimated forE. electricus AChE in presence of Hg2+, Pb2+, Zn2+. Under our experimental conditions, the results forR. canadum andO. niloticus, As3+, Cu2+, Cd2+, Pb2+ and Zn2+ showed a non-competitive/mixed-type inhibition, while Hg2+ inhibited the enzyme in a mixed/competitive-like manner. Conclusions:E. electricus AChE activity was affected by ten of fifteen ions under study showing that this enzyme could undergo interference by these ions when used as pesticide biosensor in environmental analysis. This hindrance would be less relevant for the crude extracts.

  8. Xanthine oxidase inhibitory activity of Hungarian wild-growing mushrooms.

    Science.gov (United States)

    Ványolós, Attila; Orbán-Gyapai, Orsolya; Hohmann, Judit

    2014-08-01

    Mushrooms represent a remarkable and yet largely unexplored source of new, biologically active natural products. In this work, we report on the xanthine oxidase (XO) inhibitory activity of 47 wild-growing mushrooms native to Hungary. Aqueous and organic (n-hexane, chloroform, and 50% methanol) extracts of selected mushrooms from different families were screened for their XO inhibitory activities. Among the 188 extracts investigated, the chloroform and 50% methanol fractions proved to be the most effective. Some species exhibited high inhibitory activity, e.g., Hypholoma fasciculare (IC50  =67.76 ± 11.05 µg/mL), Suillus grevillei (IC50  =13.28 ± 1.58 µg/mL), and Tricholoma populinum (IC50  =85.08 ± 15.02 µg/mL); others demonstrated moderate or weak activity. Additional studies are warranted to characterize the compounds responsible for the XO inhibitory activity of mushroom extracts.

  9. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    2001-01-01

    Full Text Available Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei are involved in the generation of rapid eye movement (REM sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase, the enzyme which inactivates acetylcholine (Ach in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1 were assayed photometrically. The results (mean ± SD obtained showed a statistically significant (Student t-test increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025 and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05. Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05 and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05 were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity

  10. Antioxidant, acetylcholinesterase inhibitory activity and cytotoxicity assessment of the crude extracts of Boophane disticha

    CSIR Research Space (South Africa)

    Adewusi, EA

    2012-10-01

    Full Text Available : October, 2012 1. Introduction Alzheimer?s disease (AD) is the most common neurodegenerative disease and is characterized by memory impairment, cognitive dysfunction, behavioral disturbances and deficits in daily living (Konrath et al, 2012... Radical Biol. Med. 26: 1231-1237. Shah RS, Lee H-G, Xiongwei Z, Perry G, Smith MA, Castellani RJ (2008). Current approaches in the treatment of Alzheimer?s disease. Biomed. Pharmacother. 62: 199-207. Sobiecki JF (2002). A preliminary inventory...

  11. Cytotoxicity and acetylcholinesterase inhibitory activity of an isolated crinine alkaloid from Boophane disticha (Amaryllidaceae)

    CSIR Research Space (South Africa)

    Adekanmi, AE

    2012-09-01

    Full Text Available including Alzheimer?s disease (AD) (Yu et al., 2005). AD is a neurodegenerative disorder with increasing prevalence in the elderly population in the western world and the most common cause of age-related intellectual impairment occurring after the age... and synthesis of tacrine-ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorganic and Medicinal Chemistry Letters 18, 2905-2909. Ferreira, A., Proen?a, C., Serralheiro M.L.M., Ara?jo, M.E.M., 2006. The in vitro screening...

  12. 3,4-Methylenedioxymethamphetamine (MDMA) Abuse Markedly Inhibits Acetylcholinesterase Activity and Induces Severe Oxidative Damage and Liperoxidative Damage

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective To investigate whether 3,4-methylenedioxymethamphetamine (MDMA) abuse produces another neurotoxicity which may significantly inhibit the acetylcholinesterase activity and result in severe oxidative damage and liperoxidative damage to MDMA abusers. Methods 120 MDMA abusers (MA) and 120 healthy volunteers (HV) were enrolled in an independent sample control design, in which the levels of lipoperoxide (LPO) in plasma and erythrocytes as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and acetylcholinesterase (AChE) in erythrocytes were determined by spectrophotometric methods. Results Compared with the average values of biochemical parameters in the HV group, those of LPO in plasma and erythrocytes in the MA group were significantly increased (P<0.0001), while those of SOD, CAT, GPX and AChE in erythrocytes in the MA group were significantly decreased (P<0.0001). The Pearson product-moment correlation analysis between the values of AChE and biochemical parameters in 120 MDMA abusers showed that significant linear negative correlation was present between the activity of AChE and the levels of LPO in plasma and erythrocytes (P<0.0005-0.0001), while significant linear positive correlation was observed between the activity of AchE and the activities of SOD, CAT and GPX (P<0.0001). The reliability analysis for the above biochemical parameters reflecting oxidative and lipoperoxidative damages in MDMA abusers suggested that the reliability coefficient (alpha) was 0.8124, and that the standardized item alpha was 0.9453. Conclusion The findings in the present study suggest that MDMA abuse can induce another neurotoxicity that significantly inhibits acetylcholinesterase activity and aggravates a series of free radical chain reactions and oxidative stress in the bodies of MDMA abusers, thereby resulting in severe neural, oxidative and lipoperoxidative damages in MDMA abusers.

  13. Distribution of intravenously administered acetylcholinesterase inhibitor and acetylcholinesterase activity in the adrenal gland: 11C-donepezil PET study in the normal rat.

    Directory of Open Access Journals (Sweden)

    Tadashi Watabe

    Full Text Available PURPOSE: Acetylcholinesterase (AChE inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered (11C-Donepezil (DNP and the AChE activity in the normal rat, with special focus on the adrenal glands. METHODS: The distribution of (11C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight  = 220 ± 8.9 g. A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of (11C-DNP (45.0 ± 10.7 MBq. The whole-body distribution of the (11C-DNP PET was evaluated based on the Vt (total distribution volume by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. RESULTS: The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of (11C-DNP in the body (following the liver (13.33 ± 1.08 and 19.43 ± 1.29 ml/cm(3, respectively, indicating that the distribution of (11C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach (24.9 ± 1.6, 83.1 ± 3.0, and 38.5 ± 8.1 mU/mg, respectively, indicating high activity of AChE in the adrenal glands. CONCLUSIONS: We demonstrated the whole-body distribution of (11C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of (11C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors.

  14. Distribution of intravenously administered acetylcholinesterase inhibitor and acetylcholinesterase activity in the adrenal gland: 11C-donepezil PET study in the normal rat.

    Science.gov (United States)

    Watabe, Tadashi; Naka, Sadahiro; Ikeda, Hayato; Horitsugi, Genki; Kanai, Yasukazu; Isohashi, Kayako; Ishibashi, Mana; Kato, Hiroki; Shimosegawa, Eku; Watabe, Hiroshi; Hatazawa, Jun

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered (11)C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. The distribution of (11)C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight  = 220 ± 8.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of (11)C-DNP (45.0 ± 10.7 MBq). The whole-body distribution of the (11)C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of (11)C-DNP in the body (following the liver) (13.33 ± 1.08 and 19.43 ± 1.29 ml/cm(3), respectively), indicating that the distribution of (11)C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.9 ± 1.6, 83.1 ± 3.0, and 38.5 ± 8.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. We demonstrated the whole-body distribution of (11)C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of (11)C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors.

  15. Effect of thermal stress and water deprivation on the acetylcholinesterase activity of the pig brain and hypophyses

    Science.gov (United States)

    Adejumo, D. O.; Egbunike, G. N.

    1988-06-01

    The effects of direct exposure of boars to thermal stress for 1 h daily for 5 days and to acute water deprivation for 24 or 48 h were studied on the acetylcholinesterase (AChE) activity of porcine brain and hypophysial regions. Mean ambient temperatures, respiratory rates and rectal temperatures in the open were significantly higher than inside the pen. Heat stress induced a rise in AChE activities in the pons, cerebellum, amygdala, hippocampus, hypothalamus, mid-brain and medulla oblongata. However, no significant changes were observed in the cerebral cortex, adenohypophysis and neurohypophysis. Water deprivation significantly ( Padenohypophysis and neurohypophysis were relatively unaffected.

  16. In vitro antioxidant and inhibitory activity of water decoctions of carob tree (Ceratonia siliqua L.) on cholinesterases, α-amylase and α-glucosidase.

    Science.gov (United States)

    Custódio, Luísa; Patarra, João; Alberício, Fernando; Neng, Nuno Rosa; Nogueira, José Manuel Florêncio; Romano, Anabela

    2015-01-01

    This work reports the in vitro inhibitory activity of water decoctions of leaves, germ flour, pulp, locust bean gum and stem bark of carob tree on α-amylase, α-glucosidase, acetylcholinesterase and butyrylcholinesterase. The antioxidant activity and the chemical characterisation of the extracts made by spectrophotometric assays and by high-performance liquid chromatography are also reported. Leaves and stem bark decoctions strongly inhibited all the enzymes tested, had significant antioxidant activity and the highest total phenolics content. The major compounds were identified as gallic acid in the leaves and gentisic acid in the stem bark.

  17. Enzyme Inhibitory Properties, Antioxidant Activities, and Phytochemical Profile of Three Medicinal Plants from Turkey

    Directory of Open Access Journals (Sweden)

    Gokhan Zengin

    2015-01-01

    Full Text Available We aimed to investigate the inhibitory potential of three medicinal plants (Hedysarum varium, Onobrychis hypargyrea, and Vicia truncatula from Turkey against key enzymes involved in human pathologies, namely, diabetes (α-amylase and α-glucosidase, neurodegenerative disorders (tyrosinase, acetylcholinesterase, and butyrylcholinesterase, and hyperpigmentation (tyrosinase. The antioxidant potential, phenolic and flavonoid content of ethyl acetate, and methanolic and aqueous extracts were investigated using in vitro assays. The total antioxidant capacity (TAC, β-carotene/linoleic acid bleaching activity, 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH•, 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+, cupric ion reducing antioxidant capacity (CUPRAC, ferric reducing antioxidant power (FRAP, and metal chelating activity on ferrous ions were used to evaluate the antioxidant capabilities of the extracts. The half-maximal inhibitory concentrations (IC50 of the extracts on cholinesterase, tyrosinase, and α-amylase were significantly higher than the references, galantamine, kojic acid, and acarbose, respectively. The half-maximal effective concentrations (EC50 of the extracts on TAC, CUPRAC, and FRAP were significantly higher than trolox. The phenol and flavonoid contents of the plant extracts were in the range 20.90±0.190–83.25±0.914 mg gallic acid equivalent/g extract and 1.45±0.200–39.71±0.092 mg rutin equivalent/g extract, respectively. The plants were found to possess moderate antioxidant capacities and interesting inhibitory action against key enzymes.

  18. Kinetics of inhibition of acetylcholinesterase in the presence of acetonitrile.

    Science.gov (United States)

    Pietsch, Markus; Christian, Leonie; Inhester, Therese; Petzold, Susanne; Gütschow, Michael

    2009-04-01

    The hydrolysis of acetylthiocholine by acetylcholinesterase from Electrophorus electricus was investigated in the presence of the inhibitors tacrine, gallamine and compound 1. The interaction of the enzyme with the substrate and the inhibitors was characterized by the parameters K(I), alpha', b or beta, K(m) and V(max), which were determined directly and simultaneously from nonlinear Michaelis-Menten plots. Tacrine was shown to act as a mixed-type inhibitor with a strong noncompetitive component (alpha' approximately 1) and to completely block deacylation of the acyl-enzyme. In contrast, acetylcholinesterase inhibition by gallamine followed the 'steric blockade hypothesis', i.e. only substrate association to as well as substrate/product dissociation from the active site were reduced in the presence of the inhibitor. The relative efficiency of the acetylcholinesterase-gallamine complex for the catalysis of substrate conversion was determined to be 1.7-25% of that of the free enzyme. Substrate hydrolysis and the inhibition of acetylcholinesterase were also investigated in the presence of 6% acetonitrile, and a competitive pseudo-inhibition was observed for acetonitrile (K(I) = 0.25 m). The interaction of acetylcholinesterase with acetonitrile and tacrine or gallamine resulted in a seven- to 10-fold increase in the K(I) values, whereas the principal mode of inhibition was not affected by the organic solvent. The determination of the inhibitory parameters of compound 1 in the presence of acetonitrile revealed that the substance acts as a hyperbolic mixed-type inhibitor of acetylcholinesterase. The complex formed by the enzyme and the inhibitor still catalysed product formation with 8.7-9.6% relative efficiency.

  19. Global optogenetic activation of inhibitory interneurons during epileptiform activity.

    Science.gov (United States)

    Ledri, Marco; Madsen, Marita Grønning; Nikitidou, Litsa; Kirik, Deniz; Kokaia, Merab

    2014-02-26

    Optogenetic techniques provide powerful tools for bidirectional control of neuronal activity and investigating alterations occurring in excitability disorders, such as epilepsy. In particular, the possibility to specifically activate by light-determined interneuron populations expressing channelrhodopsin-2 provides an unprecedented opportunity of exploring their contribution to physiological and pathological network activity. There are several subclasses of interneurons in cortical areas with different functional connectivity to the principal neurons (e.g., targeting their perisomatic or dendritic compartments). Therefore, one could optogenetically activate specific or a mixed population of interneurons and dissect their selective or concerted inhibitory action on principal cells. We chose to explore a conceptually novel strategy involving simultaneous activation of mixed populations of interneurons by optogenetics and study their impact on ongoing epileptiform activity in mouse acute hippocampal slices. Here we demonstrate that such approach results in a brief initial action potential discharge in CA3 pyramidal neurons, followed by prolonged suppression of ongoing epileptiform activity during light exposure. Such sequence of events was caused by massive light-induced release of GABA from ChR2-expressing interneurons. The inhibition of epileptiform activity was less pronounced if only parvalbumin- or somatostatin-expressing interneurons were activated by light. Our data suggest that global optogenetic activation of mixed interneuron populations is a more effective approach for development of novel therapeutic strategies for epilepsy, but the initial action potential generation in principal neurons needs to be taken in consideration.

  20. Design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter targeting potential agents for Alzheimer's disease.

    Science.gov (United States)

    Kogen, Hiroshi; Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio

    2002-10-03

    Highly efficient acetylcholinesterase (AChE) and serotonin transporter (SERT) dual inhibitors, (S)-4 and (R)-13 were designed and synthesized on the basis of the hypothetical model of AChE active site. Both compounds showed potent inhibitory activities against AChE and SERT. [structure: see text

  1. Determination of Antioxidant, Anticholinesterase, Tyrosinase Inhibitory Activities and Fatty Acid Profiles of 10 Anatolian Klasea Cass. Species

    Directory of Open Access Journals (Sweden)

    Gülsen Tel

    2016-01-01

    Full Text Available In search of new natural fatty acid sources, extract of 10 different Turkish Klasea species were studies. Fatty acids of Klasea species were studied by GC and GC-MSD. Oleic acid (4.8-45.8%, palmitic acid (15.6-51.8%, linoleic acid (0.3-45.5%, palmitoleic acid (0.8-28.4% and linolenic acid (15.6-34.6% were the main fatty acids elucidated. All extracts were also subjected to acetylcholinesterase, butyrylcholinesterase, tyrosinase, β-carotene-linoleic acid, DPPH • scavenging, CUPRAC and ferrous ion-chelating ability activities. Total flavonoid and phenolic contents were determined as quercetin and pyrocatechol equivalents. All extracts showed significant antioxidant activity in all tests, except hexane extracts of K. serratuloides and K. cerinthifolia that showed weak inhibition against BChE and AChE. The hexane extract of K. coriaceae and methanol extract of K. serratuloides exhibited notable tyrosinase inhibitory activity.

  2. Triterpenoidal alkaloids from Buxus hyrcana and their enzyme inhibitory, anti-fungal and anti-leishmanial activities.

    Science.gov (United States)

    Ata, Athar; Iverson, Chad D; Kalhari, Kosmulalage S; Akhter, Sarfraz; Betteridge, Jordan; Meshkatalsadat, Mohammad Hadi; Orhan, Ilkay; Sener, Bilge

    2010-10-01

    From the aerial parts of Buxus hyrcana, three triterpenoidal alkaloids, 17-oxo-3-benzoylbuxadine (1), buxhyrcamine (2), and 31-demethylcyclobuxoviridine (3), along with 16 known compounds, cyclobuxoviridine (4), N(b)-dimethylcyclobuxoviricine (5), E-buxenone (6), Z-buxenone (7), moenjodaramine (8), homomoenjodarmine (9), buxamine A (10), buxamine B (11), 31-hydroxybuxamine B (12), N(20)-formylbuxaminol E (13), papillozine C (14), buxmicrophylline F (15), buxrugulosamine (16), cyclobuxophylline O (17), spirofornabuxine (18) and arbora-1,9(11)-dien-3-one (19) were isolated. Their structures were elucidated by using NMR spectroscopic methods. All of the compounds exhibited moderate to weak acetylcholinesterase, butyrylcholinesterase and glutathione S-transferase inhibitory activities. Compounds 1-19 also exhibited modest anti-fungal activities against Candidaalbicans. Compounds 1, 2, 8, 9 and 18 also exhibited weak anti-leishmanial activity.

  3. Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species.

    Science.gov (United States)

    Orhan, Nilufer; Orhan, Ilkay Erdogan; Ergun, Fatma

    2011-09-01

    In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory and antioxidant activities of the aqueous and ethanol extracts of the leaves, ripe fruits, and unripe fruits of Juniperus communis ssp. nana, Juniperus oxycedrus ssp. oxycedrus, Juniperus sabina, Juniperus foetidissima, and Juniperus excelsa were investigated in the present study. Cholinesterase inhibition of the extracts was screened using ELISA microplate reader. Antioxidant activity of the extracts was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging, ferrous ion-chelating, and ferric-reducing antioxidant power (FRAP) assays. Total phenol and flavonoid contents of the extracts were determined spectrophotometrically. The extracts had low or no inhibition towards AChE, whereas the leaf aqueous extract of J. foetidissima showed the highest BChE inhibition (93.94 ± 0.01%). The leaf extracts usually exerted higher antioxidant activity. We herein describe the first study on anticholinesterase and antioxidant activity by the methods of ferrous ion-chelating, superoxide radical scavenging, and ferric-reducing antioxidant power (FRAP) assays of the mentioned Juniperus species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Antioxidant and cholinesterases inhibitory activities of Verbascum xanthophoeniceum Griseb. and its phenylethanoid glycosides.

    Science.gov (United States)

    Georgiev, Milen; Alipieva, Kalina; Orhan, Ilkay; Abrashev, Radoslav; Denev, Petko; Angelova, Maria

    2011-09-01

    The members of Verbascum L. (Scrophulariaceae) are known to be rich in phenylethnoid glycosides, and among them Verbascum xanthophoeniceum is an endemic plant species for the Balkan region, Northwestern, and Southern Turkey. A scheme was developed for the isolation of the main active constituents that accumulate in plant aerial parts. The antioxidant activities of total methanol extracts, collected phenylethanoid glycosides fractions and specific active constituents (forsythoside B, verbascoside and leucosceptoside B) were then evaluated in 2,2'-diphenyl-1-picrylhydrazyl (DPPH·), oxygen radical absorbance capacity (ORACFL), hydroxyl radical averting capacity (HORACFL), ferric-reducing antioxidant power (FRAP), and superoxide anion (O2(-)) radical scavenging assays. In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChe) inhibitory activities of abovementioned extracts, fractions and isolated pure compounds were also examined. Depending on the method used, forsythoside B, verbascoside and leucosceptoside B proved to be effective radical scavengers and cholinesterases inhibitors. On the basis of these findings it can be proposed that in addition to providing a potent source of antimicrobial and anti-inflammatory compounds, Verbascum plants could serve as attractive mines of powerful antioxidants for various purposes.

  5. Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors.

    Science.gov (United States)

    Kračmarová, Alžběta; Drtinová, Lucie; Pohanka, Miroslav

    2015-01-01

    Acetylcholinesterase is an enzyme responsible for termination of excitatory transmission at cholinergic synapses by the hydrolyzing of a neurotransmitter acetylcholine. Nowadays, other functions of acetylcholinesterase in the organism are considered, for example its role in regulation of apoptosis. Cholinergic nervous system as well as acetylcholinesterase activity is closely related to pathogenesis of Alzheimer disease. The mostly used therapy of Alzheimer disease is based on enhancing cholinergic function using inhibitors of acetylcholinesterase like rivastigmine, donepezil or galantamine. These drugs can influence not only the acetylcholinesterase activity but also other processes in treated organism. The paper is aimed mainly on possibility of increased expression and protein level of acetylcholinesterase caused by the therapy with acetylcholinesterase inhibitors.

  6. Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Alžběta Kračmarová

    2015-08-01

    Full Text Available Acetylcholinesterase is an enzyme responsible for termination of excitatory transmission at cholinergic synapses by the hydrolyzing of a neurotransmitter acetylcholine. Nowadays, other functions of acetylcholinesterase in the organism are considered, for example its role in regulation of apoptosis. Cholinergic nervous system as well as acetylcholinesterase activity is closely related to pathogenesis of Alzheimer disease. The mostly used therapy of Alzheimer disease is based on enhancing cholinergic function using inhibitors of acetylcholinesterase like rivastigmine, donepezil or galantamine. These drugs can influence not only the acetylcholinesterase activity but also other processes in treated organism. The paper is aimed mainly on possibility of increased expression and protein level of acetylcholinesterase caused by the therapy with acetylcholinesterase inhibitors.

  7. Complement inhibitory and anticoagulant activities of fractionated heparins

    NARCIS (Netherlands)

    Hennink, W.E.; Klerx, J.P.A.M.; Dijk, H. van; Feijen, J.

    1984-01-01

    Almost monodisperse heparin fractions (w/n < 1.1) were obtained by gel filtration of a commercial heparin. These fractions were assayed for anticoagulant activity (thrombin times and APTT), chromogenic anti-factor Xa activity, inhibitory activity for the human classical complement pathway, carboxyl

  8. Guarana (Paullinia cupana) ameliorates memory impairment and modulates acetylcholinesterase activity in Poloxamer-407-induced hyperlipidemia in rat brain.

    Science.gov (United States)

    Ruchel, Jader B; Braun, Josiane B S; Adefegha, Stephen A; Guedes Manzoni, Alessandra; Abdalla, Fátima H; de Oliveira, Juliana S; Trelles, Kelly; Signor, Cristiane; Lopes, Sônia T A; da Silva, Cássia B; Castilhos, Lívia G; Rubin, Maribel A; Leal, Daniela B R

    2017-01-01

    Hyperlipidemia is a risk factor for the development of cognitive dysfunction and atherosclerosis. Natural compounds have recently received special attention in relation to the treatment of disease due to their low cost and wide margin of safety. Thus, the aim of this study was to determine the possible preventive effect of guarana powder (Paullinia cupana) on memory impairment and acetylcholinesterase (AChE) activity in the brain structures of rats with Poloxamer-407-induced hyperlipidemia. Adult male Wistar rats were pretreated with guarana (12.5, 25 and 50mg/kg/day) and caffeine (0.2mg/kg/day) by gavage for a period of 30days. Simvastatin (0.04mg/kg) was administered as a comparative standard. Acute hyperlipidemia was induced with intraperitoneal injections of 500mg/kg of Poloxamer-407. Memory tests and evaluations of anxiety were performed. The cortex, cerebellum, hippocampus, hypothalamus and striatum were separated to assess acetylcholinesterase activity. Our results revealed that guarana powder was able to reduce the levels of TC and LDL-C in a manner similar to simvastatin. Guarana powder also partially reduced the liver damage caused by hyperlipidemia. Guarana was able to prevent changes in the activity of AChE and improve memory impairment due to hyperlipidemia. Guarana powder may therefore be a source of promising phytochemicals that can be used as adjuvant therapy in the management of hyperlipidemia and cognitive disorders.

  9. Quercetin Improves Neurobehavioral Performance Through Restoration of Brain Antioxidant Status and Acetylcholinesterase Activity in Manganese-Treated Rats.

    Science.gov (United States)

    Adedara, Isaac A; Ego, Valerie C; Subair, Temitayo I; Oyediran, Oluwasetemi; Farombi, Ebenezer O

    2017-01-31

    The present study investigated the neuroprotective mechanism of quercetin by assessing the biochemical and behavioral characteristics in rats sub-chronically treated with manganese alone at 15 mg/kg body weight or orally co-treated with quercetin at 10 and 20 mg/kg body weight for 45 consecutive days. Locomotor behavior was monitored using video-tracking software during a 10-min trial in a novel environment whereas the brain regions namely the hypothalamus, cerebrum and cerebellum of the rats were processed for biochemical analyses. Results indicated that co-treatment with quercetin significantly (p < 0.05) prevented manganese-induced locomotor and motor deficits specifically the decrease in total distance travelled, total body rotation, maximum speed, absolute turn angle as well as the increase in time of immobility and grooming. The improvement in the neurobehavioral performance of manganese-treated rats following quercetin co-treatment was confirmed by track and occupancy plot analyses. Moreover, quercetin assuaged manganese-induced decrease in antioxidant enzymes activities and the increase in acetylcholinesterase activity, hydrogen peroxide generation and lipid peroxidation levels in the hypothalamus, cerebrum and cerebellum of the rats. Taken together, quercetin mechanisms of ameliorating manganese-induced neurotoxicity is associated with restoration of acetylcholinesterase activity, augmentation of redox status and inhibition of lipid peroxidation in brain of rats.

  10. Acetylcholinesterase inhibition, antioxidant activity and toxicity of Peumus boldus water extracts on HeLa and Caco-2 cell lines.

    Science.gov (United States)

    Falé, P L; Amaral, F; Amorim Madeira, P J; Sousa Silva, M; Florêncio, M H; Frazão, F N; Serralheiro, M L M

    2012-08-01

    This work aimed to study the inhibition on acetylcholinesterase activity (AChE), the antioxidant activity and the toxicity towards Caco-2 and HeLa cells of aqueous extracts of Peumus Boldus. An IC(50) value of 0.93 mg/mL, for AChE inhibition, and EC(50) of 18.7 μg/mL, for the antioxidant activity, was determined. This activity can be attributed to glycosylated flavonoid derivatives detected, which were the main compounds, although boldine and other aporphine derivatives were also present. No changes in the chemical composition or the biochemical activities were found after gastrointestinal digestion. Toxicity of P. boldus decoction gave an IC(50) value 0.66 mg/mL for HeLa cells, which caused significant changes in the cell proteome profile. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Effect of the methanol leaves extract of Clinacanthus nutans on the activity of acetylcholinesterase in male mice

    Institute of Scientific and Technical Information of China (English)

    Lau KW; Lee SK; Chin JH

    2014-01-01

    Objective:To evaluate thein vivoeffect of14 d repeatedly oral administration ofClinacanthus nutans(C. nutans) methanol leaves extract(250 mg/kg,500 mg/kg and1000 mg/kg bw) on the acetylcholinesterase(AChE) activity in maleBalb/C mice.Method:First group was served as control group, orally treated with distilled water as vehicle and group2-4 were orally treated with a single daily dose of250 mg/kg,500 mg/kg and1000 mg/kg bw ofC. nutans extract, respectively for14 d.Each group consisted of six animals(n=6).The activity of acetylcholinesterase in brain, liver, kidney and heart of mice was determined according toEllman method(1961).Results:From the results obtained, theAChE activity was found to be highest in mice liver, followed by brain, kidney and heart.Methanol extract ofC. nutans leaves at250 mg/kg(P<0.001),500 mg/kg(P<0.001) and1000 mg/kg(P<0.001) showed a significant increase in theAChE activity in mice kidney, liver and heart.On the other hand, theAChE activity obtained from the mice brain showed insignificant difference between the control group and treatment group.However, there was no abnormal behavioural change and adverse effect related to the central nervous system observed in all treated mice during14 d experimentation period.Conclusion:In conclusion,14 d oral administration ofC. nutans was able to modulate cholinergic neurotransmission by activating AChE activity in mice kidney, liver and heart.Compounds that responsible for the induction of AChE activity in mice liver, heart and kidney and its mechanism needs to be elucidated.

  12. Inhibitory effect of burdock leaves on elastase and tyrosinase activity

    Science.gov (United States)

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-01-01

    Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the

  13. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    Science.gov (United States)

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  14. Combined approach to demonstrate acetylcholinesterase activity changes in the rat brain following tabun intoxication and its treatment.

    Science.gov (United States)

    Bajgar, Jiri; Hajek, Petr; Kassa, Jiri; Slizova, Dasa; Krs, Otakar; Karasova, Jana Zdarova; Fusek, Josef; Capek, Lukas; Voicu, Victor A

    2012-01-01

    Reactivation effects of K203 and currently available oximes (obidoxime, HI-6) in combination with atropine on acetylcholinesterase activities in the brain parts of rats poisoned with tabun were studied. The activity was determined by quantitative histochemical and biochemical methods correlating between them very well. The tabun-induced changes in acetylcholinsterase activity as well as in reactivation potency of reactivators used were different in various parts of the brain. Pontomedullar area seems to be important for observed changes following tabun intoxication and its treatment. From the oximes studied, the reactivation effect of K203 was comparable with obidoxime; HI-6 was ineffective. Combination of bio- and histochemical methods allow fine differentiation among the action of different oximes following tabun poisoning.

  15. Inhibition of acetylcholinesterase activity in the terrestrial isopod Porcellio scaber as a biomarker of organophosphorus compounds in food.

    Science.gov (United States)

    Stanek, Katja; Gabrijelcic, Elizabeta; Drobne, Damjana; Trebse, Polonca

    2003-09-01

    This paper describes the toxicity of organophosphorus pesticide diazinon in juvenile and adult terrestrial isopods Porcellio scaber (Isopoda, Crustacea). The woodlice were exposed to different concentrations of diazinon added to food (5, 10, 50, and 100 or 150 micrograms/g dry food). Weight change and food assimilation efficiency were determined two and four weeks after the exposure. The activity of acetylcholinesterase (AChE) in surviving animals was measured at the end of the experiment. The results show that woodlice exposed to diazinon do not significantly differ from controls in growth and feeding rate. The reduction of AChE activity was observed at the lowest diazinon exposure (5 and 10 micrograms/g dry food). These results suggest that AChE activity might prove a useful biomarker, indicating low levels of organophosphates in food.

  16. Antioxidant and Acetylcholinesterase Inhibiting Activity of Several Aqueous Tea Infusions in vitro

    Directory of Open Access Journals (Sweden)

    Višnja Katalinić

    2008-01-01

    Full Text Available A study of antioxidant activity and acetylcholineste ase (AChE inhibitory activity of aqueous tea infusions prepared from walnut (Juglans regia L., peppermint (Mentha×piperita L., strawberry (Fragaria×ananassa L., lemon balm (Melissa officinalis L., sage (Salvia officinalis L., and immortelle (Helichrysum arenarium (L. Moench. is presented here. Chemical composition of selected aqueous tea infusions was determined by high-performance liquid chromatography with photodiode-array method (HPLC-PDA, and the following phenolic compounds were identified as dominant: rosmarinic acid, gallic acid (not identified in walnut and sage, caffeic acid (in sage and peppermint, neochlorogenic acid, 3-p-coumaroylquinic acid and quercetin 3-galactoside (in walnut and luteolin 7-O-glucoside (in sage. Antioxidant activity of the selected aqueous tea infusions was measured using low-density lipoprotein (LDL oxidation method, 2,2'-diphenyl-1-picrylhydrazyl (DPPH radical scavenging test, β-carotene bleaching method, and Rancimat method (induction period of lard oxidation. Strawberry and lemon balm aqueous infusions completely inhibited LDL oxidation at the concentration of 0.005 g/L in the reacting system. Very long prolongation of the lag phase was achieved with peppermint and sage aqueous infusions. All tested infusions in the concentration range of 0.05–2.85 g/L showed very pronounced effect of DPPH scavenging activity (90–100 % as well as the inhibition of β-carotene bleaching (89–100 %. In pure lipid medium, used in Rancimat method, sage and immortelle at the concentration of 0.16 % (by mass had the highest ability to inhibit lipid peroxidation process. Screening of the AChE inhibitory activity by Ellman´s method showed that the strongest inhibition was obtained with walnut and strawberry aqueous infusions at the concentration of 1.36 g/L in the reacting system. The presented results suggest that natural antioxidants could be useful and merit further

  17. Acetylcholinesterase enzyme inhibitor activity of some novel pyrazinamide condensed 1,2,3,4-tetrahydropyrimidines

    Directory of Open Access Journals (Sweden)

    Karthikeyan Elumalai

    2015-03-01

    Full Text Available A new series of some novel pyrazinamide condensed 1,2,3,4-tetrahydropyrimidines was prepared by reacting of N-(3-oxobutanoylpyrazine-2-carboxamide with urea/thiourea and appropriate aldehyde in the presence of catalytic amount of laboratory made p-toluenesulfonic acid as an efficient catalyst. Confirmation of the chemical structure of the synthesized compounds (4a–l was substantiated by TLC, different spectral data IR, 1H NMR, mass spectra and elemental analysis. The synthesized compounds were evaluated for acetyl and butyl cholinesterase (AChE and BuChE inhibitor activity. The titled compounds exhibited weak, moderate or high AChE and BuChE inhibitor activity. Especially, compound (4l showed the best AChE and BuChE inhibitory activity of all the 1,2,3,4-tetrahydropyrimidine derivatives, with an IC50 value of 0.11 μM and 3.4 μM.

  18. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    Energy Technology Data Exchange (ETDEWEB)

    Flaskos, J., E-mail: flaskos@vet.auth.gr [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Nikolaidis, E. [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Harris, W. [School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); Sachana, M. [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Hargreaves, A.J., E-mail: alan.hargreaves@ntu.ac.uk [School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom)

    2011-11-15

    Previous work in our laboratory has shown that sub-lethal concentrations (1-10 {mu}M) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1-10 {mu}M) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, there was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH. -- Highlights: Black-Right-Pointing-Pointer Sub-lethal levels of chlorpyrifos oxon inhibit neurite outgrowth in N2a cells Black-Right-Pointing-Pointer Acetylcholinesterase exhibits sustained inhibition throughout exposure Black-Right-Pointing-Pointer The levels of neurofilament heavy chain and GAP-43

  19. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction.

    Directory of Open Access Journals (Sweden)

    Arshia Hematpoor

    Full Text Available Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480, the peripheral sites (PAS: E72, W271 and anionic binding site (W83. The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket.

  20. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction.

    Science.gov (United States)

    Hematpoor, Arshia; Liew, Sook Yee; Chong, Wei Lim; Azirun, Mohd Sofian; Lee, Vannajan Sanghiran; Awang, Khalijah

    2016-01-01

    Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae) toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE) inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480), the peripheral sites (PAS: E72, W271) and anionic binding site (W83). The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket.

  1. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction

    Science.gov (United States)

    Hematpoor, Arshia; Liew, Sook Yee; Chong, Wei Lim; Azirun, Mohd Sofian; Lee, Vannajan Sanghiran; Awang, Khalijah

    2016-01-01

    Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae) toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE) inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480), the peripheral sites (PAS: E72, W271) and anionic binding site (W83). The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket. PMID:27152416

  2. A recombinant wheat serpin with inhibitory activity

    DEFF Research Database (Denmark)

    Rasmussen, Søren K; Dahl, Søren Weis; Nørgård, Anette

    1996-01-01

    A full-length clone encoding the wheat (Triticum aestivum L.) serpin WSZ1 was isolated from a cDNA library based on mRNA from immature grain. The 398 amino acid sequence deduced from the cDNA was corroborated by sequencing CNBr peptides of WSZ1 purified from resting grain. WSZ1 belongs...... to the subfamily of protein Z-type serpins and the amino acid sequence is 70%, identical with the barley serpins BSZ4 and BSZx and 27-33% identical with human serpins such as alpha(1)-proteinase inhibitor, antithrombin III, and plasminogen activator inhibitor. The cDNA was subcloned in the pET3d expression vector......, equipped with a histidine affinity tag at the N-terminus and expressed in Escherichia coli BL(21) DE3 pLysS. Recombinant WSZ1 from the soluble fraction was partially purified on Ni-NTA agarose and MonoQ columns and shown to form SDS-stable complexes with sc-chymotrypsin. Southern blots and amino acid...

  3. Synthesis, topoisomerase I inhibitory and cytotoxic activities of chromone derivatives.

    Science.gov (United States)

    Maicheen, Chirattikan; Jittikoon, Jiraphun; Vajragupta, Opa; Ungwitayatorn, Jiraporn

    2013-05-01

    A series of chromone derivatives were designed as potential topoisomerase I (Top I) inhibitors based on the docking simulation study. Sixteen synthesized compounds were evaluated for Top I inhibitory activity and some compounds were further tested for in vitro cytotoxic activity. The most potent inhibitor, chromone 11b showed greater inhibitory activity (IC50 = 1.46 μM) than the known Top I inhibitors, i.e., camptothecin, fisetin and morin, but inactive against breast cancer cell (MCF-7), oral cavity cancer cell (KB) and small cell lung cancer (NCI-H187). Chromone 11c, another potent inhibitor (IC50 = 6.16 μM), exhibited cytotoxic activity against KB (IC50 = 73.32 μM) and NCI-H187 (IC50 = 36.79 μM).

  4. Energetics of Ortho-7 (oxime drug) translocation through the active-site gorge of tabun conjugated acetylcholinesterase.

    Science.gov (United States)

    Sinha, Vivek; Ganguly, Bishwajit; Bandyopadhyay, Tusar

    2012-01-01

    Oxime drugs translocate through the 20 Å active-site gorge of acetylcholinesterase in order to liberate the enzyme from organophosphorus compounds' (such as tabun) conjugation. Here we report bidirectional steered molecular dynamics simulations of oxime drug (Ortho-7) translocation through the gorge of tabun intoxicated enzyme, in which time dependent external forces accelerate the translocation event. The simulations reveal the participation of drug-enzyme hydrogen bonding, hydrophobic interactions and water bridges between them. Employing nonequilibrium theorems that recovers the free energy from irreversible work done, we reconstruct potential of mean force along the translocation pathway such that the desired quantity represents an unperturbed system. The potential locates the binding sites and barriers for the drug to translocate inside the gorge. Configurational entropic contribution of the protein-drug binding entity and the role of solvent translational mobility in the binding energetics is further assessed.

  5. [Distribution of acetylcholinesterase activity in the digestive system of the gastropod molluscs Littorina littorea and Achatina fulica].

    Science.gov (United States)

    Zaĭtseva, O V; Kuznetsova, T V

    2008-01-01

    With the use of the histochemical procedure for the demonstration of acetylcholinesterase (AchE) activity, the distribution cholinergic regulatory elements was studied in the esophagus, the pharynx, the stomach, the liver (the digestive gland) and the intestine in sea and terrestrial gastropod molluscs that differed in their general organization level, lifestyle, habitat and feeding type. In both molluscs, all the parts of the digestive tract contained the significant amount of intraepithelial AchE-positive cells of the open type, single subepithelial neurons and the nervous fibers localized among the muscle cells of the wall of the organs. The basal processes of the AchE-positive intraepithelial cells were shown to form the intraepithelial nerve plexus and to pass under the epithelium. The peculiarities and common principles in the distribution of the nervous elements detected, their possible function and the regulatory role in the digestion in gastropod molluscs and other animals are discussed.

  6. Energetics of Ortho-7 (oxime drug translocation through the active-site gorge of tabun conjugated acetylcholinesterase.

    Directory of Open Access Journals (Sweden)

    Vivek Sinha

    Full Text Available Oxime drugs translocate through the 20 Å active-site gorge of acetylcholinesterase in order to liberate the enzyme from organophosphorus compounds' (such as tabun conjugation. Here we report bidirectional steered molecular dynamics simulations of oxime drug (Ortho-7 translocation through the gorge of tabun intoxicated enzyme, in which time dependent external forces accelerate the translocation event. The simulations reveal the participation of drug-enzyme hydrogen bonding, hydrophobic interactions and water bridges between them. Employing nonequilibrium theorems that recovers the free energy from irreversible work done, we reconstruct potential of mean force along the translocation pathway such that the desired quantity represents an unperturbed system. The potential locates the binding sites and barriers for the drug to translocate inside the gorge. Configurational entropic contribution of the protein-drug binding entity and the role of solvent translational mobility in the binding energetics is further assessed.

  7. Zebrafish locomotor capacity and brain acetylcholinesterase activity is altered by Aphanizomenon flos-aquae DC-1 aphantoxins.

    Science.gov (United States)

    Zhang, De Lu; Hu, Chun Xiang; Li, Dun Hai; Liu, Yong Ding

    2013-08-15

    Aphanizomenon flos-aquae (A. flos-aquae) is a source of neurotoxins known as aphantoxins or paralytic shellfish poisons (PSPs) that present a major threat to the environment and to human health. Generally, altered neurological function is reflected in behavior. Although the molecular mechanism of action of PSPs is well known, its neurobehavioral effects on adult zebrafish and its relationship with altered neurological functions are poorly understood. Aphantoxins purified from a natural isolate of A. flos-aquae DC-1 were analyzed by HPLC. The major analogs found in the toxins were the gonyautoxins 1 and 5 (GTX1 and GTX5; 34.04% and 21.28%, respectively) and the neosaxitoxin (neoSTX, 12.77%). Zebrafish (Danio rerio) were intraperitoneally injected with 5.3 and 7.61 μg STXeq/kg (low and high dose, respectively) of A. flos-aquae DC-1 aphantoxins. The swimming activity was investigated by observation combined with video at 6 timepoints from 1 to 24 h post-exposure. Both aphantoxin doses were associated with delayed touch responses, reduced head-tail locomotory abilities, inflexible turning of head, and a tailward-shifted center of gravity. The normal S-pattern (or undulating) locomotor trajectory was replaced by a mechanical motor pattern of swinging the head after wagging the tail. Finally, these fish principally distributed at the top and/or bottom water of the aquarium, and showed a clear polarized distribution pattern at 12 h post-exposure. Further analysis of neurological function demonstrated that both aphantoxin doses inhibited brain acetylcholinesterase activity. All these changes were dose- and time-dependent. These results demonstrate that aphantoxins can alter locomotor capacity, touch responses and distribution patterns by damaging the cholinergic system of zebrafish, and suggest that zebrafish locomotor behavior and acetylcholinesterase can be used as indicators for investigating aphantoxins and blooms in nature. Published by Elsevier B.V.

  8. Design, synthesis characterization and in vitro biological activity of a series of 3-aryl-6-(bromoarylmethyl)-7H-thiazolo[3,2-b]-1, 2, 4-triazin-7-one derivatives as the novel acetylcholinesterase inhibitors

    Institute of Scientific and Technical Information of China (English)

    He Nan Xu; Zhe Jin; Si Jie Liu; Hong Min Liu; Shuo Li; Huang Quan Lin; David Chicheong Wan; Chun Hu

    2012-01-01

    Bromination is used as a strategy to improve biological activity in medicinal chemistry.In order to study on the structure-activity relationships of the novel acetylcholinesterase inhibitors with 7H-thiazolo[3,2-b]-1,2,4-triazin-7-one scaffold,based on our previous work and molecular modeling,a series of novel 3-aryl-6-(bromoarylmethyl)-7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives were designed by molecular docking,synthesized and characterized by mass spectra,infrared spectra,proton NMR and elemental analyses.The study of AChE inhibitory activity was carried out using the Ellman colorimetric assay with huperzine-A as the positive control.Most of all target compounds exhibited more than 45% inhibition at 10 μmol/L.The preliminary structure-activity relationship was the bromine atoms and the hydroxyl group at the phenyl ring at the C6 position of the parent nucleus played significant roles in the AChE inhibitory activity of the target compounds.

  9. Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart.

    Science.gov (United States)

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2016-02-02

    A successful prescription is presented for acetylcholinesterase physically adsorbed on to a mesoporous silicon surface, with a promising hydrolytic response towards acetylthiocholine iodide. The catalytic behaviour of the immobilized enzyme was assessed by spectrophotometric bioassay using neostigmine methyl sulfate as a standard acetycholinesterase inhibitor. The surface modification was studied through field emission SEM, Fourier transform IR spectroscopy, energy-dispersive X-ray spectroscopy, cathode luminescence and X-ray photoelectron spectroscopy analysis, photoluminescence measurement and spectrophotometric bioassay. The porous silicon-immobilized enzyme not only yielded greater enzyme stability, but also significantly improved the native photoluminescence at room temperature of the bare porous silicon architecture. The results indicated the promising catalytic behaviour of immobilized enzyme compared with that of its free counterpart, with a greater stability, and that it aided reusability and easy separation from the reaction mixture. The porous silicon-immobilized enzyme was found to retain 50% of its activity, promising thermal stability up to 90°C, reusability for up to three cycles, pH stability over a broad pH of 4-9 and a shelf-life of 44 days, with an optimal hydrolytic response towards acetylthiocholine iodide at variable drug concentrations. On the basis of these findings, it was believed that the porous silicon-immobilized enzyme could be exploited as a reusable biocatalyst and for screening of acetylcholinesterase inhibitors from crude plant extracts and synthesized organic compounds. Moreover, the immobilized enzyme could offer a great deal as a viable biocatalyst in bioprocessing for the chemical and pharmaceutical industries, and bioremediation to enhance productivity and robustness.

  10. Urease inhibitory activities of beta-boswellic acid derivatives

    Directory of Open Access Journals (Sweden)

    Reza Hajiaghaee

    2013-01-01

    Full Text Available Background and the purpose of the study: Boswellia carterii have been used in traditional medicine for many years for management different gastrointestinal disorders. In this study, we wish to report urease inhibitory activity of four isolated compound of boswellic acid derivative.Methods 4 pentacyclic triterpenoid acids were isolated from Boswellia carterii and identified by NMR and Mass spectroscopic analysis (compounds 1, 3-O-acetyl-9,11-dehydro-beta-boswellic acid; 2, 3-O-acetyl-11-hydroxy-beta-boswellic acid; 3. 3-O- acetyl-11-keto-beta-boswellic acid and 4, 11-keto-beta-boswellic acid. Their inhibitory activity on Jack bean urease were evaluated. Docking and pharmacophore analysis using AutoDock 4.2 and Ligandscout 3.03 programs were also performed to explain possible mechanism of interaction between isolated compounds and urease enzyme.Results It was found that compound 1 has the strongest inhibitory activity against Jack bean urease (IC50 = 6.27 +/- 0.03 muM, compared with thiourea as a standard inhibitor (IC50 = 21.1 +/- 0.3 muM.Conclusion The inhibition potency is probably due to the formation of appropriate hydrogen bonds and hydrophobic interactions between the investigated compounds and urease enzyme active site and confirms its traditional usage.

  11. Urease inhibitory activities of β-boswellic acid derivatives

    Directory of Open Access Journals (Sweden)

    Amanlou Massoud

    2013-01-01

    Full Text Available Abstract Background and the purpose of the study Boswellia carterii have been used in traditional medicine for many years for management different gastrointestinal disorders. In this study, we wish to report urease inhibitory activity of four isolated compound of boswellic acid derivative. Methods 4 pentacyclic triterpenoid acids were isolated from Boswellia carterii and identified by NMR and Mass spectroscopic analysis (compounds 1, 3-O-acetyl-9,11-dehydro-β-boswellic acid; 2, 3-O-acetyl-11-hydroxy-β-boswellic acid; 3. 3-O- acetyl-11-keto-β-boswellic acid and 4, 11-keto-β-boswellic acid. Their inhibitory activity on Jack bean urease were evaluated. Docking and pharmacophore analysis using AutoDock 4.2 and Ligandscout 3.03 programs were also performed to explain possible mechanism of interaction between isolated compounds and urease enzyme. Results It was found that compound 1 has the strongest inhibitory activity against Jack bean urease (IC50 = 6.27 ± 0.03 μM, compared with thiourea as a standard inhibitor (IC50 = 21.1 ± 0.3 μM. Conclusion The inhibition potency is probably due to the formation of appropriate hydrogen bonds and hydrophobic interactions between the investigated compounds and urease enzyme active site and confirms its traditional usage.

  12. Plants from Brazilian Cerrado with potent tyrosinase inhibitory activity.

    Directory of Open Access Journals (Sweden)

    Paula Monteiro Souza

    Full Text Available The increased amount of melanin leads to skin disorders such as age spots, freckles, melasma and malignant melanoma. Tyrosinase is known to be the key enzyme in melanin production. Plants and their extracts are inexpensive and rich resources of active compounds that can be utilized to inhibit tyrosinase as well as can be used for the treatment of dermatological disorders associated with melanin hyperpigmentation. Using in vitro tyrosinase inhibitory activity assay, extracts from 13 plant species from Brazilian Cerrado were evaluated. The results showed that Pouteria torta and Eugenia dysenterica extracts presented potent in vitro tyrosinase inhibition compared to positive control kojic acid. Ethanol extract of Eugenia dysenterica leaves showed significant (p<0.05 tyrosinase inhibitory activity exhibiting the IC₅₀ value of 11.88 µg/mL, compared to kojic acid (IC₅₀ value of 13.14 µg/mL. Pouteria torta aqueous extract leaves also showed significant inhibitory activity with IC₅₀ value of 30.01 µg/mL. These results indicate that Pouteria torta and Eugenia dysenterica extracts and their isolated constituents are promising agents for skin-whitening or antimelanogenesis formulations.

  13. Prediction of PKCθ Inhibitory Activity Using the Random Forest Algorithm

    Directory of Open Access Journals (Sweden)

    Shuwei Zhang

    2010-09-01

    Full Text Available This work is devoted to the prediction of a series of 208 structurally diverse PKCθ inhibitors using the Random Forest (RF based on the Mold2 molecular descriptors. The RF model was established and identified as a robust predictor of the experimental pIC50 values, producing good external R2pred of 0.72, a standard error of prediction (SEP of 0.45, for an external prediction set of 51 inhibitors which were not used in the development of QSAR models. By using the RF built-in measure of the relative importance of the descriptors, an important predictor—the number of group donor atoms for H-bonds (with N and O―has been identified to play a crucial role in PKCθ inhibitory activity. We hope that the developed RF model will be helpful in the screening and prediction of novel unknown PKCθ inhibitory activity.

  14. Tyrosinase inhibitory components from Aloe vera and their antiviral activity.

    Science.gov (United States)

    Kim, Jang Hoon; Yoon, Ju-Yeon; Yang, Seo Young; Choi, Seung-Kook; Kwon, Sun Jung; Cho, In Sook; Jeong, Min Hee; Ho Kim, Young; Choi, Gug Seoun

    2017-12-01

    A new compound, 9-dihydroxyl-2'-O-(Z)-cinnamoyl-7-methoxy-aloesin (1), and eight known compounds (2-9) were isolated from Aloe vera. Their structures were elucidated using 1D/2D nuclear magnetic resonance and mass spectra. Compound 9 exhibited reversible competitive inhibitory activity against the enzyme tyrosinase, with an IC50 value of 9.8 ± 0.9 µM. A molecular simulation revealed that compound 9 interacts via hydrogen bonding with residues His244, Thr261, and Val283 of tyrosinase. Additionally, compounds 3 and 7 were shown by half-leaf assays to exhibit inhibitory activity towards Pepper mild mottle virus.

  15. Pyridine alkaloids from Senna multijuga as acetylcholinesterase inhibitors.

    Science.gov (United States)

    Francisco, Welington; Pivatto, Marcos; Danuello, Amanda; Regasini, Luis O; Baccini, Luciene R; Young, Maria C M; Lopes, Norberto P; Lopes, João L C; Bolzani, Vanderlan S

    2012-03-23

    As part of an ongoing research project on Senna and Cassia species, five new pyridine alkaloids, namely, 12'-hydroxy-7'-multijuguinol (1), 12'-hydroxy-8'-multijuguinol (2), methyl multijuguinate (3), 7'-multijuguinol (4), and 8'-multijuguinol (5), were isolated from the leaves of Senna multijuga (syn. Cassiamultijuga). Their structures were elucidated on the basis of spectroscopic data analysis. Mass spectrometry was used for confirmation of the positions of the hydroxy groups in the side-chains of 1, 2, 4, and 5. All compounds exhibited weak in vitro acetylcholinesterase inhibitory activity as compared with the standard compound physostigmine.

  16. Death and rebirth of neural activity in sparse inhibitory networks

    OpenAIRE

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2016-01-01

    In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of the neural activity, as expected, but it can also promote neural reactivation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neurons' death). However, the random pruning of the connections is able to reverse the action of in...

  17. Urease inhibitory activities of beta-boswellic acid derivatives

    OpenAIRE

    Reza Hajiaghaee; Behnam Yousefi; Zinat Bahrampour Omrany; Farzaneh Nabati; Sahand Golestanian; Roya Bazl; Sanaz Golbabaei; "Shamsali Rezazadeh; Massoud Amanlou

    2013-01-01

    Background and the purpose of the study: Boswellia carterii have been used in traditional medicine for many years for management different gastrointestinal disorders. In this study, we wish to report urease inhibitory activity of four isolated compound of boswellic acid derivative.Methods 4 pentacyclic triterpenoid acids were isolated from Boswellia carterii and identified by NMR and Mass spectroscopic analysis (compounds 1, 3-O-acetyl-9,11-dehydro-beta-boswellic acid; 2, 3-O-acetyl-11-hydrox...

  18. Urease inhibitory activities of β-boswellic acid derivatives

    OpenAIRE

    Amanlou Massoud; Rezazadeh Shamsali; Hajiaghaee Reza; Nabati Farzaneh; Yousefi Behnam; Omrany Zinat Bahrampour; Golestanian Sahand; Bazl Roya; Golbabaei Sanaz

    2013-01-01

    Abstract Background and the purpose of the study Boswellia carterii have been used in traditional medicine for many years for management different gastrointestinal disorders. In this study, we wish to report urease inhibitory activity of four isolated compound of boswellic acid derivative. Methods 4 pentacyclic triterpenoid acids were isolated from Boswellia carterii and identified by NMR and Mass spectroscopic analysis (compounds 1, 3-O-acetyl-9,11-dehydro-β-boswellic acid; 2, 3-O-acetyl-11-...

  19. Synthesis, characterization, DNA-binding studies and acetylcholinesterase inhibition activity of new 3-formyl chromone derivatives.

    Science.gov (United States)

    Parveen, Mehtab; Malla, Ali Mohammed; Yaseen, Zahid; Ali, Akhtar; Alam, Mahboob

    2014-01-05

    A series of new substituted 3-formyl chromone derivatives (4-6) were synthesized by one step reaction methodology by knoevenagel condensation, structurally similar to known bisintercalators. The new compounds were characterized by IR, (1)H NMR, (13)C NMR, MS and analytical data. The in vitro DNA binding profile of compounds (4-6) was carried out by absorption, fluorescence and viscosity measurements. It was found that synthesized compounds, especially compound 6 (evident from binding constant value) bind strongly with calf thymus DNA, presumably via an intercalation mode. Additionally, molecular docking studies of compounds (4-6) were carried out with B-DNA (PDBID: 1BNA) which revealed that partial intercalative mode of mechanism is operational in synthesized compounds (4-6) with CT-DNA. The binding constants evaluated from fluorescence spectroscopy of compounds with CT-DNA follows the order compound 6>compound 5>compound 4. All the compounds (4-6) were screened for acetylcholinesterase inhibition assay. It can be inferred from data, that compound (6) showed potent AChE inhibition having IC50=0.27μM, almost in vicinity to reference drug Tacrine (IC50=0.19μM). Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Aqueous Extracts from Tunisian Diplotaxis: Phenol Content, Antioxidant and Anti-Acetylcholinesterase Activities, and Impact of Exposure to Simulated Gastrointestinal Fluids

    Directory of Open Access Journals (Sweden)

    Nada Bahloul

    2016-04-01

    Full Text Available Antioxidants have been considered essential for preventing cell damage by scavenging deleterious free radicals. The consumption of antioxidant-rich plants is associated with a reduced risk of some chronic diseases. This study evaluates the antioxidant and acetylcholinesterase inhibition activities of aqueous extracts obtained from different parts of Diplotaxis simplex and Diplotaxis harra from Tunisia. The study also aimed to investigate the action of simulated gastrointestinal juice on antioxidant activities of both extracts. The total phenolic, flavone and flavonol, and flavanone and dihydroflavonol contents were determined by Folin–Ciocalteau, aluminum chloride and 2,4-dinitrophenylhydrazine colorimetric methods, respectively. The metal ion chelating activity, acetylcholinesterase inhibition capacity, and free radical scavenging potential of the extracts towards ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid, DPPH (2,2-diphenyl-1-picrylhydrazyl, hydroxyl, superoxide and nitric oxide were also evaluated. The action of simulated gastro-intestinal fluids on the flavone and flavonol content and total antioxidant activity of the flower extracts was surveyed. Extracts from the seeds and flowers of D. simplex and D. harra displayed the highest amounts of phenols (2691.7 and 2694.5 mg Caffeic Acid Equivalent (CAE/100 mg; 3433.4 and 2647.2 mg CAE/100 mg, respectively and flavonols/flavones (2144.4 and 2061.1 mg Rutin Equivalent (RE/100 g; 1922.6 and 1461.1 mg RE/100 g, respectively. The flower and seed extracts exhibited the highest rates of antioxidant and acetylcholinesterase inhibition activities. A decrease in the flavonoid content and antioxidant activity was observed after extract exposure to simulated saliva. Antioxidant and acetylcholinesterase inhibition activities were noted to depend on plant species and plant parts. In vitro gastrointestinal digestion is useful in assessing the bio-accessibility of compounds with

  1. A comparative study on the relationship between acetylcholinesterase activity and acute toxicity in Daphnia magna exposed to anticholinesterase insecticides.

    Science.gov (United States)

    Printes, Liane Biehl; Callaghan, Amanda

    2004-05-01

    Acetylcholinesterase (AChE) activity was measured in Daphnia magna that had been exposed to four organophosphates (OPs; parathion, chlorpyrifos, malathion, and acephate) and one carbamate (propoxur) for 48 h. These results were related to acute toxicity (median effective concentration [EC50] for immobility). For the four OPs, the EC50s were 7.03 pM, 3.17 pM, 10.56 pM, and 309.82 microM, respectively. The EC50 for propoxur was 449.90 pM. Reduction in AChE activity was directly related to an increase in immobility in all chemicals tested. However, the ratio between the EC50 and the AChE median inhibiting concentration ranged from 0.31 to 0.90. A 50% reduction in AChE activity generally was associated with detrimental effects on mobility. However, for acephate, high levels of AChE inhibition (70%) were observed in very low concentrations and were not associated with immobility. In addition, increasing the concentration of acephate further had a slight negative effect on AChE activity but a strong detrimental effect on mobility. Binding sites other than AChE possibly are involved in acephate toxicity to D. magna. Our findings demonstrate different associations between AChE inhibition and toxicity when different chemicals are compared. Therefore, the value of using AChE activity as a biomarker in D. magna will be dependent on the chemical tested.

  2. Acute effects of chlorpyryphos-ethyl and secondary treated effluents on acetylcholinesterase and butyrylcholinesterase activities in Carcinus maenas

    Institute of Scientific and Technical Information of China (English)

    Jihene Ghedira; Jamel Jebali; Zied Bouraoui; Mohamed Banni; Lassaad Chouba; Hamadi Boussetta

    2009-01-01

    The acute effects of commercial formulation of chlorpyrifos-ethyl (Dursban(r)) and the secondary treated industrial/urban effluent (STIUE) exposure on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities in hepatopancreas and gills of Mediterranean crab Carcinus maenas were investigated. After 2 d of exposure to chlorpyriphos-ethyl, the AChE activity was inhibited in both organs at concentrations of 3.12 and 7.82 μg/L, whereas the BuChE was inhibited only at higher concentration 7.82 μg/L of commercial preparation Dursban(r). The exposure of crabs to Dursban(r) (3.12 μg/L) showed a significant decrement of AChE activity at 24 and 48 h, whereas the BuChE was inhibited only after 24 h and no inhibition for both enzymes was observed after 72 h. Moreover, a significant repression of AChE activity was observed in both organs of C. maenas exposed to 5% of STIUE. Our experiments indicated that the measurement of AChE activity in gills and hepatopancreas of C. meanas would be useful biomarker of organophosphorous (OP) and of neurotoxic effects of STIUE in Tunisia.

  3. Local salt substitutes "Obu-otoyo" activate acetylcholinesterase and butyrylcholinesterase and induce lipid peroxidation in rat brain.

    Science.gov (United States)

    Akinyemi, Ayodele J; Oboh, Ganiyu; Ademiluyi, Adedayo O

    2015-09-01

    Evidence has shown that ingestion of heavy metals can lead to neurodegenerative diseases. This study aimed to investigate the neurotoxic potential of salt substitutes (Obu-Otoyo); salt A (made by burning palm kernel shaft then soaked in water overnight and the extract from the resulting residue is used as the salt substitute) and salt B (an unrefined salt mined from a local site at Ilobu town, Osun-State, Nigeria) by assessing their effect on some key enzymes linked with neurodegenerative disease [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities] as well as on malondialdehyde (MDA) content of the rat brain. Salt substitutes were fed to normal rats as dietary inclusion at doses of 0.5 and 1.0% for 30 days. Thereafter, the effect of the salt substitutes on AChE and BChE activities as well as on MDA level in the rat brain was determined. The results revealed that the salt substitutes caused a significant (psalt substitutes on AChE and BChE activities could be attributed to the presence of some toxic heavy metals. Therefore, the ability of the salt substitutes to induce lipid peroxidation and activate AChE and BChE activities could provide some possible mechanism for their neurotoxic effect.

  4. Effects of the herbicides clomazone, quinclorac, and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen) (Heptapteridae).

    Science.gov (United States)

    dos Santos Miron, Denise; Crestani, Márcia; Rosa Shettinger, Maria; Maria Morsch, Vera; Baldisserotto, Bernardo; Angel Tierno, Miguel; Moraes, Gilberto; Vieira, Vania Lucia Pimentel

    2005-07-01

    Fingerlings of the silver catfish (Rhamdia quelen) were exposed to three herbicides widely used in rice culture in south Brazil: clomazone, quinclorac, and metsulfuron methyl. LC50 was determined and acetylcholinesterase (AChE) activity was evaluated in brain and muscle tissue of fish exposed to different herbicide concentrations after 96h (short term). The LC50 value (nominal concentration) was 7.32 mg/L for clomazone and 395 mg/L for quinclorac, but was not obtained for metsulfuron-methyl since all fingerlings survived the highest concentration of 1200 mg/L. Brain and muscle AChE activity in unexposed fish were 17.9 and 9.08 micromol/min/g protein, respectively. Clomazone significantly inhibited AChE activity in both tissues, achieving maximal inhibition of about 83% in brain and 89% in muscle tissue. In contrast, quinclorac and metsulfuron methyl caused increases in enzyme activity in the brain (98 and 179%, respectively) and inhibitions in muscle tissue (88 and 56%, respectively). This study demonstrated short-term effects of exposure to environmentally relevant concentrations of rice field herbicides on AChE activity in brain and muscle tissue of silver catfish.

  5. Local salt substitutes “Obu-otoyo” activate acetylcholinesterase and butyrylcholinesterase and induce lipid peroxidation in rat brain

    Science.gov (United States)

    Oboh, Ganiyu; Ademiluyi, Adedayo O.

    2015-01-01

    Evidence has shown that ingestion of heavy metals can lead to neurodegenerative diseases. This study aimed to investigate the neurotoxic potential of salt substitutes (Obu-Otoyo); salt A (made by burning palm kernel shaft then soaked in water overnight and the extract from the resulting residue is used as the salt substitute) and salt B (an unrefined salt mined from a local site at Ilobu town, Osun-State, Nigeria) by assessing their effect on some key enzymes linked with neurodegenerative disease [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities] as well as on malondialdehyde (MDA) content of the rat brain. Salt substitutes were fed to normal rats as dietary inclusion at doses of 0.5 and 1.0% for 30 days. Thereafter, the effect of the salt substitutes on AChE and BChE activities as well as on MDA level in the rat brain was determined. The results revealed that the salt substitutes caused a significant (psalt substitutes on AChE and BChE activities could be attributed to the presence of some toxic heavy metals. Therefore, the ability of the salt substitutes to induce lipid peroxidation and activate AChE and BChE activities could provide some possible mechanism for their neurotoxic effect. PMID:27486373

  6. Synthesis and biological activity of 3,6-diaryl-7H-thiazolo[3,2-b][1,2,4]triazin-7-one derivatives as novel acetylcholinesterase inhibitors

    Institute of Scientific and Technical Information of China (English)

    WAN; David; ChiCheong

    2010-01-01

    Acetylcholinesterase inhibitors played significant roles in treatment of Alzheimer’s disease.Based on the research foundation of our previous work and molecular modeling,twelve 3,6-diaryl-7H-thiazolo[3,2-b][1,2,4]triazin-7-one derivatives were synthesized and characterized by mass spectra,infrared spectra,NMR and elemental analyses.The study of AChE inhibitory activity was carried out using the Ellman colorimetric assay with huperzine-A as the positive control.All target compounds exhibited more than 40% inhibition at 10 μM.Some target compounds showed good inhibition against AChE.The preliminary structure-activity relationships were the halogen atoms at the phenyl ring at the C6 position,the hydroxy groups and the long side chains at the phenyl ring at the C3 position of the parent nucleus played significant roles in the AChE inhibitory activity of the target compounds.

  7. Histamine release inhibitory activity of Piper nigrum leaf.

    Science.gov (United States)

    Hirata, Noriko; Naruto, Shunsuke; Inaba, Kazunori; Itoh, Kimihisa; Tokunaga, Masashi; Iinuma, Munekazu; Matsuda, Hideaki

    2008-10-01

    Oral administration of a methanolic extract of Piper nigrum leaf (PN-ext, 50, 200 and 500 mg/kg) showed a potent dose-dependent inhibition of dinitrofluorobenzene (DNFB)-induced cutaneous reaction at 1 h [immediate phase response (IPR)] after and 24 h [late phase response (LPR)] after DNFB challenge in mice which were passively sensitized with anti-dinitrophenyl (DNP) IgE antibody. Ear swelling inhibitory effect of PN-ext (50, 200 and 500 mg/kg, per os (p.o.)) on very late phase response (vLPR) in the model mice was significant but weaker than that on IPR. Oral administration of PN-ext (50, 200 and 500 mg/kg for 7 d) inhibited picryl chloride (PC)-induced ear swelling in PC sensitized mice. PN-ext exhibited in vitro inhibitory effect on compound 48/80-induced histamine release from rat peritoneal mast cells. Two lignans of PN-ext, (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2), were identified as major active principles having histamine release inhibitory activity.

  8. Exercise effects on activities of Na(+),K(+)-ATPase, acetylcholinesterase and adenine nucleotides hydrolysis in ovariectomized rats.

    Science.gov (United States)

    Ben, Juliana; Soares, Flávia Mahatma Schneider; Cechetti, Fernanda; Vuaden, Fernanda Cenci; Bonan, Carla Denise; Netto, Carlos Alexandre; Wyse, Angela Terezinha de Souza

    2009-12-11

    Hormone deficiency following ovariectomy causes activation of Na(+),K(+)-ATPase and acetylcholinesterase (AChE) that has been related to cognitive deficits in experimental animals. Considering that physical exercise presents neuroprotector effects, we decide to investigate whether exercise training would affect enzyme activation in hippocampus and cerebral cortex, as well as adenosine nucleotide hydrolysis in synaptosomes from cerebral cortex of ovariectomized rats. Female adult Wistar rats were assigned to one of the following groups: sham (submitted to surgery without removal of the ovaries), exercise, ovariectomized (Ovx) and Ovx plus exercise. Thirty days after surgery, animals were submitted to one month of exercise training, three times per week. After, rats were euthanized, blood serum was collected and hippocampus and cerebral cortex were dissected. Data demonstrated that exercise reversed the activation of Na(+),K(+)-ATPase and AChE activities both in hippocampus and cerebral cortex of ovariectomized rats. Ovariectomy decreased AMP hydrolysis in cerebral cortex and did not alter adenine nucleotides hydrolysis in blood serum. Exercise per se decreased ADP and AMP hydrolysis in cerebral cortex. On the other hand, AMP hydrolysis in blood serum was increased by exercise in ovariectomized adult rats. Present data support that physical exercise might have beneficial effects and constitute a therapeutic alternative to hormone replacement therapy for estrogen deprivation.

  9. Pre-treatment with curcumin modulates acetylcholinesterase activity and proinflammatory cytokines in rats infected with Trypanosoma evansi.

    Science.gov (United States)

    Wolkmer, Patrícia; Silva, Cássia B da; Paim, Francine C; Duarte, Marta M M F; Castro, Verônica; Palma, Heloisa E; França, Raqueli T; Felin, Diandra V; Siqueira, Lucas C; Lopes, Sonia T A; Schetinger, Maria Rosa C; Monteiro, Silvia G; Mazzanti, Cinthia M

    2013-04-01

    The potent activity against Trypanosomes and health beneficial effects of curcumin (Cur) has been demonstrated in various experimental models. In this study, we evaluated the in vivo effect of Cur as trypanocide and as potential anti-inflammatory agent, through the evaluation of immunomodulatory mechanisms in rats infected with Trypanosoma evansi. Daily oral Cur was administered at doses of 0, 20 or 60mg/kg as preventive treatment (30 and 15days pre infection) and as treatment (post infection). The treatment of the groups continued until the day of euthanasia. Fifteen days after inoculation, parasitemia, plasma proinflammatory cytokines (IFN-γ, TNF-α, IL-1, IL-6), anti-inflammatory cytokines (IL-10) and blood acetylcholinesterase activity (AChE) were analyzed. Pretreatment with Cur reduced parasitemia and lethality. Cur inhibited AChE activity and improved immunological response by cytokines proinflammatory, fundamental during T. evansi infection. We found that Cur is not so important as an antitrypanosomal activity but as immunomodulator agent. These findings reveal that the preventive use of Cur stimulates anti-inflammatory mechanisms, reducing an excessive inflammatory response.

  10. Shift in aggregation, ROS generation, antioxidative defense, lysozyme and acetylcholinesterase activities in the cells of an Indian freshwater sponge exposed to washing soda (sodium carbonate).

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2016-09-01

    Washing soda, chemically identified as anhydrous sodium carbonate, is a popular cleaning agent among the rural and urban populations of India which often contaminates the freshwater ponds and lakes, the natural habitat of sponge Eunapius carteri. Present investigation deals with estimation of cellular aggregation, generation of ROS and activities of antioxidant enzymes, lysozyme and acetylcholinesterase in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Prolonged treatment of washing soda inhibited the degree of cellular aggregation. Experimental exposure of 8 and 16mg/l of sodium carbonate for 48h elevated the physiological level of reactive oxygen species (ROS) generation in the agranulocytes, semigranulocytes and granulocytes of E. carteri, whereas, treatment of 192h inhibited the ROS generation in three cellular morphotypes. Activities of superoxide dismutase, catalase and glutathione-S-transferase were recorded to be inhibited under prolonged exposure of washing soda. Washing soda mediated inhibition of ROS generation and depletion in the activities of antioxidant enzymes were indicative to an undesirable shift in cytotoxic status and antioxidative defense in E. carteri. Inhibition in the activity of lysozyme under the treatment of sodium carbonate was suggestive to a severe impairment of the innate immunological efficiency of E. carteri distributed in the washing soda contaminated habitat. Washing soda mediated inhibition in the activity of acetylcholinesterase indicated its neurotoxicity in E. carteri. Washing soda, a reported environmental contaminant, affected adversely the immunophysiological status of E. carteri with reference to cellular aggregation, oxidative stress, antioxidative defense, lysozyme and acetylcholinesterase activity.

  11. Antibacterial and biofilm inhibitory activities of bacteria associated with polychaetes

    Directory of Open Access Journals (Sweden)

    Chellamnadar Vaikundavasagom Sunjaiy Shankar

    2015-06-01

    Full Text Available Objective: To study the antibacterial and antibiofilm activities expressed by epibiotic bacteria associated with the polychaetes Platynereis dumerilii and Syllis sp. Methods: A total of 32 cultivable bacterial strains were isolated from the two polychaete species. The crude extracts were tested for antibacterial activity and biofilm inhibitory activity against pathogenic and biofilm-forming bacterial strains. Extracts of the strains which showed strong activity were analyzed by thin-layer chromatography (TLC and the bacterial strains were identified based on 16S rRNA gene sequencing. Results: Extracts of 13 bacterial strains showed inhibitory activity against pathogenic and biofilm-forming bacteria. The crude extracts also affected the synthesis of extracellular polymeric substances and cell surface hydrophobicity of the Alteromonas sp. isolated from marine biofilm. The adhesion of Alteromonas sp. on glass surface showed significant variation between surface-associated bacterial crude extract treatment and control groups. Among the 13 bacteria, two strains PA8 and PA19 were further analyzed for bioactive fractions. Thinlayer chromatography indicated the presence of a single active fraction in the crude extract of both the bacterial strains. The epibiotic bacterial strains P8 and P19 were identified as Exiguobacterium sp. and Actinobacterium sp. respectively based on 16S rRNA gene sequencing. Conclusions: The present study indicates that bacteria associated with marine invertebrates inhabiting the coastal waters could be used as a potential source for the isolation of bioactive metabolites.

  12. Antibacterial and bioiflm inhibitory activities of bacteria associated with polychaetes

    Institute of Scientific and Technical Information of China (English)

    Sathianeson Satheesh; Nadarajan Viju

    2015-01-01

    Objective:To study the antibacterial and antibiofilm activities expressed by epibiotic bacteria associated with the polychaetes Platynereis dumerilii and Syllis sp. Methods:A total of 32 cultivable bacterial strains were isolated from the two polychaete species. The crude extracts were tested for antibacterial activity and biofilm inhibitory activity against pathogenic and biofilm-forming bacterial strains. Extracts of the strains which showed strong activity were analyzed by thin-layer chromatography (TLC) and the bacterial strains were identified based on 16S rRNA gene sequencing. Results:Extracts of 13 bacterial strains showed inhibitory activity against pathogenic and biofilm-forming bacteria. The crude extracts also affected the synthesis of extracellular polymeric substances and cell surface hydrophobicity of the Alteromonas sp. isolated from marine biofilm. The adhesion of Alteromonas sp. on glass surface showed significant variation between surface-associated bacterial crude extract treatment and control groups. Among the 13 bacteria, two strains PA8 and PA19 were further analyzed for bioactive fractions. Thin-layer chromatography indicated the presence of a single active fraction in the crude extract of both the bacterial strains. The epibiotic bacterial strains P8 and P19 were identified as Exiguobacterium sp. and Actinobacterium sp. respectively based on 16S rRNA gene sequencing. Conclusions:The present study indicates that bacteria associated with marine invertebrates inhabiting the coastal waters could be used as a potential source for the isolation of bioactive metabolites.

  13. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain.

    Science.gov (United States)

    Ozarowski, Marcin; Mikolajczak, Przemyslaw L; Bogacz, Anna; Gryszczynska, Agnieszka; Kujawska, Malgorzata; Jodynis-Liebert, Jadwiga; Piasecka, Anna; Napieczynska, Hanna; Szulc, Michał; Kujawski, Radoslaw; Bartkowiak-Wieczorek, Joanna; Cichocka, Joanna; Bobkiewicz-Kozlowska, Teresa; Czerny, Boguslaw; Mrozikiewicz, Przemyslaw M

    2013-12-01

    Rosmarinus officinalis L. leaf as part of a diet and medication can be a valuable proposal for the prevention and treatment of dementia. The aim of the study was to assess the effects of subchronic (28-fold) administration of a plant extract (RE) (200 mg/kg, p.o.) on behavioral and cognitive responses of rats linked with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity and their mRNA expression level in the hippocampus and frontal cortex. The passive avoidance test results showed that RE improved long-term memory in scopolamine-induced rats. The extract inhibited the AChE activity and showed a stimulatory effect on BuChE in both parts of rat brain. Moreover, RE produced a lower mRNA BuChE expression in the cortex and simultaneously an increase in the hippocampus. The study suggests that RE led to improved long-term memory in rats, which can be partially explained by its inhibition of AChE activity in rat brain.

  14. Xanthine oxidase inhibitory activity of extracts prepared from Polygonaceae species.

    Science.gov (United States)

    Orbán-Gyapai, Orsolya; Lajter, Ildikó; Hohmann, Judit; Jakab, Gusztáv; Vasas, Andrea

    2015-03-01

    The xanthine oxidase (XO) inhibitory activity of aqueous and organic extracts of 27 selected species belonging in five genera (Fallopia, Oxyria, Persicaria, Polygonum and Rumex) of the family Polygonaceae occurring in the Carpathian Basin were tested in vitro. From different plant parts (aerial parts, leaves, flowers, fruits and roots), a total of 196 extracts were prepared by subsequent extraction with methanol and hot H2O and solvent-solvent partition of the MeOH extract yielding n-hexane, chloroform and 50% MeOH subextracts. It was found that the chloroform subextracts and/or the remaining 50% MeOH extracts of Fallopia species (F. bohemica, F. japonica and F. sachalinensis), Rumex species (R. acetosa, R. acetosella, R. alpinus, R. conglomeratus, R. crispus, R. hydrolapathus, R. pulcher, R. stenophyllus, R. thyrsiflorus, R. obtusifolius subsp. subalpinus, R. patientia) and Polygonum bistorta, Polygonum hydropiper, Polygonum lapathifolium and Polygonum viviparum demonstrated the highest XO inhibitory activity (>85% inhibition) at 400 µg/mL. The IC50 values of the active extracts were also determined. On the basis of the results, these plants, and especially P. hydropiper and R. acetosella, are considered worthy of activity-guided phytochemical investigations. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Hypothyroidism Enhanced Ectonucleotidases and Acetylcholinesterase Activities in Rat Synaptosomes can be Prevented by the Naturally Occurring Polyphenol Quercetin.

    Science.gov (United States)

    Baldissarelli, Jucimara; Santi, Adriana; Schmatz, Roberta; Abdalla, Fátima Husein; Cardoso, Andréia Machado; Martins, Caroline Curry; Dias, Glaecir R Mundstock; Calgaroto, Nicéia Spanholi; Pelinson, Luana Paula; Reichert, Karine Paula; Loro, Vania Lucia; Morsch, Vera Maria Melchiors; Schetinger, Maria Rosa Chitolina

    2017-01-01

    Thyroid hormones have an influence on the functioning of the central nervous system. Furthermore, the cholinergic and purinergic systems also are extensively involved in brain function. In this context, quercetin is a polyphenol with antioxidant and neuroprotective properties. This study investigated the effects of (MMI)-induced hypothyroidism on the NTPDase, 5'-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes of rats and whether the quercetin can prevent it. MMI at a concentration of 20 mg/100 mL was administered for 90 days in the drinking water. The animals were divided into six groups: control/water (CT/W), control/quercetin 10 mg/kg, control/quercetin 25 mg/kg, methimazole/water (MMI/W), methimazole/quercetin 10 mg/kg (MMI/Q10), and methimazole/quercetin 25 mg/kg (MMI/Q25). On the 30th day, hormonal dosing was performed to confirm hypothyroidism, and the animals were subsequently treated with 10 or 25 mg/kg quercetin for 60 days. NTPDase activity was not altered in the MMI/W group. However, treatment with quercetin decreased ATP and ADP hydrolysis in the MMI/Q10 and MMI/Q25 groups. 5'-nucleotidase activity increased in the MMI/W group, but treatments with 10 or 25 mg/kg quercetin decreased 5'-nucleotidase activity. ADA activity decreased in the CT/25 and MMI/Q25 groups. Furthermore, AChE activity was reduced in all groups with hypothyroidism. In vitro tests also demonstrated that quercetin per se decreased NTPDase, 5'-nucleotidase, and AChE activities. This study demonstrated changes in the 5'-nucleotidase and AChE activities indicating that purinergic and cholinergic neurotransmission are altered in this condition. In addition, quercetin can alter these parameters and may be a promising natural compound with important neuroprotective actions in hypothyroidism.

  16. Cerebrospinal fluid (CSF 25-hydroxyvitamin D concentration and CSF acetylcholinesterase activity are reduced in patients with Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Per Johansson

    Full Text Available BACKGROUND: Little is known of vitamin D concentration in cerebrospinal fluid (CSF in Alzheimer's disease (AD and its relation with CSF acetylcholinesterase (AChE activity, a marker of cholinergic function. METHODS: A cross-sectional study of 52 consecutive patients under primary evaluation of cognitive impairment and 17 healthy controls. The patients had AD dementia or mild cognitive impairment (MCI diagnosed with AD dementia upon follow-up (n = 28, other dementias (n = 12, and stable MCI (SMCI, n = 12. We determined serum and CSF concentrations of calcium, parathyroid hormone (PTH, 25-hydroxyvitamin D (25OHD, and CSF activities of AChE and butyrylcholinesterase (BuChE. FINDINGS: CSF 25OHD level was reduced in AD patients (P < 0.05, and CSF AChE activity was decreased both in patients with AD (P < 0.05 and other dementias (P < 0.01 compared to healthy controls. None of the measured variables differed between BuChE K-variant genotypes whereas the participants that were homozygous in terms of the apolipoprotein E (APOE ε4 allele had decreased CSF AChE activity compared to subjects lacking the APOE ε4 allele (P = 0.01. In AD patients (n=28, CSF AChE activity correlated positively with CSF levels of total tau (T-tau (r = 0.44, P < 0.05 and phosphorylated tau protein (P-tau (r = 0.50, P < 0.01, but CSF activities of AChE or BuChE did not correlate with serum or CSF levels of 25OHD. CONCLUSIONS: In this pilot study, both CSF 25OHD level and CSF AChE activity were reduced in AD patients. However, the lack of correlations between 25OHD levels and CSF activities of AChE or BuChE might suggest different mechanisms of action, which could have implications for treatment trials.

  17. Intraperitoneal Exposure to Nano/Microparticles of Fullerene (C60) Increases Acetylcholinesterase Activity and Lipid Peroxidation in Adult Zebrafish (Danio rerio) Brain

    OpenAIRE

    Gonzalo Ogliari Dal Forno; Luiza Wilges Kist; Mariana Barbieri de Azevedo; Rachel Seemann Fritsch; Talita Carneiro Brandão Pereira; Roberta Socoowski Britto; Sílvia Stanisçuaski Guterres; Irene Clemes Külkamp-Guerreiro; Carla Denise Bonan; José María Monserrat; Maurício Reis Bogo

    2013-01-01

    Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxi...

  18. Acetylcholinesterase activity in the terrestrial snail Xeropicta derbentina transplanted in apple orchards with different pesticide management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mazzia, Christophe, E-mail: christophe.mazzia@univ-avignon.f [Universite d' Avignon et des Pays de Vaucluse, Laboratoire de Toxicologie Environnementale, UMR 406 UAPV/INRA, ' Abeilles et Environnement' , Domaine St Paul, Site Agroparc, 84914 Avignon Cedex 9 France (France); Capowiez, Yvan [INRA, UR 1115 ' Plante et Systemes Horticoles' , Domaine St Paul, Site Agroparc, 84914 Avignon Cedex 9 France (France); Sanchez-Hernandez, Juan C. [Laboratory of Ecotoxicology, Faculty of Environmental Science, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo (Spain); Koehler, Heinz-R. [Animal Physiological Ecology, Institute for Evolution and Ecology, University of Tuebingen, Konrad-Adenauer-Str. 20, D-72072 Tuebingen (Germany); Triebskorn, Rita [Animal Physiological Ecology, Institute for Evolution and Ecology, University of Tuebingen, Konrad-Adenauer-Str. 20, D-72072 Tuebingen (Germany); Steinbeis-Transfer Center for Ecotoxicology and Ecophysiology, Blumenstrasse 13, D-72108 Rottenburg (Germany); Rault, Magali [Universite d' Avignon et des Pays de Vaucluse, Laboratoire de Toxicologie Environnementale, UMR 406 UAPV/INRA, ' Abeilles et Environnement' , Domaine St Paul, Site Agroparc, 84914 Avignon Cedex 9 France (France)

    2011-01-15

    Apple orchards are highly manipulated crops in which large amounts of pesticides are used. Some of these pesticides lack target specificity and can cause adverse effects in non-target organisms. In order to evaluate the environmental risk of these products, the use of transplanted sentinel organisms avoids side-effects from past events and facilitate comparison of multiple sites in a short time. We released specimens of the terrestrial snail Xeropicta derbentina in each 5 of two kinds of apple orchards with either conventional or organic management strategies plus in a single abandoned orchard. After one month, individuals were retrieved in order to measure acetylcholinesterase (AChE) activity. Mean values of AChE activity were significantly reduced in all conventional apple orchards compared to the others. Results show that the measurement of biomarkers such as AChE inhibition in transplated X. derbentina could be useful in the environmental risk assessment of post-authorized pesticides. - Snails as sentinel species to evaluate insecticide impacts in apple orchards.

  19. Effects of Androctonus crassicauda (Olivier, 1807 (scorpiones: buthidae venom on rats: correlation among acetylcholinesterase activities and electrolytes levels

    Directory of Open Access Journals (Sweden)

    O. Ozkan

    2007-01-01

    Full Text Available Scorpions can be considered living fossils because they have changed so little during the last 400 million years. They are venomous arthropods of the Arachnida class and regarded as relatives of spiders, ticks and mites. The aim of the present study was to evaluate the toxicity of Androctonus crassicauda (Olivier, 1807 venom and its effects on the acetylcholinesterase (AchE activity and on electrolytes levels in rats. Animals were divided into seven groups of five rats each. Test groups received 250µg/kg of venom solution while control group was treated with 200µl of physiological saline solution (PSS. Blood samples were collected from the animals on the 1st, 2nd 4th, 8th, 12th, and 24th hours after subcutaneous injection of venom. Animals were monitored for 24 hours. Androctonus crassicauda venom significantly reduced AchE activity on the 12th hour when compared with control group. A statistically negative correlation between Na+ and K+ (p<0.05 and a positive correlation between Na+ and CL- (p<0.001 ions levels were observed after the administration of A. crassiccauda venom to rats. We can conclude that the differences in the electrolytes levels are due to acute renal failure, since elimination of toxin occurs primarily via the kidney.

  20. A selective molecularly imprinted polymer for immobilization of acetylcholinesterase (AChE): an active enzyme targeted and efficient method.

    Science.gov (United States)

    Demirci, Gökhan; Doğaç, Yasemin İspirli; Teke, Mustafa

    2015-11-01

    In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme-specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25-65 °C), optimum pH (3-10), thermal stability (4-70 °C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE.

  1. 5,6-Dimethoxybenzofuran-3-one Derivatives: a Novel Series of Dual Acetylcholinesterase/Butyrylcholinesterase Inhibitors Bearing Benzyl Pyridinium Moiety

    Directory of Open Access Journals (Sweden)

    Mohammad Abdollahi

    2013-02-01

    Full Text Available Several studies have been focused on design and synthesis of multi-target anti Alzheimer compounds. Utilizing of the dual Acetylcholinesterase/Butyrylcholinesterase inhibitors has gained more interest to treat the Alzheimer’s disease. As a part of a research program to find a novel drug for treating Alzheimer disease, we have previously reported 6-alkoxybenzofuranone derivatives as potent acetylcholinesterase inhibitors. In continuation of our work, we would like to report the synthesis of 5,6-dimethoxy benzofuranone derivatives bearing a benzyl pyridinium moiety as dual Acetylcholinesterase/Butyrylcholinesterase inhibitors.MethodsThe synthesis of target compounds was carried out using a conventional method. Bayer-Villiger oxidation of 3,4-dimethoxybenzaldehyde furnished 3,4-dimethoxyphenol. The reaction of 3,4-dimethoxyphenol with chloroacetonitrile followed by treatment with HCl solution and then ring closure yielded the 5,6-dimethoxy benzofuranone. Condensation of the later compound with pyridine-4-carboxaldehyde and subsequent reaction with different benzyl halides afforded target compounds. The biological activity was measured using standard Ellman’s method. Docking studies were performed to get better insight into interaction of compounds with receptor.ResultsThe in vitro anti acetylcholinesterase/butyrylcholinesterase activity of compounds revealed that, all of the target compounds have good inhibitory activity against both Acetylcholinesterase/Butyrylcholinesterase enzymes in which compound 5b (IC50 = 52 ± 6.38nM was the most active compound against acetylcholinesterase. The same binding mode and interactions were observed for the reference drug donepezil and compound 5b in docking study.ConclusionsIn this study, we presented a new series of benzofuranone-based derivatives having pyridinium moiety as potent dual acting Acetylcholinesterase/Butyrylcholinesterase inhibitors.

  2. [Alpha-glucosidase inhibitory activity of Aeschynanthus maculatus].

    Science.gov (United States)

    Tian, Pu-yu; Kang, Wen-yi

    2012-10-01

    To study the inhibitory activity of Aeschynanthus maculatus on alpha-glucosidase. The inhibilitory model of in vitro alpha-glucosidase was established. Active extracts of A. maculatus were isolated and identified bymultiple chromatographic methods, and their molecular structures were identifiied by spectral techniques. Seven coumpounts were isolated from A. maculatus and isolated as lupeol(1), stigmasterol(2), ursolic acid(3), stigmast-5,22(E)-diene-3beta-ol(4), beta-daucosterol(5), 3-hydroxy-12-taraxasten-28-oic-acid(6) and oleanic acid(7). Compounds 1 (IC50 25.41 mg x L(-1)),3(IC0 4.42 mg L(-1)),4(IC50 11.50 mg x L(-1)),6(IC50 14.17 mg x L(-1)) and 7(IC50 2.88 mg x L(-1)) had higher inhibitory activities than that of acarbose (IC50 1103.01 mg x L(-1)) as the positive control drug. Compound 1-7 were isolated from this plant for the first time. Compound 6 was isolated from Gesneriaceae family for the first time. Compound 7 was isolated from Aeschynanthus genus for the first time.

  3. Correlation of acetylcholinesterase activity in the brain and blood of wistar rats acutely infected with Trypanosoma congolense

    Institute of Scientific and Technical Information of China (English)

    Habila N; Inuwa HM; Aimola IA; Lasisi OI; Chechet DG; Okafor IA

    2012-01-01

    Objective: To investigate the neurotransmitter enzyme Acetylcholinesterase (AChE) activity in the brain and blood of rats infected with Trypanosoma congolense (T. congo). Methods: Presence and degree of parasitemia was determined daily for each rat by the rapid matching method. AChE activity was determined by preparing a reaction mixture of brain homogenate and whole blood with 5, 5-dithiobisnitrobenzioc acid (DTNB or Ellman’s reagent) and Acetylthiocholine (ATC). The increase in absorbance was recorded at 436 nm over 10 min at 2 min intervals. Trypanosome species identification (before inoculation and on day 10 post infection) was done by Polymerase chain reaction using specific primers. Results: The AChE activity in the brain and blood decreased significantly as compared with the uninfected control. The AChE activity dropped to 0.32 from 2.20 μmol ACTC min-1mg protein-1 in the brain and 4.57 to 0.76 μmol ACTC min-1mg protein-1 in the blood. The animals treated with Diminaveto at 3.5 mg/kg/d were observed to have recovered significantly from parasitemia and were able to regain AChE activity in the blood but not in the brain as compared to the control groups. We also observed, that progressive parasitemia resulted to alterations in PCV, Hb, RBC, WBC, neurophils, total protein, lymphocytes, monocytes and eosinophil in acute infections of T. congo. Polymerase chain reaction (PCR) of infected blood before inoculation and on day 10 post infection revealed 600 bp on agarose gel electrophoresis. Conclusions: This finding suggest that decrease in AChE activity increases acetylcholine concentration in the synaptic cleft resulting to neurological failures in impulse transfer in T. congo infection rats.

  4. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nanotubes-Chitosan Modified Electrode

    Directory of Open Access Journals (Sweden)

    Shuping Zhang

    2013-01-01

    Full Text Available A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE to MWNTs-modified glassy carbon electrode (GCE with chitosan (CS by layer-by-layer (LBL technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran in the range from  g/L to  g/L with a detection limit of  g/L. This biosensor is a promising new method for pesticide analysis.

  5. Syntheses of coumarin-tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase.

    Science.gov (United States)

    Sun, Qi; Peng, Da-Yong; Yang, Sheng-Gang; Zhu, Xiao-Lei; Yang, Wen-Chao; Yang, Guang-Fu

    2014-09-01

    Exploring small-molecule acetylcholinesterase (AChE) inhibitors to slow the breakdown of acetylcholine (Ach) represents the mainstream direction for Alzheimer's disease (AD) therapy. As the first acetylcholinesterase inhibitor approved for the clinical treatment of AD, tacrine has been widely used as a pharmacophore to design hybrid compounds in order to combine its potent AChE inhibition with other multi-target profiles. In present study, a series of novel tacrine-coumarin hybrids were designed, synthesized and evaluated as potent dual-site AChE inhibitors. Moreover, compound 1g was identified as the most potent candidate with about 2-fold higher potency (Ki=16.7nM) against human AChE and about 2-fold lower potency (Ki=16.1nM) against BChE than tacrine (Ki=35.7nM for AChE, Ki=8.7nM for BChE), respectively. In addition, some of the tacrine-coumarin hybrids showed simultaneous inhibitory effects against both Aβ aggregation and β-secretase. We therefore conclude that tacrine-coumarin hybrid is an interesting multifunctional lead for the AD drug discovery.

  6. In vitro anti-acetylcholinesterase activity of an aqueous extract of Unicaria tomentosa and in silico study of its active constituents

    Science.gov (United States)

    Chowdhury, Suman; Shivani; Kumar, Suresh

    2016-01-01

    Depletion of acetylcholine in the central nervous system (CNS) is responsible for memory loss and cognition deficit. Enzyme acetylcholinesterase (AChE) is responsible for destruction of acetylcholine (Ach) in the brain. Many herbal plant extracts have been investigated for their potential use in the treatment of Alzheimer’s disease (AD) by inhibiting AChE and upregulating the levels of Ach. The current study investigated the anti-acetylcholinesterase (AChE) activity of an aqueous extract of Unicaria tomentosa bark which has not been reported so far in the literature. The in vitro study of an aqueous extract of U. tomentosa showed maximum inhibition of 76.2±0.002 % at 0.4mg/ml of final concentration with an IC50 = 0.112 mg/ml. The mechanism of inhibition was elucidated by kinetic study which showed mixed type of inhibition, this might be due to the presence of various phytoconstituents such as oxindole alkaloids present in an aqueous extract. Based on molecular structure of phytoconstituents obtained from U. tomentosa known from the relevant literature, in-silico molecular docking study was performed against AChE protein to validate the results. PMID:28149044

  7. Xanthine oxidase inhibitory activity of compounds from Chythrantus claneianus

    Directory of Open Access Journals (Sweden)

    Anar Sahib Gojayev

    2013-03-01

    Full Text Available Phytochemical investigation of the stem bark and the trunk of Chythrantus claneianus led to the isolation of six known compounds named β-sitosterol (1, umbelliferone (2, scopoletin (3, benjaminamide (4, β-sitosterol-3-O-β-D-glucopyranoside (5 and Panconoside B (6. All these compounds were isolated for the first time from this plant species. The chemical structures of isolates were elucidated on the basis of 1 and 2 D-NMR spectra and other spectroscopic techniques including UV–vis, FT-IR, HR-ESIMS and HR-FABMS. The isolates were tested in vitro for their inhibitory properties towards xanthine oxidase enzyme. Compounds 2, 3 and 6 showed weak inhibi-tory activities on the enzyme with IC50 values ranging from 307 µM for com-pound 6 to 475 µM for compound 3, while the extract and compounds 1, 4 and 5 showed extremely weak activities with inhibition percentage less than 50%.

  8. Origin of aromatase inhibitory activity via proteochemometric modeling.

    Science.gov (United States)

    Simeon, Saw; Spjuth, Ola; Lapins, Maris; Nabu, Sunanta; Anuwongcharoen, Nuttapat; Prachayasittikul, Virapong; Wikberg, Jarl E S; Nantasenamat, Chanin

    2016-01-01

    Aromatase, the rate-limiting enzyme that catalyzes the conversion of androgen to estrogen, plays an essential role in the development of estrogen-dependent breast cancer. Side effects due to aromatase inhibitors (AIs) necessitate the pursuit of novel inhibitor candidates with high selectivity, lower toxicity and increased potency. Designing a novel therapeutic agent against aromatase could be achieved computationally by means of ligand-based and structure-based methods. For over a decade, we have utilized both approaches to design potential AIs for which quantitative structure-activity relationships and molecular docking were used to explore inhibitory mechanisms of AIs towards aromatase. However, such approaches do not consider the effects that aromatase variants have on different AIs. In this study, proteochemometrics modeling was applied to analyze the interaction space between AIs and aromatase variants as a function of their substructural and amino acid features. Good predictive performance was achieved, as rigorously verified by 10-fold cross-validation, external validation, leave-one-compound-out cross-validation, leave-one-protein-out cross-validation and Y-scrambling tests. The investigations presented herein provide important insights into the mechanisms of aromatase inhibitory activity that could aid in the design of novel potent AIs as breast cancer therapeutic agents.

  9. Inhibitory activity of xanthine oxidase by fractions Crateva adansonii

    Institute of Scientific and Technical Information of China (English)

    Abdullahi A; Kolo MZ; Hamzah RU; Jigam AA; Yahya A; Kabiru AY; Muhammad H; Sakpe S; Adefolalu FS; Isah MC

    2012-01-01

    Objective: To study the inhibitory effect of various extracts from Crateva adansonii (C. adansonii) used traditionally against several inflammatory diseases such as rheumatism, arthritis, and gout, was investigated on purified bovine milk xanthine oxidase (XO) activity. Methods:Xanthine oxidase inhibitory activity was assayed spectrophotometrically and the degree of enzyme inhibition was determined by measuring the increase in absorbance at 295 nm associated with uric acid formation. Enzyme kinetics was carried out using Lineweaver-Burk plots using xanthine as the substrate. Results: Among the fractions tested, the chloroform fraction exhibited highest potency (IC50 20.2±1.6 μg/mL) followed by the petroleum ether (IC50 30.1±2.2 μg/mL), ethyl acetate (IC50 43.9±1.4 μg/mL) and residual (IC50 98.0±3.3 μg/mL) fractions. The IC50 value of allopurinol used, as the standard was 5.7±0.3 μg/mL. Conclusions: Enzyme inhibition mechanism indicated that the mode of inhibition was of a mixed type. Our findings suggest that the therapeutic use of these plants may be due to the observed Xanthine oxidase inhibition, thereby supporting their use in traditional folk medicine against inflammatory-related diseases, in particular, gout.

  10. Therapeutic potential of Garcinia kola with reference to the restoration of inhibited acetylcholinesterase activities in induced Clarias gariepinus

    Directory of Open Access Journals (Sweden)

    T.O. Ikpesu

    2014-12-01

    Full Text Available This study was conducted to assess the antidotal prospect of Garcinia kola seeds extract in restoring the activity of inhibited Acetylcholinesterase. This was done by inducing Clarias gariepinus with the enzyme inhibitor (glyphosate pesticide formulation. The fish divided into six groups were exposed different treatments; the pesticide alone, the G. kola seed extract alone and different mixture of the pesticide and G. kola seeds extract. AChE activities in the brain, liver and serum of the fish were measured in the experimental and control fish on day −7, 14, 21 and 28th by the colorimetric method. The enzyme was significantly (p < 0.05 inhibited in the glyphosate formulation test alone and in group IV treatment (0.16 mg/L glyphosate formulation with 150 mg/L of extract. The inhibition percentages of AChE ranged for the brain, liver and serum between 40.7–59.4%, 50–57% and 27.5–51.3%, respectively. The AChE activities were however, recovered in G. kola seeds extract treated aquaria, and were dose, time dependent and organ specific. Modifications of this enzyme may leads to increased perspiration, increased salivation, tearing, blurred vision, abdominal cramping, diarrhea, and if severe enough, death from respiratory depression. This investigation had revealed the therapeutic significance of G. kola seeds extract, by stabilizing the enzyme activity in the investigated fish. Further investigation is required to measure the concentrations of acetylcholine at cholinergic synaptic junction in fish and mammals induced with ant-cholinesterase agent and the possibility of its restoration using G. kola seeds.

  11. Neuroprotective effects of quercetin on memory and anxiogenic-like behavior in diabetic rats: Role of ectonucleotidases and acetylcholinesterase activities.

    Science.gov (United States)

    Maciel, Roberto M; Carvalho, Fabiano B; Olabiyi, Ayodeji A; Schmatz, Roberta; Gutierres, Jessié M; Stefanello, Naiara; Zanini, Daniela; Rosa, Michelle M; Andrade, Cinthia M; Rubin, Maribel A; Schetinger, Maria Rosa; Morsch, Vera Maria; Danesi, Cristiane C; Lopes, Sonia T A

    2016-12-01

    The present study investigated the protective effect of quercetin (Querc) on memory, anxiety-like behavior and impairment of ectonucleotidases and acetylcholinesterase (AChE) activities in brain of streptozotocin-induced diabetic rats (STZ-diabetes). The type 1 diabetes mellitus was induced by an intraperitoneal injection of 70mg/kg of streptozotocin (STZ), diluted in 0.1M sodium-citrate buffer (pH 4.5). Querc was dissolved in 25% ethanol and administered by gavage at the doses of 5, 25 and 50mg/kg once a day during 40days. The animals were distributed in eight groups of ten animals as follows: vehicle, Querc 5mg/kg, Querc 25mg/kg, Querc 50mg/kg, diabetes, diabetes plus Querc 5mg/kg, diabetes plus Querc 25mg/kg and diabetes plus Querc 50mg/kg. Querc was able to prevent the impairment of memory and the anxiogenic-like behavior induced by STZ-diabetes. In addition, Querc prevents the decrease in the NTPDase and increase in the adenosine deaminase (ADA) activities in SN from cerebral cortex of STZ-diabetes. STZ-diabetes increased the AChE activity in SN from cerebral cortex and hippocampus. Querc 50mg/kg was more effective to prevent the increase in AChE activity in the brain of STZ-diabetes. Querc also prevented an increase in the malondialdehyde levels in all the brain structures. In conclusion, the present findings showed that Querc could prevent the impairment of the enzymes that regulate the purinergic and cholinergic extracellular signaling and improve the memory and anxiety-like behavior induced by STZ-diabetes. Copyright © 2016. Published by Elsevier Masson SAS.

  12. Effects of metals on blood oxidative stress biomarkers and acetylcholinesterase activity in dice snakes (Natrix tessellata from Serbia

    Directory of Open Access Journals (Sweden)

    Gavrić Jelena P.

    2015-01-01

    Full Text Available The effects of waterborne metals in water on the activities of blood copper-zinc superoxide dismutase (CuZnSOD, catalase (CAT, glutathione peroxidase (GSH-Px, glutathione reductase (GR, glutathione-S-transferase (GST, and acetylcholinesterase (AChE, and on the concentrations of total glutathione (GSH and lipid peroxides (TBARS in the blood of dice snakes (Natrix tessellata caught in Obedska Bara, Sebia (control area, with snakes caught in Pančevački Rit, a contaminated area in Serbia were examined. The activities of CAT, GSH-Px, GR and AChE, and the concentration of TBARS were significantly decreased, while GST activity and GSH concentration were significantly increased in snakes from the contaminated area compared to specimens from the control area. Significantly increased concentrations of Al, As, B, Ba, Ca, Cu, Fe, K, Li, Mn, Na, Ni and Zn in the water at the contaminated area as compared to control area were detected. The metals Ag, Bi, Cd, Co, Hg, In and Tl were not observed in any of the localities. Cr, Mo and Pb were not detected at the control area but were observed at the contaminated area. The concentrations of Sr were similar at both sites. The concentration of Mg was 2-fold higher at the control site than at the contaminated area. The obtained results show that most of the investigated blood biomarkers correlate with concentrations of metals present in the environment. These findings suggest that dice snakes are sensitive bioindicator species for monitoring the effects of increased metal concentrations in the environment. [Projekat Ministarstva nauke Republike Srbije, br. 173041 i br. 173043

  13. Native New Zealand plants with inhibitory activity towards Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Swift Simon

    2010-06-01

    Full Text Available Abstract Background Plants have long been investigated as a source of antibiotics and other bioactives for the treatment of human disease. New Zealand contains a diverse and unique flora, however, few of its endemic plants have been used to treat tuberculosis. One plant, Laurelia novae-zelandiae, was reportedly used by indigenous Maori for the treatment of tubercular lesions. Methods Laurelia novae-zelandiae and 44 other native plants were tested for direct anti-bacterial activity. Plants were extracted with different solvents and extracts screened for inhibition of the surrogate species, Mycobacterium smegmatis. Active plant samples were then tested for bacteriostatic activity towards M. tuberculosis and other clinically-important species. Results Extracts of six native plants were active against M. smegmatis. Many of these were also inhibitory towards M. tuberculosis including Laurelia novae-zelandiae (Pukatea. M. excelsa (Pohutukawa was the only plant extract tested that was active against Staphylococcus aureus. Conclusions Our data provide support for the traditional use of Pukatea in treating tuberculosis. In addition, our analyses indicate that other native plant species possess antibiotic activity.

  14. Rapid eye movement (REM sleep deprivation reduces rat frontal cortex acetylcholinesterase (EC 3.1.1.7 activity

    Directory of Open Access Journals (Sweden)

    Camarini R.

    1997-01-01

    Full Text Available Rapid eye movement (REM sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase controls acetylcholine (Ach availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12. Two additional groups, a home-cage control (N = 6 and a large platform control (N = 6, were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant, membrane-bound (100,000 g pellet and soluble (100,000 g supernatant Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1 in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8. There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2. Our results

  15. Inhibitory effects of ionic liquids on the lactic dehydrogenase activity.

    Science.gov (United States)

    Dong, Xing; Fan, Yunchang; Zhang, Heng; Zhong, Yingying; Yang, Yang; Miao, Juan; Hua, Shaofeng

    2016-05-01

    Ionic liquids (ILs) were widely used in scientific and industrial application and have been reported to possess potential toxicity to the environment and human health. The effects of six typical N-methylimidazolium-based ILs ([Cnmim]X, n=4, 6, 8; X=Br(-), Cl(-), BF4(-), CF3SO3(-)) on the lactic dehydrogenase (LDH) activity and the molecular interaction mechanism of ILs and the LDH were investigated with the aid of spectroscopic techniques. Experimental results showed that the LDH activity was inhibited in the presence of ILs. For the ILs with the same anion but different cations, their inhibitory ability on the LDH activity increased with increasing the alkyl chain length on the IL cation. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were obtained by analyzing the fluorescence behavior of LDH with the addition of ILs. Both positive ΔH and ΔS suggested that hydrophobicity was the major driven force in the interaction process as expected.

  16. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors.

    Science.gov (United States)

    Razavi, Seyyede Faeze; Khoobi, Mehdi; Nadri, Hamid; Sakhteman, Amirhossein; Moradi, Alireza; Emami, Saeed; Foroumadi, Alireza; Shafiee, Abbas

    2013-06-01

    A series of 4-hydroxycoumarin derivatives were designed and synthesized as new acetylcholinesterase (AChE) inhibitors which could be considered for Alzheimer's disease therapeutics. Among the 19 coumarin-derived compounds tested toward Electrophorus electricus acetylcholinesterase (eelAChE) and horse serum butyrylcholinesterase (eqBChE), N-(1-benzylpiperidin-4-yl)acetamide derivative 4m displayed highest AChE inhibitory activity (IC50 = 1.2 μM) and good selectivity (37 times). The docking study of the most potent compound 4m, indicated that Phe330 is responsible for ligand recognition and trafficking by forming π-cation interaction with benzylpiperidine moiety. Furthermore, the formation of an additional π-π interaction between coumarin moiety and Trp279 of peripheral anionic site could stabilize the ligand in the active site resulting in more potent inhibition of the enzyme. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Comparison of the oxime-induced reactivation of rhesus monkey, swine and guinea pig erythrocyte acetylcholinesterase following inhibition by sarin or paraoxon, using a perfusion model for the real-time determination of membrane-bound acetylcholinesterase activity.

    Science.gov (United States)

    Herkert, Nadja M; Lallement, Guy; Clarençon, Didier; Thiermann, Horst; Worek, Franz

    2009-04-28

    Recently, a dynamically working in vitro model with real-time determination of membrane-bound human acetylcholinesterase (AChE) activity was shown to be a versatile model to investigate oxime-induced reactivation kinetics of organophosphate- (OP) inhibited enzyme. In this assay, AChE was immobilized on particle filters which were perfused with acetylthiocholine, Ellman's reagent and phosphate buffer. Subsequently, AChE activity was continuously analyzed in a flow-through detector. Now, it was an intriguing question whether this model could be used with erythrocyte AChE from other species in order to investigate kinetic interactions in the absence of annoying side reactions. Rhesus monkey, swine and guinea pig erythrocytes were a stable and highly reproducible enzyme source. Then, the model was applied to the reactivation of sarin- and paraoxon-inhibited AChE by obidoxime or HI 6 and it could be shown that the derived reactivation rate constants were in good agreement to previous results obtained from experiments with a static model. Hence, this dynamic model offers the possibility to investigate highly reproducible interactions between AChE, OP and oximes with human and animal AChE.

  18. Assessment of acetylcholinesterase and butyrylcholinesterase activities in blood plasma of agriculture workers

    Directory of Open Access Journals (Sweden)

    V Dhananjayan

    2012-01-01

    Full Text Available Background: Cholinesterase determination indicates whether the person has been under pesticide exposure is not. It is recommended that the worker′s cholinesterase level should be assessed for workers at a pesticide applied region. Hence, cholinesterase activities in blood samples of agricultural workers exposed to vegetables and grape cultivation with age matched, unexposed workers, who never had any exposure to pesticides, were estimated. Methods: The detailed occupational history and lifestyle characters were obtained by questionnaire. Cholinesterase activity was determined by the method of Ellman as modified by Chambers and Chambers. Results: AChE was ranging from 1.65 to 3.54μmoles/min/ml in exposed subjects where as it was ranged from 2.22 to 3.51μmoles/min/ml in control subjects. BChE activity was ranging from 0.16 to 5.2μmoles/min/ml among exposed subjects, where as it was ranged from 2.19 to 5.06μmoles/min/ml in control subjects. The results showed statistically significant reduction in enzyme activities (AChE 14%; BChE 56% among exposed subjects. Conclusion: It was concluded that the reduction in cholinesterase activity may lead to varieties of effects. Hence it is compulsory to use protective gadgets during pesticide spray. Further a continuous biomonitoring study is recommended to assess pesticide exposure.

  19. Is fast fiber innervation responsible for increased acetylcholinesterase activity in reinnervating soleus muscles?

    Science.gov (United States)

    Misulis, K. E.; Dettbarn, W. D.

    1985-01-01

    An investigation was conducted as to whether the predominantly slow SOL, which is low in AChE activity, is initially reinnervated by axons that originally innervated fast muscle fibers with high AChE activity, such as those of the EDL. Local denervation of the SOL in the guinea pig was performed because this muscle is composed solely of slow (type I) fibers; thereby virtually eliminating the possibility of homologous muscle fast fiber innervation. The overshoot in this preparation was qualitatively similar to that seen with distal denervation in the guinea pig and local and distal denervation in the rat. Thus, initial fast fiber innvervation is not responsible for the patterns of change in AChE activity seen with reinnervation in the SOL. It is concluded that the neural control of AChe is different in these two muscles and may reflect specific differences in the characteristics of AChE regulation in fast and slow muscle.

  20. Combined effects of chlorpyriphos, copper and temperature on acetylcholinesterase activity and toxicokinetics of the chemicals in the earthworm Eisenia fetida.

    Science.gov (United States)

    Bednarska, Agnieszka J; Choczyński, Maciej; Laskowski, Ryszard; Walczak, Marcin

    2017-01-01

    In polluted environments organisms are commonly exposed to a combination of chemicals with different modes of action, and their effects can be additionally modified by natural abiotic conditions. One possible mechanism for interactions in mixtures is via toxicokinetics, as chemicals may alter the uptake, distribution, biotransformation and/or elimination of each other, and all these processes can be affected by temperature. In this study, the effect of temperature (T) on the toxicokinetics of copper (Cu) and chlorpyriphos (CHP), applied either singly or in binary mixtures, was studied in the earthworm Eisenia fetida. The experiments were conducted at 10 or 20 °C and the earthworms were exposed to environmentally realistic concentrations of Cu and/or CHP for 16 d, followed by a depuration period of 4 d in uncontaminated soil. The earthworms were sampled for body Cu and/or CHP concentrations and acetylcholinesterase (AChE) activity measurements. The CHP degradation rate in the soil was substantially higher at 20 °C and in soil treated with Cu. The significant (p < 0.05) inhibition of AChE activity in the earthworms exposed to CHP was found. The effect of Cu was significant only at p < 0.1. No synergistic effect of the parallel CHP and Cu exposure was found. Four days after transferring the earthworms to uncontaminated soil, the AChE activity recovered to the level observed in control animals. The temperature effect on the toxicokinetic parameters was more pronounced for CHP than for Cu. In the case of CHP, the assimilation rate constant (kA) was significantly higher at 20 °C than at 10 °C, both in CHP-only and CHP + Cu treatments. A similar trend was found for the elimination rate constant (kE), but the difference was statistically significant only for non-Cu treatments. In the case of Cu, the general trend of higher kA and kE at 20 °C and in the absence of CHP was observed.

  1. Phytoestrogens genistein and daidzin enhance the acetylcholinesterase activity of the rat pheochromocytoma cell line PC12 by binding to the estrogen receptor

    OpenAIRE

    Isoda, Hiroko; Talorete, Terence P. N.; Kimura, Momoko; Maekawa, Takaaki; Inamori, Yuhei; Nakajima, Nobuyoshi; Seki, Humitake

    2002-01-01

    Some compounds derived from plants have been known to possess estrogenic properties and can thus alter the physiology of higher organisms. Genistein and daidzin are examples of these phytoestrogens, which have recently been the subject of extensive research. In this study, genistein and daidzin were found to enhance the acetylcholinesterase (AChE) activity of the rat neuronal cell line PC12 at concentrations as low as 0.08 μM by binding to the estrogen receptor (ER). Results have shown that t...

  2. Sesquiterpenes produced by endophytic fungus Phomopsis cassiae with antifungal and acetylcholinesterase inhibition activities; Sesquiterpenos produzidos pelo fungo endofitico Phomopsis cassiae com atividade antifungica e inibidora de acetilcolinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Zanardi, Lisineia M.; Bolzani, Vanderlan da S.; Cavalheiro, Alberto J.; Silva, Dulce H. Siqueira; Trevisan, Henrique C.; Araujo, Angela R. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica; Silva, Geraldo H. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Centro de Ciencias Exatas e Tecnologia; Teles, Helder L. [Universidade Federal do Mato Grosso (UFMT), Rondonopolis, MT (Brazil). Dept. de Ciencias Biologicas; Young, Maria Claudia M., E-mail: araujoar@iq.unesp.br [Instituto de Botanica, Sao Paulo, SP (Brazil). Seccao de Fisiologia e Bioquimica de Plantas

    2012-07-01

    Two new diastereoisomeric cadinanes sesquiterpenes 3,9-dihydroxycalamenene (1-2), along with the known 3-hydroxycalamen-8-one (3) and aristelegone-A (4), were isolated from ethyl acetate extract of Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. Their structures, including relative stereochemistry, were determined on the basis of detailed interpretation of 2D NMR spectra and comparison with related known compounds. Compounds 1-4 displayed antifungal activity against the phytopathogenic fungi Cladosporium cladosporioides and C. sphaerospermum, as well as inhibition of acetylcholinesterase. (author)

  3. The Toxic Effect of Manganese on the Acetylcholinesterase Activity in Rat Brains

    Directory of Open Access Journals (Sweden)

    Vahid Yousefi Babadi

    2014-01-01

    Full Text Available Manganese (Mn is a naturally occurring element and an essential nutrient for humans and animals. However, exposure to high levels of Mn may cause neurotoxic effects. Accumulation of manganese damages central nervous system and causes Parkinson’s disease-like syndrome called manganism. Mn neurotoxicity has been suggested to involve an imbalance between the DAergic and cholinergic systems. The pathological mechanisms associated with Mn neurotoxicity are poorly understood, but several reports have established it is mediated by changing of AChE activity that resulted in oxidative stress. Therefore we focused the effect of Mn in AChE activity in the rat’s brain by MnCl2 injection intraperitoneally and analyzed their brains after time intervals. This study used different acute doses in short time course and different chronic doses at different exposing time to investigate which of them (exposing dose or time is more important in Mn toxic effect. Results showed toxic effect of Mn is highly dose dependent and AChE activity in presence of chronic dose in 8 weeks reaches acute dose in only 2 days.

  4. Acetylcholinesterase activity in the brain of alloxan diabetic albino rats: Presence of an inhibitor of this enzyme activity in the cerebral extract

    Science.gov (United States)

    Ahmed, Nayeemunnisa; Tarannum, Suraiya

    2009-01-01

    Background and Aim: Ischemic manifestations and cerebral dysfunction have been demonstrated in diabetes. However, the pathogenesis of diabetes-induced cerebral dysfunction still remains to be elucidated. Hence, the present study was initiated. Materials and Methods: Type-2 diabetes was induced in albino rats (280–300g) with alloxan monohydrate (40 mg/Kg i.v.,) and the cerebrum, cerebellum and medulla oblongata of the brain were used 48 h after alloxan injection for modulations in acetylcholinesterase (AChE, EC 3.1.1.7) activity. Results: AChE activity in the discrete regions of the brain of rats decreased significantly (P<0.01, 0.05 and 0.05 respectively) in diabetes. In vitro studies using cerebral extract from alloxan diabetic rats demonstrated significant (P<0.05) inhibition of AChE activity in the brain of normal animals. Feeding with Cichorium intybus (chicory) leaf extract (500 mg/Kg) for 10 days resulted in an increase in AChE activity. Conclusion: The impairment in the glycemic control is the basic mechanism causing inhibition of neuronal activity. Cerebral extract from alloxan diabetic rats significantly inhibited the brain AChE activity of normal animals, indicating the presence of an inhibiting factor in the cerebrum of diabetic rats. Cichorium intybus when fed for 10 days offered neuroprotection by stimulating AChE activity. PMID:20336201

  5. Synthesis of mangiferin derivates and study their potent PTP1B inhibitory activity

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Protein tyrosine phosphatase 1B (PTP1B) has received considerable attention from the drug industry as a potential treatment fordiabetes mellitus. Mangiferin has been reported to possess significant antidiabetic activity. Based on the previous study, eight new mangiferin derivates were synthesized and evaluated for their PTP1B inhibitory activity. Some of them displayed good inhibitory activity on PTP1B.

  6. α-Glucosidase inhibitory activity of selected Malaysian plants

    Directory of Open Access Journals (Sweden)

    Dzatil Awanis Mohd Bukhari

    2017-01-01

    Full Text Available Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.

  7. ALTERATIONS IN THE ACETYLCHOLINESTERASE ACTIVITY IN THE BRAIN OF ALBINO MICE EXPOSED TO ACEPHATE

    Directory of Open Access Journals (Sweden)

    M. SIVA PRASAD

    2013-01-01

    Full Text Available Acephate (AP, a widely available organophosphorus (OP insecticide, has low mammalian toxicity and isconsidered non-phytotoxic on many crop plants and therefore it is preferred in agricultural crops. In plants andinsects, AP is metabolized extensively to methamidophos (MP, a more potent OP insecticide. The limitedmammalian metabolism of AP to MP has been studied in laboratory rat models and suggests that initial formationof MP from AP may inhibit further formation. Hence in the present investigation we have studied the effect of anAP in cholinergic mechanisms in the different regions of brain. For the present study the male mice were exposedto 1/10th LD50 of AP via oral gavage (i.e. 40.5mg/kg body weight. Our results indicate a steady decline of AChEactivity in all the regions of the brain of Acephate exposed animals. As expected an increase in ACh activity wasnoticed in all the regions of the AP exposed animals. We suggest that cholinergic system is seriously affected bythe intoxication of Acephate and the effect was more effective in 30 days when compared to 10 days

  8. Synthesis and screening for acetylcholinesterase inhibitor activity of some novel 2-butyl-1,3-diaza-spiro[4,4]non-1-en-4-ones: derivatives of irbesartan key intermediate.

    Science.gov (United States)

    Kavitha, C V; Gaonkar, S L; Narendra Sharath Chandra, J N; Sadashiva, C T; Rangappa, K S

    2007-12-01

    The association of bioactive nucleus with other pharmacological agents is hoped to improve the efficacy of the treatment by combining the effects of different pharmacological mechanisms of action. Keeping this in view, a series of 2-butyl-1,3-diaza-spiro[4,4]non-1-en-4-one derivatives have been synthesized by interaction of 2-butyl-1,3-diaza-spiro[4,4]non-1-en-4-one with different bioactive aralkyl halides in presence of powdered potassium carbonate by two different methods viz., conventional and microwave irradiation. The yields under conventional and microwave irradiation methods were in the range of 60-65% and 80-90%, respectively. The structure elucidation of the new compounds has been carried out with the help of elemental analysis and spectral data. All the synthesized compounds have been screened for their efficacy as acetylcholinesterase (AChE) inhibitor. AChE inhibitory activity study was carried out by using Ellman colorimetric assay with neostigmine as a reference standard against targets from different species, such as pure electric eel AChE, human serum AChE, and rat brain AChE. Among the compounds synthesized, compounds 5a, 5b, 5j showed good inhibition against AChE.

  9. Molecular interactions of an alkaloid euchrestifoline as a new acetylcholinesterase inhibitor

    Directory of Open Access Journals (Sweden)

    Fazal Ur Rehman

    2013-12-01

    Full Text Available Acetylcholinesterase (AChE inhibitors are well established therapeutic agents for clinical management of Alzheimer’s Diseases and other disorders associated with deficient cholinergic neurotransmission. In the current investigation, a new inhibitor has been reported for its significant AChE inhibitory. euchrestifoline was isolated from the extract of Murraya paniculata. Isolated compound showed significant enzyme inhibitory activity (IC50 value: 93.1 ± 0.0 μM. Molecular docking revealed structural insights behind its significant inhibitory activity. Various molecular interaction were found between euchrestifoline and Ache especially Ser122, Trp84 and Tyr121. This study indicated promising potential of euchrestifoline to be further developed and explored as potential lead compound.

  10. A practical synthesis of sarpogrelate hydrochloride and in vitro platelet aggregation inhibitory activities of its analogues

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A convenient approach for the preparation of sarpogrelate hydrochloride was developed.Two series of sarpogrelate hydrochloride analogues were designed and synthesized in order to improve their platelet aggregation inhibitory activities, biological tests suggested that these compounds have platelet aggregation inhibitory activities to some extent.

  11. Effect of Donepezil, Tacrine, Galantamine and Rivastigmine on Acetylcholinesterase Inhibition in Dugesia tigrina

    Directory of Open Access Journals (Sweden)

    Cristiane Bezerra da Silva

    2016-01-01

    Full Text Available Dugesia tigrina is a non-parasitic platyhelminth, which has been recently utilized in pharmacological models, regarding the nervous system, as it presents a wide sensitivity to drugs. Our trials aimed to propose a model for an in vivo screening of substances with inhibitory activity of the enzyme acetylcholinesterase. Trials were performed with four drugs commercialized in Brazil: donepezil, tacrine, galantamine and rivastigmine, utilized in the control of Alzheimer’s disease, to inhibit the activity of acetylcholinesterase. We tested five concentrations of the drugs, with an exposure of 24 h, and the mortality and the inhibition of acetylcholinesterase planarian seizure-like activity (pSLA and planarian locomotor velocity (pLMV were measured. Galantamine showed high anticholinesterasic activity when compared to the other drugs, with a reduction of 0.05 μmol·min−1 and 63% of convulsant activity, presenting screw-like movement and hypokinesia, with pLMV of 65 crossed lines during 5 min. Our results showed for the first time the anticholinesterasic and convulsant effect, in addition to the decrease in locomotion induced by those drugs in a model of invertebrates. The experimental model proposed is simple and low cost and could be utilized in the screening of substances with anticholinesterasic action.

  12. Microwave-assisted synthesis and tyrosinase inhibitory activity of chalcone derivatives.

    Science.gov (United States)

    Liu, Jinbing; Chen, Changhong; Wu, Fengyan; Zhao, Liangzhong

    2013-07-01

    A series of chalcones and their derivatives were synthesized, and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant inhibitory activity, and four compounds exhibited more potent tyrosinase inhibitory activity than the reference standard inhibitor kojic acid (5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one). Specifically, 1-(-1-(4-methoxyphen- yl)-3-phenylallylidene)thiosemicarbazide (18) exhibited the most potent tyrosinase inhibitory activity with IC₅₀ value of 0.274 μM. The inhibition mechanism analysis of 1-(-1-(2,4-dihydroxyphenyl)-3-phenylallylidene) thiosemicarbazide (16) and 1-(-1-(4-methoxyphenyl)-3-phenylallylidene) thiosemicarbazide (18) demonstrated that the inhibitory effects of the two compounds on the tyrosinase were irreversible. Preliminary structure activity relationships' analysis suggested that further development of such compounds might be of interest.

  13. Antioxidant Activity and α-Glucosidase Inhibitory Activities of the Polycondensate of Catechin with Glyoxylic Acid.

    Directory of Open Access Journals (Sweden)

    Sheng Geng

    Full Text Available In order to investigate polymeric flavonoids, the polycondensate of catechin with glyoxylic acid (PCG was prepared and its chemically antioxidant, cellular antioxidant (CAA and α-glucosidase inhibitory activities were evaluated. The DPPH and ABTS radical scavenging activities and antiproliferative effect of PCG were lower than those of catechin, while PCG had higher CAA activity than catechin. In addition, PCG had very high α-glucosidase inhibitory activities (IC50 value, 2.59 μg/mL in comparison to catechin (IC50 value, 239.27 μg/mL. Inhibition kinetics suggested that both PCG and catechin demonstrated a mixture of noncompetitive and anticompetitive inhibition. The enhanced CAA and α-glucosidase inhibitor activities of PCG could be due to catechin polymerization enhancing the binding capacity to the cellular membrane and enzymes.

  14. Aphicidal Activity of Illicium verum Fruit Extracts and Their Effects on the Acetylcholinesterase and Glutathione S-transferases Activities in Myzus persicae (Hemiptera: Aphididae).

    Science.gov (United States)

    Zhou, Ben-Guo; Wang, Sa; Dou, Ting-Ting; Liu, Su; Li, Mao-Ye; Hua, Ri-Mao; Li, Shi-Guang; Lin, Hua-Feng

    2016-01-01

    This study aims to explore the aphicidal activity and underlying mechanism of Illicium verum Hook. f. that is used as both food and medicine. The contact toxicity of the extracts from I. verum fruit with methyl alcohol (MA), ethyl acetate (EA), and petroleum ether (PE) against Myzus persicae (Sulzer), and the activities of acetylcholinesterase (AChE) and glutathione S-transferases (GSTs) of M. persicae after contact treatment were tested. The results showed that MA, EA, and PE extracts of 1.000 mg/l caused, respectively, M. persicae mortalities of 68.93%, 89.95% and 74.46%, and the LC50 of MA, EA, and PE extracts were 0.31, 0.14 and 0.27 mg/l at 72 h after treatment, respectively; the activities of AChE and GSTs in M. persicae were obviously inhibited by the three extracts, as compared with the control, with strong dose and time-dependent effects, the inhibition rates on the whole reached more than 50.00% at the concentration of 1.000 mg/l at 72 h after treatment. The inhibition of the extracts on AChE and GSTs activities (EA extract > PE extract > MA extract) were correlated with theirs contact toxic effects, so it is inferred that the decline of the metabolic enzymes activities may be one of important reasons of M. persicae death. The study results suggested that I. verum extracts have potential as a eco-friendly biopesticide in integrated pest management against M. persicae.

  15. In vitro studies on the effect of beta-carbolines on the activities of acetylcholinesterase and choline acetyltransferase and on the muscarinic receptor binding of the rat brain.

    Science.gov (United States)

    Skup, M; Oderfeld-Nowak, B; Rommelspacher, H

    1983-07-01

    Acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) activity and muscarinic receptor binding of homogenates from several brain structures were inhibited by beta-carbolines. The inhibition was of the noncompetitive type in the case of the enzyme and of the mixed type in the case of the receptor binding. This effect was most strongly manifested by pyridoindoles(harmane, norharmane), i.e., carbolines containing an aromatic C ring than by the corresponding piperidoindoles (tetrahydroharmane, tetrahydronorharmane), i.e., those with a reduced C ring. The activity of choline acetyltransferase (acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6) was not altered. These data are further evidence of the interactions between indoleamine derivatives and the cholinergic system. The results are discussed in terms of their possible biological significance.

  16. Convergence of inhibitory neural inputs regulate motor activity in the murine and monkey stomach.

    Science.gov (United States)

    Shaylor, Lara A; Hwang, Sung Jin; Sanders, Kenton M; Ward, Sean M

    2016-11-01

    Inhibitory motor neurons regulate several gastric motility patterns including receptive relaxation, gastric peristaltic motor patterns, and pyloric sphincter opening. Nitric oxide (NO) and purines have been identified as likely candidates that mediate inhibitory neural responses. However, the contribution from each neurotransmitter has received little attention in the distal stomach. The aims of this study were to identify the roles played by NO and purines in inhibitory motor responses in the antrums of mice and monkeys. By using wild-type mice and mutants with genetically deleted neural nitric oxide synthase (Nos1(-/-)) and P2Y1 receptors (P2ry1(-/-)) we examined the roles of NO and purines in postjunctional inhibitory responses in the distal stomach and compared these responses to those in primate stomach. Activation of inhibitory motor nerves using electrical field stimulation (EFS) produced frequency-dependent inhibitory junction potentials (IJPs) that produced muscle relaxations in both species. Stimulation of inhibitory nerves during slow waves terminated pacemaker events and associated contractions. In Nos1(-/-) mice IJPs and relaxations persisted whereas in P2ry1(-/-) mice IJPs were absent but relaxations persisted. In the gastric antrum of the non-human primate model Macaca fascicularis, similar NO and purine neural components contributed to inhibition of gastric motor activity. These data support a role of convergent inhibitory neural responses in the regulation of gastric motor activity across diverse species.

  17. Implications of cytochrome 450 isoenzymes, aryl-esterase and oxonase activity in the inhibition of the acetylcholinesterase of Chirostoma jordani treated with phosphorothionate pesticides.

    Science.gov (United States)

    Dzul-Caamal, Ricardo; Domínguez-López, M Lilia; García-Latorre, Ethel; Vega-López, Armando

    2012-10-01

    Organophosphate pesticides must be metabolized by cytochrome-P450 isoenzymes such CYP 2C19 as CYP 3A4 to induce neurotoxicity, but damage apparently depends on the activity of aryl esterases of the oxonase type that are involved in detoxication of these compounds. However, information on this subject is not available in fish. Chirostoma jordani has sustained significant population reductions, probably due to changes in land-use as well as pesticide impact; nevertheless, no specific studies demonstrating this are available. This study shows for the first time that the activity of cytochrome-P450 isoenzymes (CYP 2B6, CYP 2C19, CYP 3A4) in C. jordani is involved in diazinon and chlorpyrifos bioactivation. However, higher toxicity of chlorpyrifos cannot be explained solely because its bioactivation. Differences in toxicity between both pesticides are due to the activity of aryl esterases and oxonases that are responsible for oxon detoxication. Both hepatic enzymes metabolize diazoxon more efficiently than chlorpyrifos oxon. At lethal concentrations, detoxication is particularly important since mortality was lower with diazinon (LC50=1.5 μg/L) than with chlorpyrifos (LC50=0.17 μg/L). At sublethal levels, maximum acetylcholinesterase inhibition took place at 4h in both brain and muscle and was of lower magnitude in diazinon-treated fish. This is due to the higher affinity of both aryl esterases for diazoxon, which allows higher detoxication rates and therefore greater recovery of acetylcholinesterase activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Isorhamnetin and Quercetin Derivatives as Anti-Acetylcholinesterase Principles of Marigold (Calendula officinalis) Flowers and Preparations

    Science.gov (United States)

    Kashchenko, Nina I.; Chirikova, Nadezhda K.; Akobirshoeva, Anzurat; Zilfikarov, Ifrat N.; Vennos, Cecile

    2017-01-01

    Marigold (Calendula officinalis L.) is one of the most common and widespread plants used medicinally all over the world. The present study aimed to evaluate the anti-acetylcholinesterase activity of marigold flowers, detect the compounds responsible and perform chemical analysis of marigold commercial products. Analysis of 23 varieties of C. officinalis flowers introduced into Siberia allowed us to select the Greenheart Orange variety due to the superior content of flavonoids (46.87 mg/g) and the highest inhibitory activity against acetylcholinesterase (IC50 63.52 µg/mL). Flavonoids, isorhamnetin and quercetin derivatives were revealed as potential inhibitors with the application of high-performance liquid chromatography (HPLC) activity-based profiling. Investigation of the inhibitory activity of isorhamnetin glycosides demonstrated the maximal potency for isorhamnetin-3-O-(2′′,6′′-di-acetyl)-glucoside (IC50 51.26 μM) and minimal potency for typhaneoside (isorhamnetin-3-O-(2′′,6′′-di-rhamnosyl)-glucoside; IC50 94.92 µM). Among quercetin derivatives, the most active compound was quercetin-3-O-(2′′,6′′-di-acetyl)-glucoside (IC50 36.47 µM), and the least active component was manghaslin (quercetin-3-O-(2′′,6′′-di-rhamnosyl)-glucoside; IC50 94.92 µM). Some structure-activity relationships were discussed. Analysis of commercial marigold formulations revealed a reduced flavonoid content (from 7.18–19.85 mg/g) compared with introduced varieties. Liquid extract was the most enriched preparation, characterized by 3.10 mg/mL of total flavonoid content, and infusion was the least enriched formulation (0.41 mg/mL). The presented results suggest that isorhamnetin and quercetin and its glycosides can be considered as potential anti-acetylcholinesterase agents. PMID:28767066

  19. Testosterone 5alpha-reductase inhibitory active constituents of Piper nigrum leaf.

    Science.gov (United States)

    Hirata, Noriko; Tokunaga, Masashi; Naruto, Shunsuke; Iinuma, Munekazu; Matsuda, Hideaki

    2007-12-01

    Previously we reported that Piper nigrum leaf extract showed a potent stimulation effect on melanogenesis and that (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2) were isolated as active constituents. As a part of our continuous studies on Piper species for the development of cosmetic hair-care agents, testosterone 5alpha-reductase inhibitory activity of aqueous ethanolic extracts obtained from several different parts of six Piper species, namely Piper nigrum, P. methysticum, P. betle, P. kadsura, P. longum, and P. cubeba, were examined. Among them, the extracts of P. nigrum leaf, P. nigrum fruit and P. cubeba fruit showed potent inhibitory activity. Activity-guided fractionation of P. nigrum leaf extract led to the isolation of 1 and 2. Fruits of P. cubeba contain 1 as a major lignan, thus inhibitory activity of the fruit may be attributable to 1. As a result of further assay on other known constituents of the cited Piper species, it was found that piperine, a major alkaloid amide of P. nigrum fruit, showed potent inhibitory activity, thus a part of the inhibitory activity of P. nigrum fruit may depend on piperine. The 5alpha-reductase inhibitory activities of 1 and piperine were found for the first time. In addition, the P. nigrum leaf extract showed in vivo anti-androgenic activity using the hair regrowth assay in testosterone sensitive male C57Black/6CrSlc strain mice.

  20. Use and disuse and the control of acetylcholinesterase activity in fast and slow twitch muscle of rat

    Science.gov (United States)

    Dettbarn, W. D.; Groswald, D.; Gupta, R. C.; Misulis, K. E.

    1985-01-01

    The role of acetylcholinesterase (AChE) in neuromuscular transmission is relatively well established, little is known, however, of the mechanisms that regulate its synthesis and control its specific distribution in fast and slow muscle. Innervation plays an important role in the regulation of AChE and elimination of the influence of the nerve by surgical denervation results in a loss of AChE. The influences of the nerve and how they are mediated was investigated. It is suggested that muscle usage and other factors such as materials carried by axonal transport may participate in the regulation of this enzyme. The mechanisms that regulate AChE and its molecular forms in two functionally different forms are studied.

  1. Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice.

    Science.gov (United States)

    He, Dandan; Wu, Hui; Wei, Yue; Liu, Wei; Huang, Fei; Shi, Hailian; Zhang, Beibei; Wu, Xiaojun; Wang, Changhong

    2015-12-01

    Harmine, a β-carboline alkaloid present in Peganum harmala with a wide spectrum of pharmacological activities, has been shown to exert strong inhibition against acetylcholinesterase in vitro. However, whether it can rescue the impaired cognition has not been elucidated yet. In current study, we examined its effects on scopolamine-induced memory impairment mice and APP/PS1 transgenic mice, one of the models for Alzheimer's disease, using Morris Water Maze test. In addition, whether harmine could penetrate blood brain barrier, interact with and inhibit acetylcholinesterase, and activate downstream signaling network was also investigated. Our results showed that harmine (20mg/kg) administered by oral gavage for 2 weeks could effectively enhance the spatial cognition of C57BL/6 mice impaired by intraperitoneal injection of scopolamine (1mg/kg). Meanwhile, long-term consumption of harmine (20mg/kg) for 10 weeks also slightly benefited the impaired memory of APP/PS1 mice. Furthermore, harmine could pass through blood brain barrier, penetrate into the brain parenchyma shortly after oral administration, and modulate the expression of Egr-1, c-Jun and c-Fos. Molecular docking assay disclosed that harmine molecule could directly dock into the catalytic active site of acetylcholinesterase, which was partially confirmed by its in vivo inhibitory activity on acetylcholinesterase. Taken together, all these results suggested that harmine could ameliorate impaired memory by enhancement of cholinergic neurotransmission via inhibiting the activity of acetylcholinesterase, which may contribute to its clinical use in the therapy of neurological diseases characterized with acetylcholinesterase deficiency.

  2. Polysaccharide with antioxidant, α-amylase inhibitory and ACE inhibitory activities from Momordica charantia.

    Science.gov (United States)

    Tan, Hwee-Feng; Gan, Chee-Yuen

    2016-04-01

    Functional polysaccharide was isolated from Momordica charantia, with a yield of 36% (w/w). M. charantia bioactive polysaccharide (MCBP) was an acidic and branched heteropolysaccharide with a molecular weight of 92 kDa. Fourier transform infrared spectroscopic analysis indicated that MCBP was a pectin-like polysaccharide with an esterification degree of 53% and it contains numerous monosaccharides, predominantly glucose, galactose, and galaturonic acid. The results also showed that MCBP exhibited free radical scavenging activity (31.9%), ferric reducing antioxidant power (0.95 mM), α-amylase inhibition (89.1%), and angiotensin-converting enzyme inhibition (94.1%). In the terms of functionality, MCBP showed a lower water-holding capacity but higher in oil-holding capacity, emulsifying activity and foaming capacity compared to citrus pectin. Scanning electron microscopy images demonstrated that MCBP formed gels with a porous structure, and flow analysis showed that the gel solution exhibited pseudoplastic shear-thinning behavior. These findings indicated that MCBP is a promising functional macromolecular carbohydrate for the food and nutraceutical industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. C- and O-glycosyl flavonoids in Sanguinello and Tarocco blood orange (Citrus sinensis (L.) Osbeck) juice: Identification and influence on antioxidant properties and acetylcholinesterase activity.

    Science.gov (United States)

    Barreca, Davide; Gattuso, Giuseppe; Laganà, Giuseppina; Leuzzi, Ugo; Bellocco, Ersilia

    2016-04-01

    Sanguinello and Tarocco are the blood orange (Citrus sinensis (L.) Osbeck) cultivars most diffused worldwide. Reversed phase liquid chromatography coupled with MS-MS analysis showed that these two varieties have a similar chromatographic pattern, characterised by the presence of C- and O-glycosyl flavonoids. Of the two, Sanguinello was found to be far richer in flavonoids than Tarocco. In the juices, twelve individual components were identified for the first time, namely, four C-glycosyl flavones (lucenin-2, vicenin-2, stellarin-2, lucenin-2 4'-methyl ether and scoparin), three flavonol derivatives (quercetin-3-O-(2-rhamnosyl)-rutinoside, quercetin-3-O-hexoside, quercetin 3-hydroxy-3-methylglutaryl-glycoside), an O-triglycosyl flavanone (narirutin 4'-O-glucoside) and a flavone O-glycosides (chrysoeriol 7-O-neoesperidoside). Moreover, the influence of the identified C- and O-glycosyl flavonoids on the antioxidant and acetylcholinesterase activity of these juices has been evaluated.

  4. Correlations between the lipophilicity and the inhibitory activity of different substituted benzimidazoles

    Directory of Open Access Journals (Sweden)

    DIJANA J. BARNA

    2009-09-01

    Full Text Available 2-Amino and 2-methylbenzimidazole derivatives were tested in vitro for their inhibitory activity against the bacteria Bacillus cereus. The minimum inhibitory concentration (MIC was determined for all compounds. The lipophilicity descriptors were calculated by using CS Chem-Office Software, version 7.0. The stepwise regression method was used to derive the most significant model as a calibration model for predicting the antibacterial activity of this class of compounds. A complete regression analysis resorting to linear and quadratic relationships was made. Theoretical models were validated by leaving one out (LOO technique, as well as by the calculation of statistical parameters for the established models. The best QSAR model for the prediction of an inhibitory activity of the investigated series of benzimidazoles was developed. A high agreement between the experimental and predicted inhibitory values was obtained. The results indicated that the antibacterial activity could be modeled using the lipophilicity descriptor.

  5. Synthesis and VEGF inhibitory activity of 16,17-pyrazo-annulated steroids

    Institute of Scientific and Technical Information of China (English)

    Hong Shan Liu; Hu Ling Zheng; Mei Ge; Peng Xia; Ying Chen

    2011-01-01

    Eight 16,17-pyrazo-annulated steroidal derivatives were synthesized and evaluated in vitro vascular endothelial growth factor (VEGF) inhibitory activity with 2-methoxyestradiol (2-ME) as the reference compound. Most of the compounds showed potent VEGF inhibitory activity with EC50 values of micromolar or submicromolar range. Among them, the compounds 3 and 8 exhibited similar EC50 values and obviously better TI values compared with 2-ME.

  6. Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses.

    Science.gov (United States)

    Rubinski, Anna; Ziv, Noam E

    2015-11-01

    Glutamatergic synapse size remodeling is governed not only by specific activity forms but also by apparently stochastic processes with well-defined statistics. These spontaneous remodeling processes can give rise to skewed and stable synaptic size distributions, underlie scaling of these distributions and drive changes in glutamatergic synapse size "configurations". Where inhibitory synapses are concerned, however, little is known on spontaneous remodeling dynamics, their statistics, their activity dependence or their long-term consequences. Here we followed individual inhibitory synapses for days, and analyzed their size remodeling dynamics within the statistical framework previously developed for glutamatergic synapses. Similar to glutamatergic synapses, size distributions of inhibitory synapses were skewed and stable; at the same time, however, sizes of individual synapses changed considerably, leading to gradual changes in synaptic size configurations. The suppression of network activity only transiently affected spontaneous remodeling dynamics, did not affect synaptic size configuration change rates and was not followed by the scaling of inhibitory synapse size distributions. Comparisons with glutamatergic synapses within the same dendrites revealed a degree of coupling between nearby inhibitory and excitatory synapse remodeling, but also revealed that inhibitory synapse size configurations changed at considerably slower rates than those of their glutamatergic neighbors. These findings point to quantitative differences in spontaneous remodeling dynamics of inhibitory and excitatory synapses but also reveal deep qualitative similarities in the processes that control their sizes and govern their remodeling dynamics.

  7. Immunocytochemical demonstration of axonal and perikaryal acetylcholinesterase in human cerebral cortex.

    Science.gov (United States)

    Mesulam, M M; Geula, C; Cosgrove, R; Mash, D; Brimijoin, S

    1991-01-25

    The adult human neocortex contains a dense net of axons and perikarya which yield an acetylcholinesterase-rich enzymatic reaction pattern in histochemical experiments. We employed a monoclonal antibody to human acetylcholinesterase and a method for the concurrent visualization of histochemical and immunohistochemical reaction-products to explore the relationship between immunological and enzymatic markers of acetylcholinesterase. We observed that the cortical axons and perikarya with a histochemically determined acetylcholinesterase-rich enzymatic activity also contain acetylcholinesterase-like immunoreactivity. This was especially informative for the intracortical acetylcholinesterase-rich perikarya of layers III and V since these neurons require prolonged incubations for histochemical detection and since they are not conspicuous in other animal species. The availability of a reliable immunohistochemical method makes it possible to investigate the distribution of the acetylcholinesterase enzyme molecule independent of its enzymatic activity.

  8. Design of a sialylglycopolymer with a chitosan backbone having efficient inhibitory activity against influenza virus infection.

    Science.gov (United States)

    Umemura, Myco; Itoh, Masae; Makimura, Yutaka; Yamazaki, Kohji; Umekawa, Midori; Masui, Ayano; Matahira, Yoshiharu; Shibata, Mari; Ashida, Hisashi; Yamamoto, Kenji

    2008-08-14

    We verified here the inhibitory activity of a sialylglycopolymer prepared from natural products, chitosan and hen egg yolk, against influenza virus infection and estimated the requirements of the molecule for efficient inhibition. The inhibitory activity clearly depended on two factors, the length (the degree of polymerization: DP) of the chitosan backbone and the amount (the degree of substitution: DS) of conjugated sialyloligosaccharide side chain. The inhibitory efficiency increased in accordance with the DP value, with the highest inhibitory activity obtained when the DP was 1430. The inhibition of virus infection reached more than 90% as the DS value increased up to 15.6% when the neighboring sialyloligosaccharide side chains came as close as 4 nm, which was nearly the distance between two receptor-binding pockets in a hemagglutinin trimer. These results demonstrate that the sialylglycopolymer could be an excellent candidate of the safe and efficient anti-influenza drug.

  9. Antioxidant and acetylcholinesterase inhibition properties of Amorpha fruticosa L. and Phytolacca americana L.

    Directory of Open Access Journals (Sweden)

    Dimitrina Zh Zheleva-Dimitrova

    2013-01-01

    Full Text Available Background: Amorpha fruticosa L. and Phytolacca americana L. are native plants for North America, but invasive for Central Europe and the Mediterranean areas. Previous investigation reported DPPH radical scavenging activity of A. fruticosa seeds from Mississippi river basin and P. americana berries from Iran. The aim of the present study was to investigate methanol extracts from leaves and fruits of these invasive species growing in Bulgaria for radical scavenging and acetylcholinesterase inhibitory potential. Materials and Methods: Antioxidant activity was investigated using DPPH and ABTS free radicals; FRAP assay and inhibition of lipid peroxidation in linoleic acid system by FTC. Modified Ellman′s colorimetric method was carried out to quantify acetylcholinesterase inhibition potential. In addition, the quantities of total polyphenols, flavonoids, and hydroxycinnamic derivatives were determinated using Folin-Chiocalteu reagent, AlCl 3 , and Na 2 MoO 4 , respectively. Results: The highest concentrations of total polyphenols and flavonoids were found in A. fruticosa leaves (786.70±1.78 mg/g dry extract and 32.19±0.29 mg/g dry extract, respectively. A. fruticosa fruit was found to be the most enriched in total hydroxycinnamic derivatives (153.55±1.11 mg/g dry extract and demonstrated the highest antioxidant activity: DPPH, IC 50 9.83 μg/mL; ABTS, IC 50 2.90 μg/mL; FRAP , 642.95±3.95 μg TE/mg de, and acetylcholinesterase inhibitory activity, 48.86±0.55% (2 mg/mL. Conclusions: Phytolacca americana leaves and Amorpha fruticosa could be useful in therapy of free radical pathologies and neurodegenerative disorders.

  10. Screening of Some Medicinal Plants for Acetylcholinesterase Inhibition and Antioxidant Activity%药用植物中乙酰胆碱酯酶抑制活性和抗氧化活性的筛选

    Institute of Scientific and Technical Information of China (English)

    杨赟; 刘敏; 李建; 张玉强; 陆亮

    2013-01-01

    目的:对24种药用植物醇提物的乙酰胆碱酯酶抑制活性和抗氧化活性进行筛选研究.方法:70%乙醇回流提取植物粗提物;目标粗提物采用氯仿、乙酸乙酯、正丁醇依次萃取,得到氯仿、乙酸乙酯、正丁醇和水部位;乙酰胆碱酯酶抑制活性测定采用改良的Ellman法和薄层色谱(TLC)生物自显影法相结合的方法;抗氧化活性采用清除DPPH自由基能力进行评价.结果:结合改良Ellman法和TLC生物自显影法对24种植物的醇提物的抗乙酰胆碱酯酶抑制活性进行评价,结果表明红毛七、金不换、飞龙掌血、白花映山红和八角枫5种植物粗提物具有显著的抑制活性,在终浓度为1g·L-1时,其抑制率分别为(88.72±1.47)%,(82.25±1.32)%,(77.71±1.61)%,(77.00±1.38)%,(75.22±1.28)%,其清除DPPH自由基IC50分别为153.75,74.95,50.00,10.87,24.40mg·L-1.在这5种植物粗提物不同萃取部位中,红毛七和金不换氯仿部位对乙酰胆碱酯酶抑制活性最强,其IC50为33.97,38.79mg·L-1,其清除DPPH自由基的IC50为302.95,79.45 mg·L-1.结论:金不换和红毛七粗提物氯仿部位具有较强的乙酰胆碱酯酶抑制活性和抗氧化活性,可进行进一步的追踪分离研究.%Objective: The ethanol extracts of 24 medicinal plants were screened for their anti-acetylcholinesterase ( AChE) activity and antioxidant activity. Method: The medicinal plants were extracted by ethanol (70%) under reflux. The objective extracts would be extracted by different solvents-dichloromethane, ethyl acetate, rc-butanol, and water respectively, in order to obtain their dichloromethane, ethyl acetate, n-butanol, and aqueous-soluble fractions. The AChE inhibitory activity was tested by TLC bioautographic method combined with modified Ellman's colorimetric method; Antioxidant activity was evaluated by 2, 2-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. Result; On the basis of the evaluation of 24 medicinal

  11. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex.

    Science.gov (United States)

    Cruikshank, Scott J; Lewis, Timothy J; Connors, Barry W

    2007-04-01

    The thalamus provides fundamental input to the neocortex. This input activates inhibitory interneurons more strongly than excitatory neurons, triggering powerful feedforward inhibition. We studied the mechanisms of this selective neuronal activation using a mouse somatosensory thalamocortical preparation. Notably, the greater responsiveness of inhibitory interneurons was not caused by their distinctive intrinsic properties but was instead produced by synaptic mechanisms. Axons from the thalamus made stronger and more frequent excitatory connections onto inhibitory interneurons than onto excitatory cells. Furthermore, circuit dynamics allowed feedforward inhibition to suppress responses in excitatory cells more effectively than in interneurons. Thalamocortical excitatory currents rose quickly in interneurons, allowing them to fire action potentials before significant feedforward inhibition emerged. In contrast, thalamocortical excitatory currents rose slowly in excitatory cells, overlapping with feedforward inhibitory currents that suppress action potentials. These results demonstrate the importance of selective synaptic targeting and precise timing in the initial stages of neocortical processing.

  12. ANTICARIES AND α-AMYLASE INHIBITORY ACTIVITY OF JASMINUM ARBORESCENS ROXB. (OLEACEAE LEAVES EXTRACT

    Directory of Open Access Journals (Sweden)

    Bhagath K

    2013-12-01

    Full Text Available The aim of the present study was to determine anti caries and α-amylase inhibitory activity of leaf extract of Jasminum arborescens Roxb. (Oleaceae. Anti caries activity was determined by Agar well diffusion assay against seven clinical isolates of Streptococcus mutans (Sm-01 to Sm-07 recovered from dental caries subjects. Enzyme inhibitory activity was tested against α-amylase by spectrophometric method using starch as substrate. The extract exhibited dose dependent inhibition against cariogenic isolates. Among seven isolates, isolate Sm-04 and Sm-06 were inhibited to higher and least extent respectively. The extract was found to cause inhibition of α-amylase activity in a dose dependent manner and its IC50 value was found to be 17.45 mg/ml. The inhibitory activity could be attributed to the presence of secondary metabolites. The plant may be a potential source for development of agents which are active against dental caries pathogens and for diabetes mellitus.

  13. Screening of new huprines--inhibitors of acetylcholinesterases by electrospray ionization ion trap mass spectrometry.

    Science.gov (United States)

    Ziemianin, Anna; Ronco, Cyril; Dolé, Romain; Jean, Ludovic; Renard, Pierre-Yves; Lange, Catherine M

    2012-11-01

    Acetylcholinesterase inhibitors (AChEI) are one of the drugs families validated for clinical use in the treatment of Alzheimer's disease (AD). For this reason, finding new more potent and more selective AChEIs is always of interest. Since 1961, the inhibitory activity of AChEI is evaluated through the Ellman's method. Herein, we reported a MS-based evaluation of potential new AChEI with the determination of their inhibitory activity (IC(50) and K(I)). Compared to the Ellman's method, that uses the substrate analog acetylthiocholine, the electrospray ionization ion trap mass spectrometry (ESI-IT-MS) consists in monitoring the conversion ratio of a low concentration of the natural substrate - acetylcholine to choline. We present here the inhibition activity of huprine X and six of its derivates (bearing different functional groups at position 9) towards the recombinant human (rhAChE) and Electrophorus electricus acetylcholinesterase (EelAChE). Mechanisms of action of selected inhibitors were evaluated by means of Lineweaver-Burk plot analysis. The Michaelis-Menten constants (K(M)), inhibitory constants (K(I)) were examined as well as the IC(50) to allow classifying a series of huprine derivatives by inhibition potency by a comparison with a reference (huprine X). Our results demonstrate that these drugs are very potent AChE inhibitors, especially (±)-huprine 6 with an inhibitory activity on recombinant human AChE (rhAChE) in the picomolar range. This study reveals the interest of huprine compounds in the treatment of AD. Copyright © 2012. Published by Elsevier B.V.

  14. Inhibitory activity of isoniazid and ethionamide against Cryptococcus biofilms.

    Science.gov (United States)

    Cordeiro, Rossana de Aguiar; Serpa, Rosana; Marques, Francisca Jakelyne de Farias; de Melo, Charlline Vládia Silva; Evangelista, Antonio José de Jesus; Mota, Valquíria Ferreira; Brilhante, Raimunda Sâmia Nogueira; Bandeira, Tereza de Jesus Pinheiro Gomes; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2015-11-01

    In recent years, the search for drugs to treat systemic and opportunistic mycoses has attracted great interest from the scientific community. This study evaluated the in vitro inhibitory effect of the antituberculosis drugs isoniazid and ethionamide alone and combined with itraconazole and fluconazole against biofilms of Cryptococcus neoformans and Cryptococcus gattii. Antimicrobials were tested at defined concentrations after susceptibility assays with Cryptococcus planktonic cells. In addition, we investigated the synergistic interaction of antituberculosis drugs and azole derivatives against Cryptococcus planktonic cells, as well as the influence of isoniazid and ethionamide on ergosterol content and cell membrane permeability. Isoniazid and ethionamide inhibited both biofilm formation and viability of mature biofilms. Combinations formed by antituberculosis drugs and azoles proved synergic against both planktonic and sessile cells, showing an ability to reduce Cryptococcus biofilms by approximately 50%. Furthermore, isoniazid and ethionamide reduced the content of ergosterol in Cryptococcus spp. planktonic cells and destabilized or permeabilized the fungal cell membrane, leading to leakage of macromolecules. Owing to the paucity of drugs able to inhibit Cryptococcus biofilms, we believe that the results presented here might be of interest in the designing of new antifungal compounds.

  15. Intraperitoneal Exposure to Nano/Microparticles of Fullerene (C60 Increases Acetylcholinesterase Activity and Lipid Peroxidation in Adult Zebrafish (Danio rerio Brain

    Directory of Open Access Journals (Sweden)

    Gonzalo Ogliari Dal Forno

    2013-01-01

    Full Text Available Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxidant responses, and oxidative damage using adult zebrafish as an animal model. None of the doses tested (7.5, 15, and 30 mg/kg altered AChE activity, antioxidant responses, and oxidative damage when zebrafish were exposed to nonphotoexcited C60 nano/microparticles during 6 and 12 hours. However, adult zebrafish exposed to the 30 mg/kg dose for 24 hours have shown enhanced AChE activity and augmented lipid peroxidation (TBARS assays in brain. In addition, the up-regulation of brain AChE activity was neither related to the transcriptional control (RT-qPCR analysis nor to the direct action of nonphotoexcited C60 nano/microparticles on the protein (in vitro results but probably involved a posttranscriptional or posttranslational modulation of this enzymatic activity. Taken together these findings provided further evidence of toxic effects on brain after C60 exposure.

  16. Intraperitoneal Exposure to Nano/Microparticles of Fullerene (C60) Increases Acetylcholinesterase Activity and Lipid Peroxidation in Adult Zebrafish (Danio rerio) Brain

    Science.gov (United States)

    Dal Forno, Gonzalo Ogliari; Kist, Luiza Wilges; de Azevedo, Mariana Barbieri; Fritsch, Rachel Seemann; Pereira, Talita Carneiro Brandão; Britto, Roberta Socoowski; Guterres, Sílvia Stanisçuaski; Külkamp-Guerreiro, Irene Clemes; Bonan, Carla Denise; Monserrat, José María; Bogo, Maurício Reis

    2013-01-01

    Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxidant responses, and oxidative damage using adult zebrafish as an animal model. None of the doses tested (7.5, 15, and 30 mg/kg) altered AChE activity, antioxidant responses, and oxidative damage when zebrafish were exposed to nonphotoexcited C60 nano/microparticles during 6 and 12 hours. However, adult zebrafish exposed to the 30 mg/kg dose for 24 hours have shown enhanced AChE activity and augmented lipid peroxidation (TBARS assays) in brain. In addition, the up-regulation of brain AChE activity was neither related to the transcriptional control (RT-qPCR analysis) nor to the direct action of nonphotoexcited C60 nano/microparticles on the protein (in vitro results) but probably involved a posttranscriptional or posttranslational modulation of this enzymatic activity. Taken together these findings provided further evidence of toxic effects on brain after C60 exposure. PMID:23865059

  17. Nickel in Soil Modifies Sensitivity to Diazinon Measured by the Activity of Acetylcholinesterase, Catalase, and Glutathione S-Transferase in Earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Agnieszka Zawisza-Raszka

    2013-01-01

    Full Text Available Nickel in typical soils is present in a very low concentration, but in the contaminated soils it occurs in locally elevated concentrations. The aim of this study was to examine the effect of nickel in the concentrations of 300 (very high, close to LOEC for reproduction and 900 (extremely high, close to LOEC for mortality mg/kg dry soil on the life history and acetylcholinesterase, catalase, and glutathione S-transferase activities in earthworm Eisenia fetida and to establish how nickel modifies the sensitivity to organophosphorous pesticide—diazinon. Cocoons production and juveniles’ number were significantly lower only in groups exposed to Ni in the concentration of 900 mg/kg dry soil for two months. Diazinon administration diminished the AChE activity in the GI tract and in the body wall. The interaction between diazinon and nickel was observed, and, in consequence, the AChE activity after the pesticide treatment was similar to controls in worms preexposed to nickel. Both pesticide administration and exposure to nickel caused an increase in the GST activity in examined organs and CAT activity in body wall. Both biometric and development data and simple enzymatic analysis, especially the AChE and GST, show a Ni pretreatment effect on the subsequent susceptibility to pesticide.

  18. Inhibitory activity of Bifidobacterium adolescent combined with cisplatin on melanoma in mice and its mechanism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The aim of this study is to explore inhibitory activity of Bifidobacterium adolescent combined with cisplatin on the growth of melanoma(B16)in mice and the underlying mechanism.C57 mice were inoculated with B16 cancer cells to construct mouse model of melanoma and treated with bifidobacterium adolescent combined with cisplatin.Ratios of inhibitory activity on the growth of melanoma(B 16)were calculated.Pathology changes of the tumor were observed by HE staining.B 16 cell cycles were examined on a flow cytometer.Lymphocyte proliferation was measured with MTT assay and the T-cell subset was measured by double marked fluorescence.When bifidobacterium of 1010 cfu/L was injected,the ratio of inhibitory activity on the growth of melanoma(B16)reached 54%,which was similar to that of cisplatin group.The ratio of inhibitory activity reached 74.45% when the mice were treated by bifidobacterium combined with cisplatin,HE staining shows that bifidobacterium inhibited B16 cell proliferation and enhanced the cisplati(n)s killing activity on B16 cells.The results of flow cytometry demonstrated that B16 cell proliferation was arrested at G1 stage after treatment with bifidobacterium.The B16 cell proliferation was arrested at S stage after treatment with cisplatin.The CD4+ percentage increased and the difference was significant compared with the normal group after treatment with bifidobacterium,indicating that T-cell immune activity was enhanced.Treatment with bifidobacterium combined with cisplatin can enhance the inhibitory activity on the growth of melanoma(B16)of cisplatin.The mechanism of the inhibitory activity on B 16 cell proliferation is correlated with the enhanced immune activity in mice.

  19. Discrimination and Nitric Oxide Inhibitory Activity Correlation of Ajwa Dates from Different Grades and Origin.

    Science.gov (United States)

    Abdul-Hamid, Nur Ashikin; Mediani, Ahmed; Maulidiani, M; Abas, Faridah; Ismail, Intan Safinar; Shaari, Khozirah; Lajis, Nordin H

    2016-10-28

    This study was aimed at examining the variations in the metabolite constituents of the different Ajwa grades and farm origins. It is also targeted at establishing the correlations between the metabolite contents and the grades and further to the nitric oxide (NO) inhibitory activity. Identification of the metabolites was generated using ¹H-NMR spectroscopy metabolomics analyses utilizing multivariate methods. The NO inhibitory activity was determined using a Griess assay. Multivariate data analysis, for both supervised and unsupervised approaches, showed clusters among different grades of Ajwa dates obtained from different farms. The compounds that contribute towards the observed separation between Ajwa samples were suggested to be phenolic compounds, ascorbic acid and phenylalanine. Ajwa dates were shown to have different metabolite compositions and exhibited a wide range of NO inhibitory activity. It is also revealed that Ajwa Grade 1 from the al-Aliah farm exhibited more than 90% NO inhibitory activity compared to the other grades and origins. Phenolic compounds were among the compounds that played a role towards the greater capacity of NO inhibitory activity shown by Ajwa Grade 1 from the al-Aliah farm.

  20. Inhibitory activities of microalgal extracts against Epstein-Barr Virus (EBV antigen expression in lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Koh Yih Yih

    2014-01-01

    Full Text Available The inhibitory activities of microalgal extracts against the expression of three EBV antigens, latent membrane protein (LMP1, Epstein-Barr nuclear antigen (EBNA1 and Z Epstein-Barr reactivation activator (ZEBRA were assessed by immunocytochemistry. The observation that the methanol extracts and their fractions from Ankistrodesmus convolutus, Synechococcus elongatus and Spirulina platensis exhibited inhibitory activity against EBV proteins in three Burkitt’s lymphoma cell lines at concentrations as low as 20 μg/ml suggests that microalgae could be a potential source of antiviral compounds against EBV.

  1. Inhibitory Activity of (+-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    Directory of Open Access Journals (Sweden)

    Yi Yang

    Full Text Available Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+-usnic acid and cetuximab. These results implied that (+-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action.

  2. Understanding the molecular mechanism for the differential inhibitory activities of compounds against MTH1

    Science.gov (United States)

    Wang, Mian; Zhou, Shuilian; Chen, Qing; Wang, Lisheng; Liang, Zhiqun; Wang, Jianyi

    2017-01-01

    MTH1 can hydrolyze oxidized nucleotides and is required for cancer survival. The IC50 values were 0.8 nM for TH287 with a methyl substitution, 5.0 nM for TH588 with a cyclopropyl substitution, and 2.1 μM for TH650 with an oxetanyl substitution. Thus, it is very significant to understand inhibitory mechanisms of these structurally similar compounds against MTH1 and influences of the substituent on the bioactivities. Our MD researches indicate that TH287 maintains significant hydrogen bonds with Asn33 and Asp119, stabilizes the binding site, and induces MTH1 adopt a closed motion, leading to a high inhibitory activity. When bound with TH588, the binding site can be partially stabilized and take a semi-closed state, which is because the cyclopropyl group in TH588 has larger steric hindrance than a methyl group in TH287. So TH588 has a slightly reduced inhibitory activity compared to TH287. TH650 induces greater conformation fluctuations than TH588 and the binding site adopts an opening state, which is caused by the large bulk of oxetanyl group and the interference of solvent on the oxetanyl substituent, leading to the lowest inhibitory activity. Thus, the inhibitory activity follows a TH287 > TH588 > TH650 trend, which well matches with the experimental finding.

  3. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Maira R. Segura-Campos

    2013-01-01

    Full Text Available Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%. Hydrophobic residues contributed substantially to the peptides’ inhibitory potency. The 5–10 and <1 kDa fractions were selected for further fractionation by gel filtration chromatography. ACE inhibitory activity (% ranged from 22.66 to 45.96% with the 5–10 kDa ultrafiltered fraction and from 36.91 to 55.83% with the <1 kDa ultrafiltered fraction. The highest ACE inhibitory activity was observed in F2 ( μg/mL from the 5–10 kDa fraction and F1 ( μg/mL from the <1 kDa fraction. ACE inhibitory fractions from Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry.

  4. Xanthine oxidase inhibitory activities and crystal structures of methoxyflavones from Kaempferia parviflora rhizome.

    Science.gov (United States)

    Nakao, Kikuyo; Murata, Kazuya; Deguchi, Takahiro; Itoh, Kimihisa; Fujita, Takanori; Higashino, Masayuki; Yoshioka, Yuri; Matsumura, Shin-Ichi; Tanaka, Rika; Shinada, Tetsuro; Ohfune, Yasufumi; Matsuda, Hideaki

    2011-01-01

    Kaempferia parviflora (KP), a Zingiberaceae plant, is used as a folk medicine in Thailand for the treatment of various symptoms, including general pains, colic gastrointestinal disorders, and male impotence. In this study, the inhibitory activities of KP against xanthine oxidase (XOD) were investigated. The extract of KP rhizomes showed more potent inhibitory activity (38% at 500 µg/ml) than those of the other Zingiberaceae plants tested. Ten methoxyflavones were isolated from the KP extract as the major chemical components and their chemical structures were elucidated by X-ray crystallography. The structurally confirmed methoxyflavones were subjected to the XOD inhibitory test. Among them, 3,5,7,4',5'-pentamethoxyflavone and 3',4',5,7-tetramethoxyflavone showed inhibitory activities (IC(50) of 0.9 and >4 mM, respectively) and their modes of inhibition are clarified as competitive/non-competitive mixed type. To the best of our knowledge, this is the first report to present the inhibitory activities of KP, 3,5,7,4',5'-pentamethoxyflavone and 3',4',5,7-tetramethoxyflavone against XOD.

  5. The inhibitory effect of Curcuma longa extract on telomerase activity ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... telomerase activity in A549 lung cancer cell line. Pourhassan ..... in human leukemia cell HL-60 is associated with inhibition of telomerase activity. Mol. ... metastatic non-small-cell lung cancer: a global view. BMC Proc. 2(2): p.

  6. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    OpenAIRE

    Čolović, Mirjana B.; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are appl...

  7. Nutritional Composition, α-Glucosidase Inhibitory and Antioxidant Activities of Ophiopogon japonicus Tubers

    Directory of Open Access Journals (Sweden)

    Yancui Wang

    2015-01-01

    Full Text Available Ophiopogon japonicus tubers have been widely used as food and traditional Chinese medicine in China. However, their nutritional composition has not been fully reported yet. This study aimed to analyze the nutritional composition of O. japonicus tubers. The α-glucosidase inhibitory and antioxidant activities of the extracts obtained from O. japonicus tubers were also evaluated by in vitro assays. The results indicated that O. japonicus tubers are rich in carbohydrates, proteins, minerals, and amino acids. Among four extracts, the n-butanol fraction (nBF and chloroform/methanol extract (CME of O. japonicus tubers had high amounts of total phenolic and flavonoid contents and exhibited good α-glucosidase inhibitory and antioxidant activities. The α-glucosidase inhibition of nBF was higher than acarbose. Overall, O. japonicus tubers are full of nutritional compounds and have good α-glucosidase inhibitory and antioxidant activities.

  8. The effects of rivastigmine plus selegiline on brain acetylcholinesterase, (Na+, K+-, Mg2+-ATPase activities, antioxidant status, and learning performance of aged rats

    Directory of Open Access Journals (Sweden)

    Haris Carageorgiou

    2008-09-01

    Full Text Available Haris Carageorgiou1, Antonios C Sideris1, Ioanna Messari1, Chrissoula I Liakou1, Stylianos Tsakiris21Department of Pharmacology, 2Department of Physiology, Medical School, University of Athens, Athens, GreeceAbstract: We investigated the effects of rivastigmine (a cholinesterase inhibitor and selegiline ((-deprenyl, an irreversible inhibitor of monoamineoxidase-B, alone and in combination, on brain acetylcholinesterase (AChE, (Na+, K+-, Mg2+-ATPase activities, total antioxidant status (TAS, and learning performance, after long-term drug administration in aged male rats. The possible relationship between the biochemical and behavioral parameters was evaluated.Methods: Aged rats were treated (for 36 days with rivastigmine (0.3 mg/kg rat/day ip, selegiline (0.25 mg/kg rat/day im, rivastigmine plus selegiline in the same doses and way of administration as separately. Aged and adult control groups received NaCl 0.9% 0.5 ml ip.Results: TAS was lower in aged than in adult rats, rivastigmine alone does not affect TAS, decreases AChE activity, increases (Na+, K+-ATPase and Mg2+-ATPase activity of aged rat brain and improves cognitive performance. Selegiline alone decreases free radical production and increases AChE activity and (Na+, K+-ATPase activity, improving cognitive performance as well. In the combination: rivastigmine seems to cancel selegiline action on TAS and AChE activity, while it has additive effect on (Na+, K+-ATPase activity. In the case of Mg2+-ATPase selegiline appears to attenuate rivastigmine activity. No statistically significant difference was observed in the cognitive performance.Conclusion: Reduced TAS, AChE activity and learning performance was observed in old rats. Both rivastigmine and selesiline alone improved performance, although they influenced the biochemical parameters in a different way. The combination of the two drugs did not affect learning performance.Keywords: aged rat, brain enzymes, TAS, learning, rivastigmine

  9. Alpha-Glucosidase Inhibitory and Antioxidant Activity of Solvent ...

    African Journals Online (AJOL)

    Methods: Extracts were prepared using hexane, chloroform, ethyl acetate, acetone (AE), methanol, ... screening has revealed moderate antiglucosidase and antioxidant activities in the ... glucosidase inhibitor in vivo and in vitro has been.

  10. Highly Sensitive and Selective Immuno-capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    2012-02-09

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detection of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.

  11. Inhibitory effects of cefotaxime on the activity of mushroom tyrosinase.

    Science.gov (United States)

    Hu, Yong-Hua; Zhuang, Jiang-Xing; Yu, Feng; Cui, Yi; Yu, Wen-Wen; Yan, Chong-Ling; Chen, Qing-Xi

    2016-04-01

    Tyrosinase (EC 1.14.18.1) catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones that form brown or black pigments. In the present paper, cefotaxime, a cephalosporin antibacterial drug, was tested as an inhibitor of tyrosinase. The results show that cefotaxime inhibits both the monophenolase and diphenolase activities of tyrosinase. For the monophenolase activity, cefotaxime increased the lag time and decreased the steady-state activity with an IC50 of 3.2 mM. For the diphenolase activity, the inhibition by cefotaxime is reversible and mix-I type with an IC50 of 0.14 mM. The inhibition constants (K(I) and K(IS)) were determined to be 0.14 and 0.36 mM, respectively. The molecular mechanism of inhibition of tyrosinase by cefotaxime was determined by fluorescence quenching and molecular docking. The results demonstrated that cefotaxime was a static quencher of tyrosinase and that cefotaxime could dock favorably in the active site of tyrosinase. This research may offer a lead for designing and synthesizing novel and effective tyrosinase inhibitors in the future.

  12. Inhibitory Activities of Alkyl Syringates and Related Compounds on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-06-01

    Full Text Available Inhibitors of aflatoxin production of aflatoxigenic fungi are useful for preventing aflatoxin contamination in crops. As methyl syringate weakly inhibits aflatoxin production, aflatoxin production inhibitory activities of additional alkyl syringates with alkyl chains from ethyl to octyl were examined. Inhibitory activity toward aflatoxin production of Aspergillus flavus became stronger as the length of the alkyl chains on the esters became longer. Pentyl, hexyl, heptyl, and octyl syringates showed strong activity at 0.05 mM. Heptyl and octyl parabens, and octyl gallate also inhibited aflatoxin production as strongly as octyl syringate. Alkyl parabens and alkyl gallates inhibit the complex II activity of the mitochondrial respiration chain; thus, whether alkyl syringates inhibit complex II activity was examined. Inhibitory activities of alkyl syringates toward complex II also became stronger as the length of the alkyl chains increased. The complex II inhibitory activity of octyl syringate was comparable to that of octyl paraben and octyl gallate. These results suggest that alkyl syringates, alkyl parabens, and alkyl gallates, including commonly used food additives, are useful for aflatoxin control.

  13. Costus afer Possesses Carbohydrate Hydrolyzing Enzymes Inhibitory Activity and Antioxidant Capacity In Vitro

    Directory of Open Access Journals (Sweden)

    Armelle D. Tchamgoue

    2015-01-01

    Full Text Available Diabetes mellitus is a metabolic disorder of glucose metabolism which correlates with postprandial hyperglycemia and oxidative stress. Control of blood glucose level is imperative in the management of diabetes. The present study tested the hypothesis that Costus afer, an antihyperglycemic medicinal plant, possesses inhibitory activity against carbohydrate hydrolyzing enzymes. Hexane, ethyl acetate, methanol, and water extracts were prepared from the leaf, stem, and rhizome of C. afer and subjected to phytochemical screening, assayed for α-amylase and α-glucosidase inhibitory activities and antioxidant capacity (determined by total phenolic and total flavonoids contents, ferric reducing antioxidant power (FRAP, and DPPH radical scavenging activity. All extracts inhibited α-amylase and α-glucosidase activities. Ethyl acetate rhizome and methanol leaf extracts exhibited the best inhibitory activity against α-amylase and α-glucosidase (IC50: 0.10 and 5.99 mg/mL, respectively. Kinetic analysis revealed two modes of enzyme inhibition (competitive and mixed. All extracts showed antioxidant capacity, with hexane extracts exhibiting the best activity. DPPH assay revealed that methanol leaf, rhizome, and ethyl acetate stem extracts (IC50 < 5 mg/mL were the best antioxidants. The presence of bioactive compounds such as flavonoids, alkaloids, phenols, and tannins may account for the antioxidant capacity and carbohydrate hydrolyzing enzyme inhibitory activity of C. afer.

  14. Inhibitory Activities of Alkyl Syringates and Related Compounds on Aflatoxin Production

    Science.gov (United States)

    Furukawa, Tomohiro; Iimura, Kurin; Kimura, Taichi; Yamamoto, Toshiyoshi; Sakuda, Shohei

    2016-01-01

    Inhibitors of aflatoxin production of aflatoxigenic fungi are useful for preventing aflatoxin contamination in crops. As methyl syringate weakly inhibits aflatoxin production, aflatoxin production inhibitory activities of additional alkyl syringates with alkyl chains from ethyl to octyl were examined. Inhibitory activity toward aflatoxin production of Aspergillus flavus became stronger as the length of the alkyl chains on the esters became longer. Pentyl, hexyl, heptyl, and octyl syringates showed strong activity at 0.05 mM. Heptyl and octyl parabens, and octyl gallate also inhibited aflatoxin production as strongly as octyl syringate. Alkyl parabens and alkyl gallates inhibit the complex II activity of the mitochondrial respiration chain; thus, whether alkyl syringates inhibit complex II activity was examined. Inhibitory activities of alkyl syringates toward complex II also became stronger as the length of the alkyl chains increased. The complex II inhibitory activity of octyl syringate was comparable to that of octyl paraben and octyl gallate. These results suggest that alkyl syringates, alkyl parabens, and alkyl gallates, including commonly used food additives, are useful for aflatoxin control. PMID:27338472

  15. Costus afer Possesses Carbohydrate Hydrolyzing Enzymes Inhibitory Activity and Antioxidant Capacity In Vitro

    Science.gov (United States)

    Tchamgoue, Armelle D.; Tchokouaha, Lauve R. Y.; Tarkang, Protus A.; Kuiate, Jules-Roger; Agbor, Gabriel A.

    2015-01-01

    Diabetes mellitus is a metabolic disorder of glucose metabolism which correlates with postprandial hyperglycemia and oxidative stress. Control of blood glucose level is imperative in the management of diabetes. The present study tested the hypothesis that Costus afer, an antihyperglycemic medicinal plant, possesses inhibitory activity against carbohydrate hydrolyzing enzymes. Hexane, ethyl acetate, methanol, and water extracts were prepared from the leaf, stem, and rhizome of C. afer and subjected to phytochemical screening, assayed for α-amylase and α-glucosidase inhibitory activities and antioxidant capacity (determined by total phenolic and total flavonoids contents, ferric reducing antioxidant power (FRAP), and DPPH radical scavenging activity). All extracts inhibited α-amylase and α-glucosidase activities. Ethyl acetate rhizome and methanol leaf extracts exhibited the best inhibitory activity against α-amylase and α-glucosidase (IC50: 0.10 and 5.99 mg/mL), respectively. Kinetic analysis revealed two modes of enzyme inhibition (competitive and mixed). All extracts showed antioxidant capacity, with hexane extracts exhibiting the best activity. DPPH assay revealed that methanol leaf, rhizome, and ethyl acetate stem extracts (IC50 < 5 mg/mL) were the best antioxidants. The presence of bioactive compounds such as flavonoids, alkaloids, phenols, and tannins may account for the antioxidant capacity and carbohydrate hydrolyzing enzyme inhibitory activity of C. afer. PMID:26246844

  16. Kinetic analysis of interactions of different sarin and tabun analogues with human acetylcholinesterase and oximes: is there a structure-activity relationship?

    Science.gov (United States)

    Aurbek, Nadine; Herkert, Nadja M; Koller, Marianne; Thiermann, Horst; Worek, Franz

    2010-09-06

    The repeated misuse of highly toxic organophosphorus compound (OP) based chemical warfare agents in military conflicts and terrorist attacks poses a continuous threat to the military and civilian sector. The toxic symptomatology of OP poisoning is mainly caused by inhibition of acetylcholinesterase (AChE, E.C. 3.1.1.7) resulting in generalized cholinergic crisis due to accumulation of the neurotransmitter acetylcholine (ACh) in synaptic clefts. Beside atropine as competitive antagonist of ACh at muscarinic ACh receptors oximes as reactivators of OP-inhibited AChE are a mainstay of standard antidotal treatment. However, human AChE inhibited by certain OP is rather resistant to oxime-induced reactivation. The development of more effective oxime-based reactivators may fill the gaps. To get more insight into a potential structure-activity relationship between human AChE, OPs and oximes in vitro studies were conducted to investigate interactions of different tabun and sarin analogues with human AChE and the oximes obidoxime and HI 6 by determination of various kinetic constants. Rate constants for the inhibition of human AChE by OPs, spontaneous dealkylation and reactivation as well as reactivation by obidoxime and HI 6 of OP-inhibited human AChE were determined. The recorded kinetic data did not allow a general statement concerning a structure-activity relationship between human AChE, OP and oximes.

  17. Pharmacological characterization of RS-1259, an orally active dual inhibitor of acetylcholinesterase and serotonin transporter, in rodents: possible treatment of Alzheimer's disease.

    Science.gov (United States)

    Abe, Yasuyuki; Aoyagi, Atsushi; Hara, Takao; Abe, Kazumi; Yamazaki, Reina; Kumagae, Yoshihiro; Naruto, Shunji; Koyama, Kazuo; Marumoto, Shinji; Tago, Keiko; Toda, Narihiro; Takami, Kazuko; Yamada, Naho; Ori, Mayuko; Kogen, Hiroshi; Kaneko, Tsugio

    2003-09-01

    A dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT), RS-1259 (4-[1S)-methylamino-3-(4-nitrophenoxy)]propylphenyl N,N-dimethylcarbamate (fumaric acid)(1/2)salt), was newly synthesized. RS-1259 simultaneously inhibited AChE and SERT in the brain following an oral administration in mice and rats. Actual simultaneous elevation of extracellular levels of 5-HT and ACh in the rat hippocampus was confirmed by microdialysis. The compound was as effective as SERT inhibitors such as fluoxetine and fluvoxamine in a 5-hydroxytryptophan-enhancing test in mice. Spatial memory deficits in the two-platform task of a water maze in aged rats were ameliorated by RS-1259 as well as donepezil. Both RS-1259 and donepezil increased the awake episodes in the daytime electroencephalogram of rats. Although RS-1259 was weaker than donepezil in enhancing central cholinergic transmission, as observed by ACh elevation in the hippocampus and memory enhancement in aged rats, the efficacy of RS-1259 on the consciousness level, which reflects the whole activity in the brain, was almost the same as that of donepezil. These results suggest that both cholinergic and serotonergic systems are involved in maintaining brain arousal and that a dual inhibitor of AChE and SERT may be useful for the treatment of cognitive disorders associated with reduced brain activity such as in Alzheimer's disease.

  18. Cylindrocyclophanes with Proteasome Inhibitory Activity from the Cyanobacterium Nostoc sp

    Science.gov (United States)

    Chlipala, George E.; Sturdy, Megan; Krunic, Aleksej; Lantvit, Daniel D.; Shen, Qi; Porter, Kyle; Swanson, Steven M.; Orjala, Jimmy

    2010-01-01

    Material collected from a parkway in the city of Chicago afforded the isolation of a Nostoc species (UIC 10022A). The extract of this strain displayed significant inhibition of the 20S proteasome as well as antiproliferative activity against HT29, MCF7, NCI-H460, and SF268 cancer cell lines. A standardized dereplication protocol allowed for the rapid identification of three known (11-13) and nine new (1-9) chlorinated cylindrocyclophanes from less than 100 mg of organic extract. Scale-up isolation of 1-9 and 11-13 from a larger extract was guided by LC-UV-MS data. In addition, KBr enrichment of the culture media afforded the isolation of a brominated cylindrocyclophane (10). Biological evaluation of 1-5, 9, and 10-13 revealed a large range of activity against the 20S proteasome and allowed the determination of preliminary structure-activity relationships (SAR) of the cylindrocyclophane pharmacophore. PMID:20825206

  19. Lipase inhibitory activity of chlorophyll a, isofucosterol and saringosterol isolated from chloroform fraction of Sargassum thunbergii.

    Science.gov (United States)

    Kim, Koth-Bong-Woo-Ri; Kim, Min-Ji; Ahn, Dong-Hyun

    2014-01-01

    Three compounds (chlorophyll a, isofucosterol and saringosterol) were isolated from chloroform fraction of Sargassum thunbergii extract. The three compounds had two- to fourfold lower lipase inhibitory activity than that of the CHCl3:MeOH (C:M) (100:1) fraction (fraction I, 83.78% at 1 mg/mL). These results suggested that the high lipase inhibitory activity of fraction I was attributable to the actions of the three compounds. Therefore, S. thunbergii has potential for application as an anti-obesity agent.

  20. Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin

    OpenAIRE

    Kareem, Karwan Yassen; Hooi Ling, Foo; Teck Chwen, Loh; May Foong, Ooi; Anjas Asmara, Samsudin

    2014-01-01

    Background The present study aimed to determine the inhibitory activity of postbiotic produced by L. plantarum using reconstituted media supplemented with different levels of inulin and to select the best combination based on the modified inhibitory activity (MAU/mL) against pathogens. Methods Postbiotics were produced by 6 strains of L. plantarum (RG11, RG14, RI11, UL4, TL1 and RS5) using reconstituted media supplemented with different levels of Inulin (0, 0.2, 0.4, 0.6, 0.8, and 1.0) yieldi...

  1. Inhibition of acetylcholinesterase activity in the central nervous system of the red swamp crayfish, Procambarus clarkii, by mercury, cadmium, and lead

    Energy Technology Data Exchange (ETDEWEB)

    Devi, M.; Fingerman, M. [Tulane Univ., New Orleans, LA (United States)

    1995-11-01

    The toxicological, physiological and biochemical responses of aquatic crustaceans to heavy metals have been reported by several investigators. Levels of glucose, lactic acid, sodium, potassium, aspartate aminotransferase and alanine aminotransferase in the blood of the crab Scylla serrata increased, while glycogen levels in hepatopancreas and muscle decreased after a four-week exposure to mercuric chloride. In fiddler crab, Uca pugilator, enzyme activity was observed to decrease in the hepatopancreas but increased in abdominal muscle after 48 hr cadmium exposure. In the red swamp crayfish, Procambarus clarkii, exposed for 96 hr to cadmium, glutahione (GSH) level and GSH S-transferase activity deceased in the midgut. In crayfish Astacus astacus exposed to sublethal concentrations of lead and cadmium, oxidative enzyme (succine dehydrogenase and NADPH-cytochrome P450 reductase) activities in gills and hepatopancrease decreased. Acetylcholinesterase (AChE) inhibition by organophosphates and organocarbamates in various crustaceans has bee reported. In vivo cadmium exposure caused increases in esterase activities, but mercury exposure decreases these activities in the hepatopancreas of the shrimp Callianassa tyrrhena. The freshwater crab, Barytelphusa guerini, exposed to 0.6 ppm cadmium showed reduced oxygen consumption throughout the experiment whereas AChE activity increased after 4 days but decreased after 15 days. The authors wanted to determine the effects of cadmium, lead and mercury on AChE activity in central nervous tissue of Procambarus clarkii. This enzyme has the potential for serving both as a biochemical indicator of toxic stress and a sensitive parameter for testing water for the presence of toxicants. These three biologically silent metals have, according to Schweinsberg and Karsa great toxicological significance to humans because their use is widespread. 14 refs., 4 figs.

  2. Phytochemical Analysis of Agrimonia pilosa Ledeb, Its Antioxidant Activity and Aldose Reductase Inhibitory Potential

    Science.gov (United States)

    Kim, Set Byeol; Hwang, Seung Hwan; Suh, Hong-Won; Lim, Soon Sung

    2017-01-01

    The aim of this study was to determine aldose reductase (AR) inhibitory activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of compounds from Agrimonia pilosa Ledeb (AP). We isolated agrimoniin (AM), four flavonoid glucosides and two flavonoid glucuronides from the n-butanol fraction of AP 50% methanol extract. In addition to isolated compounds, the AR-inhibitory activity and the DPPH free radical scavenging activity of catechin, 5-flavonoids, and 4-flavonoid glucosides (known components of AP) against rat lens AR (RLAR) and DPPH assay were measured. AM showed IC50 values of 1.6 and 13.0 μM against RLAR and DPPH scavenging activity, respectively. Additionally, AM, luteolin-7-O-glucuronide (LGN), quercitrin (QU), luteolin (LT) and afzelin (AZ) showed high inhibitory activity against AR and were first observed to decrease sorbitol accumulation in the rat lens under high-sorbitol conditions ex vivo with inhibitory values of 47.6%, 91.8%, 76.9%, 91.8% and 93.2%, respectively. Inhibition of recombinant human AR by AM, LGN and AZ exhibited a noncompetitive inhibition pattern. Based on our results, AP and its constituents may play partial roles in RLAR and oxidative radical inhibition. Our results suggest that AM, LGN, QU, LT and AZ may potentially be used as natural drugs for treating diabetic complications. PMID:28208627

  3. Design and Synthesis of Norendoxifen Analogues with Dual Aromatase Inhibitory and Estrogen Receptor Modulatory Activities

    Science.gov (United States)

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C.; Flockhart, David A.; Cushman, Mark

    2015-01-01

    Both selective estrogen receptor modulators and aromatase inhibitors are widely used for the treatment of breast cancer. Compounds with both aromatase inhibitory and estrogen receptor modulatory activities could have special advantages for treatment of breast cancer. Our previous efforts led to the discovery of norendoxifen as the first compound with dual aromatase inhibitory and estrogen receptor binding activities. To optimize its efficacy and aromatase selectivity versus other cytochrome P450 enzymes, a series of structurally related norendoxifen analogues were designed and synthesized. The most potent compound, 4'-hydroxynorendoxifen (10), displayed elevated inhibitory potency against aromatase and enhanced affinity for estrogen receptors when compared to norendoxifen. The selectivity of 10 for aromatase versus other cytochrome P450 enzymes was also superior to norendoxifen. 4'-Hydroxynorendoxifen is therefore an interesting lead for further development to obtain new anticancer agents of potential value for the treatment of breast cancer. PMID:25751283

  4. Ultrasonic extraction of polysaccharides from Laminaria japonica and their antioxidative and glycosidase inhibitory activities

    Science.gov (United States)

    Wan, Peng; Yang, Xiaoman; Cai, Bingna; Chen, Hua; Sun, Huili; Chen, Deke; Pan, Jianyu

    2015-08-01

    In the present study, ultrasonic extraction technique (UET) is used to improve the yield of polysaccharides from Laminaria japonica (LJPs). And their antioxidative as well as glycosidase inhibitory activities are investigated. Box-Behnken design (BBD) combined with response surface methodology (RSM) is applied to optimize ultrasonic extraction for polysaccharides. The optimized conditions are obtained as extraction time at 54 min, ultrasonic power at 1050 W, extraction temperature at 80°C and ratio of material to solvent at 1:50 (g mL-1). Under these optimal ultrasonic extraction conditions, an actual experimental yield (5.75% ± 0.3%) is close to the predicted result (5.67%) with no significant difference ( P > 0.05). Vitro antioxidative and glycosidase inhibitory activities tests indicate that the crude polysaccharides (LJP) and two major ethanol precipitated fractions (LJP1 and LJP2) are in a concentration-dependent manner. LJP2 (30%-60% ethanol precipitated polysaccharides) possesses the strongest α-glucosidase inhibitory activity and moderate scavenging activity against hydroxyl radicals (66.09% ± 2.19%, 3.0 mg mL-1). Also, the inhibitory activity against α-glucosidase (59.08% ± 3.79%, 5.0 mg mL-1) is close to that of acarbose (63.99% ± 3.27%, 5.0 mg mL-1). LJP1 (30% ethanol precipitated polysaccharides) exhibits the strongest scavenging activity against hydroxyl radicals (99.80% ± 0.00%, 3.0 mg mL-1) and moderate α-glucosidase inhibitory activity (47.76% ± 1.92%, 5.0 mg mL-1). LJP shows the most remarkable DPPH scavenging activity (66.20% ± 0.11%, 5.0 mg mL-1) but weakest α-glucosidase inhibitory activity (37.77% ± 1.30%, 5.0 mg mL-1). However, all these LJPs exert weak inhibitory effects against α-amylase. These results show that UET is an effective method for extracting bioactive polysaccharides from seaweed materials. LJP1 and LJP2 can be developed as a potential ingredient in hypoglycemic agents or functional food for the management of

  5. Inhibitory activity of benzophenones from Anemarrhena asphodeloides on pancreatic lipase.

    Science.gov (United States)

    Jo, Yang Hee; Kim, Seon Beom; Ahn, Jong Hoon; Liu, Qing; Hwang, Bang Yeon; Lee, Mi Kyeong

    2013-04-01

    Pancreatic lipase is a key enzyme for lipid absorption by hydrolysis of total dietary fats. Therefore, inhibition of pancreatic lipase is suggested to be an effective therapy in the regulation of obesity. The EtOAc-soluble fraction of Anemarrhena asphodeloides rhizomes significantly inhibited pancreatic lipase activity as assessed using porcine pancreatic lipase as an in vitro assay system. Further fractionation of the EtOAc-soluble fraction of A. asphodeloides led to the isolation of a new benzophenone glycoside, zimoside A (1), together with the eleven known compounds iriflophenone (2), 2,4',6-trihydroxy-4-methoxybenzophenone (3), foliamangiferoside A (4), (2,3-dihydroxy-4-methoxyphenyl)(4-hydroxyphenyl)-methanone (5), 1,4,5,6,-tetrahydroxyxanthone (6), isosakuranetin (7), 4-hydroxybenzoic acid (8), 4-hydroxyacetophenone (9), vanillic acid (10), tyrosol (11) and 5-hydroxymethyl-2-furaldehyde (12). Among the isolated compounds, 3, 5 and 10 showed significant inhibition of pancreatic lipase activity.

  6. Affinity chromatography of acetylcholinesterase. The importance of hydrophobic interactions.

    Science.gov (United States)

    Massoulié, J; Bon, S

    1976-09-15

    An easily prepared affinity column for acetylcholinesterase is described, which may be operated at ionic strength high enough to prevent aggregation of the asymmetric forms of the enzyme. Specific elution by tetraethylammonium or decamethonium was quantitative. The performance of this column is comparable to that of the column described by Dudai and Silman. It is shown that the hexyl 'spacer arm' strongly participates in the enzyme binding and that its replacement with the more hydrophilic spermine chain lowers the affinity. The hexyl chain itself is shown to bind acetylcholinesterase, although with lower affinity and capacity than the complete column. This binding is also partly reversed by inhibitors. Such hydrophobic columns bind the native asymmetric forms of the enzyme more strongly than the lytic globular ones. The aromatic quaternary ligang inhibits Electrophorus but not Torpedo acetylcholinesterase; therefore the column does not retain the Torpedo enzyme. Differences in Km between acetylcholinesterases of the two species also point to differences in their active sites.

  7. Effects of essential oils from herbal plants and citrus fruits on DNA polymerase inhibitory, cancer cell growth inhibitory, antiallergic, and antioxidant activities.

    Science.gov (United States)

    Mitoshi, Mai; Kuriyama, Isoko; Nakayama, Hiroto; Miyazato, Hironari; Sugimoto, Keiichiro; Kobayashi, Yuko; Jippo, Tomoko; Kanazawa, Kazuki; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2012-11-14

    In this study, the biological activity of 20 essential oils (EOs) from herbal plants and citrus fruits were investigated in terms of mammalian DNA polymerase (pol) inhibitory activity, cancer cell (human colon carcinoma, HCT116) growth inhibitory activity, antiallergic activity, as anti-β-hexosaminidase release activity in rat basophilic leukemia RBL-2H3 cells treated with calcium ionophore A23187, and antioxidant activity by a lipophilic-oxygen radical absorbance capacity method. These EOs showed patterns of inhibition of pol α, a DNA replicative pol, similar to their cancer cell growth inhibitory activity, and their inhibitory activity on pol λ, a DNA repair/recombination pol, by the EOs showed correlation with anti-β-hexosaminidase release activity. Among these EOs, chamomile (Matricaria chamomilla L.) was the strongest inhibitor of pols α and λ and showed significant effects on both cancer cell growth and mast cell degranulation. On the basis of these results, chamomile EO can be recommended as a potentially useful, bioactive candidate for therapeutic applications.

  8. Effects of structural modifications on the metal binding, anti-amyloid activity, and cholinesterase inhibitory activity of chalcones.

    Science.gov (United States)

    Fosso, Marina Y; LeVine, Harry; Green, Keith D; Tsodikov, Oleg V; Garneau-Tsodikova, Sylvie

    2015-09-28

    As the number of individuals affected with Alzheimer's disease (AD) increases and the availability of drugs for AD treatment remains limited, the need to develop effective therapeutics for AD becomes more and more pressing. Strategies currently pursued include inhibiting acetylcholinesterase (AChE) and targeting amyloid-β (Aβ) peptides and metal-Aβ complexes. This work presents the design, synthesis, and biochemical evaluation of a series of chalcones, and assesses the relationship between their structures and their ability to bind metal ions and/or Aβ species, and inhibit AChE/BChE activity. Several chalcones were found to exhibit potent disaggregation of pre-formed N-biotinyl Aβ1-42 (bioAβ42) aggregates in vitro in the absence and presence of Cu(2+)/Zn(2+), while others were effective at inhibiting the action of AChE.

  9. An Update on Natural Products with Carbonic Anhydrase Inhibitory Activity.

    Science.gov (United States)

    Karioti, Anastasia; Carta, Fabrizio; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological processes. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. It is more than 70 years that synthetic compounds, mainly sulfonamides, have been used in clinical practice as diuretics and systemic acting antiglaucoma drugs. Recent studies using natural product libraries and isolated constituents from natural sources (such as fungi and plants) have disclosed novel chemotypes possessing carbonic anhydrase inhibition activities. These natural sources offer new opportunities in the search for new and more effective carbonic anhydrase inhibitors, and may serve as new leads for the design and development of future drugs. This review will discuss the most recent advances in the search of naturally occurring products and their synthetic derivatives that inhibit the CAs and their mechanisms of action at molecular level. Plant extracts are not considered in the present review.

  10. Synthesis and biological evaluation of berberine-thiophenyl hybrids as multi-functional agents: Inhibition of acetylcholinesterase, butyrylcholinesterase, and Aβ aggregation and antioxidant activity.

    Science.gov (United States)

    Su, Tao; Xie, Shishun; Wei, Hui; Yan, Jun; Huang, Ling; Li, Xingshu

    2013-09-15

    A series of berberine-thiophenyl hybrids were designed, synthesised, and evaluated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and β-amyloid (Aβ) aggregation and as antioxidants. Among these hybrids, compounds 4f and 4i, berberine linked with o-methylthiophenyl and o-chlorothiophenyl by a 2-carbon spacer, were observed to be potent inhibitors of AChE, with IC50 values of 0.077 and 0.042 μM, respectively. Of the tested compounds, 4i was also the most potent inhibitor of BuChE, with an IC50 value of 0.662 μM. Kinetic studies and molecular modelling simulations of the AChE-inhibitor complex indicated that a mixed-competitive binding mode existed for these berberine derivatives. The biological studies also demonstrated that these hybrids displayed interesting activities, including Aβ aggregation inhibition and antioxidant properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. DEVELOPMENT OF REFERENCE RANGES FOR PLASMA TOTAL CHOLINESTERASE AND BRAIN ACETYLCHOLINESTERASE ACTIVITY IN FREE-RANGING CARNABY'S BLACK-COCKATOOS (CALYPTORHYNCHUS LATIROSTRIS).

    Science.gov (United States)

    Vaughan-Higgins, Rebecca; Vitali, Simone; Reiss, Andrea; Besier, Shane; Hollingsworth, Tom; Smith, Gerard

    2016-07-01

    Published avian reference ranges for plasma cholinesterase (ChE) and brain acetylcholinesterase (AChE) are numerous. However, a consistently reported recommendation is the need for species- and laboratory-specific reference ranges because of variables, including assay methods, sample storage conditions, season, and bird sex, age, and physiologic status. We developed normal reference ranges for brain AChE and plasma total ChE (tChE) activity for Carnaby's Black-Cockatoos (Calyptorhynchus latirostris) using a standardized protocol (substrate acetylthiocholine at 25 C). We report reference ranges for brain AChE (19-41 μmol/min per g, mean 21±6.38) and plasma tChE (0.41-0.53 μmol/min per mL, mean 0.47±0.11) (n=15). This information will be of use in the ongoing field investigation of a paresis-paralysis syndrome in the endangered Carnaby's Black-Cockatoos, suspected to be associated with exposure to anticholinesterase compounds and add to the paucity of reference ranges for plasma tChE and brain AChE in Australian psittacine birds.

  12. Genotoxicity biomarkers and acetylcholinesterase activity in natural populations of Mytilus galloprovincialis along a pollution gradient in the Gulf of Oristano (Sardinia, western Mediterranean)

    Energy Technology Data Exchange (ETDEWEB)

    Magni, P. [IMC - International Marine Centre, Localita Sa Mardini, 09072 Torregrande-Oristano (Italy); De Falco, G. [IMC - International Marine Centre, Localita Sa Mardini, 09072 Torregrande-Oristano (Italy); Falugi, C. [DIBISAA - Dipartimento di Biologia Sperimentale, Ambientale, Applicata, Universita di Genova, V.le Benedetto XV, 16132 Genoa (Italy); Franzoni, M. [DIBISAA - Dipartimento di Biologia Sperimentale, Ambientale, Applicata, Universita di Genova, V.le Benedetto XV, 16132 Genoa (Italy); Monteverde, M. [DIBISAA - Dipartimento di Biologia Sperimentale, Ambientale, Applicata, Universita di Genova, V.le Benedetto XV, 16132 Genoa (Italy); Perrone, E. [Environmental Carcinogenesis Unit, National Cancer Research Institute, Largo Rosanna Benzi 10, 16132 Genoa (Italy); Sgro, M. [DIBISAA - Dipartimento di Biologia Sperimentale, Ambientale, Applicata, Universita di Genova, V.le Benedetto XV, 16132 Genoa (Italy); Bolognesi, C. [Environmental Carcinogenesis Unit, National Cancer Research Institute, Largo Rosanna Benzi 10, 16132 Genoa (Italy)]. E-mail: claudia.bolognesi@istge.it

    2006-07-15

    A year-round biomonitoring study on blue mussels (Mytilus galloprovincialis) was carried out in 4 selected sites along the Gulf of Oristano (Sardinia, Italy): a commercial port (Port), the outlet of the S'Ena Arrubia and Marceddi lagoons (in the catchment area of intensive agricultural and diary activities, and abandoned mining), and a reference site (North). Heavy metal concentrations in sediments from Marceddi were 2-3 to 10-20 times higher in Pb, Cd and Zn, respectively, than those found at North and S'Ena Arrubia. Higher values (P < 0.05) of micronuclei frequency were detected in mussels from Marceddi and Port compared to those detected in mussels from North and S'Ena Arrubia. DNA damage in animals from North was significantly lower than that at the other sites. Results of acetylcholinesterase inhibition consistently showed the strongest effects in mussels from Port and Marceddi. Our results suggest that these biomarkers can be used in coastal marine biomonitoring as early signals of exposure and adverse effects along a pollution gradient. - Biomarkers can be useful in coastal marine biomonitoring.

  13. Efeito do extrato da casca de Syzygium cumini sobre a atividade da acetilcolinesterase em ratos normais e diabéticos Syzygium cumini bark extract effect on acetylcholinesterase activity in normal and diabetic rats

    Directory of Open Access Journals (Sweden)

    Cinthia Melazzo Mazzanti

    2004-06-01

    Full Text Available Este estudo verificou a eficiência do extrato etanólico da casca de Syzygium cumini sobre o sistema colinérgico de ratos normais e diabéticos induzidos com aloxano. Os animais foram divididos em grupo controle (C, tratado com Syzygium cumini (TS, diabético (D e diabético tratado com Syzygium cumini (DS. A atividade da acetilcolinesterase (AChE foi analisada nas seguintes estruturas cerebrais: cerebelo, córtex, estriado e hipocampo. O extrato etanólico da casca de Syzygium cumini na dose de 1g.kg-1 foi administrado diariamente por um período de trinta dias. Foi verificado após este período que o extrato inibiu a atividade da AChE no cerebelo e córtex cerebral dos ratos do grupo DS (PThe present study verified the efficiency of the bark ethanol extract of Syzygium cumini on the cholinergic system of normal and alloxan induced diabetic rats. Thirty-nine female rats were divided in control (C, treated with Syzygium cumini (TS, diabetic (D and diabetic treated with Syzygium cumini (DS. The activity of acetylcholinesterase (AChE was analyzed in the following cerebral structures: cerebellum, cortex, striatum and hippocampus. The extract of the bark of Syzygium cumini in the dose of 1g.kg-1 was administered orally daily for a period of thirty days. After this period the extract inhibited the activity of the AChE in the cerebellum and cerebral cortex of the rats in the DS group (P<0.05 as, compared to TS. In the striatum there was a significant increase in the activity of the AChE in rats of the TS group (P<0.01 when compared to the C group, and in the hippocampus there was no significant variation. These results indicate that the bark extract of "Jambolão"has an inhibitory effect on AChE in the cerebellum and cerebral cortex and an stimulatory effect on striatum, indicating a possible alteration in the functionality of the cholinergic system in such cerebral structures.

  14. Urease Inhibitory Activities of some Commonly Consumed Herbal Medicines.

    Science.gov (United States)

    Mahernia, Shabnam; Bagherzadeh, Kowsar; Mojab, Faraz; Amanlou, Massoud

    2015-01-01

    Urease enzyme has a crucial role in the persistent habitation of Helicobacter pylori (H. pylori) that induces gastrointestinal diseases, in particular gastritis, duodenal, peptic ulcer, and gastric cancer. Plants have long been utilized as the biggest source of substances with medicinal properties from natural origin and therefore result in less toxicity and adverse side effects upon usage. 15 medicinal plant extracts were examined against Jack bean urease activity by Berthelot reaction. Each herb was extracted using 80% aqueous methanol. The more effective extracts were further tested and their IC50 values were determined. Three plant extracts including Ginkgo biloba, Rhus coriaria, and Matricaria inodora were found to be the most effective ones with IC50 values of 36.17, 80.29, and 100.6 μg/mL, respectively.

  15. Effects of exposure to oxamyl, carbofuran, dichlorvos, and lindane on acetylcholinesterase activity in the gills of the Pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Anguiano, Gerardo A; Amador, Alejandro; Moreno-Legorreta, Manuel; Arcos-Ortega, Fabiola; Vazquez-Boucard, Celia

    2010-08-01

    Acetylcholinesterase (AChE) activity has been used to test the exposure of mollusk bivalves to pesticides and other pollutants. The Pacific oyster Crassostrea gigas is a species with a worldwide distribution, and it has a high commercial value. The use of this species as a bioindicator in the marine environment, and the use of measurements of AChE activity in tissues of C. gigas require prior evaluation of organisms exposed to several toxic compounds in the laboratory. In our study, the effects of pesticides on AChE activity in the gills and mantle tissues of C. gigas were analyzed by exposing animals to organophosphate (dichlorvos), carbamate (carbofuran and oxamyl), and organochlorine (lindane) pesticides. Adult Pacific oysters were exposed to several concentrations (0.1-200 microM) of dichlorvos, carbofuran, and oxamyl for 96 h, and lindane (1.0 and 2.5 microM) was applied for 12 days. In gill tissues, all pesticides analyzed caused a decrease in AChE activity when compared to the control unexposed group. The mean inhibition concentration (IC(50)) values were determined for dichlorvos, carbofuran, and oxamyl pesticides. Dichlorvos had the highest toxic effect, with an IC(50) of 1.08 microM; lesser effects were caused by oxamyl and carbofuran, with IC(50)s of 1.67 and 3.03 microM, respectively. This study reports the effects of pesticides with several chemical structures and validates measurement of AChE activity in the gill tissues of C. gigas for use in environmental evaluations or food quality tests.

  16. Pancreatic lipase inhibitory activity of taraxacum officinale in vitro and in vivo.

    Science.gov (United States)

    Zhang, Jian; Kang, Min-Jung; Kim, Myung-Jin; Kim, Mi-Eun; Song, Ji-Hyun; Lee, Young-Min; Kim, Jung-In

    2008-01-01

    Obesity has become a worldwide health problem. Orlistat, an inhibitor of pancreatic lipase, is currently approved as an anti-obesity drug. However, gastrointestinal side effects caused by Orlistat may limit its use. In this study the inhibitory activities of dandelion (Taraxacum officinale) against pancreatic lipase in vitro and in vivo were measured to determine its possible use as a natural anti-obesity agent. The inhibitory activities of the 95% ethanol extract of T. officinale and Orlistat were measured using 4-methylumbelliferyl oleate (4-MU oleate) as a substrate at concentrations of 250, 125, 100, 25, 12.5 and 4 microg/ml. To determine pancreatic lipase inhibitory activity in vivo, mice (n=16) were orally administered with corn oil emulsion (5 ml/kg) alone or with the 95% ethanol extract of T. officinale (400 mg/kg) following an overnight fast. Plasma triglyceride levels were measured at 0, 90, 180, and 240 min after treatment and incremental areas under the response curves (AUC) were calculated. The 95% ethanol extract of T. officinale and Orlistat, inhibited, porcine pancreatic lipase activity by 86.3% and 95.7% at a concentration of 250 microg/ml, respectively. T. officinale extract showed dose-dependent inhibition with the IC(50) of 78.2 microg/ml. A single oral dose of the extract significantly inhibited increases in plasma triglyceride levels at 90 and 180 min and reduced AUC of plasma triglyceride response curve (pofficinale exhibits inhibitory activities against pancreatic lipase in vitro and in vivo. Further studies to elucidate anti-obesity effects of chronic consumption of T. officinale and to identify the active components responsible for inhibitory activity against pancreatic lipase are necessary.

  17. Xanthine Oxidase Inhibitory Activity of a Plectranthus saccatus aqueous extract

    Directory of Open Access Journals (Sweden)

    Caldeira F

    2016-12-01

    Full Text Available Gout is a disease with high prevalence in developed countries, resulting from the deposition of uric acid crystals in various locations, particularly at the joints. The pharmacotherapeutic approach to chronic gout essentially consists of administration of uric acid-lowering agents. The main mechanism of action of these agents is the inhibition of xanthine oxidase (XO, the enzyme responsible for the formation of uric acid. The therapeutic alternatives available for this purpose are limited, thus justifying the interest of the discovery of potential new uric acidlowering drugs. In this regard, an aqueous extract of the plant Plectranthus saccatus has been studied for its ability to inhibit XO. The composition of the extract was determined by HPLC and rosmarinic acid was identified as the major constituent. Both the extract and rosmarinic acid have demonstrated the ability to inhibit the production of uric acid by interfering with XO activity. The results obtained herein support the continuation of the study of their uric acid-lowering properties in cell-based and in vivo models to further explore their potential in gout therapy.

  18. Inhibitory effect of morinda citrifolia L. On lipoprotein lipase activity.

    Science.gov (United States)

    Pak-Dek, M S; Abdul-Hamid, A; Osman, A; Soh, C S

    2008-10-01

    Efficacy of Morinda citrifolia L. leaf (MLE) and fruit extracts (MFE) in inhibiting lipoprotein lipase (LPL) was determined in vitro. The result of the study showed that the highest inhibition on the LPL activity was exhibited by MLE (66%+/- 2.1%), which is significantly higher than that demonstrated by MFE (54.5%+/- 2.5%), green tea extract (GTE) (54.5%+/- 2.6%), and catechin (43.6%+/- 6.1%). Percent of LPL inhibition increase with concentration of the extracts. Quantitative analysis of the extracts revealed the presence of high levels of (+)-catechin at 63.5 +/- 17 and 53.7 +/- 5.7 mg/g in MLE and MFE, respectively, although not as high as that found in GTE (530.6 +/- 42 mg/g). Appreciable amount of epicatechin was found in all extracts tested, while rutin was only found in MLE and MFE. The study suggested that both leaf and fruit of M. citrifolia may be used as antiobesity agents in body weight management.

  19. A Bisindole Alkaloid with Hedgehog Signal Inhibitory Activity from the Myxomycete Perichaena chrysosperma.

    Science.gov (United States)

    Shintani, Akinori; Toume, Kazufumi; Rifai, Yusnita; Arai, Midori A; Ishibashi, Masami

    2010-10-22

    6-Hydroxy-9'-methoxystaurosporinone (1), a new bisindole alkaloid, was isolated from field-collected fruiting bodies of the myxomycete Perichaena chrysosperma, together with two known compounds. The structure of the new alkaloid was elucidated from spectral data, and compound 1 was shown to have hedgehog signal inhibitory activity. A related new alkaloid, 6,9'-dihydroxystaurosporinone (4), was also isolated from Arcyria cinerea.

  20. Chrotacumines G-J, chromone alkaloids from Dysoxylum acutangulum with osteoclast differentiation inhibitory activity.

    Science.gov (United States)

    Morita, Hiroshi; Nugroho, Alfarius Eko; Nagakura, Yuta; Hirasawa, Yusuke; Yoshida, Haruka; Kaneda, Toshio; Shirota, Osamu; Ismail, Intan Safinar

    2014-06-01

    Four new chromone alkaloids, chrotacumines G-J (1-4), have been isolated from the barks of Dysoxylum acutangulum. Their structures and absolute configurations were elucidated on the basis of NMR and CD data. Chrotacumines G and J (1 and 4) showed osteoclast differentiation inhibitory activity in a dose dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Xanthine oxidase inhibitory activity of some leafy vegetables collected from Palakkad regions of Kerala

    Directory of Open Access Journals (Sweden)

    L. SUTHARSON

    2016-01-01

    Full Text Available Sauropus androgynus, Aerva lanata & Benincasa hispida have been using as leafy vegetable in kerala. The investigation undertaken was aimed to study xanthine oxidase (XO inhibitory activity of these three plants and it was demonstrated the usefulness and beneficial effects in the treatment of Gout. Inhibition of XO is an effective therapeutic approach for treating hyperuricemia that causes gout. Allopurinol, a known inhibitor of XO, was used to validate the method and was adopted as positive control in the studies. The degree of inhibition was determined by measuring the increase in absorbance at 295 nm associated with uric acid formation. Aerva lanata showed a significant XO inhibitory activity with an IC50 value of 62.53μg/ml. Benincasa hispida and Sauropus androgynus showed a moderate significant XO inhibitory activity with an IC50 value of 67.97μg/ml,80.12 μg/ml respectively. The study recommended that leaves possess XO inhibitory activity that might be useful in preventing or slow down the progress of gout.

  2. Bistability Analysis of Excitatory-Inhibitory Neural Networks in Limited-Sustained-Activity Regime

    Institute of Scientific and Technical Information of China (English)

    倪赟; 吴亮; 吴丹; 朱士群

    2011-01-01

    Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons. The standard stability analysis is performed on the two metastable states separately. Both theoretical analysis and numerical simulations show consistently that the difference between time scales of excitatory and inhibitory populations can influence the dynamical behaviors of the neuronal networks dramatically, leading to the transition from bistable behaviors with memory effects to the collapse of bistable behaviors. These results may suggest one possible neuronal information processing by only tuning time scales.

  3. Biological evaluation of synthetic α,β-unsaturated carbonyl based cyclohexanone derivatives as neuroprotective novel inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation.

    Science.gov (United States)

    Zha, Gao-Feng; Zhang, Cheng-Pan; Qin, Hua-Li; Jantan, Ibrahim; Sher, Muhammad; Amjad, Muhammad Wahab; Hussain, Muhammad Ajaz; Hussain, Zahid; Bukhari, Syed Nasir Abbas

    2016-05-15

    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.

  4. Phytoestrogens genistein and daidzin enhance the acetylcholinesterase activity of the rat pheochromocytoma cell line PC12 by binding to the estrogen receptor.

    Science.gov (United States)

    Isoda, Hiroko; Talorete, Terence P N; Kimura, Momoko; Maekawa, Takaaki; Inamori, Yuhei; Nakajima, Nobuyoshi; Seki, Humitake

    2002-11-01

    Some compounds derived from plants have been known to possess estrogenic properties and can thus alter the physiology of higher organisms. Genistein and daidzin are examples of these phytoestrogens, which have recently been the subject of extensive research. In this study, genistein and daidzin were found to enhance the acetylcholinesterase (AChE) activity of the rat neuronal cell line PC12 at concentrations as low as 0.08 muM by binding to the estrogen receptor (ER). Results have shown that this enhancement was effectively blocked by the known estrogen receptor antagonist tamoxifen, indicating the involvement of the ER in AChE induction. That genistein and daidzin are estrogenic were confirmed in a cell proliferation assay using the human breast cancer cell line MCF7. This proliferation was also blocked by tamoxifen, again indicating the involvement of the ER. On the other hand, incubating the PC12 cells in increasing concentrations of 17 beta-estradiol (E2) did not lead to enhanced AChE activity, even in the presence of genistein or daidzin. This suggests that mere binding of an estrogenic compound to the ER does not necessarily lead to enhanced AChE activity. Moreover, the effect of the phytoestrogens on AChE activity cannot be expressed in the presence of E2 since they either could not compete with the natural ligand in binding to the ER or that E2 down-regulates its own receptor. This study clearly suggests that genistein and daidzin enhance AChE activityin PC12 cells by binding to the ER; however, the actual mechanism of enhancement is not known.

  5. Silicon Reverses Lipid Peroxidation but not Acetylcholinesterase Activity Induced by Long-Term Exposure to Low Aluminum Levels in Rat Brain Regions.

    Science.gov (United States)

    Noremberg, Simone; Bohrer, Denise; Schetinger, Maria R C; Bairros, André V; Gutierres, Jessié; Gonçalves, Jamile F; Veiga, Marlei; Santos, Francielli W

    2016-01-01

    Aluminum (Al) is the most widely distributed metal in the environment and is extensively used in daily life leading to easy exposure to human beings. Besides not having a recognized physiological role, Al may produce adverse effects through the interaction with the cholinergic system contributing to oxidative stress. The present study evaluated, in similar conditions of parenteral nutrition, whether the reaction of silicon (SiO2) with Al(3+) to form hydroxyaluminosilicates (HAS) reduces its bioavailability and toxicity through intraperitoneal administrations of 0.5 mg Al/kg/day and/or 2 mg Si/kg/day in Wistar rats. Al and Si concentrations were determined in rat brain tissue and serum. Acetylcholinesterase (AChE) activity and lipid peroxidation (LPO) were analyzed in the cerebellum, cortex, hippocampus, striatum, hypothalamus, and blood. An increase in the Al concentration was verified in the Al + Si group in the brain. All the groups demonstrated enhanced Si compared to the control animals. Al(3+) increased LPO measured by thiobarbituric acid reactive substances (TBARS) in cerebellum and hippocampus, whereas SiO2 reduced it when compared with the control group. An increase of AChE activity was observed in the Al-treated group in the cerebellum whereas a decrease of this enzyme activity was observed in the cortex and hippocampus in the Al and Al + Si groups. Al and Si concentrations increased in rat serum; however, no effect was observed in blood TBARS levels and AChE activity. SiO2 showed a protective effect in the hippocampus and cerebellum against cellular damage caused by Al(3+)-induced lipid peroxidation. Thus, SiO2 may be considered an important protector in LPO induced by Al(3+).

  6. Effects of Lead+Selenium Interaction on Acetylcholinesterase Activity in Brain and Accumulation of Metal in Tissues of Oreochromis niloticus (L., 1758

    Directory of Open Access Journals (Sweden)

    Gülsemin Şen

    2017-06-01

    Full Text Available The potential accumulation of lead in different tissues of Oreochromis niloticus and the effects of selenium in AChE inhibition caused by lead in brain were investigated. Juvenile O. niloticus samples were exposed to combination of 1 mg L-1 and 2 mg L-1 lead and 1mg L-1 lead+2mg L-1 selenium and 2mg L-1 lead+4mg L-1 selenium for 1, 7 and 15 days respectively. The accumulation of lead in gill, brain, liver and muscle tissues was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS as well as brain acetylcholinesterase (AChE, E.C.3.1.1.7 enzyme activity was also analyzed by spectrophotometric method. No mortality was observed during lead exposure in relation to time period and exposed concentrations. Lead accumulation was occurred in all tissues in relation to time. Maximum lead accumulation occurred in brain tissue, followed by the liver, gills and muscle tissues in relation to time period. Selenium caused decrease accumulation of lead in tissues (all selenium mixtures in muscle tissue on the first day, 1mg L-1 Pb+2mg L-1 selenium in gill tissue on the seventh day, in liver tissue on the seventh day except 2mg L-1 Pb+4mg L-1 selenium mixtures at the end of each of all three test periods. Inhibition of AChE activity was caused by the highest concentration and by the short-term effect of lead. Such effect of lead was eliminated by selenium mixture. Lead and selenium mixture were resulted an increase in activity on 15th day at the highest concentration. Selenium led to decrease in the accumulation of lead in the tissues and caused to improvement in the loss of AChE activity.

  7. Synthesis and topoisomerase II inhibitory and cytotoxic activity of oxiranylmethoxy- and thiiranylmethoxy-chalcone derivatives.

    Science.gov (United States)

    Na, Younghwa; Nam, Jung-Min

    2011-01-01

    In order to find potential anticancer drug candidate targeting topoisomerases enzyme, we have designed and synthesized oxiranylmethoxy- and thiiranylmethoxy-retrochalcone derivatives and evaluated their pharmacological activity including topoisomerases inhibitory and cytotoxic activity. Of the compounds prepared compound 25 showed comparable or better cytotoxic activity against cancer cell lines tested. Compound 25 inhibited MCF7 (IC(50): 0.49 ± 0.21 μM) and HCT15 (IC(50): 0.23 ± 0.02 μM) carcinoma cell growth more efficiently than references. In the topoisomerases inhibition test, all the compounds were inactive to topoisomerase I but moderate inhibitors to topoisomerase II enzyme. Especially, compound 25 inhibited topoisomerase II activity with comparable extent to etoposide at 100 μM concentrations. Correlation between cytotoxicity and topoisomerase II inhibitory activity implies that compound 25 can be a possible lead compound for anticancer drug impeding the topoisomerase II function.

  8. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes

    Directory of Open Access Journals (Sweden)

    Małgorzata Darewicz

    2014-08-01

    Full Text Available The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes and ex vivo digestion (with human gastrointestinal enzymes. Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50% of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  9. Parvalbumin-Positive Inhibitory Interneurons Oppose Propagation But Favor Generation of Focal Epileptiform Activity.

    Science.gov (United States)

    Sessolo, Michele; Marcon, Iacopo; Bovetti, Serena; Losi, Gabriele; Cammarota, Mario; Ratto, Gian Michele; Fellin, Tommaso; Carmignoto, Giorgio

    2015-07-01

    Parvalbumin (Pv)-positive inhibitory interneurons effectively control network excitability, and their optogenetic activation has been reported to block epileptic seizures. An intense activity in GABAergic interneurons, including Pv interneurons, before seizures has been described in different experimental models of epilepsy, raising the hypothesis that an increased GABAergic inhibitory signal may, under certain conditions, initiate seizures. It is therefore unclear whether the activity of Pv interneurons enhances or opposes epileptiform activities. Here we use a mouse cortical slice model of focal epilepsy in which the epileptogenic focus can be identified and the role of Pv interneurons in the generation and propagation of seizure-like ictal events is accurately analyzed by a combination of optogenetic, electrophysiological, and imaging techniques. We found that a selective activation of Pv interneurons at the focus failed to block ictal generation and induced postinhibitory rebound spiking in pyramidal neurons, enhancing neuronal synchrony and promoting ictal generation. In contrast, a selective activation of Pv interneurons distant from the focus blocked ictal propagation and shortened ictal duration at the focus. We revealed that the reduced ictal duration was a direct consequence of the ictal propagation block, probably by preventing newly generated afterdischarges to travel backwards to the original focus of ictal initiation. Similar results were obtained upon individual Pv interneuron activation by intracellular depolarizing current pulses. The functional dichotomy of Pv interneurons here described opens new perspectives to our understanding of how local inhibitory circuits govern generation and spread of focal epileptiform activities.

  10. Inhibitory Effects of seco-Triterpenoids from Acanthopanax sessiliflorus Fruits on HUVEC Invasion and ACE Activity.

    Science.gov (United States)

    Lee, Jin-Won; Baek, Nam-In; Lee, Dae-Young

    2015-09-01

    This study was conducted to investigate the effects of the crude extract from Acanthopanax sessiliflorus fruits and the isolated seco-triterpenoids from the crude extract on blood flow in human umbilical vein endothelial cell (HUVEC) invasion assay and angiotensin converting enzyme (ACE) inhibitory activity assay. On the basis of DMSO, the extent of HUVECs' invasion was remarkably decreased with crude extract concentrations of 400 and 1000 pg/mL. Additionally, the extent of the HUVEC invasion inhibitory effect in 400 and 1000 µg/mL of acanthosessilioside F were 55.8% and 72.4%, respectively. In addition, the maximum extent of the HUVEC invasion inhibitory effect of 22-α-hydroxychiisanoside was 88.9%. The IC50 value of the inhibitory effect on ACE activity in the crude extract was 4 µg/mL. The isolated seco-triterpenoids, 22α-hydroxychiisanogenin, 3,4-seco-lupan-20(30)-en-3,28-dioic acid, (lR)-1,4-epoxy-11α,22α-hydroxy-3,4-seco-lupan-20(30)-en-3,28-dioicacid, (+)-divaroside, and chiisanosidehad showed very high inhibitory effects on ACE activity, ranging from 1.8 to 2.9 µg/mL, which is much higher than the 150.0 µg/mL effect of aspirin. These results suggest that the crude extract from Acanthopanax sessiliflorus fruits and the isolated seco-triterpenoids from the crude extract enhance the blood flow effect by decreasing ACE activity.

  11. In vivo hypotensive effect and in vitro inhibitory activity of some Cyperaceae species

    Directory of Open Access Journals (Sweden)

    Monica Lacerda Lopes Martins

    2013-12-01

    Full Text Available In 1820, French naturalist August Saint Hillaire, during a visit in Espírito Santo (ES, a state in southeastern Brazil, reported a popular use of Cyperaceae species as antidote to snake bites. The plant may even have a hypotensive effect, though it was never properly researched. The in vitro inhibitory of the angiotensin converting enzyme (ACE activity of eigth ethanolic extracts of Cyperaceae was evaluated by colorimetric assay. Total phenolic and flavonoids were determined using colorimetric assay. The hypotensive effect of the active specie (Rhychonospora exaltata, ERE and the in vivo ACE assay was measured in vivo using male Wistar Kyoto (ERE, 0.01-100mg/kg, with acetylcholine (ACh as positive control (5 µg/kg, i.v.. The evaluation of ACE in vivo inhibitory effect was performed comparing the mean arterial pressure before and after ERE (10 mg/kg in animals which received injection of angiotensin I (ANG I; 0,03, 03 and 300 µg/kg, i.v.. Captopril (30 mg/kg was used as positive control. Bulbostylis capillaris (86.89 ± 15.20% and ERE (74.89 ± 11.95%, ERE were considered active in the in vitro ACE inhibition assay, at 100 µg/mL concentration. ACh lead to a hypotensive effect before and after ERE's curve (-40±5% and -41±3%. ERE showed a dose-dependent hypotensive effect and a in vivo ACE inhibitory effect. Cyperaceae species showed an inhibitory activity of ACE, in vitro, as well as high content of total phenolic and flavonoids. ERE exhibited an inhibitory effect on both in vitro and in vivo ACE. The selection of species used in popular medicine as antidotes, along with the in vitro assay of ACE inhibition, might be a biomonitoring method for the screening of new medicinal plants with hypotensive properties.

  12. Hyaluronidase and collagenase inhibitory activities of the herbal formulation Triphala guggulu

    Indian Academy of Sciences (India)

    Venil N Sumantran; Asavari A Kulkarni; Abhay Harsulkar; Asmita Wele; Soumya J Koppikar; Rucha Chandwaskar; Vishakha Gaire; Madhuri Dalvi; Ulhas V Wagh

    2007-06-01

    Myrrh (guggulu) oleoresin from the Commiphora mukul tree is an important component of antiarthritic drugs in Ayurvedic medicine. Clinical data suggest that elevated levels of hyaluronidase and collagenase type 2 enzymes contribute significantly to cartilage degradation. Triphala guggulu (TG) is a guggulu-based formulation used for the treatment of arthritis. We assessed the chondroprotective potential of TG by examining its effects on the activities of pure hyaluronidase and collagenase type 2 enzymes. Triphala shodith guggulu (TSG), an intermediate in the production of TG, was also examined. A spectrophotometric method was used to assay Hyaluronidase activity, and to detect potential Hyaluronidase inhibitors. Aqueous and hydro-alcoholic extracts of TSG showed weak but dose-dependent inhibition of hyaluronidase activity. In contrast, the TG formulation was 50 times more potent than the TSG extract with respect to hyaluronidase inhibitory activity. A validated X-ray film-based assay was used to measure the gelatinase activity of pure collagenase type 2. Hydro-alcoholic extracts of the TG formulation were 4 times more potent than TSG with respect to collagenase inhibitory activity. Components of Triphala were also evaluated for their inhibitory activities on hyaluronidase and collagenase. This is the first report to show that the T2 component of Triphala (T. chebula) is a highly potent hyaluronidase and collagenase inhibitor. Thus, the TG formulation inhibits two major enzymes that can degrade cartilage matrix. Our study provides the first in vitro preclinical evidence of the chondroprotective properties of TG.

  13. In vitro anti-inflammatory and xanthine oxidase inhibitory activity of Tephrosia purpurea shoot extract.

    Science.gov (United States)

    Nile, Shivraj H; Khobragade, Chandrahasy N

    2011-10-01

    The methanolic extract of Tephrosia purpurea (Leguminosae) shoots was evaluated in-vitro for its anti-inflammatory and xanthine oxidase inhibitory activity. Anti-inflammatory activity was measured by the Diene-conjugate, HET-CAM and beta-glucuronidase methods. The enzyme inhibitory activity was tested against isolated cow milk xanthine oxidase. The average anti-inflammatory activity of T. purpurea shoot extract in the concentration range of 1-2 microg/mL in the reacting system revealed significant anti-inflammatory activities, which, as recorded by the Diene-conjugate, HET-CAM and beta-glucuronidase assay methods, were 45.4, 10.5, and 70.5%, respectively. Screening of the xanthine oxidase inhibitory activity of the extract in terms of kinetic parameters revealed a mixed type of inhibition, wherein the Km and Vmax values in the presence of 25 to 100 microg/mL shoot extract was 0.20 mM/mL and 0.035, 0.026, 0.023 and 0.020 microg/min, while, for the positive control, the Km and Vmax values were 0.21 mM/mL and 0.043 microg/min, respectively. These findings suggest that T. purpurea shoot extract may possess constituents with good medicinal properties that could be exploited to treat the diseases associated with oxidative stress, xanthine oxidase enzyme activity and inflammation.

  14. Pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats

    DEFF Research Database (Denmark)

    Albertí, Elena; Mikkelsen, Hanne Birte; Wang, Xuanyu

    2007-01-01

    The aim of this study was to characterize the pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats, which harbor a mutation in the c-kit gene that affects development of interstitial cells of Cajal (ICC). In Ws/Ws rats, the density of KIT-positive cells was marked...... as indirect innervation via ICC. In summary, loss of ICC markedly affects pacemaker and motor activities of the rat colon. Inhibitory innervation is largely maintained but nitrergic innervation is reduced possibly related to the loss of ICC-mediated relaxation.......The aim of this study was to characterize the pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats, which harbor a mutation in the c-kit gene that affects development of interstitial cells of Cajal (ICC). In Ws/Ws rats, the density of KIT-positive cells was markedly...... of 10-20 cycles/min. Spontaneous activity of nitrergic nerves caused sustained inhibition of muscle activity in both wild-type (+/+) and Ws/Ws rats. Electrical field stimulation of enteric nerves, after blockade of cholinergic and adrenergic activity, elicited inhibition of mechanical activity...

  15. Changes in Behavior and Brain Acetylcholinesterase Activity in Mosquito Fish, Gambusia affinis in Response to the Sub-Lethal Exposure to Chlorpyrifos

    Directory of Open Access Journals (Sweden)

    R. Nageswara Rao

    2005-12-01

    Full Text Available Sub-lethal studies of chlorpyrifos, O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl phosphorothioate on mosquito fish, Gambusia affinis were carried out in vivo, for 20 days to assess the locomotor behavior in relation to bioaccumulation and interaction with a targeted enzyme, acetylcholinesterase (AChE, EC: 3.1.1.7. Fish exposed to sub-lethal concentration of 60 Ag/L (1/5 of LC50 were under stress, and reduced their locomotor behavior like distance travelled per unit time (m/min and swimming speed (cm/sec with respect to the length of exposure. The alteration in locomotor behavior of fish may be due to an accumulation of acetylcholine (ACh, a neurotransmitter at synaptic junctions, due to the inhibition of AChE enzyme activity (40 to 55% in brain and also bioaccumulation of the toxicant in different parts of fish. The bioaccumulation values indicated that the accumulation of chlorpyrifos was maximum in viscera followed by head and body. The average bioconcentration values are 0.109, 0.009 and 0.004 Ag/g for viscera, head and body with depuration rates of 2.24, 1.69 and 0.39 ng/h respectively. It is evident from the results that the sub-lethal concentration [1/5 of LC50; equivalent to Lowest Observed Effect Concentration (LOEC] of chlorpyrifos can able to alter the locomotor behavior of G. affinis in relation to the length of exposure. The findings revealed that the locomotor activity of test organism could be considered as a suitable marker to evaluate the affect of toxicant even at LOEC levels.

  16. Application of a dynamic in vitro model with real-time determination of acetylcholinesterase activity for the investigation of tabun analogues and oximes.

    Science.gov (United States)

    Worek, Franz; Herkert, Nadja M; Koller, Marianne; Thiermann, Horst; Wille, Timo

    2015-12-25

    Tabun-inhibited acetylcholinesterase (AChE) is rather resistant towards reactivation by oximes in vitro while in vivo experiments showed some protection of animals poisoned by this chemical warfare nerve agent after treatment with an oxime and atropine. In addition, AChE inhibited by close tabun analogues, N,N-diethyltabun and N,N-di-n-propyltabun was completely resistant towards reactivation by oximes. In order to get more insight into potential mechanisms of this oxime resistance experiments with these toxic agents and the oximes obidoxime, 2-PAM, MMB-4 and HI-6 were performed utilizing a dynamic model with real-time determination of AChE activity. This experimental setup allowed the investigation of reactivation with minimized side reactions. The determined reactivation constants with tabun-inhibited human AChE were in good agreement with previously reported constants determined with a static model. N,N-diethyl- and N,N-di-n-propyltabun-inhibited human AChE could not be reactivated by oximes which indicates that the inadequate oxime effect was not due to re-inhibition by phosphonyloximes. Additional experiments with tabun-inhibited human and Rhesus monkey AChE revealed that no reactivation occurred with HI-6. These data give further support to the assumption that an interaction of tabun with residues in the active site gorge of AChE prevents effective reactivation by oximes, a mechanism which may also be the reason for the total oxime resistance of N,N-diethyl- and N,N-di-n-propyltabun-inhibited human AChE.

  17. Structure and promoter activity of the 5' flanking region of ace-1, the gene encoding acetylcholinesterase of class A in Caenorhabditis elegans.

    Science.gov (United States)

    Culetto, E; Combes, D; Fedon, Y; Roig, A; Toutant, J P; Arpagaus, M

    1999-07-30

    We report the structure and the functional activity of the promoter region of ace-1, the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans. We found that ace-1 was trans -spliced to the SL1 spliced leader and that transcription was initiated at a cluster of multiple starts. There was neither a TATA nor a CAAT box at consensus distances from these starts. Interspecies sequence comparison of the 5' regions of ace-1 in C. elegans and in the related nematode Caenorhabditis briggsae identified four blocks of conserved sequences located within a sequence of 2.4 kilobases upstream from the initiator ATG. In vitro expression of CAT reporter genes in mammalian cells allowed the determination of a minimal promoter in the first 288 nucleotides. In phenotype rescue experiments in vivo, the ace-1 gene containing 2.4 kilobases of 5' flanking region of either C. elegans or C. briggsae was found to restore a coordinated mobility to the uncoordinated double mutants ace-1(-);ace-2(-)of C. elegans. This showed that the ace-1 promoter was contained in 2.4 kilobases of the 5' region, and indicated that cis -regulatory elements as well as coding sequences of ace-1 were functionally conserved between the two nematode species. The pattern of ace-1 expression was established through microinjection of Green Fluorescent Protein reporter gene constructs and showed a major mesodermal expression. Deletion analysis showed that two of the four blocks of conserved sequences act as tissue-specific activators. The distal block is a mesodermal enhancer responsible for the expression in body wall muscle cells, anal sphincter and vulval muscle cells. Another block of conserved sequence directs expression in pharyngeal muscle cells pm5 and three pairs of cephalic sensory neurons. Copyright 1999 Academic Press.

  18. Telomerase inhibitory effects of medicinal mushrooms and lichens, and their anticancer activity.

    Science.gov (United States)

    Xu, Baojun; Li, Chantian; Sung, Changkeun

    2014-01-01

    Telomerase has been widely accepted as a cancer marker and a promising therapeutic target for novel anticancer drugs. The aim of this study was to investigate the in vitro telomerase inhibitory effects of mushrooms and their anticancer properties. The inhibitory effects of mushrooms and lichens against telomerase activity of HL-60 cells were systematically assessed using polymerase chain reaction based on assay of telomeric repeat amplification protocol. Telomerase inhibitory samples were further tested for antiproliferation effects against the gastric cell line SNU-1 using the MTT method. Ethyl acetate extract of Pleurotus ostreatus, ethyl acetate and water extracts of Lasiosphaera fenzlii, hexane extract of Strobilomyces floccopus, water extract of Sarcodon aspratus, and hexane, ethyl acetate, and water extracts from Umbilicaria esculenta showed strong positive telomerase inhibitory activity. Hexane extract of S. floccopus and water extracts from the edible lichen U. esculenta exhibited strong anticancer effects against SNU-1 cells through antiproliferation assay. The water extract of U. esculenta has a great potential to be developed into an anticancer agent that targets telomerase.

  19. Benzophenones from Mango Leaves Exhibit α-Glucosidase and NO Inhibitory Activities.

    Science.gov (United States)

    Pan, Jing; Yi, Xiaomin; Wang, Yihai; Chen, Guisi; He, Xiangjiu

    2016-10-12

    Mango (Mangifera indica L.) is a succulent tropical fruit. Bioactive phytochemical investigation has been carried out to the leaves of mango. Three new benzophenone glycosides, along with 14 known compounds, were purified and identified. The novel benzophenones were elucidated to be 2,4,4',6-tetrahydroxy-3'-methoxybenzophenone-3-C-β-d-glucopyranoside (1), 4,4',6-trihydroxybenzophenone-2-O-α-l-arabinofuranoside (7), and 4',6-dihydroxy-4-methoxybenzophenone-2-O-(2″),3-C-(1″)-1″-desoxy-α-l-fructofuranoside (11). The α-glucosidase inhibitory, NO production inhibitory, and antioxidant activities were assessed for the purified benzophenones and triterpenoids. Some benzophenones showed moderate α-glucosidase and NO inhibitory activities. The IC50 value of the α-glucosidase inhibitory of isolated compounds 1, 13, and 14 were 284.93 ± 20.29, 239.60 ± 25.00, and 297.37 ± 8.12 μM, respectively. Most compounds showed moderate effects to reduce the NO content in 50 and 100 μM. The above results of bioactivity powerfully demonstrated the phytochemicals from mango, especially benzophenones, probably partially rational for its antidiabetes and anti-inflammatory.

  20. Inhibitory activity of phosphates on molds isolated from foods and food processing plants.

    Science.gov (United States)

    Suárez, V B; Frisón, L; de Basílico, M Z; Rivera, M; Reinheimer, J A

    2005-11-01

    Six commercial phosphates were evaluated for inhibition of the growth of 17 molds isolated from food sources. The assays were performed at neutral and natural (without pH adjustment) pH values, and the molds were streaked on plate count agar with added phosphates. Phosphate concentrations of 0.1, 0.3, 0.5, 1.0, and 1.5% (wt/vol) were used, and the MIC was determined. The resistance of molds to phosphates depended on the species. At a neutral pH, Aspergillus ochraceus and Fusarium proliferatum were resistant to all phosphates at all concentrations assayed, and Byssochlamys nivea, Aureobasidium pullulans, and Penicillium glabrum were most sensitive. The most inhibitory phosphates were those with chain lengths greater than 15 phosphate units and the highest sequestering power. At natural pH values (resulting from dissolving the phosphate in the medium), inhibitory activity changed dramatically for phosphates that produced alkaline or acidic pH in the medium. Phosphates with alkaline pH values (sodium tripolyphosphate of high solubility, sodium tripolyphosphate, and sodium neutral pyrophosphate) were much more inhibitory than phosphates at a neutral pH, but sodium acid pyrophosphate (acidic pH) had decreased inhibitory activity. The results indicate that some phosphates could be used in the food industry to inhibit molds linked to food spoilage.

  1. Toxicological effect of herbicides (diuron and bentazon) on snake venom and electric eel acetylcholinesterase.

    Science.gov (United States)

    Ahmed, Mushtaq; Latif, Nadia; Khan, Rehmat Ali; Ahmad, Akhlaq

    2012-08-01

    The toxicological effects of the active ingredients of the herbicides diuron and bentazon on the activity of acetylcholinesterase (AChE) of krait (Bungarus sindanus) venom and electric eel (Electrophorus electricus) were studied. The diuron and entazon caused non-competitive inhibition of AChE from both species. For the venom AChE, the calculated IC50 for diuron and bentazon were found to be 3.25 and 0.14 μM, while for eel AChE, the respective IC50 values were 3.6 and 0.135 μM. In comparison, bentazon was a more potent inhibitor than diuron of AChE from both species. The insecticide lindane did not have any inhibitory effect on AChE activity in either species, even when tested at high concentrations (200-800 μM).

  2. Phenol content, antioxidant and tyrosinase inhibitory activity of mangrove plants in Micronesia

    Institute of Scientific and Technical Information of China (English)

    Sung-Suk Suh; Jinik Hwang; Mirye Park; Heung-Sik Park; Taek-Kyun Lee

    2014-01-01

    Objective:To find out and compare the in vitro antioxidant and tyrosinase inhibitory activities of two species of mangrove plants.Methods:Mangrove samples were harvested at the shoreline on the island ofWeno,ChuukState inMicronesia.The phenol content, antioxidant activity(based onDPPH-free radical scavenging) and tyrosinase inhibitory activity in different tissues(leaves, barks and roots) ofRhizophora stylosa (R. stylosa) andSonneratia alba (S. alba), collected from the island ofWeno.Results:Total phenol content ranged from4.87 to11.96 mg per g of freeze dried samples.The highest antioxidant activity was observed inR. stylosa bark(85.5%).The highest tyrosinase inhibitory activity was found inS. alba bark.Also, total phenol content and antioxidant activity were higher in methanol extracts than in aqueous extracts.Conclusions:Taken together, the results of this study proved that mangroves can be excellent sources of antioxidant compounds.

  3. Cytochrome P450-inhibitory activity of parabens and phthalates used in consumer products.

    Science.gov (United States)

    Ozaki, Hitomi; Sugihara, Kazumi; Watanabe, Yoko; Ohta, Shigeru; Kitamura, Shigeyuki

    2016-01-01

    The in vitro cytochrome P450 (CYP)-inhibitory effects of 11 parabens and 7 phthalates used in consumer products, as well as their hydrolytic metabolites, were investigated, using rat liver microsomes as an enzyme source. The effects on individual CYP isozymes were evaluated by assaying inhibition of activities towards specific substrates, i.e., ethoxyresorufin O-dealkylase (EROD), methoxyresorufin O-dealkylase (MROD), pentoxyresorufin O-dealkylase (PROD), 7-benzyloxy-4-trifluoromethylcoumarin dealkylase (BFCD), 7-methoxy-4-trifluoromethylcoumarin dealkylase (MFCD) and 7-ethoxy-4-trifluoromethylcoumarin dealkylase (EFCD) activities. These activities were dose-dependently inhibited, most potently by medium-side-chain parabens (C6-9) and phthalates (C4-6), and less potently by shorter- and longer-side-chain esters. The hydrolytic product of parabens, 4-hydroxybenzoic acid, was not inhibitory, while those of phthalates, phthalic acid monoesters, showed lower inhibitory activity than the parent phthalates. Parabens showed relatively potent inhibition of MFCD activity, considered to be mainly due to CYP2C, and phthalates showed relatively potent inhibition of PROD activity, considered to be mainly due to CYP2B.

  4. Temperature rise and microplastics interact with the toxicity of the antibiotic cefalexin to juveniles of the common goby (Pomatoschistus microps): Post-exposure predatory behaviour, acetylcholinesterase activity and lipid peroxidation.

    Science.gov (United States)

    Fonte, Elsa; Ferreira, Pedro; Guilhermino, Lúcia

    2016-11-01

    The goal of this study was to investigate the toxicity of cefalexin to Pomatoschistus microps juveniles in relation to the presence of microplastics in the water and temperature rise. After acclimatization, groups of wild juveniles were exposed for 96h to artificial salt water (control), microplastics alone (0.184mg/l), cefalexin alone (1.3-10mg/l) and in mixture with microplastics (cefalexin: 1.3-10mg/l; microplastics: 0.184mg/l) at 20 and 25°C. Effect criteria were mortality, post-exposure predatory performance (PEPP), acetylcholinesterase activity (AChE) and lipid peroxidation levels (LPO). At 20°C, concentrations of cefalexin alone≥5mg/l significantly reduced PEPP (up to 56%; 96h-EC50=8.4mg/l), indicating toxicity of the antibiotic to juveniles after short-term exposure to water concentrations in the low ppm range. At 20°C, fish exposed to microplastics alone did not have significant differences in any of the parameters tested relative to the control group but tended to have an inhibition of the PEPP (23%) and AChE (21%); at 25°C, microplastics alone caused mortality (33%) and PEPP inhibition (28%). Thus, microplastics are toxic to P. microps juveniles. At 20°C, under simultaneous exposure to cefalexin and microplastics, the PEPP was significantly reduced (at cefalexin concentrations≥1.25mg/l). Moreover, at 25°C, the toxicity curves of cefalexin (PEPP based), alone and in mixture with microplastics, were significantly different (pmicroplastics in the water influenced the toxicity of cefalexin. The rise of water temperature (from 20°C to 25°C), increased the microplastics-induced mortality (from 8 to 33%), and the inhibitory effects of cefalexin on the PEPP (up to 70%). Significant differences (pmicroplastics and of cefalexin, alone and in mixture with microplastics, to P. microps juveniles. These findings raise concern on the long-term exposure of wild populations to complex mixtures of pollutants, likely decreasing their fitness, and highlight the

  5. Chemical Composition and Enzymes Inhibitory, Brine Shrimp Larvae Toxicity, Antimicrobial and Antioxidant Activities of Caloplaca biatorina

    Directory of Open Access Journals (Sweden)

    Tahereh Valadbeigi

    2016-10-01

    Full Text Available Background This study evaluated the brine shrimp larvae toxicity and enzymes inhibitory especially anti-diabetic potential of Caloplaca biatorina via in vitro inhibition of α-amylase and α-glucosidase using the methanol extracts. Also aldehyde oxidase and xanthine oxidase enzymes inhibitory, cytotoxicity, and antioxidant activities of the species were determined. Methods In this experimental study, different concentrations of the extracts (0.2, 5.0, 1 and 1.5 mg/mL were incubated with enzyme substrate solution and the percentage of enzyme inhibitory activity and IC50 was calculated. Folin- Ciocalteu reagent and aluminium chloride colorimetric methods were used to estimate total phenolic and flavonoid content of extracts. The toxicity of the extract was assessed using the brine shrimp lethality bioassay. The minimal inhibitory concentration (MIC and minimum bactericidal concentration (MBC were determined. High-performance liquid chromatography and Thin-layer chromatography analysis were evaluated. The data were analyzed by SPSS V.21 software. Results Parietin, Emodin, 1,8-Dihydroxy-3-(hydroxymethyl-6- methoxy-9.10-anthracenedione and Rhein were identified. The extract showed strong α-glucosidase, aldehyde oxidase and xanthine oxidase inhibitory activities with IC50 value of 17.12, 40.09 and 11.02 µg/mL respectively. Also methanol extract displayed the strongest DPPH radical scavenging and brine shrimp toxicity (IC50 = 91.11 properties. Conclusions The result obtained suggests that the C. biatorina extract can be classified as non-toxic. Also, it revealed the antioxidant and antidiabetic potential of the lichen.

  6. Effect of sugar positions in ginsenosides and their inhibitory potency on Na+/K+-ATPase activity

    Institute of Scientific and Technical Information of China (English)

    Ronald JY CHEN; Tse-yu CHUNG; Feng-yin LI; Nan-hei LIN; Jason TC TZEN

    2009-01-01

    Aim: To determine whether ginsenosides with various sugar attachments may act as active components responsible for the cardiac therapeutic effects of ginseng and sanqi (the roots of Panax ginseng and Panax notoginseng) via the same molecular mechanism triggered by cardiac glycosides, such as ouabain and digoxin. Methods: The structural similarity between ginsenosides and ouabain was analyzed. The inhibitory potency of ginseno-sides and ouabain on Na+/K+-ATPase activity was examined and compared. Molecular modeling was exhibited for the docking of ginsenosides to Na+/K+-ATPase. Results: Ginsenosides with sugar moieties attached only to the C-3 position of the steroid-like structure, equivalent to the sugar position in cardiac glycosides, and possessed inhibitory potency on Na+/K+-ATPase activity. However, their inhibi-tory potency was significantly reduced or completely abolished when a monosaccharide was linked to the C-6 or C-20 posi-tion of the steroid-like structure; replacement of the monosaccharide with a disaccharide molecule at either of these posi-tions caused the disappearance of the inhibitory potency. Molecular modeling and docking confirmed that the difference in Na+/K+-ATPase inhibitory potency among ginsenosides was due to the steric hindrance of sugar attachment at the C-6 and C-20 positions of the steroid-like structure. Conclusion: The cardiac therapeutic effects of ginseng and sanqi should be at least partly attributed to the effective inhi-bition of Na+/K+-ATPase by their metabolized ginsenosides with sugar moieties attached only to the C-3 position of the steroid-like structure.

  7. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents

    DEFF Research Database (Denmark)

    Domazet, Sidsel L; Tarp, Jakob; Huang, Tao

    2016-01-01

    OBJECTIVES: To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. METHODS: The design was cross-sectional. A convenient sample of 869 sixth and seventh grade...... students (12-14 years) was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical...

  8. Acetylcholinesterase activity in the freshwater shrimp Caridina nilotica as a biomarker of Roundup(®) herbicide pollution of freshwater systems in South Africa.

    Science.gov (United States)

    Mensah, P K; Muller, W J; Palmer, C G

    2012-01-01

    The use of Caridina nilotica whole-body acetylcholinesterase (AChE) activity as a potential biomarker of Roundup(®) pollution of aquatic ecosystems was investigated. Forty days post hatch (dph) shrimps were exposed to different concentrations of 0.0, 4.3, 6.7, 10.5, 16.4, 25.6 and 40.0 mg/L in a 96 h acute toxicity test; and 0.0, 2.2, 2.8, 3.4, 4.3 and 5.4 mg/L in a 21 d chronic toxicity test. Whole-body AChE activities were determined at the end of the exposure periods by spectrophotometric assay of sample extract; activities were then normalized against protein contents in the samples and expressed in nanomoles of substrate hydrolyzed. Results of both tests showed that AChE activity was concentration-dependent. Mean AChE activities and standard deviations (±SD) for 96 h acute toxicity were 3.6239 (± 0.4185), 3.4157 (± 1.1842), 2.537 (± 1.3989), 2.4253 (± 1.4202), 2.4127 (± 1.9097), 2.0017 (± 1.1080) and 2.316 (± 0.4001) nmol/min/mg protein; while activity levels for 21 d test were 3.6907(± 0.3401), 2.8473 (± 0.713), 2.9134 (± 0.9879), 2.6738 (± 0.7117), 2.3019 (± 0.4464) and 2.1478 (± 0.864) nmol/min/mg protein. Reference basal AChE activity for 40 dph C. nilotica based on the two control groups was estimated as 3.6907 (± 0.3401) nmol/min/mg proteins. The present work provides ecotoxicological basis for the possible use of AChE activity in C. nilotica as a biomarker for monitoring Roundup(®) pollution in freshwater systems.

  9. α-GLUCOSIDASE AND α -AMYLASE INHIBITORY ACTIVITIES OF RAPHANUS SATIVUS LINN.

    Directory of Open Access Journals (Sweden)

    R. Vadivelan et al

    2012-09-01

    Full Text Available Herbal medicine has been used for many years by different cultures around the world for the treatment of diabetes. There has been an enormous interest in the development of alternative medicines for type 2 diabetes, specifically screening for phytochemicals with the ability to delay or prevent glucose absorption. The goal of the present study is to evaluate the invitro antidiabetic activity of Raphanus sativus ethanolic extract and fractions by α-glucosidase and α -amylase inhibitory activity. Raphanus sativus ethanolic extract and fractions showed dose dependent inhibition of α-glucosidase and α -amylase enzyme and exhibited lower inhibitory activity than acarbose. The study revealed the antidiabetic potential and could be helpful to develop medicinal preparations and nutraceuticals and function foods for diabetes.

  10. Inhibitory effect of vanillin on cellulase activity in hydrolysis of cellulosic biomass.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Wan, Yinhua

    2014-09-01

    Pretreatment of lignocellulosic material produces a wide variety of inhibitory compounds, which strongly inhibit the following enzymatic hydrolysis of cellulosic biomass. Vanillin is a kind of phenolics derived from degradation of lignin. The effect of vanillin on cellulase activity for the hydrolysis of cellulose was investigated in detail. The results clearly showed that vanillin can reversibly and non-competitively inhibit the cellulase activity at appropriate concentrations and the value of IC50 was estimated to be 30 g/L. The inhibition kinetics of cellulase by vanillin was studied using HCH-1 model and inhibition constants were determined. Moreover, investigation of three compounds with similar structure of vanillin on cellulase activity demonstrated that aldehyde group and phenolic hydroxyl groups of vanillin had inhibitory effect on cellulase. These results provide valuable and detailed information for understanding the inhibition of lignin derived phenolics on cellulase.

  11. Effect of the methanol leaves extract of Clinacanthus nutans on the activity of acetylcholinesterase in male mice

    Directory of Open Access Journals (Sweden)

    Lau KW

    2014-01-01

    Conclusion: In conclusion, 14 d oral administration of C. nutans was able to modulate cholinergic neurotransmission by activating AChE activity in mice kidney, liver and heart. Compounds that responsible for the induction of AChE activity in mice liver, heart and kidney and its mechanism needs to be elucidated.

  12. Comparative study on the antioxidant capacity and cholinesterase inhibitory activity of Citrus aurantifolia Swingle, C. aurantium L., and C. bergamia Risso and Poit. peel essential oils.

    Science.gov (United States)

    Tundis, Rosa; Loizzo, Monica Rosa; Bonesi, Marco; Menichini, Federica; Mastellone, Vincenzo; Colica, Carmela; Menichini, Francesco

    2012-01-01

    The interest in medicinal plant research and in the aroma-therapeutic effects of essential oils in humans has increased in recent years, especially for the treatment of pathologies of relevant social impact such as Alzheimer's disease. The present study was taken up to evaluate the antioxidant capacity and the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the peel essential oils from three Citrus species, C. aurantifolia Swingle, C. aurantium L., and C. bergamia Risso & Poit. Essential oils were analyzed by GC and GC-MS and they contain mainly limonene, α-pinene, β-pinene, γ-terpinene, and linalyl acetate. C. aurantifolia oil showed the highest radical scavenging activity on ABTS assay (IC₅₀ value of 19.6 μg/mL), while C. bergamia exhibited a good antioxidant activity evaluated by the β-carotene bleaching test (IC₅₀ = 42.6 μg/mL after 60 min of incubation). C. aurantifolia inhibited more selectively AChE. Obtained data suggest a potential use of Citrus oils as a valuable new flavor with functional properties for food or nutraceutical products with particular relevance to supplements for the elderly. The demonstrated antioxidant activity and procholinesterase properties of Citrus essential oils suggested their use as a new potential source of natural antioxidant to added as extra-nutrient for using in food industries as a valuable new flavor with functional properties for food or nutraceutical products with particular relevance to supplements for the elderly. © 2011 Institute of Food Technologists®

  13. Antioxidant and lipase inhibitory activities and essential oil composition of pomegranate peel extracts.

    Science.gov (United States)

    Hadrich, Fatma; Cher, Slim; Gargouri, Youssef Talel; Adel, Sayari

    2014-01-01

    The chemical composition of essential oil, antioxidant and pancreatic lipase inhibitory activities of various solvent extracts obtained from pomegranate peelTunisian cultivar was evaluated. Gas chromatography/mass spectrometry was used to determine the composition of the PP essential oil. Nine-teen components were identified and the main compounds were the camphor (60.32%) and the benzaldehyde (20.98%). The phenolic and flavonoids content varied from 0 to 290.10 mg Gallic acid equivalent and from 5.2 to 20.43 mg catechin equivalent/g dried extract. The antioxidant activity of various solvent extracts from pomegranate peel was also investigated using various in vitro assays as the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical method, β-carotene bleaching and reducing power assays.Methanol and ethanol extracts showed the most potent antioxidant activity in all assays tested followed by water and acetone extracts. The inhibitory effect of the pomegranate peelextracts on porcine pancreatic lipase was evaluated and the results showed that ethanol and methanol extracts markedly reduced lipase activity. Generally, the highestlipase activity inhibitory (100%) was observed at a concentration of 1 mg/ml after 30 min of incubation. LC-MS analysis of ethanol extract showed the presence of four components which are cholorogenic acid, mannogalloylhexoside, gallic acid and ellagic acid. Our findings demonstrate that the ethanol extract from pomegranate peel might be a good candidate for furtherinvestigations of new bioactive substances.

  14. A competitive inhibitory circuit for selection of active and passive fear responses.

    Science.gov (United States)

    Fadok, Jonathan P; Krabbe, Sabine; Markovic, Milica; Courtin, Julien; Xu, Chun; Massi, Lema; Botta, Paolo; Bylund, Kristine; Müller, Christian; Kovacevic, Aleksandar; Tovote, Philip; Lüthi, Andreas

    2017-02-02

    When faced with threat, the survival of an organism is contingent upon the selection of appropriate active or passive behavioural responses. Freezing is an evolutionarily conserved passive fear response that has been used extensively to study the neuronal mechanisms of fear and fear conditioning in rodents. However, rodents also exhibit active responses such as flight under natural conditions. The central amygdala (CEA) is a forebrain structure vital for the acquisition and expression of conditioned fear responses, and the role of specific neuronal sub-populations of the CEA in freezing behaviour is well-established. Whether the CEA is also involved in flight behaviour, and how neuronal circuits for active and passive fear behaviour interact within the CEA, are not yet understood. Here, using in vivo optogenetics and extracellular recordings of identified cell types in a behavioural model in which mice switch between conditioned freezing and flight, we show that active and passive fear responses are mediated by distinct and mutually inhibitory CEA neurons. Cells expressing corticotropin-releasing factor (CRF(+)) mediate conditioned flight, and activation of somatostatin-positive (SOM(+)) neurons initiates passive freezing behaviour. Moreover, we find that the balance between conditioned flight and freezing behaviour is regulated by means of local inhibitory connections between CRF(+) and SOM(+) neurons, indicating that the selection of appropriate behavioural responses to threat is based on competitive interactions between two defined populations of inhibitory neurons, a circuit motif allowing for rapid and flexible action selection.

  15. Metabolism and growth inhibitory activity of cranberry derived flavonoids in bladder cancer cells.

    Science.gov (United States)

    Prasain, Jeevan K; Rajbhandari, Rajani; Keeton, Adam B; Piazza, Gary A; Barnes, Stephen

    2016-09-14

    In the present study, anti-proliferative activities of cranberry derived flavonoids and some of their in vivo metabolites were evaluated using a panel of human bladder tumor cell lines (RT4, SCABER, and SW-780) and non-tumorigenic immortalized human uroepithelial cells (SV-HUC). Among the compounds tested, quercetin 3-O-glucoside, isorhamnetin (3'-O-methylquercetin), myricetin and quercetin showed strong concentration-dependent cell growth inhibitory activities in bladder cancer cells with IC50 values in a range of 8-92 μM. Furthermore, isorhamnetin and myricetin had very low inhibitory activity against SV-HUC even at very high concentrations (>200 μM) compared to bladder cancer cells, indicating that their cytotoxicity is selective for cancer cells. To determine whether the differential cell growth inhibitory effects of isomeric flavonoids quercetin 3-O-glucoside (active) and hyperoside (quercetin 3-O-galactoside) (inactive) are related to their metabolism by the cancer cells, SW-780 cells were incubated with these compounds and their metabolism was examined by LC-MS/MS. Compared to quercetin 3-O-glucoside, hyperoside undergoes relatively less metabolic biotransformation (methylation, glucuronidation and quinone formation). These data suggest that isorhamnetin and quercetin 3-O-glucoside may be the active forms of quercetin in prevention of bladder cancer in vivo and emphasize the importance of metabolism for the prevention of bladder cancer by diets rich in cranberries.

  16. Inhibitory effects of active fraction and its main components of Shaofu Zhuyu decoction on uterus contraction.

    Science.gov (United States)

    Su, Shulan; Hua, Yongqing; Duan, Jin-Ao; Zhou, Wei; Shang, Erxin; Tang, Yuping

    2010-01-01

    Shaofu Zhuyu decoction is a famous formula for treating primary dysmenorrhea in China since the Qing dynasty. In this paper, the inhibitory effects of active-guided fraction and its main bioactive components of Shaofu Zhuyu decoction on a model of non-pregnant mice uterine contraction induced by oxytocin in vitro were investigated. Qualitative and quantitative chemical analyses were used to correlate the chemical composition of active fraction with the spasmolytic effects. Seven ingredients in the active fraction were identified and quantified by HPLC-DAD. Three ingredients, ferulic acid, vanillic acid, and typhaneoside, were evaluated for their effects on mice isolated uterine contraction induced by oxytocin in vitro. The ED(50) of them were 63.0 microg/ml, 57.6 microg/ml, 109.7 microg/ml, respectively. Furthermore, the inhibitory activity of the combination of these three compounds was prior to the fraction and seven compounds group. The ED(50) was 65.5 microg/ml. The data stated that ferulic acid, vanillic acid, and typhaneoside were possibly the main active components in the bioactive fraction of Shaofu Zhuyu decoction. The study also implied that Shaofu Zhuyu decoction may have direct inhibitory effects on the contractility of the mice uterus and justified the traditional use of the prescription for treating the uterine cramping associated dysmenorrhea.

  17. Inhibitory activity in vitro of probiotic lactobacilli against oral Candida under different fermentation conditions.

    Science.gov (United States)

    Jiang, Q; Stamatova, I; Kari, K; Meurman, J H

    2015-01-01

    Clinical studies have shown that probiotics positively affect oral health by decreasing gum bleeding and/or reducing salivary counts of certain oral pathogens. Our aim was to investigate the inhibitory effect of six probiotic lactobacilli against opportunistic oral Candida species. Sugar utilisation by both lactobacilli and Candida was also assessed. Agar overlay assay was utilised to study growth inhibition of Candida albicans, Candida glabrata and Candida krusei by Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Lactobacillus reuteri SD2112, Lactobacillus brevis CD2, Lactobacillus bulgaricus LB86 and L. bulgaricus LB Lact. The inhibitory effect was measured at pH 5.5, 6.4, and 7.2, respectively, and in the presence of five different carbohydrates in growth medium (glucose, fructose, lactose, sucrose, and sorbitol). Growth and final pH values were measured at two-hour time points to 24 h. L. rhamnosus GG showed the strongest inhibitory activity in fructose and glucose medium against C. albicans, followed by L. casei Shirota, L. reuteri SD2112 and L. brevis CD2. None of the lactobacilli tested affected the growth of C. krusei. Only L. rhamnosus GG produced slight inhibitory effect on C. glabrata. The lower pH values led to larger inhibition zones. Sugar fermentation profiles varied between the strains. L. casei Shirota grew in the presence of all sugars tested, whereas L. brevis CD2 could utilise only glucose and fructose. All Candida species metabolised the available sugars but the most rapid growth was observed with C. glabrata. The results suggest that commercially available probiotics differ in their inhibitory activity and carbohydrate utilisation; the above properties are modified by different pH values and sugars with more pronounced inhibition at lower pH.

  18. A potent acetylcholinesterase inhibitor from Pancratium illyricum L.

    Science.gov (United States)

    Iannello, Carmelina; Pigni, Natalia Belèn; Antognoni, Fabiana; Poli, Ferruccio; Maxia, Andrea; de Andrade, Jean Paulo; Bastida, Jaume

    2014-01-01

    Plants belonging to the Amaryllidaceae contain an exclusive group of alkaloids, known as sources of important biological activities. In the present work, Pancratium illyricum L., a species belonging to this family and endemic of Sardinia (Italy), was investigated for its alkaloid content. Fresh bulbs and leaves were processed separately. Standard extraction and purification procedures were applied to obtain fractions and compounds for GC-MS and NMR analysis. In addition to eight already known alkaloids (1-8), 11α-hydroxy-O-methylleucotamine (9) was isolated for the first time and its structure completely determined by one and two-dimensional (1)H and (13)C NMR spectroscopy. This new galanthamine-type compound exhibited a pronounced in vitro acetylcholinesterase (AChE) inhibitory activity (IC50=3.5±1.1 μM) in comparison to the reference standard galanthamine hydrobromide (IC50=1.5±0.2 μM). Copyright © 2013 Elsevier B.V. All rights reserved.

  19. In Vitro Antioxidant and Enzymes Inhibitory activity of Chloroform Fraction of Hydroalcoholic extract obtained from Argemone mexicana

    Directory of Open Access Journals (Sweden)

    Nayak P

    2013-03-01

    Full Text Available In the present investigation antioxidant and alphaamylase inhibitory activity of chloroform fraction of Argemone mexicana were evaluated. The antioxidant activity of chloroform fraction of A. mexicana was evaluated by DPPH, Super oxide radical Scavenging activity, ABTS radical cation scavenging activity and Nitric oxide radical scavenging activity. Alpha-amylase inhibitory activity of chloroform fraction was evaluated by DNS method respectively. The observed resultant antioxidant activity of chloroform fraction in all studied models was moderate as compared with reference standard Ascorbic acid. The chloroform fraction exhibited appreciable α-amylase inhibitory activity with an IC50 value 48.92μg/ml respectively, when compared with acarbose (IC50 value 83.33μg/ml.In conclusion, from the results of present study it is confirmed that antioxidant and alpha-amylase inhibitory activity of chloroform fraction of A. mexicana may contribute in its earlier observed antidiabetic potential.

  20. Patterns of brain activation in foster children and nonmaltreated children during an inhibitory control task.

    Science.gov (United States)

    Bruce, Jacqueline; Fisher, Philip A; Graham, Alice M; Moore, William E; Peake, Shannon J; Mannering, Anne M

    2013-11-01

    Children in foster care have often encountered a range of adverse experiences, including neglectful and/or abusive care and multiple caregiver transitions. Prior research findings suggest that such experiences negatively affect inhibitory control and the underlying neural circuitry. In the current study, event-related functional magnetic resonance imaging was employed during a go/no go task that assesses inhibitory control to compare the behavioral performance and brain activation of foster children and nonmaltreated children. The sample included two groups of 9- to 12-year-old children: 11 maltreated foster children and 11 nonmaltreated children living with their biological parents. There were no significant group differences on behavioral performance on the task. In contrast, patterns of brain activation differed by group. The nonmaltreated children demonstrated stronger activation than did the foster children across several regions, including the right anterior cingulate cortex, the middle frontal gyrus, and the right lingual gyrus, during correct no go trials, whereas the foster children displayed stronger activation than the nonmaltreated children in the left inferior parietal lobule and the right superior occipital cortex, including the lingual gyrus and cuneus, during incorrect no go trials. These results provide preliminary evidence that the early adversity experienced by foster children impacts the neural substrates of inhibitory control.

  1. Antioxidant, Iron Chelating and Tyrosinase Inhibitory Activities of Extracts from Talinum triangulare Leach Stem

    Directory of Open Access Journals (Sweden)

    Ana Paula Oliveira Amorim

    2013-07-01

    Full Text Available The aim of this work is to evaluate the antioxidant activity against the radical species DPPH, the reducing capacity against Fe II ions, and the inhibitory activity on the tyrosinase enzyme of the T. triangulare. Hydromethanolic crude extract provided two fractions after the liquid/liquid partition with chloroform. The Folin-Ciocalteu method determined the total phenolic content of the crude extract (CE and the hydromethanolic fraction (Fraction 1, resulting in a concentration of 0.5853 g/100 g for Fraction 1, and 0.1400 g/100 g for the CE. Taking into account the results of the DPPH, the free radical scavenging capacity was confirmed. The formation of complexes with Fe II ions was evaluated by UV/visible spectrometry; results showed that CE has complexing power similar to the positive control (Gingko biloba extract.The inhibitory capacity of samples against the tyrosinase enzyme was determined by the oxidation of L-DOPA, providing IC50 values of 13.3 μg·mL−1 (CE and 6.6 μg·mL−1 (Fraction 1. The values indicate that Fraction 1 was more active and showed a higher inhibitory power on the tyrosinase enzyme than the ascorbic acid, used as positive control. The hydromethanolic extract of T. triangulare proved to have powerful antioxidant activity and to inhibit the tyrosinase enzyme; its potential is increased after the partition with chloroform.

  2. Linking trait-based phenotypes to prefrontal cortex activation during inhibitory control.

    Science.gov (United States)

    Rodrigo, Achala H; Di Domenico, Stefano I; Graves, Bryanna; Lam, Jaeger; Ayaz, Hasan; Bagby, R Michael; Ruocco, Anthony C

    2016-01-01

    Inhibitory control is subserved in part by discrete regions of the prefrontal cortex whose functionality may be altered according to specific trait-based phenotypes. Using a unified model of normal range personality traits, we examined activation within lateral and medial aspects of the prefrontal cortex during a manual go/no-go task. Evoked hemodynamic oxygenation within the prefrontal cortex was measured in 106 adults using a 16-channel continuous-wave functional near-infrared spectroscopy system. Within lateral regions of the prefrontal cortex, greater activation was associated with higher trait levels of extraversion, agreeableness and conscientiousness, and lower neuroticism. Higher agreeableness was also related to more activation in the medial prefrontal cortex during inhibitory control. These results suggest that personality traits reflecting greater emotional stability, extraversion, agreeableness and conscientiousness may be associated with more efficient recruitment of control processes subserved by lateral regions of the prefrontal cortex. These findings highlight key links between trait-based phenotypes and neural activation patterns in the prefrontal cortex underlying inhibitory control.

  3. Antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) under different cultivation conditions.

    Science.gov (United States)

    Chen, Lei; Kang, Young-Hwa

    2014-03-12

    An adaptation of cultural management to the specific cultural system, as well as crop demand, can further result in the improvement of the quality of horticultural products. Therefore, this study focused on the antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) grown in hydroponics in comparison with those of the plant grown in soil. The antioxidant activities of Plebeian herba extract were measured as 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging abilities as well as the reducing power by decreasing nitric oxide (NO) and superoxide dismutase activity (SOD) in vitro. Interestingly, by comparison with hydroponics and traditional cultivation, Plebeian herba cultivated in nutrition-based soil improved inhibitory effect on free radicals of DPPH, ABTS, and NO and increased the contents of phenolics such as caffeic acid (1), luteolin-7-glucoside (2), homoplantaginin (3), hispidulin (4), and eupatorin. Free radical scavenging and SOD activity, as well as α-glucosidase inhibitory effect, were higher in Plebeian herba grown in nutrition-based soil than in plants grown in hydroponics and traditional condition.

  4. Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity.

    Science.gov (United States)

    Wijesinghe, W A J P; Ko, Seok-Chun; Jeon, You-Jin

    2011-04-01

    Inhibition of angiotensin I-converting enzyme (ACE) activity is the most common mechanism underlying the lowering of blood pressure. In the present study, five organic extracts of a marine brown seaweed Ecklonia cava were prepared by using ethanol, ethyl acetate, chloroform, hexane, and diethyl ether as solvents, which were then tested for their potential ACE inhibitory activities. Ethanol extract showed the strongest ACE inhibitory activity with an IC(50) value of 0.96 mg/ml. Five kinds of phlorotannins, phloroglucinol, triphlorethol-A, eckol, dieckol, and eckstolonol, were isolated from ethanol extract of E. cava, which exhibited potential ACE inhibition. Dieckol was the most potent ACE inhibitor and was found to be a non-competitive inhibitor against ACE according to Lineweaver-Burk plots. Dieckol had an inducible effect on the production of NO in EAhy926 cells without having cytotoxic effect. The results of this study indicate that E. cava could be a potential source of phlorotannins with ACE inhibitory activity for utilization in production of functional foods.

  5. Effects of incentives, age, and behavior on brain activation during inhibitory control: A longitudinal fMRI study

    Directory of Open Access Journals (Sweden)

    David J. Paulsen

    2015-02-01

    Full Text Available We investigated changes in brain function supporting inhibitory control under age-controlled incentivized conditions, separating age- and performance-related activation in an accelerated longitudinal design including 10- to 22-year-olds. Better inhibitory control correlated with striatal activation during neutral trials, while Age X Behavior interactions in the striatum indicated that in the absence of extrinsic incentives, younger subjects with greater reward circuitry activation successfully engage in greater inhibitory control. Age was negatively correlated with ventral amygdala activation during Loss trials, suggesting that amygdala function more strongly mediates bottom-up processing earlier in development when controlling the negative aspects of incentives to support inhibitory control. Together, these results indicate that with development, reward-modulated cognitive control may be supported by incentive processing transitions in the amygdala, and from facilitative to obstructive striatal function during inhibitory control.

  6. Effects of incentives, age, and behavior on brain activation during inhibitory control: a longitudinal fMRI study.

    Science.gov (United States)

    Paulsen, David J; Hallquist, Michael N; Geier, Charles F; Luna, Beatriz

    2015-02-01

    We investigated changes in brain function supporting inhibitory control under age-controlled incentivized conditions, separating age- and performance-related activation in an accelerated longitudinal design including 10- to 22-year-olds. Better inhibitory control correlated with striatal activation during neutral trials, while Age X Behavior interactions in the striatum indicated that in the absence of extrinsic incentives, younger subjects with greater reward circuitry activation successfully engage in greater inhibitory control. Age was negatively correlated with ventral amygdala activation during Loss trials, suggesting that amygdala function more strongly mediates bottom-up processing earlier in development when controlling the negative aspects of incentives to support inhibitory control. Together, these results indicate that with development, reward-modulated cognitive control may be supported by incentive processing transitions in the amygdala, and from facilitative to obstructive striatal function during inhibitory control.

  7. Phaeophytins from Thyrsacanthus ramosissimus Moric. with inhibitory activity on human DNA topoisomerase II-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Analucia Guedes Silveira; Tenorio-Souza, Fabio Henrique; Moura, Marcelo Dantas; Mota, Sabrina Gondim Ribeiro; Silva Lins, Antonio Claudio da; Dias, Celidarque da Silva; Barbosa-Filho, Jose Maria [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Ciencias Frmaceuticas; Giulietti, Ana Maria [Universidade Estadual de Feira de Santana, Feira de Santana, BA (Brazil). Dept. de Ciencias Biologicas; Silva, Tania Maria Sarmento da [Universidade Federal Rural de Pernambuco, Recife, PE (Brazil). Dept. de Ciencias Moleculares; Santos, Creusioni Figueredo dos, E-mail: jbarbosa@ltf.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Biologia Molecular

    2012-07-01

    Our study reports the extraction and isolation of a new phaeophytin derivative 15{sup 1}-hydroxy-(15{sup 1}-S)-porphyrinolactone, designated anamariaine (1) herein, isolated from the chloroform fraction of aerial parts of Thyrsacanthus ramosissimus Moric. along with the known 15{sup 1}-ethoxy-(15{sup 1}-S)-porphyrinolactone (2). These compounds were identified by usual spectroscopic methods. Both compounds were subjected to in vitro (inhibitory activity) tests by means of supercoiled DNA relaxation techniques and were shown to display inhibitory activity against human DNA topoisomerase II-{alpha} at 50 {mu}M. Interconversion of these two pigments under the mild conditions of the isolation techniques should be highly unlikely but cannot be entirely ruled out. (author)

  8. Screening of Korean Medicinal Plant Extracts for α-Glucosidase Inhibitory Activities.

    Science.gov (United States)

    Sancheti, Shruti; Sancheti, Sandesh; Lee, Seung-Hun; Lee, Jae-Eun; Seo, Sung-Yum

    2011-01-01

    Glycosidases are the enzymes involved in various biochemical processes related to metabolic disorders and diseases. Therefore, much effort has been focused on searching novel pharmacotherapy for the treatment of these ailments from medicinal plants due to higher safety margins. To pursue these efforts, the present study was performed to evaluate the α-glucosidase inhibitory activities of thirty Korean medicinal plant extracts. Among the plants studied, Euonymus sachalinensis, Rhododendron schlippenbachii, Astilbe chinensis and Juglans regia showed the strongest α-glucosidase inhibitory activity with IC50 values of 10, 20, 30 and 80 µg/mL, respectively. In addition, Meliosma oldhamii and Symplocos chinensis showed moderate α-glucosidase inhibition with IC50 values of 150 and 220 µg/mL, respectively. Therefore, they might prove to be a potential natural source for the treatment of metabolic ailments such as, diabetes, and need further investigations.

  9. Jojoba seed meal proteins associated with proteolytic and protease inhibitory activities.

    Science.gov (United States)

    Shrestha, Madan K; Peri, Irena; Smirnoff, Patricia; Birk, Yehudith; Golan-Goldhirsh, Avi

    2002-09-25

    The jojoba, Simmondsia chinensis, is a characteristic desert plant native to the Sonoran desert. The jojoba meal after oil extraction is rich in protein. The major jojoba proteins were albumins (79%) and globulins (21%), which have similar amino acid compositions and also showed a labile thrombin-inhibitory activity. SDS-PAGE showed two major proteins at 50 kDa and 25 kDa both in the albumins and in the globulins. The 25 kDa protein has trypsin- and chymotrypsin-inhibitory activities. In vitro digestibility of the globulins and albumins resembled that of casein and soybean protein concentrates and was increased after heat treatment. The increased digestibility achieved by boiling may be attributed to inactivation of the protease inhibitors and denaturation of proteins.

  10. New Phragmalin-Type Limonoids from Chukrasia tabularis and Their α-Glucosidase Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Jun-Lin Peng

    2016-01-01

    Full Text Available Phytochemical investigation on the stems of C. tabularis led to the isolation of five new phragmalin-type limonoids and six known ones. The structures of the new compounds 1–5, named chukbularisins A–E, were elucidated by spectroscopic techniques (IR, HRESIMS, 1D and 2D NMR and comparisons with published data. All the compounds were evaluated for in vitro α-glucosidase inhibitory activity. Compounds 2, 3, 4, 5, and 8 exhibited inhibitory activity against α-glucosidase with IC50 values of 0.06 ± 0.008, 0.04 ± 0.002, 0.52 ± 0.039, 1.09 ± 0.040, and 0.20 ± 0.057 mM, respectively (using acarbose as positive control, IC50 0.95 ± 0.092 mM.

  11. Extraction optimization of polyphenols, antioxidant and xanthine oxidase inhibitory activities from Prunus salicina Lindl.

    Directory of Open Access Journals (Sweden)

    Yibin LI

    2016-01-01

    Full Text Available Abstract Optimization of polyphenols extraction from plum (Prunus salicina Lindl. was evaluated using response surface methodology. The Box-Behnken experimental results showed the optimal conditions involved an extraction temperature of 59 °C, a sonication time of 47 min, and an ethanol concentration of 61% respectively. The maximum extraction yield of total polyphenols was 44.74 mg gallic acid equivalents per gram of dried plum at optimal conditions. Polyphenol extracts exhibited stronger antioxidant activities than Vc by evaluating of 1,1-diphenyl-2-picrylhydrazyl (DPPH and hydroxyl radical scavenging activity. Furthermore, polyphenol extracts (IC50 = 179 g/mL showed obvious inhibitory effects on xanthine oxidase. These findings suggest that polyphenol extracts from P. salicina can be potentially used as natural antioxidant and xanthine oxidase inhibitory agents.

  12. Synthesis, characterization and carbonic anhydrase inhibitory activity of novel benzothiazole derivatives.

    Science.gov (United States)

    Küçükbay, F Zehra; Buğday, Nesrin; Küçükbay, Hasan; Tanc, Muhammet; Supuran, Claudiu T

    2016-12-01

    N-protected amino acids were reacted with substituted benzothiazoles to give the corresponding N-protected amino acid-benzothiazole conjugates (60-89%). Their structures were confirmed by proton nuclear magnetic resonance ((1)H NMR), carbon-13 nuclear magnetic resonance ((13)C NMR), IR and elemental analysis. Their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activities were determined against two cytosolic human isoforms (hCA I and hCA II), one membrane-associated (hCA IV) and one transmembrane (hCA XII) enzyme by a stopped-flow CO2 hydrase assay method. The new compounds showed rather weak, micromolar inhibitory activity against most of these enzymes.

  13. Bergamotane Sesquiterpenes with Alpha-Glucosidase Inhibitory Activity from the Plant Pathogenic Fungus Penicillium expansum.

    Science.gov (United States)

    Ying, You-Min; Fang, Cheng-An; Yao, Feng-Qi; Yu, Yuan; Shen, Ying; Hou, Zhuo-Ni; Wang, Zhen; Zhang, Wei; Shan, Wei-Guang; Zhan, Zha-Jun

    2017-01-01

    Two new bergamotane sesquiterpene lactones, named expansolides C and D (1 and 2), together with two known compounds expansolides A and B (3 and 4), were isolated from the plant pathogenic fungus Penicillium expansum ACCC37275. The structures of the new compounds were established by detailed analyses of the spectroscopic data, especially 1D-, 2D-NMR, and HR-ESI-MS. In an in vitro bioassay, the epimeric mixture of expansolides C and D (1 and 2) (in a ratio of 2:1 at the temprature of the bioassay) exhibited more potent α-glucosidase inhibitory activity (IC50 =0.50 ± 0.02 mm) as compared with the positive control acarbose (IC50 = 1.90 ± 0.05 mm). To the best of our knowledge, it was the first report on the α-glucosidase inhibitory activity of bergamotane sesquiterpenes.

  14. Predicting the DPP-IV inhibitory activity pIC₅₀ based on their physicochemical properties.

    Science.gov (United States)

    Gu, Tianhong; Yang, Xiaoyan; Li, Minjie; Wu, Milin; Su, Qiang; Lu, Wencong; Zhang, Yuhui

    2013-01-01

    The second development program developed in this work was introduced to obtain physicochemical properties of DPP-IV inhibitors. Based on the computation of molecular descriptors, a two-stage feature selection method called mRMR-BFS (minimum redundancy maximum relevance-backward feature selection) was adopted. Then, the support vector regression (SVR) was used in the establishment of the model to map DPP-IV inhibitors to their corresponding inhibitory activity possible. The squared correlation coefficient for the training set of LOOCV and the test set are 0.815 and 0.884, respectively. An online server for predicting inhibitory activity pIC50 of the DPP-IV inhibitors as described in this paper has been given in the introduction.

  15. ACE-I Inhibitory Activity from Phaseolus lunatus and Phaseolus vulgaris Peptide Fractions Obtained by Ultrafiltration.

    Science.gov (United States)

    Betancur-Ancona, David; Dávila-Ortiz, Gloria; Chel-Guerrero, Luis Antonio; Torruco-Uco, Juan Gabriel

    2015-11-01

    The involvement of angiotensin-I-converting enzyme (ACE-I) as one of the mechanisms controlling blood pressure is being studied to find alternative means of control of hypertension on human beings. On the market there are synthetic drugs that can control it, but these can cause undesirable health side effects. In this work was assessed the fractionation by ultrafiltration of the Lima bean (Phaseolus lunatus) and Jamapa bean (Phaseolus vulgaris), protein hydrolysates obtained with Alcalase(®) and Flavourzyme(®) on ACE-I inhibitory activity. Four membranes of different molecular cutoffs (10, 5, 3, and 1 kDa) were used. Fractions that had a higher inhibitory activity in both legumes were denominated as E (obtaining and utilizing these peptide fractions in the development and innovation of a functional product that helps with treatment and/or prevention of hypertension.

  16. Oxidative stress and damage to erythrocytes in patients with chronic obstructive pulmonary disease--changes in ATPase and acetylcholinesterase activity.

    Science.gov (United States)

    Bukowska, Bożena; Sicińska, Paulina; Pająk, Aneta; Koceva-Chyla, Aneta; Pietras, Tadeusz; Pszczółkowska, Anna; Górski, Paweł; Koter-Michalak, Maria

    2015-12-01

    The study indicates, for the first time, the changes in both ATPase and AChE activities in the membrane of red blood cells of patients diagnosed with COPD. Chronic obstructive pulmonary disease (COPD) is one of the most common and severe lung disorders. We examined the impact of COPD on redox balance and properties of the membrane of red blood cells. The study involved 30 patients with COPD and 18 healthy subjects. An increase in lipid peroxidation products and a decrease in the content of -SH groups in the membrane of red blood cells in patients with COPD were observed. Moreover, an increase in the activity of glutathione peroxidase and a decrease in superoxide dismutase, but not in catalase activity, were found as well. Significant changes in activities of erythrocyte membrane enzymes in COPD patients were also evident demonstrated by a considerably lowered ATPase activity and elevated AChE activity. Changes in the structure and function of red blood cells observed in COPD patients, together with changes in the activity of the key membrane enzymes (ATPases and AChE), can result from the imbalance of redox status of these cells due to extensive oxidative stress induced by COPD disease.

  17. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity.

    Science.gov (United States)

    Nongonierma, Alice B; FitzGerald, Richard J

    2016-05-01

    Quantitative structure activity type models were developed in an attempt to predict the key features of peptide sequences having dipeptidyl peptidase IV (DPP-IV) inhibitory activity. The models were then employed to help predict the potential of peptides, which are currently reported in the literature to be present in the intestinal tract of humans following milk/dairy product ingestion, to act as inhibitors of DPP-IV. Two models (z- and v-scale) for short (2-5 amino acid residues) bovine milk peptides, behaving as competitive inhibitors of DPP-IV, were developed. The z- and the v-scale models (p<0.05, R(2) of 0.829 and 0.815, respectively) were then applied to 56 milk protein-derived peptides previously reported in the literature to be found in the intestinal tract of humans which possessed a structural feature of DPP-IV inhibitory peptides (P at the N2 position). Ten of these peptides were synthetized and tested for their in vitro DPP-IV inhibitory properties. There was no agreement between the predicted and experimentally determined DPP-IV half maximal inhibitory concentrations (IC50) for the competitive peptide inhibitors. However, the ranking for DPP-IV inhibitory potency of the competitive peptide inhibitors was conserved. Furthermore, potent in vitro DPP-IV inhibitory activity was observed with two peptides, LPVPQ (IC50=43.8±8.8μM) and IPM (IC50=69.5±8.7μM). Peptides present within the gastrointestinal tract of human may have promise for the development of natural DPP-IV inhibitors for the management of serum glucose.

  18. Inhibitory activity against urease of quercetin glycosides isolated from Allium cepa and Psidium guajava.

    Science.gov (United States)

    Shabana, Samah; Kawai, Azusa; Kai, Kenji; Akiyama, Kohki; Hayashi, Hideo

    2010-01-01

    Methanolic extracts of edible plants and seaweeds were tested for their inhibitory activity against Jack bean urease. Quercetin-4'-O-beta-D-glucopyranoside was isolated from Allium cepa as a urease inhibitor with an IC(50) value of 190 microM-. Quercetin and two quercetin glycosides, avicularin and guaijaverin, were isolated from Psidium guajava as urease inhibitors with respective IC(50) values of 80 microM-, 140 microM-, and 120 microM-.

  19. Screening of Korean Medicinal Plant Extracts for α-Glucosidase Inhibitory Activities

    OpenAIRE

    Sancheti,Shruti; Sancheti,Sandesh; LEE, Seung-Hun; Lee, Jae-Eun; Seo, Sung-Yum

    2011-01-01

    Glycosidases are the enzymes involved in various biochemical processes related to metabolic disorders and diseases. Therefore, much effort has been focused on searching novel pharmacotherapy for the treatment of these ailments from medicinal plants due to higher safety margins. To pursue these efforts, the present study was performed to evaluate the α-glucosidase inhibitory activities of thirty Korean medicinal plant extracts. Among the plants studied, Euonymus sachalinensis, Rhododendron sch...

  20. Effects of nanosuspension and inclusion complex techniques on the in vitro protease inhibitory activity of naproxen

    OpenAIRE

    Dharmalingam, Senthil Rajan; Chidambaram, Kumarappan; Ramamurthy, Srinivasan; Nadaraju,Shamala

    2014-01-01

    This study investigated the effects of nanosuspension and inclusion complex techniques on in vitro trypsin inhibitory activity of naproxen—a member of the propionic acid derivatives, which are a group of antipyretic, analgesic, and non-steroidal anti-inflammatory drugs. Nanosuspension and inclusion complex techniques were used to increase the solubility and anti-inflammatory efficacy of naproxen. The evaporative precipitation into aqueous solution (EPAS) technique and the kneading metho...

  1. Bioactive Compounds, Antioxidant, Xanthine Oxidase Inhibitory, Tyrosinase Inhibitory and Anti-Inflammatory Activities of Selected Agro-Industrial By-products

    Directory of Open Access Journals (Sweden)

    Ehsan Karimi

    2011-11-01

    Full Text Available Evaluation of abundantly available agro-industrial by-products for their bioactive compounds and biological activities is beneficial in particular for the food and pharmaceutical industries. In this study, rapeseed meal, cottonseed meal and soybean meal were investigated for the presence of bioactive compounds and antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities. Methanolic extracts of rapeseed meal showed significantly (P < 0.01 higher phenolics and flavonoids contents; and significantly (P < 0.01 higher DPPH and nitric oxide free radical scavenging activities when compared to that of cottonseed meal and soybean meal extracts. Ferric thiocyanate and thiobarbituric acid tests results showed rapeseed meal with the highest antioxidant activity (P < 0.01 followed by BHT, cotton seed meal and soybean meal. Rapeseed meal extract in xanthine oxidase and tyrosinase inhibitory assays showed the lowest  IC50 values  followed by cottonseed and soybean meals. Anti-inflammatory assay using IFN-γ/LPS stimulated RAW 264.7 cells indicated rapeseed meal is a potent source of anti-inflammatory agent. Correlation analysis showed that phenolics and flavonoids were highly correlated to both antioxidant and anti-inflammatory activities. Rapeseed meal was found to be promising as a natural source of bioactive compounds with high antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities in contrast to cotton and soybean meals.

  2. Correlation of acetylcholinesterase activity in the brain and blood of wistar rats acutely infected with Trypanosoma congolense

    Directory of Open Access Journals (Sweden)

    N Habila

    2012-01-01

    Conclusions: This finding suggest that decrease in AChE activity increases acetylcholine concentration in the synaptic cleft resulting to neurological failures in impulse transfer in T. congo infection rats.

  3. Inhibitory Effects of Garcinia cambogia Extract on CYP2B6 Enzyme Activity.

    Science.gov (United States)

    Yu, Jun Sang; Choi, Min Sun; Park, Jong Suk; Rehman, Shaheed Ur; Nakamura, Katsunori; Yoo, Hye Hyun

    2017-03-13

    This study assessed the inhibitory effects of Garcinia cambogia extract on the cytochrome P450 enzymes in vitro. G. cambogia extract was incubated with cytochrome P450 isozyme-specific substrates in human liver microsomes and recombinant CYP2B6 isozyme, and the formation of the marker metabolites was measured to investigate the inhibitory potential on cytochrome P450 enzyme activities. The results showed that G. cambogia extract has significant inhibitory effects on CYP2B6 activity in a concentration-dependent manner. Furthermore, the inhibition was potentiated following preincubation with NADPH, indicating that G. cambogia extract is a time-dependent inhibitor of CYP2B6. Meanwhile, hydroxycitric acid, the major bioactive ingredient of G. cambogia extract, did not exhibit significant inhibition effects on cytochrome P450 enzyme activities. G. cambogia extract could modulate the pharmacokinetics of CYP2B6 substrate drugs and lead to interactions with those drugs. Therefore, caution may be required with respect to concomitant intake of dietary supplements containing G. cambogia extract with CYP2B6 substrates.

  4. Molecular Descriptors Family on Vertex Cutting: Relationships between Acelazolamide Structures and their Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Sorana D. BOLBOACĂ

    2009-12-01

    Full Text Available Aim: To investigate the relationship between the structural information of acetazolamides and their inhibitory activity on carbonic anhydrase II. Material and Method: A sample of previously reported acetazolamides was studied. A pool of descriptors was calculated based on matrix representation and vertex cut in order to be included in the multiple linear regression analysis. The best performing model in terms of goodness-of-fit was analysed in order to assess its validity and reliability. The model was compared with previously reported models using a series of information and prediction criteria besides the Steiger’s Z test. Results: A model with a 99.77% determination coefficient proved to be the best performing model. The obtained model proved to have a less than 5% average of the absolute difference between the observed and the estimated inhibitory activity. The information and prediction criteria showed that the obtained model was better than the previously reported models. This conclusion is also sustained by the results of Steiger’s Z test (7.78; p = 3.66·10-15. Conclusion: The inhibitory activity on carbonic anhydrase II of acetazolamides proved to be of geometric and topologic nature and depended on the compounds’ melting point, relative atomic mass and atomic electronegativity.

  5. Medicinal Plants and Their Inhibitory Activities against Pancreatic Lipase: A Review

    Directory of Open Access Journals (Sweden)

    Atefehalsadat Seyedan

    2015-01-01

    Full Text Available Obesity is recognized as a major life style disorder especially in developing countries and it is prevailing at an alarming speed in new world countries due to fast food intake, industrialization, and reduction of physical activity. Furthermore, it is associated with a vast number of chronic diseases and disabilities. To date, relatively effective drugs, from either natural or synthetic sources, are generally associated with serious side effects, often leading to cessation of clinical trials or even withdrawal from the market. In order to find new compounds which are more effective or with less adverse effects compared to orlistat, the drug that has been approved for obesity, new compounds isolated from natural products are being identified and screened for antiobesity effects, in particular, for their pancreatic lipase inhibitory effect. Pancreatic lipase inhibitory activity has been extensively used for the determination of potential efficacy of natural products as antiobesity agents. In attempts to identify natural products for overcoming obesity, more researches have been focused on the identification of newer pancreatic lipase inhibitors with less unpleasant adverse effects. In this review, we consider the potential role of plants that have been investigated for their pancreatic lipase inhibitory activity.

  6. Hypotensive and Angiotensin-Converting Enzyme Inhibitory Activities of Eisenia fetida Extract in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Shumei Mao

    2015-01-01

    Full Text Available Objectives. This study aimed to investigate the antihypertensive effects of an Eisenia fetida extract (EFE and its possible mechanisms in spontaneously hypertensive rats (SHR rats. Methods. Sixteen-week-old SHR rats and Wistar-Kyoto rats (WKY rats were used in this study. Rats were, respectively, given EFE (EFE group, captopril (captopril group, or phosphate-buffered saline (PBS (normal control group and SHR group for 4 weeks. ACE inhibitory activity of EFE in vitro was determined. The systolic blood pressure (SBP and diastolic blood pressure (DBP were measured using a Rat Tail-Cuff Blood Pressure System. Levels of angiotensin II (Ang II, aldosterone (Ald, and 6-keto-prostaglandin F1 alpha (6-keto-PGF1α in plasma were determined by radioimmunoassay, and serum nitric oxide (NO concentration was measured by Griess reagent systems. Results. EFE had marked ACE inhibitory activity in vitro (IC50 = 2.5 mg/mL. After the 4-week drug management, SHR rats in EFE group and in captopril group had lower SBP and DBP, lower levels of Ang II and Ald, and higher levels of 6-keto-PGF1α and NO than the SHR rats in SHR group. Conclusion. These results indicate that EFE has hypotensive effects in SHR rats and its effects might be associated with its ACE inhibitory activity.

  7. Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure.

    Science.gov (United States)

    Rodríguez-Fuentes, Gabriela; Rubio-Escalante, Fernando J; Noreña-Barroso, Elsa; Escalante-Herrera, Karla S; Schlenk, Daniel

    2015-01-01

    Organophosphate pesticides cause irreversible inhibition of AChE which leads to neuronal overstimulation and death. Thus, dogma indicates that the target of OP pesticides is AChE, but many authors postulate that these compounds also disturb cellular redox processes, and change the activities of antioxidant enzymes. Interestingly, it has also been reported that oxidative stress plays also a role in the regulation and activity of AChE. The aims of this study were to determine the effects of the antioxidant, vitamin C (VC), the oxidant, t-butyl hydroperoxide (tBOOH) and the organophosphate Chlorpyrifos (CPF), on AChE gene transcription and activity in zebrafish embryos after 72h exposure. In addition, oxidative stress was evaluated by measuring antioxidant enzymes activities and transcription, and quantification of total glutathione. Apical effects on the development of zebrafish embryos were also measured. With the exception of AChE inhibition and enhanced gene expression, limited effects of CPF on oxidative stress and apical endpoints were found at this developmental stage. Addition of VC had little effect on oxidative stress or AChE, but increased pericardial area and heartbeat rate through an unknown mechanism. TBOOH diminished AChE gene expression and activity, and caused oxidative stress when administered alone. However, in combination with CPF, only reductions in AChE activity were observed with no significant changes in oxidative stress suggesting the adverse apical endpoints in the embryos may have been due to AChE inhibition by CPF rather than oxidative stress. These results give additional evidence to support the role of prooxidants in AChE activity and expression.

  8. Characterization of monoclonal antibodies that strongly inhibit Electrophorus electricus acetylcholinesterase.

    Science.gov (United States)

    Remy, M H; Frobert, Y; Grassi, J

    1995-08-01

    In this study, we describe three different monoclonal antibodies (mAbs Elec-403, Elec-408, and Elec-410) directed against Electrophorus electricus acetylcholinesterase (AChE) which were selected as inhibitors for this enzyme. Two of these antibodies (Elec-403 and Elec-410), recognized overlapping but different epitopes, competed with snake venom toxin fasciculin for binding to the enzyme, and thus apparently recognized the peripheral site of AChE. In addition, the binding of Elec-403 was antagonized by 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284C51) and propidium, indicating that the corresponding epitope encompassed the anionic site involved in the binding of these low-molecular-mass inhibitors. The third mAb (Elec-408), was clearly bound to another site on the AChE molecule, and its inhibitory effect was cumulative with those of Elec-403, Elec-410, and fasciculin. All mAbs bound AChE with high affinity and were as strong inhibitors with an apparent Ki values less than 0.1 nM. Elec-403 was particularly efficient with an inhibitory activity similar to that of fasciculin. Inhibition was observed with both charged (acetylthiocholine) and neutral substrates (o-nitrophenyl acetate) and had the characteristics of a non-competitive process. Elec-403 and Elec-410 probably exert their effect by triggering allosteric transitions from the peripheral site to the active site. The epitope recognized by mAb Elec-408 has not been localized, but it may correspond to a new regulatory site on AChE.

  9. Synthesis of rotenoid derivatives with cytotoxic and topoisomerase II inhibitory activities.

    Science.gov (United States)

    Sangthong, Supranee; Krusong, Kuakarun; Ngamrojanavanich, Nattaya; Vilaivan, Tirayut; Puthong, Songchan; Chandchawan, Supajittra; Muangsin, Nongnuj

    2011-08-15

    6-Deoxyclitoriacetal (1) and a series of 11 further derivatives of it (2-12) were synthesized and evaluated for their cytotoxic and topoisomerase IIα inhibitory activities. Compounds bearing epoxide (2), morpholine (6) and benzylamine (10) moieties showed promising in vitro cytotoxic activities against four cancer cell lines, with IC(50) values ranging from 0.38 to 0.73 μM. These three compounds also strongly inhibited topoisomerase II activity at 68.3-93.5% and showed a moderately high DNA intercalating property.

  10. Inhibitory activity of garlic (Allium sativum extract on multidrug-resistant Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Fani M

    2007-01-01

    Full Text Available Garlic ( Allium sativum extract has been known to have inhibitory activity on various pathogenic bacteria, viruses and fungi. The objective of present investigation was to study in vitro inhibitory activity of garlic extract on multidrug-resistant (MDR strains of Streptococcus mutans isolated from human carious teeth. Filter sterilized aqueous extract of garlic was prepared and used in the present study. For isolation of S. mutans , extracted human carious teeth were cultured in Todd-Hewit broth and Mitis-Salivarius-Bacitracin agar. S. mutans was characterized by colony morphology, biochemical tests and other conventional bacteriological procedures. Disk sensitivity tests and broth dilution methods were used to determine antibiotic sensitivity profile and inhibitory activity of garlic extract on S. mutans isolated from carious teeth. Of 105 carious teeth tested, 92 (87.6% isolates of S. mutans were recovered, among which 28 (30.4% were MDR since they were resistant to four or more antibiotics. The highest rate of resistance was observed for tetracycline (30.4% and least resistance (0% to teichoplanin and vancomycin while 22.8% and 23.9% of the isolates were resistant to penicillin and amoxicillin, respectively. Chlorhexidine minimum inhibitory concentration (MIC for MDR and non-MDR S. mutans varied from 2 to 16 µg ml−1 and from 0.25 to 1 µg ml−1 , respectively ( P < 0.05. All isolates, MDR and non-MDR of S. mutans were sensitive to garlic extract with the MIC ranging from 4 to 32 mg ml−1 . Considering in vitro data obtained in the present study, mouthwashes or toothpaste containing optimum concentration of garlic extract could be used for prevention of dental caries.

  11. Growth inhibitory activity of extracts and compounds from Cimicifuga species on human breast cancer cells.

    Science.gov (United States)

    Einbond, Linda Saxe; Wen-Cai, Ye; He, Kan; Wu, Hsan-au; Cruz, Erica; Roller, Marc; Kronenberg, Fredi

    2008-06-01

    The purpose of this report is to explore the growth inhibitory effect of extracts and compounds from black cohosh and related Cimicifuga species on human breast cancer cells and to determine the nature of the active components. Black cohosh fractions enriched for triterpene glycosides and purified components from black cohosh and related Asian species were tested for growth inhibition of the ER(-) Her2 overexpressing human breast cancer cell line MDA-MB-453. Growth inhibitory activity was assayed using the Coulter Counter, MTT and colony formation assays. Results suggested that the growth inhibitory activity of black cohosh extracts appears to be related to their triterpene glycoside composition. The most potent Cimicifuga component tested was 25-acetyl-7,8-didehydrocimigenol 3-O-beta-d-xylopyranoside, which has an acetyl group at position C-25. It had an IC(50) of 3.2microg/ml (5microM) compared to 7.2microg/ml (12.1microM) for the parent compound 7,8-didehydrocimigenol 3-O-beta-d-xylopyranoside. Thus, the acetyl group at position C-25 enhances growth inhibitory activity. The purified triterpene glycoside actein (beta-d-xylopyranoside), with an IC(50) equal to 5.7microg/ml (8.4microM), exhibited activity comparable to cimigenol 3-O-beta-d-xyloside. MCF7 (ER(+)Her2 low) cells transfected for Her2 are more sensitive than the parental MCF7 cells to the growth inhibitory effects of actein from black cohosh, indicating that Her2 plays a role in the action of actein. The effect of actein on Her2 overexpressing MDA-MB-453 and MCF7 (ER(+)Her2 low) human breast cancer cells was examined by fluorescent microscopy. Treatment with actein altered the distribution of actin filaments and induced apoptosis in these cells. These findings, coupled with our previous evidence that treatment with the triterpene glycoside actein induced a stress response and apoptosis in human breast cancer cells, suggest that compounds from Cimicifuga species may be useful in the prevention and

  12. Antioxidant, ACE-Inhibitory and antibacterial activities of Kluyveromyces marxianus protein hydrolysates and their peptide fractions

    Directory of Open Access Journals (Sweden)

    Mahta Mirzaeia

    2016-07-01

    Full Text Available Background: There has been evidence that proteins are potentially excellent source of antioxidants, antihypertensive and antimicrobial peptides, and that enzymatic hydrolysis is an effective method to release these peptides from protein molecules. The functional properties of protein hydrolysates depends on the protein substrate, the specificity of the enzymes, the conditions used during proteolysis, degree of hydrolysis, and the nature of peptides released including molecular weight, amino acid composition, and hydrophobicity. Context and purpose of this study: The biomass of Kluyveromyces marxianus was considered as a source of ACE inhibitory, antioxidant and antimicrobial peptides. Results: Autolysis and enzymatic hydrolysis were completed respectively, after 96 h and 5 h. Overall, trypsin (18.52% DH and chymotrypsin (21.59% DH treatments were successful in releasing antioxidant and ACE inhibitory peptides. Autolysate sample (39.51% DH demonstrated poor antioxidant and ACE inhibitory activity compared to trypsin and chymotrypsin hydrolysates. The chymotrypsin 3-5 kDa (301.6±22.81 μM TE/mg protein and trypsin < 3 kDa (280.16±39.16 μM TE/mg protein permeate peptide fractions showed the highest DPPH radical scavenging activity. The trypsin <3 kDa permeate peptide fraction showed the highest ABTS radical scavenging (1691.1±48.68 μM TE/mg protein and ACE inhibitory (IC50=0.03±0.001 mg/mL activities. The fraction (MW=5-10 kD obtained after autolysis treatment showed antibacterial activity against St. aureus and Lis. monocytogenes in well diffusion screening. The minimum inhibitory concentration (MIC value was 13.3 mg/mLagainst St. aureus and Lis. monocytogenes calculated by turbidimetric assay and it showed bactericidal activity against St. aureus at 21.3 mg/mL protein concentration. Conclusions: Altogether, the results of this study reveal that K. marxianus proteins contain specific peptides in their sequences which can be released by

  13. Phagocytic receptors activate and immune inhibitory receptor SIRPalpha inhibits phagocytosis through paxillin and cofilin

    Directory of Open Access Journals (Sweden)

    Miri eGitik

    2014-04-01

    Full Text Available The innate-immune function of phagocytosis of apoptotic cells, tissue-debris, pathogens and cancer cells is essential for homeostasis, tissue repair, fighting infection and combating malignancy. Phagocytosis is carried out in the CNS by resident microglia and in both CNS and PNS by recruited macrophages. While phagocytosis proceeds, bystander healthy cells protect themselves by sending a do not eat me message to phagocytes as CD47 on their surface ligates immune inhibitory receptor SIRPα on the surface of phagocytes and SIRPα then produces the signaling which inhibits phagocytosis. This helpful mechanism becomes harmful when tissue-debris and unhealthy cells inhibit their own phagocytosis by employing the same mechanism. However, the inhibitory signaling that SIRPα produces has not been fully revealed. We focus here on how SIRPα inhibits the phagocytosis of the tissue-debris degenerated-myelin which hinders repair in axonal injury and neurodegenerative diseases. We tested whether SIRPα inhibits phagocytosis by regulating cytoskeleton function through paxillin and cofilin since (a the cytoskeleton generates the mechanical forces that drive phagocytosis and (b both paxillin and cofilin control cytoskeleton function. Paxillin and cofilin were transiently activated in microglia as phagocytosis was activated. In contrast, paxillin and cofilin were continuously activated and phagocytosis augmented in microglia in which SIRPα expression was knocked-down by SIRPα-shRNA. Further, levels of phagocytosis, paxillin activation and cofilin activation positively correlated with one another. Taken together, these observations suggest a novel mechanism whereby paxillin and cofilin are targeted to control phagocytosis by both the activating signaling that phagocytic receptors produce by promoting the activation of paxillin and cofilin and the inhibiting signaling that immune inhibitory SIRPα produces by promoting the inactivation of paxillin and cofilin.

  14. Phagocytic receptors activate and immune inhibitory receptor SIRPα inhibits phagocytosis through paxillin and cofilin.

    Science.gov (United States)

    Gitik, Miri; Kleinhaus, Rachel; Hadas, Smadar; Reichert, Fanny; Rotshenker, Shlomo

    2014-01-01

    The innate immune function of phagocytosis of apoptotic cells, tissue debris, pathogens, and cancer cells is essential for homeostasis, tissue repair, fighting infection, and combating malignancy. Phagocytosis is carried out in the central nervous system (CNS) by resident microglia and in both CNS and peripheral nervous system by recruited macrophages. While phagocytosis proceeds, bystander healthy cells protect themselves by sending a "do not eat me" message to phagocytes as CD47 on their surface ligates immune inhibitory receptor SIRPα on the surface of phagocytes and SIRPα then produces the signaling which inhibits phagocytosis. This helpful mechanism becomes harmful when tissue debris and unhealthy cells inhibit their own phagocytosis by employing the same mechanism. However, the inhibitory signaling that SIRPα produces has not been fully revealed. We focus here on how SIRPα inhibits the phagocytosis of the tissue debris "degenerated myelin" which hinders repair in axonal injury and neurodegenerative diseases. We tested whether SIRPα inhibits phagocytosis by regulating cytoskeleton function through paxillin and cofilin since (a) the cytoskeleton generates the mechanical forces that drive phagocytosis and (b) both paxillin and cofilin control cytoskeleton function. Paxillin and cofilin were transiently activated in microglia as phagocytosis was activated. In contrast, paxillin and cofilin were continuously activated and phagocytosis augmented in microglia in which SIRPα expression was knocked-down by SIRPα-shRNA. Further, levels of phagocytosis, paxillin activation, and cofilin activation positively correlated with one another. Taken together, these observations suggest a novel mechanism whereby paxillin and cofilin are targeted to control phagocytosis by both the activating signaling that phagocytic receptors produce by promoting the activation of paxillin and cofilin and the inhibiting signaling that immune inhibitory SIRPα produces by promoting the

  15. Effect of methyl parathion on the muscle and brain acetylcholinesterase activity of matrinxã (Brycon cephalus

    Directory of Open Access Journals (Sweden)

    Almeida Luciana Cristina de

    2005-01-01

    Full Text Available Farming of the freshwater fish is emerging in Brazil and many species from the wild are promising. The teleost matrinxã (Brycon cephalus holds several characteristics such as fast growth rate, high commercial value and adaptability to artificial raring conditions, which make it a promising species for commerce. The use of pesticides in aquatic environment is frequent in Brazil, and methyl parathion is very common in aquaculture. We have determined the enzymatic activity of acetyl cholinesterase in white muscle and brain of matrinxã exposed to 2ppm of environmental methyl parathion for 24 hours. There was 64% and 69% of acetyl cholinesterase inhibition in muscle and brain respectively. These activities were not recovered after 8 days from exposure to this pesticide. It can be concluded that acetyl cholinesterase from those tissues was inhibited by small amounts of methyl parathion, and the main effect was observed in the brain.

  16. Absolute Configurations and NO Inhibitory Activities of Terpenoids from Curcuma longa.

    Science.gov (United States)

    Xu, Jing; Ji, Feifei; Kang, Jing; Wang, Hao; Li, Shen; Jin, Da-Qing; Zhang, Qiang; Sun, Hongwei; Guo, Yuanqiang

    2015-06-24

    Curcuma longa L., belonging to the Zingiberaceae family, is a perennial herb and has been used as a spice and a pigment in the food industry. In the ongoing search for inhibitory reagents of NO production and survey of the chemical composition of natural vegetable foods, the chemical constituents of C. longa used as spice were investigated. This investigation resulted in the isolation of 2 new terpenoids and 14 known analogues. Their structures were established on the basis of the extensive analyses of 1D and 2D NMR spectroscopic data, and the absolute configurations of 1-4 were elucidated by comparison of the calculated and experimental ECD spectra. Among them, compound 1 is a rare norditerpene with an ent-labdane skeleton, and 2 is a skeletally novel sesquiterpene having an eight-membered ring. All of the compounds were found to possess NO inhibitory activities in murine microglial BV-2 cells. The discovery of two new compounds in this chemical investigation further disclosed the chemical composition of C. longa used a food spice, and the bioassay implied that the natural food spice C. longa, containing terpenoids with NO inhibitory activities, may be potentially promotive to human health.

  17. Local field potentials primarily reflect inhibitory neuron activity in human and monkey cortex

    Science.gov (United States)

    Teleńczuk, Bartosz; Dehghani, Nima; Le Van Quyen, Michel; Cash, Sydney S.; Halgren, Eric; Hatsopoulos, Nicholas G.; Destexhe, Alain

    2017-01-01

    The local field potential (LFP) is generated by large populations of neurons, but unitary contribution of spiking neurons to LFP is not well characterised. We investigated this contribution in multi-electrode array recordings from human and monkey neocortex by examining the spike-triggered LFP average (st-LFP). The resulting st-LFPs were dominated by broad spatio-temporal components due to ongoing activity, synaptic inputs and recurrent connectivity. To reduce the spatial reach of the st-LFP and observe the local field related to a single spike we applied a spatial filter, whose weights were adapted to the covariance of ongoing LFP. The filtered st-LFPs were limited to the perimeter of 800 μm around the neuron, and propagated at axonal speed, which is consistent with their unitary nature. In addition, we discriminated between putative inhibitory and excitatory neurons and found that the inhibitory st-LFP peaked at shorter latencies, consistently with previous findings in hippocampal slices. Thus, in human and monkey neocortex, the LFP reflects primarily inhibitory neuron activity. PMID:28074856

  18. Evaluation of Selected Culinary-Medicinal Mushrooms for Antioxidant and ACE Inhibitory Activities

    Directory of Open Access Journals (Sweden)

    Noorlidah Abdullah

    2012-01-01

    Full Text Available Considering the importance of diet in prevention of oxidative stress-related diseases including hypertension, this study was undertaken to evaluate the in vitro antioxidant and ACE inhibitory activities of selected culinary-medicinal mushrooms extracted by boiling in water for 30 min. Antioxidant capacity was measured using the following assays: DPPH free radical scavenging activity, β-carotene bleaching, inhibition of lipid peroxidation, reducing power ability, and cupric ion reducing antioxidant capacity (CUPRAC. Antioxidant potential of each mushroom species was calculated based on the average percentages relative to quercetin and summarized as Antioxidant Index (AI. Ganoderma lucidum (30.1%, Schizophyllum commune (27.6%, and Hericium erinaceus (17.7% showed relatively high AI. Total phenolics in these mushrooms varied between 6.19 to 63.51 mg GAE/g extract. In the ACE inhibitory assay, G. lucidum was shown to be the most potent species (IC50 = 50 μg/mL. Based on our findings, culinary-medicinal mushrooms can be considered as potential source of dietary antioxidant and ACE inhibitory agents.

  19. Hydrogen peroxide modifies both activity and isoforms of acetylcholinesterase in human neuroblastoma SH-SY5Y cells

    Directory of Open Access Journals (Sweden)

    Alba Garcimartín

    2017-08-01

    Human neuroblastoma SH-SY5Y cells were treated with H2O2 (1–1000 µM for 24 h and AChE activity and AChE and cytochrome c levels were evaluated. AChE activity was strongly increased from 1 µM to 1000 µM of H2O2. The results of the kinetic study showed that H2O2 affected Vmax but not Km; and also that H2O2 changed the sigmoid kinetic observed in control samples to hyperbolic kinetic. Thus, results suggest that H2O2 acts as an allosteric activators. In addition, H2O2, (100–1000 µM reduced the total AChE content and modified its isoform profile (mainly 50-, 70-, and 132-kDa·H2O2 from 100 µM to 1000 µM induced cytochrome c release confirming cell death by apoptosis. All these results together suggest: a the involvement of oxidative stress in the imbalance of AChE; and b treatment with antioxidant agents may be a suitable strategy to protect cholinergic system alterations promoted by oxidative stress.

  20. Inhibitory noise

    Directory of Open Access Journals (Sweden)

    Alain Destexhe

    2010-03-01

    Full Text Available Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory noise. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted.

  1. Kinetics of acetylcholinesterase inhibition by an aqueous extract of Cuminum cyminum seeds

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2014-03-01

    Full Text Available The cholinergic hypothesis of Alzheimer’s disease (AD has provided the rationale for the current pharmacotherapy of this disease. Acetylcholinesterase (AChE inhibitors are currently the only approved therapy for the symptomatic treatment of AD. The current drugs available in the market has shown various side effect which prompted scientist to search for new and potent AChE inhibitors which exerts minimal side effect in AD patient. In present study, an aqueous extract of Cumin cyminum was tested for in vitro acetylcholinesterase inhibitory activity based on Ellman’s method. C. cyminum showed maximum inhibition of 76.90±0.003% in an aqueous extract at 50μg/ml final concentration. Further studies were conducted to elucidate the mode of AChE inhibition by kinetic studies. Competitive inhibition was observed at lower concentrations (12.5μg/ml & 25μg/ml and mixed inhibition was observed at higher concentrations (50μg/ml & 100μg/ml.

  2. Angiotensin-I-Converting Enzyme Inhibitory and Antioxidant Activities of Protein Hydrolysate from Muscle of Barbel (Barbus callensis)

    OpenAIRE

    Assaad Sila; Anissa Haddar; Oscar Martinez-Alvarez; Ali Bougatef

    2013-01-01

    The present study investigated angiotensin-I-converting enzyme (ACE) inhibitory and antioxidant activities of barbel muscle protein hydrolysate prepared with Alcalase. The barbel muscle protein hydrolysate displayed a high ACE inhibitory activity (C I 50 = 0.92 mg/mL). The antioxidant activities of protein hydrolysate at different concentrations were evaluated using various in vitro antioxidant assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical method and reducing power assay. The...

  3. A novel biosensor method for surfactant determination based on acetylcholinesterase inhibition

    Science.gov (United States)

    Kucherenko, I. S.; Soldatkin, O. O.; Arkhypova, V. M.; Dzyadevych, S. V.; Soldatkin, A. P.

    2012-06-01

    A novel enzyme biosensor based on acetylcholinesterase inhibition for the determination of surfactants in aqueous solutions is described. Acetylcholinesterase-based bioselective element was deposited via glutaraldehyde on the surface of conductometric transducers. Different variants of inhibitory analysis of surfactants were tested, and finally surfactant's concentration was evaluated by measuring initial rate of acetylcholinesterase inhibition. Besides, we studied the effect of solution characteristics on working parameters of the biosensor for direct measurement of acetylcholine and for inhibitory determination of surfactants. The biosensor's sensitivity to anionic and cationic surfactants (0.35 mg l-1) was tested. The high operational stability of the biosensor during determination of acetylcholine (RSD 2%) and surfactants (RSD 11%) was shown. Finally, we discussed the selectivity of the biosensor toward surfactants and other AChE inhibitors. The proposed biosensor can be used as a component of the multibiosensor for ecological monitoring of toxicants.

  4. Inhibitory effect of mycoplasma-released arginase. Activity in mixed-lymphocyte and tumour cell cultures

    DEFF Research Database (Denmark)

    Claesson, M H; Tscherning, T; Nissen, Mogens Holst

    1990-01-01

    Non-fermenting mycoplasma species deplete culture media for arginine through arginase activity linked to their arginine deiminase pathway, resulting in proliferation arrest and cell death in mycoplasma-contaminated cell cultures. The presence of only 2-3 Mycoplasma (M.) arginini-contaminated T...... inhibition can be reversed by addition of excess arginine to the culture medium. Antisera raised against non-fermenting, but not against fermenting, mycoplasma species block the inhibitory effect of MAE. SDS-PAGE separation of MAE disclosed a broad band at 60 kDa which contained arginase activity when...

  5. Effects of hunger level and nutrient balance on survival and acetylcholinesterase activity of dimethoate exposed wolf spiders

    DEFF Research Database (Denmark)

    Pedersen, Lars-Flemming; Dall, Lars G.; Sorensen, Bo C.

    2002-01-01

    The influence of two nutritional factors (food quantity and quality) on the responses of a wolf spider, Pardosa prativaga (L.K.), to a high dose of the insecticide dimethoate, was investigated in a fully factorial experimental design. Spider groups with different (good and bad) nutrient balance...... measured on the survivors were used as response variables. Survivorship after topical dimethoate exposure (LD50; 48 h) was influenced by spider body weight, nutrient balance, and starvation. Furthermore, AChE activity was significantly inhibited by dimethoate exposure. A significant interaction between...... nutrient balance, starvation, and dimethoate exposure revealed synergistic effects of starvation and nutrient imbalance on AChE inhibition by dimethoate in surviving spiders. These results show that the tolerance of non-target arthropods to dimethoate may vary depending on the nutritional history...

  6. 3D-QSAR analysis of a new type of acetylcholinesterase inhibitors

    Institute of Scientific and Technical Information of China (English)

    LIU; AiLin; GUANG; HongMei; ZHU; LiYa; DU; GuanHua; LEE; Simon; M.; Y.; WANG; YiTao

    2007-01-01

    Acetylcholinesterase (AChE) inhibitors are an important class of medicinal agents used for the treatment of Alzheimer's disease. A screening model of AChE inhibitor was used to evaluate the inhibition of a series of phenyl pentenone derivatives. The assay result showed that some compounds displayed higher inhibitory effects. In order to study the relationship between the bioactivities and the structures, 26 compounds with phenyl pentenone scaffold were analyzed. A 3D-QSAR model was constructed using the method of comparative molecular field analysis (CoMFA). The results of cross-validated R2cv=0.629, non-cross-validated R2=0.972, SE=0.331, and F=72.41 indicate that the 3D-model possesses an ability to predict the activities of new inhibitors, and the CoMFA model would be useful for the future design of new AChE inhibitors.

  7. Inhibitory effects of Aphanizomenon flos-aquae constituents on human UDP-glucose dehydrogenase activity.

    Science.gov (United States)

    Scoglio, Stefano; Lo Curcio, Valeria; Catalani, Simona; Palma, Francesco; Battistelli, Serafina; Benedetti, Serena

    2016-12-01

    The purpose of this study was to investigate the in vitro inhibitory effects of the edible microalga Aphanizomenon flos-aquae (AFA) on human UDP-α-d-glucose 6-dehydrogenase (UGDH) activity, a cytosolic enzyme involved both in tumor progression and in phytochemical bioavailability. Both the hydrophilic and ethanolic AFA extracts as well as the constitutive active principles phycocyanin (PC), phycocyanobilin (PCB) and mycosporine-like amino acids (MAAs) were tested. Among AFA components, PCB presented the strongest inhibitory effect on UGDH activity, acting as a competitive inhibitor with respect to UDP-glucose and a non-competitive inhibitor with respect to NAD(+). In preliminary experiments, AFA PCB was also effective in reducing the colony formation capacity of PC-3 prostate cancer cells and FTC-133 thyroid cancer cells. Overall, these findings confirmed that AFA and its active principles are natural compounds with high biological activity. Further studies evaluating the effects of AFA PCB in reducing tumor cell growth and phytochemical glucuronidation are encouraged.

  8. Antibacterial and EGFR-Tyrosine Kinase Inhibitory Activities of Polyhydroxylated Xanthones from Garcinia succifolia

    Directory of Open Access Journals (Sweden)

    Susawat Duangsrisai

    2014-11-01

    Full Text Available Chemical investigation of the methanol extract of the wood of Garcinia succifolia Kurz (Clusiaceae led to the isolation of 1,5-dihydroxyxanthone (1, 1,7-dihydroxyxanthone (2, 1,3,7-trihydroxyxanthone (3, 1,5,6-trihydroxyxanthone (4, 1,6,7-trihydroxyxanthone (5, and 1,3,6,7-tetrahydroxyxanthone (6. All of the isolated xanthones were evaluated for their antibacterial activity against bacterial reference strains, two Gram-positive (Staphylococcus aureus ATTC 25923, Bacillus subtillis ATCC 6633 and two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853, and environmental drug-resistant isolates (S. aureus B1, Enteroccoccus faecalis W1, and E. coli G1, as well as for their epidermal growth factor receptor (EGFR of tyrosine kinase inhibitory activity. Only 1,5,6-trihydroxy-(4, 1,6,7-trihydroxy-(5, and 1,3,6,7-tetrahydroxyxanthones (6 exhibited antibacterial activity against Gram-positive bacteria, however none was active against vancomycin-resistant E. faecalis. Additionally, 1,7-dihydroxyxanthone (2 showed synergism with oxacillin, but not with ampicillin. On the other hand, only 1,5-dihydroxyxanthone (1 and 1,7-dihydroxyxanthone (2 were found to exhibit the EGFR-tyrosine kinase inhibitory activity, with IC50 values of 90.34 and 223 nM, respectively.

  9. Inhibitory short-term plasticity modulates neuronal activity in the rat entopeduncular nucleus in vitro.

    Science.gov (United States)

    Lavian, Hagar; Korngreen, Alon

    2016-04-01

    The entopeduncular nucleus (EP) is one of the basal ganglia output nuclei integrating synaptic information from several pathways within the basal ganglia. The firing of EP neurons is modulated by two streams of inhibitory synaptic transmission, the direct pathway from the striatum and the indirect pathway from the globus pallidus. These two inhibitory pathways continuously modulate the firing of EP neurons. However, the link between these synaptic inputs to neuronal firing in the EP is unclear. To investigate this input-output transformation we performed whole-cell and perforated-patch recordings from single neurons in the entopeduncular nucleus in rat brain slices during repetitive stimulation of the striatum and the globus pallidus at frequencies within the in vivo activity range of these neurons. These recordings, supplemented by compartmental modelling, showed that GABAergic synapses from the striatum, converging on EP dendrites, display short-term facilitation and that somatic or proximal GABAergic synapses from the globus pallidus show short-term depression. Activation of striatal synapses during low presynaptic activity decreased postsynaptic firing rate by continuously increasing the inter-spike interval. Conversely, activation of pallidal synapses significantly affected postsynaptic firing during high presynaptic activity. Our data thus suggest that low-frequency striatal output may be encoded as progressive phase shifts in downstream nuclei of the basal ganglia while high-frequency pallidal output may continuously modulate EP firing.

  10. Screening of plants containing Naja naja siamensis cobra venom inhibitory activity using modified ELISA technique.

    Science.gov (United States)

    Daduang, Sakda; Sattayasai, Nison; Sattayasai, Jintana; Tophrom, Pattara; Thammathaworn, Achra; Chaveerach, Arunrat; Konkchaiyaphum, Monruedee

    2005-06-15

    Enzyme-linked immunosorbent assay (ELISA) has been modified for screening plants with antagonistic activity to Naja naja siamensis cobra venom. Aqueous extracts from plants were investigated for their inhibitory effects on the binding of anti-cobra venom antibody to antigen, cobra venom, fixed onto 96-well microtiter plates. Ingredients in extracts were allowed to react with immobilized venom before the subsequent addition of antivenom antibody. Venom components affected by exposure to the extracts, unable to interact with their specific antibody, were predicted to be unable to bind to their native destinations or natural receptors. Curcuma cf. zedoaria, an old Thai medicinal plant, showed clear inhibitory activity in the ELISA test. Neurotoxin and protein degradative enzymes, major components in venom, were identified as targets of this extract in Western immunoblotting analysis. Ingredients in the extract showed high affinity to the toxin in competition assay by immunoprecipitation. The extract attenuated toxin activity by extending contraction time of diaphragm muscle after envenomation and had a potency to protect cellular proteins from venom degradative enzymes. Curcuma parviflora, with less activity in ELISA, exhibited acceptable results in two experiments but negative results in two experiments, whereas Curcuma longa, having low activity in the ELISA test, never showed any favorable results. Screening of 36 samples could classify plants into an inhibition range of 0 to 86%. This modified ELISA is recommended as a preliminary screening method for inhibitors with a large number of samples.

  11. Anti-inflammatory, cyclooxygenase inhibitory and antioxidant activities of standardized extracts of Tridax procumbens L.

    Science.gov (United States)

    Jachak, Sanjay M; Gautam, Raju; Selvam, C; Madhan, Himanshu; Srivastava, Amit; Khan, Taj

    2011-03-01

    The standardized EtOAc, MeOH and 70% EtOH extracts of Tridax procumbens aerial parts showed significant inhibition of rat paw edema at a medium dose of 200mg/kg and the EtOAC extract was the most active. These extracts were standardized by HPLC with the help of chemical markers. Further, the extracts were evaluated for COX-1 and COX-2 inhibitory activity and EtOAc extract exhibited the highest inhibition of COX-1 and COX-2 at 50 μg/mL. Cent aurein, centaureidin and bergenin were isolated as COX-1 and COX-2 inhibitory principles from the EtOAc extract. The extracts also exhibited antioxidant activity against DPPH and ABTS free radicals. The anti-inflammatory activity of T. procumbens aerial parts could be at least in part due to COX-1, COX-2 enzyme inhibition and free radical-scavenging activities which may be attributed to the presence of flavonoids and other polyphenols in the extracts.

  12. A Subtype of Inhibitory Interneuron with Intrinsic Persistent Activity in Human and Monkey Neocortex

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-03-01

    Full Text Available A critical step in understanding the neural basis of human cognitive functions is to identify neuronal types in the neocortex. In this study, we performed whole-cell recording from human cortical slices and found a distinct subpopulation of neurons with intrinsic persistent activity that could be triggered by single action potentials (APs but terminated by bursts of APs. This persistent activity was associated with a depolarizing plateau potential induced by the activation of a persistent Na+ current. Single-cell RT-PCR revealed that these neurons were inhibitory interneurons. This type of neuron was found in different cortical regions, including temporal, frontal, occipital, and parietal cortices in human and also in frontal and temporal lobes of nonhuman primate but not in rat cortical tissues, suggesting that it could be unique to primates. The characteristic persistent activity in these inhibitory interneurons may contribute to the regulation of pyramidal cell activity and participate in cortical processing.

  13. ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes.

    Science.gov (United States)

    Boschin, Giovanna; Scigliuolo, Graziana Maria; Resta, Donatella; Arnoldi, Anna

    2014-02-15

    The objective of this investigation was to compare the angiotensin converting enzyme (ACE)-inhibitory activity of the hydrolysates obtained by pepsin digestion of proteins of some legumes, such as chickpea, common bean, lentil, lupin, pea, and soybean, by using the same experimental procedure. The ACE-inhibitory activity was measured by using the tripeptide hippuryl-histidyl-leucine (HHL), as model peptide, and HPLC-DAD, as analytical method. The peptide mixtures of all legumes were active, with soybean and lupin the most efficient, with IC50 values of 224 and 226 μg/ml, respectively. Considering the promising results obtained with lupin, and aiming to identify the protein(s) that release(s) the peptides responsible for the activity, the peptides obtained from the pepsin digestion of some industrial lupin protein isolates and purified protein fractions were tested. The most active mixture, showing an IC50 value of 138 μg/ml, was obtained hydrolysing a mixture of lupin α+β conglutin.

  14. Synthesis of Triazole Schiff's Base Derivatives and Their Inhibitory Kinetics on Tyrosinase Activity.

    Directory of Open Access Journals (Sweden)

    Feng Yu

    Full Text Available In the present study, new Schiff's base derivatives: (Z-4-amino-5-(2-(3- fluorobenzylidenehydrazinyl-4H-1,2,4-triazole-3-thiol (Y1, (Z-3-((2-(4-amino-5- mercapto-4H-1,2,4-triazol-3-ylhydrazonomethylphenol (Y2, (Z-2-((2-(4-amino-5- mercapto-4H-1,2,4-triazol-3-ylhydrazonomethylphenol (Y3 and 3-((Z-(2-(4- (((E-3-hydroxybenzylideneamino-5-mercapto-4H-1,2,4-triazol-3-ylhydrazonomethylphenol (Y4 were synthesized and their structures were characterized by LC-MS, IR and 1H NMR. The inhibitory effects of these compounds on tyrosinase activites were evaluated. Compounds Y1, Y2 and Y3 showed potent inhibitory effects with respective IC50 value of 12.5, 7.0 and 1.5 μM on the diphenolase activities. Moreover, the inhibition mechanisms were determined to be reversible and mixed types. Interactions of the compounds with tyrosinase were further analyzed by fluorescence quenching, copper interaction, and molecular simulation assays. The results together with the anti-tyrosinase activities data indicated that substitution on the second position of benzene ring showed superior ant-ityrosinase activities than that on third position, and that hydroxyl substitutes were better than fluorine substitutes. In addition, two benzene rings connecting to the triazole ring would produce larger steric hindrance, and affect the bonding between tyrosinase and inhibitors to decrease the inhibitory effects. The anti-tyrosinase effects of these compounds were in contrast to their antioxidant activities. In summary, this research will contribute to the development and design of antityrosinase agents.

  15. Fc gamma receptor CD64 modulates the inhibitory activity of infliximab.

    Directory of Open Access Journals (Sweden)

    Kacper A Wojtal

    Full Text Available BACKGROUND: Tumor necrosis factor (TNF is an important cytokine in the pathogenesis of inflammatory bowel disease (IBD. Anti-TNF antibodies have been successfully implemented in IBD therapy, however their efficacies differ among IBD patients. Here we investigate the influence of CD64 Fc receptor on the inhibitory activity of anti-TNFs in cells of intestinal wall. METHODS: Intestinal cell lines, monocytes/macrophages and peripheral blood mononuclear cells (PBMCs were used as models. The efficacies of adalimumab, infliximab and certolizumab-pegol were assessed by RT-PCR for target genes. Protein levels and localizations were examined by Western blotting and immunofluorescence. Antibody fragments were obtained by proteolytic digestion, immunoprecipitation and protein chip analysis. Knock-down of specific gene expression was performed using siRNAs. RESULTS: Infliximab had limited efficacy towards soluble TNF in cell types expressing Fc gamma receptor CD64. Both adalimumab and infliximab had lower efficacies in PBMCs of IBD patients, which express elevated levels of CD64. Infliximab-TNF complexes were more potent in activating CD64 in THP-1 cells than adalimumab, which was accompanied by distinct phospho-tyrosine signals. Blocking Fc parts and isolation of Fab fragments of infliximab improved its efficacy. IFN-γ-induced expression of CD64 correlated with a loss of efficacy of infliximab, whereas reduction of CD64 expression by either siRNA or PMA treatment improved inhibitory activity of this drug. Colonic mRNA expression levels of CD64 and other Fc gamma receptors were significantly increased in the inflamed tissues of infliximab non-responders. CONCLUSIONS: CD64 modulates the efficacy of infliximab both in vitro and ex vivo, whereas the presence of this receptor has no impact on the inhibitory activity of certolizumab-pegol, which lacks Fc fragment. These data could be helpful in both predicting and evaluating the outcome of anti-TNF therapy in

  16. Exploring the Effect of Phyllanthus emblica L. on Cognitive Performance, Brain Antioxidant Markers and Acetylcholinesterase Activity in Rats: Promising Natural Gift for the Mitigation of Alzheimer's Disease

    Science.gov (United States)

    Uddin, Md. Sahab; Mamun, Abdullah Al; Hossain, Md. Sarwar; Akter, Farjana; Iqbal, Mohammed Ashraful; Asaduzzaman, Md.

    2016-01-01

    Neurodegenerative diseases are incurable and debilitating conditions that result in the progressive degeneration of nerve cells, which affect the cognitive activity. Currently, as a result of multiple studies linking Alzheimer's disease (AD) to oxidative damage, the uses of natural antioxidant to prevent, delay, or enhance the pathological changes underlying the progression of AD has received considerable attention. Therefore, this study was aimed at examining the effect of ethanolic extracts of Phyllanthus emblica (EEPE) ripe (EEPEr) and EEPE unripe (EEPEu) fruits on cognitive functions, brain antioxidant enzymes, and acetylcholinesterase (AChE) activity in rat. The effects of EEPEr and EEPEu fruits (i.e., 100 and 200 mg/kg b.w.) were examined in Swiss albino male rats for 12 days and its effect on cognitive functions, brain antioxidant enzymes, and AChE activity determined. Learning and memory enhancing activity of EEPE fruit was examined by using passive avoidance test and rewarded alternation test. Antioxidant potentiality was evaluated by measuring the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase, reduced glutathione (GSH), glutathione-S-transferase, and the contents of thiobarbituric acid reactive substances (TBARS) in entire brain tissue homogenates. AChE activity was determined using colorimetric method. Administration of the highest dose (i.e., 200 mg/kg b.w.) of EEPEr fruit significantly (p < 0.01) and both lowest and highest doses (i.e., 100 and 200 mg/kg b.w.) of EEPEu fruit markedly (p < 0.05, p < 0.001) increased step-through latency in rats on 6th, 11th, and 12th day with respect to the control group. For aforementioned doses, the percentage of memory retention (MR) was considerably (p < 0.05, p < 0.01) increased in rats on 10th, 11th, and 12th days with respect to the control group. The extract, particularly highest dose (i.e., 200 mg/kg b.w.) of EEPEr

  17. The application of HPLC with on-line coupled UV/MS-biochemical detection for isolation of an acetylcholinesterase inhibitor from narcissus 'Sir Winston Churchill'.

    Science.gov (United States)

    Ingkaninan, K; Hazekamp, A; de Best, C M; Irth, H; Tjaden, U R; van der Heijden, R; van der Greef, J; Verpoorte, R

    2000-06-01

    An HPLC with on-line coupled UV/MS-biochemical detection method for acetylcholinesterase (AChE) inhibitors in natural sources has been developed. The potential of this method is shown by the isolation of a new AChE inhibitor from the alcoholic extract of Narcissus 'Sir Winston Churchill'. Combining a prefractionation technique using centrifugal partition chromatography with the on-line HPLC-UV/MS-biochemical detection resulted in the isolation of the active compound that was identified as ungiminorine. This alkaloid shows a mild inhibitory effect on AChE.

  18. In vitro screening of Crataegus succulenta extracts for free radical scavenging and 15-lipoxygenase inhibitory activities.

    Science.gov (United States)

    Bedreag, Catrinel Florentina Giurescu; Trifan, Adriana; Vasincu, Al; Miron, S D; Aprotosoaie, Ana Clara; Miron, Anca

    2014-01-01

    Crataegus succulenta Schrad. ex Link is widely spread in North America. A literature survey revealed no studies on the chemical composition and biological effects of this species. The aim of the present study was to investigate the phenolic content, free radical scavenging and 15-lipoxygenase inhibitory effects of Crataegus succulenta leaf and flower extracts. Total phenolic, flavonoid and proanthocyanidin contents were quantified by spectrophotometric methods. Both extracts were evaluated for their ability to scavenge DPPH, superoxide anion and hydroxyl radicals and to inhibit 15-lipoxygenase activity. There were noticed no striking differences in the total phenolic, flavonoid and proanthocyanidin contents between leaf and flower extracts. Both extracts showed similar 15-lipoxygenase inhibitory effects. Flower extract scavenged more effectively DPPH and superoxide radicals while leave extract was more active against hydroxyl radical. In superoxide anion radical scavenging assay, both extracts were more active than (+)-catechin. In hydroxyl radical scavenging and 15-lipoxygenase inhibition assays, the extracts were only 4-5 times less active than (+)-catechin. The high antioxidant potential of Crataegus succulenta extracts suggest a possible use as ingredients in functional foods for the prevention of oxidative stress-related diseases.

  19. Nanocapsular Dispersion of Cinnamaldehyde for Enhanced Inhibitory Activity against Aflatoxin Production by Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Hongbo Li

    2015-04-01

    Full Text Available Cinnamaldehyde (CA is marginally soluble in water, making it challenging to evenly disperse it in foods, and resulting in lowered anti-A. flavus efficacy. In the present study, nano-dispersed CA (nano-CA was prepared to increase its aqueous solubility. Free and nano-dispersed CA were compared in terms of their inhibitory activity against fungal growth and aflatoxin production of A. flavus both in Sabouraud Dextrose (SD culture and in peanut butter. Our results indicated that free CA inhibited the mycelia growth and aflatoxin production of A. flavus with a minimal inhibitory concentration (MIC value of 1.0 mM, but promoted the aflatoxin production at some concentrations lower than the MIC. Nano-CA had a lower MIC value of 0.8 mM against A. flavus, and also showed improved activity against aflatoxin production without the promotion at lower dose. The solidity of peanut butter had an adverse impact on the antifungal activity of free CA, whereas nano-dispersed CA showed more than 2-fold improved activity against the growth of A. flavus. Free CA still promoted AFB1 production at the concentration of 0.25 mM, whereas nano-CA showed more efficient inhibition of AFB1 production in the butter.

  20. Pancreatic lipase inhibitory activity of cassiamin A, a bianthraquinone from Cassia siamea.

    Science.gov (United States)

    Kumar, Dilip; Karmase, Aniket; Jagtap, Sneha; Shekhar, Ruchi; Bhutani, Kamlesh K

    2013-02-01

    In continuation towards the discovery of potential antiobesity lead(s) from natural products, we have screened n-hexane, dichloromethane (DCM), ethyl acetate (EtOAc) and methanol (MeOH) extracts of 33 Indian medicinal plants (200 extracts) for in vitro pancreatic lipase inhibitory activity. Of the screened extracts, the EtOAc extract of Cassia siamea roots showed 74.3 +/- 1.4% enzyme inhibition at 250 microg/mL concentration. Bioassay guided fractionation of the active extract afforded 6 known compounds viz. chrysophanol (1), physcion (2), emodin (3), cassiamin A (4), friedelin (5) and cycloart-25-en-3beta,24-diol (6). These compounds were further evaluated for pancreatic lipase inhibitory activity. Cassiamin A (4), a bianthraquinone, was found to be most active with an IC50 value of 41.8 +/- 1.2 microM and compounds 2 and 5 were found to be moderate enzyme inhibitors. Results indicate the antiobesity potential of C. siamea through pancreatic lipase inhibition.

  1. Structures and antioxidant and intestinal disaccharidase inhibitory activities of A-type proanthocyanidins from peanut skin.

    Science.gov (United States)

    Zhang, Huiwen; Yerigui; Yang, Yumei; Ma, Chaomei

    2013-09-18

    Nine compounds including a new A-type proanthocyanidin trimer, epicatechin-(2β→O→7,4β→8)-[catechin-(6→4β)]-epicatechin (8), and a known trimer, epicatechin-(4β→8)-epicatechin-(2β→O→7,4β→8)-catechin (9), being reported for peanut skin for the first time, were isolated and purified. Their structures were determined by spectroscopic methods and by degradation reactions with L-cysteine in acidic conditions. The DPPH radical scavenging activity and the inhibitory activity on maltase and sucrase of the isolated compounds were investigated. All compounds showed strong DPPH scavenging activities (EC₅₀ < 20 μg/mL). Compound 8 showed the strongest inhibitory activity on maltase with an IC₅₀ value of 0.088 mg/mL, while compound 9 exhibited the strongest inhibition on sucrase with an IC₅₀ value of 0.091 mg/mL.

  2. Selection of potentially probiotic Lactobacillus strains towards their inhibitory activity against poultry enteropathogenic bacteria.

    Science.gov (United States)

    Kizerwetter-Swida, Magdalena; Binek, Marian

    2005-01-01

    Lactobacilli were isolated from chicken gastrointestinal tract and examined for their potentially probiotic properties towards their inhibitory activity against poultry enteropathogenic bacteria. Biochemical tests, ITS-PCR and cell wall protein analysis were used to characterize the Lactobacillus isolates. The identification of isolated Lactobacillus strains based on phenotypic properties was not always satisfactory. ITS-PCR together with protein profile were found to be helpful in strain identification. Lactobacilli were tested for the inhibitory activity against selected strains of poultry enteropathogenic bacteria (Salmonella Enteritidis, Escherichia coli and Clostridium perfringens). Examined supernatants from Lactobacillus broth cultures demonstrated major antimicrobial activity against C. perfringens. Lower antimicrobial activity were observed against E. coli and Salmonella Enteritidis. The strongest inhibition effect were obtained using supernatant of Lactobacillus acidophilus strain 3D. Results received from this study confirmed that identification of Lactobacillus spp. is often tedious. Some isolates, which are in vitro antagonistic against enteropathogenic bacteria may be considered as potential candidates for poultry probiotics, especially in controlling necrotic enteritis caused by C. perfringens.

  3. α-Glucosidase inhibitory activity and cytotoxic effects of some cyclic urea and carbamate derivatives.

    Science.gov (United States)

    Popović-Djordjević, Jelena B; Jevtić, Ivana I; Grozdanić, Nadja Dj; Šegan, Sandra B; Zlatović, Mario V; Ivanović, Milovan D; Stanojković, Tatjana P

    2017-12-01

    The inhibitory activities of selected cyclic urea and carbamate derivatives (1-13) toward α-glucosidase (α-Gls) in in vitro assay were examined in this study. All examined compounds showed higher inhibitory activity (IC50) against α-Gls compared to standard antidiabetic drug acarbose. The most potent was benzyl (3,4,5-trimethoxyphenyl)carbamate (12) with IC50 = 49.85 ± 0.10 µM. In vitro cytotoxicity of the investigated compounds was tested on three human cancer cell lines HeLa, A549 and MDA-MB-453 using MTT assay. The best antitumour activity was achieved with compound 2 (trans-5-phenethyl-1-phenylhexahydro-1H-imidazo[4,5-c]pyridin-2(3H)-one) against MDA-MB-453 human breast cancer cell line (IC50 = 83.41 ± 1.60 µM). Cyclic ureas and carbamates showed promising anti-α-glucosidase activity and should be further tested as potential antidiabetic drugs. The PLS model of preliminary QSAR study indicated that, in planing the future synthesis of more potent compounds, the newly designed should have the substituents capable of polar interactions with receptor sites in various positions, while avoiding the increase of their lipophilicity.

  4. An activating and inhibitory signal from an inhibitory receptor LMIR3/CLM-1: LMIR3 augments lipopolysaccharide response through association with FcRgamma in mast cells.

    Science.gov (United States)

    Izawa, Kumi; Kitaura, Jiro; Yamanishi, Yoshinori; Matsuoka, Takayuki; Kaitani, Ayako; Sugiuchi, Masahiro; Takahashi, Mariko; Maehara, Akie; Enomoto, Yutaka; Oki, Toshihiko; Takai, Toshiyuki; Kitamura, Toshio

    2009-07-15

    Leukocyte mono-Ig-like receptor 3 (LMIR3) is an inhibitory receptor mainly expressed in myeloid cells. Coengagement of Fc epsilonRI and LMIR3 impaired cytokine production in bone marrow-derived mast cells (BMMCs) induced by Fc epsilonRI crosslinking alone. Mouse LMIR3 possesses five cytoplasmic tyrosine residues (Y241, Y276, Y289, Y303, Y325), among which Y241 and Y289 (Y241/289) or Y325 fit the consensus sequence of ITIM or immunotyrosine-based switch motif (ITSM), respectively. The inhibitory effect was abolished by the replacement of Y325 in addition to Y241/289 with phenylalanine (Y241/189/325/F) in accordance with the potential of Y241/289/325 to cooperatively recruit Src homology region 2 domain-containing phosphatase 1 (SHP)-1 or SHP-2. Intriguingly, LMIR3 crosslinking alone induced cytokine production in BMMCs expressing LMIR3 (Y241/276/289/303/325F) mutant as well as LMIR3 (Y241/289/325F). Moreover, coimmunoprecipitation experiments revealed that LMIR3 associated with ITAM-containing FcRgamma. Analysis of FcRgamma-deficient BMMCs demonstrated that both Y276/303 and FcRgamma played a critical role in the activating function of this inhibitory receptor. Importantly, LMIR3 crosslinking enhanced cytokine production of BMMCs stimulated by LPS, while suppressing production stimulated by other TLR agonists or stem cell factor. Thus, an inhibitory receptor LMIR3 has a unique property to associate with FcRgamma and thereby functions as an activating receptor in concert with TLR4 stimulation.

  5. Activity-dependent transmission and integration control the timescales of auditory processing at an inhibitory synapse.

    Science.gov (United States)

    Ammer, Julian J; Siveke, Ida; Felmy, Felix

    2015-06-15

    To capture the context of sensory information, neural networks must process input signals across multiple timescales. In the auditory system, a prominent change in temporal processing takes place at an inhibitory GABAergic synapse in the dorsal nucleus of the lateral lemniscus (DNLL). At this synapse, inhibition outlasts the stimulus by tens of milliseconds, such that it suppresses responses to lagging sounds, and is therefore implicated in echo suppression. Here, we untangle the cellular basis of this inhibition. We demonstrate with in vivo whole-cell patch-clamp recordings in Mongolian gerbils that the duration of inhibition increases with sound intensity. Activity-dependent spillover and asynchronous release translate the high presynaptic firing rates found in vivo into a prolonged synaptic output in acute slice recordings. A key mechanism controlling the inhibitory time course is the passive integration of the hyperpolarizing inhibitory conductance. This prolongation depends on the synaptic conductance amplitude. Computational modeling shows that this prolongation is a general mechanism and relies on a non-linear effect caused by synaptic conductance saturation when approaching the GABA reversal potential. The resulting hyperpolarization generates an efficient activity-dependent suppression of action potentials without affecting the threshold or gain of the input-output function. Taken together, the GABAergic inhibition in the DNLL is adjusted to the physiologically relevant duration by passive integration of inhibition with activity-dependent synaptic kinetics. This change in processing timescale combined with the reciprocal connectivity between the DNLLs implements a mechanism to suppress the distracting localization cues of echoes and helps to localize the initial sound source reliably.

  6. Inhibition of acetylcholinesterase by Tea Tree oil.

    Science.gov (United States)

    Mills, Clive; Cleary, Brian J; Gilmer, John F; Walsh, John J

    2004-03-01

    Pediculosis is a widespread condition reported in schoolchildren. Treatment most commonly involves the physical removal of nits using fine-toothcombs and the chemical treatment of adult lice and eggs with topical preparations. The active constituents of these preparations frequently exert their effects through inhibition of acetylcholinesterase (AChE, EC 3.1.1.7). Increasing resistance to many preparations has led to the search for more effective treatments. Tea Tree oil, otherwise known as Melaleuca oil, has been added to several preparations as an alternative treatment of head lice infestations. In this study two major constituents of Tea Tree oil, 1,8-cineole and terpinen-4-ol, were shown to inhibit acetylcholinesterase at IC50 values (inhibitor concentrations required to give 50% inhibition) of 0.04 and 10.30 mM, respectively. Four samples of Tea Tree oil tested (Tisserand, Body Treats, Main Camp and Irish Health Culture Association Pure Undiluted) showed anticholinesterase activity at IC50 values of 0.05, 0.10, 0.08 and 0.11 microL mL(-1), respectively. The results supported the hypothesis that the insecticidal activity of Tea Tree oil was attributable, in part, to the anticholinesterase activity of Tea Tree oil.

  7. Synthesis and in vitro growth inhibitory activity of novel silyl- and trityl-modified nucleosides

    CSIR Research Space (South Africa)

    Panayides, Jenny-Lee

    2016-06-01

    Full Text Available -Farkas d, Hajierah Davids d,e , Leonie Harmse d , M. E. Christine Rey f , Ivan R. Green g, Stephen C. Pelly g, Robert Kiss c, Alexander Kornienko h, Willem A. L. van Otterlo a,g,⇑ a Molecular Sciences Institute, School of Chemistry, University... & Medicinal Chemistry 24 (2016) 2716–2724 Synthesis and in vitro growth inhibitory activity of novel silyl- and trityl-modified nucleosides Jenny-Lee Panayides a,b, Véronique Mathieu c, Laetitia Moreno Y. Banuls c, Helen Apostolellis d, Nurit Dahan...

  8. Nitric oxide inhibitory activity of monogalactosylmonoacylglycerols from a freshwater microalgae Chlorella sorokiniana.

    Science.gov (United States)

    Banskota, Arjun H; Stefanova, Roumiana; Gallant, Pamela; Osborne, Jane A; Melanson, Ronald; O'Leary, Stephen J B

    2013-01-01

    Chemical investigation of the freshwater microalgae Chlorella sorokiniana led to the isolation of a new monogalactosylmonoacylglycerol, namely, (2S)-1-O-(7Z,10Z-hexadecadienoyl)-3-O-β-D-galactopyranosylglycerol (1) together with a known glycolipid (2S)-1-O-(7Z,10Z,13Z-hexadecatrienoyl)-3-O-β-D-galactopyranosylglycerol (2). Both monogalactosylmonoacylglycerols showed dose-dependent nitric oxide (NO) inhibitory activity against lipopolysaccharide-induced NO production in RAW264.7 macrophage cells suggesting their possible use as anti-inflammatory agents.

  9. A New Synthesis Method and GABA Transporters Inhibitory Activities of Tiagabine and Its Analogues

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new synthetic method and GABA transporter inhibitory activities of Tiagabine and its analogues are described.The key intermediates 4-tosyl-1,1-diaryl/heteroaryl-1-butene 10a-10e were synthesized by Wittig reaction, and followed by N-alkylation with (R)-3-piperidinecarboxylate. The resultingN-diheterocyclylalkenylpiperidine-3-carboxylic acid ester 11a-11e were saponified and then acidified toget the target compounds 1a-1e. The preliminary bioassays show that compound 1a-1e exhibited excellent inhibition of [3H]-GABA uptake in vitro of culture cells.

  10. Isolation of inhibitory factor in raw milk whey active against propionibacteria.

    Science.gov (United States)

    Vedamuthu, E R; Washam, C J; Reinbold, G W

    1971-10-01

    Preparative isolation of the active component(s) in skim milk whey inhibitory for propionibacteria was made by using (NH(4))(2)SO(4) salt fractionation. The crude preparation was further purified by Sephadex G-100 column separation. Disc-gel electrophoresis of the active peak from the Sephadex elution pattern (peak I) showed that this fraction contained almost all of the immune globulin in the column sample. The biologically inactive peaks did not contain any immune globulin. Starch-gel electrophoresis of the active peak revealed the presence of three separate immune globulin fractions. A correlation was also observed between hemolytic reaction of propionibacterial strains and relative resistance to whey inhibition. The investigation showed that one of the immune globulins of milk, pseudoglobulin, was mainly responsible for the suppressive activity of whey.

  11. Inhibitory activity of Iranian plant extracts on growth and biofilm formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Mansouri, S.

    2013-01-01

    Full Text Available Aims: Pseudomonas aeruginosa is a drug resistance opportunistic bacterium. Biofilm formation is key factor for survivalof P. aeruginosa in various environments. Polysaccharides may be involved in biofilm formation. The purpose of thisstudy was to evaluate antimicrobial and anti-biofilm activities of seven plant extracts with known alpha-glucosidaseinhibitory activities on different strains of P. aeruginosa.Methodology and results: Plants were extracted with methanol by the maceration method. Antimicrobial activities weredetermined by agar dilution and by growth yield as measured by OD560nm of the Luria Bertani broth (LB culture with orwithout extracts. In agar dilution method, extracts of Quercus infectoria inhibited the growth of all, while Myrtuscommunis extract inhibited the growth of 3 out of 8 bacterial strains with minimum inhibitory concentration (MIC of 1000μg/mL. All extracts significantly (p≤0.003 reduced growth rate of the bacteria in comparison with the control withoutextracts in LB broth at sub-MIC concentrations (500 μg/mL. All plant extracts significantly (p≤0.003 reduced biofilmformation compared to the controls. Glycyrrhiza glabra and Q. infectoria had the highest anti-biofilm activities. Nocorrelation between the alpha-glucosidase inhibitory activity with growth or the intensity of biofilm formation was found.Conclusion, significance and impact of study: Extracts of Q. infectoria and M. communis had the most antimicrobial,while Q. infectoria and G. glabra had the highest anti-biofilm activities. All plant extracts had anti-biofilm activities withmarginal effect on growth, suggesting that the mechanisms of these activities are unrelated to static or cidal effects.Further work to understand the relation between antimicrobial and biofilm formation is needed for development of newmeans to fight the infectious caused by this bacterium in future.

  12. Lactobacillus crispatus dominant vaginal microbiome is associated with inhibitory activity of female genital tract secretions against Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Jeny P Ghartey

    Full Text Available OBJECTIVE: Female genital tract secretions inhibit E. coli ex vivo and the activity may prevent colonization and provide a biomarker of a healthy microbiome. We hypothesized that high E. coli inhibitory activity would be associated with a Lactobacillus crispatus and/or jensenii dominant microbiome and differ from that of women with low inhibitory activity. STUDY DESIGN: Vaginal swab cell pellets from 20 samples previously obtained in a cross-sectional study of near-term pregnant and non-pregnant healthy women were selected based on having high (>90% inhibition or low (<20% inhibition anti-E. coli activity. The V6 region of the 16S ribosomal RNA gene was amplified and sequenced using the Illumina HiSeq 2000 platform. Filtered culture supernatants from Lactobacillus crispatus, Lactobacillus iners, and Gardnerella vaginalis were also assayed for E. coli inhibitory activity. RESULTS: Sixteen samples (10 with high and 6 with low activity yielded evaluable microbiome data. There was no difference in the predominant microbiome species in pregnant compared to non-pregnant women (n = 8 each. However, there were significant differences between women with high compared to low E. coli inhibitory activity. High activity was associated with a predominance of L. crispatus (p<0.007 and culture supernatants from L. crispatus exhibited greater E. coli inhibitory activity compared to supernatants obtained from L. iners or G. vaginalis. Notably, the E. coli inhibitory activity varied among different strains of L. crispatus. CONCLUSION: Microbiome communities with abundant L. crispatus likely contribute to the E. coli inhibitory activity of vaginal secretions and efforts to promote this environment may prevent E. coli colonization and related sequelae including preterm birth.

  13. 5 Alpha-reductase inhibitory and antiandrogenic activities of novel steroids in hamster seminal vesicles.

    Science.gov (United States)

    Cabeza, Marisa; Bratoeff, Eugene; Flores, Eugenio; Ramírez, Elena; Calleros, Jorge; Montes, Diana; Quiroz, Alexandra; Heuze, Ivonne

    2002-11-01

    The pharmacological activity of several 16-bromosubstituted trienediones 4 and 5, 16-methyl substituted dienediones 6 and 7 and the 16-methyl substituted trienedione 8 was determined on gonadectomized hamster seminal vesicles by measuring the in vitro conversion of testosterone (T) to dihydrotestosterone (DHT) as 5alpha-reductase inhibitors and also the ability of these steroids to bind to the androgen receptor. Steroids 6 and 7 when injected together with T decreased the weight of the seminal vesicles thus showing an antiandrogenic effect. Compounds 5 and 6 reduced substantially the conversion of T to DHT and therefore can be considered good inhibitors for the enzyme 5alpha-reductase; however both steroids failed to form a complex with the androgen receptor. On the other hand compound 7 which showed a very small inhibitory activity for the enzyme 5alpha-reductase, exhibited a very high affinity for the androgen receptor and thus can be considered an effective antiandrogen. This compound also reduced substantially the weight of the seminal vesicles. Steroids 4 and 8 did not reduce the weight of the seminal vesicles and exhibited a low affinity for the androgen receptor; 8 showed a weak 5alpha-reductase inhibitory activity, whereas 4 exhibited a weak androgenic effect.

  14. Neuraminidase inhibitory activities of quaternary isoquinoline alkaloids from Corydalis turtschaninovii rhizome.

    Science.gov (United States)

    Kim, Jang Hoon; Ryu, Young Bae; Lee, Woo Song; Kim, Young Ho

    2014-11-01

    Clostridium perfringens is a Gram-positive spore-forming bacterium that causes food poisoning. The neuraminidase (NA) protein of C. perfringens plays a pivotal role in bacterial proliferation and is considered a novel antibacterial drug target. Based on screens for novel NA inhibitors, a 95% EtOH extract of Corydalis turtschaninovii rhizome showed NA inhibitory activity (68% at 30 μg/ml), which resulted in the isolation of 10 isoquinoline alkaloids; namely, palmatine (1), berberine (2), coptisine (3), pseudodehydrocorydaline (4), jatrorrhizine (5), dehydrocorybulbine (6), pseudocoptisine (7), glaucine (8), corydaline (9) and tetrahydrocoptisine (10). Interestingly, seven quaternary isoquinoline alkaloids 1-7 (IC50 = 12.8 ± 1.5 to 65.2 ± 4.5 μM) showed stronger NA inhibitory activity than the tertiary alkaloids 8-10. In addition, highly active compounds 1 and 2 showed reversible non-competitive behavior based on a kinetic study. Molecular docking simulations using the Autodock 4.2 software increased our understanding of receptor-ligand binding of these compounds. In addition, we demonstrated that compounds 1 and 2 suppressed bacterial growth.

  15. Docking studies: In silico phosphodiesterase inhibitory activity of commercially available flavonoids

    Directory of Open Access Journals (Sweden)

    Arumugam Madeswaran

    2012-03-01

    Full Text Available The objective of the current study is to evaluate the phosphodiesterase inhibitory activity of flavonoids using in silico docking studies. In silico docking studies were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. The results showed that all the selected flavonoids showed binding energy ranging between -7.50 kcal/mol to -6.61 kcal/mol when compared with that of the standard (-4.77 kcal/mol. Inhibition constant (3.17 µM to 14.36 µM and intermolecular energy (-9.29 kcal/mol to -8.70 kcal/mol of the ligands also coincide with the binding energy. All the selected flavonoids contributed better phosphodiesterase inhibitory activity because of its structural parameters. Benzopyran ring in the flavonoids are majorly contributed its activity. These molecular docking analyses could lead to the further development of potent phosphodiesterase inhibitors for the treatment of inflammatory diseases.

  16. Hypocholesterolemic Effect and In Vitro Pancreatic Lipase Inhibitory Activity of an Opuntia ficus-indica Extract.

    Science.gov (United States)

    Padilla-Camberos, Eduardo; Flores-Fernandez, Jose Miguel; Fernandez-Flores, Ofelia; Gutierrez-Mercado, Yanet; Carmona-de la Luz, Joel; Sandoval-Salas, Fabiola; Mendez-Carreto, Carlos; Allen, Kirk

    2015-01-01

    Cholesterol control is fundamental for prevention of cardiovascular disorders. In this work, the hypocholesterolemic activity of an aqueous Opuntia ficus-indica extract (AOE) was tested in triton-induced mice. The inhibitory activity on pancreatic lipase enzyme was evaluated in vitro by the same extract. Furthermore, polyphenol content of the extract was evaluated. Hypercholesterolemia was induced in three groups of mice by intraperitoneal administration of Triton WR-1339. After induction of hypercholesterolemia, the groups were treated with an AOE (500 mg/kg) and saline solution and the positive control group with orlistat, respectively. Cholesterol levels were measured 24 h later in peripheral blood. The levels of blood cholesterol after administration of AOE significantly decreased compared to negative control. The inhibitory activity of AOE on pancreatic lipase enzyme was evaluated at concentrations from 60 to 1000 μg/mL. The AOE inhibited the pancreatic lipase with an IC50 = 588.5 μg/mL. The AOE had a high content of polyphenolic compounds. These results show that AOE is able to prevent hypercholesterolemia by pancreatic lipase inhibition, in part due to its polyphenolic compounds.

  17. Hypocholesterolemic Effect and In Vitro Pancreatic Lipase Inhibitory Activity of an Opuntia ficus-indica Extract

    Directory of Open Access Journals (Sweden)

    Eduardo Padilla-Camberos

    2015-01-01

    Full Text Available Cholesterol control is fundamental for prevention of cardiovascular disorders. In this work, the hypocholesterolemic activity of an aqueous Opuntia ficus-indica extract (AOE was tested in triton-induced mice. The inhibitory activity on pancreatic lipase enzyme was evaluated in vitro by the same extract. Furthermore, polyphenol content of the extract was evaluated. Hypercholesterolemia was induced in three groups of mice by intraperitoneal administration of Triton WR-1339. After induction of hypercholesterolemia, the groups were treated with an AOE (500 mg/kg and saline solution and the positive control group with orlistat, respectively. Cholesterol levels were measured 24 h later in peripheral blood. The levels of blood cholesterol after administration of AOE significantly decreased compared to negative control. The inhibitory activity of AOE on pancreatic lipase enzyme was evaluated at concentrations from 60 to 1000 μg/mL. The AOE inhibited the pancreatic lipase with an IC50 = 588.5 μg/mL. The AOE had a high content of polyphenolic compounds. These results show that AOE is able to prevent hypercholesterolemia by pancreatic lipase inhibition, in part due to its polyphenolic compounds.

  18. Hypocholesterolemic Effect and In Vitro Pancreatic Lipase Inhibitory Activity of an Opuntia ficus-indica Extract

    Science.gov (United States)

    Flores-Fernandez, Jose Miguel; Fernandez-Flores, Ofelia; Gutierrez-Mercado, Yanet; Carmona-de la Luz, Joel; Sandoval-Salas, Fabiola; Mendez-Carreto, Carlos

    2015-01-01

    Cholesterol control is fundamental for prevention of cardiovascular disorders. In this work, the hypocholesterolemic activity of an aqueous Opuntia ficus-indica extract (AOE) was tested in triton-induced mice. The inhibitory activity on pancreatic lipase enzyme was evaluated in vitro by the same extract. Furthermore, polyphenol content of the extract was evaluated. Hypercholesterolemia was induced in three groups of mice by intraperitoneal administration of Triton WR-1339. After induction of hypercholesterolemia, the groups were treated with an AOE (500 mg/kg) and saline solution and the positive control group with orlistat, respectively. Cholesterol levels were measured 24 h later in peripheral blood. The levels of blood cholesterol after administration of AOE significantly decreased compared to negative control. The inhibitory activity of AOE on pancreatic lipase enzyme was evaluated at concentrations from 60 to 1000 μg/mL. The AOE inhibited the pancreatic lipase with an IC50 = 588.5 μg/mL. The AOE had a high content of polyphenolic compounds. These results show that AOE is able to prevent hypercholesterolemia by pancreatic lipase inhibition, in part due to its polyphenolic compounds. PMID:26078966

  19. Effects of nanosuspension and inclusion complex techniques on the in vitro protease inhibitory activity of naproxen

    Energy Technology Data Exchange (ETDEWEB)

    Dharmalingam, Senthil Rajan; Chidambaram, Kumarappan; Srinivasan, Ramamurthy; Nadaraju, Shamala, E-mail: dsenthilrajan@yahoo.co.in [School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur (Malaysia)

    2014-01-15

    This study investigated the effects of nanosuspension and inclusion complex techniques on in vitro trypsin inhibitory activity of naproxen—a member of the propionic acid derivatives, which are a group of antipyretic, analgesic, and non-steroidal anti-inflammatory drugs. Nanosuspension and inclusion complex techniques were used to increase the solubility and anti-inflammatory efficacy of naproxen. The evaporative precipitation into aqueous solution (EPAS) technique and the kneading methods were used to prepare the nanosuspension and inclusion complex of naproxen, respectively. We also used an in vitro protease inhibitory assay to investigate the anti-inflammatory effect of modified naproxen formulations. Physiochemical properties of modified naproxen formulations were analyzed using UV, IR spectra, and solubility studies. Beta-cyclodextrin inclusion complex of naproxen was found to have a lower percentage of antitryptic activity than a pure nanosuspension of naproxen did. In conclusion, nanosuspension of naproxen has a greater anti-inflammatory effect than the other two tested formulations. This is because the nanosuspension formulation reduces the particle size of naproxen. Based on these results, the antitryptic activity of naproxen nanosuspension was noteworthy; therefore, this formulation can be used for the management of inflammatory disorders. (author)

  20. Expression and inhibitory activity analysis of a 25-kD Bowman-Birk protease inhibitor in rice

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Rice Bowman-Birk inhibitors (RBBI), with one (8 kD) or two homologous domains (16 kD), were found to be effective trypsin inhibitors in vitro. In this study, we demonstrate that the 25-kD protein corresponding to the three-domain RBBI indeed exists in rice in planta, and that the RBBIs are regulated by development and wounding. We also found by inhibitory activity assay that the 3:13 disulfide bond, but not the 4:5 disulfide bond, suppresses the trypsin-inhibitory activity, and the D3 domain of RBBI3-1 has no inhibitory activity against trypsin, chymotrypsin, paparin or subtilisin. Mutation analyses showed that conversion from Lys to Leu or Tyr in the N-terminal P1 site in D1 domain did not create chymotrypsin-inhibitory activity, suggesting that the structure of the reactive loop in D1 domain hinder the new inhibitory specificity at P1 site, and the chymotrypsin-inhibitory activity might need the participation of other structures, e.g. 3:13 disulfide bond.

  1. Inhibitory effect of aqueous dandelion extract on HIV-1 replication and reverse transcriptase activity

    Directory of Open Access Journals (Sweden)

    Han Huamin

    2011-11-01

    Full Text Available Abstract Background Acquired immunodeficiency syndrome (AIDS, which is caused by the human immunodeficiency virus (HIV, is an immunosuppressive disease that results in life-threatening opportunistic infections. The general problems in current therapy include the constant emergence of drug-resistant HIV strains, adverse side effects and the unavailability of treatments in developing countries. Natural products from herbs with the abilities to inhibit HIV-1 life cycle at different stages, have served as excellent sources of new anti-HIV-1 drugs. In this study, we aimed to investigate the anti-HIV-1 activity of aqueous dandelion extract. Methods The pseudotyped HIV-1 virus has been utilized to explore the anti-HIV-1 activity of dandelion, the level of HIV-1 replication was assessed by the percentage of GFP-positive cells. The inhibitory effect of the dandelion extract on reverse transcriptase activity was assessed by the reverse transcriptase assay kit. Results Compared to control values obtained from cells infected without treatment, the level of HIV-1 replication and reverse transcriptase activity were decreased in a dose-dependent manner. The data suggest that dandelion extract has a potent inhibitory activity against HIV-1 replication and reverse transcriptase activity. The identification of HIV-1 antiviral compounds from Taraxacum officinale should be pursued. Conclusions The dandelion extract showed strong activity against HIV-1 RT and inhibited both the HIV-1 vector and the hybrid-MoMuLV/MoMuSV retrovirus replication. These findings provide additional support for the potential therapeutic efficacy of Taraxacum officinale. Extracts from this plant may be regarded as another starting point for the development of an antiretroviral therapy with fewer side effects.

  2. Inhibitory Effect of Plant Manilkara subsericea against Biological Activities of Lachesis muta Snake Venom

    Directory of Open Access Journals (Sweden)

    Eduardo Coriolano De Oliveira

    2014-01-01

    Full Text Available Snake venom is composed of a mixture of substances that caused in victims a variety of pathophysiological effects. Besides antivenom, literature has described plants able to inhibit injuries and lethal activities induced by snake venoms. This work describes the inhibitory potential of ethanol, hexane, ethyl acetate, or dichloromethane extracts and fractions from stem and leaves of Manilkara subsericea against in vivo (hemorrhagic and edema and in vitro (clotting, hemolysis, and proteolysis activities caused by Lachesis muta venom. All the tested activities were totally or at least partially reduced by M. subsericea. However, when L. muta venom was injected into mice 15 min first or after the materials, hemorrhage and edema were not inhibited. Thus, M. subsericea could be used as antivenom in snakebites of L. muta. And, this work also highlights Brazilian flora as a rich source of molecules with antivenom properties.

  3. Inhibitory effect of plant Manilkara subsericea against biological activities of Lachesis muta snake venom.

    Science.gov (United States)

    De Oliveira, Eduardo Coriolano; Fernandes, Caio Pinho; Sanchez, Eladio Flores; Rocha, Leandro; Fuly, André Lopes

    2014-01-01

    Snake venom is composed of a mixture of substances that caused in victims a variety of pathophysiological effects. Besides antivenom, literature has described plants able to inhibit injuries and lethal activities induced by snake venoms. This work describes the inhibitory potential of ethanol, hexane, ethyl acetate, or dichloromethane extracts and fractions from stem and leaves of Manilkara subsericea against in vivo (hemorrhagic and edema) and in vitro (clotting, hemolysis, and proteolysis) activities caused by Lachesis muta venom. All the tested activities were totally or at least partially reduced by M. subsericea. However, when L. muta venom was injected into mice 15 min first or after the materials, hemorrhage and edema were not inhibited. Thus, M. subsericea could be used as antivenom in snakebites of L. muta. And, this work also highlights Brazilian flora as a rich source of molecules with antivenom properties.

  4. 蚊虫乙酰胆碱酯酶的真核表达、纯化及活性测定%Expression and purification of acetylcholinesterase from culex by Bac-to-Bac baculovirus system and the activity determination

    Institute of Scientific and Technical Information of China (English)

    谭烽; 兰文升; 崔峰; 乔传令; 陈雯莉

    2012-01-01

    利用Trizol法从尖音库蚊中提取总RNA,构建cDNA文库,并克隆出乙酰胆碱酯酶外显子序列;利用Bac-to-Bac杆状病毒表达系统对蚊虫乙酰胆碱酯酶进行真核表达,并利用Ni-琼脂糖对酶进行纯化.采用SDS-PAGE对纯化产物进行检测,结果表明得到了纯度较高的乙酰胆碱酯酶.参照Ellman法对酶的活性进行测定,结果显示纯酶的活力为2.219×10-4mol/(min·g).%The residues of the high toxic organophosphorous can cause chronic poisoning. At present, the detection of organophosphorous residue needs complicated operation, time consuming and high cost. Here,we harvested total RNA of mosquito by Trizol methods, constructed cDNA library, and got the exon of acetylcholinesterase. The acetylcholinesterase from culex was expressed by Bac-to-Bac system, then the enzyme was purified using Ni-sepharose. The crude and purified enzyme was tested and verified by SDS-PAGE. The enzyme activity was determined by Ellman methods. It will be of great significance to biosensors in organophosphorous pesticides detection.

  5. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Lushnikova, Irina; Skibo, Galina; Muller, Dominique; Nikonenko, Irina

    2011-04-01

    Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic inhibitory inputs triggered by a brief oxygen-glucose deprivation (OGD) episode, a condition associated with a synaptic enhancement referred to as anoxic LTP and a structural remodeling of excitatory synapses. Three-dimensional reconstruction of inhibitory axo-somatic synapses at different times before and after brief OGD revealed important morphological changes. The PSD area significantly and markedly increased at synapses with large and complex PSDs, but not at synapses with simple, macular PSDs. Activity-related changes of PSD size and presynaptic bouton volume developed in a strongly correlated manner. Analyses of single and serial sections further showed that the density of inhibitory synaptic contacts on the cell soma did not change within 1 h after OGD. In contrast, the proportion of the cell surface covered with inhibitory PSDs, as well as the complexity of these PSDs significantly increased, with less macular PSDs and more complex, segmented shapes. Together, these data reveal a rapid activity-related restructuring of somatic inhibitory synapses characterized by an enlargement and increased complexity of inhibitory PSDs, providing a new mechanism for a quick adjustment of the excitatory-inhibitory balance. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.

  6. Antioxidant activity and ACE-inhibitory of Class II hydrophobin from wild strain Trichoderma reesei.

    Science.gov (United States)

    Khalesi, Mohammadreza; Jahanbani, Raheleh; Riveros-Galan, David; Sheikh-Hassani, Vahid; Sheikh-Zeinoddin, Mahmoud; Sahihi, Mehdi; Winterburn, James; Derdelinckx, Guy; Moosavi-Movahedi, Ali Akbar

    2016-10-01

    There are several possible uses of the Class II hydrophobin HFBII in clinical applications. To fully understand and exploit this potential however, the antioxidant activity and ACE-inhibitory potential of this protein need to be better understood and have not been previously reported. In this study, the Class II hydrophobin HFBII was produced by the cultivation of wild type Trichoderma reesei. The crude hydrophobin extract obtained from the fermentation process was purified using reversed-phase liquid chromatography and the identity of the purified HFBII verified by MALDI-TOF (molecular weight: 7.2kDa). Subsequently the antioxidant activities of different concentrations of HFBII (0.01-0.40mg/mL) were determined. The results show that for HFBII concentrations of 0.04mg/mL and upwards the protein significantly reduced the presence of ABTS(+) radicals in the medium, the IC50 value found to be 0.13mg/mL. Computational modeling highlighted the role of the amino acid residues located in the conserved and exposed hydrophobic patch on the surface of the HFBII molecule and the interactions with the aromatic rings of ABTS. The ACE-inhibitory effect of HFBII was found to occur from 0.5mg/mL and upwards, making the combination of HFBII with strong ACE-inhibitors attractive for use in the healthcare industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Tyrosinase inhibitory constituents from the roots of Morus nigra: a structure-activity relationship study.

    Science.gov (United States)

    Zheng, Zong-Ping; Cheng, Ka-Wing; Zhu, Qin; Wang, Xia-Chang; Lin, Zhi-Xiu; Wang, Mingfu

    2010-05-12

    The phytochemical profiles of Morus nigra roots and twigs were compared by HPLC with those of the old and young twigs of Morus alba which are known to contain oxyresveratrol and mulberroside A as major components. It was found that M. nigra root extract contains some unknown natural products with potential tyrosinase inhibitory activity. The extract (95% ethanol) of the roots of M. nigra was further investigated in this study. One new compound, 5'-geranyl-5,7,2',4'-tetrahydroxyflavone, and twenty-eight known phenolic compounds were isolated. Their structures were identified by mass spectrometry and NMR spectroscopy. Nine compounds, 5'-geranyl-5,7,2',4'-tetrahydroxyflavone, steppogenin-7-O-beta-D-glucoside, 2,4,2',4'-tetrahydroxychalcone, moracin N, kuwanon H, mulberrofuran G, morachalcone A, oxyresveratrol-3'-O-beta-D-glucopyranoside and oxyresveratrol-2-O-beta-D-glucopyranoside, showed better tyrosinase inhibitory activities than kojic acid. It was noteworthy that the IC(50) values of 2,4,2',4'-tetrahydroxychalcone and morachalcone A were 757-fold and 328-fold lower than that of kojic acid, respectively, suggesting a great potential for their development as effective natural tyrosinase inhibitors.

  8. Screening of α-Glucosidase Inhibitory Activity from Some Plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae

    Directory of Open Access Journals (Sweden)

    Berna Elya

    2012-01-01

    Full Text Available Diabetes mellitus (DM is recognized as a serious global health problem that is characterized by high blood sugar levels. Type 2 DM is more common in diabetic populations. In this type of DM, inhibition of α-glucosidase is a useful treatment to delay the absorption of glucose after meals. As a megabiodiversity country, Indonesia still has a lot of potential unexploited forests to be developed as a medicine source, including as the α-glucosidase inhibitor. In this study, we determine the α-glucosidase inhibitory activity of 80% ethanol extracts of leaves and twigs of some plants from the Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae. Inhibitory activity test of the α-glucosidase was performed in vitro using spectrophotometric methods. Compared with the control acarbose (IC50 117.20 μg/mL, thirty-seven samples of forty-five were shown to be more potent α-glucosidase inhibitors with IC50 values in the range 2.33–112.02 μg/mL.

  9. Screening of α-glucosidase inhibitory activity from some plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae.

    Science.gov (United States)

    Elya, Berna; Basah, Katrin; Mun'im, Abdul; Yuliastuti, Wulan; Bangun, Anastasia; Septiana, Eva Kurnia

    2012-01-01

    Diabetes mellitus (DM) is recognized as a serious global health problem that is characterized by high blood sugar levels. Type 2 DM is more common in diabetic populations. In this type of DM, inhibition of α-glucosidase is a useful treatment to delay the absorption of glucose after meals. As a megabiodiversity country, Indonesia still has a lot of potential unexploited forests to be developed as a medicine source, including as the α-glucosidase inhibitor. In this study, we determine the α-glucosidase inhibitory activity of 80% ethanol extracts of leaves and twigs of some plants from the Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae. Inhibitory activity test of the α-glucosidase was performed in vitro using spectrophotometric methods. Compared with the control acarbose (IC(50) 117.20 μg/mL), thirty-seven samples of forty-five were shown to be more potent α-glucosidase inhibitors with IC(50) values in the range 2.33-112.02 μg/mL.

  10. The effects of inhibitory control training for preschoolers on reasoning ability and neural activity.

    Science.gov (United States)

    Liu, Qian; Zhu, Xinyi; Ziegler, Albert; Shi, Jiannong

    2015-09-23

    Inhibitory control (including response inhibition and interference control) develops rapidly during the preschool period and is important for early cognitive development. This study aimed to determine the training and transfer effects on response inhibition in young children. Children in the training group (N = 20; 12 boys, mean age 4.87 ± 0.26 years) played "Fruit Ninja" on a tablet computer for 15 min/day, 4 days/week, for 3 weeks. Children in the active control group (N = 20; 10 boys, mean age 4.88 ± 0.20 years) played a coloring game on a tablet computer for 10 min/day, 1-2 days/week, for 3 weeks. Several cognitive tasks (involving inhibitory control, working memory, and fluid intelligence) were used to evaluate the transfer effects, and electroencephalography (EEG) was performed during a go/no-go task. Progress on the trained game was significant, while performance on a reasoning task (Raven's Progressive Matrices) revealed a trend-level improvement from pre- to post-test. EEG indicated that the N2 effect of the go/no-go task was enhanced after training for girls. This study is the first to show that pure response inhibition training can potentially improve reasoning ability. Furthermore, gender differences in the training-induced changes in neural activity were found in preschoolers.

  11. Isolation of natural compounds from Phlomis stewartii showing α-glucosidase inhibitory activity.

    Science.gov (United States)

    Jabeen, Bushra; Riaz, Naheed; Saleem, Muhammad; Naveed, Muhammad Akram; Ashraf, Muhammad; Alam, Umber; Rafiq, Hafiza Mehwish; Tareen, Rasool Bakhsh; Jabbar, Abdul

    2013-12-01

    Stewartiiside (1), a phenylethanoid glycoside and three 28-nortriterpenoids: stewertiisins A-C [(17R)-19(18→17)-abeo-3α,18β,23,24-tetrahydroxy-28-norolean-12-ene, 2; (17R)-19(18→17)-abeo-2α,16β,18β,23,24-pentahydroxy-28-norolean-12-en-3-one, 3; (17R)-19(18→17)-abeo-2α,3α,23,24-tetrahydroxy-28-noroleane-11,13-diene, 4] together with eight known compounds: lunariifolioside (5), notohamosin A (6), phlomispentanol (7), isorhamnetin 3-(6-p-coumaroyl)-β-D-glucopyranoside (8), tiliroside (9), caffeic acid (10), p-hydrxybenzoic acid (11) and oleanolic acid (12) were isolated from the ethyl acetate soluble fraction of the methanolic extract of whole plant of Phlomis stewartii. The structures of these isolates (1-12) were elucidated by the combination of 1D ((1)H and (13)C NMR), 2D (HMQC, HMBC COSY, NOESY) NMR spectroscopy and mass spectrometry (EIMS, HREIMS, FABMS, HRFABMS) and in comparison with literature data of related compounds. All the isolates (1-12) showed α-glucosidase inhibitory activity with IC50 values ranging between 14.5 and 355.4 μM, whereas, compounds 1, 5, 9 and 10 showed promising α-glucosidase inhibitory activity with IC50 values below 30 μM.

  12. In silico docking studies of aldose reductase inhibitory activity of commercially available flavonoids

    Directory of Open Access Journals (Sweden)

    Arumugam Madeswaran

    2012-12-01

    Full Text Available The primary objective of this study was to investigate the aldose reductase inhibitory activity of flavonoids using in silico docking studies. In this perspective, flavonoids like biochanin, butein, esculatin, fisetin and herbacetin were selected. Epalrestat, a known aldose reductase inhibitor was used as the standard. In silico docking studies were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. The results showed that all the selected flavonoids showed binding energy ranging between -9.33 kcal/mol to -7.23 kcal/mol when compared with that of the standard (-8.73 kcal/mol. Inhibition constant (144.13 µM to 4.98 µM and intermolecular energy (-11.42 kcal/mol to -7.83 kcal/mol of the flavonoids also coincide with the binding energy. All the selected flavonoids contributed aldose reductase inhibitory activity because of its structural properties. These molecular docking analyses could lead to the further development of potent aldose reductase inhibitors for the treatment of diabetes.

  13. Novel derivatives of monascus pigment having a high CETP inhibitory activity.

    Science.gov (United States)

    Jang, Heeyoung; Choe, Deokyeong; Shin, Chul Soo

    2014-01-01

    The cholesteryl ester transfer protein (CETP), inhibition of which assists in maintaining a high level of high-density lipoprotein cholesterol in the blood, is a target for anti-atherosclerosis treatments. Orange monascus pigment was produced by a Monascus species in a 5 L jar fermenter and various derivative compounds were synthesised by incorporating 19 different L-amino acids into the orange pigment. Among them, the L-Thr and L-Tyr derivatives exhibited high inhibitory activities against the CETP reaction. The inhibitory activities of the L-Thr and L-Tyr derivatives increased in a dose-dependent manner, resulting in IC50 values of 1.0 and 2.3 μM, respectively. When CETP reactions in the presence of the derivatives were performed, the inhibition modes of the L-Thr and L-Tyr derivatives were non-competitive with inhibition constant (Ki) values of 2.7 and 4.3 μM, respectively.

  14. Triterpenoids with acetylcholinesterase inhibition from Chuquiraga erinacea D. Don. subsp. erinacea (Asteraceae).

    Science.gov (United States)

    Gurovic, María Soledad; Castro, María Julia; Richmond, Victoria; Faraoni, María Belén; Maier, Marta S; Murray, Ana Paula

    2010-04-01

    A bioactivity-guided approach was taken to identify the acetylcholinesterase (AChE) inhibitory agents in the ethanolic extract of Chuquiraga erinacea D. Don. subsp. erinacea leaves using a bioautographic method. This permitted the isolation of the pentacyclic triterpenes calenduladiol (1), faradiol (2), heliantriol B2 (3), lupeol (4), and a mixture of alpha-and beta-amyrin ( 5A and 5B) as active constituents. Pseudotaraxasterol (6) and taraxasterol (7) were also isolated from this extract and showed no activity at the same analytical conditions. Compound 1 showed the highest AChE inhibitory activity with 31.2 % of inhibition at 0.5 mM. Looking forward to improve the water solubility of the active compounds, the sodium sulfate ester of 1 was prepared by reaction with the (CH3)3N.SO3 complex. The semisynthetic derivative disodium calenduladiol disulfate (8) elicited higher AChE inhibition than 1 with 94.1 % of inhibition at 0.5 mM (IC (50) = 0.190 +/- 0.003 mM). Compounds 1, 2, 3, 5, 6, and 7 are reported here for the first time in C. erinacea. This is the first report of AChE inhibition from calenduladiol (1) as well as from a sulfate derived from a natural product.

  15. 抗药性与敏感性德国小蠊乙酰胆碱酶的活性比较%A comparative study on the activity of acetylcholinesterase in the pesticides resistant strains of Blattella germanica

    Institute of Scientific and Technical Information of China (English)

    王式春; 林琳; 刘渠; 张起文; 沈培林; 韦薇; 王德全

    2011-01-01

    目的 研究德国小蠊抗药性与乙酰胆碱酯酶活性的关系.方法 采用化学比色方法对敏感品系和抗性品系的德国小蠊分别测试乙酰胆碱酯酶,对比两者的测定值,分析抗性品系和敏感品系德国小蠊乙酰胆碱酯酶的差异.结果 敏感品系和抗性品系德国小蠊的乙酰胆碱酯酶活性分别是2.863和5.609,抗性品系德国小蠊酶活性显著高于敏感品系,两者酶活性比值为1.96.结论 乙酰胆碱酯酶活性与德国小蠊抗药性有关.%Objective To study the activity of acetylcholinesterase (AChE) in insecticide resistant German cockroaches.Methods Different strains and gender of German cockroaches were used in this study. Colorimetric method was used to determine the activity of acetylcholinesternse. Results Blattella germanica were studied for their acetylcholinesterase activity.AChE activity in the insecticide resistant and insecticide sensitive strains was 2.863 and 5.609, respectively. AChE activity of the field strain was significantly higher than the susceptible strain. And the ratio of AChE activity between the resistant and the sensitive strain was 1.96. Conclusion The activity of AChE from the field strains was correlated with the pesticides resistance.

  16. Acetylcholinesterase assay for cerebrospinal fluid using bupivacaine to inhibit butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Anders Jens

    2001-12-01

    Full Text Available Abstract Background Most test systems for acetylcholinesterase activity (E.C.3.1.1.7. are using toxic inhibitors (BW284c51 and iso-OMPA to distinguish the enzyme from butyrylcholinesterase (E.C.3.1.1.8. which occurs simultaneously in the cerebrospinal fluid. Applying Ellman's colorimetric method, we were looking for a non-toxic inhibitor to restrain butyrylcholinesterase activity. Based on results of previous in vitro studies bupivacaine emerged to be a suitable inhibitor. Results Pharmacokinetic investigations with purified cholinesterases have shown maximum inhibition of butyrylcholinesterase activity and minimal interference with acetylcholinesterase activity at bupivacaine final concentrations between 0.1 and 0.5 mmol/l. Based on detailed analysis of pharmacokinetic data we developed three equations representing enzyme inhibition at bupivacaine concentrations of 0.1, 0.2 and 0.5 mmol/l. These equations allow us to calculate the acetylcholinesterase activity in solutions containing both cholinesterases utilizing the extinction differences measured spectrophotometrically in samples with and without bupivacaine. The accuracy of the bupivacaine-inhibition test could be confirmed by investigations on solutions of both purified cholinesterases and on samples of human cerebrospinal fluid. If butyrylcholinesterase activity has to be assessed simultaneously an independent test using butyrylthiocholine iodide as substrate (final concentration 5 mmol/l has to be conducted. Conclusions The bupivacaine-inhibition test is a reliable method using spectrophotometrical techniques to measure acetylcholinesterase activity in cerebrospinal fluid. It avoids the use of toxic inhibitors for differentiation of acetylcholinesterase from butyrylcholinesterase in fluids containing both enzymes. Our investigations suggest that bupivacaine concentrations of 0.1, 0.2 or 0.5 mmol/l can be applied with the same effect using 1 mmol/l acetylthiocholine iodide as substrate.

  17. Inhibitory activity of Thai condiments on pandemic strain of Vibrio parahaemolyticus.

    Science.gov (United States)

    Vuddhakul, Varaporn; Bhoopong, Phuangthip; Hayeebilan, Fadeeya; Subhadhirasakul, Sanan

    2007-06-01

    Antibacterial activity of 13 condiments used in Thai cooking was investigated with a pandemic strain of Vibrio parahaemolyticus. Using a disk diffusion technique, freshly squeezed extracts from galangal, garlic and lemon, at a concentration of 10 microl/disk produced a clear zone of 13.6+/-0.5, 11.6+/-0.5 and 8.6+/-1.2mm, respectively. The inhibitory activity of these 3 condiments on pandemic strains was not significantly different from that on non-pandemic strains of V. parahaemolyticus. Because of its popularity in seafood cooking, galangal was subjected to further investigation. Only a chloroform extract of galangal inhibited growth of V. parahaemolyticus producing a clear zone of 9.5+/-0.5, 12.0+/-0 and 13.5+/-0.5mm diameter at concentrations of 25, 50 and 100 microg/disk, respectively. One active component is identified as 1'-acetoxychavicol acetate. The activity of galangal was not reduced at pH 3 or in the presence of 0.15% bile salt but was reduced by freeze and spray drying. Heating a fresh preparation of galangal to 100 degrees C but not 50 degrees C for 30 min also reduced growth inhibition. Therefore, using fresh galangal in cooking was recommended. The MIC and MBC of a freshly squeezed preparation of galangal were 1:16 and 1:16, respectively. This is the first report of an inhibitory activity of a Thai medicinal plant, galangal that is used in Thai cooking, on the pandemic strain of V. parahaemolyticus.

  18. Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion.

    Directory of Open Access Journals (Sweden)

    Yeon Ja Choi

    Full Text Available Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time-dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel

  19. The impact of photo-induced molecular changes of dairy proteins on their ACE-inhibitory peptides and activity.

    Science.gov (United States)

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Shrestha, Kshitij; Van Camp, John; De Meulenaer, Bruno

    2012-08-01

    Among all dietary proteins, dairy proteins are the most important source of bio-active peptides which can, however, be affected by modifications upon processing and storage. Since it is still unknown to which extent the biological activity of dairy proteins is altered by chemical reactions, this study focuses on the effect of photo-induced molecular changes on the angiotensin I converting enzyme (ACE) inhibitory activity. Milk proteins were dissolved in phosphate buffer containing riboflavin and stored under light at 4 °C for one month during which the molecular changes and the ACE-inhibitory activity were analysed. An increase in the total protein carbonyls and the N-formylkynurenine content was observed, besides a decrease in the free thiol, tryptophan, tyrosine and histidine content. These changes were more severe in caseins compared with whey proteins and resulted moreover in the aggregation of caseins. Due to these photo-induced molecular changes, a significant loss of the ACE-inhibitory activity was observed for casein peptides. A peptide analysis moreover illustrated that the decreased activity was not attributed to a reduced digestibility but to losses of specific ACE-inhibitory peptides. The observed molecular changes, more specifically the degradation of specific amino acids and the casein aggregation, could be assigned as the cause of the altered peptide pattern and as such of the loss in ACE-inhibitory activity.

  20. Dibenzocyclooctadiene lignans from Schisandra chinensis and their inhibitory activity on NO production in lipopolysaccharide-activated microglia cells.

    Science.gov (United States)

    Hu, Di; Yang, Zhiyou; Yao, Xuechun; Wang, Hua; Han, Na; Liu, Zhihui; Wang, Yu; Yang, Jingyu; Yin, Jun

    2014-08-01

    Four dibenzocyclooctadiene lignans, schisanchinins A-D, and 10 known compounds were isolated from the EtOAc extract of fruits of Schisandra chinensis (Turcz.) Baill. Structures of compounds 1-4 were elucidated using a combination of spectroscopic techniques, including MS, UV and IR, NMR ((1)H NMR, (13)C NMR, HMQC, HMBC). The stereochemistry of the chiral centers and the biphenyl configuration were determined using NOESY, as well as analysis of CD spectra. In vitro activity assays showed that 11 of the 14 compounds exhibited inhibitory activity on lipopolysaccharide (LPS)-induced NO release in primary murine BV2 microglia cells.

  1. Mechanistic study of the inhibitory activity of Geum urbanum extract against α-Synuclein fibrillation

    DEFF Research Database (Denmark)

    Lobbens, Eva Stephanie; Breydo, Leonid; Pedersen, Thomas Skamris;

    2016-01-01

    The presence of Lewy bodies and Lewy neurites is a major pathological hallmark of Parkinson's disease and is hypothesized to be linked to disease development, although this is not yet conclusive. Lewy bodies and Lewy neurites primarily consist of fibrillated α-Synuclein; yet, there is no treatment...... available targeting stabilization of α-Synuclein in its native state. The aim of the present study was to investigate the inhibitory activity of an ethanolic extract of Geum urbanum against α-Synuclein fibrillation and examine the structural changes of α-Synuclein in the presence of the extract. The anti......-fibrillation and anti aggregation activities of the plant extract were monitored by thioflavin T fibrillation assays and size exclusion chromatography, while structural changes were followed by circular dichroism, Fourier transform infrared spectroscopy, intrinsic fluorescence, small angle X-ray scattering and electron...

  2. Constituents of the seeds of Cassia tora with inhibitory activity on soluble expoxide hydrolease.

    Science.gov (United States)

    Lee, Ga Young; Kim, Jang Hoon; Choi, Seung-Kook; Kim, Young Ho

    2015-11-15

    Efforts to extract soluble epoxide hydrolase (sEH) inhibitors from food sources through bioactivity-guided fractionation of Cassia tora seed extracts led to the isolation of one new compound, 1, and 15 known compounds, 2-16. Structural elucidations were performed using 1D/2D NMR spectroscopy and mass spectrometry. Compounds 1, 3, 4, 6, 10, 11, and 13-16 exhibited inhibitory activities on sEH with IC50 values of 2.2±2.1-40.6±3.4 μM. Compound 13 was particularly active and exhibited a reversible-uncompetitive behavior in enzyme kinetic studies. A binding site on the enzyme for compound 13 was also predicted by Autodock 4.2 simulations.

  3. α-Glucosidase inhibitory activity of marine sponges collected in Mauritius waters.

    Science.gov (United States)

    Ramanjooloo, Avin; Cresteil, Thierry; Lebrasse, Cindy; Beedessee, Girish; Oogarah, Preeti; van Soest, Rob W M; Marie, Daniel E P

    2015-01-01

    This report describes the use of α-glucosidase to evaluate the anti-diabetic potential of extracts from marine sponges collected in the Mauritius waters. Initial screening at 1.0 mg/mL of 141 extracts obtained from 47 sponge species revealed 10 extracts with inhibitory activity greater than 85%. Seven of the 10 extracts were further tested at 0.1 and 0.01 mg/mL and only the methanol extract of two sponges namely Acanthostylotella sp. (ASSM) and Echinodictyum pykei (EPM) showed inhibition activity greater than 60% at 0.1 mg/mL with an IC50 value of 0.16 ± 0.02 and 0.04 ± 0.01 mg/mL, respectively, while being inactive at 0.01 mg/mL.

  4. The NRTIs Lamivudine, Stavudine and Zidovudine Have Reduced HIV-1 Inhibitory Activity in Astrocytes

    Science.gov (United States)

    Gray, Lachlan R.; Tachedjian, Gilda; Ellett, Anne M.; Roche, Michael J.; Cheng, Wan-Jung; Guillemin, Gilles J.; Brew, Bruce J.; Turville, Stuart G.; Wesselingh, Steve L.; Gorry, Paul R.; Churchill, Melissa J.

    2013-01-01

    HIV-1 establishes infection in astrocytes and macroage-lineage cells of the central nervous system (CNS). Certain antiretroviral drugs (ARVs) can penetrate the CNS, and are therefore often used in neurologically active combined antiretroviral therapy (Neuro-cART) regimens, but their relative activity in the different susceptible CNS cell populations is unknown. Here, we determined the HIV-1 inhibitory activity of CNS-penetrating ARVs in astrocytes and macrophage-lineage cells. Primary human fetal astrocytes (PFA) and the SVG human astrocyte cell line were used as in vitro models for astrocyte infection, and monocyte-derived macrophages (MDM) were used as an in vitro model for infection of macrophage-lineage cells. The CNS-penetrating ARVs tested were the nucleoside reverse transcriptase inhibitors (NRTIs) abacavir (ABC), lamivudine (3TC), stavudine (d4T) and zidovudine (ZDV), the non-NRTIs efavirenz (EFV), etravirine (ETR) and nevirapine (NVP), and the integrase inhibitor raltegravir (RAL). Drug inhibition assays were performed using single-round HIV-1 entry assays with luciferase viruses pseudotyped with HIV-1 YU-2 envelope or vesicular stomatitis virus G protein (VSV-G). All the ARVs tested could effectively inhibit HIV-1 infection in macrophages, with EC90s below concentrations known to be achievable in the cerebral spinal fluid (CSF). Most of the ARVs had similar potency in astrocytes, however the NRTIs 3TC, d4T and ZDV had insufficient HIV-1 inhibitory activity in astrocytes, with EC90s 12-, 187- and 110-fold greater than achievable CSF concentrations, respectively. Our data suggest that 3TC, d4T and ZDV may not adequately target astrocyte infection in vivo, which has potential implications for their inclusion in Neuro-cART regimens. PMID:23614033

  5. Inhibitory Effect of Capparis spinosa Extract on Pancreatic Alpha-Amylase Activity

    Directory of Open Access Journals (Sweden)

    Mostafa Selfayan

    2016-04-01

    Full Text Available Background Diabetes mellitus is a metabolic disorder characterized by high blood glucose level caused due to deficiency of insulin secretion or insulin function. The inhibition of carbohydrate hydrolyzing enzymes such as α-amylase can be an important strategy for decrease postprandial blood glucose level in patients with type II diabetes. Plants contains different chemical constituents with potential for inhibition of α-amylase and hence maybe used as therapeutic. Objectives The aim of the present study is to investigate the effect of the ethanolic extract of Capparis spinosa on pancreatic α-amylase activities to find out the relevance of the plant in controlling blood sugar. Materials and Methods In this experimental study, root and leaves of C. spinosa were tested for α-amylase inhibition. Different concentrations (1.56, 3.12, 6.25, 12.5 and 25 mg/mL of extracts were incubated with enzyme substrate solution and the spectrometric method used for measure enzyme activity. Also acarbose was used as the standard inhibitor. Results Both root and leaves extracts showed inhibition of α-amylase (root = 97.31% and leaves = 98.92%. The root and leaves extracts of C. spinosa exhibited appreciable α-amylase inhibitory activity with an IC50 values 5.93 mg/mL and 3.89 mg/mL respectively, when compared with acarbose (IC50 value 0.038 mg/mL. Conclusions This study supports that root and leaves extracts of C. spinosa exhibit considerable α-amylase inhibitory activities. These results could be useful for developing functional foods by combination of plant-based foods for treatment of diabetes mellitus.

  6. The NRTIs lamivudine, stavudine and zidovudine have reduced HIV-1 inhibitory activity in astrocytes.

    Directory of Open Access Journals (Sweden)

    Lachlan R Gray

    Full Text Available HIV-1 establishes infection in astrocytes and macroage-lineage cells of the central nervous system (CNS. Certain antiretroviral drugs (ARVs can penetrate the CNS, and are therefore often used in neurologically active combined antiretroviral therapy (Neuro-cART regimens, but their relative activity in the different susceptible CNS cell populations is unknown. Here, we determined the HIV-1 inhibitory activity of CNS-penetrating ARVs in astrocytes and macrophage-lineage cells. Primary human fetal astrocytes (PFA and the SVG human astrocyte cell line were used as in vitro models for astrocyte infection, and monocyte-derived macrophages (MDM were used as an in vitro model for infection of macrophage-lineage cells. The CNS-penetrating ARVs tested were the nucleoside reverse transcriptase inhibitors (NRTIs abacavir (ABC, lamivudine (3TC, stavudine (d4T and zidovudine (ZDV, the non-NRTIs efavirenz (EFV, etravirine (ETR and nevirapine (NVP, and the integrase inhibitor raltegravir (RAL. Drug inhibition assays were performed using single-round HIV-1 entry assays with luciferase viruses pseudotyped with HIV-1 YU-2 envelope or vesicular stomatitis virus G protein (VSV-G. All the ARVs tested could effectively inhibit HIV-1 infection in macrophages, with EC90s below concentrations known to be achievable in the cerebral spinal fluid (CSF. Most of the ARVs had similar potency in astrocytes, however the NRTIs 3TC, d4T and ZDV had insufficient HIV-1 inhibitory activity in astrocytes, with EC90s 12-, 187- and 110-fold greater than achievable CSF concentrations, respectively. Our data suggest that 3TC, d4T and ZDV may not adequately target astrocyte infection in vivo, which has potential implications for their inclusion in Neuro-cART regimens.

  7. In vitro inhibitory activity of probiotic products against oral Candida species.

    Science.gov (United States)

    Zhao, C; Lv, X; Fu, J; He, C; Hua, H; Yan, Z

    2016-07-01

    To evaluate the inhibitory activity of probiotics against oral Candida species. Four commercial probiotic products were screened. Bacillus subtilis R0179 was found to have a significant antifungal effect. Bacillus subtilis-Candida interactions were evaluated using disc diffusion tests, confocal laser scanning microscopy, scanning electron microscopy and interaction with engineered human oral mucosa tissue. Bacillus subtilis exhibited clear zones of inhibition for Candida albicans and Candida parapsilosis but not for Candida krusei. A remarkable reduction in the number of Candida cells and abundant Candida cell death were visualized with confocal laser scanning microscopy. Shrinkage and deformation of Candida cells was observed using scanning electron microscopy. Culture of C. albicans on engineered human oral mucosa tissues resulted in the presence of a large number of yeast cells on the tissue surface and the development of large-scale tissue damage. However, comparatively fewer Candida cells were observed on B. subtilis-treated tissues. We also use ultra performance liquid chromatography/time of flight mass spectrometry (UPLC/TOF MS) to explore the preliminary antifungal mechanism of B. subtilis R0179 and to detect that whether it can secrete an antifungal agent, Iturin A. Bacillus subtilis R0179 exhibits a significant inhibitory effect on the growth of Candida species. Bacillus subtilis has the potential to be used in the prevention or treatment of oral candidiasis. © 2016 The Society for Applied Microbiology.

  8. Asymmetric lateral inhibitory neural activity in the auditory system: a magnetoencephalographic study

    Directory of Open Access Journals (Sweden)

    Gunji Atsuko

    2007-05-01

    Full Text Available Abstract Background Decrements of auditory evoked responses elicited by repeatedly presented sounds with similar frequencies have been well investigated by means of electroencephalography and magnetoencephalography (MEG. However the possible inhibitory interactions between different neuronal populations remains poorly understood. In the present study, we investigated the effect of proceeding notch-filtered noises (NFNs with different frequency spectra on a following test tone using MEG. Results Three-second exposure to the NFNs resulted in significantly different N1m responses to a 1000 Hz test tone presented 500 ms after the offset of the NFNs. The NFN with a lower spectral edge closest to the test tone mostly decreased the N1m amplitude. Conclusion The decrement of the N1m component after exposure to the NFNs could be explained partly in terms of lateral inhibition. The results demonstrated that the amplitude of the N1m was more effectively influenced by inhibitory lateral connections originating from neurons corresponding to lower rather than higher frequencies. We interpret this effect of asymmetric lateral inhibition in the auditory system as an important contribution to reduce the asymmetric neural activity profiles originating from the cochlea.

  9. Melanogenesis inhibitory activity of sesquiterpenes from Canarium ovatum resin in mouse B16 melanoma cells.

    Science.gov (United States)

    Kikuchi, Takashi; Watanabe, Kensuke; Tochigi, Yuichi; Yamamoto, Ayako; Fukatsu, Makoto; Ezaki, Yoichiro; Tanaka, Reiko; Akihisa, Toshihiro

    2012-08-01

    Four known sesquiterpene alcohols, i.e., 1-4, ten triterpene alcohols, i.e., 5-14, and four triterpene acids, i.e., 15-18, were isolated from the MeOH extract of Canarium ovatum resin (elemi resin). Upon evaluation of the previously described compounds 1-18 on the melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), three sesquiterpene alcohols, i.e., cryptomeridiol (1), 4-epicryptomeridiol (2), and cadin-1(14)-ene-7α,11-diol (4), exhibited inhibitory effects with 27.4-34.1 and 39.0-56.9% reduction of melanin content at 50 and 100 μM, respectively, with no or very low toxicity to the cells (80.9-103.9% of cell viability at 100 μM). Western-blot analysis revealed that compounds 1 and 2 reduced the protein levels of MITF (=microphtalmia-associated transcription factor), tyrosinase, and TRP-2 (=tyrosine-related protein 2), mostly in a concentration-dependent manner, suggesting that these compounds exhibit melanogenesis inhibitory activity on α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of tyrosinase and TRP-2. Three sesquiterpene alcohols, i.e., 1, 2, and 4, are, therefore, considered to be valuable as potential skin-whitening agents.

  10. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents.

    Directory of Open Access Journals (Sweden)

    Sidsel L Domazet

    Full Text Available To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents.The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12-14 years was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer.Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance.Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the scholastic or cognitive

  11. Feeding deterrent and growth inhibitory activities of PONNEEM, a newly developed phytopesticidal formulation against Helicoverpa armigera (Hubner)

    Institute of Scientific and Technical Information of China (English)

    Soosaimanickam Maria Packiam; Kathirvelu Baskar; Savarimuthu Ignacimuthu

    2014-01-01

    Objective: To assess the feeding deterrent, growth inhibitory and egg hatchability effects of PONNEEM on Helicoverpa armigera (H. armigera).Methods:growth inhibitory and egg hatchability effects on H. armigera.Results:Invariably all the newly formulated phytopesticidal oil formulations showed the feeding Five oil formulations were prepared at different ratios to assess the feeding deterrent, deterrent and growth inhibitory activities against H. armigera. The maximum feeding deterrent activity of 88.44% was observed at 15 µL/L concentration of PONNEEM followed by formulation A (74.54%). PONNEEM was found to be effective in growth inhibitory activities and egg hatchability at 10 µL/L concentration. It exhibited statistically significant feeding deterrent activity and growth inhibitory activity compared with all the other treatments.Conclusions:PONNEEM was found to be effective phytopesticidal formulation to control the larval stage of H. armigera. This is the first report for the feeding deterrent activity of PONNEEM against H.armigera. This newly formulated phytopesticide was patented in India.

  12. Mushroom tyrosinase inhibitory activity and major fatty acid constituents of Amazonian native flora oils

    Directory of Open Access Journals (Sweden)

    Raquel da Silva Teixeira

    2012-09-01

    Full Text Available In order to treat hyperpigmentation-related problems, there has been a global trend in developing cosmetics claiming to have skin-whitening properties, which act by inhibiting melanin biosynthesis. The objective of this work was to evaluate the in vitro mushroom tyrosinase inhibitory activity of five Amazonian native flora oils, and so to verify the possibility of their incorporation into cosmetic products. In addition, the fatty acid composition of the essential oils was determined by gas chromatography-flame ionisation detection in order to determine the main components of these oils. The tyrosinase inhibitory activity of the tested oils was found to be in the following order: açaí (IA50 = 66.08 µg mL-1 > tucumã > patauá > pracaxi > castanha do Brasil. This study suggests that açaí oil has great potential in the treatment of hyperpigmentation and other related disorders, due to its considerable tyrosinase inhibitory activity.Com o intuito de se tratar problemas dermatológicos de hiperpigmentação, há uma tendência mundial no desenvolvimento de cosméticos que possuam propriedades despigmentantes, os quais agem inibindo a biossíntese de melanina. O objetivo deste trabalho foi avaliar in vitro a atividade de inibição da tirosinase de cogumelo de cinco óleos de plantas nativas da Amazônia e, desta forma, verificar a possibilidade de sua incorporação em produtos cosméticos. Ainda, a composição de ácidos graxos dos óleos foi determinada por cromatografia gasosa com detecção por ionização de chama, no intuito de determinar os principais componentes destes óleos. A atividade de inibição da tirosinase dos óleos testados foi encontrada na seguinte ordem: açaí (IA50 = 66,08 µg mL-1 > tucumã > patauá > pracaxi > castanha do Brasil. Este estudo sugere que o óleo de açaí possui grande potencial para o tratamento da hiperpigmentação cutânea e doenças correlatas, devido à sua considerável atividade de inibi

  13. Isolation of lactic acid bacteria with inhibitory activity against pathogens and spoilage organisms associated with fresh meat.

    Science.gov (United States)

    Jones, Rhys J; Hussein, Hassan M; Zagorec, Monique; Brightwell, Gale; Tagg, John R

    2008-04-01

    The use of lactic acid bacteria (LAB) as protective cultures in vacuum-packed chill-stored meat has potential application for assuring and improving food quality, safety and market access. In a study to identify candidate strains suitable for evaluation in a meat model, agar-based methods were employed to screen 181 chilled meat and meat process-related LAB for strains inhibitory to pathogens and spoilage organisms of importance to the meat industry. Six meat-derived strains, including Lactobacillus sakei and Lactococcus lactis, were found to be inhibitory to one or more of the target strains Listeria monocytogenes, Brochothrix thermosphacta, Campylobacter jejuni and Clostridium estertheticum. The inhibitory agents appeared to be either cell-associated or molecules released extracellularly with bacteriocin-like properties. Variations detected in the antimicrobial activity of LAB associated with changes to test parameters such as substrate composition underlined the importance of further in situ evaluation of the inhibitory strains in stored meat trials.

  14. Sodium salicylate suppresses GABAergic inhibitory activity in neurons of rodent dorsal raphe nucleus.

    Directory of Open Access Journals (Sweden)

    Yan Jin

    Full Text Available Sodium salicylate (NaSal, a tinnitus inducing agent, can activate serotonergic (5-HTergic neurons in the dorsal raphe nucleus (DRN and can increase serotonin (5-HT level in the inferior colliculus and the auditory cortex in rodents. To explore the underlying neural mechanisms, we first examined effects of NaSal on neuronal intrinsic properties and the inhibitory synaptic transmissions in DRN slices of rats by using whole-cell patch-clamp technique. We found that NaSal hyperpolarized the resting membrane potential, decreased the input resistance, and suppressed spontaneous and current-evoked firing in GABAergic neurons, but not in 5-HTergic neurons. In addition, NaSal reduced GABAergic spontaneous and miniature inhibitory postsynaptic currents in 5-HTergic neurons. We next examined whether the observed depression of GABAergic activity would cause an increase in the excitability of 5-HTergic neurons using optogenetic technique in DRN slices of the transgenic mouse with channelrhodopsin-2 expressed in GABAergic neurons. When the GABAergic inhibition was enhanced by optical stimulation to GABAergic neurons in mouse DRN, NaSal significantly depolarized the resting membrane potential, increased the input resistance and increased current-evoked firing of 5-HTergic neurons. However, NaSal would fail to increase the excitability of 5-HTergic neurons when the GABAergic synaptic transmission was blocked by picrotoxin, a GABA receptor antagonist. Our results indicate that NaSal suppresses the GABAergic activities to raise the excitability of local 5-HTergic neural circuits in the DRN, which may contribute to the elevated 5-HT level by NaSal in the brain.

  15. Activity-dependent modulation of inhibitory synaptic kinetics in the cochlear nucleus

    Directory of Open Access Journals (Sweden)

    Jana eNerlich

    2014-12-01

    Full Text Available Spherical bushy cells (SBCs in the anteroventral cochlear nucleus respond to acoustic stimulation with discharges that precisely encode the phase of low-frequency sound. The accuracy of spiking is crucial for sound localization and speech perception. Compared to the auditory nerve input, temporal precision of SBC spiking is improved through the engagement of acoustically evoked inhibition. Recently, the inhibition was shown to be less precise than previously understood. It shifts from predominantly glycinergic to synergistic GABA/glycine transmission in an activity-dependent manner. Concurrently, the inhibition attains a tonic character through temporal summation. The present study provides a comprehensive understanding of the mechanisms underlying this slow inhibitory input. We performed whole-cell voltage clamp recordings on SBCs from juvenile Mongolian gerbils and recorded evoked inhibitory postsynaptic currents (IPSCs at physiological rates. The data reveal activity-dependent IPSC kinetics, i.e. the decay is slowed with increased input rates or recruitment. Lowering the release probability yielded faster decay kinetics of the single- and short train-IPSCs at 100Hz, suggesting that transmitter quantity plays an important role in controlling the decay. Slow transmitter clearance from the synaptic cleft caused prolonged receptor binding and, in the case of glycine, spillover to nearby synapses. The GABAergic component prolonged the decay by contributing to the asynchronous vesicle release depending on the input rate. Hence, the different factors controlling the amount of transmitters in the synapse jointly slow the inhibition during physiologically relevant activity. Taken together, the slow time course is predominantly determined by the receptor kinetics and transmitter clearance during short stimuli, whereas long duration or high frequency stimulation additionally engage asynchronous release to prolong IPSCs.

  16. Entecavir Exhibits Inhibitory Activity against Human Immunodeficiency Virus under Conditions of Reduced Viral Challenge▿

    Science.gov (United States)

    Lin, Pin-Fang; Nowicka-Sans, Beata; Terry, Brian; Zhang, Sharon; Wang, Chunfu; Fan, Li; Dicker, Ira; Gali, Volodymyr; Higley, Helen; Parkin, Neil; Tenney, Daniel; Krystal, Mark; Colonno, Richard

    2008-01-01

    Entecavir (ETV) was developed for the treatment of chronic hepatitis B virus (HBV) infection and is globally approved for that indication. Initial preclinical studies indicated that ETV had no significant activity against human immunodeficiency virus type 1 (HIV-1) in cultured cell lines at physiologically relevant ETV concentrations, using traditional anti-HIV assays. In response to recent clinical observations of anti-HIV activity of ETV in HIV/HBV-coinfected patients not receiving highly active antiretroviral therapy (HAART), additional investigative studies were conducted to expand upon earlier results. An extended panel of HIV-1 laboratory and clinical strains and cell types was tested against ETV, along with a comparison of assay methodologies and resistance profiling. These latest studies confirmed that ETV has only weak activity against HIV, using established assay systems. However, a >100-fold enhancement of antiviral activity (equivalent to the antiviral activity of lamivudine) could be obtained when assay conditions were modified to reduce the initial viral challenge. Also, the selection of a M184I virus variant during the passage of HIV-1 at high concentrations of ETV confirmed that ETV can exert inhibitory pressure on the virus. These findings may have a significant impact on how future assays are performed with compounds to be used in patients infected with HIV. These results support the recommendation that ETV therapy should be administered in concert with HAART for HIV/HBV-coinfected patients. PMID:18316521

  17. Syntheses of new 3-thiazolyl coumarin derivatives, in vitro α-glucosidase inhibitory activity, and molecular modeling studies.

    Science.gov (United States)

    Salar, Uzma; Taha, Muhammad; Khan, Khalid Mohammed; Ismail, Nor Hadiani; Imran, Syahrul; Perveen, Shahnaz; Gul, Sahib; Wadood, Abdul

    2016-10-21

    3-Thiazolylcoumarin derivatives 1-14 were synthesized via one-pot two step reactions, and screened for in vitro α-glucosidase inhibitory activity. All compounds showed inhibitory activity in the range of IC50 = 0.12 ± 0.01-16.20 ± 0.23 μM as compared to standard acarbose (IC50 = 38.25 ± 0.12 μM), and also found to be nontoxic. Molecular docking study was carried out in order to establish the structure-activity relationship (SAR) which demonstrated that electron rich centers at one and electron withdrawing centers at the other end of the molecules showed strong inhibitory activity. All the synthesized compounds were characterized by spectroscopic techniques such as EI-MS, HREI-MS, (1)H NMR and (13)C NMR. CHN analysis was also performed.

  18. Immunochemical Characterization of Anti-Acetylcholinesterase Inhibitory Monoclonal Antibodies

    Science.gov (United States)

    1993-01-01

    formation. This conformation was first proposed using studies with monoclonal antibodies against a synthetic peptide mimicking the sequence of the...distinct antigenic determinants on dengue -2 virus using monoclonal antibodies, Am. J. Trop. Med. Hyg., 31 (1982) 548-555. 7 D. De la Hoz, B.P. Doctor

  19. Chemical constituents on the aerial parts of Artemisia selengensis and their IL-6 inhibitory activity.

    Science.gov (United States)

    Kim, A Ryun; Ko, Hae Ju; Chowdhury, Md Anisuzzaman; Chang, Young-Su; Woo, Eun-Rhan

    2015-06-01

    Ten compounds, 1',3'-propanediol,2'-amino-1'-(1,3-benzodioxol-5-yl) (1), artanomaloide (2), canin (3), eupatilin (4), quercetin-3-O-β-D-glucoside-7-O-α-L-rhamnoside (5), 1,3-di-O-caffeoylquinic acid (6), isoquercitrin (7), pinoresinol-4-O-β-D-glucoside (8), scopolin (9), and isofraxidin-7-O-β-D-glucopyranoside (10) were isolated from the aerial parts of A. selengensis. The structures of compounds (1-10) were identified based on 1D and 2D NMR, including (1)H-(1)H COSY, HSQC, HMBC and NOESY spectroscopic analyses. Among them, compound 1 was isolated from this plant for the first time as a naturally occurring compound. The inhibitory activity of these isolated compounds against interleukin-6 (IL-6) production in TNF-α stimulated MG-63 cells was also examined.

  20. Four new sesquiterpenes from the rhizomes of Curcuma phaeocaulis and their iNOS inhibitory activities.

    Science.gov (United States)

    Ma, Jiang-Hao; Wang, Ying; Liu, Yue; Gao, Su-Yu; Ding, Li-Qin; Zhao, Feng; Chen, Li-Xia; Qiu, Feng

    2015-05-01

    Three new guaiane-type sesquiterpenes named phaeocaulisins K-M (1-3), and one germacrane-type sesquiterpenoid with new ring system of 1,5- and 1,8-ether groups named phagermadiol (4), were isolated from rhizomes of Curcuma phaeocaulis. Their structures were established based on extensive spectroscopic analysis. Compound 1, the first example of norsesquiterpene with tropone backbone, and compound 3 with a novel 1,2-dioxolane sesquiterpene alcohol were isolated from the genus Curcuma. All of the isolated compounds were tested for inhibitory activity against lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compound 3 inhibited NO production with IC50 value of 6.05 ± 0.43 μM. The plausible biosynthetic pathway for compounds 3 and 4 in C. phaeocaulis was also discussed.