WorldWideScience

Sample records for acetylcholine transporter detected

  1. Choline acetyltransferase and organic cation transporters are responsible for synthesis and propionate-induced release of acetylcholine in colon epithelium.

    Science.gov (United States)

    Bader, Sandra; Klein, Jochen; Diener, Martin

    2014-06-15

    Acetylcholine is not only a neurotransmitter, but is found in a variety of non-neuronal cells. For example, the enzyme choline acetyltransferase (ChAT), catalyzing acetylcholine synthesis, is expressed by the colonic epithelium of different species. These cells release acetylcholine across the basolateral membrane after luminal exposure to propionate, a short-chain fatty acid. The functional consequence is the induction of chloride secretion, measurable as increase in short-circuit current (Isc) in Ussing chamber experiments. It is unclear how acetylcholine is produced and released by colonic epithelium. Therefore, the aim of the present study was the identification (on mRNA and protein level) and functional characterization (in Ussing chamber experiments combined with HPLC detection of acetylcholine) of transporters/enzymes in the cholinergic system of rat colonic epithelium. Immunohistochemical staining as well as RT-PCR revealed the expression of high-affinity choline transporter, ChAT, carnitine acetyltransferase (CarAT), vesicular acetylcholine transporter (VAChT), and organic cation transporters (OCT 1, 2, 3) in colonic epithelium. In contrast to blockade of ChAT with bromoacetylcholine, inhibition of CarAT with mildronate did not inhibit the propionate-induced increase in Isc, suggesting a predominant synthesis of epithelial acetylcholine by ChAT. Although being expressed, blockade of VAChT with vesamicol was ineffective, whereas inhibition of OCTs with omeprazole and corticosterone inhibited propionate-induced Isc and the release of acetylcholine into the basolateral compartment. In summary, OCTs seem to be involved in regulated acetylcholine release by colonic epithelium, which is assumed to be involved in chemosensing of luminal short-chain fatty acids by the intestinal epithelium.

  2. Mechanisms for the effects of acetylcholine on sodium transport in frog skin.

    Science.gov (United States)

    Cuthbert, A W; Wilson, S A

    1981-03-15

    In frog skin (Rana temporaria) acetylcholine applied to the serosal surface produces either a sustained inhibiton or sustained stimulation of short-circuit current (SCC). The former effect is accompanied by a reduction and the latter by an increase in total tissue conductance. Both effects of acetylcholine can be accounted for, within experimental error, by changes in net sodium flux across the tissue. By use of selective agonists and antagonists it is concluded that acetylcholine interacts with muscarinic receptors in the serosal membrane. The effects of cholinoceptor agents are also seen with isolated epithelium. The stimulatory effect of acetylcholine is potentiated by theophylline and blocked by inhibitors of prostaglandin synthetase and by mepacrine. It is suggested that acetylcholine stimulates transport by liberating prostaglandins which may then activate adenylcyclase. The inhibitory effect of acetylcholine is correlated with a reduction in cyclic AMP content of the epithelium. Calcium appears to be an important determinant of the type of response seen eith acetylcholine, but the mechanism is not known.

  3. Subpopulations of rat dorsal root ganglion neurons express active vesicular acetylcholine transporter.

    Science.gov (United States)

    Tata, Ada Maria; De Stefano, M Egle; Tomassy, Giulio Srubek; Vilaró, M Teresa; Levey, Allan I; Biagioni, Stefano

    2004-01-15

    The vesicular acetylcholine transporter (VAChT) is a transmembrane protein required, in cholinergic neurons, for selective storage of acetylcholine into synaptic vesicles. Although dorsal root ganglion (DRG) neurons utilize neuropeptides and amino acids for neurotransmission, we have previously demonstrated the presence of a cholinergic system. To investigate whether, in sensory neurons, the vesicular accumulation of acetylcholine relies on the same mechanisms active in classical cholinergic neurons, we investigated VAChT presence, subcellular distribution, and activity. RT-PCR and Western blot analysis demonstrated the presence of VAChT mRNA and protein product in DRG neurons and in the striatum and cortex, used as positive controls. Moreover, in situ hybridization and immunocytochemistry showed VAChT staining located mainly in the medium/large-sized subpopulation of the sensory neurons. A few small neurons were also faintly labeled by immunocytochemistry. In the electron microscope, immunolabeling was associated with vesicle-like elements distributed in the neuronal cytoplasm and in both myelinated and unmyelinated intraganglionic nerve fibers. Finally, [(3)H]acetylcholine active transport, evaluated either in the presence or in the absence of ATP, also demonstrated that, as previously reported, the uptake of acetylcholine by VAChT is ATP dependent. This study suggests that DRG neurons not only are able to synthesize and degrade ACh and to convey cholinergic stimuli but also are capable of accumulating and, possibly, releasing acetylcholine by the same mechanism used by the better known cholinergic neurons.

  4. Vesicular acetylcholine transporter-immunoreactive axon terminals enriched in the pontine nuclei of the mouse.

    Science.gov (United States)

    Tsutsumi, T; Houtani, T; Toida, K; Kase, M; Yamashita, T; Ishimura, K; Sugimoto, T

    2007-06-08

    Information to the cerebellum enters via many afferent sources collectively known as precerebellar nuclei. We investigated the distribution of cholinergic terminal-like structures in the mouse precerebellar nuclei by immunohistochemistry for vesicular acetylcholine transporter (VAChT). VAChT is involved in acetylcholine transport into synaptic vesicles and is regarded as a reliable marker for cholinergic terminals and preterminal axons. In adult male mice, brains were perfusion-fixed. Polyclonal antibodies for VAChT, immunoglobulin G-peroxidase and diaminobenzidine were used for immunostaining. In the mouse brain, immunoreactivity was seen in almost all major cholinergic cell groups including brainstem motoneurons. In precerebellar nuclei, the signal could be detected as diffusely beaded terminal-like structures. It was seen heaviest in the pontine nuclei and moderate in the pontine reticulotegmental nucleus; however, it was seen less in the medial solitary nucleus, red nucleus, lateral reticular nucleus, inferior olivary nucleus, external cuneate nucleus and vestibular nuclear complex. In particular, VAChT-immunoreactive varicose fibers were so dense in the pontine nuclei that detailed distribution was studied using three-dimensional reconstruction of the pontine nuclei. VAChT-like immunoreactivity clustered predominantly in the medial and ventral regions suggesting a unique regional difference of the cholinergic input. Electron microscopic observation in the pontine nuclei disclosed ultrastructural features of VAChT-immunoreactive varicosities. The labeled bouton makes a symmetrical synapse with unlabeled dendrites and contains pleomorphic synaptic vesicles. To clarify the neurons of origin of VAChT-immunoreactive terminals, VAChT immunostaining combined with wheat germ agglutinin-conjugated horseradish peroxidase retrograde labeling was conducted by injecting a retrograde tracer into the right pontine nuclei. Double-labeled neurons were seen bilaterally in the

  5. Spiroindolines identify the vesicular acetylcholine transporter as a novel target for insecticide action.

    Directory of Open Access Journals (Sweden)

    Ann Sluder

    Full Text Available The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family.

  6. Spiroindolines Identify the Vesicular Acetylcholine Transporter as a Novel Target for Insecticide Action

    Science.gov (United States)

    Sluder, Ann; Shah, Sheetal; Cassayre, Jérôme; Clover, Ralph; Maienfisch, Peter; Molleyres, Louis-Pierre; Hirst, Elizabeth A.; Flemming, Anthony J.; Shi, Min; Cutler, Penny; Stanger, Carole; Roberts, Richard S.; Hughes, David J.; Flury, Thomas; Robinson, Michael P.; Hillesheim, Elke; Pitterna, Thomas; Cederbaum, Fredrik; Worthington, Paul A.; Crossthwaite, Andrew J.; Windass, John D.; Currie, Richard A.; Earley, Fergus G. P.

    2012-01-01

    The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines) encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family. PMID:22563457

  7. Detection of basal and potassium-evoked acetylcholine release from embryonic DRG explants.

    Science.gov (United States)

    Bernardini, Nadia; Tomassy, Giulio Srubek; Tata, Ada Maria; Augusti-Tocco, Gabriella; Biagioni, Stefano

    2004-03-01

    Spontaneous and potassium-induced acetylcholine release from embryonic (E12 and E18) chick dorsal root ganglia explants at 3 and 7 days in culture was investigated using a chemiluminescent procedure. A basal release ranging from 2.4 to 13.8 pm/ganglion/5 min was detected. Potassium application always induced a significant increase over the basal release. The acetylcholine levels measured in E12 explants were 6.3 and 38.4 pm/ganglion/5 min at 3 and 7 days in culture, respectively, while in E18 explant cultures they were 10.7 and 15.5 pm/ganglion/5 min. In experiments performed in the absence of extracellular Ca2+ ions, acetylcholine release, both basal and potassium-induced, was abolished and it was reduced by cholinergic antagonists. A morphometric analysis of explant fibre length suggested that acetylcholine release was directly correlated to neurite extension. Moreover, treatment of E12 dorsal root ganglion-dissociated cell cultures with carbachol as cholinergic receptor agonist was shown to induce a higher neurite outgrowth compared with untreated cultures. The concomitant treatment with carbachol and the antagonists at muscarinic receptors atropine and at nicotinic receptors mecamylamine counteracted the increase in fibre outgrowth. Although the present data have not established whether acetylcholine is released by neurones or glial cells, these observations provide the first evidence of a regulated release of acetylcholine in dorsal root ganglia.

  8. Pulmonary inflammation is regulated by the levels of the vesicular acetylcholine transporter.

    Directory of Open Access Journals (Sweden)

    Nathalia M Pinheiro

    Full Text Available Acetylcholine (ACh plays a crucial role in physiological responses of both the central and the peripheral nervous system. Moreover, ACh was described as an anti-inflammatory mediator involved in the suppression of exacerbated innate response and cytokine release in various organs. However, the specific contributions of endogenous release ACh for inflammatory responses in the lung are not well understood. To address this question we have used mice with reduced levels of the vesicular acetylcholine transporter (VAChT, a protein required for ACh storage in secretory vesicles. VAChT deficiency induced airway inflammation with enhanced TNF-α and IL-4 content, but not IL-6, IL-13 and IL-10 quantified by ELISA. Mice with decreased levels of VAChT presented increased collagen and elastic fibers deposition in airway walls which was consistent with an increase in inflammatory cells positive to MMP-9 and TIMP-1 in the lung. In vivo lung function evaluation showed airway hyperresponsiveness to methacholine in mutant mice. The expression of nuclear factor-kappa B (p65-NF-kB in lung of VAChT-deficient mice were higher than in wild-type mice, whereas a decreased expression of janus-kinase 2 (JAK2 was observed in the lung of mutant animals. Our findings show the first evidence that cholinergic deficiency impaired lung function and produce local inflammation. Our data supports the notion that cholinergic system modulates airway inflammation by modulation of JAK2 and NF-kB pathway. We proposed that intact cholinergic pathway is necessary to maintain the lung homeostasis.

  9. Effects of Acetylcholine, Cytochalasin B and Amiprophos methyl on Phloem Transport in Radish (Raphanus sativas)

    Institute of Scientific and Technical Information of China (English)

    Chong-Jun Yang; Zhi-Xi Zhai; Yu-Hai Guo; Peng Gao

    2007-01-01

    We investigated the role of the "sieve tube-companion cell complex" lining the tube periphery, particularly the microfilament and microtubule, in assisting the pushing of phloem sap flow. We made a simple phloem transport system with a living radish plant, in which the conducting channel was exposed for local treatment with chemicals that are effective in modulating protoplasmic movement (acetylcholine, (ACh) a neurotransmitter in animals and insects; cytochalasin B, (CB) a specific inhibitor of many cellular responses that are mediated by microfilament systems and amiprophos-methyl, (APM) a specific inhibitor of many cellular responses that are mediated by microtubule systems). Their effects on phloem transport were estimated by two experimental devices: (i) a comparison of changes in the amount of assimilates in terms of carbohydrates and 14C-labeled photosynthetic production that is left in the leaf blade of treated plants; and (ii) distribution patterns of 14C-labeled leaf assimilates in the phloem transport system. The results indicate that CB and APM markedly inhibited the transfer of photosynthetic product from leaf to root via the leaf vein, while ACh enhanced the transfer of photosynthetic product in low concentrations (5.0×10-4 mol/L) but inhibited it in higher concentrations (2.0×10-3 mol/L) from leaf to root via the leaf vein. Autoradiograph imaging clearly reveals that ACh treatment is more effective than the control, and both CB and APM treatments effectively inhibit the passage of radioactive assimilates. All of the results support the postulation that the peripheral protoplasm in the sieve tube serves not only as a passive semi-permeable membrane, but is also directly involved in phloem transport.

  10. Real-time detection of acetylcholine release from the human endocrine pancreas.

    Science.gov (United States)

    Rodriguez-Diaz, Rayner; Dando, Robin; Huang, Y Anthony; Berggren, Per-Olof; Roper, Stephen D; Caicedo, Alejandro

    2012-05-03

    Neurons, sensory cells and endocrine cells secrete neurotransmitters and hormones to communicate with other cells and to coordinate organ and system function. Validation that a substance is used as an extracellular signaling molecule by a given cell requires a direct demonstration of its secretion. In this protocol we describe the use of biosensor cells to detect neurotransmitter release from endocrine cells in real-time. Chinese hamster ovary cells expressing the muscarinic acetylcholine (ACh) receptor M3 were used as ACh biosensors to record ACh release from human pancreatic islets. We show how ACh biosensors loaded with the Ca(2+) indicator Fura-2 and pressed against isolated human pancreatic islets allow the detection of ACh release. The biosensor approach is simple; the Ca(2+) signal generated in the biosensor cell reflects the presence (release) of a neurotransmitter. The technique is versatile because biosensor cells expressing a variety of receptors can be used in many applications. The protocol takes ∼3 h.

  11. Serotonin increases cilia-driven particle transport via an acetylcholine-independent pathway in the mouse trachea.

    Directory of Open Access Journals (Sweden)

    Peter König

    Full Text Available BACKGROUND: Mucociliary clearance in the airways is driven by the coordinated beating of ciliated cells. Classical neuromediators such as noradrenalin and acetylcholine increase ciliary beat frequency and thus cilia-driven transport. Despite the fact that the neuromediator serotonin is ciliostimulatory in invertebrates and has been implied in releasing acetylcholine from the airway epithelium, its role in regulating cilia function in vertebrate airways is not established. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects of serotonin on ciliary beat frequency and cilia-driven particle transport in the acutely excised submerged mouse trachea and determined the sources of serotonin in this tissue by immunohistochemistry. Serotonin (100 microM increased cilary beat frequency (8.9+/-1.2 Hz to 17.0+/-2.7 Hz and particle transport speed (38.9+/-4.6 microm/s to 83.4+/-8.3 microm/s to an extent that was comparable to a supramaximal dose of ATP. The increase in particle transport speed was totally prevented by methysergide (100 microM. Blockade of muscarinic receptors by atropine (1 microM did not reduce the effect of serotonin, although it was effective in preventing the increase in particle transport speed mediated by muscarine (100 microM. Immunohistochemistry demonstrated serotonin in mast cells pointing towards mast cells and platelets as possible endogenous sources of serotonin. CONCLUSIONS/SIGNIFICANCE: These results indicate that serotonin is a likely endogenous mediator that can increase cilia-driven transport independent from acetylcholine during activation of mast cells and platelets.

  12. Serotonin Increases Cilia-Driven Particle Transport via an Acetylcholine-Independent Pathway in the Mouse Trachea

    Science.gov (United States)

    Krasteva, Gabriela; Kummer, Wolfgang

    2009-01-01

    Background Mucociliary clearance in the airways is driven by the coordinated beating of ciliated cells. Classical neuromediators such as noradrenalin and acetylcholine increase ciliary beat frequency and thus cilia-driven transport. Despite the fact that the neuromediator serotonin is ciliostimulatory in invertebrates and has been implied in releasing acetylcholine from the airway epithelium, its role in regulating cilia function in vertebrate airways is not established. Methodology/Principal Findings We examined the effects of serotonin on ciliary beat frequency and cilia-driven particle transport in the acutely excised submerged mouse trachea and determined the sources of serotonin in this tissue by immunohistochemistry. Serotonin (100 µM) increased cilary beat frequency (8.9±1.2 Hz to 17.0±2.7 Hz) and particle transport speed (38.9±4.6 µm/s to 83.4±8.3 µm/s) to an extent that was comparable to a supramaximal dose of ATP. The increase in particle transport speed was totally prevented by methysergide (100 µM). Blockade of muscarinic receptors by atropine (1 µM) did not reduce the effect of serotonin, although it was effective in preventing the increase in particle transport speed mediated by muscarine (100 µM). Immunohistochemistry demonstrated serotonin in mast cells pointing towards mast cells and platelets as possible endogenous sources of serotonin. Conclusions/Significance These results indicate that serotonin is a likely endogenous mediator that can increase cilia-driven transport independent from acetylcholine during activation of mast cells and platelets. PMID:19290057

  13. Critical Evaluation of Acetylcholine Determination in Rat Brain Microdialysates using Ion-Pair Liquid Chromatography with Amperometric Detection

    Directory of Open Access Journals (Sweden)

    Yvette Michotte

    2008-08-01

    Full Text Available Liquid chromatography with amperometric detection remains the most widely used method for acetylcholine quantification in microdialysis samples. Separation of acetylcholine from choline and other matrix components on a microbore chromatographic column (1 mm internal diameter, conversion of acetylcholine in an immobilized enzyme reactor and detection of the produced hydrogen peroxide on a horseradish peroxidase redox polymer coated glassy carbon electrode, achieves sufficient sensitivity for acetylcholine quantification in rat brain microdialysates. However, a thourough validation within the concentration range required for this application has not been carried out before. Furthermore, a rapid degradation of the chromatographic columns and enzyme systems have been reported. In the present study an ion-pair liquid chromatography assay with amperometric detection was validated and its long-term stability evaluated. Working at pH 6.5 dramatically increased chromatographic stability without a loss in sensitivity compared to higher pH values. The lower limit of quantification of the method was 0.3 nM. At this concentration the repeatability was 15.7%, the inter-day precision 8.7% and the accuracy 103.6%. The chromatographic column was stable over 4 months, the immobilized enzyme reactor up to 2-3 months and the enzyme coating of the amperometric detector up to 1-2 months. The concentration of acetylcholine in 30 μl microdialysates obtained under basal conditions from the hippocampus of freely moving rats was 0.40 ± 0.12 nM (mean ± SD, n = 30. The present method is therefore suitable for acetylcholine determination in rat brain microdialysates.

  14. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    Directory of Open Access Journals (Sweden)

    Jake Bedore

    Full Text Available Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina.A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5 deletion of VAChT (VAChTSix3-Cre-flox/flox and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses.This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  15. Immuno-detection of OCTN1 (SLC22A4) in HeLa cells and characterization of transport function.

    Science.gov (United States)

    Pochini, Lorena; Scalise, Mariafrancesca; Indiveri, Cesare

    2015-11-01

    OCTN1 was immuno-detected in the cervical cancer cell HeLa, in which the complete pattern of acetylcholine metabolizing enzymes is expressed. Comparison of immuno-staining intensity of HeLa OCTN1 with the purified recombinant human OCTN1 allowed measuring the specific OCTN1 concentration in the HeLa cell extract and, hence calculating the HeLa OCTN1 specific transport activity that was about 10 nmol×min(-1)×mg protein(-1), measured as uptake of [(3)H]acetylcholine in proteoliposomes reconstituted with HeLa extract. This value was very similar to the specific activity of the recombinant protein. Acetylcholine transport was suppressed by incubation of the protein or proteoliposomes with the anti-OCTN1 antibody and was strongly inhibited by PLP and MTSEA, known inhibitors of OCTN1. The absence of ATP in the internal side of proteoliposomes strongly impaired transport function of both the HeLa and, as expected, the recombinant OCTN1. HeLa OCTN1 was inhibited by spermine, NaCl (Na(+)), TEA, γ-butyrobetaine, choline, acetylcarnitine and ipratropium but not by neostigmine. Besides acetylcholine, choline was taken up by HeLa OCTN1 proteoliposomes. The transporter catalyzed also acetylcholine and choline efflux which, differently from uptake, was not inhibited by MTSEA. Time course of [(3)H]acetylcholine uptake in intact HeLa cells was measured. As in proteoliposomes, acetylcholine transport in intact cells was inhibited by TEA and NaCl. Efflux of [(3)H]acetylcholine occurred in intact cells, as well. The experimental data concur in demonstrating a role of OCTN1 in transporting acetylcholine and choline in HeLa cells.

  16. Clinical significance of detection of antibodies to fetal and adult acetylcholine receptors in myasthenia gravis

    Institute of Scientific and Technical Information of China (English)

    Qi-Guang Shi; Zhi-Hong Wang; Xiao-Wei Ma; Da-Qi Zhang; Chun-Sheng Yang; Fu-Dong Shi; Li Yang

    2012-01-01

    Objective To evaluate the frequency,distribution and clinical significance of the antibodies to the fetal and/or adult acetylcholine receptor (AChR) in patients with myasthenia gravis (MG).Methods AChR antibodies were detected by cell-based assay in the serum of ocular MG (OMG) (n =90) and generalized MG (GMG) patients (n =110).The fetaltype (2α∶ β∶ γ∶ δ) and adult-type (2α∶ β∶ ε∶ δ) AChR were used as antigens,and their relevance to disease presentation was assessed.Results The overall frequencies of anti-adult and anti-fetal AChR antibodies were similar in all 200 patients examined,with 14 having serum specific to the AChR-γ subunit,and 22 to the AChR-ε subunit.The overall sensitivity when using the fetal and adult AChR antibodies was higher than that when using the fetal AChR antibody only (P =0.015).Compared with OMG patients,the mean age at disease onset and the positive ratio of antibodies to both isoforms of the AChR were significantly higher in patients who subsequently progressed to GMG.Older patients and patients with both anti-fetal and anti-adult AChR antibodies had a greater risk for developing generalized disease [odds ratio (OR),1.03;95% confidence interval (CI),1.01-1.06 and OR,5.09;95% CI,2.23-11.62].Conclusion Using both fetal-and adulttype AChRs as the antigens may be more sensitive than using either subtype.Patients with serum specific to both isoforms are at a greater risk of progressing to GMG.Patients with disease onset at an advanced age appear to have a higher frequency of GMG conversion.

  17. Ion Transport in Human Pancreatic Duct Epithelium, Capan-1 Cells, Is Regulated by Secretin, VIP, Acetylcholine, and Purinergic Receptors

    DEFF Research Database (Denmark)

    Wang, Jing; Novak, Ivana

    2013-01-01

    OBJECTIVES: The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular, puriner......OBJECTIVES: The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular......, purinergic receptors, and determine their effects on ion transport. METHODS: Human adenocarcinoma cell line Capan-1 cells were grown on permeable supports and set in Ussing chambers for electrophysiological recordings. Transepithelial voltage (Vte), resistance, and short-circuit currents (Isc) were measured...... in response to agonists. RESULTS: Secretin, vasoactive intestinal peptide (VIP), acetylcholine, forskolin, ionomycin, adenosine 5'-triphosphate (ATP), uridine 5'-triphosphate (UTP), 3'-O-(4-benzoyl)benzoyl ATP, and adenosine induced lumen negative Vte and Isc. These changes were consistent with anion...

  18. A new {sup 18}F-labeled fluoroacetylmorpholino derivative of vesamicol for neuroimaging of the vesicular acetylcholine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Sorger, Dietlind [Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig (Germany)], E-mail: sord@medizin.uni-leipzig.de; Scheunemann, Matthias [Institute of Interdisciplinary Isotope Research, 04318 Leipzig (Germany); Grossmann, Udo [Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig (Germany); Fischer, Steffen; Vercouille, Johnny; Hiller, Achim; Wenzel, Barbara [Institute of Interdisciplinary Isotope Research, 04318 Leipzig (Germany); Roghani, Ali [Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 39430 (United States); Schliebs, Reinhard [Paul-Flechsig Institute of Brain Research, University of Leipzig, 04109 Leipzig (Germany); Brust, Peter [Institute of Interdisciplinary Isotope Research, 04318 Leipzig (Germany); Sabri, Osama [Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig (Germany); Steinbach, Joerg [Institute of Interdisciplinary Isotope Research, 04318 Leipzig (Germany)

    2008-02-15

    With the aim of producing selective radiotracers for in vivo imaging of the vesicular acetylcholine transporter (VAChT) using positron mission tomography (PET), here, we report synthesis and analysis of a new class of conformationally constrained vesamicol analogues with moderate lipophilicity. The sequential ring opening on trans-1,4-cyclohexadiene dioxide enabled an approach to synthesize 6-arylpiperidino-octahydrobenzo[1,4]oxazine-7-ols [morpholino vesamicols]. The radiosynthesis of the [{sup 18}F]fluoroacetyl-substituted derivative ([{sup 18}F]FAMV) was achieved starting from a corresponding bromo precursor [2-Bromo-1-[7-hydroxy-6-(4-phenyl-piperidin-1-yl)-octahydro-benzo[1,4] oxazin-4-yl]-ethanone] and using a modified commercial computer-controlled module system with a radiochemical yield of 27{+-}4%, a high radiochemical purity (99%) and a specific activity of 35 GBq/{mu}mol. In competitive binding assays using a PC12 cell line overexpressing VAChT and [{sup 3}H]-(-) vesamicol, 2-fluoro-1-[7-hydroxy-6-(4-phenyl-piperidin-1-yl)-octahydro-benzo[1,4] oxazin-4yl]-ethanone (FAMV) demonstrated a high selectivity for binding to VAChT (K{sub i}: 39.9{+-}5.9 nM) when compared to its binding to sigma{sub 1/2} receptors (K{sub i}>1500 nM). The compound showed a moderate lipophilicity (logD{sub (pH7)}=1.9) and a plasma protein binding of 49%. The brain uptake of [{sup 18}F]FAMV was about 0.1% injected dose per gram at 5 min after injection and decreased continuously with time. Notably, an increasing accumulation of radioactivity in the lateral brain ventricles was observed. After 1 h, the accumulation of [{sup 18}F]FAMV, expressed as ratio to the cerebellum, was 4.5 for the striatum, 2.0 for the cortical and 1.5 for the hippocampal regions, measured on brain slices using ex vivo autoradiography. At the present time, 75% of [{sup 18}F]FAMV in the plasma was shown to be metabolized to various hydrophilic compounds, as detected by high-performance liquid chromatography

  19. Differential impact of genetically modulated choline transporter expression on the release of endogenous versus newly synthesized acetylcholine.

    Science.gov (United States)

    Iwamoto, Hideki; Calcutt, M Wade; Blakely, Randy D

    2016-09-01

    The efficient import of choline into cholinergic nerve terminals by the presynaptic, high-affinity choline transporter (CHT, SLC5A7) dictates the capacity for acetylcholine (ACh) synthesis and release. Tissue levels of ACh are significantly reduced in mice heterozygous for a loss of function mutation in Slc5a7 (HET, CHT(+/-)), but significantly elevated in overexpressing, Slc5a7 BAC-transgenic mice (BAC). Since the readily-releasable pool of ACh is thought to constitute a small fraction of the total ACh pool, these genotype-dependent changes raised the question as to whether CHT expression or activity might preferentially influence the size of reserve pool ACh vesicles. In the current study, we approached this question by evaluating CHT genotype effects on the release of ACh from suprafused mouse forebrain slices. We treated slices from HET, BAC or wildtype (WT) controls with elevated K(+) and monitored release of both newly synthesized and storage pools of ACh. Newly synthesized ACh produced following uptake of [(3)H]choline was quantified by scintillation spectrometry whereas release of endogenous ACh storage pools was quantified by an HPLC-MS approach, from the same samples. Whereas endogenous ACh release scaled with CHT gene dosage, preloaded [(3)H]ACh release displayed no significant genotype dependence. Our findings suggest that CHT protein levels preferentially impact the capacity for ACh release afforded by mobilization of reserve pool vesicles.

  20. Highly Selective and Sensitive Detection of Acetylcholine Using Receptor-Modified Single-Walled Carbon Nanotube Sensors

    Science.gov (United States)

    Xu, Shihong; Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2015-03-01

    Acetylcholine (ACh) is a neurotransmitter in a human central nervous system and is related to various neural functions such as memory, learning and muscle contractions. Dysfunctional ACh regulations in a brain can induce several neuropsychiatric diseases such as Alzheimer's disease, Parkinson's disease and myasthenia gravis. In researching such diseases, it is important to measure the concentration of ACh in the extracellular fluid of the brain. Herein, we developed a highly sensitive and selective ACh sensor based on single-walled carbon nanotube-field effect transistors (swCNT-FETs). In our work, M1 mAChR protein, an ACh receptor, was expressed in E.coli and coated on swCNT-FETs with lipid membranes. Here, the binding of ACh onto the receptors could be detected by monitoring the change of electrical currents in the underlying swCNT-FETs, allowing the real-time detection of ACh at a 100 pM concentration. Furthermore, our sensor could selectively detect ACh from other neurotransmitters. This is the first report of the real-time sensing of ACh utilizing specific binding between the ACh and M1 mAChR, and it may lead to breakthroughs in various biomedical applications such as drug screening and disease diagnosis.

  1. Colorimetric microtiter plate receptor-binding assay for the detection of freshwater and marine neurotoxins targeting the nicotinic acetylcholine receptors

    Science.gov (United States)

    Rubio, Fernando; Kamp, Lisa; Carpino, Justin; Faltin, Erin; Loftin, Keith A.; Molgó, Jordi; Aráoz, Rómulo

    2014-01-01

    Anatoxin-a and homoanatoxin-a, produced by cyanobacteria, are agonists of nicotinic acetylcholine receptors (nAChRs). Pinnatoxins, spirolides, and gymnodimines, produced by dinoflagellates, are antagonists of nAChRs. In this study we describe the development and validation of a competitive colorimetric, high throughput functional assay based on the mechanism of action of freshwater and marine toxins against nAChRs. Torpedo electrocyte membranes (rich in muscle-type nAChR) were immobilized and stabilized on the surface of 96-well microtiter plates. Biotinylated α-bungarotoxin (the tracer) and streptavidin-horseradish peroxidase (the detector) enabled the detection and quantitation of anatoxin-a in surface waters and cyclic imine toxins in shellfish extracts that were obtained from different locations across the US. The method compares favorably to LC/MS/MS and provides accurate results for anatoxin-a and cyclic imine toxins monitoring. Study of common constituents at the concentrations normally found in drinking and environmental waters, as well as the tolerance to pH, salt, solvents, organic and inorganic compounds did not significantly affect toxin detection. The assay allowed the simultaneous analysis of up to 25 samples within 3.5 h and it is well suited for on-site or laboratory monitoring of low levels of toxins in drinking, surface, and ground water as well as in shellfish extracts.

  2. In vivo release of non-neuronal acetylcholine from the human skin as measured by dermal microdialysis: effect of botulinum toxin.

    Science.gov (United States)

    Schlereth, Tanja; Birklein, Frank; an Haack, Katrin; Schiffmann, Susanne; Kilbinger, Heinz; Kirkpatrick, Charles James; Wessler, Ignaz

    2006-01-01

    1.--Acetylcholine is synthesized in the majority of non-neuronal cells, for example in human skin. In the present experiments, the in vivo release of acetylcholine was measured by dermal microdialysis. 2.--Two microdialysis membranes were inserted intradermally at the medial shank of volunteers. Physiological saline containing 1 muM neostigmine was perfused at a constant rate of 4 microl min(-1) and the effluent was collected in six subsequent 20 min periods. Acetylcholine was measured by high-pressure liquid chromatography (HPLC) combined with bioreactors and electrochemical detection. 3.--Analysis of the effluent by HPLC showed an acetylcholine peak that disappeared, when the analytical column was packed with acetylcholine-specific esterase, confirming the presence of acetylcholine. 4.--In the absence of neostigmine, 71+/-51 pmol acetylcholine (n=4) was found during a 120 min period. The amount increased to 183+/-43 pmol (n=34), when the perfusion medium contained 1 microM neostigmine. 5.--Injection of 100 MU botulinum toxin subcutaneously blocked sweating completely, but the release of acetylcholine was not affected (botulinum toxin treated skin: 116+/-70 pmol acetylcholine/120 min; untreated skin: 50+/-20 pmol; n=4). 6.--Quinine (1 mM), inhibitor of organic cation transporters, and carnitine (0.1 mM), substrate of the Na(+)-dependent carnitine transporter OCTN2, tended to reduce acetylcholine release (by 40%, not significant). 7.--Our experiments demonstrate, for the first time, the in vivo release of non-neuronal acetylcholine in human skin. Organic cation transporters are not predominantly involved in the release of non-neuronal acetylcholine from the human skin.

  3. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    Science.gov (United States)

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location.

  4. Positron emission tomography imaging of (2R,3R)-5-[{sup 18}F]fluoroethoxybenzovesamicol in rat and monkey brain: a radioligand for the vesicular acetylcholine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Kilbourn, Michael R. [Division of Nuclear Medicine, Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109 (United States)], E-mail: mkilbour@umich.edu; Hockley, Brian; Lee, Lihsueh; Sherman, Phillip; Quesada, Carole; Frey, Kirk A.; Koeppe, Robert A. [Division of Nuclear Medicine, Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109 (United States)

    2009-07-15

    Introduction: The regional brain distribution of (2R,3R)-5-[{sup 18}F]fluoroethoxy-benzovesamicol ((-)-[{sup 18}F]FEOBV), a radioligand for the vesicular acetylcholine transporter (VAChT), was examined in vivo in mice, rats and rhesus monkeys. Methods: Regional brain distributions of (-)-[{sup 18}F]FEOBV in mice were determined using ex vivo dissection. MicroPET imaging was used to determine the regional brain pharmacokinetics of the radioligand in rat and rhesus monkey brains. Results: In all three species, clear heterogeneous regional brain distributions were obtained, with the rank order of brain tissues (striatum>thalamus>cortex>cerebellum) consistent with the distribution of cholinergic nerve terminals containing the VAChT. Conclusions: (-)-[{sup 18}F]FEOBV remains a viable candidate for further development as an in vivo imaging agent for positron emission tomography (PET) studies of the VAChT in the human brain.

  5. Vesicular acetylcholine transporter knock down-mice are more susceptible to inflammation, c-Fos expression and sickness behavior induced by lipopolysaccharide.

    Science.gov (United States)

    Leite, Hércules Ribeiro; Oliveira-Lima, Onésia Cristina de; Pereira, Luciana de Melo; Oliveira, Vinícius Elias de Moura; Prado, Vania Ferreira; Prado, Marco Antônio Máximo; Pereira, Grace Schenatto; Massensini, André Ricardo

    2016-10-01

    In addition to the well-known functions as a neurotransmitter, acetylcholine (ACh) can modulate of the immune system. Nonetheless, how endogenous ACh release inflammatory responses is still not clear. To address this question, we took advantage of an animal model with a decreased ACh release due a reduction (knockdown) in vesicular acetylcholine transporter (VAChT) expression (VAChT-KD(HOM)). These animals were challenged with lipopolysaccharide (LPS). Afterwards, we evaluated sickness behavior and quantified systemic and cerebral inflammation as well as neuronal activation in the dorsal vagal complex (DVC). VAChT-KD(HOM) mice that were injected with LPS (10mg/kg) showed increased mortality rate as compared to control mice. In line with this result, a low dose of LPS (0.1mg/kg) increased the levels of pro-inflammatory (TNF-α, IL-1β, and IL-6) and anti-inflammatory (IL-10) cytokines in the spleen and brain of VAChT-KD(HOM) mice in comparison with controls. Similarly, serum levels of TNF-α and IL-6 were increased in VAChT-KD(HOM) mice. This excessive cytokine production was completely prevented by administration of a nicotinic receptor agonist (0.4mg/kg) prior to the LPS injection. Three hours after the LPS injection, c-Fos expression increased in the DVC region of VAChT-KD(HOM) mice compared to controls. In addition, VAChT-KD(HOM) mice showed behavioral changes such as lowered locomotor and exploratory activity and reduced social interaction after the LPS challenge, when compared to control mice. Taken together, our results show that the decreased ability to release ACh exacerbates systemic and cerebral inflammation and promotes neural activation and behavioral changes induced by LPS. In conclusion, our findings support the notion that activity of cholinergic pathways, which can be modulated by VAChT expression, controls inflammatory and neural responses to LPS challenge.

  6. Acetylcholine receptor antibody

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood ...

  7. Stimulation of α7 nicotinic acetylcholine receptor regulates glutamate transporter GLAST via basic fibroblast growth factor production in cultured cortical microglia.

    Science.gov (United States)

    Morioka, Norimitsu; Harano, Sakura; Tokuhara, Masato; Idenoshita, Yuko; Zhang, Fang Fang; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2015-11-01

    The α7 nicotinic acetylcholine (nACh) receptor expressed in microglia has a crucial role in neuroprotection. Simulation of α7 nACh receptor leads to increased expression of glutamate/aspartate transporter (GLAST), which in turn decreases synaptic glutamate levels. However, the upregulation of GLAST in cultured rat cortical microglia appears long after (over 18 h) stimulation of the α7 nACh receptor with nicotine. Thus, the current study elucidated the pathway responsible for the induction of GLAST expression in cultured cortical microglia. Nicotine-induced GLAST mRNA expression was significantly inhibited by cycloheximide pretreatment, indicating that a protein intermediary, such as a growth factor, is required for GLAST expression. The expression of fibroblast growth factor-2 (FGF-2) mRNA in cortical microglia was significantly increased 6 and 12h after treatment with nicotine, and this increase was potently inhibited by pretreatment with methyllycaconitine, a selective α7 nACh receptor antagonist. The treatment with nicotine also significantly increased FGF-2 protein expression. Furthermore, treatment with recombinant FGF-2 increased GLAST mRNA, protein expression and (14)C-glutamate uptake, a functional measurement of GLAST activity. Conversely, pretreatment with PD173074, an inhibitor of FGF receptor (FGFR) tyrosine kinase, significantly prevented the nicotine-induced expression of GLAST mRNA, its protein and (14)C-glutamate uptake. Reverse transcription polymerase chain reaction confirmed FGFR1 mRNA expression was confined to cultured cortical microglia. Together, the current findings demonstrate that the neuroprotective effect of activation of microglial α7 nACh receptors could be due to the expression of FGF-2, which in turn increases GLAST expression, thereby clearing glutamate from synapse and decreasing glutamate neurotransmission.

  8. In Vivo Differences between Two Optical Isomers of Radioiodinated o-iodo-trans-decalinvesamicol for Use as a Radioligand for the Vesicular Acetylcholine Transporter.

    Directory of Open Access Journals (Sweden)

    Izumi Uno

    Full Text Available To develop a superior VAChT imaging probe for SPECT, radiolabeled (--OIDV and (+-OIDV were isolated and investigated for differences in their binding affinity and selectivity to VAChT, as well as their in vivo activities.Radioiodinated o-iodo-trans-decalinvesamicol ([125I]OIDV has a high binding affinity for vesicular acetylcholine transporter (VAChT both in vitro and in vivo. Racemic [125I]OIDV was separated into its two optical isomers (--[125I]OIDV and (+-[125I]OIDV by HPLC. To investigate VAChT binding affinity (Ki of two OIDV isomers, in vitro binding assays were performed. In vivo biodistribution study of each [125I]OIDV isomer in blood, brain regions and major organs of rats was performed at 2,30 and 60 min post-injection. In vivo blocking study were performed to reveal the binding selectivity of two [125I]OIDV isomers to VAChT in vivo. Ex vivo autoradiography were performed to reveal the regional brain distribution of two [125I]OIDV isomers and (--[123I]OIDV for SPECT at 60 min postinjection.VAChT binding affinity (Ki of (--[125I]OIDV and (+-[125I]OIDV was 22.1 nM and 79.0 nM, respectively. At 2 min post-injection, accumulation of (--[125I]OIDV was the same as that of (+-[125I]OIDV. However, (+-[125I]OIDV clearance from the brain was faster than (--[125I]OIDV. At 30 min post-injection, accumulation of (--[125I]OIDV (0.62 ± 0.10%ID/g was higher than (+-[125I]OIDV (0.46 ± 0.07%ID/g in the cortex. Inhibition of OIDV binding showed that (--[125I]OIDV was selectively accumulated in regions known to express VAChT in the rat brain, and ex vivo autoradiography further confirmed these results showing similar accumulation of (--[125I]OIDV in these regions. Furthermore, (--[123I]OIDV for SPECT showed the same regional brain distribution as (--[125I]OIDV.These results suggest that radioiodinated (--OIDV may be a potentially useful tool for studying presynaptic cholinergic neurons in the brain.

  9. Acetylcholinesterase and Acetylcholine Receptor

    Science.gov (United States)

    1989-01-30

    placing the ester group at th- estera - tic site. K. values for AcCh and DMBAc are similar, indicating no substantial coulombic effe,-t, and the...V. P. (1950) Biochim. BioDhys. Acta 4, 543-558. 2. "Studies on Cholinesterase. VII. The Active Surface of Acetylcholine Esterase Derived from Effects...L., Chang, H. W., and Chen-, Y. T. (1972) J. Biol. Chem. 247, 1555-1565. 42. "Rapid and Complete Purification of Acetylcholin- esterases of Electric

  10. Combined α7 nicotinic acetylcholine receptor agonism and partial serotonin transporter inhibition produce antidepressant-like effects in the mouse forced swim and tail suspension tests

    DEFF Research Database (Denmark)

    Andreasen, Jesper T; Redrobe, John P; Nielsen, Elsebet Ø

    2012-01-01

    Emerging evidence points to an involvement of nicotinic acetylcholine receptors (nAChRs) in major depression. Nicotine improves symptoms of depression in humans and shows antidepressant-like effects in rodents. Monoamine release is facilitated by nAChR stimulation, and nicotine-evoked serotonin (5...... represents a compound displaying the synergistic effect of α7 nAChR agonism combined with partial 5-HT reuptake inhibition previously described. The addition of α7 nAChR agonism to classical monoamine-based mechanisms may represent a novel option for the improved treatment of major depression....

  11. Towards Indoor Transportation Mode Detection using Mobile Sensing

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger; Blunck, Henrik; Kjærgaard, Mikkel Baun

    2015-01-01

    Transportation mode detection is a growing field of research, in which a variety of methods have been developed for detecting transportation modes foremost for outdoor travels. It has been employed in application areas such as public transportation, environmental footprint profiling, and context......-aware mobile assistants. For indoor travels the problem of transportation mode detection has received comparatively little attention, even though diverse transportation modes, such as biking, electric vehicles, and scooters, are used indoors, especially in large building complexes. The potential applications...... are diverse, may also extend beyond indoor variants of the above outdoor applications, and include, e.g., scheduling and progress tracking for mobile workers, management of vehicular resources, and navigation support. However, for indoor transportation mode detection, both the physical environment as well...

  12. New Insights on Plant Cell Elongation: A Role for Acetylcholine

    Directory of Open Access Journals (Sweden)

    Gian-Pietro Di Sansebastiano

    2014-03-01

    Full Text Available We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and acetylcholine treatments after transient expression of chimerical markers of volume-control related compartments such as vacuoles. Here we describe the contribution of auxin and acetylcholine to LeEXPA2 expression regulation and we support the hypothesis that a possible subcellular target of acetylcholine signal is the vesicular transport, shedding some light on the characterization of this small molecule as local mediator in the plant physiological response.

  13. PCR detection of groundwater bacteria associated with colloidal transport

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.

  14. Muscarinic acetylcholine receptor is involved in acetylcholine regulating stomatal movement

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In animal cells, action of acetylcholine depends on its binding with its two specific receptors on the plasma membrane: the nicotinic and muscarinic respectively. The present investigation has shown that agonists of muscarinic receptor (muscarine) could induce stomatal opening, while the antagonists (atropine) could block stomatal opening induced by acetylcholine. Their effects can only be realized in medium containing Ca2+, but not in medium containing K+. The results tend to reveal that the muscarinic receptor is involved in acetylcholine-induced stomatal movement.

  15. Neuroimaging of the vesicular acetylcholine transporter by a novel 4-[{sup 18}F]fluoro-benzoyl derivative of 7-hydroxy-6-(4-phenyl-piperidin-1-yl)-octahydro-benzo[1,4]oxazines

    Energy Technology Data Exchange (ETDEWEB)

    Sorger, Dietlind [Department of Nuclear Medicine, University of Leipzig, Leipzig 04103 (Germany)], E-mail: sord@medizin.uni-leipzig.de; Scheunemann, Matthias; Vercouillie, Johnny [Institute of Interdisciplinary Isotope Research, Leipzig 04318 (Germany); Grossmann, Udo [Department of Nuclear Medicine, University of Leipzig, Leipzig 04103 (Germany); Fischer, Steffen; Hiller, Achim; Wenzel, Barbara [Institute of Interdisciplinary Isotope Research, Leipzig 04318 (Germany); Roghani, Ali [Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock TX 39430 (United States); Schliebs, Reinhard [Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig 04109 (Germany); Steinbach, Joerg; Brust, Peter [Institute of Interdisciplinary Isotope Research, Leipzig 04318 (Germany); Sabri, Osama [Department of Nuclear Medicine, University of Leipzig, Leipzig 04103 (Germany)

    2009-01-15

    Phenylpiperidinyl-octahydro-benzo[1,4]oxazines represent a new class of conformationally restrained vesamicol analogues. Derived from this morpholine-fused vesamicol structure, a new fluorine-18-labeled 4-fluorobenzoyl derivative ([{sup 18}F]FBMV) was synthesized with an average specific activity of 75 GBq/{mu}mol and a radiochemical purity of 99%. The radiolabeling method included an exchange reaction of a 4-nitro group of the precursor by fluorine-18, a reduction procedure to eliminate excess of the nitro compound, followed by a high-performance liquid chromatography purification. [{sup 18}F]FBMV demonstrates (i) a moderate lipophilic character with a logD{sub pH7.0} 1.8{+-}0.10; (ii) a considerable binding affinity to the vesicular acetylcholine transporter (VAChT) (K{sub i}=27.5 nM), as determined using PC12 cells transfected with a VAChT cDNA, and a low affinity to {sigma}{sub 1,2} receptors (K{sub i} >3000 nM); (iii) a good uptake into the rat and pig brains; (iv) a typical accumulation in the VAChT-containing brain regions; and (v) an approximately 20% reduction in cortical tracer binding after a specific cholinergic lesion using 192IgG-saporin. [{sup 18}F]FBMV exhibits another PET marker within the group of vesamicol derivatives that demonstrates potentials in imaging brain cholinergic deficits, while its usefulness in clinical practice must await further investigation.

  16. Detection of the breakage of pharmaceutical tablets in pneumatic transport.

    Science.gov (United States)

    Albion, Katherine; Briens, Lauren; Briens, Cedric; Berruti, Franco

    2006-09-28

    Pneumatic transport of pharmaceutical tablets is very convenient, compact and greatly reduces contamination. A potential problem, however, is the breakage of a significant fraction of the transported tablets, causing serious product quality problems. Since the flowrate of tablets transported through a given pneumatic transport line increases with gas velocity, lines are often operated at gas velocities slightly below the velocity at which tablets break. Minor changes in operating conditions can have a large effect on the impact resistance of tablets and on the observed tablet breakage rate. Therefore, maintaining a constant gas velocity is not sufficient to keep the tablet breakage rate below an acceptable level. The objective of the present study was to develop a reliable and non-invasive on-line method for the detection of tablet breakage. Pharmaceutical acetaminophen tablets were transported pneumatically in a 0.1 m diameter pipeline consisting of a 5 m vertical and a 4.0 m horizontal section made of either re-enforced PVC or steel. The pipeline flow regime was determined by visual observation through clear pipeline sections. Tablet breakage was quantified by screening tablet samples. Acoustic measurements were recorded at different locations along the pipeline. Analysis of the signals from microphones attached to the wall of the elbow and horizontal section provided a reliable detection of conditions leading to tablet breakage.

  17. Intracoronary Acetylcholine Provocation Testing for Assessment of Coronary Vasomotor Disorders.

    Science.gov (United States)

    Ong, Peter; Athanasiadis, Anastasios; Sechtem, Udo

    2016-08-18

    Intracoronary acetylcholine provocation testing (ACH-test) is an established method for assessment of epicardial coronary artery spasm in the catheterization laboratory which was introduced more than 30 years ago. Due to the short half-life of acetylcholine it can only be applied directly into the coronary arteries. Several studies have demonstrated the safety and clinical usefulness of this test. However, acetylcholine testing is only rarely applied in the U.S. or Europe. Nevertheless, it has been shown that 62% of Caucasian patients with stable angina and unobstructed coronary arteries on coronary angiography suffer from coronary vasomotor disorders that can be diagnosed with acetylcholine testing. In recent years it has been appreciated that the ACH-test not only assesses the presence of epicardial spasm but that it can also be useful for the detection of coronary microvascular spam. In such cases no epicardial spasm is seen after injection of acetylcholine but ischemic ECG shifts are present together with a reproduction of the patient's symptoms during the test. This article describes the experience with the ACH-test and its implementation in daily clinical routine.

  18. Transportation mode detection by using smartphone sensors and machine learning

    Directory of Open Access Journals (Sweden)

    Ensar Arif Sağbaş

    2016-10-01

    Full Text Available The aim of this study is to detect transportation modes of the users by using smartphone sensors. Therefore, GPS (Global Positioning System, accelerometer and gyroscope sensor data have been collected while walking, running, cycling and travelling by bus or by car from the smartphone of the user. Sensor data were tagged with 12 second interval and 2500 pattern were obtained. 14 features were acquired from the dataset. Machine learning methods were tested on the dataset. Best result was obtained from GPS, accelerometer and gyroscope sensor combination and Random Forest method with 99.4% accuracy rate.

  19. Novel acetylcholine and carbamoylcholine analogues

    DEFF Research Database (Denmark)

    Hansen, Camilla Petrycer; Jensen, Anders Asbjørn; Christensen, Jeppe K.;

    2008-01-01

    A series of carbamoylcholine and acetylcholine analogues were synthesized and characterized pharmacologically at neuronal nicotinic acetylcholine receptors (nAChRs). Several of the compounds displayed low nanomolar binding affinities to the alpha 4beta 2 nAChR and pronounced selectivity for this ......A series of carbamoylcholine and acetylcholine analogues were synthesized and characterized pharmacologically at neuronal nicotinic acetylcholine receptors (nAChRs). Several of the compounds displayed low nanomolar binding affinities to the alpha 4beta 2 nAChR and pronounced selectivity...... for this subtype over alpha 3beta 4, alpha 4beta 4, and alpha 7 nAChRs. The high nAChR activity of carbamoylcholine analogue 5d was found to reside in its R-enantiomer, a characteristic most likely true for all other compounds in the series. Interestingly, the pronounced alpha 4beta 2 selectivities exhibited......AChR agonists published to date. Ligand-protein docking experiments using homology models of the amino-terminal domains of alpha 4beta 2 and alpha 3beta 4 nAChRs identified residues Val111(beta 2)/Ile113(beta 4), Phe119(beta 2)/Gln121(beta 4), and Thr155(alpha 4)/Ser150(alpha 3) as possible key determinants...

  20. Acetylcholine : Future research and perspectives

    NARCIS (Netherlands)

    Van der Zee, E. A.; Platt, B.; Riedel, G.

    2011-01-01

    Ever since the initial description of chemical transmission in the early part of the 20th century and the identification of acetylcholine (ACh) as the first such transmitter, interests grew to define the multiple facets of its functions. This multitude is only partially covered here, but even in the

  1. Calcium-dependent (/sup 3/H)acetylcholine release and muscarinic autoreceptors in rat cortical synaptosomes during development

    Energy Technology Data Exchange (ETDEWEB)

    Marchi, M.; Caviglia, A.; Paudice, P.; Raiteri, M.

    1983-05-01

    A number of presynaptic cholinergic parameters (high affinity (/sup 3/H)choline uptake, (/sup 3/H)acetylcholine synthesis, (/sup 3/H)acetylcholine release, and autoinhibition of (/sup 3/H)acetylcholine release mediated by muscarinic autoreceptors) were comparatively analyzed in rat brain cortex synaptosomes during postnatal development. These various functions showed a differential time course during development. At 10 days of age the release of (/sup 3/H)acetylcholine evoked by 15 mM KCl from superfused synaptosomes was Ca/sup 2 +/-dependent but insensitive to the inhibitory action of extrasynaptosomal acetylcholine. The muscarinic autoreceptors regulating acetylcholine release were clearly detectable only at 14 days, indicating that their appearance may represent a criterion of synaptic maturation more valuable than the onset of a Ca/sup 2 +/-dependent release.

  2. Specific Stimulated Uptake of Acetylcholine by Torpedo Electric Organ Synaptic Vesicles

    Science.gov (United States)

    Parsons, Stanley M.; Koenigsberger, Robert

    1980-10-01

    The specificity of acetylcholine uptake by synaptic vesicles isolated from the electric organ of Torpedo californica was studied. In the absence of cofactors, [3H]acetylcholine was taken up identically to [14C]choline in the same solution (passive uptake), and the equilibrium concentration achieved inside the vesicles was equal to the concentration outside. In the presence of MgATP, [3H]acetylcholine and [14C]choline in the same solution were taken up identically, except only about half as much of each was taken up (suppressed uptake). [3H]Acetylcholine uptake was stimulated by MgATP and HCO3 about 4-fold relative to suppressed uptake, for a net concentrative uptake of about 2:1 (stimulated uptake). Uptake of [14C]choline in the same solution remained at the suppressed level. [3H]Acetylcholine taken up under stimulated conditions migrated with vesicles containing [14C]mannitol on analytical glycerol density gradients during centrifugation. Vesicles were treated with nine protein modification reagents under mild conditions. Two reagents had no effect on, dithiothreitol potentiated, and six reagents strongly inhibited subsequent stimulated uptake of [3H]acetylcholine. The results indicate that uptake of acetylcholine is conditionally specific for the transported substrate, is carried out by the synaptic vesicles rather than a contaminant of the preparation, and requires a functional protein system containing a critical sulfhydryl group.

  3. Enzyme-linked DNA dendrimer nanosensors for acetylcholine

    Science.gov (United States)

    Walsh, Ryan; Morales, Jennifer M.; Skipwith, Christopher G.; Ruckh, Timothy T.; Clark, Heather A.

    2015-10-01

    It is currently difficult to measure small dynamics of molecules in the brain with high spatial and temporal resolution while connecting them to the bigger picture of brain function. A step towards understanding the underlying neural networks of the brain is the ability to sense discrete changes of acetylcholine within a synapse. Here we show an efficient method for generating acetylcholine-detecting nanosensors based on DNA dendrimer scaffolds that incorporate butyrylcholinesterase and fluorescein in a nanoscale arrangement. These nanosensors are selective for acetylcholine and reversibly respond to levels of acetylcholine in the neurophysiological range. This DNA dendrimer architecture has the potential to overcome current obstacles to sensing in the synaptic environment, including the nanoscale size constraints of the synapse and the ability to quantify the spatio-temporal fluctuations of neurotransmitter release. By combining the control of nanosensor architecture with the strategic placement of fluorescent reporters and enzymes, this novel nanosensor platform can facilitate the development of new selective imaging tools for neuroscience.

  4. Dose protocols of acetylcholine test in Chinese

    Institute of Scientific and Technical Information of China (English)

    向定成; 龚志华; 何建新; 洪长江; 邱建; 马骏

    2004-01-01

    @@ Acetylcholine test has been widely used clinically in several countries as a practical test provoking coronary artery spasm.1-3 Although it has also been launched recently in a few hospitals in China, the dose protocol for acetylcholine test used in these hospitals were from abroad.4,5 This study was aimed at developing a dose protocol for acetylcholine test suitable for Chinese people.

  5. Nonenzymatic all-solid-state coated wire electrode for acetylcholine determination in vitro.

    Science.gov (United States)

    He, Cheng; Wang, Zhan; Wang, You; Hu, Ruifen; Li, Guang

    2016-11-15

    A nonenzymatic all-solid-state coated wire acetylcholine electrode was investigated. Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT/PSS) as conducting polymer was coated on one end of a gold wire (0.5mm in diameter). The acetylcholine selective membrane containing heptakis(2,3,6-tri-Ο-methyl)-β-cyclodextrin as an ionophore covered the conducting polymer layer. The electrode could work stably in a pH range of 6.5-8.5 and a temperature range of 15-40°C. It covered an acetylcholine concentration range of 10(-5)-10(-1)M with a slope of 54.04±1.70mV/decade, while detection limit was 5.69±1.06µM. The selectivity, dynamic response, reproducibility and stability were evaluated. The electrode could work properly in the rat brain homogenate to detect different concentrations of acetylcholine.

  6. Branched nanotrees with immobilized acetylcholine esterase for nanobiosensor applications

    DEFF Research Database (Denmark)

    Risveden, Klas; Dick, Kimberly A; Bhand, Sunil

    2010-01-01

    A novel lab-on-a-chip nanotree enzyme reactor is demonstrated for the detection of acetylcholine. The reactors are intended for use in the RISFET (regional ion sensitive field effect transistor) nanosensor, and are constructed from gold-tipped branched nanorod structures grown on SiN(x)-covered w......A novel lab-on-a-chip nanotree enzyme reactor is demonstrated for the detection of acetylcholine. The reactors are intended for use in the RISFET (regional ion sensitive field effect transistor) nanosensor, and are constructed from gold-tipped branched nanorod structures grown on Si......N(x)-covered wafers. Two different reactors are shown: one with simple, one-dimensional nanorods and one with branched nanorod structures (nanotrees). Significantly higher enzymatic activity is found for the nanotree reactors than for the nanorod reactors, most likely due to the increased gold surface area...

  7. Molecular recognition of the neurotransmitter acetylcholine by an acetylcholine binding protein reveals determinants of binding to nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Jeppe A Olsen

    Full Text Available Despite extensive studies on nicotinic acetylcholine receptors (nAChRs and homologues, details of acetylcholine binding are not completely resolved. Here, we report the crystal structure of acetylcholine bound to the receptor homologue acetylcholine binding protein from Lymnaea stagnalis. This is the first structure of acetylcholine in a binding pocket containing all five aromatic residues conserved in all mammalian nAChRs. The ligand-protein interactions are characterized by contacts to the aromatic box formed primarily by residues on the principal side of the intersubunit binding interface (residues Tyr89, Trp143 and Tyr185. Besides these interactions on the principal side, we observe a cation-π interaction between acetylcholine and Trp53 on the complementary side and a water-mediated hydrogen bond from acetylcholine to backbone atoms of Leu102 and Met114, both of importance for anchoring acetylcholine to the complementary side. To further study the role of Trp53, we mutated the corresponding tryptophan in the two different acetylcholine-binding interfaces of the widespread α4β2 nAChR, i.e. the interfaces α4(+β2(- and α4(+α4(-. Mutation to alanine (W82A on the β2 subunit or W88A on the α4 subunit significantly altered the response to acetylcholine measured by oocyte voltage-clamp electrophysiology in both interfaces. This shows that the conserved tryptophan residue is important for the effects of ACh at α4β2 nAChRs, as also indicated by the crystal structure. The results add important details to the understanding of how this neurotransmitter exerts its action and improves the foundation for rational drug design targeting these receptors.

  8. Vadose Zone Sampling Methods for Detection of Preferential Pesticides Transport

    Science.gov (United States)

    Peranginangin, N.; Richards, B. K.; Steenhuis, T. S.

    2003-12-01

    Leaching of agricultural applied chemicals through the vadose zone is a major cause for the occurrence of agrichemicals in groundwater. Accurate soil water sampling methods are needed to ensure meaningful monitoring results, especially for soils that have significant preferential flow paths. The purpose of this study was to assess the capability and the effectiveness of various soil water sampling methods in detecting preferential transport of pesticides in a strongly-structured silty clay loam (Hudson series) soil. Soil water sampling devices tested were wick pan and gravity pan lysimeters, tile lines, porous ceramic cups, and pipe lysimeters; all installed at 45 to105 cm depth below the ground surface. A reasonable worse-case scenario was tested by applying a simulated rain storm soon after pesticides were sprayed at agronomic rates. Herbicides atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and 2,4-D (2,4-dichloro-phenoxyacetic acid) were chosen as model compounds. Chloride (KCl) tracer was used to determine spatial and temporal distribution of non-reactive solute and water as well as a basis for determining the retardation in pesticides movement. Results show that observed pesticide mobility was much greater than would be predicted by uniform flow. Under relatively high soil moisture conditions, gravity and wick pan lysimeters had comparably good collection efficiencies, whereas the wick samplers had an advantage over gravity driven sampler when the soil moisture content was below field capacity. Pipe lysimeters had breakthrough patterns that were similar to pan samplers. At small plot scale, tile line samplers tended to underestimate solute concentration because of water dilution around the samplers. The use of porous cup samplers performed poorly because of their sensitivity to local profile characteristics: only by chance can they intercept and sample the preferential flow paths that are critical to transport. Wick sampler had the least

  9. Docking to flexible nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Sander, Tommy; Bruun, Anne T; Balle, Thomas

    2010-01-01

    Computational docking to nicotinic acetylcholine receptors (nAChRs) and other members of the Cys-loop receptor family is complicated by the flexibility of the so-called C-loop. As observed in the large number of published crystal structures of the acetylcholine binding protein (AChBP), a structural...

  10. Nicotinic Acetylcholine Receptors in Sensory Cortex

    Science.gov (United States)

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  11. Effect of organophosphorus insecticides on phosphorylation of the M2 muscarinic acetylcholine receptor

    Institute of Scientific and Technical Information of China (English)

    Shuyin Li; Liming Zou; Carry Pope

    2008-01-01

    BACKGROUND: Organophosphorus insecticides may promote the accumulation of acetylcholine at synapses and the neuromuscular junction by inhibiting acetylcholinesterase activity to cause disturbance of neural signal conduction and induce a toxic reaction. Organophosphorus insecticides may act on M2 muscarinic acetylcholine receptors, whose combination with G proteins is regulated by phosphorylation of G protein-coupled receptor kinase 2.OBJECTIVE: To investigate the effects of organophosphorus insecticides on the phosphorylation of G protein-coupled receptor kinase 2-mediated M2 muscarinic acetylcholine receptors and to reveal other possible actions of organophosphorus insecticides.DESIGN, TIME AND SETTING: An observational study, which was performed in the Central Laboratory of Shenyang Medical College, and Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University from June 2002 to December 2004.METHODS: The M2 muscarinic acetylcholine receptor was extracted and purified from pig brain using affinity chromatography. Subsequently, the purified M2 muscarinic acetylcholine receptor, G protein-coupled receptor kinase 2, and [OP32] ATP were incubated with different concentrations of paraoxon and chlorpyrifos oxon together. The mixture then underwent polyacrylamide gel electrophoresis, and the gel film was dried and radioactively autographed to detect phosphorylation of the M2 muscarinic acetylcholine receptor. Finally, the radio-labeled phosphorylated M2 receptor protein band was excised for counting with an isotope liquid scintillation counter.MAIN OUTCOME MEASURES: Effects of chlorpyrifos oxon, paraoxon, chlorpyrifos, and parathion in different concentrations on the phosphorylation of the M2 muscarinic acetylcholine receptor; effects of chlorpyrifos oxon on the phosphorylation of the adrenergic receptor.CONCLUSION: Different kinds of organophosphorus insecticides have different effects on the phosphorylation of the G protein

  12. Using smart phone sensors to detect transportation modes.

    Science.gov (United States)

    Xia, Hao; Qiao, Yanyou; Jian, Jun; Chang, Yuanfei

    2014-11-04

    The proliferation of mobile smart devices has led to a rapid increase of location-based services, many of which are amassing large datasets of user trajectory information. Unfortunately, current trajectory information is not yet sufficiently rich to support classification of user transportation modes. In this paper, we propose a method that employs both the Global Positioning System and accelerometer data from smart devices to classify user outdoor transportation modes. The classified modes include walking, bicycling, and motorized transport, in addition to the motionless (stationary) state, for which we provide new depth analysis. In our classification, stationary mode has two sub-modes: stay (remaining in the same place for a prolonged time period; e.g., in a parked vehicle) and wait (remaining at a location for a short period; e.g., waiting at a red traffic light). These two sub-modes present different semantics for data mining applications. We use support vector machines with parameters that are optimized for pattern recognition. In addition, we employ ant colony optimization to reduce the dimension of features and analyze their relative importance. The resulting classification system achieves an accuracy rate of 96.31% when applied to a dataset obtained from 18 mobile users.

  13. Using Smart Phone Sensors to Detect Transportation Modes

    Directory of Open Access Journals (Sweden)

    Hao Xia

    2014-11-01

    Full Text Available The proliferation of mobile smart devices has led to a rapid increase of location-based services, many of which are amassing large datasets of user trajectory information. Unfortunately, current trajectory information is not yet sufficiently rich to support classification of user transportation modes. In this paper, we propose a method that employs both the Global Positioning System and accelerometer data from smart devices to classify user outdoor transportation modes. The classified modes include walking, bicycling, and motorized transport, in addition to the motionless (stationary state, for which we provide new depth analysis. In our classification, stationary mode has two sub-modes: stay (remaining in the same place for a prolonged time period; e.g., in a parked vehicle and wait (remaining at a location for a short period; e.g., waiting at a red traffic light. These two sub-modes present different semantics for data mining applications. We use support vector machines with parameters that are optimized for pattern recognition. In addition, we employ ant colony optimization to reduce the dimension of features and analyze their relative importance. The resulting classification system achieves an accuracy rate of 96.31% when applied to a dataset obtained from 18 mobile users.

  14. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming human beta cell function

    Science.gov (United States)

    Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M. Caroline; Fachado, Alberto; Molina, Judith; Abdulreda, Midhat; Ricordi, Camillo; Roper, Stephen D.; Berggren, Per-Olof; Caicedo, Alejandro

    2011-01-01

    Acetylcholine is a neurotransmitter that plays a major role in the function of the insulin secreting pancreatic beta cell1,2. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species1,3,4, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of the human islet provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. We anticipate these results to revise models about neural input and cholinergic signaling in the endocrine pancreas. Cholinergic signaling within the islet represents a potential therapeutic target in diabetes5, highlighting the relevance of this advance to future drug development. PMID:21685896

  15. Alcohol and nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Jinsong Tang

    2013-05-01

    Full Text Available Background The frequent co-abuse of alcohol and tobacco may suggest that they share some common neurological mechanisms. For example, nicotine acts on Nicotinic acetylcholine receptors (nAChRs in the brain to release dopamine to sustain addiction. Might nAChRs be entwined with alcohol? Objectives This review summarizes recent studies on the relationship between alcohol and nAChRs, including the role of nAChRs in molecular biological studies, genetic studies and pharmacological studies on alcohol, which indicate that nAChRs have been potently modulated by alcohol. Methods We performed a cross-referenced literature search on biological, genetic and pharmacological studies of alcohol and nAChRs. Results Molecular biological and genetic studies indicated that nAChR (genes may be important in mediating alcohol intake, but we still lack substantial evidence about how it works. Pharmacological studies proved the correlation between nAChRs and alcohol intake, and the association between nicotine and alcohol at the nAChRs. The positive findings of varenicline (a partial agonist at the _4_2 nAChR, smoking-cessation pharmaceutical treatment for alcoholism, provides a new insight for treating co-abuse of these two substances. >Conclusions Molecular biological, genetic and pharmacological studies of alcohol at the nAChR level, provide a new sight for preventing and treating the co-abuse of alcohol and nicotine. Given the important role of nAChRs in nicotine dependence, the interaction between alcohol and nAChRs would provide a new insight in finding effective pharmacological treatments, in decreasing or stopping alcohol consumption and cigarette smoking concurrently.

  16. Transportation Mode Detection Based on Permutation Entropy and Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2015-01-01

    Full Text Available With the increasing prevalence of GPS devices and mobile phones, transportation mode detection based on GPS data has been a hot topic in GPS trajectory data analysis. Transportation modes such as walking, driving, bus, and taxi denote an important characteristic of the mobile user. Longitude, latitude, speed, acceleration, and direction are usually used as features in transportation mode detection. In this paper, first, we explore the possibility of using Permutation Entropy (PE of speed, a measure of complexity and uncertainty of GPS trajectory segment, as a feature for transportation mode detection. Second, we employ Extreme Learning Machine (ELM to distinguish GPS trajectory segments of different transportation. Finally, to evaluate the performance of the proposed method, we make experiments on GeoLife dataset. Experiments results show that we can get more than 50% accuracy when only using PE as a feature to characterize trajectory sequence. PE can indeed be effectively used to detect transportation mode from GPS trajectory. The proposed method has much better accuracy and faster running time than the methods based on the other features and SVM classifier.

  17. The α7 nicotinic acetylcholine receptor complex

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds and prote......The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds...

  18. Performance Analysis of Transport Layer Basedhybrid Covert Channel Detection Engine

    Directory of Open Access Journals (Sweden)

    Anjan K

    2013-11-01

    Full Text Available Computer network is unpredictable due to information warfareand is prone to various attacks. Such attackson network compromiseson the most important attribute, the privacy. Most of such attacksare devised usingspecial communication channel called Covert Channel".The word Covert" stands for hidden or non-transparent.Network Covert Channel is concealed communication paths within legitimatenetworkcommunication that clearly violates security policies laiddown. Non-transparency in covert channel isalsoreferred to as trapdoor.A trapdoor is unintended design within legitimate communication whosemotto isleak information. Subliminal channel, a variant ofcovert channelworks similarly as network covert channelexcept that trapdoor is setin cryptographic algorithm. A composition of covert channel withsubliminalchannel is the Hybrid Covert Channel". Hybrid covert channelis the homogeneous orheterogeneous mixture of two or more variantsof covert channel either active at same instance or atdifferent instanceof time. Detecting such maliciouschannel activity plays a vital role inremoving threat tolegitimate network.In this paper, we introduce newdetection engine for hybrid covert channelin transportlayer visualized in TCP and SSL. A setup made onexperimental test bed (DE-HCC9 in RD Lab of ourdepartment. Thepurpose of this study is to introduce few performance metrics to evaluatedetection engineand also to understand the multi-trapdoor natureofcovert channel.

  19. Acetylcholine synthesis and possible functions during sea urchin development

    Directory of Open Access Journals (Sweden)

    C Angelini

    2009-06-01

    Full Text Available Cholinergic neurotransmitter system molecules were found to play a role during fertilisation and early cell cycles of a large number of invertebrate and vertebrate organisms. In this study, we investigated the presence and possible function of choline acetyltransferase (ChAT, the biosynthetic enzyme of acetylcholine in gametes of the sea urchin, Paracentrotus lividus, through localisation and functional studies. ChAT-like molecules were detected in oocytes, mature eggs and zygotes with indirect immunofluorescence methods. Positive immunoreactivity was found in the ovarian egg cytoplasm and surface as well as at the zygote surface. This suggests the eggs' capacity to autonomously synthesise acetylcholine (ACh, the signal molecule of the cholinergic system. Acetylcholinesterase (AChE, the lytic enzyme of acetylcholine was also found in ovarian eggs, with a similar distribution; however, it disappeared after fertilisation. Ultrastructural ChAT localisation in sperms, which was carried out with the immuno-gold method, showed immunoreactivity in the acrosome of unreacted sperms and at the head surface of reacted sperms. In order to verify a functional role of ACh during fertilization and sea urchin development, in vivo experiments were performed. Exposure of the eggs before fertilisation to 1 mM ACh + 1 ?M eserine caused an incomplete membrane depolarisation and consequently enhanced polyspermy, while lower concentrations of ACh caused developmental anomalies. The exposure of zygotes to 0,045 AChE Units/mL of sea water caused developmental anomalies as well, in 50% of the embryos. Altogether, these findings and other previously obtained results, suggest that the cholinergic system may subserve two different tasks during development, according to which particular type of ACh receptor is active during each temporal window. The first function, taking place in the course of fertilisation is a result of autonomously synthesised ACh in sperms, while the

  20. Nicotinic acetylcholine receptors: from basic science to therapeutics.

    Science.gov (United States)

    Hurst, Raymond; Rollema, Hans; Bertrand, Daniel

    2013-01-01

    Substantial progress in the identification of genes encoding for a large number of proteins responsible for various aspects of neurotransmitter release, postsynaptic detection and downstream signaling, has advanced our understanding of the mechanisms by which neurons communicate and interact. Nicotinic acetylcholine receptors represent a large and well-characterized family of ligand-gated ion channels that is expressed broadly throughout the central and peripheral nervous system, and in non-neuronal cells. With 16 mammalian genes identified that encode for nicotinic receptors and the ability of the subunits to form heteromeric or homomeric receptors, the repertoire of conceivable receptor subtype combinations is enormous and offers unique possibilities for the design and development of new therapeutics that target nicotinic acetylcholine receptors. The aim of this review is to provide the reader with recent insights in nicotinic acetylcholine receptors from genes, structure and function to diseases, and with the latest findings on the pharmacology of these receptors. Although so far only a few nicotinic drugs have been marketed or are in late stage development, much progress has been made in the design of novel chemical entities that are being explored for the treatment of various diseases, including addiction, depression, ADHD, cognitive deficits in schizophrenia and Alzheimer's disease, pain and inflammation. A pharmacological analysis of these compounds, including those that were discontinued, can improve our understanding of the pharmacodynamic and pharmacokinetic requirements for nicotinic 'drug-like' molecules and will reveal if hypotheses on therapies based on targeting specific nicotinic receptor subtypes have been adequately tested in the clinic.

  1. A Real-Time Pothole Detection Approach for Intelligent Transportation System

    Directory of Open Access Journals (Sweden)

    Hsiu-Wen Wang

    2015-01-01

    Full Text Available In recent years, fast economic growth and rapid technology advance have led to significant impact on the quality of traditional transport system. Intelligent transportation system (ITS, which aims to improve the transport system, has become more and more popular. Furthermore, improving the safety of traffic is an important issue of ITS, and the pothole on the road causes serious harm to drivers’ safety. Therefore, drivers’ safety may be improved with the establishment of real-time pothole detection system for sharing the pothole information. Moreover, using the mobile device to detect potholes has been more popular in recent years. This approach can detect potholes with lower cost in a comprehensive environment. This study proposes a pothole detection method based on the mobile sensing. The accelerometer data is normalized by Euler angle computation and is adopted in the pothole detection algorithm to obtain the pothole information. Moreover, the spatial interpolation method is used to reduce the location errors from global positioning system (GPS data. In experiments, the results show that the proposed approach can precisely detect potholes without false-positives, and the higher accuracy is performed by the proposed approach. Therefore, the proposed real-time pothole detection approach can be used to improve the safety of traffic for ITS.

  2. Primary Structure of Nicotinic Acetylcholine Receptor

    Science.gov (United States)

    1986-08-01

    quantities of starting material (for reviews of receptor, see Popot and Changeux, 1984; Stroud and Finer-Moore, 1985). This work led to the...Cloning of the Acetylcholine Receptor. Cold Spring Harbor Symp. on Quant. Biol. XLVIH: 71-78. 15. Popot , J-L. and Changeux, J-P. (1984) The

  3. Structural Studies of Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette S;

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for development of drugs...

  4. The Detection of Transport Land-Use Data Using Crowdsourcing Taxi Trajectory

    Science.gov (United States)

    Ai, T.; Yang, W.

    2016-06-01

    This study tries to explore the question of transport land-use change detection by large volume of vehicle trajectory data, presenting a method based on Deluanay triangulation. The whole method includes three steps. The first one is to pre-process the vehicle trajectory data including the point anomaly removing and the conversion of trajectory point to track line. Secondly, construct Deluanay triangulation within the vehicle trajectory line to detect neighborhood relation. Considering the case that some of the trajectory segments are too long, we use a interpolation measure to add more points for the improved triangulation. Thirdly, extract the transport road by cutting short triangle edge and organizing the polygon topology. We have conducted the experiment of transport land-use change discovery using the data of taxi track in Beijing City. We extract not only the transport land-use area but also the semantic information such as the transformation speed, the traffic jam distribution, the main vehicle movement direction and others. Compared with the existed transport network data, such as OpenStreet Map, our method is proved to be quick and accurate.

  5. Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride

    Science.gov (United States)

    Mutch, Michael J.; Lenahan, Patrick M.; King, Sean W.

    2016-08-01

    We report on a study of spin transport via electrically detected magnetic resonance (EDMR) and near-zero field magnetoresistance (MR) in silicon nitride films. Silicon nitrides have long been important materials in solid state electronics. Although electronic transport in these materials is not well understood, electron paramagnetic resonance studies have identified a single dominating paramagnetic defect and have also provided physical and chemical descriptions of the defects, called K centers. Our EDMR and MR measurements clearly link the near-zero field MR response to the K centers and also indicate that K center energy levels are approximately 3.1 eV above the a-SiN:H valence band edge. In addition, our results suggest an approach for the study of defect mediated spin-transport in inorganic amorphous insulators via variable electric field and variable frequency EDMR and MR which may be widely applicable.

  6. Identification and functional expression of a family of nicotinic acetylcholine receptor subunits in the central nervous system of the mollusc Lymnaea stagnalis.

    Science.gov (United States)

    van Nierop, Pim; Bertrand, Sonia; Munno, David W; Gouwenberg, Yvonne; van Minnen, Jan; Spafford, J David; Syed, Naweed I; Bertrand, Daniel; Smit, August B

    2006-01-20

    We described a family of nicotinic acetylcholine receptor (nAChR) subunits underlying cholinergic transmission in the central nervous system (CNS) of the mollusc Lymnaea stagnalis. By using degenerate PCR cloning, we identified 12 subunits that display a high sequence similarity to nAChR subunits, of which 10 are of the alpha-type, 1 is of the beta-type, and 1 was not classified because of insufficient sequence information. Heterologous expression of identified subunits confirms their capacity to form functional receptors responding to acetylcholine. The alpha-type subunits can be divided into groups that appear to underlie cation-conducting (excitatory) and anion-conducting (inhibitory) channels involved in synaptic cholinergic transmission. The expression of the Lymnaea nAChR subunits, assessed by real time quantitative PCR and in situ hybridization, indicates that it is localized to neurons and widespread in the CNS, with the number and localization of expressing neurons differing considerably between subunit types. At least 10% of the CNS neurons showed detectable nAChR subunit expression. In addition, cholinergic neurons, as indicated by the expression of the vesicular ACh transporter, comprise approximately 10% of the neurons in all ganglia. Together, our data suggested a prominent role for fast cholinergic transmission in the Lymnaea CNS by using a number of neuronal nAChR subtypes comparable with vertebrate species but with a functional complexity that may be much higher.

  7. Detecting Urban Transport Modes Using a Hybrid Knowledge Driven Framework from GPS Trajectory

    Directory of Open Access Journals (Sweden)

    Rahul Deb Das

    2016-11-01

    Full Text Available Transport mode information is essential for understanding people’s movement behavior and travel demand estimation. Current approaches extract travel information once the travel is complete. Such approaches are limited in terms of generating just-in-time information for a number of mobility based applications, e.g., real time mode specific patronage estimation. In order to detect the transport modalities from GPS trajectories, various machine learning approaches have already been explored. However, the majority of them produce only a single conclusion from a given set of evidences, ignoring the uncertainty of any mode classification. Also, the existing machine learning approaches fall short in explaining their reasoning scheme. In contrast, a fuzzy expert system can explain its reasoning scheme in a human readable format along with a provision of inferring different outcome possibilities, but lacks the adaptivity and learning ability of machine learning. In this paper, a novel hybrid knowledge driven framework is developed by integrating a fuzzy logic and a neural network to complement each other’s limitations. Thus the aim of this paper is to automate the tuning process in order to generate an intelligent hybrid model that can perform effectively in near-real time mode detection using GPS trajectory. Tests demonstrate that a hybrid knowledge driven model works better than a purely knowledge driven model and at per the machine learning models in the context of transport mode detection.

  8. Detection and characterization of uranium-humic complexes during 1D transport studies

    Energy Technology Data Exchange (ETDEWEB)

    Lesher, Emily K. [Colorado School of Mines, Golden, CO (United States). Civil and Environmental Engineering; Honeyman, Bruce D. [Colorado School of Mines, Golden, CO (United States). Civil and Environmental Engineering; Ranville, James F. [Colorado School of Mines, Golden, CO (United States). Dept. of Chemistry and Geochemistry

    2013-05-01

    The speciation and transport of uranium (VI) through porous media is highly dependent on solution conditions, the presence of complexing ligands, and the nature of the porous media. The dependency on many variables makes prediction of U transport in bench-scale experiments and in the field difficult. In particular, the identification of colloidal U phases poses a technical challenge. Transport of U in the presence and absence of natural organic matter (Suwannee River humic acid, SRHA) through silica sand and hematite coated silica sand was tested at pH 4 and 5 using static columns, where flow is controlled by gravity and residence time between advective pore volume exchanges can be strictly controlled. The column effluents were characterized by traditional techniques including ICPMS quantification of total [U] and [Fe], TOC analysis of [DOC], and pH analysis, and also by non-traditional techniques: flow field flow fractionation with online ICPMS detection (FlFFF-ICPMS) and specific UV absorbance (SUVA) characterization of effluent fractions. Key results include that the transport of U through the columns was enhanced by pre-equilibration with SRHA, and previously deposited U was remobilized by the addition of SRHA. The advanced techniques yielded important insights on the mechanisms of transport: FlFFF-ICPMS identified a U-SRHA complex as the mobile U species and directly quantified relative amounts of the complex, while specific UV absorbance (SUVA) measurements indicated a composition-based fractionation onto the porous media.

  9. Modeling Noble Gas Transport and Detection for The Comprehensive Nuclear-Test-Ban Treaty

    Science.gov (United States)

    Sun, Yunwei; Carrigan, Charles R.

    2014-03-01

    Detonation gases released by an underground nuclear test include trace amounts of 133Xe and 37Ar. In the context of the Comprehensive Nuclear Test Ban Treaty, On Site Inspection Protocol, such gases released from or sampled at the soil surface could be used to indicate the occurrence of an explosion in violation of the treaty. To better estimate the levels of detectability from an underground nuclear test (UNE), we developed mathematical models to evaluate the processes of 133Xe and 37Ar transport in fractured rock. Two models are developed respectively for representing thermal and isothermal transport. When the thermal process becomes minor under the condition of low temperature and low liquid saturation, the subsurface system is described using an isothermal and single-gas-phase transport model and barometric pumping becomes the major driving force to deliver 133Xe and 37Ar to the ground surface. A thermal test is simulated using a nonisothermal and two-phase transport model. In the model, steam production and bubble expansion are the major processes driving noble gas components to ground surface. After the temperature in the chimney drops below boiling, barometric pumping takes over the role as the major transport process.

  10. Toward Acetylcholine Sensor Devices: Facile Synthesis of 2-Cyanoresorcin[4 ] arene and Its High Affinity toward Acetylcholine

    Institute of Scientific and Technical Information of China (English)

    TAN Song-De; WEI Ying; WANG Bo; XU Zun-Le; CHEN Wen-Hua

    2003-01-01

    @@ The biological importance of acetylcholine spurs the efforts to construct its synthetic receptors with the aims to develop acetylcholine sensor devices. Among the various building blocks used to synthesize artificial acetylcholine receptors, resorcin [4 ]arenes, [1] which can be conveniently obtained from the acid-catalyzed condensation of resorcinol with aldehyde, were shown to serve as one of the most strongest synthetic receptors for choline type guests.

  11. Hybrid light transport model based bioluminescence tomography reconstruction for early gastric cancer detection

    Science.gov (United States)

    Chen, Xueli; Liang, Jimin; Hu, Hao; Qu, Xiaochao; Yang, Defu; Chen, Duofang; Zhu, Shouping; Tian, Jie

    2012-03-01

    Gastric cancer is the second cause of cancer-related death in the world, and it remains difficult to cure because it has been in late-stage once that is found. Early gastric cancer detection becomes an effective approach to decrease the gastric cancer mortality. Bioluminescence tomography (BLT) has been applied to detect early liver cancer and prostate cancer metastasis. However, the gastric cancer commonly originates from the gastric mucosa and grows outwards. The bioluminescent light will pass through a non-scattering region constructed by gastric pouch when it transports in tissues. Thus, the current BLT reconstruction algorithms based on the approximation model of radiative transfer equation are not optimal to handle this problem. To address the gastric cancer specific problem, this paper presents a novel reconstruction algorithm that uses a hybrid light transport model to describe the bioluminescent light propagation in tissues. The radiosity theory integrated with the diffusion equation to form the hybrid light transport model is utilized to describe light propagation in the non-scattering region. After the finite element discretization, the hybrid light transport model is converted into a minimization problem which fuses an l1 norm based regularization term to reveal the sparsity of bioluminescent source distribution. The performance of the reconstruction algorithm is first demonstrated with a digital mouse based simulation with the reconstruction error less than 1mm. An in situ gastric cancer-bearing nude mouse based experiment is then conducted. The primary result reveals the ability of the novel BLT reconstruction algorithm in early gastric cancer detection.

  12. Early Detection of Autism (ASD) by a Non-invasive Quick Measurement of Markedly Reduced Acetylcholine & DHEA and Increased β-Amyloid (1-42), Asbestos (Chrysotile), Titanium Dioxide, Al, Hg & often Coexisting Virus Infections (CMV, HPV 16 and 18), Bacterial Infections etc. in the Brain and Corresponding Safe Individualized Effective Treatment.

    Science.gov (United States)

    Omura, Yoshiaki; Lu, Dominic; Jones, Marilyn K; Nihrane, Ahdallah; Duvvi, Harsha; Shimotsuura, Yasuhiro; Ohki, Motomu

    2015-01-01

    A brief historical background on Autism & some of the important symptoms associated with Autism are summarized. Using strong Electro Magnetic Field Resonance Phenomenon between 2 identical molecules with identical weight (which received U.S. Patent) non-invasively & rapidly we can detect various molecules including neurotransmitters, bacteria, virus, fungus, metals & abnormal molecules. Simple non- invasive measurement of various molecules through pupils & head of diagnosed or suspected Autism patients indicated that in Autism patients following changes were often found: 1) Acetylcholine is markedly reduced; 2) Alzheimer's disease markers (i.e. β-Amyloid (1-42), Tau Protein, Apolipoprotein (Apo E4)) are markedly increased; 3) Chrysotile Asbestos is increased; 4) Titanium Dioxide (TiO2) is moderately increased; 5) Al is moderately increased; 6) Hg is moderately increased; 7) Dopamine, Serotonin & GABA are significantly reduced (up to about 1/10 of normal); 8) Often viral infections (such as CMV, HHV-6, HPV-16, HPV-18, etc.), and Bacterial infections (such as Chlamydia trachomatis, Mycobacterium TB, Borrelia Burgdorferi, etc.) coexist. Research by others on Autism spectrum disorder (ASD) shows that it is a group of complex neurodevelopmental disorders, with about 70% of ASD patients also suffering from gastro-intestinal problems. While Alzheimer disease (AD) is characterized by formation of 1) Amyloid plaques, 2) Neurofibrillary tangles inside of neurons, and 3) Loss of connections between neurons. More than 90% of AD develops in people over the age of 65. These 3 characteristics often progressively worsen over time. Although Autism Spectrum Disorder and Alzheimer's disease are completely different diseases they have some similar biochemical changes. Eight examples of such measurement & analysis are shown for comparison. Most of Autism patients improved significantly by removing the source or preventing intake of Asbestos, TiO2, Al & Hg or enhancing urinary output

  13. A Controlled Field Pilot for Testing Near Surface CO2 Detection Techniques and Transport Models

    Science.gov (United States)

    Spangler, L. H.; Dobeck, L.

    2007-12-01

    A field facility has been developed to allow controlled studies of near surface CO2transport and detection technologies. The key component of the facility is a shallow horizontal, well slotted over 70m of its length and divided into seven zones via packers with mass flow control in each individual zone. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects and those design parameters will be discussed. A wide variety of detection techniques were deployed by collaborators from Los Alamos National Lab, Lawrence Berkeley National Lab, the National Energy Technology Lab, Pacific Northwest National Lab, Lawrence Livermore National Lab and West Virginia University. Techniques included eddy covariance, soil gas measurements, hyperspectral imaging for plant stress detection, differential absorption LIDAR (both free space atmospheric and below surface soil gas), tracer studies, water sampling, stable isotope studies, and soil flux chambers. An overview of these results will be presented.

  14. Passive mass transport for direct and quantitative SERS detection using purified silica encapsulated metal nanoparticles

    Science.gov (United States)

    Shrestha, Binaya Kumar

    This thesis focuses on understanding implications of nanomaterial quality control and mass transport through internally etched silica coated nanoparticles for direct and quantitative molecular detection using surface enhanced Raman scattering (SERS). Prior to use, bare nanoparticles (partially or uncoated with silica) are removal using column chromatography to improve the quality of these nanomaterials and their SERS reproducibility. Separation of silica coated nanoparticles with two different diameters is achieved using Surfactant-free size exclusion chromatography with modest fractionation. Next, selective molecular transport is modeled and monitored using SERS and evaluated as a function of solution ionic strength, pH, and polarity. Molecular detection is achieved when the analytes first partition through the silica membrane then interact with the metal surface at short distances (i.e., less than 2 nm). The SERS intensities of unique molecular vibrational modes for a given molecule increases as the number of molecules that bind to the metal surface increases and are enhanced via both chemical and electromagnetic enhancement mechanisms as long as the vibrational mode has a component of polarizability tensor along the surface normal. SERS signals increase linearly with molecular concentration until the three-dimensional SERS-active volume is saturated with molecules. Implications of molecular orientation as well as surface selection rules on SERS intensities of molecular vibrational modes are studied to improve quantitative and reproducible SERS detection using internally etched Ag Au SiO2 nanoparticles. Using the unique vibrational modes, SERS intensities for p-aminothiophenol as a function of metal core compositions and plasmonics are studied. By understanding molecular transport mechanisms through internally etched silica matrices coated on metal nanoparticles, important experimental and materials design parameters are learned, which can be subsequently applied

  15. Cellular trafficking of nicotinic acetylcholine receptors

    Institute of Scientific and Technical Information of China (English)

    Paul A ST JOHN

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular location and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs.

  16. Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview

    OpenAIRE

    2014-01-01

    Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV), potassium- (KV), and calcium- (CaV) channels as well as nicotinic acetylcholine receptors (nAChRs) which are classified as ligand-gated ion channels. The mode of action ...

  17. The ATR noninvasive detection of transported medicinal ions and the performance of newly designed iontophoresis instruments

    Science.gov (United States)

    Ueda, Toyotoshi; Watanabe, Yukio; Suzuki, Harue

    2005-02-01

    The attenuated total reflection and near-infrared diffusive-reflection methods are proposed as safe and powerful ways to detect and measure the quantity of medication transported by iontophoresis. Especially, the former method can evaluate the quantity of such negative ions as L-ascorbyl-2-phosphate in the top (horny) layer of epidermis (about 1 μm under the skin surface) using, respectively, characteristic ion's bands. Factors making iontophoresis more effective are discussed from the points of electric currents, duty ratio, frequency of superposing intermittent current, simultaneous supersonic perforation, etc. The use of intermittent direct current superposed by 40 kHz pulsed current and pulse irradiation of supersonic waves accelerated drastically the disappearing rate of transported ions from the horny layer with a life of 10 h to 1 min. This technique may be applied to a new and powerful drug delivery system into topical deep tissues.

  18. Activities of nicotinic acetylcholine receptors modulate neurotransmission and synaptic architecture

    Institute of Scientific and Technical Information of China (English)

    Akira Oda; Hidekazu Tanaka

    2014-01-01

    The cholinergic system is involved in a broad spectrum of brain function, and its failure has been implicated in Alzheimer’s disease. Acetylcholine transduces signals through muscarinic and nicotinic acetylcholine receptors, both of which inlfuence synaptic plasticity and cognition. However, the mechanisms that relate the rapid gating of nicotinic acetylcholine receptors to per-sistent changes in brain function have remained elusive. Recent evidence indicates that nicotinic acetylcholine receptors activities affect synaptic morphology and density, which result in per-sistent rearrangements of neural connectivity. Further investigations of the relationships between nicotinic acetylcholine receptors and rearrangements of neural circuitry in the central nervous system may help understand the pathogenesis of Alzheimer’s disease.

  19. The effect of ketamine on intraspinal acetylcholine release

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Goldkuhl, Renée Röstlinger; Nylund, Anders;

    2006-01-01

    The general anaesthetic ketamine affects the central cholinergic system in several manners, but its effect on spinal acetylcholine release, which may be an important transmitter in spinal antinociception, is unknown. This study aimed to investigate the effect of ketamine on spinal acetylcholine...... release. Microdialysis probes were placed intraspinally in male rats, and acetylcholine was quantified with HPLC. Anaesthesia was switched from isoflurane (1.3%) to ketamine (150 mg/kg h), which resulted in a 500% increased acetylcholine release. The increase was attenuated during nicotinic receptor...... blockade (50 microM mecamylamine). The nicotinic receptor agonist epibatidine (175 microM) produced a ten-fold higher relative increase of acetylcholine release during isoflurane anaesthesia compared to ketamine anaesthesia (270% to 27%). Intraspinal administration of ketamine and norketamine both...

  20. Exercise and neuromodulators: choline and acetylcholine in marathon runners

    Science.gov (United States)

    Conlay, L. A.; Sabounjian, L. A.; Wurtman, R. J.

    1992-01-01

    Certain neurotransmitters (i.e., acetylcholine, catecholamines, and serotonin) are formed from dietary constituents (i.e., choline, tyrosine and tryptophan). Changing the consumption of these precursors alters release of their respective neurotransmitter products. The neurotransmitter acetylcholine is released from the neuromuscular junction and from brain. It is formed from choline, a common constituent in fish, liver, and eggs. Choline is also incorporated into cell membranes; membranes may likewise serve as an alternative choline source for acetylcholine synthesis. In trained athletes, running a 26 km marathon reduced plasma choline by approximately 40%, from 14.1 to 8.4 uM. Changes of similar magnitude have been shown to reduce acetylcholine release from the neuromuscular junction in vivo. Thus, the reductions in plasma choline associated with strenuous exercise may reduce acetylcholine release, and could thereby affect endurance or performance.

  1. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  2. Evaluation of new transport medium for detection of herpes simplex virus by culture and direct enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Ogburn, J R; Hoffpauir, J T; Cole, E; Hood, K; Michael, D; Nguyen, T; Raden, S; Raju, B; Reisinger, V; Oefinger, P E

    1994-12-01

    The transport medium Multi-Microbe Media (M4) was evaluated prospectively by culture and direct enzyme-linked immunosorbent assay (ELISA) for detection of herpes simplex virus from 473 specimens. In addition, 377 specimens in Bartels Viral Transport Medium were evaluated. By using culture as a "gold standard," the ELISA sensitivity was approximately 85%, while the specificities exceeded 96% for both media.

  3. New Sensor Cable for the Detection and Location of Leaks in Pipelines for Transportation of Hydrocarbons

    Directory of Open Access Journals (Sweden)

    E.Orduña-Reyes

    2012-08-01

    Full Text Available At present, hydrocarbon leaks, generated mainly by corrosion of pipelines, cause large economic losses for Mexico.These leaks constitute a problem of serious consequences in Mexico and in other countries in the world. This workdescribes the results of the tests conducted on a new sensor cable for the detection and location of leaks in pipelinesfor transportation of hydrocarbons. When a liquid or gas enters in contact with the wall of the sensor cable, it causes ashort circuit in the wires; changing the measurement of the resistance may detect and locate the leak. The new sensorcable that is presented in this article has advantages over cables with similar characteristic made in other countries.The use of this sensor cable in pipelines of PEMEX will avoid economic losses, environmental damage and risks ofpossible explosions to the population. The experimental results demonstrate these advantages.

  4. Chemical stimulation of adherent cells by localized application of acetylcholine from a microfluidic system

    Directory of Open Access Journals (Sweden)

    Susanne Zibek

    2010-11-01

    Full Text Available Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses.In an experimental setup micro-droplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanoporous membrane. The solution travelled through the pores to the top of the membrane on which TE671 cells were cultivated. Calcium imaging was used to visualize cellular response with temporal and spatial resolution. Experimental demonstration of chemical stimulation for both threshold gated stimulation as well as accumulated dose response was achieved by either employing acetylcholine as chemical stimulant or applying calcein uptake, respectively.Numerical modelling and simulation of transport mechanisms involved were employed to gain a theoretical understanding of the influence of pore size, concentration of stimulant and droplet volume on the spatial-temporal distribution of stimulant and on the cellular response. Diffusion, pressure driven flow and evaporation effects were taken into account. Fast stimulation kinetic is achieved with pores of 0.82 µm diameter, whereas sustained substance delivery is obtained with nanoporous membranes. In all cases threshold concentrations ranging from 0.01 to 0.015 µM acetylcholine independent of pore size were determined.

  5. Simulation of atmospheric krypton-85 transport to assess the detectability of clandestine nuclear reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Jens Ole

    2010-02-02

    The radioactive noble gas krypton-85 is released into the atmosphere during reprocessing of spent nuclear fuel or irradiated breeding targets. This is a necessary step for plutonium separation. Therefore the {sup 85}Kr signature of reprocessing could possibly be used for the detection of undeclared nuclear facilities producing nuclear weaponusable material. The {sup 85}Kr content of the atmosphere has grown over the last decades as the emissions from military and civilian nuclear industry could not be compensated by the decay with a half-life of 10.76 years. In this study, the global {sup 85}Kr background distribution due to emissions of known reprocessing facilities for the period from 1971 until 2006 was simulated using the atmospheric general circulation model ECHAM5 applying the newest available annual emission data. The convective tracer transport scheme and the operator splitting for the physical calculations in the model were modified in order to guarantee physically correct results for tracer point sources, in particular non negative concentrations. An on-line routine controlling the {sup 85}Kr -budget in the model enforced exact mass conservation. The results of the simulation were evaluated by extensive comparison with measurements performed by the German Federal Office for Radiation Protection with very good agreement at most observation sites except those in the direct vicinity of {sup 85}Kr sources. Of particular interest for the {sup 85}Kr detection potential was the variability of {sup 85}Kr background concentrations which was evaluated for the first time in a global model. In addition, the interhemispheric transport as simulated by ECHAM5 was analyzed using a two-box model providing a mean exchange time of τ {sub ex} = 10.5 months. The analysis of τ{sub ex} over simulated 35 years indicates that in years with strong South Asian or African Monsoon the interhemispheric transport is faster during the monsoon season. A correlation analysis of

  6. Electrical detection of spin transport in Si two-dimensional electron gas systems

    Science.gov (United States)

    Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L.

    2016-09-01

    Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and {τ }{{s}}=16 {{ns}} at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.

  7. Acetylcholine activity in selective striatal regions supports behavioral flexibility.

    Science.gov (United States)

    Ragozzino, Michael E; Mohler, Eric G; Prior, Margaret; Palencia, Carlos A; Rozman, Suzanne

    2009-01-01

    Daily living often requires individuals to flexibly respond to new circumstances. There is considerable evidence that the striatum is part of a larger neural network that supports flexible adaptations. Cholinergic interneurons are situated to strongly influence striatal output patterns which may enable flexible adaptations. The present experiments investigated whether acetylcholine actions in different striatal regions support behavioral flexibility by measuring acetylcholine efflux during place reversal learning. Acetylcholine efflux selectively increased in the dorsomedial striatum, but not dorsolateral or ventromedial striatum during place reversal learning. In order to modulate the M2-class of autoreceptors, administration of oxotremorine sesquifumurate (100 nM) into the dorsomedial striatum, concomitantly impaired reversal learning and an increase in acetylcholine output. These effects were reversed by the m(2) muscarinic receptor antagonist, AF-DX-116 (20 nM). The effects of oxotremorine sesquifumurate and AF-DX-116 on acetylcholine efflux were selective to behaviorally-induced changes as neither treatment affected acetylcholine output in a resting condition. In contrast to reversal learning, acetylcholine efflux in the dorsomedial striatum did not change during place acquisition. The results reveal an essential role for cholinergic activity and define its locus of control to the dorsomedial striatum in cognitive flexibility.

  8. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  9. Impulsive behavior and nicotinic acetylcholine receptors.

    Science.gov (United States)

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  10. Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview

    Directory of Open Access Journals (Sweden)

    Eline K. M. Lebbe

    2014-05-01

    Full Text Available Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV, potassium- (KV, and calcium- (CaV channels as well as nicotinic acetylcholine receptors (nAChRs which are classified as ligand-gated ion channels. The mode of action of several conotoxins has been the subject of investigation, while for many others this remains unknown. This review aims to give an overview of the knowledge we have today on the molecular pharmacology of conotoxins specifically interacting with nAChRs along with the structure–function relationship data.

  11. Modulation of nicotinic acetylcholine receptors by strychnine

    Science.gov (United States)

    García-Colunga, Jesús; Miledi, Ricardo

    1999-01-01

    Strychnine, a potent and selective antagonist at glycine receptors, was found to inhibit muscle (α1β1γδ, α1β1γ, and α1β1δ) and neuronal (α2β2 and α2β4) nicotinic acetylcholine receptors (AcChoRs) expressed in Xenopus oocytes. Strychnine alone (up to 500 μM) did not elicit membrane currents in oocytes expressing AcChoRs, but, when applied before, concomitantly, or during superfusion of acetylcholine (AcCho), it rapidly and reversibly inhibited the current elicited by AcCho (AcCho-current). Although in the three cases the AcCho-current was reduced to the same level, its recovery was slower when the oocytes were preincubated with strychnine. The amount of AcCho-current inhibition depended on the receptor subtype, and the order of blocking potency by strychnine was α1β1γδ > α2β4 > α2β2. With the three forms of drug application, the Hill coefficient was close to one, suggesting a single site for the receptor interaction with strychnine, and this interaction appears to be noncompetitive. The inhibitory effects on muscle AcChoRs were voltage-independent, and the apparent dissociation constant for AcCho was not appreciably changed by strychnine. In contrast, the inhibitory effects on neuronal AcChoRs were voltage-dependent, with an electrical distance of ≈0.35. We conclude that strychnine regulates reversibly and noncompetitively the embryonic type of muscle AcChoR and some forms of neuronal AcChoRs. In the former case, strychnine presumably inhibits allosterically the receptor by binding at an external domain whereas, in the latter case, it blocks the open receptor-channel complex. PMID:10097172

  12. Role of acetylcholine on plant root-shoot signal transduction

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The role of acetylcholine (ACh) on plant root- shoot communication was investigated using the root-split system of Vicia faba L. In the experiments, slight osmotic stress caused the decrease of ACh content in root tips and the xylem sap transported up per time unit from root tip to the shoot when the water potential of the shoot was kept unchanged. It also caused the decrease of ACh content in the abaxial epidermis. The decrease was highly correlative to the changes of transpiration rate, suggesting that the decrease of ACh content probably functions as a signal to regulate stomatal behavior. The effect of osmotic stress might be mainly through the inhibition of the ACh synthesis in root tip; thus further influences the ACh content in root tip, xylem sap and abaxial epidermis and resulting in the changes of stomatal behavior. These results provide new evidence that plants transduce positive and negative signals among roots and shoots to coordinate stomatal behavior and adapt to variable environments.

  13. Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics

    Energy Technology Data Exchange (ETDEWEB)

    Micklich, B.J.; Fink, C.L.; Sagalovsky, L.

    1995-07-01

    Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutrons is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: Fast-Neutron Transmission Spectroscopy (FNTS) and Pulsed Fast-Neutron Analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ratio is greater than about 0.01. The Monte-Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projection angles and modest (2 cm) resolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and these reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte-Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA techniques are presented.

  14. Acetylcholine is released from taste cells, enhancing taste signalling.

    Science.gov (United States)

    Dando, Robin; Roper, Stephen D

    2012-07-01

    Acetylcholine (ACh), a candidate neurotransmitter that has been implicated in taste buds, elicits calcium mobilization in Receptor (Type II) taste cells. Using RT-PCR analysis and pharmacological interventions, we demonstrate that the muscarinic acetylcholine receptor M3 mediates these actions. Applying ACh enhanced both taste-evoked Ca2+ responses and taste-evoked afferent neurotransmitter (ATP) secretion from taste Receptor cells. Blocking muscarinic receptors depressed taste-evoked responses in Receptor cells, suggesting that ACh is normally released from taste cells during taste stimulation. ACh biosensors confirmed that, indeed, taste Receptor cells secrete acetylcholine during gustatory stimulation. Genetic deletion of muscarinic receptors resulted in significantly diminished ATP secretion from taste buds. The data demonstrate a new role for acetylcholine as a taste bud transmitter. Our results imply specifically that ACh is an autocrine transmitter secreted by taste Receptor cells during gustatory stimulation, enhancing taste-evoked responses and afferent transmitter secretion.

  15. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    Science.gov (United States)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-08-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  16. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France); Méchin, Laurence [CNRS, UCBN, Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, 14050 Caen (France); Hamel, Matthieu [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France)

    2016-08-21

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  17. Modal gating of muscle nicotinic acetylcholine receptors

    Science.gov (United States)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that

  18. Detecting the local transport properties and the dimensionality of transport of epitaxial graphene by a multi-point probe approach

    DEFF Research Database (Denmark)

    Barreto, Lucas; Perkins, Edward; Johannsen, Jens;

    2013-01-01

    The electronic transport properties of epitaxial monolayer graphene (MLG) and hydrogen-intercalated quasi free-standing bilayer graphene (QFBLG) on SiC(0001) are investigated by micro multi-point probes. Using a probe with 12 contacts, we perform four-point probe measurements with the possibility...

  19. Choline transport via choline transporter-like protein 1 in conditionally immortalized rat syncytiotrophoblast cell lines TR-TBT.

    Science.gov (United States)

    Lee, N-Y; Choi, H-M; Kang, Y-S

    2009-04-01

    Choline is an essential nutrient for phospholipids and acetylcholine biosynthesis in normal development of fetus. In the present study, we investigated the functional characteristics of choline transport system and inhibitory effect of cationic drugs on choline transport in rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT). Choline transport was weakly Na(+) dependent and significantly influenced by extracellular pH and by membrane depolarization. The transport process of choline is saturable with Michaelis-Menten constants (K(m)) of 68microM and 130microM in TR-TBT 18d-1 and TR-TBT 18d-2 respectively. Choline uptake in the cells was inhibited by unlabeled choline and hemicholinium-3 as well as various organic cations including guanidine, amiloride and acetylcholine. However, the prototypical organic cation tetraethylammonium and cimetidine showed very little inhibitory effect of choline uptake in TR-TBT cells. RT-PCR revealed that choline transporter-like protein 1 (CTL1) and organic cation transporter 2 (OCT2) are expressed in TR-TBT cells. The transport properties of choline in TR-TBT cells were similar or identical to that of CTL1 but not OCT2. CTL1 was also detected in human placenta. In addition, several cationic drugs such as diphenhydramine and verapamil competitively inhibited choline uptake in TR-TBT 18d-1 with K(i) of 115microM and 55microM, respectively. Our results suggest that choline transport system, which has intermediate affinity and weakly Na(+) dependent, in TR-TBT seems to occur through a CTL1 and this system may have relevance with the uptake of pharmacologically important organic cation drugs.

  20. Micro and nanoscale electrochemical systems for reagent generation, coupled electrokinetic transport and enhanced detection

    Science.gov (United States)

    Contento, Nicholas M.

    Chemical analysis is being performed in devices operated at ever decreasing length scales in order to harness the fundamental benefits of micro and nanoscale phenomena while minimizing operating footprint and sample size. The advantages of moving traditional sample or chemical processing steps (e.g. separation, detection, and reaction) into micro- and nanofluidic devices have been demonstrated, and they arise from the relatively rapid rates of heat and mass transport at small length scales. The use of electrochemical methods in micro/nanoscale systems to control and improve these processes holds great promise. Unfortunately, much is still not understood about the coupling of multiple electrode driven processes in a confined environment nor about the fundamental changes in device performance that occur as geometries approach the nanoscale regime. At the nanoscale a significant fraction of the sample volume is in close contact with the device surface, i.e. most of the sample is contained within electronic or diffusion layers associated with surface charge or surface reactions, respectively. The work presented in this thesis aims to understand some fundamental different behaviors observed in micro/nanofluidic structures, particularly those containing one or more embedded, metallic electrode structures. First, a quantitative method is devised to describe the impact of electric fields on electrochemistry in multi-electrode micro/nanofluidic systems. Next the chemical manipulation of small volumes (≤ 10-13 L) in micro/nanofluidic structures is explored by creating regions of high pH and high dissolved gas (H 2) concentration through the electrolysis of H2O. Massively parallel arrays of nanochannel electrodes, or embedded annular nanoband electrodes (EANEs), are then studied with a focus on achieving enhanced signals due to coupled electrokinetic and electrochemical effects. In EANE devices, electroosmotic flow results from the electric field generated between the

  1. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jensen, Majbrit Myrup; Mikkelsen, Jens D.; Arvaniti, Maria

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes...... and modulating their function. Hence, changes in nAChR regulatory proteins such as Lynx proteins could underlie the dysregulation of nAChRs in AD. Using Western blotting, we detected bands corresponding to the Lynx proteins prostate stem cell antigen (PSCA) and Lypd6 in human cortex indicating that both proteins...

  2. Alternative splicing in nicotinic acetylcholine receptor subunits from Locusta migratoria and its influence on acetylcholine potencies.

    Science.gov (United States)

    Zhang, Yixi; Liu, Yang; Bao, Haibo; Sun, Huahua; Liu, Zewen

    2017-01-18

    Due to the great abundance within insect central nervous system (CNS), nicotinic acetylcholine receptors (nAChRs) play key roles in insect CNS, which makes it to be the targets of several classes of insecticides, such as neonicotinoids. Insect nAChRs are pentameric complexes consisting of five subunits, and a dozen subunits in one insect species can theoretically comprise diverse nAChRs. The alternative splicing in insect nAChR subunits may increase the diversity of insect nAChRs. In the oriental migratory locust (Locusta migratoria manilensis Meyen), a model insect species with agricultural importance, the alternative splicing was found in six α subunits among nine α and two β subunits, such as missing conserved residues in Loop D from Locα1, Locα6 and Locα9, a 34-residue insertion in Locα8 cytoplasmic loop, and truncated transcripts for Locα4, Locα7 and Locα9. Hybrid nAChRs were successfully constructed in Xenopus oocytes through co-expression with rat β2 and one α subunit from L. migratoria, which included Locα1, Locα2, Locα3, Locα4, Locα5, Locα8 and Locα9. Influences of alternative splicing in Locα1, Locα8 and Locα9 on acetylcholine potency were tested on hybrid nAChRs. The alternative splicing in Locα1 and Locα9 could increase acetylcholine sensitivities on recombinant receptors, while the splicing in Locα8 showed significant influences on the current amplitudes of oocytes. The results revealed that the alternative splicing at or close to the ligand-binding sites, as well as at cytoplasmic regions away from the ligand-binding sites, in insect nAChR subunits would change the agonist potencies on the receptors, which consequently increased nAChR diversity in functional and pharmacological properties.

  3. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    Science.gov (United States)

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis.

  4. Acetylcholine elongates neuronal growth cone filopodia via activation of nicotinic acetylcholine receptors.

    Science.gov (United States)

    Zhong, Lei Ray; Estes, Stephen; Artinian, Liana; Rehder, Vincent

    2013-07-01

    In addition to acting as a classical neurotransmitter in synaptic transmission, acetylcholine (ACh) has been shown to play a role in axonal growth and growth cone guidance. What is not well understood is how ACh acts on growth cones to affect growth cone filopodia, structures known to be important for neuronal pathfinding. We addressed this question using an identified neuron (B5) from the buccal ganglion of the pond snail Helisoma trivolvis in cell culture. ACh treatment caused pronounced filopodial elongation within minutes, an effect that required calcium influx and resulted in the elevation of the intracellular calcium concentration ([Ca]i ). Whole-cell patch clamp recordings showed that ACh caused a reduction in input resistance, a depolarization of the membrane potential, and an increase in firing frequency in B5 neurons. These effects were mediated via the activation of nicotinic acetylcholine receptors (nAChRs), as the nAChR agonist dimethylphenylpiperazinium (DMPP) mimicked the effects of ACh on filopodial elongation, [Ca]i elevation, and changes in electrical activity. Moreover, the nAChR antagonist tubucurarine blocked all DMPP-induced effects. Lastly, ACh acted locally at the growth cone, because growth cones that were physically isolated from their parent neuron responded to ACh by filopodial elongation with a similar time course as growth cones that remained connected to their parent neuron. Our data revealed a critical role for ACh as a modulator of growth cone filopodial dynamics. ACh signaling was mediated via nAChRs and resulted in Ca influx, which, in turn, caused filopodial elongation.

  5. Spin-dependent transport and recombination in solar cells studied by pulsed electrically detected magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Behrends, Jan

    2009-11-11

    This thesis deals with spin-dependent transport and recombination of charge carriers in solar cells. A systematic study on the influence of localized paramagnetic states which act as trapping and recombination centres for photogenerated charge carriers, is presented for three different types of solar cells. The central technique used in this thesis is electrically detected magnetic resonance (EDMR). The capabilities of pulsed (p) EDMR were extended with regard to the detection sensitivity. These improvements allowed pEDMR measurements on fully processed devices from cryogenic to room temperature. The instrumental upgrades also set the stage for pEDMR measurements at different resonance frequencies. In high-efficiency solar cells based on the heterojunction between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si), recombination via performancelimiting interface states could directly be measured electrically for the first time. The identification of these defects could be achieved by exploiting their orientation with regard to the surface. In thin-film solar cells based on hydrogenated microcrystalline silicon ({mu}-Si:H) the situation is more complex due to the heterogeneous and disordered structure of the material itself. In addition, these cells are multilayer-systems comprising three different silicon layers with different doping levels and microstructures. By combining a systematic alteration of the sample structure with the information extracted from deconvoluting spectrally overlapping signals in the time domain, it was possible to assign the spin-dependent signals to defects in the individual layers of the solar cells. Benefiting from the instrumental improvements, recombination via dangling bond states in silicon-based solar cells could be investigated by pEDMR at room temperature for the first time. In organic bulk heterojunction solar cells based on MEH-PPV and PCBM two different spin-dependent mechanisms coexist. Both processes

  6. Atmospheric Transport Modelling confining potential source location of East-Asian radionuclide detections in May 2010

    Science.gov (United States)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The radionuclide component of the International Monitoring System (IMS) to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is in place to detect tiny traces of fission products from nuclear explosions in the atmosphere. The challenge for the interpretation of IMS radionuclide data is to discriminate radionuclide sources of CTBT relevance against emissions from nuclear facilities. Remarkable activity concentrations of Ba/La-140 occurred at the IMS radionuclide stations RN 37 (Okinawa) and RN 58 (Ussurysk) mid of May 2010. In those days also an elevated Xe-133 level was measured at RN 38 (Takasaki). Additional regional measurements of radioxenon were reported in the press and further analyzed in various publications. The radionuclide analysis gives evidence for the presence of a nuclear fission source between 10 and 12 May 2010. Backward Atmospheric Transport Modelling (ATM) with HYSPLIT driven by 0.2° ECMWF meteorological data for the IMS samples indicates that, assuming a single source, a wide range of source regions is possible including the Korean Peninsula, the Sea of Japan (East Sea), and parts of China and Russia. Further confinement of the possible source location can be provided by atmospheric backtracking for the assumed sampling periods of the reported regional xenon measurements. New studies indicate a very weak seismic event at the DPRK test site on early 12 May 2010. Forward ATM for a pulse release caused by this event shows fairly good agreement with the observed radionuclide signature. Nevertheless, the underlying nuclear fission scenario remains quite unclear and speculative even if assuming a connection between the waveform and the radionuclide event.

  7. Nicotinic Acetylcholine Receptors in the Pathophysiology of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Andreasen, Jesper Tobias; Arvaniti, Maria;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) have been pursued for decades as potential molecular targets to treat cognitive dysfunction in Alzheimer's disease (AD) due to their positioning within regions of the brain critical in learning and memory, such as the prefrontal cortex and hippocampus......, and their demonstrated role in processes underlying cognition such as synaptic facilitation, and theta and gamma wave activity. Historically, activity at these receptors is facilitated in AD by use of drugs that increase the levels of their endogenous agonist acetylcholine, and more recently nAChR selective ligands have...

  8. Circulating antibodies against nicotinic acetylcholine receptors in chagasic patients

    Science.gov (United States)

    GOIN, J C; VENERA, G; BONINO, M BISCOGLIO DE JIMÉNEZ; STERIN-BORDA, L

    1997-01-01

    Human and experimental Chagas' disease causes peripheral nervous system damage involving neuromuscular transmission alterations at the neuromuscular junction. Additionally, autoantibodies directed to peripheral nerves and sarcolemmal proteins of skeletal muscle have been described. In this work, we analyse the ability of serum immunoglobulin factors associated with human chagasic infection to bind the affinity-purified nicotinic acetylcholine receptor (nAChR) from electric organs of Discopyge tschudii and to identify the receptor subunits involved in the interaction. The frequency of serum anti-nAChR reactivity assayed by dot-blot was higher in seropositive chagasic patients than in uninfected subjects. Purified IgG obtained from chagasic patients immunoprecipitated a significantly higher fraction of the solubilized nAChR than normal IgG. Furthermore, immunoblotting assays indicated that α and β are the main subunits involved in the interaction. Chagasic IgG was able to inhibit the binding of α-bungarotoxin to the receptor in a concentration-dependent manner, confirming the contribution of the α-subunit in the autoantibody-receptor interaction. The presence of anti-nAChR antibodies was detected in 73% of chagasic patients with impairment of neuromuscular transmission in conventional electromyographical studies, indicating a strong association between seropositive reactivity against nAChR and electromyographical abnormalities in chagasic patients. The chronic binding of these autoantibodies to the nAChR could induce a decrease in the population of functional nAChRs at the neuromuscular junction and consequently contribute to the electrophysiological neuromuscular alterations described in the course of chronic Chagas' disease. PMID:9367405

  9. Label-Free Acetylcholine Image Sensor Based on Charge Transfer Technology for Biological Phenomenon Tracking

    Science.gov (United States)

    Takenaga, Shoko; Tamai, Yui; Okumura, Koichi; Ishida, Makoto; Sawada, Kazuaki

    2012-02-01

    A 32 ×32 charge-transfer enzyme-type acetylcholine (ACh) image sensor array was produced for label-free tracking of images of ACh distribution and its performance in repeatable measurements without enzyme deactivation was examined. The proposed sensor was based on a charge-transfer-type pH image sensor, which was modified using an enzyme membrane (acetylcholine esterase, AChE) for each pixel. The ACh image sensor detected hydrogen ions generated by the ACh-AChE reaction. A polyion complex membrane composed of poly(L-lysine) and poly(4-styrenesulfonate) was used to immobilize the enzyme on the sensor. The improved uniformity and adhesion of the polyion complex membrane were evaluated in this study. As a result, temporal and spatial fluctuations of the ACh image sensor were successfully minimized using this approach. The sensitivity of the sensor was 4.2 mV/mM, and its detection limit was 20 µM. In five repeated measurements, the repeatability was 8.8%.

  10. Nicotinic Acetylcholine Receptors in the Pathophysiology of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Andreasen T., Jesper; Arvaniti, Maria

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) have been pursued for decades as potential molecular targets to treat cognitive dysfunction in Alzheimer's disease (AD) due to their positioning within regions of the brain critical in learning and memory, such as the prefrontal cortex and hippocampus...

  11. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors.

    Science.gov (United States)

    Schmeller, T; Sauerwein, M; Sporer, F; Wink, M; Müller, W E

    1994-09-01

    Fourteen quinolizidine alkaloids, isolated from Lupinus albus, L. mutabilis, and Anagyris foetida, were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. Of the compounds tested, the alpha-pyridones, N-methylcytisine and cytisine, showed the highest affinities at the nicotinic receptor, while several quinolizidine alkaloid types were especially active at the muscarinic receptor.

  12. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n...

  13. Changes in Acetylcholine Extracellular Levels during Cognitive Processes

    Science.gov (United States)

    Pepeu, Giancarlo; Giovannini, Maria Grazia

    2004-01-01

    Measuring the changes in neurotransmitter extracellular levels in discrete brain areas is considered a tool for identifying the neuronal systems involved in specific behavioral responses or cognitive processes. Acetylcholine (ACh) is the first neurotransmitter whose diffusion from the central nervous system was investigated and whose extracellular…

  14. Tissue-specific effects of acetylcholine in the canine heart

    DEFF Research Database (Denmark)

    Callø, Kirstine; Goodrow, Robert; Olesen, Søren-Peter

    2013-01-01

    INTRODUCTION: Acetylcholine (ACh) release from the vagus nerve slows heart rate and atrioventricular conduction. ACh stimulates a variety of receptors and channels, including an inward rectifying current (IK,ACh). The effect of ACh in ventricle is still debated. We compare the effect of ACh...

  15. Polyester with Pendent Acetylcholine-Mimicking Functionalities Promotes Neurite Growth.

    Science.gov (United States)

    Wang, Shaofei; Jeffries, Eric; Gao, Jin; Sun, Lijie; You, Zhengwei; Wang, Yadong

    2016-04-20

    Successful regeneration of nerves can benefit from biomaterials that provide a supportive biochemical and mechanical environment while also degrading with controlled inflammation and minimal scar formation. Herein, we report a neuroactive polymer functionalized by covalent attachment of the neurotransmitter acetylcholine (Ach). The polymer was readily synthesized in two steps from poly(sebacoyl diglyceride) (PSeD), which previously demonstrated biocompatibility and biodegradation in vivo. Distinct from prior acetylcholine-biomimetic polymers, PSeD-Ach contains both quaternary ammonium and free acetyl moieties, closely resembling native acetylcholine structure. The polymer structure was confirmed via (1)H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Hydrophilicity, charge, and thermal properties of PSeD-Ach were determined by tensiometer, zetasizer, differential scanning calorimetry, and thermal gravimetric analysis, respectively. PC12 cells exhibited the greatest proliferation and neurite outgrowth on PSeD-Ach and laminin substrates, with no significant difference between these groups. PSeD-Ach yielded much longer neurite outgrowth than the control polymer containing ammonium but no the acetyl group, confirming the importance of the entire acetylcholine-like moiety. Furthermore, PSeD-Ach supports adhesion of primary rat dorsal root ganglions and subsequent neurite sprouting and extension. The sprouting rate is comparable to the best conditions from previous report. Our findings are significant in that they were obtained with acetylcholine-like functionalities in 100% repeating units, a condition shown to yield significant toxicity in prior publications. Moreover, PSeD-Ach exhibited favorable mechanical and degradation properties for nerve tissue engineering application. Humidified PSeD-Ach had an elastic modulus of 76.9 kPa, close to native neural tissue, and could well recover from cyclic dynamic compression. PSeD-Ach showed a gradual in

  16. An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence.

    Science.gov (United States)

    Frahm, Silke; Antolin-Fontes, Beatriz; Görlich, Andreas; Zander, Johannes-Friedrich; Ahnert-Hilger, Gudrun; Ibañez-Tallon, Ines

    2015-12-01

    A great deal of interest has been focused recently on the habenula and its critical role in aversion, negative-reward and drug dependence. Using a conditional mouse model of the ACh-synthesizing enzyme choline acetyltransferase (Chat), we report that local elimination of acetylcholine (ACh) in medial habenula (MHb) neurons alters glutamate corelease and presynaptic facilitation. Electron microscopy and immuno-isolation analyses revealed colocalization of ACh and glutamate vesicular transporters in synaptic vesicles (SVs) in the central IPN. Glutamate reuptake in SVs prepared from the IPN was increased by ACh, indicating vesicular synergy. Mice lacking CHAT in habenular neurons were insensitive to nicotine-conditioned reward and withdrawal. These data demonstrate that ACh controls the quantal size and release frequency of glutamate at habenular synapses, and suggest that the synergistic functions of ACh and glutamate may be generally important for modulation of cholinergic circuit function and behavior.

  17. Acetylcholine induces neurite outgrowth and modulates matrix metalloproteinase 2 and 9.

    Science.gov (United States)

    Anelli, Tonino; Mannello, Ferdinando; Salani, Monica; Tonti, Gaetana A; Poiana, Giancarlo; Biagioni, Stefano

    2007-10-19

    The matrix metalloproteinases (MMPs), responsible for the degradation of extracellular matrix (ECM) proteins, may regulate brain cellular functions. Choline acetyltransferase (ChAT) transfected murine neuroblastoma cell line N18TG2, that synthesize acetylcholine and show enhancement of several neurospecific markers (i.e., sinapsin I, voltage gated Na(+) channels, high affinity choline uptake) and fiber outgrowth, were studied for the MMP regulation during neuronal differentiation. Zymography of N18TG2 culture medium revealed no gelatinolytic activity, whereas after carbachol treatment of cells both MMP-9 and activated MMP-2 forms were detected. ChAT-transfected clone culture medium contains three MMP forms at 230, 92, and 66kDa. Carbachol treatment increased MMP-2 and MMP-9 gene expression in N18TG2 cells and higher levels for both genes were also observed in ChAT transfected cells. The data are consistent with the hypothesis that acetylcholine brings about the activation of an autocrine loop modulating MMP expression.

  18. Online Slug Detection in Multi-phase Transportation Pipelines Using Electrical Tomography

    DEFF Research Database (Denmark)

    Pedersen, Simon; Mai, Christian; Hansen, Leif

    2015-01-01

    Slugging flow in offshore oil & gas multi-phase transportation pipelines cause big challenges as the flow regime induces flow and pressure oscillations in the multi-phase pipelines. The negative impacts of the most severe slugs are significant and thus the elimination of slugging flow in the pipe......Slugging flow in offshore oil & gas multi-phase transportation pipelines cause big challenges as the flow regime induces flow and pressure oscillations in the multi-phase pipelines. The negative impacts of the most severe slugs are significant and thus the elimination of slugging flow...

  19. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Osterhoff, Jens; Sokollik, Thomas; Nakamura, Kei; Bakeman, Michael; Weingartner, R; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; vanTilborg, Jeroen; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Toth, Csaba; DeSantis, Stefano; Byrd, John; Gruner, F; Leemans, Wim

    2011-07-20

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  20. A single molecule detection method for understanding mechanisms of electric field-mediated interstitial transport of genes.

    Science.gov (United States)

    Henshaw, Joshua W; Zaharoff, David A; Mossop, Brian J; Yuan, Fan

    2006-10-01

    The interstitial space is a rate limiting physiological barrier to non-viral gene delivery. External pulsed electric fields have been proposed to increase DNA transport in the interstitium, thereby improving non-viral gene delivery. In order to characterize and improve the interstitial transport, we developed a reproducible single molecule detection method to observe the electromobility of DNA in a range of pulsed, high field strength electric fields typically used during electric field-mediated gene delivery. Using agarose gel as an interstitium phantom, we investigated the dependence of DNA electromobility on field magnitude, pulse duration, pulse interval, and pore size in the interstitial space. We observed that the characteristic electromobility behavior, exhibited under most pulsing conditions, consisted of three distinct phases: stretching, reptation, and relaxation. Electromobility depended strongly on the field magnitude, pulse duration, and pulse interval of the applied pulse sequences, as well as the pore size of the fibrous matrix through which the DNA migrated. Our data also suggest the existence of a minimum pulse amplitude required to initiate electrophoretic transport. These results are useful for understanding the mechanisms of DNA electromobility and improving interstitial transport of genes during electric field-mediated gene delivery.

  1. Quantitative determination of acetylcholine in microdialysis samples using liquid chromatography/atmospheric pressure spray ionization mass spectrometry.

    Science.gov (United States)

    Keski-Rahkonen, Pekka; Lehtonen, Marko; Ihalainen, Jouni; Sarajärvi, Timo; Auriola, Seppo

    2007-01-01

    A fast, simple and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the determination of acetylcholine in rat brain microdialysis samples. The chromatographic separation was achieved in 3 min on a reversed-phase column with isocratic conditions using a mobile phase containing 2% (v/v) of acetonitrile and 0.05% (v/v) of trifluoroacetic acid (TFA). A stable isotope-labeled internal standard was included in the analysis and detection was carried out with a linear ion trap mass spectrometer using selected reaction monitoring (SRM). Analyte ionization was performed with an atmospheric pressure chemical ionization (APCI) source without applying discharge current (atmospheric pressure spray ionization). This special ionization technique offered significant advantages over electrospray ionization for the analysis of acetylcholine with reversed-phase ion-pairing chromatography. The lower limit of quantification was 0.15 nM (1.5 fmol on-column) and linearity was maintained over the range of 0.15-73 nM, providing a concentration range that is significantly wider than that of the existing LC/MS methods. Good accuracy and precision were obtained for concentrations within the standard curve range. The method was validated and has been used extensively for the determination of acetylcholine in rat brain microdialysis samples.

  2. Coherent control of quantum transport: modulation-enhanced phase detection and band spectroscopy

    CERN Document Server

    Tarallo, Marco G; Wang, F Y; Tino, Guglielmo M

    2012-01-01

    Amplitude modulation of a tilted optical lattice can be used to steer the quantum transport of matter wave packets in a very flexible way. This allows the experimental study of the phase sensitivity in a multimode interferometer based on delocalization-enhanced Bloch oscillations and to probe the band structure modified by a constant force.

  3. NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1.

    Science.gov (United States)

    Lyukmanova, Ekaterina N; Shenkarev, Zakhar O; Shulepko, Mikhail A; Mineev, Konstantin S; D'Hoedt, Dieter; Kasheverov, Igor E; Filkin, Sergey Yu; Krivolapova, Alexandra P; Janickova, Helena; Dolezal, Vladimir; Dolgikh, Dmitry A; Arseniev, Alexander S; Bertrand, Daniel; Tsetlin, Victor I; Kirpichnikov, Mikhail P

    2011-03-25

    Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5-30 μM, ws-LYNX1 competed with (125)I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μM ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μM caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.

  4. NMR Structure and Action on Nicotinic Acetylcholine Receptors of Water-soluble Domain of Human LYNX1*

    Science.gov (United States)

    Lyukmanova, Ekaterina N.; Shenkarev, Zakhar O.; Shulepko, Mikhail A.; Mineev, Konstantin S.; D'Hoedt, Dieter; Kasheverov, Igor E.; Filkin, Sergey Yu.; Krivolapova, Alexandra P.; Janickova, Helena; Dolezal, Vladimir; Dolgikh, Dmitry A.; Arseniev, Alexander S.; Bertrand, Daniel; Tsetlin, Victor I.; Kirpichnikov, Mikhail P.

    2011-01-01

    Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5–30 μm, ws-LYNX1 competed with 125I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μm ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μm caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding. PMID:21252236

  5. Nuclear Choline Acetyltransferase Activates Transcription of a High-affinity Choline Transporter*

    OpenAIRE

    Matsuo, Akinori; Bellier, Jean-Pierre; Nishimura, Masaki; YASUHARA, Osamu; Saito, Naoaki; Kimura, Hiroshi

    2010-01-01

    Choline acetyltransferase (ChAT) synthesizes the neurotransmitter, acetylcholine, at cholinergic nerve terminals. ChAT contains nuclear localization signals and is also localized in the nuclei of neural and non-neuronal cells. Nuclear ChAT might have an as yet unidentified function, such as transcriptional regulation. In this study, we investigated the alteration of candidate gene transcription by ChAT. We chose high affinity choline transporter (CHT1) and vesicular acetylcholine transporter ...

  6. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    Science.gov (United States)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  7. Localization of muscarinic acetylcholine receptor in plant guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Acetylcholine (ACh), as an important neurotransmitter in animals, also plays a significant role in various kinds of physiological functions in plants. But relatively little is known about its receptors in plants. A green fluorescence BODIPY FL-labeled ABT, which is a high affinity ligand of muscarinic acetylcholine receptor (mAChR), was used to localize mAChR in plant guard cells. In Vicia faba L. and Pisum sativum L., mAChR was found both on the plasma membrane of guard cells. mAChR may also be distributed on guard cell chloroplast membrane of Vicia faba L. The evidence that mAChR localizes in the guard cells provides a new possible signal transduction pathway in ACh mediated stomata movement.

  8. Structures of acetylcholine picrate and methoxycarbonylcholine picrate hemihydrate

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Grønborg, L; Jensen, B

    1988-01-01

    Acetylcholine picrate, C7H16NO2+.C6H2N3-O7-, Mr = 374.3, orthorhombic, Pbca, at 105 K: a = 18.799 (4), b = 7.726 (2), c = 22.878 (4) A, V = 3323 (2) A3, Z = 8, Dm(295 K, flotation) = 1.44, D chi(105 K) = 1.496 Mg m-3, mu(Mo K alpha) = 0.120 mm-1, F(000) = 1568, m.p. (hot-stage microscope) 381-382 K......(295 K, flotation) = 1.49, D chi(105 K) = 1.539 Mg m-3, mu(Mo K alpha) = 0.126 mm-1, F(000) = 836, m.p. (hot-stage microscope) 391-391.5 K, R = 0.033 for 6359 observed [I greater than or equal to 3.0 sigma(I)] reflections. The acetylcholine ion as well as the methoxycarbonylcholine ion have as first...

  9. [About the possibility to detect the fact of corpse transportation from the sea coastline with the subsequent burial].

    Science.gov (United States)

    Ponomarev, D Yu; Nikitaev, A V; Kurch, A M

    2015-01-01

    The objective of the present work was to detect and describe the new features characterizing the long-term stay of a corpse in seawater followed by its burial on earth. The bones of the skeletonized corpse were found to be covered with mussels and petrified sea worms that can serve as the indicators of staying the corps in seawater and its subsequent transportation from the sea coastline to the inland. These findings can be used to clarify the circumstances of death of the people found in the illegal burial places at the seacoast of maritime areas.

  10. The effect of acetylcholine on the ultrastructure of torpedo acetylcholinesterases

    Institute of Scientific and Technical Information of China (English)

    Feng-chanCHEN; Ying-geZHANG

    2004-01-01

    AIM: To observe the effects of acetylcholine (ACh), the natural substrate of acetylcholinesterases (ACHE), on the conformational state of the active gorge of ACHE. METHODS: Atomic force microscopy (AFM). RESULTS: The surface of the enzyme particles was smooth. The boundary of them was clear and the shapes were ellipsoid. However, the morphology of the enzyme after reacted with ACh became almost utterly different. The most obvious change was a hole or a gorge emerged in the protein,

  11. Acetylcholine Receptors in Model Membranes: Structure/Function Correlates.

    Science.gov (United States)

    1985-12-01

    AChR Popot et 81. (71) reported the preparation of large vesicles (mean ’J diameter 950 1 550A) by partial cholate dialysis and subsequent gel...Changeux, J.-P., Heidmann, T., Popot , J. and Sobel, A. (1979) Reconstitution of a functional acetylcholine regulator under defined conditions. FEBS Lett...during reconstitution in vesicles. J. Biol. Chem. 256:4377-4387. 71. Popot , J.-L., Cartaud, J. and Changeux, J.-P. (1981) Reconstitution of a

  12. Gold nanoparticle–choline complexes can block nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Chur Chin

    2010-04-01

    Full Text Available Chur Chin1, In Kyeom Kim2, Dong Yoon Lim3, Ki Suk Kim4, Hyang Ae Lee4, Eun Joo Kim41Department of Pediatrics, Fatima Hospital, Daegu, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea; 3Department of Pharmacology, School of Medicine, Chosun University, Gwangju, Korea; 4Korea Institute of Toxicology, Daejeon, KoreaAbstract: We identified a novel class of direct ion-channel blockers of ligand-gated ion channels called the gold nanoparticle–choline complex. Negatively charged gold nanoparticles (1.4 nm block ion pores by binding to the sulfur group of the cysteine loop of nicotinic acetylcholine receptors (nAChRs, and currents evoked by acetylcholine (Ach can break these bonds. The current evoked by ACh in nAChRs was blocked directly in ion pores by the gold nanoparticle–choline complex. In adrenal-gland perfusion studies, the complex also blocked nAChRs by diminishing catecholamine release by about 75%. An in vivo study showed muscle relaxation in rats after injection of the complex. These results will foster the application of gold nanoparticles as a direct ion-channel blocker. Keywords: negatively charged gold nanoparticle, choline, gold–sulfur bond, nicotinic acetylcholine receptor, direct ion-channel blocker

  13. Quantitative Evaluation of an Air-monitoring Network Using Atmospheric Transport Modeling and Frequency of Detection Methods.

    Science.gov (United States)

    Rood, Arthur S; Sondrup, A Jeffrey; Ritter, Paul D

    2016-04-01

    A methodology has been developed to quantify the performance of an air-monitoring network in terms of frequency of detection. Frequency of detection is defined as the fraction of "events" that result in a detection at either a single sampler or network of samplers. An "event" is defined as a release to the atmosphere of a specified amount of activity over a finite duration that begins on a given day and hour of the year. The methodology uses an atmospheric transport model to predict air concentrations of radionuclides at the samplers for a given release time and duration. Another metric of interest determined by the methodology is called the network intensity, which is defined as the fraction of samplers in the network that have a positive detection for a given event. The frequency of detection methodology allows for evaluation of short-term releases that include effects of short-term variability in meteorological conditions. The methodology was tested using the U.S. Department of Energy Idaho National Laboratory Site ambient air-monitoring network consisting of 37 low-volume air samplers in 31 different locations covering a 17,630 km region. Releases from six major facilities distributed over an area of 1,435 km were modeled and included three stack sources and eight ground-level sources. A Lagrangian Puff air dispersion model (CALPUFF) was used to model atmospheric transport. The model was validated using historical Sb releases and measurements. Relevant 1-wk release quantities from each emission source were calculated based on a dose of 1.9×10 mSv at a public receptor (0.01 mSv assuming release persists over a year). Important radionuclides were Am, Cs, Pu, Pu, Sr, and tritium. Results show the detection frequency was over 97.5% for the entire network considering all sources and radionuclides. Network intensity results ranged from 3.75% to 62.7%. Evaluation of individual samplers indicated some samplers were poorly located and added little to the overall

  14. Performance of transport and selective media for swine Bordetella bronchiseptica recovery and it comparison to polymerase chain reaction detection

    Science.gov (United States)

    Coutinho, Tania Alen; Bernardi, Mari Lourdes; de Itapema Cardoso, Marisa Ribeiro; Borowski, Sandra Maria; Moreno, Andrea Micke; de Barcellos, David Emilio Santos Neves

    2009-01-01

    Three comparative assays were performed seeking to improve the sensitivity of the diagnosis of Bordetella bronchiseptica infection analyzing swine nasal swabs. An initial assay compared the recovery of B. bronchiseptica from swabs simultaneously inoculated with B. bronchiseptica and some interfering bacteria, immersed into three transport formulations (Amies with charcoal, trypticase soy broth and phosphate buffer according to Soerensen supplemented with 5% of bovine fetal serum) and submitted to different temperatures (10°C and 27°C) and periods of incubation (24, 72 and 120 hours). A subsequent assay compared three selective media (MacConkey agar, modified selective medium G20G and a ceftiofur medium) for their recovery capabilities from clinical specimens. One last assay compared the polymerase chain reaction to the three selective media. In the first assay, the recovery of B. bronchiseptica from transport systems was better at 27°C and the three formulations had good performances at this temperature, but the collection of qualitative and quantitative analysis indicated the advantage of Amies medium for nasal swabs transportation. The second assay indicated that MacConkey agar and modified G20G had similar results and were superior to the ceftiofur medium. In the final assay, polymerase chain reaction presented superior capability of B. bronchiseptica detection to culture procedures. PMID:24031390

  15. Conceptual design and development of GEM based detecting system for tomographic tungsten focused transport monitoring

    Science.gov (United States)

    Chernyshova, M.; Czarski, T.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Kolasiński, P.; Mazon, D.; Malard, P.

    2015-10-01

    Implementing tungsten as a plasma facing material in ITER and future fusion reactors will require effective monitoring of not just its level in the plasma but also its distribution. That can be successfully achieved using detectors based on Gas Electron Multiplier (GEM) technology. This work presents the conceptual design of the detecting unit for poloidal tomography to be tested at the WEST project tokamak. The current stage of the development is discussed covering aspects which include detector's spatial dimensions, gas mixtures, window materials and arrangements inside and outside the tokamak ports, details of detector's structure itself and details of the detecting module electronics. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing the creation of sustainable nuclear fusion reactors a step closer. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  16. The effects of postnatal alcohol exposure and galantamine on the context pre-exposure facilitation effect and acetylcholine efflux using in vivo microdialysis.

    Science.gov (United States)

    Perkins, Amy E; Fadel, Jim R; Kelly, Sandra J

    2015-05-01

    Fetal alcohol spectrum disorders (FASD) are characterized by damage to multiple brain regions, including the hippocampus, which is involved in learning and memory. The acetylcholine neurotransmitter system provides major input to the hippocampus and is a possible target of developmental alcohol exposure. Alcohol (3.0 g/kg/day) was administered via intubation to male rat pups (postnatal day [PD] 2-10; ethanol-treated [ET]). Controls received a sham intubation (IC) or no treatment (NC). Acetylcholine efflux was measured using in vivo microdialysis (PD 32-35). ET animals were not different at baseline, but had decreased K(+)/Ca(2+)-induced acetylcholine efflux compared to NC animals and an enhanced acetylcholine response to galantamine (acetylcholinesterase inhibitor; 2.0 mg/kg) compared to both control groups. A separate cohort of animals was tested in the context pre-exposure facilitation effect task (CPFE; PD 30-32) following postnatal alcohol exposure and administration of galantamine (2.0 mg/kg; PD 11-30). Neither chronic galantamine nor postnatal alcohol exposure influenced performance in the CPFE task. Using immunohistochemistry, we found that neither alcohol exposure nor behavioral testing significantly altered the density of vesicular acetylcholine transporter or alpha7 nicotinic acetylcholine receptor in the ventral hippocampus (CA1). In the medial septum, the average number of choline acetyltransferase (ChAT+) cells was increased in ET animals that displayed the context-shock association; there were no changes in IC and NC animals that learned the context-shock association or in any animals that were in the control task that entailed no learning. Taken together, these results indicate that the hippocampal acetylcholine system is significantly disrupted under conditions of pharmacological manipulations (e.g., galantamine) in alcohol-exposed animals. Furthermore, ChAT was up‑regulated in ET animals that learned the CPFE, which may account for their ability

  17. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice.

    Science.gov (United States)

    Dolejší, Eva; Liraz, Ori; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, Daniel M

    2016-02-01

    Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that

  18. Relationship between Polymorphism of Nicotinic Acetylcholine Receptor Gene CHRNA3 and Susceptibility of Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Shen Bo; Shi Meiqi; Mei Jinfeng; Hong Zhuan; Cao Guochun; Lu Jianwei; Feng Jifeng

    2013-01-01

    Objective:To investigate the relationship between polymorphism of nicotinic acetylcholine receptor gene CHRNA3 and susceptibility of lung cancer. Methods:Sixty hundred patients with lung cancer and 600 healthy people were respectively selected. TaqMan-MGB probe technique was applied to detect rs3743073 (T > G) genotypes at SNPs site on CHRNA3. The difference of genotype distribution among groups was compared, and its relationship with lung cancer was also investigated. Results:There was statistical signiifcance regarding the distributions of CHRNA3 rs3743073 (T>G) genotype and allele frequencies in patients with lung cancer and healthy people (P Conclusion:The risk of developing lung cancer in patients with rs3743073G mutant genotypes of CHRNA3 gene is increased markedly, especially in those more than 60 years old, males and smoking ones.

  19. Infant acetylcholine, dopamine, and melatonin dysregulation: Neonatal biomarkers and causal factors for ASD and ADHD phenotypes.

    Science.gov (United States)

    Hellmer, Kahl; Nyström, Pär

    2017-03-01

    Autism spectrum disorders (ASD) and ADHD are common neurodevelopmental disorders that benefit from early intervention but currently suffer from late detection and diagnosis: neurochemical dysregulations are extant already at birth but clinical phenotypes are not distinguishable until preschool age or later. The vast heterogeneity between subjects' phenotypes relates to interaction between multiple unknown factors, making research on factor causality insurmountable. To unlock this situation we pose the hypothesis that atypical pupillary light responses from rods, cones, and the recently discovered ipRGC system reflect early acetylcholine, melatonin, and dopamine dysregulation that are sufficient but not necessary factors for developing ASD and/or ADHD disorders. Current technology allows non-invasive cost-efficient assessment already from the first postnatal month. The benefits of the current proposal are: identification of clinical subgroups based on cause rather than phenotypes; facilitation of research on other causal factors; neonatal prediction of later diagnoses; and guidance for targeted therapeutical intervention.

  20. Secretion of goblet cell serine proteinase, ingobsin, is stimulated by vasoactive intestinal polypeptide and acetylcholine

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1987-01-01

    Ingobsin is localized to the intestinal goblet cells in the rat and in man. In the present study, we investigated the effect of vasoactive intestinal polypeptide (VIP) and acetylcholine on the secretion of ingobsin from the proximal duodenum. Intravenous infusion of VIP or acetylcholine increased...... the concentration of ingobsin in duodenal secretion, while the concentration in the duodenum was unchanged. Simultaneous infusion of VIP and acetylcholine increased the concentration of ingobsin in duodenal secretion and decreased the concentration of ingobsin in the duodenum. This study demonstrates that secretion...... of ingobsin from the proximal duodenum is exocrine and can be stimulated by VIP and acetylcholine....

  1. Comparison of the Ability of Various Imaging Modalities (CT & Plain X- Ray in Detecting Drug Transport in Body Packers

    Directory of Open Access Journals (Sweden)

    Morteza Sanei

    2009-01-01

    Full Text Available "ndrugs within the human body. In our country due to vast common border with Afghanistan which is the biggest Opium producer in the world and has the second place in Heroine production, drug smuggling has potential national threat and besides it has a global impact as using our territory as the major smuggling route to the west. Furthermore, in recent years new generations of African smugglers of new types of drugs are using our country as a transit route to transport drugs to Europe or Africa. In this way handmade or automatically produced packets are swallowed, rectally or vaginally inserted, and then transported. The first choice modality is plain x-ray of the abdomen in upright and supine positions. Recently abdominal and pelvic CT without contrast has shown a great success rate in the detection of body packers with changing window modality to detect different types of drugs. "nMaterials and Methods: Plain x-ray and abdominal and pelvic CT without contrast were performed for 12 cases who confessed to drug packet ingestion. The presence, number and location of the packets were evaluated in different modalities and the density of the packets were also measured in Hounsfield units (HU. "nResults: The mean age of our cases was 28.2±5.9 years (range, 17-35 years. Eleven (91.6 % patients were male and only one case was female. All patients had characteristic findings in plain x-ray and also all packets were visualized in all patients "nConclusion: Plain x-ray has a distinctive position in detecting packets in intestines especially when oral contrast materials are used. It is cheaper and more accessible than CT, but using different Hounsfield units in CT windows can even characterize different types of drugs even before extracting them.  

  2. A robust method for inverse transport modelling of atmospheric emissions using blind outlier detection

    Directory of Open Access Journals (Sweden)

    M. Martinez-Camara

    2014-05-01

    Full Text Available Emissions of harmful substances into the atmosphere are a serious environmental concern. In order to understand and predict their effects, it is necessary to estimate the exact quantity and timing of the emissions, from sensor measurements taken at different locations. There exists a number of methods for solving this problem. However, these existing methods assume Gaussian additive errors, making them extremely sensitive to outlier measurements. We first show that the errors in real-world measurement datasets come from a heavy-tailed distribution, i.e., include outliers. Hence, we propose to robustify the existing inverse methods by adding a blind outlier detection algorithm. The improved performance of our method is demonstrated on a real dataset and compared to previously proposed methods. For the blind outlier detection, we first use an existing algorithm, RANSAC, and then propose a modification called TRANSAC, which provides a further performance improvement.

  3. Acetylcholine receptor binding antibody-associated myasthenia gravis and rhabdomyolysis induced by nivolumab in a patient with melanoma.

    Science.gov (United States)

    Shirai, Takushi; Sano, Tasuku; Kamijo, Fuminao; Saito, Nana; Miyake, Tomomi; Kodaira, Minori; Katoh, Nagaaki; Nishie, Kenichi; Okuyama, Ryuhei; Uhara, Hisashi

    2016-01-01

    We reported an 81-year-old woman with metastatic melanoma, in whom myasthenia gravis and rhabdomyolysis developed after nivolumab monotherapy. The first symptom of myasthenia gravis was dyspnea. Ultrasonography detected hypokinesis of the bilateral diaphragm suggesting myasthenia gravis, although there was no abnormal finding of the lungs in computed tomography images. Acetylcholine receptor binding antibodies were low-titer positive in the preserved serum before administration of nivolumab, strongly suggesting that the myasthenia gravis was a nivolumab-related immune adverse event. Despite the remarkable clinical benefits of immune checkpoint inhibitors for patients with advanced melanoma, it is important to recognize unexpected immune-related adverse events.

  4. Atmospheric Transport Modelling assessing radionuclide detection chances after the nuclear test announced by the DPRK in January 2016

    Science.gov (United States)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. The International Monitoring System (IMS) is in place and at about 90% complete to verify compliance with the CTBT. The stations of the waveform technologies are capable to detect seismic, hydro-acoustic and infrasonic signals for detection, localization, and characterization of explosions. The seismic signals of the DPRK event on 6 January 2016 were detected by many seismic stations around the globe and allow for localization of the event and identification as explosion (see poster by G. Hartmann et al.). However, the direct evidence for a nuclear explosion is only possible through the detection of nuclear fission products which may be released. For that 80 Radionuclide (RN) Stations are part of the designed IMS, about 60 are already operational. All RN stations are highly sensitive for tiny traces of particulate radionuclides in large volume air samplers. There are 40 of the RN stations designated to be equipped with noble gas systems detecting traces of radioactive xenon isotopes which are more likely to escape from an underground test cavity than particulates. Already 30 of the noble gas systems are operational. Atmospheric Transport Modelling supports the interpretation of radionuclide detections (and as appropriate non-detections) by connecting the activity concentration measurements with potential source locations and release times. In our study forecasts with the Lagrangian Particle Dispersion Model HYSPLIT (NOAA) and GFS (NCEP) meteorological data are considered to assess the plume propagation patterns for hypothetical releases at the known DPRK nuclear test site. The results show a considerable sensitivity of the IMS station RN 38 Takasaki (Japan) to a potential radionuclide release at the test site in the days and weeks following the explosion in January 2016. In addition, backtracking simulations with ECMWF analysis data in 0.2° horizontal resolution are

  5. Revisiting the Endocytosis of the M2 Muscarinic Acetylcholine Receptor

    OpenAIRE

    Wymke Ockenga; Ritva Tikkanen

    2015-01-01

    The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimul...

  6. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n...... findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx...

  7. Lidar detection of high concentrations of ozone and aerosol transported from northeastern Asia over Saga, Japan

    Science.gov (United States)

    Uchino, Osamu; Sakai, Tetsu; Izumi, Toshiharu; Nagai, Tomohiro; Morino, Isamu; Yamazaki, Akihiro; Deushi, Makoto; Yumimoto, Keiya; Maki, Takashi; Tanaka, Taichu Y.; Akaho, Taiga; Okumura, Hiroshi; Arai, Kohei; Nakatsuru, Takahiro; Matsunaga, Tsuneo; Yokota, Tatsuya

    2017-02-01

    To validate products of the Greenhouse gases Observing SATellite (GOSAT), we observed vertical profiles of aerosols, thin cirrus clouds, and tropospheric ozone with a mobile-lidar system that consisted of a two-wavelength (532 and 1064 nm) polarization lidar and a tropospheric ozone differential absorption lidar (DIAL). We used these lidars to make continuous measurements over Saga (33.24° N, 130.29° E) during 20-31 March 2015. High ozone and high aerosol concentrations were observed almost simultaneously in the altitude range 0.5-1.5 km from 03:00 to 20:00 Japan Standard Time (JST) on 22 March 2015. The maximum ozone volume mixing ratio was ˜ 110 ppbv. The maxima of the aerosol extinction coefficient and optical depth at 532 nm were 1.2 km-1 and 2.1, respectively. Backward trajectory analysis and the simulations by the Model of Aerosol Species IN the Global AtmospheRe (MASINGAR) mk-2 and the Meteorological Research Institute Chemistry-Climate Model, version 2 (MRI-CCM2), indicated that mineral dust particles from the Gobi Desert and an air mass with high ozone and aerosol (mainly sulfate) concentrations that originated from the North China Plain could have been transported over the measurement site within about 2 days. These high ozone and aerosol concentrations impacted surface air quality substantially in the afternoon of 22 March 2015. After some modifications of its physical and chemical parameters, MRI-CCM2 approximately reproduced the high ozone volume mixing ratio. MASINGAR mk-2 successfully predicted high aerosol concentrations, but the predicted peak aerosol optical thickness was about one-third of the observed value.

  8. Optical phonon lasing and its detection in transport through semiconduc- tor double quantum dots

    Science.gov (United States)

    Okuyama, Rin; Eto, Mikio; Brandes, Tobias

    2014-03-01

    We theoretically propose optical phonon lasing for a double quantum dot (DQD) fabricated in a semiconductor substrate. No additional cavity or resonator is required. We show that the DQD couples to only two phonon modes that act as a natural cavity. The pumping to the upper level is realized by an electric current through the DQD under a finite bias. Using the rate equation in the Born-Markov-Secular approximation, we analyze the enhanced phonon emission when the level spacing in the DQD is tuned to the phonon energy. We find the phonon lasing when the pumping rate is much larger than the phonon decay rate, whereas anti-bunching of phonon emission is observed when the pumping rate is smaller.[1] Our theory can be also applicable to DQDs embedded in nanomechanical resonators to control the vibrating modes. We discuss detection of amplified modes using the electric current and its noise through the DQD, and another DQD fabricated nearby.

  9. Role of acetylcholine and muscarinic receptors in serotonin-induced bronchoconstriction in the mouse.

    Science.gov (United States)

    Kummer, Wolfgang; Wiegand, Silke; Akinci, Sibel; Schinkel, Alfred H; Wess, Jürgen; Koepsell, Hermann; Haberberger, Rainer Viktor; Lips, Katrin Susanne

    2006-01-01

    For the murine trachea, it has been reported that constriction evoked by serotonin (5-HT) is largely dependent on acetylcholine (ACh) released from the epithelium, owing to the sensitivity of the 5-HT response to epithelium removal, sensitivity to atropine, and insensitivity to tetrodotoxin (Moffatt et al., 2003). Consistent with this assumption, the respiratory epithelium contains ACh, its synthesizing enzyme, and the high-affinity choline transporter CHT1 (Reinheimer et al., 1996; Pfeil et al., 2003; Proskocil et al., 2004). Recently, we demonstrated that ACh can be released from non-neuronal cells by corticosteroid-sensitive polyspecific organic cation transporters (OCTs), which are also expressed by airway epithelial cells (Lips et al., 2005). Hence, we proposed that 5-HT evokes release of ACh from epithelial cells via OCTs and that this epithelial-derived ACh induces bronchoconstriction. We tested this hypothesis in a well-established model of videomorphometric analysis of bronchial diameter in precision-cut murine lung slices utilizing epithelium removal to assess the role of the epithelium, OCT mouse knockout (KO) strains to assess the role of OCT isoforms, and muscarinic receptor M2/M3 double-KO mice to assess the cholinergic component of 5-HT induced bronchoconstriction, as bronchi of this strain are entirely unresponsive to cholinergic stimulation(Struckmann et al., 2003).

  10. Detection of leaks for radioactive tracer in marine duct for transport of liquefied petroleum gas; Deteccion de fugas por radiotrazado en ducto marino para transporte de gas LP

    Energy Technology Data Exchange (ETDEWEB)

    Robles P, E. F.; Benitez S, J. A.; Torre O, J. de la; Cruz S, E. de la; Molina, G.; Hernandez C, J. E.; Flores M, J. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e mail: efrp@nuclear.inin.mx

    2008-07-01

    In this work the aplication in the oil industry of the technique of radioactive tracer appears for the detection of internal leaks in a submarine duct that gives service as it lines of receipt of liquefied petroleum gas (Gas LP) located in the Mexican coast of the Pacific Ocean. This system of marine pipe is a consistent arrangement of a duct interior of 0.254 m (10 inches) of nominal diameter (N.D.) of steel to the carbon for cryogenic service ASTM A 333, Grade 6, schedule 30, isolated thermally with foam of polyurethane and shielding in a steel tube to the carbon ASTM A 53 Grade A, of 0.508 m (20 inches) N. D., schedule 20, which is recovered by a ballast encircling of concrete of 0.0508 m (2 inches) of thickness, reinforced with mesh metallic, and that 1315 m runs on the marine stratum to a maximum depth of 12.5 m. For the detection of leaks by radiotracer it was used as tracer the radioactive isotope La-140 produced in the TRIGA Mark III Experimental Reactor of the National Institute of Nuclear Research, starting from stable lanthanum nitrate (La(NO{sub 3}){sub 3} 6H{sub 2}O), with an activity of 100 mCi, the one which after having been made logistics tasks, given very particular sea maneuvers and due to the conditions of the work place, in the interior tube was injected in two subsequent stages to cover both duct senses; from earth and from the marine end respectively, there being used fresh water like transport way and submergible sodium iodide detectors (NaI) for the rake of the La-140. At the end of the journeys of pursuit of the radiotracer, it was determine the presence of three leaks points located in the break area of the marine surf to 360 m, 450 m and 495 m of distance of a reference point located in the beach section named Trap of Devils. (Author)

  11. Conformationally restrained carbamoylcholine homologues. Synthesis, pharmacology at neuronal nicotinic acetylcholine receptors and biostructural considerations

    DEFF Research Database (Denmark)

    de la Fuente Revenga, M; Balle, Thomas; Jensen, Anders A.

    2015-01-01

    Exploration of small selective ligands for the nicotinic acetylcholine receptors (nAChRs) based on acetylcholine (ACh) has led to the development of potent agonists with clear preference for the α4β2 nAChR, the most prevalent nAChR subtype in the central nervous system. In this work we present th...

  12. Rational design of a-conotoxin analogues targeting a7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Armishaw, Christopher; Jensen, Anders Asbjørn; Balle, Thomas;

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels and belong to the superfamily of Cys-loop receptors. Valuable insight into the orthosteric ligand binding to nAChRs in recent years has been obtained from the crystal structures of acetylcholine binding proteins (ACh...

  13. Effects of antihistamines on the function of human α7-nicotinic acetylcholine receptors.

    Science.gov (United States)

    Sadek, Bassem; Khanian, Seyedeh Soha; Ashoor, Abrar; Prytkova, Tatiana; Ghattas, Mohammad A; Atatreh, Noor; Nurulain, Syed M; Yang, Keun-Hang Susan; Howarth, Frank Christopher; Oz, Murat

    2015-01-05

    Effects of the histamine H₁ receptor (H1R) antagonists (antihistamines), promethazine (PMZ), orphenadrine (ORP), chlorpheniramine (CLP), pyrilamine (PYR), diphenhydramine (DPH), citerizine (CTZ), and triprolidine (TRP) on the functional properties of the cloned α7 subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes were investigated. Antihistamines inhibited the α7-nicotinic acetylcholine receptor in the order PYR>CLP>TRP>PMZ>ORP≥DPH≥CTZ. Among the antihistamines, PYR showed the highest reversible inhibition of acetylcholine (100 µM)-induced responses with IC₅₀ of 6.2 µM. PYR-induced inhibition was independent of the membrane potential and could not be reversed by increasing the concentration of acetylcholine. Specific binding of [¹²⁵I] α-bungarotoxin, a selective antagonist for α7-nicotinic acetylcholine receptor, was not changed in the presence of PYR suggesting a non-competitive inhibition of nicotinic receptors. In line with functional experiments, docking studies indicated that PYR can potentially bind allosterically with the α7 transmembrane domain. Our results indicate that the H₂-H₄ receptor antagonists tested in this study (10 µM) showed negligible inhibition of α7-nicotinic acetylcholine receptors. On the other hand, H₁ receptor antagonists inhibited the function of human α7-nicotinic acetylcholine receptor, with varying potencies. These results emphasize the importance of α7-nicotinic acetylcholine receptor for future pharmacological/toxicological profiling.

  14. Electrolyte and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines

    DEFF Research Database (Denmark)

    Case, R M; Conigrave, A D; Novak, I

    1980-01-01

    unstimulated or evoked by acetylcholine or eserine, could be blocked completely by atropine.4. During prolonged stimulation with acetylcholine, the fluid secretory response declined rapidly over a period of about 15 min from an initial high value to a much lower plateau value. After 3 or more hours...

  15. Intravenously administered lidocaine in therapeutic doses increases the intraspinal release of acetylcholine in rats

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Höglund, A Urban

    2002-01-01

    of acetylcholine. Ten and 30 mg/kg lidocaine injected intravenously significantly increased the intraspinal release of acetylcholine. The effect of lidocaine could be reduced by pretreatment with intraspinally administered atropine or mecamylamine. Our results suggest that the antinociceptive effect produced...

  16. Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods

    DEFF Research Database (Denmark)

    Collin, Caitlin Alexis; Hauser, Frank; Gonzalez de Valdivia, Ernesto I

    2013-01-01

    ). In this study, we cloned two structurally related GPCRs from the fruit fly Drosophila melanogaster, which, after expression in Chinese hamster ovary cells, proved to be muscarinic acetylcholine receptors. One mAChR (the A-type; encoded by gene CG4356) is activated by acetylcholine (EC50, 5 × 10(-8) M...

  17. Vagus Nerve Activity Augments Intestinal Macrophage Phagocytosis via Nicotinic Acetylcholine Receptor alpha 4 beta 2

    NARCIS (Netherlands)

    van der Zanden, Esmerij P.; Snoek, Susanne A.; Heinsbroek, Sigrid E.; Stanisor, Oana I.; Verseijden, Caroline; Boeckxstaens, Guy E.; Peppelenbosch, Maikel P.; Greaves, David R.; Gordon, Siamon; de Jonge, Wouter J.

    2009-01-01

    BACKGROUND & AIMS: The vagus nerve negatively regulates macrophage cytokine production via the release of acetylcholine (ACh) and activation of nicotinic acetylcholine receptors (nAChR). In various models of intestinal inflammation, vagus nerve efferent stimulation ameliorates disease. Given the act

  18. Acetylcholine's effect on vascular resistance and compliance in the pulmonary circulation.

    Science.gov (United States)

    Barman, S A; Senteno, E; Smith, S; Taylor, A E

    1989-10-01

    Acetylcholine's effect on the distribution of vascular resistance and compliance in the canine pulmonary circulation was determined under control and elevated vascular tone by the arterial, venous, and double occlusion techniques in isolated blood-perfused dog lungs at both constant flow and constant pressure. Large and small blood vessel resistances and compliances were studied in lungs given concentrations of acetylcholine ranging from 2.0 ng/ml to 200 micrograms/ml. The results of this study indicate that acetylcholine dilates large arteries at low concentrations (less than or equal to 20 ng/ml) and constricts small and large veins at concentrations of at least 2 micrograms/ml. Characterization of acetylcholine's effects at constant pulmonary blood flow indicates that 1) large artery vasodilation may be endothelial-derived relaxing factor-mediated because the dilation is blocked with methylene blue; 2) a vasodilator of the arachidonic acid cascade (blocked by ibuprofen), probably prostacyclin, lessens acetylcholine's pressor effects; 3) when vascular tone was increased, acetylcholine's hemodynamic effects were attenuated; and 4) acetylcholine decreased middle compartment and large vessle compliance under control but not elevated vascular tone. Under constant pressure at control vascular tone acetylcholine increases resistance in all segments except the large artery, and at elevated vascular tone the pressor effects were enhanced, and large artery resistance was increased.

  19. Characterisation of an acetylcholine receptor gene of Haemonchus contortus in relation to levamisole resistance

    NARCIS (Netherlands)

    Hoekstra, R.; Visser, A.; Wiley, L.; Weiss, A.S.; Sangster, N.C.; Roos, M.H.

    1997-01-01

    The anthelmintic drug levamisole is thought to bind to nicotinic acetylcholine receptors of nematodes. It is possible that resistance to this drug is associated with either a change in binding characteristics or a reduction in the number of nicotinic acetylcholine receptors. Therefore, the molecular

  20. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo.

    Science.gov (United States)

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu

    2011-07-01

    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine esterase inhibitor poisoning in one of these patients was delayed. Both patients had an uneventful recovery. Organophosphate acetylcholine esterase inhibitor poisoning from home-made shampoo is possible. In cases where the mode of poisoning is unclear, direct questioning about the use of home-made shampoo is warranted, in these cases the skin and particularly the scalp should be rinsed thoroughly as soon as possible.

  1. Effects of acetylcholine on neuronal properties in entorhinal cortex

    Directory of Open Access Journals (Sweden)

    James G Heys

    2012-07-01

    Full Text Available The entorhinal cortex receives prominent cholinergic innervation from the medial septum and the vertical limb of the diagonal band of Broca (MSDB. To understand how cholinergic neurotransmission can modulate behavior, research has been directed towards identification of the specific cellular mechanisms in entorhinal cortex that can be modulated through cholinergic activity. This review focuses on intrinsic cellular properties of neurons in entorhinal cortex that may underlie functions such as working memory, spatial processing and episodic memory. In particular, the study of stellate cells in medial entorhinal has resulted in discovery of correlations between physiological properties of these neurons and properties of the unique spatial representation that is demonstrated through unit recordings of neurons in medial entorhinal cortex from awake-behaving animals. A separate line of investigation has demonstrated persistent firing behavior among neurons in entorhinal cortex that is enhanced by cholinergic activity and could underlie working memory. There is also evidence that acetylcholine plays a role in modulation of synaptic transmission that could also enhance mnemonic function in entorhinal cortex. Finally, the local circuits of entorhinal cortex demonstrate a variety of interneuron physiology, which is also subject to cholinergic modulation. Together these effects alter the dynamics of entorhinal cortex to underlie the functional role of acetylcholine in memory.

  2. Adult celiac disease with acetylcholine receptor antibody positive myasthenia gravis

    Institute of Scientific and Technical Information of China (English)

    Hugh J Freeman; Helen R Gillett; Peter M Gillett; Joel Oger

    2009-01-01

    Celiac disease has been associated with some autoimmune disorders. A 40-year-old competitive strongman with celiac disease responded to a glutenfree diet, but developed profound and generalized motor weakness with acetylcholine receptor antibody positive myasthenia gravis, a disorder reported to occur in about 1 in 5000. This possible relationship between myasthenia gravis and celiac disease was further explored in serological studies. Frozen stored serum samples from 23 acetylcholine receptor antibody positive myasthenia gravis patients with no intestinal symptoms were used to screen for celiac disease. Both endomysial and tissue transglutaminase antibodies were examined. One of 23 (or, about 4.3%) was positive for both IgA-endomysial and IgA tissue transglutaminase antibodies. Endoscopic studies subsequently showed duodenal mucosal scalloping and biopsies confirmed the histopathological changes of celiac disease. Celiac disease and myasthenia gravis may occur together more often than is currently appreciated. The presence of motor weakness in celiac disease may be a clue to occult myasthenia gravis, even in the absence of intestinal symptoms.

  3. Detection and Quantification of Neurotransmitters in Dialysates

    OpenAIRE

    Zapata, Agustin; Chefer, Vladimir I.; Shippenberg, Toni S.; Denoroy, Luc

    2009-01-01

    Sensitive analytical methods are needed for the separation and quantification of neurotransmitters obtained in microdialysate studies. This unit describes methods that permit quantification of nanomolar concentrations of monoamines and their metabolites (high-pressure liquid chromatography electrochemical detection), acetylcholine (HPLC-coupled to an enzyme reactor), and amino acids (HPLC-fluorescence detection; capillary electrophoresis with laser-induced fluorescence detection).

  4. Ca2+ is involved in muscarine-acetylcholine-receptor-mediated acetylcholine signal transduction in guard cells of Vicia faba L.

    Institute of Scientific and Technical Information of China (English)

    MENG Fanxia; MIAO Long; ZHANG Shuqiu; LOU Chenghou

    2004-01-01

    Acetylcholine (ACh) is an important neurochemical transmitter in animals; it also exists in plants and plays a significant role in various kinds of physiological functions in plants. ACh has been known to induce the stomatal opening. By monitoring the changes of cytosolic Ca2+ with fluorescent probe Fluo-3 AM under the confocal microscopy,we found that exogenous ACh increased cytosolic Ca2+ concentration of guard cells of Vicia faba L. Muscarine, an agonist of muscarine acetylcholine receptor (mAChR), could do so as well. In contrast, atropine, the antagonist of mAChR abolished the ability of ACh to increase Ca2+ in guard cells.This mechanism is similar to mAChR in animals. When EGTA was used to chelate Ca2+ or ruthenium red to block Ca2+ released from vacuole respectively, the results showed that the increased cytosolic Ca2+ mainly come from intracellular Ca2+ store. The evidence supports that Ca2+ is involved in guard-cell response to ACh and that Ca2+ signal is coupled to mAChRs in ACh signal transduction in guard cells.

  5. Transcriptomic effects of depleted uranium on acetylcholine and cholesterol metabolisms in Alzheimer's disease model; Effets transcriptomiques de l'uranium appauvri sur les metabolismes de l'acetylcholine et du cholesterol chez un modele de maladie d'Alzheimer

    Energy Technology Data Exchange (ETDEWEB)

    Lestaevel, Ph.; Bensoussan, H.; Racine, R.; Airault, F.; Gourmelon, P.; Souidi, M. [Direction de la radioprotection de l' Homme, service de radiobiologie et d' epidemiologie, laboratoire de radiotoxicologie experimentale, institut de radioprotection et de surete nucleaire, BP no 17, 92262 Fontenay-aux-Roses cedex (France)

    2011-02-15

    Some heavy metals, or aluminium, could participate in the development of Alzheimer disease (AD). Depleted uranium (DU), another heavy metal, modulates the cholinergic system and the cholesterol metabolism in the brain of rats, but without neurological disorders. The aim of this study was to determine what happens in organisms exposed to DU that will/are developing the AD. This study was thus performed on a transgenic mouse model for human amyloid precursor protein (APP), the Tg2576 strain. The possible effects of DU through drinking water (20 mg/L) over an 8-month period were analyzed on acetylcholine and cholesterol metabolisms at gene level in the cerebral cortex. The mRNA levels of choline acetyl transferase (ChAT) vesicular acetylcholine transporter (VAChT) and ATP-binding cassette transporter A1 (ABC A1) decreased in control Tg2576 mice in comparison with wild-type mice (respectively -89%, -86% and -44%, p < 0.05). Chronic exposure of Tg2576 mice to DU increased mRNA levels of ChAT (+189%, p < 0.05), VAChT (+120%, p < 0.05) and ABC A1 (+52%, p < 0.05) compared to control Tg2576 mice. Overall, these modifications of acetylcholine and cholesterol metabolisms did not lead to increased disturbances that are specific of AD, suggesting that chronic DU exposure did not worsen the pathology in this experimental model. (authors)

  6. Novel aspects of cholinergic regulation of colonic ion transport

    Science.gov (United States)

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  7. The use of FTA cards for transport and detection of gyrA mutation of Campylobacter jejuni from poultry.

    Science.gov (United States)

    Sierra-Arguello, Y M; Faulkner, O; Tellez, G; Hargis, B M; Pinheiro do Nascimento, V

    2016-04-01

    The purpose of the present study was to evaluate a technique involving the use of commercially available FTA classic card (Whatman) for transporting and detection of DNA to use in PCR analysis and genetic sequencing of Campylobacter jejuni of poultry origin. Fifty isolates of Campylobacter jejuni were obtained from broiler carcasses in Rio Grande do Sul, Brazil. Antimicrobial susceptibility testing to ciprofloxacin revealed that all 50 isolates were resistant to ciprofloxacin. Each isolate was transferred to Brucella broth tubes and incubated overnight at 41.5°C. Cell cultures were diluted to match a McFarland Turbidity Standard 0.5, and 110 μL of the cell suspension were applied to one circle on Whatman FTA classic cards. The samples were then covered and allowed to dry at room temperature. Cards were identified and stored at room temperature until further use (3 mo after collection). FTA cards were shipped for analysis to the Department of Poultry Science, University of Arkansas. Amplification of the Campylobacter gyrA gene was successful and demonstrated strong bands for a large amplicon for all 50 samples preserved on FTA cards. Mutations present in each gene were confirmed by DNA sequencing. Then, 7 samples were chosen for the sequencing. The detection of a mutation regarding ciprofloxacin-resistant isolates revealed that 7 samples had a mutation in the gyrA gene. In conclusion, the characteristics of the profiles suggest that the DNA has maintained its integrity after 3 mo of storage at room temperature and is a suitable template for PCR and sequencing from Campylobacter samples. The application of this technology has potential in numerous methodologies, especially when working in remote areas and in developing countries where access to laboratory facilities and equipment is limited.

  8. Acetylcholine modulates transient outward potassium channel in acutely isolated cerebral cortical neurons of rats

    Institute of Scientific and Technical Information of China (English)

    Lanwei Cui; Tao Sun; Lihui Qu; Yurong Li; Haixia Wen

    2009-01-01

    BACKGROUND:The neuronal transient outward potassium channel has been shown to be highly associated with acetylcholine.However,the influence of acetylcholine on the transient outward potassium current in cerebral cortical neurons remains poorly understood.OBJECTIVE:To investigate acetylcholine modulation on transient outward potassium current in rat parietal cortical neurons using the whole-cell patch-clamp technique.DESIGN,TIME AND SETTING:A neuroelectrophysiology study was performed at the Department of Physiology,Harbin Medical University between January 2005 and January 2006.MATERIALS:Wistar rats were provided by the Animal Research Center,the Second Hospital of Harbin Medical University;PC-IIC patch-clamp amplifier and IBBClamp data collection analysis system were provided by Huazhong University for Science and Technology,Wuhan,China;PP-83 microelectrode puller was purchased from Narrishage,Japan.METHODS:The parietal somatosensory cortical neurons were acutely dissociated,and the modulation of acetylcholine (0.1,1,10,100 μmol/L) on transient outward potassium channel was recorded using the whole-cell patch-clamp technique.MAIN OUTCOME MEASURES:Influence of acetylcholine on transient outward potassium current,potassium channel activation,and inactivation.RESULTS:The inhibitory effect of acetylcholine on transient outward potassium current was dose- and voltage-dependent (P<0.01).Acetylcholine was found to significantly affect the activation process of transient outward potassium current,i.e.,the activation curve of transient outward potassium current was left-shifted,while the inactivation curve was shifted to hyperpolarization.Acetylcholine significantly prolonged the time constant of recovery from inactivation of transient outward potassium current (P<0.01).CONCLUSION:These results suggest that acetylcholine inhibits transient outward potassium current by regulating activation and inactivation processes of the transient outward potassium channel.

  9. Caffeine potentiates the enhancement by choline of striatal acetylcholine release

    Science.gov (United States)

    Johnson, D. A.; Ulus, I. H.; Wurtman, R. J.

    1992-01-01

    We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.

  10. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n......AChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human...... brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit n...

  11. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jürgen; Kobilka, Brian K. (Stanford); (NIH); (D.E. Shaw); (Hanyang); (UTSMC)

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.

  12. Physiological characterization of human muscle acetylcholine receptors from ALS patients

    Science.gov (United States)

    Palma, Eleonora; Inghilleri, Maurizio; Conti, Luca; Deflorio, Cristina; Frasca, Vittorio; Manteca, Alessia; Pichiorri, Floriana; Roseti, Cristina; Torchia, Gregorio; Limatola, Cristina; Grassi, Francesca; Miledi, Ricardo

    2011-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons leading to muscle paralysis. Research in transgenic mice suggests that the muscle actively contributes to the disease onset, but such studies are difficult to pursue in humans and in vitro models would represent a good starting point. In this work we show that tiny amounts of muscle from ALS or from control denervated muscle, obtained by needle biopsy, are amenable to functional characterization by two different technical approaches: “microtransplantation” of muscle membranes into Xenopus oocytes and culture of myogenic satellite cells. Acetylcholine (ACh)-evoked currents and unitary events were characterized in oocytes and multinucleated myotubes. We found that ALS acetylcholine receptors (AChRs) retain their native physiological characteristics, being activated by ACh and nicotine and blocked by α-bungarotoxin (α-BuTX), d-tubocurarine (dTC), and galantamine. The reversal potential of ACh-evoked currents and the unitary channel behavior were also typical of normal muscle AChRs. Interestingly, in oocytes injected with muscle membranes derived from ALS patients, the AChRs showed a significant decrease in ACh affinity, compared with denervated controls. Finally, riluzole, the only drug currently used against ALS, reduced, in a dose-dependent manner, the ACh-evoked currents, indicating that its action remains to be fully characterized. The two methods described here will be important tools for elucidating the role of muscle in ALS pathogenesis and for developing drugs to counter the effects of this disease. PMID:22128328

  13. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    Science.gov (United States)

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.

  14. A D-peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery.

    Science.gov (United States)

    Wei, Xiaoli; Zhan, Changyou; Shen, Qing; Fu, Wei; Xie, Cao; Gao, Jie; Peng, Chunmei; Zheng, Ping; Lu, Weiyue

    2015-03-01

    Lysosomes of brain capillary endothelial cells are implicated in nicotine acetylcholine receptor (nAChR)-mediated transcytosis and act as an enzymatic barrier for the transport of peptide ligands to the brain. A D-peptide ligand of nAChRs (termed (D)CDX), which binds to nAChRs with an IC50 value of 84.5 nM, was developed by retro-inverso isomerization. (D)CDX displayed exceptional stability in lysosomal homogenate and serum, and demonstrated significantly higher transcytosis efficiency in an in vitro blood-brain barrier monolayer compared with the parent L-peptide. When modified on liposomal surface, (D)CDX facilitated significant brain-targeted delivery of liposomes. As a result, brain-targeted delivery of (D)CDX modified liposomes enhanced therapeutic efficiency of encapsulated doxorubicin for glioblastoma. This study illustrates the importance of ligand stability in nAChRs-mediated transcytosis, and paves the way for developing stable brain-targeted entities.

  15. Avian Imc-tectal projection is mediated by acetylcholine and glutamate.

    Science.gov (United States)

    Wang, S R; Wu, G Y; Felix, D

    1995-03-27

    In the bird, biochemical and histochemical data suggest that the neurotransmitter between nucleus isthmi pars magnocellularis (Imc) and tectum is either acetylcholine or glutamate. There are, however, discrepancies regarding the functional role of acetylcholine. In the present study we investigated the action of acetylcholine and glutamate and their specific antagonists on excitatory isthmo-tectal synaptic transmission using electrophysiological and microiontophoretic techniques. The results show two different population of cells: (1) excitatory cholinergic input, blocked by atropine sulphate but not by glutamate antagonist; (2) excitatory glutamatergic input of NMDA or non-NMDA receptor type, which is blocked or reduced by CPP or CNQX but not by atropine sulphate.

  16. Pharmacokinetics and dopamine/acetylcholine releasing effects of ginsenoside Re in hippocampus and mPFC of freely moving rats

    Institute of Scientific and Technical Information of China (English)

    Jing SHI; Wei XUE; Wen-jie ZHAO; Ke-xin LI

    2013-01-01

    Aim: To investigate the pharmacokinetics and dopamine/acetylcholine-releasing effects of ginsenoside Re (Re) in brain regions related to learning and memory,and to clarify the neurochemical mechanisms underlying its anti-dementia activity.Methods: Microdialysis was conducted on awake,freely moving adult male SD rats with dialysis probes implanted into the hippocampus,medial prefrontal cortex (mPFC) or the third ventricle.The concentrations of Re,dopamine (DA) and acetylcholine (ACh) in dialysates were determined using LC-MS/MS.Results: Subcutaneous administration of a single dose of Re (12.5,25 or 50 mg/kg) rapidly distributed to the cerebrospinal fluid and exhibited linear pharmacokinetics.The peak concentration (Cmax) occurred at 60 min for all doses.Re was not detectable after 240 min in the dialysates for the low dose of 12.5 mg/kg.At the same time,Re dose-dependently increased extracellular levels of DA and ACh in the hippocampus and mPFC,and more prominent effects were observed in the hippocampus.Conclusion: The combined study of the pharmacokinetics and pharmacodynamics of Re demonstrate that increase of extracellular levels of DA and ACh,particularly in the hippocampus,may contribute,at least in part,to the anti-dementia activity of Re.

  17. Synthesis, binding, and modeling studies of new cytisine derivatives, as ligands for neuronal nicotinic acetylcholine receptor subtypes.

    Science.gov (United States)

    Tasso, Bruno; Canu Boido, Caterina; Terranova, Emanuela; Gotti, Cecilia; Riganti, Loredana; Clementi, Francesco; Artali, Roberto; Bombieri, Gabriella; Meneghetti, Fiorella; Sparatore, Fabio

    2009-07-23

    The availability of drug affecting neuronal nicotinic acetylcholine receptors (nAChRs) may have important therapeutic potential for the treatment of several CNS pathologies. Pursuing our efforts on the systematic structural modification of cytisine and N-arylalkyl and N-aroylalkyl cytisines were synthesized and tested for the displacement of [(3)H]-epibatidine and [(125)I]-alpha-bungarotoxin from the most widespread brain nAChRs subtypes alpha(4)beta(2) and alpha(7), respectively. While the affinity for alpha(7) subtype was rather poor (K(i) from 0.4 to >50 microM), the affinity for alpha(4)beta(2) subtype was very interesting, with nanomolar K(i) values for the best compounds. The N-substituted cytisines were docked into the rat and human alpha(4)beta(2) nAChR models based on the extracellular domain of a molluscan acetylcholine binding protein. The docking results agreed with the binding data, allowing the detection of discrete amino acid residues of the alpha and beta subunits essential for the ligand binding on rat and human nAChRs, providing a novel structural framework for the development of new alpha(4)beta(2) selective ligands.

  18. The vagal nerve stimulates activation of the hepatic progenitor cell compartment via muscarinic acetylcholine receptor type 3.

    Science.gov (United States)

    Cassiman, David; Libbrecht, Louis; Sinelli, Nicoletta; Desmet, Valeer; Denef, Carl; Roskams, Tania

    2002-08-01

    In the rat the hepatic branch of the nervus vagus stimulates proliferation of hepatocytes after partial hepatectomy and growth of bile duct epithelial cells after bile duct ligation. We studied the effect of hepatic vagotomy on the activation of the hepatic progenitor cell compartment in human and rat liver. The number of hepatic progenitor cells and atypical reactive ductular cells in transplanted (denervated) human livers with hepatitis was significantly lower than in innervated matched control livers and the number of oval cells in vagotomized rat livers with galactosamine hepatitis was significantly lower than in livers of sham-operated rats with galactosamine hepatitis. The expression of muscarinic acetylcholine receptors (M1-M5 receptor) was studied by immunohistochemistry and reverse transcriptase-polymerase chain reaction. In human liver, immunoreactivity for M3 receptor was observed in hepatic progenitor cells, atypical reactive ductules, intermediate hepatocyte-like cells, and bile duct epithelial cells. mRNA for the M1-M3 and the M5 receptor, but not the M4 receptor, was detected in human liver homogenates. In conclusion, the hepatic vagus branch stimulates activation of the hepatic progenitor cell compartment in diseased liver, most likely through binding of acetylcholine to the M3 receptor expressed on these cells. These findings may be of clinical importance for patients with a transplant liver.

  19. A reactive transport model for the geochemical response, detection and potential mitigation of CO2 leakage into a confined aquifer

    Science.gov (United States)

    Maher, K.; Druhan, J. L.; Vialle, S.; Benson, S. M.; Agarwal, A.

    2013-12-01

    Long-term storage of anthropogenic CO2 in the subsurface generally assumes that caprock formations will serve as physical barriers to upward migration of CO2. Stability and coherence of the caprocks are thus important criteria for site selection, but caprock integritycannot be guaranteed with total certainty over the lifetime of the project. As a result, carbon capture and storage projects require reliable techniques to monitor geologic storage sites for newly formed leaks, and the ability to rapidly deploy mitigation measures should leakage occur. Here, we present two-dimensional reactive transport simulations to evaluate the hydrogeochemical characteristics of a newly formed CO2 leak into an overlying reservoir. Simulations use the ToughReact multi-component reactive transport code and hypothetical reservoir characteristics. We focus on the comparatively short time period of days to months following formation of the leak to consider (1) geochemical shifts in formation water indicative of the leak, (2) hydrodynamics of pumping wells in the vicinity of the leak, and (3) delivery of a sealant to the leak through an adjacent well bore. Our results suggest that characteristic shifts in pH and dissolved inorganic carbon might be detected in down-gradient mentoring wells prior to the breakthrough of CO2, and could offer a potential means of identifying small and newly formed leaks. Injecting water into the aquifer through pumping wells in the vicinity of the leak provides a hydrodynamic control that can prevent CO2 from reaching the top of the reservoir, but this action will likely have only minor influence on the rate of leakage through the caprock defect. Injection of a hypothetical sealant through an adjacent pumping well is considered using an aqueous solute with pH-dependent equilibrium constraints such that the species is soluble in the basic pH range but forms a precipitate at neutral to acidic pH conditions associated with CO2-rich water. Injection of this

  20. AGE-RELATED EFFECTS OF CHLORPYRIFOS ON ACETYLCHOLINE RELEASE IN RAT BRAIN. (R825811)

    Science.gov (United States)

    Chlorpyrifos (CPF) is an organophosphorus insecticide that elicits toxicity through inhibition of acetylcholinesterase (AChE). Young animals are markedly more sensitive than adults to the acute toxicity of CPF. We evaluated acetylcholine (ACh) release and its muscarinic recept...

  1. Microtransplantation of acetylcholine receptors from normal or denervated rat skeletal muscles to frog oocytes

    Science.gov (United States)

    Bernareggi, Annalisa; Reyes-Ruiz, Jorge Mauricio; Lorenzon, Paola; Ruzzier, Fabio; Miledi, Ricardo

    2011-01-01

    Cell membranes, carrying neurotransmitter receptors and ion channels, can be ‘microtransplanted’ into frog oocytes. This technique allows a direct functional characterization of the original membrane proteins, together with any associated molecules they may have, still embedded in their natural lipid environment. This approach has been previously demonstrated to be very useful to study neurotransmitter receptors and ion channels contained in cell membranes isolated from human brains. Here, we examined the possibility of using the microtransplantation method to study acetylcholine receptors from normal and denervated rat skeletal muscles. We found that the muscle membranes, carrying their fetal or adult acetylcholine receptor isoforms, could be efficiently microtransplanted to the oocyte membrane, making the oocytes become sensitive to acetylcholine. These results show that oocytes injected with skeletal muscle membranes efficiently incorporate functional acetylcholine receptors, thus making the microtransplantation approach a valuable tool to further investigate receptors and ion channels of human muscle diseases. PMID:21224230

  2. Cyclic nucleotides of canine antral smooth muscle. Effects of acetylcholine, catecholamines and gastrin.

    Science.gov (United States)

    Baur, S; Grant, B; Wooton, J

    1981-01-01

    1. The effects of acetylcholine, catecholamines and gastrin on the intracellular content of cyclic AMP and cyclic GMP in antral circular muscle have been determined. 2. Acetylcholine results in a significant but transient increase in intracellular cyclic GMP. 3. Isoproterenol and norepinephrine increase intracellular cyclic AMP. Based on half-maximal effective doses, isoproterenol is 2.7-times more effective than norepinephrine. The increase in intracellular cyclic AMP by both agents is inhibited by propranolol but not phentolamine, indicating that both agents act on the muscle cell by a beta-receptor-coupled mechanism. 4. Gastrin has no demonstrable effect on either cyclic AMP or cyclic GMP. This suggests that while gastrin and acetylcholine can produce a like myoelectric response in the muscle cell, the action of gastrin is mediated by a separate receptor, presumably on the muscle cell, and not by a release of acetylcholine.

  3. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment.

    Science.gov (United States)

    Lombardo, Sylvia; Maskos, Uwe

    2015-09-01

    Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  4. Carrier-mediated release of monoamines induced by the nicotinic acetylcholine receptor agonist DMPP.

    Science.gov (United States)

    Szász, Bernadett K; Mayer, Aliz; Zsilla, Gabriella; Lendvai, Balázs; Vizi, E Sylvester; Kiss, János P

    2005-09-01

    We have previously shown that dimethylphenylpiperazinium (DMPP) increases the release of noradrenaline (NA) from rat hippocampal slices via two distinct mechanisms: a nicotinic acetylcholine receptor (nAChR)-mediated exocytosis and a carrier-mediated release induced by the reversal of NA transporters. Our aim was to investigate whether other monoaminergic systems are also affected by the multiple actions of DMPP. In our experiments DMPP dose-dependently increased the release of dopamine (DA) and serotonin (5-HT) from rat striatal and hippocampal slices, respectively. The dual effect was observed, however, only in case of DA at a lower DMPP concentration (30 microM), where the response was partly inhibited by mecamylamine, TTX and Ca2+-free medium (nAChR-mediated exocytosis) while the other part of the response was blocked only by the DA uptake inhibitor nomifensine (carrier-mediated release). In contrast, the DMPP-evoked 5-HT release and the DA release induced by high concentration DMPP was not inhibited by nicotinic antagonists, TTX and Ca2+-free medium but only by selective uptake inhibitors. In addition, DMPP dose-dependently inhibited the [3H]DA and [3H]5-HT uptake in striatal and hippocampal synaptosome preparation with an IC50 of 3.18 and 0.49 microM, respectively. Our data show that DMPP interacts with monoamine transporters and induces a substantial carrier-mediated release of DA and 5-HT, therefore caution is needed for the interpretation of data, when this drug is used as a nAChR agonist.

  5. A novel congenital myasthenic syndrome due to decreased acetylcholine receptor ion-channel conductance.

    Science.gov (United States)

    Webster, Richard; Maxwell, Susan; Spearman, Hayley; Tai, Kaihsu; Beckstein, Oliver; Sansom, Mark; Beeson, David

    2012-04-01

    Muscle acetylcholine receptor ion channels mediate neurotransmission by depolarizing the postsynaptic membrane at the neuromuscular junction. Inherited disorders of neuromuscular transmission, termed congenital myasthenic syndromes, are commonly caused by mutations in genes encoding the five subunits of the acetylcholine receptor that severely reduce endplate acetylcholine receptor numbers and/or cause kinetic abnormalities of acetylcholine receptor function. We tracked the cause of the myasthenic disorder in a female with onset of first symptoms at birth, who displayed mildly progressive bulbar, respiratory and generalized limb weakness with ptosis and ophthalmoplegia. Direct DNA sequencing revealed heteroallelic mutations in exon 8 of the acetylcholine receptor ε-subunit gene. Two alleles were identified: one with the missense substitution p.εP282R, and the second with a deletion, c.798_800delCTT, which result in the loss of a single amino acid, residue F266, within the M2 transmembrane domain. When these acetylcholine receptor mutations were expressed in HEK 293 cells, the p.εP282R mutation caused severely reduced expression on the cell surface, whereas p.εΔF266 gave robust surface expression. Single-channel analysis for p.εΔF266 acetylcholine receptor channels showed the longest burst duration population was not different from wild-type acetylcholine receptor (4.39 ± 0.6 ms versus 4.68 ± 0.7 ms, n = 5 each) but that the amplitude of channel openings was reduced. Channel amplitudes at different holding potentials showed that single-channel conductance was significantly reduced in p.εΔF266 acetylcholine receptor channels (42.7 ± 1.4 pS, n = 8, compared with 70.9 ± 1.6 pS for wild-type, n = 6). Although a phenylalanine residue at this position within M2 is conserved throughout ligand-gated excitatory cys-loop channel subunits, deletion of equivalent residues in the other subunits of muscle acetylcholine receptor did not

  6. [Role of acetylcholine in coordination od spontaneous electrical activity of various areas of the rat uterus].

    Science.gov (United States)

    Kazarian, K V; Unanian, N G; Akopian, R R

    2012-01-01

    Spontaneous electrical activity of myometrium was studied in areas of the uterine corpus, zone of its connection with uterine tube and cervix at intravenous administration of various acetylcholine concentrations. Under these conditions, changes of the frequency and amplitude characteristics of rhythmogenesis were studied both separately and in their combined active state. The presence of 10(-3) M acetylcholine in the animal blood creates the most optimal conditions for synchronization and coordination of activities of all studied uterus areas.

  7. Distinct Agonist Regulation of Muscarinic Acetylcholine M2-M3 Heteromers and Their Corresponding Homomers*

    OpenAIRE

    Aslanoglou, Despoina; Alvarez-Curto, Elisa; Marsango, Sara; Milligan, Graeme

    2015-01-01

    Each subtype of the muscarinic receptor family of G protein-coupled receptors is activated by similar concentrations of the neurotransmitter acetylcholine or closely related synthetic analogs such as carbachol. However, pharmacological selectivity can be generated by the introduction of a pair of mutations to produce Receptor Activated Solely by Synthetic Ligand (RASSL) forms of muscarinic receptors. These display loss of potency for acetylcholine/carbachol alongside a concurrent gain in pote...

  8. Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation

    OpenAIRE

    Gais, Steffen; Born, Jan

    2004-01-01

    The neurotransmitter acetylcholine is considered essential for proper functioning of the hippocampus-dependent declarative memory system, and it represents a major neuropharmacological target for the treatment of memory deficits, such as those in Alzheimer's disease. During slow-wave sleep (SWS), however, declarative memory consolidation is particularly strong, while acetylcholine levels in the hippocampus drop to a minimum. Observations in rats led to the hypothesis that the low cholinergic ...

  9. Acetylcholine test in patients with angina pectoris and normal coronary angiography

    Science.gov (United States)

    Barbieri, Enrico; Destro, Gianni; Oliva, Massimo; Zardini, Piero

    1994-02-01

    Angina pectoris with normal coronary artery on the coronary angiography is an intriguing issue. Intracoronary infusion of acetylcholine has recently been used to test the integrity of endothelial cells. We studied 16 patients with this syndrome. A relationship has been found between the acetylcholine test and the exercise stress test in normotensive patients. The presence of hypertension makes the evaluation of the test more unpredictable, probably because of the damage on the endothelial cells related to systemic hypertension.

  10. Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells.

    Science.gov (United States)

    Arai, Yuki; Ishii, Hirotaka; Kobayashi, Makito; Ozawa, Hitoshi

    2017-03-01

    GnRH neurons form a final common pathway for the central regulation of reproduction. Although the involvement of acetylcholine in GnRH secretion has been reported, direct effects of acetylcholine and expression profiles of acetylcholine receptors (AChRs) still remain to be studied. Using immortalized GnRH neurons (GT1-7 cells), we analyzed molecular expression and functionality of AChRs. Expression of the mRNAs were identified in the order α7 > β2 = β1 ≧ α4 ≧ α5 = β4 = δ > α3 for nicotinic acetylcholine receptor (nAChR) subunits and m4 > m2 for muscarinic acetylcholine receptor (mAChR) subtypes. Furthermore, this study revealed that α7 nAChRs contributed to Ca(2+) influx and GnRH release and that m2 and m4 mAChRs inhibited forskolin-induced cAMP production and isobutylmethylxanthine-induced GnRH secretion. These findings demonstrate the molecular profiles of AChRs, which directly contribute to GnRH secretion in GT1-7 cells, and provide one possible regulatory action of acetylcholine in GnRH neurons.

  11. Detection of HSP mRNA Transcription in Transport Stressed Pigs by Fluorescence Quantitative RT-PCR

    Institute of Scientific and Technical Information of China (English)

    LI Yu-bao; BAO En-dong; WANG Zhi-liang; ZHAO Ru-qian

    2007-01-01

    The RNA transcripted in vitro was used as the standard quantitative template to make the standard curve and establish the fluorescence quantitative RT-PCR (FQ-PCR) method. By means of FQ-PCR, the transcription changes of HSP70 and HSPg0 mRNA in the livers and hearts of transport stressed pigs were studied. The level of HSP70 mRNA transcription increased continuously from the beginning of transportation. The inductions of HSP70 mRNA transcription in the livers and hearts of 10 h transport stressed pigs were 2.5 and 4.1 times higher than that of the un-transport stressed pigs (P<0.01).However, the transcription levels of HSPg0 mRNA in the livers and hearts decreased with the transport stress.

  12. Acetylcholine release in the hippocampus during the operant conditioned reflex and the footshock stimulus in rats.

    Science.gov (United States)

    Dong, Yu; Mao, Jianjun; Shangguan, Dihua; Zhao, Rui; Liu, Guoquan

    2004-10-14

    The activity of the septo-hippocampal cholinergic pathway was investigated by measuring changes in the extracellular acetylcholine (ACh) levels in the hippocampus, by means of microdialysis, during the operant conditioned reflex and the repeated footshock stimulus. Microdialysis samplings were conducted in a Skinner box where lights were delivered as conditioned stimuli (CS) paired with footshocks as unconditioned stimuli (US). Two groups of rats were used. Extracellular ACh and choline (Ch) in samples collected at 6min intervals were assessed by high-performance liquid chromatography with electrochemical detection. The elevation of hippocampus ACh was observed in the two experimental groups. The increase in ACh during aversive stimulus (footshock) was significantly larger and was probably related to the number of footshocks. There might be moderate increase in the hippocampal ACh release during the retrieval of information. The concentration of choline showed no significant fluctuation in the two groups during the whole process. This experiment explored in more detail hippocampal cholinergic activity in relation to the two different procedures.

  13. Focusing effect of acetylcholine on neuroplasticity in the human motor cortex.

    Science.gov (United States)

    Kuo, Min-Fang; Grosch, Jan; Fregni, Felipe; Paulus, Walter; Nitsche, Michael A

    2007-12-26

    Cholinergic neuromodulation is pivotal for arousal, attention, and cognitive processes. Loss or dysregulation of cholinergic inputs leads to cognitive impairments like those manifested in Alzheimer's disease. Such dysfunction can be at least partially restored by an increase of acetylcholine (ACh). In animal studies, ACh selectively facilitates long-term excitability changes induced by feed-forward afferent input. Consequently, it has been hypothesized that ACh enhances the signal-to-noise ratio of input processing. However, the neurophysiological foundation for its ability to enhance cognition in humans is not well documented. In this study we explore the effects of rivastigmine, a cholinesterase inhibitor, on global and synapse-specific forms of cortical plasticity induced by transcranial direct current stimulation (tDCS) and paired associative stimulation (PAS) on 10-12 healthy subjects, respectively. Rivastigmine essentially blocked the induction of the global excitability enhancement elicited by anodal tDCS and revealed a tendency to first reduce and then stabilize cathodal tDCS-induced inhibitory aftereffects. However, ACh enhanced the synapse-specific excitability enhancement produced by facilitatory PAS and consolidated the inhibitory PAS-induced excitability diminution. These findings are in line with a cholinergic focusing effect that optimizes the detection of relevant signals during information processing in humans.

  14. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the range of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.

  15. Expression of nicotinic acetylcholine receptor subunits from parasitic nematodes in Caenorhabditis elegans.

    Science.gov (United States)

    Sloan, Megan A; Reaves, Barbara J; Maclean, Mary J; Storey, Bob E; Wolstenholme, Adrian J

    2015-11-01

    The levamisole-sensitive nicotinic acetylcholine receptor present at nematode neuromuscular junctions is composed of multiple different subunits, with the exact composition varying between species. We tested the ability of two well-conserved nicotinic receptor subunits, UNC-38 and UNC-29, from Haemonchus contortus and Ascaris suum to rescue the levamisole-resistance and locomotion defects of Caenorhabditis elegans strains with null deletion mutations in the unc-38 and unc-29 genes. The parasite cDNAs were cloned downstream of the relevant C. elegans promoters and introduced into the mutant strains via biolistic transformation. The UNC-38 subunit of H. contortus was able to completely rescue both the locomotion defects and levamisole resistance of the null deletion mutant VC2937 (ok2896), but no C. elegans expressing the A. suum UNC-38 could be detected. The H. contortus UNC-29.1 subunit partially rescued the levamisole resistance of a C. elegans null mutation in unc-29 VC1944 (ok2450), but did cause increased motility in a thrashing assay. In contrast, only a single line of worms containing the A. suum UNC-29 subunit showed a partial rescue of levamisole resistance, with no effect on thrashing.

  16. An electrochemical acetylcholine sensor based on lichen-like nickel oxide nanostructure.

    Science.gov (United States)

    Sattarahmady, N; Heli, H; Vais, R Dehdari

    2013-10-15

    Lichen-like nickel oxide nanostructure was synthesized by a simple method and characterized. The nanostructure was then applied to modify a carbon paste electrode and for the fabrication of a sensor, and the electrocatalytic oxidation of acetylcholine (ACh) on the modified electrode was investigated. The electrocatalytic efficiency of the nickel oxide nanostructure was compared with nickel micro- and nanoparticles, and the lichen-like nickel oxide nanostructure showed the highest efficiency. The mechanism and kinetics of the electrooxidation process were investigated by cyclic voltammetry, steady-state polarization curve and chronoamperometry. The catalytic rate constant and the charge transfer coefficient of ACh electrooxidation by the active nickel species, and the diffusion coefficient of ACh were reported. A sensitive and time-saving hydrodynamic amperometry method was developed for the determination of ACh. ACh was determined with a sensitivity of 392.4 mA M⁻¹ cm⁻² and a limit of detection of 26.7 μM. The sensor had the advantages of simple fabrication method without using any enzyme or reagent and immobilization step, high electrocatalytic activity, very high sensitivity, long-term stability, and antifouling surface property toward ACh and its oxidation product.

  17. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, L.H.; Dobeck, L.M.; Nehrir, A.; Humphries, S.; Barr, J.; Keith, C.; Shaw, J.; Rouse, J.; Cunningham, A.; Benson, S.; Repasky, K.S.; Lewicki, J.; Wells, A.; Diehl, R.; Strazisar, B.; Fessenden, J.; Rahn, T.; Amonette, J.; Barr, J.; Pickles, W.; Jacobson, J.; Silver, E.; Male, E.; Rauch, H.; Gullickson, K.; Trautz, R.; Kharaka, Y.; Birkholzer, J.T.; Wielopolski, L.; Oldenburg, C.M.

    2009-10-20

    A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented.

  18. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors

    Institute of Scientific and Technical Information of China (English)

    Layla AZAM; J Michael MCINTOSH

    2009-01-01

    Cysteine-rich peptides from the venom of cone snails (Conus) target a wide variety of different ion channels. One family of conopeptides, the a-conotoxins, specifically target different isoforms of nicotinic acetylcholine receptors (nAChRs) found both in the neuromuscular junction and central nervous system. This family is further divided into subfamilies based on the number of amino acids between cysteine residues. The exquisite subtype selectivity of certain a-conotoxins has been key to the characterization of native nAChR isoforms involved in modulation of neurotransmitter release, the pathophysiol-ogy of Parkinson's disease and nociception. Structure/function characterization of a-conotoxins has led to the development of analogs with improved potency and/or subtype selectivity. Cyclization of the backbone structure and addition of lipo-philic moieties has led to improved stability and bioavailability of a-conotoxins, thus paving the way for orally available therapeutics. The recent advances in phylogeny, exogenomics and molecular modeling promises the discovery of an even greater number of a-conotoxins and analogs with improved selectivity for specific subtypes of nAChRs.

  19. Actions of piperidine alkaloid teratogens at fetal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Green, Benedict T; Lee, Stephen T; Panter, Kip E; Welch, Kevin D; Cook, Daniel; Pfister, James A; Kem, William R

    2010-01-01

    Teratogenic alkaloids are found in many species of plants including Conium maculatum L., Nicotiana glauca, Nicotiana tabaccum, and multiple Lupinus spp. Fetal musculoskeletal defects produced by alkaloids from these plants include arthrogyropisis, scoliosis, torticollis, kyposis, lordosis, and cleft palate. A pharmacodynamic comparison of the alkaloids ammodendrine, anabasine, anabaseine, anagyrine, and coniine in SH-SY5Y cells and TE-671 cells was made. These alkaloids and their enantiomers were more effective in depolarizing TE-671 cells which express the human fetal-muscle type nicotinic acetylcholine receptor (nAChR) relative to SH-SY5Y cells which predominately express autonomic nAChRs. The rank order of potency in TE-671 cells was: anabaseine>(+)-anabasine>(-)-anabasine > (+/-)-anabasine>anagyrine>(-)-coniine > (+/-)-coniine>(+)-coniine>(+/-)-ammodendrine>(+)-ammodendrine. The rank order potency in SH-SY5Y cells was: anabaseine>(+)-anabasine>(-)-coniine>(+)-coniine>(+)-ammodendrine>anagyrine>(-)-anabasine>(+/-)-coniine>(+/-)-anabasine>(-)-ammodendrine. The actions of these alkaloids at nAChRs in both cell lines could be distinguished by their maximum effects in depolarizing cell membrane potential. The teratogenic action of these compounds may be related to their ability to activate and subsequently desensitize nAChRs.

  20. Vasoactive intestinal polypeptide provokes acetylcholine release from the myenteric plexus

    Energy Technology Data Exchange (ETDEWEB)

    Kusunoki, M.; Tsai, L.H.; Taniyama, K.; Tanaka, C.

    1986-07-01

    Effects of vasoactive intestinal polypeptide (VIP) on the release of acetylcholine (ACh) from longitudinal muscle strips with myenteric plexus (LM) preparations were examined in the guinea pig small intestine. VIP (10 to 10 W M) induced a concentration-dependent contraction of LM preparation. The VIP-induced contractions seem to be related to three components, the scopolamine-sensitive, the scopolamine-insensitive, the tetrodotoxin-sensitive, and the tetrodotoxin-insensitive contractions. VIP (10 to 10 W M) induced a concentration-dependent increase in the release of (TH)ACh from LM preparations preloaded with (TH)choline. The VIP-evoked (TH)ACh release was inhibited by removal of CaS from the perfusion medium and by treatment with tetrodotoxin but not by scopolamine and hexamethonium. The spontaneous and VIP-evoked (TH)ACh release was not affected by phentolamine, propranolol, methysergide, diphenhydramine, cimetidine, bicuculline, or (D-ProS, D-Trp/sup 7,9/)substance P. The result demonstrates that VIP induces contractions of longitudinal smooth muscle directly and indirectly by the stimulation of both cholinergic neurons and noncholinergic excitatory neurons.

  1. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    Science.gov (United States)

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  2. Revisiting the endocytosis of the m2 muscarinic acetylcholine receptor.

    Science.gov (United States)

    Ockenga, Wymke; Tikkanen, Ritva

    2015-05-12

    The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimulation requires clathrin. The expression of various dominant-negative dynamin-2 mutants and the use of chemical inhibitors of dynamin function revealed that dynamin expression and membrane localization as such appear to be necessary for M2 endocytosis, whereas dynamin GTPase activity is not required for this process. Based on the data from the present and from previous studies, we propose that M2 endocytosis takes place by means of an atypical clathrin-mediated pathway that may involve a specific subset of clathrin-coated pits/vesicles.

  3. Revisiting the Endocytosis of the M2 Muscarinic Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Wymke Ockenga

    2015-05-01

    Full Text Available The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimulation requires clathrin. The expression of various dominant-negative dynamin-2 mutants and the use of chemical inhibitors of dynamin function revealed that dynamin expression and membrane localization as such appear to be necessary for M2 endocytosis, whereas dynamin GTPase activity is not required for this process. Based on the data from the present and from previous studies, we propose that M2 endocytosis takes place by means of an atypical clathrin-mediated pathway that may involve a specific subset of clathrin-coated pits/vesicles.

  4. Early Life Stress, Nicotinic Acetylcholine Receptors and Alcohol Use Disorders

    Directory of Open Access Journals (Sweden)

    Joan Y. Holgate

    2015-06-01

    Full Text Available Stress is a major driving force in alcohol use disorders (AUDs. It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and exposure to multiple traumatic early life events dramatically increases the risk for AUDs. However, not everyone exposed to early life stress will develop an AUD. The mechanisms determining whether an individual’s brain adapts and becomes resilient to the effects of stress or succumbs and is unable to cope with stress remain elusive. Emerging evidence suggests that neuroplastic changes in the nucleus accumbens (NAc following early life stress underlie the development of AUDs. This review discusses the impact of early life stress on NAc structure and function, how these changes affect cholinergic signaling within the mesolimbic reward pathway and the role nicotinic acetylcholine receptors (nAChRs play in this process. Understanding the neural pathways and mechanism determining stress resilience or susceptibility will improve our ability to identify individuals susceptible to developing AUDs, formulate cognitive interventions to prevent AUDs in susceptible individuals and to elucidate and enhance potential therapeutic targets, such as the nAChRs, for those struggling to overcome an AUD.

  5. Characteristics of muscarinic acetylcholine receptors in rat brain.

    Directory of Open Access Journals (Sweden)

    Nukina,Itaru

    1983-06-01

    Full Text Available Characteristics of muscarinic acetylcholine (ACh receptors were studied in the rat central nervous system (CNS using 3H-quinuclidinyl benzilate (QNB, an antagonist of muscarinic ACh receptors. Scatchard analysis indicated that the rat CNS had a single 3H-QNB binding site with an apparent dissociation constant (Kd of 5.0 X 10(-10 M. Li+, Zn++ and Cu++ had strong effects on 3H-QNB binding which indicates that these metal ions might play important roles at muscarinic ACh receptor sites in the brain. Since antidepressants and antischizophrenic drugs displaced the binding of 3H-QNB, the anticholinergic effects of these drugs need to be taken into account when they are applied clinically. The muscarinic ACh receptor was successfully solubilized with lysophosphatidylcholine. By gel chromatography, with a Sepharose 6B column, the solubilized muscarinic ACh receptor molecule eluted at the fraction corresponding to a Stokes' radius of 6.1 nm. With the use of sucrose-density-gradient centrifugation, the molecular weight of the solubilized muscarinic ACh receptor was determined to be about 90,000 daltons. The regional distribution of 3H-QNB binding in rat brain was examined, and the highest level of 3H-QNB binding was found to be in the striatum followed by cerebral cortex and hippocampus, indicating that muscarinic ACh mechanisms affect CNS function mainly through these areas.

  6. Cycloxaprid insecticide: nicotinic acetylcholine receptor binding site and metabolism.

    Science.gov (United States)

    Shao, Xusheng; Swenson, Tami L; Casida, John E

    2013-08-21

    Cycloxaprid (CYC) is a novel neonicotinoid prepared from the (nitromethylene)imidazole (NMI) analogue of imidacloprid. In this study we consider whether CYC is active per se or only as a proinsecticide for NMI. The IC50 values (nM) for displacing [(3)H]NMI binding are 43-49 for CYC and 2.3-3.2 for NMI in house fly and honeybee head membranes and 302 and 7.2, respectively, in mouse brain membranes, potency relationships interpreted as partial conversion of some CYC to NMI under the assay conditions. The 6-8-fold difference in toxicity of injected CYC and NMI to house flies is consistent with their relative potencies as in vivo nicotinic acetylcholine receptor (nAChR) inhibitors in brain measured with [(3)H]NMI binding assays. CYC metabolism in mice largely involves cytochrome P450 pathways without NMI as a major intermediate. Metabolites of CYC tentatively assigned are five monohydroxy derivatives and one each of dihydroxy, nitroso, and amino modifications. CYC appears be a proinsecticide, serving as a slow-release reservoir for NMI with selective activity for insect versus mammalian nAChRs.

  7. [Effects of steroid hormones on nicotinic acetylcholine receptor channel kinetics].

    Science.gov (United States)

    Nurowska, E; Dworakowska, B; Dołowy, K

    2000-01-01

    Classically steroid hormones acts through genomic mechanism. In the last period there is more evidence that some steroid hormones exert fast (in order of seconds) effects on membrane receptors. In the presented work we analysed the effects of some steroid hormones on muscle acetylcholine receptor (AChR) channel kinetics. We divided steroid hormone on two groups which exert different effects. The first group including hydrocortisone (HC), corticosterone (COR), dexamethasone decrease the mean open time increasing the number of openings in bursts. The effects do not depend on agonist concentration. Some effects of HC and COR are voltage-dependent. The mechanism of such voltage dependent action caused by steroids hormones that are uncharged molecules, is unknown. Some experiments suggest however that an agonist molecule is involved in the mechanism of steroid action. The second group consists of progesterone, some of its derivatives and deoxycorticosterone. For this group the most evident effect was decrease in the probability of openings without a decrease in the mean open time. The effect depends on agonist concentration, suggesting an involvement of an agonist molecule in the mechanism. For this hormones an involvement of an charged agonist molecule does not however induce a voltage dependency. Most probably two groups of steroids acts on different part of the AChR. The localization of a steroid action site can be crucial for inducing voltage dependency.

  8. Schizophrenia and the alpha7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Martin, Laura F; Freedman, Robert

    2007-01-01

    In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia.

  9. Menthol binding and inhibition of α7-nicotinic acetylcholine receptors.

    Science.gov (United States)

    Ashoor, Abrar; Nordman, Jacob C; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca(2+)-dependent Cl(-) channels, since menthol inhibition remained unchanged by intracellular injection of the Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing Ba(2+). Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [(125)I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca(2+) transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner.

  10. Menthol binding and inhibition of α7-nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Abrar Ashoor

    Full Text Available Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca(2+-dependent Cl(- channels, since menthol inhibition remained unchanged by intracellular injection of the Ca(2+ chelator BAPTA and perfusion with Ca(2+-free bathing solution containing Ba(2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [(125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca(2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner.

  11. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model.

    Science.gov (United States)

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon; Nile, Christopher

    2015-08-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections.

  12. Inhibition of nicotinic acetylcholine receptors, a novel facet in the pleiotropic activities of snake venom phospholipases A2.

    Directory of Open Access Journals (Sweden)

    Catherine A Vulfius

    Full Text Available Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes.

  13. Predicted overlapping microRNA regulators of acetylcholine packaging and degradation in neuroinflammation-related disorders

    Directory of Open Access Journals (Sweden)

    Bettina eNadorp

    2014-02-01

    Full Text Available MicroRNAs (miRNAs can notably control many targets each and regulate entire cellular pathways, but whether miRNAs can regulate complete neurotransmission processes is largely unknown. Here, we report that miRNAs with complementary sequence motifs to the key genes involved in acetylcholine (ACh synthesis and/or packaging show massive overlap with those regulating ACh degradation. To address this topic, we first searched for miRNAs that could target the 3’-untranslated regions of the choline acetyltransferase (ChAT gene that controls ACh synthesis; the vesicular ACh transporter (VAChT, encoded from an intron in the ChAT gene and the ACh hydrolyzing genes acetyl- and/or butyrylcholinesterase (AChE, BChE. Intriguingly, we found that many of the miRNAs targeting these genes are primate-specific, and that changes in their levels associate with inflammation, anxiety, brain damage, cardiac, neurodegenerative or pain-related syndromes. To validate the in vivo relevance of this dual interaction, we selected the evolutionarily conserved miR-186, which targets both the stress-inducible soluble readthrough variant AChE-R and the major peripheral cholinesterase BChE. We exposed mice to predator scent stress and searched for potential associations between consequent changes in their miR-186, AChE-R and BChE levels. Both intestinal miR-186 as well as BChE and AChE-R activities were conspicuously elevated one week post-exposure, highlighting the previously unknown involvement of miR-186 and BChE in psychological stress responses. Overlapping miRNA regulation emerges from our findings as a recently evolved surveillance mechanism over cholinergic neurotransmission in health and disease; and the corresponding miRNA details and disease relevance may serve as a useful resource for studying the molecular mechanisms underlying this surveillance.

  14. The formation of acetylcholine receptor clusters visualized with quantum dots

    Directory of Open Access Journals (Sweden)

    Peng H Benjamin

    2009-07-01

    Full Text Available Abstract Background Motor innervation of skeletal muscle leads to the assembly of acetylcholine receptor (AChR clusters in the postsynaptic membrane at the vertebrate neuromuscular junction (NMJ. Synaptic AChR aggregation, according to the diffusion-mediated trapping hypothesis, involves the establishment of a postsynaptic scaffold that "traps" freely diffusing receptors into forming high-density clusters. Although this hypothesis is widely cited to explain the formation of postsynaptic AChR clusters, direct evidence at molecular level is lacking. Results Using quantum dots (QDs and live cell imaging, we provide new measurements supporting the diffusion-trap hypothesis as applied to AChR cluster formation. Consistent with published works, experiments on cultured Xenopus myotomal muscle cells revealed that AChRs at clusters that formed spontaneously (pre-patterned clusters, also called hot spots and at those induced by nerve-innervation or by growth factor-coated latex beads were very stable whereas diffuse receptors outside these regions were mobile. Moreover, despite the restriction of AChR movement at sites of synaptogenic stimulation, individual receptors away from these domains continued to exhibit free diffusion, indicating that AChR clustering at NMJ does not involve an active attraction of receptors but is passive and diffusion-driven. Conclusion Single-molecular tracking using QDs has provided direct evidence that the clustering of AChRs in muscle cells in response to synaptogenic stimuli is achieved by two distinct cellular processes: the Brownian motion of receptors in the membrane and their trapping and immobilization at the synaptic specialization. This study also provides a clearer picture of the "trap" that it is not a uniformly sticky area but consists of discrete foci at which AChRs are immobilized.

  15. Incrustations detection system for petroleum transport pipes based on gamma transmission; Sistema de deteccao de incrustacoes em dutos de transporte de petroleo pela tecnica de transmissao gama

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Milton

    2014-07-01

    The scale formed over the inner walls of the ducts conveying the extracted product from offshore oil wheels is a major cause of losses to companies and in some cases even the safety is affected. The consequence of such fouling is the duct's square section reduction that causes extraction flow decrease and can also cause an increase in pressure inside the wheel, with serious consequences for safety. The objective of this work is to propose a mobile inspection system, which can be transported by underwater robots to inspect the lines of ducts in the outputs of the oil wheels. The measurement method to be adopted will be the gamma rays' beam attenuation at a predetermined position of the pipe. This transmission value compared to a clear pipe reading will show if the thickness of the inlay is larger or smaller than an assumed thickness. To carry out the measurements it was designed and built an electronic system comprising power supply, amplifier, single channel analyzer and a counter timer that was connected to a CsI scintillator detector coupled to a PIN photodiode. The system was set up to perform measurements with constant accuracy of ±1%. Tests during the study demonstrated the effectiveness of the proposed method with the obtained results with a carbon steel duct section of 270 mm diameter, removed from the field, with asymmetric BaSO4 inlay. (author)

  16. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.

    Science.gov (United States)

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2014-06-05

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors.

  17. Loss of Acetylcholine Signaling Reduces Cell Clearance Deficiencies in Caenorhabditis elegans.

    Science.gov (United States)

    Pinto, Sérgio M; Almendinger, Johann; Cabello, Juan; Hengartner, Michael O

    2016-01-01

    The ability to eliminate undesired cells by apoptosis is a key mechanism to maintain organismal health and homeostasis. Failure to clear apoptotic cells efficiently can cause autoimmune diseases in mammals. Genetic studies in Caenorhabditis elegans have greatly helped to decipher the regulation of apoptotic cell clearance. In this study, we show that the loss of levamisole-sensitive acetylcholine receptor, but not of a typical neuronal acetylcholine receptor causes a reduction in the number of persistent cell corpses in worms suffering from an engulfment deficiency. This reduction is not caused by impaired or delayed cell death but rather by a partial restoration of the cell clearance capacity. Mutants in acetylcholine turn-over elicit a similar phenotype, implying that acetylcholine signaling is the process responsible for these observations. Surprisingly, tissue specific RNAi suggests that UNC-38, a major component of the levamisole-sensitive receptor, functions in the dying germ cell to influence engulfment efficiency. Animals with loss of acetylcholine receptor exhibit a higher fraction of cell corpses positive for the "eat-me" signal phosphatidylserine. Our results suggest that modulation by ion channels of ion flow across plasma membrane in dying cells can influence the dynamics of phosphatidylserine exposure and thus clearance efficiency.

  18. Loss of Acetylcholine Signaling Reduces Cell Clearance Deficiencies in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Sérgio M Pinto

    Full Text Available The ability to eliminate undesired cells by apoptosis is a key mechanism to maintain organismal health and homeostasis. Failure to clear apoptotic cells efficiently can cause autoimmune diseases in mammals. Genetic studies in Caenorhabditis elegans have greatly helped to decipher the regulation of apoptotic cell clearance. In this study, we show that the loss of levamisole-sensitive acetylcholine receptor, but not of a typical neuronal acetylcholine receptor causes a reduction in the number of persistent cell corpses in worms suffering from an engulfment deficiency. This reduction is not caused by impaired or delayed cell death but rather by a partial restoration of the cell clearance capacity. Mutants in acetylcholine turn-over elicit a similar phenotype, implying that acetylcholine signaling is the process responsible for these observations. Surprisingly, tissue specific RNAi suggests that UNC-38, a major component of the levamisole-sensitive receptor, functions in the dying germ cell to influence engulfment efficiency. Animals with loss of acetylcholine receptor exhibit a higher fraction of cell corpses positive for the "eat-me" signal phosphatidylserine. Our results suggest that modulation by ion channels of ion flow across plasma membrane in dying cells can influence the dynamics of phosphatidylserine exposure and thus clearance efficiency.

  19. ELISA detection of multixenobiotic resistance transporter induction in indigenous freshwater Chironomidae larvae (Diptera): A biomarker calibration step for in situ monitoring of xenobiotic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, X.; Saez, G.; Thiery, A. [Equipe ' Biomarqueurs and Bioindicateurs Environnementaux' , UMR-CNRS 6116 IMEP, Universite de Provence, 3 Place Victor Hugo, 13331 Marseille cedex 3 (France); Clot-Faybesse, O.; Guiraudie-Capraz, G. [' Neurobiologie Integrative et Adaptative' -UMR 6149, Universite de Provence, 3 Place Victor Hugo, 13331 Marseille cedex 3 (France); Bienboire-Frosini, C. [' Neurobiologie Integrative et Adaptative' -UMR 6149, Universite de Provence, 3 Place Victor Hugo, 13331 Marseille cedex 3 (France); Pherosynthese, Le Rieu Neuf, 84490 St Saturnin d' Apt (France); Martin, C. [Equipe ' Biomarqueurs and Bioindicateurs Environnementaux' , UMR-CNRS 6116 IMEP, UAPV, 33 rue Louis Pasteur, 84000 Avignon (France); De Jong, L. [Equipe ' Biomarqueurs and Bioindicateurs Environnementaux' , UMR-CNRS 6116 IMEP, Universite de Provence, 3 Place Victor Hugo, 13331 Marseille cedex 3 (France)], E-mail: laetitia.moreau@univ-provence.fr

    2008-06-15

    A new simple and sensitive method to distinguish chemically polluted from unpolluted situations in freshwater ecosystems is reported. For this purpose, Chironomus gr thumni larvae were collected from a polluted urban river downstream a sewage treatment plant. For the first time, ELISA assay was used to semi-quantify the multixenobiotic resistance transporters (MXR) in these small pertinent bioindicators. The use of samples immediately fixed in the field gives a delay to isolate larvae and allows multi-sampling along a longitudinal transect in a river at a given time. Results exhibit an induction of MXR proteins in larvae from the polluted river and a deinduction in larvae maintained 11 days in unpolluted water. They show new evidences to use midge larvae in biomonitoring environmental programs. They answer to first biomarker calibration steps for the ongoing development of MXR transporters as a detection tool of xenobiotic impacts on bioindicator invertebrates in their freshwater habitats. - Semi-quantification of midge larval MXR transporters by ELISA is a simple and sensitive method to detect chemically polluted situations in running freshwaters.

  20. Spin Injection, Transport, and Detection at Room Temperature in a Lateral Spin Transport Device with Co2FeAl0.5Si0.5/n-GaAs Schottky Tunnel Junctions

    Science.gov (United States)

    Saito, Tatsuya; Tezuka, Nobuki; Matsuura, Masashi; Sugimoto, Satoshi

    2013-10-01

    We observed spin-valve signals and Hanle signals in four-terminal nonlocal measurements on a lateral spin transport device with Co2FeAl0.5Si0.5(CFAS)/n-GaAs Schottky tunnel junctions. The estimated spin injection/detection efficiency was 0.06 at 4.2 K, which is larger than those of the devices with Fe and CoFe electrodes [Nature Physics 3 (2007) 197 and Appl. Phys. Lett. 99 (2011) 082108]. The spin diffusion length estimated from Hanle signals was consistent with the gap length dependency of the spin-valve signals. Furthermore, the spin-valve signals were observed at up to 290 K. This is the first demonstration of detecting spin accumulation in semiconductor with full-Heusler alloys electrodes at room temperature.

  1. Detection of inhibitors of Candida albicans Cdr transporters using a diS-C3(3 fluorescence

    Directory of Open Access Journals (Sweden)

    Joanna eSzczepaniak

    2015-03-01

    Full Text Available Candida albicans is a major cause of opportunistic and life-threatening, systemic fungal infections. Hence new antifungal agents, as well as new methods to treat fungal infections, are still needed. The application of inhibitors of drug-efflux pumps may increase the susceptibility of C. albicans to drugs. We developed a new fluorescence method that allows the in vivo activity evaluation of compounds inhibiting of C. albicans transporters. We show that the potentiometric dye 3,3′-dipropylthiacarbocyanine iodide diS-C3(3 is pumped out by both Cdr1 and Cdr2 transporters. The fluorescence labeling with diS-C3(3 enables a real-time observation of the activity of C. albicans Cdr1 and Cdr2 transporters. We demonstrate that enniatin A and beauvericin show different specificities toward these transporters. Enniatin A inhibits diS-C3(3 efflux by Cdr1 while beauvericin inhibits both Cdr1p and Cdr2p.

  2. Insensitive Acetylcholine Receptor Conferring Resistance of Plutella xylostella to Nereistoxin Insecticides

    Institute of Scientific and Technical Information of China (English)

    CHENG Luo-gen; YU Guang; CHEN Zi-hao; LI Zhong-yin

    2008-01-01

    The combinative rate measurement of (3-[Ⅰ125] iodotyrosyl) α-bungarotoxin was applied in the analysis of the relation between nerve acetylcholine receptor and three types of insecticide resistance in diamondback moth, Plutella xylostella (L.). In the dimehypo-resistant strain and in the cartap-resistant strain, the nerve acetylcholine receptor showed the remarkable insensitivity to dimehypo and cartap, of which the binding rate to ligand was approximately 66 and 60%, respectively, of the susceptible strain. The sensitivity to deltamethrin in the deltamethrin-resistant strain did not show visible change. These results indicated that the decline in the sensitivity of nerve acetylcholine receptor to insecticide might be a potential mechanism to nereistoxin insecticides resistance in the diamondback moth.

  3. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells

    Directory of Open Access Journals (Sweden)

    L.F.S. Sampaio

    2005-04-01

    Full Text Available The influence of melatonin on the developmental pattern of functional nicotinic acetylcholine receptors was investigated in embryonic 8-day-old chick retinal cells in culture. The functional response to acetylcholine was measured in cultured retina cells by microphysiometry. The maximal functional response to acetylcholine increased 2.7 times between the 4th and 5th day in vitro (DIV4, DIV5, while the Bmax value for [125I]-alpha-bungarotoxin was reduced. Despite the presence of alpha8-like immunoreactivity at DIV4, functional responses mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors were observed only at DIV5. Mecamylamine (100 µM was essentially without effect at DIV4 and DIV5, while dihydro-ß-erythroidine (10-100 µM blocked the response to acetylcholine (3.0 nM-2.0 µM only at DIV4, with no effect at DIV5. Inhibition of melatonin receptors with the antagonist luzindole, or melatonin synthesis by stimulation of D4 dopamine receptors blocked the appearance of the alpha-bungarotoxin-sensitive response at DIV5. Therefore, alpha-bungarotoxin-sensitive receptors were expressed in retinal cells as early as at DIV4, but they reacted to acetylcholine only after DIV5. The development of an alpha-bungarotoxin-sensitive response is dependent on the production of melatonin by the retinal culture. Melatonin, which is produced in a tonic manner by this culture, and is a key hormone in the temporal organization of vertebrates, also potentiates responses mediated by alpha-bungarotoxin-sensitive receptors in rat vas deferens and cerebellum. This common pattern of action on different cell models that express alpha-bungarotoxin-sensitive receptors probably reflects a more general mechanism of regulation of these receptors.

  4. Covalent attachment of antagonists to the a7 nicotinic acetylcholine receptor: synthesis and reactivity of substituted maleimides

    DEFF Research Database (Denmark)

    Ambrus, Joseph I; Halliday, Jill I; Kanizaj, Nicholas;

    2012-01-01

    The 3-methylmaleimide congeners of the natural product methyllycaconitine (MLA) and an analogue covalently attach to functional cysteine mutants of the a7 nicotinic acetylcholine receptor (nAChR).......The 3-methylmaleimide congeners of the natural product methyllycaconitine (MLA) and an analogue covalently attach to functional cysteine mutants of the a7 nicotinic acetylcholine receptor (nAChR)....

  5. Discrimination between spin-dependent charge transport and spin-dependent recombination in π-conjugated polymers by correlated current and electroluminescence-detected magnetic resonance

    Science.gov (United States)

    Kavand, Marzieh; Baird, Douglas; van Schooten, Kipp; Malissa, Hans; Lupton, John M.; Boehme, Christoph

    2016-08-01

    Spin-dependent processes play a crucial role in organic electronic devices. Spin coherence can give rise to spin mixing due to a number of processes such as hyperfine coupling, and leads to a range of magnetic field effects. However, it is not straightforward to differentiate between pure single-carrier spin-dependent transport processes which control the current and therefore the electroluminescence, and spin-dependent electron-hole recombination which determines the electroluminescence yield and in turn modulates the current. We therefore investigate the correlation between the dynamics of spin-dependent electric current and spin-dependent electroluminescence in two derivatives of the conjugated polymer poly(phenylene-vinylene) using simultaneously measured pulsed electrically detected (pEDMR) and optically detected (pODMR) magnetic resonance spectroscopy. This experimental approach requires careful analysis of the transient response functions under optical and electrical detection. At room temperature and under bipolar charge-carrier injection conditions, a correlation of the pEDMR and the pODMR signals is observed, consistent with the hypothesis that the recombination currents involve spin-dependent electronic transitions. This observation is inconsistent with the hypothesis that these signals are caused by spin-dependent charge-carrier transport. These results therefore provide no evidence that supports earlier claims that spin-dependent transport plays a role for room-temperature magnetoresistance effects. At low temperatures, however, the correlation between pEDMR and pODMR is weakened, demonstrating that more than one spin-dependent process influences the optoelectronic materials' properties. This conclusion is consistent with prior studies of half-field resonances that were attributed to spin-dependent triplet exciton recombination, which becomes significant at low temperatures when the triplet lifetime increases.

  6. Differential acetylcholine release in the prefrontal cortex and hippocampus during pavlovian trace and delay conditioning.

    Science.gov (United States)

    Flesher, M Melissa; Butt, Allen E; Kinney-Hurd, Brandee L

    2011-09-01

    Pavlovian trace conditioning critically depends on the medial prefrontal cortex (mPFC) and hippocampus (HPC), whereas delay conditioning does not depend on these brain structures. Given that the cholinergic basal forebrain system modulates activity in both the mPFC and HPC, it was reasoned that the level of acetylcholine (ACh) release in these regions would show distinct profiles during testing in trace and delay conditioning paradigms. To test this assumption, microdialysis probes were implanted unilaterally into the mPFC and HPC of rats that were pre-trained in appetitive trace and delay conditioning paradigms using different conditional stimuli in the two tasks. On the day of microdialysis testing, dialysate samples were collected during a quiet baseline interval before trials were initiated, and again during performance in separate blocks of trace and delay conditioning trials in each animal. ACh levels were quantified using high-performance liquid chromatography and electrochemical detection techniques. Consistent with our hypothesis, results showed that ACh release in the mPFC was greater during trace conditioning than during delay conditioning. The level of ACh released during trace conditioning in the HPC was also greater than the levels observed during delay conditioning. While ACh efflux in both the mPFC and HPC selectively increased during trace conditioning, ACh levels in the mPFC during trace conditioning testing showed the greatest increases observed. These results demonstrate a dissociation in cholinergic activation of the mPFC and HPC during performance in trace but not delay appetitive conditioning, where this cholinergic activity may contribute to attentional mechanisms, adaptive response timing, or memory consolidation necessary for successful trace conditioning.

  7. Functional reconstitution of Haemonchus contortus acetylcholine receptors in Xenopus oocytes provides mechanistic insights into levamisole resistance

    Science.gov (United States)

    Boulin, T; Fauvin, A; Charvet, CL; Cortet, J; Cabaret, J; Bessereau, J-L; Neveu, C

    2011-01-01

    BACKGROUND AND PURPOSE The cholinergic agonist levamisole is widely used to treat parasitic nematode infestations. This anthelmintic drug paralyses worms by activating a class of levamisole-sensitive acetylcholine receptors (L-AChRs) expressed in nematode muscle cells. However, levamisole efficacy has been compromised by the emergence of drug-resistant parasites, especially in gastrointestinal nematodes such as Haemonchus contortus. We report here the first functional reconstitution and pharmacological characterization of H. contortus L-AChRs in a heterologous expression system. EXPERIMENTAL APPROACH In the free-living nematode Caenorhabditis elegans, five AChR subunit and three ancillary protein genes are necessary in vivo and in vitro to synthesize L-AChRs. We have cloned the H. contortus orthologues of these genes and expressed them in Xenopus oocytes. We reconstituted two types of H. contortus L-AChRs with distinct pharmacologies by combining different receptor subunits. KEY RESULTS The Hco-ACR-8 subunit plays a pivotal role in selective sensitivity to levamisole. As observed with C. elegans L-AChRs, expression of H. contortus receptors requires the ancillary proteins Hco-RIC-3, Hco-UNC-50 and Hco-UNC-74. Using this experimental system, we demonstrated that a truncated Hco-UNC-63 L-AChR subunit, which was specifically detected in a levamisole-resistant H. contortus isolate, but not in levamisole-sensitive strains, hampers the normal function of L-AChRs, when co-expressed with its full-length counterpart. CONCLUSIONS AND IMPLICATIONS We provide the first functional evidence for a putative molecular mechanism involved in levamisole resistance in any parasitic nematode. This expression system will provide a means to analyse molecular polymorphisms associated with drug resistance at the electrophysiological level. PMID:21486278

  8. Quantum Transport Detected by Strong Proximity Interaction at a Graphene-WS2 van der Waals Interface.

    Science.gov (United States)

    O'Farrell, E C T; Avsar, A; Tan, J Y; Eda, G; Özyilmaz, B

    2015-09-09

    Magnetotransport measurements demonstrate that graphene in a van der Waals heterostructure is a sensitive probe of quantum transport in an adjacent WS2 layer via strong Coulomb interactions. We observe a large low-field magnetoresistance (≫ e(2)/h) and a -ln T temperature dependence of the resistance. In-plane magnetic field resistance indicates the origin is orbital and nonclassical. We demonstrate a strong electron-hole asymmetry in the mobility and coherence length of graphene demonstrating the presence of localized Coulomb interactions with ionized donors in the WS2 substrate, which ultimately leads to screening as the Fermi level of graphene is tuned toward the conduction band of WS2. This leads us to conclude that graphene couples to quantum localization processes in WS2 via the Coulomb interaction and results in the observed signatures of quantum transport. Our results show that theoretical descriptions of the van der Waals interface should not ignore localized strong correlations.

  9. Central nervous system promotes thermotolerance via FoxO/DAF-16 activation through octopamine and acetylcholine signaling in Caenorhabditis elegans.

    Science.gov (United States)

    Furuhashi, Tsubasa; Sakamoto, Kazuichi

    2016-03-25

    The autonomic nervous system (ANS) responds to many kinds of stressors to maintain homeostasis. Although the ANS is believed to regulate stress tolerance, the exact mechanism underlying this is not well understood. To understand this, we focused on longevity genes, which have functions such as lifespan extension and promotion of stress tolerance. To understand the relationship between ANS and longevity genes, we analyzed stress tolerance of Caenorhabditis elegans treated with octopamine, which has an affinity to noradrenaline in insects, and acetylcholine. Octopamine and acetylcholine did not show resistance against H2O2, but the neurotransmitters promoted thermotolerance via DAF-16. However, chronic treatment with octopamine and acetylcholine did not extend the lifespan, although DAF-16 plays an important role in longevity. In conclusion, our results show that octopamine and acetylcholine activate DAF-16 in response to stress, but chronic induction of octopamine and acetylcholine is not beneficial for increasing longevity.

  10. [{sup 123}I]-3-Iodcytisin as possible radiotracer for the imaging of nicotinic acetylcholine receptors using single photon emission computer tomography; [{sup 123}I]-3-Iodcytisin als moeglicher Radiotracer fuer die Darstellung der nikotinergen Acetylcholin Rezeptoren mittels Single-Photon-Emissions-Computertomographie

    Energy Technology Data Exchange (ETDEWEB)

    Paulik, Dagmar Julia

    2015-03-06

    For the synthesis of [{sup 123}I]-3-Iodcytisin as possible radiotracer for the imaging of nicotinic acetylcholine (nACh) receptors using SPECT two different technologies were used: the radio-iodination with iodogen and the radio-iodination with nitric acid. The latter one showed higher efficiency. The radiotracer will allow to detect degenerative processes and other nACh-depending diseases in the brain (Alzheimer, Parkinson) and to observe the progress. The autoradiography is aimed to the imaging of the nACh receptors in the brain bypassing the brain-blood barrier. The highest activity was measured in the thalamus of mice and rat brains.

  11. {sup 13}C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Sherwin J.; Cheng, Ricky C.; Chew, Thomas A.; Khantwal, Chandra M. [Stanford University School of Medicine, Department of Molecular & Cellular Physiology (United States); Liu, Corey W. [Stanford University School of Medicine, Stanford Magnetic Resonance Laboratory (United States); Gong, Shimei; Nakamoto, Robert K. [University of Virginia, Department of Molecular Physiology and Biological Physics (United States); Maduke, Merritt, E-mail: maduke@stanford.edu [Stanford University School of Medicine, Department of Molecular & Cellular Physiology (United States)

    2015-04-15

    CLC transporters catalyze the exchange of Cl{sup −} for H{sup +} across cellular membranes. To do so, they must couple Cl{sup −} and H{sup +} binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways. Therefore, our understanding of whether and how global protein dynamics contribute to the exchange mechanism has been severely limited. To overcome the limitations of crystallography, we used solution-state {sup 13}C-methyl NMR with labels on methionine, lysine, and engineered cysteine residues to investigate substrate (H{sup +}) dependent conformational change outside the restraints of crystallization. We show that methyl labels in several regions report H{sup +}-dependent spectral changes. We identify one of these regions as Helix R, a helix that extends from the center of the protein, where it forms the part of the inner gate to the Cl{sup −}-permeation pathway, to the extracellular solution. The H{sup +}-dependent spectral change does not occur when a label is positioned just beyond Helix R, on the unstructured C-terminus of the protein. Together, the results suggest that H{sup +} binding is mechanistically coupled to closing of the intracellular access-pathway for Cl{sup −}.

  12. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes.

    Directory of Open Access Journals (Sweden)

    Elise Courtot

    2015-12-01

    Full Text Available Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.

  13. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes.

    Science.gov (United States)

    Courtot, Elise; Charvet, Claude L; Beech, Robin N; Harmache, Abdallah; Wolstenholme, Adrian J; Holden-Dye, Lindy; O'Connor, Vincent; Peineau, Nicolas; Woods, Debra J; Neveu, Cedric

    2015-12-01

    Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.

  14. Both A1 and A2a purine receptors regulate striatal acetylcholine release.

    Science.gov (United States)

    Brown, S J; James, S; Reddington, M; Richardson, P J

    1990-07-01

    The receptors responsible for the adenosine-mediated control of acetylcholine release from immunoaffinity-purified rat striatal cholinergic nerve terminals have been characterized. The relative affinities of three analogues for the inhibitory receptor were (R)-phenylisopropyladenosine greater than cyclohexyladenosine greater than N-ethylcarboxamidoadenosine (NECA), with binding being dependent of the presence of Mg2+ and inhibited by 5'-guanylylimidodiphosphate [Gpp(NH)p] and adenosine receptor antagonists. Adenosine A1 receptor agonists inhibited forskolin-stimulated cholinergic adenylate cyclase activity, with an IC50 of 0.5 nM for (R)-phenylisopropyladenosine and 500 nM for (S)-phenylisopropyladenosine. A1 agonists inhibited acetylcholine release at concentrations approximately 10% of those required to inhibit the cholinergic adenylate cyclase. High concentrations (1 microM) of adenosine A1 agonists were less effective in inhibiting both adenylate cyclase and acetylcholine release, due to the presence of a lower affinity stimulatory A2 receptor. Blockade of the A1 receptor with 8-cyclopentyl-1,3-dipropylxanthine revealed a half-maximal stimulation by NECA of the adenylate cyclase at 10 nM, and of acetylcholine release at approximately 100 nM. NECA-stimulated adenylate cyclase activity copurified with choline acetyltransferase in the preparation of the cholinergic nerve terminals, suggesting that the striatal A2 receptor is localized to cholinergic neurones. The possible role of feedback inhibitory and stimulatory receptors on cholinergic nerve terminals is discussed.

  15. Design, synthesis and biological evaluation of Erythrina alkaloid analogues as neuronal nicotinic acetylcholine receptor antagonists

    DEFF Research Database (Denmark)

    Crestey, François; Jensen, Anders A.; Borch, Morten

    2013-01-01

    The synthesis of a new series of Erythrina alkaloid analogues and their pharmacological characterization at various nicotine acetylcholine receptor (nAChR) subtypes are described. The compounds were designed to be simplified analogues of aromatic erythrinanes with the aim of obtaining subtype...

  16. Functional aspects of dexamethasone upregulated nicotinic acetylcholine receptors in C2C12 myotubes

    NARCIS (Netherlands)

    Maestrone, E; Lagostena, L; Henning, RH; DenHertog, A; Nobile, M

    1995-01-01

    Three days of treatment with the glucocorticoid dexamethasone (1 nM-mu M) induced a concentration-dependent up-regulation of muscle nicotinic acetylcholine receptor (nAChR) in C2C12 mouse myotubes (EC(50)=10+/-7.3 nM), as assessed by [H-3]alpha-BuTx binding. The maximum increase in binding amounted

  17. Septohippocampal Acetylcholine: Involved in but Not Necessary for Learning and Memory?

    Science.gov (United States)

    Parent, Marise B.; Baxter, Mark G.

    2004-01-01

    The neurotransmitter acetylcholine (ACh) has been accorded an important role in supporting learning and memory processes in the hippocampus. Cholinergic activity in the hippocampus is correlated with memory, and restoration of ACh in the hippocampus after disruption of the septohippocampal pathway is sufficient to rescue memory. However, selective…

  18. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    Science.gov (United States)

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS. A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA Toluene (TOL...

  19. Tying up Nicotine: New Selective Competitive Antagonist of the Neuronal Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Petersen, Ida Nymann; Crestey, François; Jensen, Anders A;

    2015-01-01

    Conformational restriction of the pyrrolidine nitrogen in nicotine by the introduction of an ethylene bridge provided a potent and selective antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors. Resolution by chiral SFC, pharmacological characterization of the two enantiomers...

  20. Distinct neural pathways mediate alpha7 nicotinic acetylcholine receptor-dependent activation of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hay-Schmidt, Anders; Hansen, Henrik H;

    2010-01-01

    alpha(7) nicotinic acetylcholine receptor (nAChR) agonists are candidates for the treatment of cognitive deficits in schizophrenia. Selective alpha(7) nAChR agonists, such as SSR180711, activate neurons in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (ACCshell) in rats, regions...

  1. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B;

    2010-01-01

    Agonists and positive allosteric modulators of the alpha(7) nicotinic acetylcholine receptor (nAChR) are currently being developed for the treatment of cognitive disturbances in patients with schizophrenia or Alzheimer's disease. This review describes the neurobiological properties of the alpha n...

  2. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jensen, Majbrit Myrup; Mikkelsen, Jens D.; Arvaniti, Maria;

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes...

  3. Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Science.gov (United States)

    Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...

  4. Acetylcholine Release in the Hippocampus and Striatum during Place and Response Training

    Science.gov (United States)

    Pych, Jason C.; Chang, Qing; Colon-Rivera, Cynthia; Haag, Renee; Gold, Paul E.

    2005-01-01

    These experiments examined the release of acetylcholine in the hippocampus and striatum when rats were trained, within single sessions, on place or response versions of food-rewarded mazes. Microdialysis samples of extra-cellular fluid were collected from the hippocampus and striatum at 5-min increments before, during, and after training. These…

  5. Anterior Thalamic Lesions Alter Both Hippocampal-Dependent Behavior and Hippocampal Acetylcholine Release in the Rat

    Science.gov (United States)

    Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.

    2011-01-01

    The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…

  6. Acetylcholine released from cholinergic nerves contributes to cutaneous vasodilation during heat stress

    Science.gov (United States)

    Shibasaki, Manabu; Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Nitric oxide (NO) contributes to active cutaneous vasodilation during a heat stress in humans. Given that acetylcholine is released from cholinergic nerves during whole body heating, coupled with evidence that acetylcholine causes vasodilation via NO mechanisms, it is possible that release of acetylcholine in the dermal space contributes to cutaneous vasodilation during a heat stress. To test this hypothesis, in seven subjects skin blood flow (SkBF) and sweat rate were simultaneously monitored over three microdialysis membranes placed in the dermal space of dorsal forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine (10 microM), the second membrane was perfused with the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 10 mM) dissolved in the aforementioned neostigmine solution (l-NAME(Neo)), and the third membrane was perfused with Ringer solution as a control site. Each subject was exposed to approximately 20 min of whole body heating via a water-perfused suit, which increased mean body temperature from 36.4 +/- 0.1 to 37.5 +/- 0.1 degrees C (P acetylcholine released from cholinergic nerves is capable of modulating cutaneous vasodilation via NO synthase mechanisms early in the heat stress but not after substantial cutaneous vasodilation.

  7. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I.; Okada, Tetsuji; Kobilka, Brian K.; Haga, Tatsuya; Kobayashi, Takuya (Stanford-MED); (Kyoto); (Gakushuin); (Kyushu)

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  8. Effect of vecuronium on the release of acetylcholine after nerve stimulation

    NARCIS (Netherlands)

    van Santen, G; Wierda, JMKH

    2000-01-01

    To test the hypothesis that vasodilation occurs because of the release of a vasoactive substance after a brief muscle contraction and to determine whether acetylcholine spillover from the motor nerve is involved in contraction-induced hyperemia, tetanic muscle contractions were produced by sciatic n

  9. Demonstration of muscarinic acetylcholine receptor-like immunoreactivity in the rat forebrain and upper brainstem

    NARCIS (Netherlands)

    Zee, E.A. van der; Matsuyama, T.; Strosberg, A.D.; Traber, J.; Luiten, P.G.M.

    1989-01-01

    The distribution of muscarinic acetylcholine receptor protein (mAChR) in the rat forebrain and upper brainstem was described by using a monoclonal antibody (M35) raised against mAChR purified from bovine forebrain homogenates. A method is investigated for light microscopic (LM) and electronmicroscop

  10. Synthesis and pharmacological evaluation of DHβE analogs as neuronal nicotinic acetylcholine receptor antagonists

    DEFF Research Database (Denmark)

    Jepsen, Tue H.; Jensen, Anders A.; Lund, Mads Henrik;

    2014-01-01

    Dihydro-β-erythroidine (DHβE) is a member of the Erythrina family of alkaloids and a potent competitive antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors (nAChRs). Guided by an X-ray structure of DHβE in complex with an ACh binding protein, we detail the design, synthesis...

  11. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    Science.gov (United States)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  12. GABA receptors and benzodiazepine binding sites modulate hippocampal acetylcholine release in vivo

    NARCIS (Netherlands)

    Moor, E; de Boer, P; Westerink, B.H.C.

    1998-01-01

    In the present study, the regulation of acetylcholine release from the ventral hippocampus by gamma-aminobutyric acid (GABA) was investigated in vivo. GABA receptor agonists and antagonists were administered locally in the medial septum and the adjacent vertical limb of the diagonal band of Broca, o

  13. Intersubunit bridge formation governs agonist efficacy at nicotinic acetylcholine alpha4beta2 receptors

    DEFF Research Database (Denmark)

    Rohde, Line Aagot Hede; Ahring, Philip Kiær; Jensen, Marianne Lerbech

    2012-01-01

    . Using binding experiments, electrophysiology and X-ray crystallography we have investigated a consecutive series of five prototypical pyridine-containing agonists derived from 1-(pyridin-3-yl)-1,4-diazepane. A correlation between binding affinities at a4ß2 and the acetylcholine binding protein from...

  14. Bradykinin or acetylcholine as vasodilators to test endothelial venous function in healthy subjects

    Directory of Open Access Journals (Sweden)

    Eneida R. Rabelo

    2008-01-01

    Full Text Available INTRODUCTION: The evaluation of endothelial function has been performed in the arterial bed, but recently evaluation within the venous system has also been explored. Endothelial function studies employ different drugs that act as endothelium-dependent vasodilatory response inductors. OBJECTIVES: The aim of this study is to compare the endothelium-dependent venous vasodilator response mediated by either acetylcholine or bradykinin in healthy volunteers. METHODS AND RESULTS: Changes in vein diameter after phenylephrine-induced venoconstriction were measured to compare venodilation induced by acetylcholine or bradykinin (linear variable differential transformer dorsal hand vein technique. We studied 23 healthy volunteers; 31% were male, and the subject had a mean age of 33 ± 8 years and a mean body mass index of 23 ± 2 kg/m². The maximum endothelium-dependent venodilation was similar for both drugs (p = 0.13, as well as the mean responses for each dose of both drugs (r = 0.96. The maximum responses to acetylcholine and bradykinin also had good agreement. CONCLUSION: There were no differences between acetylcholine and bradykinin as venodilators in this endothelial venous function investigation.

  15. Visualization of cholinoceptive neurons in the rat neocortex : colocalization of muscarinic and nicotinic acetylcholine receptors

    NARCIS (Netherlands)

    Zee, E.A. van der; Streefland, C.; Strosberg, A.D.; Schröder, H.; Luiten, P.G.M.

    1992-01-01

    The present investigation analyzes the cellular distribution of muscarinic and nicotinic acetylcholine receptors in rat neocortex, by use of monoclonal antibodies raised against purified receptor proteins. The degree of colocalization of both types of receptors was determined by way of immunofluores

  16. Chronic nicotine modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman.

    Directory of Open Access Journals (Sweden)

    Alexander V Chibalin

    Full Text Available Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21-31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV while the activity of the α1 isoform decreased (-4.4 mV. Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM, measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser(63 and Ser(68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.

  17. Ab initio energetics, kinetics, and quantum transport characteristics of graphene nanoribbons as nanosensors for detecting nitrogen dioxide

    Science.gov (United States)

    Paulla, Kirti K.; Hassan, Ahmed J.; Knick, Cory R.; Farajian, Amir A.

    2014-03-01

    Molecules adsorption on graphene nanoribbons (GNRs) can be used to engineer and make use of their properties for applications such as energy storage and sensors. We investigate adsorption characteristics by considering nitrogen dioxide as a sample molecule for assessing nanosensor functionality of GNRs. Using ab initio modeling, energetics of various adsorption possibilities are determined and their rate constants are calculated and compared. Nonbonding and weak sp3 adsorptions at the hydrogen-terminated edges are shown to be more feasible than center adsorptions. This shows increased reactivity compared to graphene. Calculated quantum transport responses upon molecules adsorption indicate possibility of sensing extremely low nitrogen dioxide concentrations. Possible approaches for improving gas nanosensor functionality of GNRs are discussed. Reference: RSC Advances, 2013, DOI: 10.1039/c3ra46372a. This research was supported by the National Science Foundation Grant ECCS-0925939.

  18. Electrophysiological characterization of nicotinic acetylcholine receptors in cat petrosal ganglion neurons in culture: effects of cytisine and its bromo derivatives.

    Science.gov (United States)

    Varas, Rodrigo; Valdés, Viviana; Iturriaga-Vásquez, Patricio; Cassels, Bruce K; Iturriaga, Rodrigo; Alcayaga, Julio

    2006-02-09

    Petrosal ganglion neurons are depolarized and fire action potentials in response to acetylcholine and nicotine. However, little is known about the subtype(s) of nicotinic acetylcholine receptors involved, although alpha4 and alpha7 subunits have been identified in petrosal ganglion neurons. Cytisine, an alkaloid unrelated to nicotine, and its bromo derivatives are agonists exhibiting different affinities, potencies and efficacies at nicotinic acetylcholine receptors containing alpha4 or alpha7 subunits. To characterize the receptors involved, we studied the effects of these agonists and the nicotinic acetylcholine receptor antagonists hexamethonium and alpha-bungarotoxin in isolated petrosal ganglion neurons. Petrosal ganglia were excised from anesthetized cats and cultured for up to 16 days. Using patch-clamp technique, we recorded whole-cell currents evoked by 5-10 s applications of acetylcholine, cytisine or its bromo derivatives. Agonists and antagonists were applied by gravity from a pipette near the neuron surface. Neurons responded to acetylcholine, cytisine, 3-bromocytisine and 5-bromocytisine with fast inward currents that desensitized during application of the stimuli and were reversibly blocked by 1 microM hexamethonium or 10 nM alpha-bungarotoxin. The order of potency of the agonists was 3-bromocytisine > acetylcholine approximately = cytisine > 5-bromocytisine, suggesting that homomeric alpha7 neuronal nicotinic receptors predominate in cat petrosal ganglion neurons in culture.

  19. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors.

    Directory of Open Access Journals (Sweden)

    Thomas B Duguet

    2016-07-01

    Full Text Available Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the

  20. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors.

    Science.gov (United States)

    Duguet, Thomas B; Charvet, Claude L; Forrester, Sean G; Wever, Claudia M; Dent, Joseph A; Neveu, Cedric; Beech, Robin N

    2016-07-01

    Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the clade V parasitic

  1. Physiologic Waveform Analysis for Early Detection of Hemorrhage during Transport and Higher Echelon Medical Care of Combat Casualties

    Science.gov (United States)

    2014-03-01

    sequence analysis of finger blood pressure variability. Comparison with analysis of intra- arterial recordings. Hyper- tension 22: 26–33, 1993. 30. O’Rourke...detection of hemorrhage is crucial for managing combat casualties. However, mean arterial blood pressure (ABP) and other vital signs are late indicators of...physiologic mechanisms, mean arterial blood pressure (ABP) and other vital signs often change late and precipitously during progressive bleeding. By

  2. Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs in rat hippocampal GABAergic interneurons.

    Science.gov (United States)

    Son, Jong-Hyun; Winzer-Serhan, Ursula H

    2008-11-10

    Hippocampal inhibitory interneurons are a diverse population of cells widely scattered in the hippocampus, where they regulate hippocampal circuit activity. The hippocampus receives cholinergic projections from the basal forebrain, and functional studies have suggested the presence of different subtypes of nicotinic acetylcholine receptors (AChRs) on gamma-aminobutyric acid (GABA)ergic interneurons. Single-cell polymerase chain reaction analysis had confirmed that several nAChR subunit mRNAs are co-expressed with glutamate decarboxylase 67 (GAD67), the marker for GABAergic interneurons. In this anatomical study, we systematically investigated the co-expression of GAD67 with different nAChR subunits by using double in situ hybridization with a digoxigenin-labeled GAD67 probe and (35)S-labeled probes for nAChR subunits (alpha2, alpha3, alpha4, alpha5, alpha6, alpha7, beta2, beta3, and beta4). The results revealed that most GAD67-positive interneurons expressed beta2, and 67 % also expressed alpha7 mRNA. In contrast, mRNA expression of other subunits was limited; only 13 % of GAD67-positive neurons co-expressed alpha4, and less than 10% expressed transcripts for alpha2, alpha3, alpha5, or beta4. Most GAD67/alpha2 co-expression was located in CA1/CA3 stratum oriens, and GAD67/alpha5 co-expression was predominantly detected in CA1/CA3 stratum radiatum/lacunosum moleculare and the dentate gyrus. Expression of alpha6 and beta3 mRNAs was rarely detected in the hippocampus, and mRNAs were not co-expressed with GAD67. These findings suggest that the majority of nicotinic responses in GABAergic interneurons should be mediated by a homomeric alpha7 or heteromeric alpha7*-containing nAChRs. Other possible combinations such as alpha2beta2*, alpha4beta2*, or alpha5beta2* heteromeric nAChRs could contribute to functional nicotinic response in subsets of GABAergic interneurons but overall would have a minor role.

  3. Simultaneous determination of pH, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor.

    Science.gov (United States)

    Tsai, Hsiao-chung; Doong, Ruey-an

    2005-03-15

    An array-based optical biosensor for the simultaneous analysis of multiple samples in the presence of unrelated multi-analytes was fabricated. Urease and acetylcholinesterase (AChE) were used as model enzymes and were co-entrapped with the sensing probe, FITC-dextran, in the sol-gel matrix to measure pH, urea, acetylcholine (ACh) and heavy metals (enzyme inhibitors). Environmental and biological samples spiked with metal ions were also used to evaluate the application of the array biosensor to real samples. The biosensor exhibited high specificity in identifying multiple analytes. No obvious cross-interference was observed when a 50-spot array biosensor was used for simultaneous analysis of multiple samples in the presence of multiple analytes. The sensing system can determine pH over a dynamic range from 4 to 8.5. The limits of detection (LODs) of 2.5-50 microM with a dynamic range of 2-3 orders of magnitude for urea and ACh measurements were obtained. Moreover, the urease-encapsulated array biosensor was used to detect heavy metals. The analytical ranges of Cd(II), Cu(II), and Hg(II) were between 10 nM and 100 mM. When real samples were spiked with heavy metals, the array biosensor also exhibited potential effectiveness in screening enzyme inhibitors.

  4. Growth of high quality mercurous halide single crystals by physical vapor transport method for AOM and radiation detection applications

    Science.gov (United States)

    Amarasinghe, Priyanthi M.; Kim, Joo-Soo; Chen, Henry; Trivedi, Sudhir; Qadri, Syed B.; Soos, Jolanta; Diestler, Mark; Zhang, Dajie; Gupta, Neelam; Jensen, Janet L.; Jensen, James

    2016-09-01

    Single crystals of mercurous halide were grown by physical vapor transport method (PVT). The orientation and the crystalline quality of the grown crystals were determined using high resolution x-ray diffraction (HRXRD) technique. The full width at half maximum (FWHM) of the grown mercurous bromide crystals was measured to be 0.13 degrees for (004) reflection, which is the best that has been achieved so far for PVT grown mercurous halide single crystals. The extended defects of the crystals were also analyzed using high resolution x-ray diffraction topography. Preliminary studies were carried out to evaluate the performance of the crystals on acousto-optic modulator (AOM) and gamma-ray detector applications. The results indicate the grown mercurous halide crystals are excellent materials for acousto-optic modulator device fabrication. The diffraction efficiencies of the fabricated AOM device with 1152 and 1523 nm wavelength lasers polarizing parallel to the acoustic wave were found to be 35% and 28%, respectively. The results also indicate the grown crystals are a promising material for gamma-ray detector application with a very high energy resolution of 1.86% FWHM.

  5. Refinements in the use of equivalent latitude for assimilating sporadic inhomogeneous stratospheric tracer observations, 1: Detecting transport of Pinatubo aerosol across a strong vortex edge

    Directory of Open Access Journals (Sweden)

    P. Good

    2004-01-01

    Full Text Available The use of PV equivalent latitude for assimilating stratospheric tracer observations is discussed - with particular regard to the errors in the equivalent latitude coordinate, and to the assimilation of sparse data. Some example measurements are assimilated: they sample the stratosphere sporadically and inhomogeneously. The aim was to obtain precise information about the isentropic tracer distribution and evolution as a function of equivalent latitude. Precision is important, if transport across barriers like the vortex edge are to be detected directly. The main challenges addressed are the errors in modelled equivalent latitude, and the non-ideal observational sampling. The methods presented allow first some assessment of equivalent latitude errors and a picture of how good or poor the observational coverage is. This information determines choices in the approach for estimating as precisely as possible the true equivalent latitude distribution of the tracer, in periods of good and poor observational coverage. This is in practice an optimisation process, since better understanding of the equivalent latitude distribution of the tracer feeds back into a clearer picture of the errors in the modelled equivalent latitude coordinate. Error estimates constrain the reliability of using equivalent latitude to make statements like 'this observation samples air poleward of the vortex edge' or that of more general model-measurement comparisons. The approach is demonstrated for ground-based lidar soundings of the Mount Pinatubo aerosol cloud, focusing on the 1991-92 arctic vortex edge between 475-520K. Equivalent latitude is estimated at the observation times and locations from Eulerian model tracers initialised with PV and forced by UK Meteorological Office analyses. With the model formulation chosen, it is shown that tracer transport of a few days resulted in an error distribution that was much closer to Gaussian form, although the mean error was not

  6. Electronic transport and band structures of GaAs/AlAs nanostructures superlattices for near-infrared detection

    Science.gov (United States)

    Barkissy, Driss; Nafidi, Abdelhakim; Boutramine, Abderrazak; Benchtaber, Nassima; Khalal, Ali; El Gouti, Thami

    2017-01-01

    We report here the theoretical calculations of band structures E( d 1), E( k z , k p ) and effective mass along the growth axis and in the plane of GaAs/Al x Ga1- x As superlattices, in the envelope function formalism. The effect of valence band offset, well thickness and temperature on the band structures, has been also studied. Our results show that a transition from indirect to direct band gap in (GaAs) m /(AlAs)4 takes place between m = 5 and 6 monolayers at room temperature. Samples (GaAs)9/(AlAs)4 and GaAs( d 1 = 10 nm)/Al0.15Ga0.85As( d 2 = 15 nm) have a direct band gap of 1.747 eV at room temperature and 1.546 eV at T = 30 mK, respectively. Their corresponding cutoff wavelengths are located in the near infrared region. We have interpreted the photoluminescence measurements of Ledentsov et al. in GaAs( d 1 = 2.52 nm)/AlAs ( d 1 = 1.16 nm) and the oscillations in the magnetoresistance observed by Kawamura et al. in GaAs/Al0.15Ga0.85As superlattice. In the later, the existence of discrete quantized levels along the growth direction z indicates extremely low interactions between adjacent wells leading to the use in parallel transport. The position of Fermi level predicts that this sample exhibits n-type conductivity. These results were compared and discussed with the available data in the literature and can be used as a guide for the design of infrared nanostructured detectors.

  7. Introducing Thermal Wave Transport Analysis (TWTA): A Thermal Technique for Dopamine Detection by Screen-Printed Electrodes Functionalized with Molecularly Imprinted Polymer (MIP) Particles.

    Science.gov (United States)

    Peeters, Marloes M; van Grinsven, Bart; Foster, Christopher W; Cleij, Thomas J; Banks, Craig E

    2016-04-26

    A novel procedure is developed for producing bulk modified Molecularly Imprinted Polymer (MIP) screen-printed electrodes (SPEs), which involves the direct mixing of the polymer particles within the screen-printed ink. This allowed reduction of the sample preparation time from 45 min to 1 min, and resulted in higher reproducibility of the electrodes. The samples are measured with a novel detection method, namely, thermal wave transport analysis (TWTA), relying on the analysis of thermal waves through a functional interface. As a first proof-of-principle, MIPs for dopamine are developed and successfully incorporated within a bulk modified MIP SPE. The detection limits of dopamine within buffer solutions for the MIP SPEs are determined via three independent techniques. With cyclic voltammetry this was determined to be 4.7 × 10(-6) M, whereas by using the heat-transfer method (HTM) 0.35 × 10(-6) M was obtained, and with the novel TWTA concept 0.26 × 10(-6) M is possible. This TWTA technique is measured simultaneously with HTM and has the benefits of reducing measurement time to less than 5 min and increasing effect size by nearly a factor of two. The two thermal methods are able to enhance dopamine detection by one order of magnitude compared to the electrochemical method. In previous research, it was not possible to measure neurotransmitters in complex samples with HTM, but with the improved signal-to-noise of TWTA for the first time, spiked dopamine concentrations were determined in a relevant food sample. In summary, novel concepts are presented for both the sensor functionalization side by employing screen-printing technology, and on the sensing side, the novel TWTA thermal technique is reported. The developed bio-sensing platform is cost-effective and suitable for mass-production due to the nature of screen-printing technology, which makes it very interesting for neurotransmitter detection in clinical diagnostic applications.

  8. Megakaryocytes and platelets express nicotinic acetylcholine receptors but nicotine does not affect megakaryopoiesis or platelet function.

    Science.gov (United States)

    Schedel, Angelika; Kaiser, Kerstin; Uhlig, Stefanie; Lorenz, Florian; Sarin, Anip; Starigk, Julian; Hassmann, Dennis; Bieback, Karen; Bugert, Peter

    2016-01-01

    In our previous investigations we have shown that platelets and their precursors express nicotinic α7 acetylcholine receptors (nAChRα7) that are involved in platelet function and in vitro differentiation of the megakaryoblastic cell line MEG-01. In this study, we were interested in the expression analysis of additional nAChR and the effects of nicotine in an ex vivo model using megakaryocytic cells differentiated from cord blood derived CD34(+) cells (CBMK) and an in vivo model using blood samples from smokers. CBMK were differentiated with thrombopoietin (TPO) for up to 17 days. Quantitative real-time PCR (QRT-PCR), Western blot analysis and flow cytometry were used to investigate nAChR expression (nAChRα7, nAChRα4, nAChRβ2) and nicotine effects. In blood samples of 15 nonsmokers and 16 smokers platelet parameters (count, mean platelet volume--MPV and platelet distribution width--PDW) were determined as indicators for changes of in vivo megakaryopoiesis. Platelet function was determined by the use of whole blood aggregometry and flow cytometry. The functional role of nAChR was evaluated using specific antagonists in aggregometry. CHRNA7, CHRNA4 and CHRNB2 gene transcripts and the corresponding proteins could be identified in CBMK during all stages of differentiation. Platelets contain nAChRα7 and nAChRβ2 but not nAChRα4. Nicotine had no effect on TPO-induced differentiation of CBMK. There was no significant difference in all platelet parameters of the smokers compared to the nonsmokers. In line with this, cholinergic gene transcripts as well as the encoded proteins were equally expressed in both the study groups. Despite our observation of nAChR expression in megakaryopoiesis and platelets, we were not able to detect effects of nicotine in our ex vivo and in vivo models. Thus, the functional role of the nAChR in these cells remains open.

  9. Covalent Trapping of Methyllycaconitine at the α4-α4 Interface of the α4β2 Nicotinic Acetylcholine Receptor

    DEFF Research Database (Denmark)

    Absalom, Nathan L; Quek, Gracia; Lewis, Trevor M;

    2013-01-01

    The α4β2 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain and are implicated in a variety of physiological processes. There are two stoichiometries of the α4β2 nAChR, (α4)2(β2)3 and (α4)3(β2)2, with different sensitivities to acetylcholine (ACh), but their pharmacologi......The α4β2 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain and are implicated in a variety of physiological processes. There are two stoichiometries of the α4β2 nAChR, (α4)2(β2)3 and (α4)3(β2)2, with different sensitivities to acetylcholine (ACh...

  10. Intravenously administered oxotremorine and atropine, in doses known to affect pain threshold, affect the intraspinal release of acetylcholine in rats

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Höglund, A Urban

    2002-01-01

    muscarinic agonists and antagonists modify nociceptive threshold by affecting intraspinal release of acetylcholine (ACh). Catheters were inserted into the femoral vein in rats maintained on isoflurane anaesthesia for administration of oxotremorine (10-300 microg/kg) and atropine (0.1, 10, 5000 microg....../kg). Spinal microdialysis probes were placed intraspinally at approximately the C2-C5 spinal level for sampling of acetylcholine and dialysis delivery of atropine (0.1, 1, 10 nM). Additionally, the tail-flick behaviour was tested on conscious rats injected intraperitoneally with saline, atropine (10, 100....... Intravenously administered atropine, in a dose that produced hyperalgesia (5000 microg/kg) in the tail-flick test, significantly decreased the intraspinal release of acetylcholine. Our results suggest an association between pain threshold and acetylcholine release in spinal cord. It is also suggested...

  11. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors.

    OpenAIRE

    Chatzidaki, A.; D Oyley, J. M.; Gill-Thind, J. K.; Sheppard, T. D.; Millar, N S

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have divers...

  12. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors

    OpenAIRE

    Chatzidaki, Anna; D'Oyley, Jarryl M; Gill-Thind, JasKiran K.; Sheppard, Tom D; Millar, Neil S.

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have divers...

  13. Noninvasive detection by ATR and NIR-DR methods for skin-care ionic materials transported into the skin by iontophoresis

    Science.gov (United States)

    Ueda, Toyotoshi; Watanabe, Yukio; Akao, Ken-ichi; Suzuki, Harue

    2003-12-01

    Two analytical methods without damage to the skin were proposed in order to detect and measure the quantity of the medication transported into the skin by the iontophoresis. The infrared attenuated total reflection (ATR) method was proven to be able to evaluate the content of such a substance as sodium all- trans-retinoate or magnesium ℓ-ascorbyl-2-phosphate in the top (horny) layer of epidermis (about 1 μm under the skin surface), using characteristic bands to the above ion. Another method of near-infrared diffusive-reflection (NIR-DR) technique was shown probably to detect it in the dermis (1 mm under the surface), based on the shift of frequency and the change in intensity for the vibrational combination band of water molecules hydrating the ion. The quantity of the above material decreased monotonically in the horny layer for several hours after the treatment, while in the dermis it increased at first and then decreased via the maximum value.

  14. 智能交通系统运动车辆的视觉检测%VISION-BASED MOVING VEHICLES DETECTION IN INTELLIGENT TRANSPORTATION SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    王春波; 张卫东; 许晓鸣

    2001-01-01

    提出了一种在复杂背景中检测行驶车辆的方法,首先用概率统计的方法通过三帧图像间的运动信息找出运动区域,然后用静止分割得到的区域信息修正运动分割的结果,并采用图像增强技术改进了分割效果。检测结果可作为智能交通系统(ITS)中高层交通管理和车辆控制的基础.%A new moving vehicle detection method in complicated background was presented. First, moving regions are detected using the motion information of three frames by a statistical method, then the results of motion segmentation are regulated using the region information produced by static segmentation. And an image enhancement technique is proposed to improve the effects of segmentation. The results can be used as the basis of advanced vehicle control and traffic management in intelligent transportation systems (ITS).

  15. Theoretical studies of interaction models of human acetylcholine esterase with different inhibitors

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Alzheimer’s disease(AD) is a progressive neurodegenerative disorder and one of the most common causes of dementia in the elderly.Acetylcholine esterase inhibitors(AChEI) are the main drugs used in the treatment of AD.In this work,docking studies have been performed in order to understand the interaction between a number of inhibitors(tacrine,rivastigmine,huperzine A,TV-3326(ladostigil),donepezil and anseculin) and acetylcholine esterase(AChE).The calculated binding affinities between inhibitors and AChE increase in the order tacrine

  16. Acetylcholine secretion by motor neuron-like cells from umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xueyuan Liu; Dehua Li; Dong Jiang; Yan Fang

    2013-01-01

    Umbilical cord mesenchymal stem cel s were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cel s was induced with heparin and/or basic fi-broblast growth factor. Results confirmed that cel morphology did not change after induction with basic fibroblast growth factor alone. However, neuronal morphology was visible, and microtu-bule-associated protein-2 expression and acetylcholine levels increased fol owing induction with heparin alone or heparin combined with basic fibroblast growth factor. Hb9 and choline acetyl-transferase expression was high fol owing inductive with heparin combined with basic fibroblast growth factor. Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious. Heparin combined with basic fibroblast growth factor noticeably promoted the differen-tiation of umbilical cord mesenchymal stem cel s into motor neuron-like cel s. Simultaneously, um-bilical cord mesenchymal stem cel s could secrete acetylcholine.

  17. Functional Characterization of CCHamide and Muscarinic Acetylcholine Receptor Signalling in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Ren, Guilin Robin

    G-protein coupled receptors (GPCRs) constitute a large and ancient superfamily of membraneproteins responsible for the transduction of extracellular signals to the inside of the cells. In thisPh.D. thesis, Drosophila melanogaster (Dm) was used as a model organism to investigate a numberof topics...... is a newly discovered insect peptide hormone. The function of this novel peptide hasnot been well characterised. In this Ph.D. thesis, I identified CCHamide-2 peptides in endocrinecells of the gut and neurones of the brain of larvae and endocrine cells of the gut of adultDrosophila. Behavioural assays...... little is known about muscarinic acetylcholine receptorsignalling in insects. In this study, I found that two types of mAChRs occur in D. melanogaster, onecoupling to Gq (A-type) and the other to Gi (B-type). Both A- and B-type Dm-mAChRs can beactivated by acetylcholine (ACh), but the classical...

  18. Acetylcholine produces contraction mediated by cyclooxigenase pathway in arterial vessels in the marine fish (Isacia conceptionis

    Directory of Open Access Journals (Sweden)

    FA. Moraga

    Full Text Available Preliminary studies showed that dorsal artery contraction mediated by acetylcholine (ACh is blocked with indomethacin in intertidal fish (G. laevifrons. Our objective was to characterize the cholinergic pathway in several artery vessels of the I. conceptionis. Afferent and efferent branchial, dorsal and mesenteric arteries were dissected of 6 juvenile specimens, isometric tension studies were done using doses response curves (DRC for Ach (10–13 to 10–3 M, and cholinergic pathways were obtained by blocking with atropine or indomethacin. CRC to ACh showed a pattern of high sensitivity only in efferente branchial artery and low sensibility in all vessels. Furthermore, these contractions were blocked in the presence of atropine and indomethacin in all vessels. Our results corroborate previous results observed in intertidal species that contraction induced by acetylcholine is mediated by receptors that activate a cyclooxygenase contraction pathway.

  19. Evidence of muscarinic acetylcholine receptors in the retinal centrifugal system of the chick

    Directory of Open Access Journals (Sweden)

    Calaza K.C.

    2000-01-01

    Full Text Available In this study we characterize the presence of muscarinic acetylcholine receptors (mAChR in the isthmo-optic nucleus (ION of chicks by immunohistochemistry with the M35 antibody. Some M35-immunoreactive fibers were observed emerging from the retinal optic nerve insertion, suggesting that they could be centrifugal fibers. Indeed, intraocular injections of cholera toxin B (CTb, a retrograde tracer, and double-labeling with M35 and CTb in the ION confirmed this hypothesis. The presence of M35-immunoreactive cells and the possible mAChR expression in ION and ectopic neuron cells in the chick brain strongly suggest the existence of such a cholinergic system in this nucleus and that acetylcholine release from amacrine cells may mediate interactions between retinal cells and ION terminals.

  20. Magnesium sulfate enhances non-depolarizing muscle relaxant vecuronium action at adult muscle-type nicotinic acetylcholine receptor in vitro

    Institute of Scientific and Technical Information of China (English)

    Hong WANG; Qi-sheng LIANG; Lan-ren CHENG; Xiao-hong LI; Wei FU; Wen-tao DAI; Shi-tong LI

    2011-01-01

    To investigate the effect of magnesium sulfate and its interaction with the non-depolarizing muscle relaxant vecuronium at adult muscle-type acetylcholine receptors in vitro.Methods:Adult muscle-type acetylcholine receptors were expressed in HEK293 cells.Drug-containing solution was applied via a gravity-driven perfusion system.The inward currents were activated by brief application of acetylcholine (ACh),and recorded using whole-cell voltage-clamp technique.Results:Magnesium sulfate (1-100 mmol/L) inhibited the inward currents induced ACh (10 μmol/L) in a concentration-dependent manner (IC5o=29.2 mmol/L).The inhibition of magnesium sulfate was non-competitive.In contrast,vecuronium produced a potent inhibition on the adult muscle-type acetylcholine receptor (IC50=8.7 nmol/L) by competitive antagonism.Magnesium sulfate at the concentrations of 1,3,and 6 mmol/L markedly enhanced the inhibition of vecuronium (10 nmol/L) on adult muscle-type acetylcholine receptors.Conclusion:Clinical enhancement of vecuronium-induced muscle relaxation by magnesium sulfate can be attributed partly to synergism between magnesium sulfate and non-depolarizing muscle relaxants at adult muscle-type acetylcholine receptors.

  1. Activation of muscarinic and nicotinic acetylcholine receptors in the nucleus accumbens core is necessary for the acquisition of drug reinforcement.

    Science.gov (United States)

    Crespo, Jose A; Sturm, Katja; Saria, Alois; Zernig, Gerald

    2006-05-31

    Neurotransmitter release in the nucleus accumbens core (NACore) during the acquisition of remifentanil or cocaine reinforcement was determined in an operant runway procedure by simultaneous tandem mass spectrometric analysis of dopamine, acetylcholine, and remifentanil or cocaine itself. Run times for remifentanil or cocaine continually decreased over the five consecutive runs of the experiment. Intra-NACore dopamine, acetylcholine, and drug peaked with each intravenous remifentanil or cocaine self-administration and decreased to pre-run baseline with half-lives of approximately 10 min. As expected, remifentanil or cocaine peaks did not vary between the five runs. Surprisingly, however, drug-contingent dopamine peaks also did not change over the five runs, whereas acetylcholine peaks did. Thus, the acquisition of drug reinforcement was paralleled by a continuous increase in acetylcholine overflow in the NACore, whereas the overflow of dopamine, the expected prime neurotransmitter candidate for conditioning in drug reinforcement, did not increase. Local intra-accumbens administration by reverse microdialysis of either atropine or mecamylamine completely and reversibly blocked the acquisition of remifentanil reinforcement. Our findings suggest that activation of muscarinic and nicotinic acetylcholine receptors in the NACore by acetylcholine volume transmission is necessary during the acquisition phase of drug reinforcement conditioning.

  2. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine.

    Science.gov (United States)

    Bébarová, Markéta; Matejovič, Peter; Švecová, Olga; Kula, Roman; Šimurdová, Milena; Šimurda, Jiří

    2017-02-03

    Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach), a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.

  3. Abundance, distribution, mobility and oligomeric state of M2 muscarinic acetylcholine receptors in live cardiac muscle

    OpenAIRE

    Nenasheva, Tatiana A.; Neary, Marianne; Gregory I. Mashanov; Birdsall, Nigel J.M.; Breckenridge, Ross A.; Molloy, Justin E.

    2013-01-01

    M2 muscarinic acetylcholine receptors modulate cardiac rhythm via regulation of the inward potassium current. To increase our understanding of M2 receptor physiology we used Total Internal Reflection Fluorescence Microscopy to visualize individual receptors at the plasma membrane of transformed CHOM2 cells, a cardiac cell line (HL-1), primary cardiomyocytes and tissue slices from pre- and post-natal mice. Receptor expression levels between individual cells in dissociated cardiomyocytes and he...

  4. Annulated heterocyclic bioisosteres of norarecoline. Synthesis and molecular pharmacology at five recombinant human muscarinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Ebert, B; Brann, M R;

    1995-01-01

    A series of O-alkylated analogs of 5,6,7,8-tetrahydro-4H-isoxazolo[4,5-c]azepin-3-ol (THAO) were synthesized and characterized as ligands for muscarinic acetylcholine receptors (mAChRs). O-Methyl-THAO (4a), O-ethyl-THAO (4b), O-isopropyl-THAO (4c), and O-propargyl-THAO (4d) were shown to be poten...

  5. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera

    OpenAIRE

    Jones, Andrew K.; Raymond-Delpech, Valerie; Steeve H Thany; Gauthier, Monique; Sattelle, David B.

    2006-01-01

    Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission and play roles in many cognitive processes. They are under intense research as potential targets of drugs used to treat neurodegenerative diseases and neurological disorders such as Alzheimer's disease and schizophrenia. Invertebrate nAChRs are targets of anthelmintics as well as a major group of insecticides, the neonicotinoids. The honey bee, Apis mellifera, is one of the most beneficial insects worldw...

  6. Chemical Stimulation of Adherent Cells by Localized Application of Acetylcholine from a Microfluidic System

    OpenAIRE

    Susanne Zibek; Britta Hagmeyer; Alfred Stett; Martin Stelzle

    2010-01-01

    Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses.In an experimental setup micro-droplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanoporou...

  7. Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy

    OpenAIRE

    Palma, Eleonora; Reyes-Ruiz, Jorge Mauricio; Lopergolo, Diego; Roseti, Cristina; Bertollini, Cristina; Ruffolo, Gabriele; Cifelli, Pierangelo; Onesti, Emanuela; Limatola, Cristina; Miledi, Ricardo; Inghilleri, Maurizio

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal disease leading to motor neuron degeneration and progressive paralysis. Other studies have revealed defects in skeletal muscle even in the absence of motor neuron anomalies, focusing on acetylcholine receptors (AChRs) and supporting the so-called “dying-back” hypothesis. Our results indicate that the endocannabinoid palmitoylethanolamide (PEA) reduces the rundown of AChRs currents in ALS muscle and can clinically improve patients’ pulmonary funct...

  8. BDNF Up-Regulates α7 Nicotinic Acetylcholine Receptor Levels on Subpopulations of Hippocampal Interneurons

    OpenAIRE

    Massey, Kerri A; Zago, Wagner M.; Berg, Darwin K.

    2006-01-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of α7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the ef...

  9. Acetylcholine released from cholinergic nerves contributes to cutaneous vasodilation during heat stress

    Science.gov (United States)

    Shibasaki, Manabu; Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Nitric oxide (NO) contributes to active cutaneous vasodilation during a heat stress in humans. Given that acetylcholine is released from cholinergic nerves during whole body heating, coupled with evidence that acetylcholine causes vasodilation via NO mechanisms, it is possible that release of acetylcholine in the dermal space contributes to cutaneous vasodilation during a heat stress. To test this hypothesis, in seven subjects skin blood flow (SkBF) and sweat rate were simultaneously monitored over three microdialysis membranes placed in the dermal space of dorsal forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine (10 microM), the second membrane was perfused with the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 10 mM) dissolved in the aforementioned neostigmine solution (l-NAME(Neo)), and the third membrane was perfused with Ringer solution as a control site. Each subject was exposed to approximately 20 min of whole body heating via a water-perfused suit, which increased mean body temperature from 36.4 +/- 0.1 to 37.5 +/- 0.1 degrees C (P vasodilation was significantly lower at the neostigmine-treated site relative to the other sites (neostigmine: 36.6 +/- 0.1 degrees C, l-NAME(Neo): 37.1 +/- 0.1 degrees C, control: 36.9 +/- 0.1 degrees C), whereas no significant threshold difference was observed between the l-NAME(Neo)-treated and control sites. At the end of the heat stress, SkBF was not different between the neostigmine-treated and control sites, whereas SkBF at the l-NAME(Neo)-treated site was significantly lower than the other sites. These results suggest that acetylcholine released from cholinergic nerves is capable of modulating cutaneous vasodilation via NO synthase mechanisms early in the heat stress but not after substantial cutaneous vasodilation.

  10. Posttranslational modifications of human M3 muscarinic acetylcholine receptor: zooming in its functional implications

    OpenAIRE

    Romero Fernández, Wilber

    2011-01-01

    The human M3 muscarinic acetylcholine receptor (M3R) regulates many important physiological roles in the central and peripheral nervous systems, and it is involved in the pathophysiology of several neurodegenerative and autoimmune diseases, representing attractive potential pharmacological target for intervention. However, the lack of structural information on this receptor hampered the development of new potent antagonist with increased selectivity and lower side effects. Such structural inf...

  11. Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P] phosphate.

    Science.gov (United States)

    Abdel-Latif, A A; Akhtar, R A; Hawthorne, J N

    1977-01-15

    1. Paired iris smooth muscles from rabbits were incubated for 30 min at 37 degrees C in an iso-osmotic salt medium containg glucose, inositol, cytidine and [32P]phosphate. 2. One of the pair was then incubated at 37 degrees C for 10 min in unlabelled medium containing 10mM-2-deoxyglucose and the other was incubated in the presence of acetylcholine plus eserine (0.05mM each). 2-Deoxyglucose, which was included in the incubation medium to minimize the biosynthesis of triphosphoinositide from ATP and diphosphoinositide, decreased the amount of labelled ATP by 71% and inhibited further 32P incorporation from ATP into triphosphoinositide by almost 30%. 3. Acetylcholine (0.05mM) increased significantly the loss of 32P from triphosphoinositide (the 'triphosphoinositide effect') in 32P-labelled iris muscle. This effect was measured both chemically and radiochemically. It was also observed when 32Pi was replaced by myo-[3H]inositol in the incubation medium. 4. The triphosphoinositide effect was blocked by atropine but not by D-tubocurarine. Further, muscarinic but not nicotinic agonists were found to provoke this effect. 5. Acetylcholine decreased by 28% the 32P incorporation into triphosphoinositide, presumably by stimulating its breakdown. This decrement in triphosphoinositide was blocked by atropine, but not by D-tubocurarine. 6. The triphosphoinositide effect was accompanied by a significant increase in 32P labelling, but not tissue concentration, of phosphatidylinositol and phosphatidic acid. The possible relationship between the loss of 32P label from triphosphoinositide in response to acetylcholine and the concomitant increase in that of phosphatidylinositol and phosphatidic acid is discussed. 7. The presence of triphosphoinositide phosphomonoesterase, the enzyme that might be stimulated in the iris smooth muscle by the neurotransmitter, was demonstrated, and, under our methods of homogenization and assay, more than 80% of its activity was localized in the

  12. Nicotinic Acetylcholine Receptor Signalling: Roles in Alzheimer's Disease and Amyloid Neuroprotection

    OpenAIRE

    2009-01-01

    Alzheimer's disease (AD), the major contributor to dementia in the elderly, involves accumulation in the brain of extracellular plaques containing the β-amyloid protein (Aβ) and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. AD is also characterized by a loss of neurons, particularly those expressing nicotinic acetylcholine receptors (nAChRs), thereby leading to a reduction in nAChR numbers. The Aβ1–42 protein, which is toxic to neurons, is critical to the onset and...

  13. Effect of cholinergic ligands on the lipids of acetylcholine receptor-rich membrane preparations from Torpedo californica

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Carrion, M.; Raftery, M.A.; Thomas, J.K.; Sator, V.

    1976-01-01

    Ion permeation, triggered by ligand-receptor interaction, is associated with the primary events of membrane depolarization at the neuromuscular junction and synaptic connections. To explore the possible sites of ion permeation, the long-lived fluorescent probe pyrene (fluorescence lifetime approximately 400 nsec) has been inserted into the lipid phase of acetylcholine receptor-rich membrane (AcChR-M) preparations from Torpedo californica. The pyrene probe is susceptible to both fluidity and permeability changes in the lipid bilayer. These changes are detected by variations in the rate of decay of the excited singlet state of pyrene after pulsation with a 10-nsec ruby laser flash. Variations of these lifetimes in the membrane preparations alone or in the presence of quenchers show that binding of cholinergic agonists and antagonists, neurotoxins, and local anesthetics to AcChR-M produces varying effects on the properties of the pyrene probe in the lipid phase. It is concluded that binding of cholinergic ligands to the receptor does not significantly alter the fluidity or permeability of the lipids in the bilayer in contact with pyrene. On the other hand, local anesthetics do affect these properties.

  14. Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Satoshi Suo

    Full Text Available Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system functions, including learning and drug addiction. In Caenorhabditis elegans, the amine neurotransmitter octopamine activates a CREB homolog, CRH-1, in cholinergic SIA neurons, whereas dopamine suppresses CREB activation by inhibiting octopamine signaling in response to food stimuli. However, the physiological role of this activation is unknown. In this study, the effect of dopamine, octopamine, and CREB on acetylcholine signaling was analyzed using the acetylcholinesterase inhibitor aldicarb. Mutants with decreased dopamine signaling exhibited reduced acetylcholine signaling, and octopamine and CREB functioned downstream of dopamine in this regulation. This study demonstrates that the regulation of CREB by amine neurotransmitters modulates acetylcholine release from the neurons of C. elegans.

  15. Monkey adrenal chromaffin cells express α6β4* nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Alicia Hernández-Vivanco

    Full Text Available Nicotinic acetylcholine receptors (nAChRs that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs.

  16. Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells

    Directory of Open Access Journals (Sweden)

    Caswell eBarry

    2012-02-01

    Full Text Available Pharmacological and lesion data indicate that acetylcholine plays an important role in memory formation. Increased levels of acetylcholine in the hippocampal formation are associated with successful encoding while disruption of the cholinergic system leads to impairments on a range of mnemonic tasks. Cholinergic signalling from the medial septum also plays a central role in generating and pacing theta-band oscillations throughout the hippocampal formation. New results suggest a potential link between these distinct phenomena. Environmental novelty, a condition associated with strong cholinergic drive, has been shown to induce an expansion in the firing pattern of entorhinal grid cells and a reduction in the frequency of theta measured from the LFP. Computational modelling suggests the spatial activity of grid cells is produced by interference between neuronal oscillators; scale being determined by theta-band oscillations in entorhinal stellate cells, the frequency of which are modulated by acetylcholine. We propose a causal link: increased cholinergic signalling in response to environmental novelty triggers grid expansion. Cholinergic induced grid expansion may enhance, or even induce, encoding by producing a mismatch between spatial inputs to the hippocampus, such as barrier cells and grids cell with different scales.

  17. Effects of dichlorobenzene on acetylcholine receptors in human neuroblastoma SH-SY5Y cells.

    Science.gov (United States)

    Yan, Ren-Ming; Chiung, Yin-Mei; Pan, Chien-Yuan; Liu, Jenn-Hwa; Liu, Pei-Shan

    2008-11-20

    para-Dichlorobenzene (DCB), a deodorant and an industrial chemical, is a highly volatile compound and is known to be an indoor air contaminant. Because of its widespread use and volatility, the toxicity of DCB presents a concern to industrial workers and public. Some toxic aspects of DCB have already been focused but its effects on neuronal signal transduction have been hitherto unknown. The effects of DCB on the cytosolic calcium homeostasis are investigated in human neuroblastoma SH-SY5Y cells in this study. DCB, above 200 microM, was found to induce a rise in cytosolic calcium concentration that could not be counteracted by nicotinic acetylcholine receptor (nAChR) and muscarinic acetylcholine receptor (mAChR) antagonists but was partially inhibited by thapsigargin. To understand the actions of DCB on the acetylcholine receptors, we investigated its effects on the changes of cytosolic calcium concentration following nicotinic AChR stimulation with epibatidine and muscarinic AChR stimulation with methacholine in human neuroblastoma SH-SY5Y cells. DCB inhibited the cytosolic calcium concentration rise induced by epibatidine and methacholine with respective IC(50)s of 34 and 294 microM. The inhibitions of DCB were not the same as thapsigargin's inhibition. In the electrophysiological observations, DCB blocked the influx currents induced by epibatidine. Our findings suggest that DCB interferes with the functional activities of AChR, including its coupling influx currents and cytosolic calcium elevations.

  18. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    Science.gov (United States)

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.

  19. Nicotine-morphine interactions at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors.

    Science.gov (United States)

    Talka, Reeta; Salminen, Outi; Whiteaker, Paul; Lukas, Ronald J; Tuominen, Raimo K

    2013-02-15

    Nicotine and opioids share several behavioral and rewarding properties. Although both opioids and nicotine have their own specific mechanism of action, there is empirical and experimental evidence of interactions between these drugs. We studied receptor-level interactions of nicotine and morphine at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors. [(3)H]epibatidine displacement was used to determine if morphine binds competitively to nicotinic acetylcholine receptors. Functional interactions of morphine and nicotine were studied with calcium fluorometry and (86)Rb(+) efflux assays. Morphine displaced [(3)H]epibatidine from nicotinic agonist binding sites in all cell lines studied. The Ki values for morphine were 13.2μM in SH-EP1-hα4β2 cells, 0.16μM and 126μM in SH-SY5Y cells and 43.7μM in SH-EP1-hα7 cells. In SH-EP1-hα4β2 cells expressing α4β2 nicotinic acetylcholine receptors, morphine acted as a partial agonist of (86)Rb(+) efflux comparable to cytisine (with EC50 values of 53.3μM for morphine and 5.38μM for cytisine). The effect of morphine was attenuated concentration-dependently by the nicotinic antagonist mecamylamine. In the SH-SY5Y cell line expressing several subtypes of nicotinic acetylcholine receptors morphine had an inhibitory effect on nicotine induced (86)Rb(+) ion efflux mediated by α3(⁎) nicotinic acetylcholine receptors. These results suggest that morphine acts as a partial agonist at α4β2 nicotinic acetylcholine receptors and as a weak antagonist at α3(⁎) nicotinic acetylcholine receptors.

  20. Detection of ouabain-insensitive H(+)-transporting, K(+)-stimulated p-nitrophenylphosphatase activity in rat gastric glands by cerium-based cytochemistry.

    Science.gov (United States)

    Kobayashi, T; Seguchi, H

    1990-12-01

    We employed a modification of our previously reported cerium-based cytochemical method for ouabain-sensitive, K-dependent p-nitrophenylphosphatase (Na-K ATPase) activity to detect ouabain-insensitive, K-stimulated p-nitrophenylphosphatase (K-pNPPase) activity in rat gastric glands. Biochemically, the enzyme activity of gastric glands incubated in a medium containing 50 mM Tricine buffer (pH 7.5), 50 mM KCl, 10 mM MgCl2, 2 mM CeCl3, 2 mM p-nitrophenylphosphate (pNPP), 2.5 mM levamisole, 10 mM ouabain, and 0.00015% Triton X-100, was optimal at pH 7.5-8.0 and decreased above pH 8.5. The amount of p-nitrophenol after incubation increased linearly in proportion to the amount of tissue in the medium. The enzyme activity was inhibited by omeprazole, sodium flouride (NaF), N-ethylmaleimide (NEM), and dicyclohexylcarbodiimide (DCCD). Heat-treated specimens had no enzyme activity. The enzyme activity increased with addition of K ions up to the concentration of 50 mM, and became constant above 50 mM. Cytochemically, the parietal cells of the gastric glands reacted positively for ouabain-insensitive K-pNPPase activity. Intense reaction was observed at the microvilli of the luminal surface and the intracellular canaliculi. The tubulovesicular system showed weak enzyme activity. The reaction products were found as fine, granular, electron-dense deposits in the cytoplasm just beneath the plasma membrane. The ouabain-insensitive K-pNPPase activity detected in this study appears, therefore, to be associated with that of H-transporting, K-stimulated adenosine triphosphatase (H-K ATPase).

  1. Glucose transporter Glut-1 is detectable in peri-necrotic regions in many human tumor types but not normal tissues: Study using tissue microarrays.

    Science.gov (United States)

    Airley, Rachel; Evans, Andrew; Mobasheri, Ali; Hewitt, Stephen M

    2010-05-20

    The hypoxic tumor microenvironment is associated with malignant progression and poor treatment response. The glucose transporter Glut-1 is a prognostic factor and putative hypoxia marker. So far, studies of Glut-1 in cancer have utilized conventional immunohistochemical analysis in a series of individual biopsy or surgical specimens. Tissue microarrays, however, provide a rapid, inexpensive means of profiling biomarker expression. To evaluate hypoxia markers, tissue cores must show the architectural features of hypoxia; i.e. viable tissue surrounding necrotic regions. Glut-1 may be a useful biomarker to validate tissue microarrays for use in studies of hypoxia-regulated genes in cancer. In this study, we carried out immunohistochemical detection of Glut-1 protein in many tumor and normal tissue types in a range of tissue microarrays. Glut-1 was frequently found in peri-necrotic regions, occurring in 9/34 lymphomas, 6/12 melanomas, and 5/16 glioblastomas; and in 43/54 lung, 22/84 colon, and 23/60 ovarian tumors. Expression was rare in breast (6/40) and prostate (1/57) tumors, and in normal tissue, was restricted to spleen, tongue, and CNS endothelium. In conclusion, tissue microarrays enable the observation of Glut-1 expression in peri-necrotic regions, which may be linked to hypoxia, and reflect previous studies showing differential Glut-1 expression across tumor types and non-malignant tissue.

  2. Detection of the Endosomal Sorting Complex Required for Transport in Entamoeba histolytica and Characterization of the EhVps4 Protein

    Directory of Open Access Journals (Sweden)

    Israel López-Reyes

    2010-01-01

    Full Text Available Eukaryotic endocytosis involves multivesicular bodies formation, which is driven by endosomal sorting complexes required for transport (ESCRT. Here, we showed the presence and expression of homologous ESCRT genes in Entamoeba histolytica. We cloned and expressed the Ehvps4 gene, an ESCRT member, to obtain the recombinant EhVps4 and generate specific antibodies, which immunodetected EhVps4 in cytoplasm of trophozoites. Bioinformatics and biochemical studies evidenced that rEhVps4 is an ATPase, whose activity depends on the conserved E211 residue. Next, we generated trophozoites overexpressing EhVps4 and mutant EhVps4-E211Q FLAG-tagged proteins. The EhVps4-FLAG was located in cytosol and at plasma membrane, whereas the EhVps4-E211Q-FLAG was detected as abundant cytoplasmic dots in trophozoites. Erythrophagocytosis, cytopathic activity, and hepatic damage in hamsters were not improved in trophozoites overexpressing EhVps4-FLAG. In contrast, EhVps4-E211Q-FLAG protein overexpression impaired these properties. The localization of EhVps4-FLAG around ingested erythrocytes, together with our previous results, strengthens the role for EhVps4 in E. histolytica phagocytosis and virulence.

  3. Detection of the Endosomal Sorting Complex Required for Transport in Entamoeba histolytica and Characterization of the EhVps4 Protein

    Science.gov (United States)

    López-Reyes, Israel; García-Rivera, Guillermina; Bañuelos, Cecilia; Herranz, Silvia; Vincent, Olivier; López-Camarillo, César; Marchat, Laurence A.; Orozco, Esther

    2010-01-01

    Eukaryotic endocytosis involves multivesicular bodies formation, which is driven by endosomal sorting complexes required for transport (ESCRT). Here, we showed the presence and expression of homologous ESCRT genes in Entamoeba histolytica. We cloned and expressed the Ehvps4 gene, an ESCRT member, to obtain the recombinant EhVps4 and generate specific antibodies, which immunodetected EhVps4 in cytoplasm of trophozoites. Bioinformatics and biochemical studies evidenced that rEhVps4 is an ATPase, whose activity depends on the conserved E211 residue. Next, we generated trophozoites overexpressing EhVps4 and mutant EhVps4-E211Q FLAG-tagged proteins. The EhVps4-FLAG was located in cytosol and at plasma membrane, whereas the EhVps4-E211Q-FLAG was detected as abundant cytoplasmic dots in trophozoites. Erythrophagocytosis, cytopathic activity, and hepatic damage in hamsters were not improved in trophozoites overexpressing EhVps4-FLAG. In contrast, EhVps4-E211Q-FLAG protein overexpression impaired these properties. The localization of EhVps4-FLAG around ingested erythrocytes, together with our previous results, strengthens the role for EhVps4 in E. histolytica phagocytosis and virulence. PMID:20508821

  4. Acetylcholine Attenuates Hypoxia/ Reoxygenation-Induced Mitochondrial and Cytosolic ROS Formation in H9c2 Cells via M2 Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Yi Miao

    2013-02-01

    Full Text Available Background: The anti-infammatory and cardioprotective effect of acetylcholine (ACh has been reported; nevertheless, whether and how ACh exhibits an antioxidant property against ischemia/reperfusion (I/R-induced oxidative stress remains obscure. Methods: In the present study, H9c2 rat cardiomyocytes were exposed to hypoxia/reoxygenation (H/R to mimic I/R injury. We estimated intracellular different sources of reactive oxygen species (ROS by measuring mitochondrial ROS (mtROS, mitochondrial DNA (mtDNA copy number, xanthine oxidase (XO and NADPH oxidase (NOX activity and expression of rac 1. Cell injury was determined by lactate dehydrogenase (LDH release and cleaved caspase-3 expression. The siRNA transfection was performed to knockdown of M2 acetylcholine receptor (M2 AChR expression. Results: 12-h hypoxia followed by 2-h reoxygenation resulted in an abrupt burst of ROS in H9c2 cells. Administration of ACh reduced the levels of ROS in a concentration-dependent manner. Compared to the H/R group, ACh decreased mtROS, recovered mtDNA copy number, diminished XO and NOX activity, rac 1 expression as well as cell injury. Co- treatment with atropine rather than hexamethonium abolished the antioxidant and cardioprotective effect of ACh. Moreover, knockdown of M2 AChR by siRNA showed the similar trends as atropine co-treatment group. Conclusions: ACh inhibits mitochondria-, XO- and NOX-derived ROS production thus protecting H9c2 cells against H/R-induced oxidative stress, and these benefcial effects are mainly mediated by M2 AChR. Our findings suggested that increasing ACh release could be a potential therapeutic strategy for treatment and prevention of I/R injury.

  5. Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice.

    Science.gov (United States)

    Abbas, Muzaffar; Rahman, Shafiqur

    2016-07-15

    Evidence indicates that microglial activation contributes to the pathophysiology and maintenance of neuroinflammatory pain involving central nervous system alpha-7 nicotinic acetylcholine receptors. The objective of the present study was to determine the effects of 3a,4,5,9b-Tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an alpha-7 nicotinic acetylcholine receptor positive allosteric modulator (PAM), on tactile allodynia and thermal hyperalgesia following lipopolysaccharide (LPS)-induced microglial activation in hippocampus, a neuroinflammatory pain model in mice. In addition, we examined the effects of TQS on microglial activation marker, an ionized calcium-binding adapter molecule 1 (Iba-1), in the hippocampus may be associated with neuroinflammatory pain. Pretreatment of TQS (4mg/kg) significantly reduced LPS (1mg/kg)-induced tactile allodynia and thermal hyperalgesia. Moreover, pretreatment of methyllycaconitine (3mg/kg) significantly reversed TQS-induced antiallodynic and antihyperalgesic responses indicating the involvement of alpha-7 nicotinic acetylcholine receptor. Pretreatment of TQS significantly decreased LPS-induced increased in hippocampal Iba-1 expression. Overall, these results suggest that TQS reduces LPS-induced neuroinflammatory pain like symptoms via modulating microglial activation likely in the hippocampus and/or other brain region by targeting alpha-7 nicotinic acetylcholine receptor. Therefore, alpha-7 nicotinic acetylcholine receptor PAM such as TQS could be a potential drug candidate for the treatment of neuroinflammatory pain.

  6. Limitations of RNAi of α6 nicotinic acetylcholine receptor subunits for assessing the in vivo sensitivity to spinosad

    Institute of Scientific and Technical Information of China (English)

    Frank D.Rinkevich; Jeffrey G.Scott

    2013-01-01

    Spinosad is a widely used insecticide that exerts its toxic effect primarily through interactions with the nicotinic acetylcholine receptor.The α6 nicotinic acetyl-choline receptor subunit is involved in spinosad toxicity as demonstrated by the high levels of resistance observed in strains lacking α6.RNAi was performed against the Dα6 nicotinic acetylcholine receptor subunit in Drosophila melanogaster using the Ga14-UAS system to examine if RNAi would yield results similar to those of Dα6 null mutants.These Dα6-deficient flies were subject to spinosad contact bioassays to evaluate the role of the Dα6 nicotinic acetylcholine receptor subunit on spinosad sensitivity.The expression of Dα6 was reduced 60%-75% as verified by quantitative polymerase chain reaction.However,there was no change in spinosad sensitivity in D.melanogaster.We repeated RNAi experiments in Tribolium castaneum using injection of dsRNA for Tcasα6.RNAi of Tcasα6 did not result in changes in spinosad sensitivity,similar to results obtained with D.melanogaster.The lack of change in spinosad sensitivity in both D.melanogaster and T.castaneum using two routes of dsRNA administration shows that RNAi may not provide adequate conditions to study the role of nicotinic acetylcholine receptor subunits on insecticide sensitivity due to the inability to completely eliminate expression of the α6 subunit in both species.Potential causes for the lack of change in spinosad sensitivity are discussed.

  7. Vasoactive intestinal polypeptide and acetylcholine stimulate exocrine secretion of epidermal growth factor from the rat submandibular gland

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1986-01-01

    The effect of vasoactive intestinal polypeptide (VIP) and acetylcholine on secretion of epidermal growth factor (EGF) from the rat salivary glands was investigated. VIP in doses of 3 X 10(-10) to 3 X 10(-8) mol/kg per h stimulated secretion of saliva and total output of EGF dose-dependently. Acet......The effect of vasoactive intestinal polypeptide (VIP) and acetylcholine on secretion of epidermal growth factor (EGF) from the rat salivary glands was investigated. VIP in doses of 3 X 10(-10) to 3 X 10(-8) mol/kg per h stimulated secretion of saliva and total output of EGF dose......-dependently. Acetylcholine also stimulated salivation and output of EGF. VIP in a dose of 3 X 10(-11) to 3 X 10(-10) mol/kg per h enhanced the stimulatory effect of acetylcholine, but this effect disappeared when the dose of VIP was increased. Adrenalectomy decreased acetylcholine stimulated total output of EGF...

  8. Partial nicotinic acetylcholine (α4β2 agonists as promising new medications for smoking cessation

    Directory of Open Access Journals (Sweden)

    Singh J

    2008-01-01

    Full Text Available Objective: To review the pharmacology, clinical efficacy and safety of partial agonists of a4β 2 nicotinic acetylcholine receptor. Data Sources: Primary literature and review articles were obtained via a PUBMED search (1988-August 2006 using the key terms smoking cessation, partial agonist alpha4beta2 nicotinic acetylcholine receptor, varenicline, cytisine and SSR591813. Additional studies and abstracts were identified from the bibliographies of reviewed literature. Study Selection and Data Extraction: Studies and review articles related to varenicline, cytisine and the partial agonist alpha4beta2 nicotinic acetylcholine receptor were reviewed. Data Synthesis: Smoking is widely recognized as a serious health problem. Smoking cessation has major health benefits. According to the US Public Health Services, all patients attempting to quit smoking should be encouraged to use one or more effective pharmacotherapy. Currently, along with nicotine replacement therapy, bupropion, nortriptyline and clonidine, are the mainstay of pharmacotherapy. More than ¾ of patients receiving treatment for smoking cessation return to smoking within the first year. Nicotine, through stimulating α4β 2 nAChR, releases dopamine in the reward pathway. Partial agonist of α4β 2 nAChR elicits moderate and sustained release of dopamine, which is countered during the cessation attempts; it simultaneously blocks the effects of nicotine by binding with α4β 2 receptors during smoking. Recently, varenicline, a partial agonist at α4β 2 nAChR, has been approved by the FDA (Food and Drug Administration for smoking cessation. Conclusion: Partial agonist α4β 2 nAChR appears to be a promising target in smoking cessation. Varenicline of this group is approved for treatment of smoking cessation by the FDA in May 2006.

  9. The effect of acetylcholine-like biomimetic polymers on neuronal growth.

    Science.gov (United States)

    Tu, Qin; Li, Li; Zhang, Yanrong; Wang, Jianchun; Liu, Rui; Li, Manlin; Liu, Wenming; Wang, Xueqin; Ren, Li; Wang, Jinyi

    2011-04-01

    Driven by clinical needs, nerve regeneration studies have recently become the focus of research and area of growth in tissue engineering. Biomimetic polymer synthesis and functional interface construction is a promising solution to induce neuritic sprouting and guide the regenerating nerve. However, few studies have been made on primary hippocampal neurons. In this study, a new type of acetylcholine-like biomimetic polymers for their potential in biomaterial-modulated nerve regeneration application is synthesized using click chemistry and free radical polymerization. The structure of the synthesized polymers includes a "bioactive" unit (acetylcholine-like unit) and a "bioinert" unit [poly(ethylene glycol) unit]. To explore the effects of the bioactive unit and the bioinert unit on neuronal growth, different ratios of the two initial monomers poly(ethylene glycol) monomethyl ether-glycidyl methacrylate (MePEG-GMA) and dimethylaminoethyl methacrylate (DMAEMA) were employed and five different polymers were synthesized. Their chemical structures were characterized using (1)H nuclear magnetic resonance and Fourier-transform infrared spectroscopy, and their physical properties (including molecular weight, polydispersity, glass transition temperature, and melting point) were determined using gel permeation chromatography and differential scanning calorimetry. Culturing of the primary rat hippocampal neurons on the polymeric surfaces show that the ratio of the two initial monomers utilized for polymer synthesis significantly affects neuronal growth. Rat hippocampal neurons show different growth morphologies on different polymeric surfaces. The polymeric surface prepared with 1:60 (mol/mol) of MePEG-GMA to DMAEMA induces neuronal regenerative responses similar to that on poly-l-lysine, a very common benchmark material for nerve cell cultures. These results suggest that acetylcholine-like biomimetic polymers are potential biomaterials for neural engineering applications

  10. Selective actions of Lynx proteins on different nicotinic acetylcholine receptors in the locust, Locusta migratoria manilensis.

    Science.gov (United States)

    Wang, Xin; Bao, Haibo; Sun, Huahua; Zhang, Yixi; Fang, Jichao; Liu, Qinghong; Liu, Zewen

    2015-08-01

    Nicotinic acetylcholine receptors (nAChRs) are major neurotransmitter receptors and targets of neonicotinoid insecticides in the insect nervous system. The full function of nAChRs is often dependent on associated proteins, such as chaperones, regulators and modulators. Here, three Lynx (Ly-6/neurotoxin) proteins, Loc-lynx1, Loc-lynx2 and Loc-lynx3, were identified in the locust, Locusta migratoria manilensis. Co-expression with Lynx resulted in a dramatic increase in agonist-evoked macroscopic currents on nAChRs Locα1/β2 and Locα2/β2 in Xenopus oocytes, but no changes in agonist sensitivity. Loc-lynx1 and Loc-lynx3 only modulated nAChRs Locα1/β2 while Loc-lynx2 modulated Locα2/β2 specifically. Meanwhile, Loc-lynx1 induced a more significant increase in currents evoked by imidacloprid and epibatidine than Loc-lynx3, and the effects of Loc-lynx1 on imidacloprid and epibatidine were significantly higher than those on acetylcholine. Among three lynx proteins, only Loc-lynx1 significantly increased [(3) H]epibatidine binding on Locα1/β2. The results indicated that Loc-lynx1 had different modulation patterns in nAChRs compared to Loc-lynx2 and Loc-lynx3. Taken together, these findings indicated that three Lynx proteins were nAChR modulators and had selective activities in different nAChRs. Lynx proteins might display their selectivities from three aspects: nAChR subtypes, various agonists and different modulation patterns. Insect Lynx (Ly-6/neurotoxin) proteins act as the allosteric modulators on insect nicotinic acetylcholine receptors (nAChRs), the important targets of insecticides. We found that insect lynx proteins showed their selectivities from at least three aspects: nAChR subtypes, various agonists and different modulation patterns.

  11. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets.

    Science.gov (United States)

    Wever, Claudia M; Farrington, Danielle; Dent, Joseph A

    2015-01-01

    New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target.

  12. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets.

    Directory of Open Access Journals (Sweden)

    Claudia M Wever

    Full Text Available New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target.

  13. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets

    Science.gov (United States)

    Wever, Claudia M.; Farrington, Danielle; Dent, Joseph A.

    2015-01-01

    New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target. PMID:26393923

  14. A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Maelle Jospin

    2009-12-01

    Full Text Available In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2 acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits. Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three alpha-subunits, UNC-38, UNC-63 and ACR-12, and two non-alpha-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By contrast, the acr-2(gf mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated excitation and inhibition of body muscles underlying sinusoidal movement.

  15. Brain β2*-nicotinic acetylcholine receptor occupancy after use of a nicotine inhaler

    OpenAIRE

    Esterlis, Irina; Effie M Mitsis; Batis, Jeffery C.; Bois, Frederic; Picciotto, Marina R.; Stiklus, Stephanie M.; Kloczynski, Tracy; Perry, Edward; Seibyl, John P.; McKee, Sherry; Staley, Julie K.; Cosgrove, Kelly P.

    2010-01-01

    The Nicotrol® (Pfizer, USA) nicotine inhaler reduces craving by mimicking the behavioural component of cigarettes and delivering controlled doses of nicotine, which binds to the beta-2 subunit-containing nicotinic acetylcholine receptors (β2*-nAChRs). Previous studies examined β2*-nAChR occupancy after administration of regular and low-nicotine cigarettes. Here, we measured occupancy of β2*-nAChRs after administration of nicotine via inhaler, and the relationship between occupancy and changes...

  16. INFLUENCE OF ANTIBIOTICS ON THE MECHANICAL RESPONSES OF GUINEA-PIG ILEUM TO ACETYLCHOLINE AND HISTAMINE

    Directory of Open Access Journals (Sweden)

    Petroianu Andy

    1998-01-01

    Full Text Available The side effects of antibiotics have been extensively described during the last decades, however, their role on digestive motility must be better investigated. Following a line of research, the influence of penicillin, chloranfenicol tetracycline and gentamicine on longitudinal smooth muscle responses to acetylcholine and histamine were studied on guinea-pig ileum. There were no differences between the responses before and after the addition of each antibiotic. Further investigations must be performed in order to find a possible influence of antibiotics on digestive motility.

  17. Cannabinoid CB1 receptor-mediated inhibition of hippocampal acetylcholine release is preserved in aged mice

    OpenAIRE

    Redmer, Agnes; Kathmann, Markus; Schlicker, Eberhard

    2003-01-01

    The cannabinoid CB1 receptor inverse agonist/antagonist SR 141716 increases acetylcholine release in rodent hippocampus and improves memory in some experimental paradigms. Since drugs like SR 141716 may represent a novel class of cognition-enhancing drugs, we wanted to check whether the function of the CB1 receptor is preserved during ageing.Hippocampal and striatal slices from 2- to 3- and 24- to 28-month-old C57BL/6J mice were preincubated with [3H]-choline or [3H]-noradrenaline ([3H]-NA) a...

  18. [[sup 3]H]imidacloprid: synthesis of a candidate radioligand for the nicotinic acetylcholine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Latli, B.; Casida, J.E. (California Univ., Berkeley, CA (United States). Dept. of Entomological Sciences)

    1992-08-01

    Imidacloprid is an exceptionally potent insecticide known from physiological studies to act at the nicotinic acetylcholine receptor. To prepare [[sup 3]H]imidacloprid as a candidate radioligand, 6-chloronicotinoyl chloride was reduced with NaB[sup 2]H[sub 4] (in model studies) or NaB[sup 3]H[sub 4] in absolute ethanol to 2-chloro-5-pyridinylmethanol which was transformed to 2-chloro-5-chloromethylpyridine on refluxing with thionyl chloride. Coupling with 4,5-dihydro-N-nitro-1H-imidazol-2-amine then gave [[sup 2]H[sub 2

  19. The structure of the third intracellular loop of the muscarinic acetylcholine receptor M2 subtype.

    Science.gov (United States)

    Ichiyama, Susumu; Oka, Yoshiaki; Haga, Kazuko; Kojima, Shuichi; Tateishi, Yukihiro; Shirakawa, Masahiro; Haga, Tatsuya

    2006-01-09

    We have examined whether the long third intracellular loop (i3) of the muscarinic acetylcholine receptor M2 subtype has a rigid structure. Circular dichroism (CD) and nuclear magnetic resonance spectra of M2i3 expressed in and purified from Escherichia coli indicated that M2i3 consists mostly of random coil. In addition, the differential CD spectrum between the M2 and M2deltai3 receptors, the latter of which lacks most of i3 except N- and C-terminal ends, gave no indication of secondary structure. These results suggest that the central part of i3 of the M2 receptor has a flexible structure.

  20. Crosslinking of. cap alpha. -bungarotoxin to the acetylcholine receptor from Torpedo marmorata by ultraviolet light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, R.E. (New York State Veterinary Coll., Ithaca (USA)); Changeux, J.P. (Institut Pasteur, 75 - Paris (France))

    1982-03-22

    The acetylcholine (ACh) receptor purified from the electric organ of Torpedo (sp) is an oligomer composed of 4 different subunits. The ..cap alpha.. subunit is labeled by affinity reagents known to bind to, or in the close vicinity of, the ACh binding site. The ..cap alpha..-toxins from snake venoms behave as competitive antagonists of ACh for its site. The authors have found that ..cap alpha..-/sup 125/I-bungarotoxin (Bgt) can be crosslinked covalently to ACh receptor subunits by simple UV irradiation. This allows the analysis of toxin-receptor crosslinked products without the complication of an intervening 'crosslinking arm'.

  1. Acetylcholine released from cholinergic nerves contributes to cutaneous vasodilation during heat stress

    Science.gov (United States)

    Shibasaki, Manabu; Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Nitric oxide (NO) contributes to active cutaneous vasodilation during a heat stress in humans. Given that acetylcholine is released from cholinergic nerves during whole body heating, coupled with evidence that acetylcholine causes vasodilation via NO mechanisms, it is possible that release of acetylcholine in the dermal space contributes to cutaneous vasodilation during a heat stress. To test this hypothesis, in seven subjects skin blood flow (SkBF) and sweat rate were simultaneously monitored over three microdialysis membranes placed in the dermal space of dorsal forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine (10 microM), the second membrane was perfused with the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 10 mM) dissolved in the aforementioned neostigmine solution (l-NAME(Neo)), and the third membrane was perfused with Ringer solution as a control site. Each subject was exposed to approximately 20 min of whole body heating via a water-perfused suit, which increased mean body temperature from 36.4 +/- 0.1 to 37.5 +/- 0.1 degrees C (P heat stress, SkBF at each site was normalized to its maximum value, identified by administration of 28 mM sodium nitroprusside. Mean body temperature threshold for cutaneous vasodilation was significantly lower at the neostigmine-treated site relative to the other sites (neostigmine: 36.6 +/- 0.1 degrees C, l-NAME(Neo): 37.1 +/- 0.1 degrees C, control: 36.9 +/- 0.1 degrees C), whereas no significant threshold difference was observed between the l-NAME(Neo)-treated and control sites. At the end of the heat stress, SkBF was not different between the neostigmine-treated and control sites, whereas SkBF at the l-NAME(Neo)-treated site was significantly lower than the other sites. These results suggest that acetylcholine released from cholinergic nerves is capable of modulating cutaneous vasodilation via NO synthase mechanisms early in the heat stress but not after

  2. Selective effect of the anthelmintic bephenium on Haemonchus contortus levamisole-sensitive acetylcholine receptors

    Science.gov (United States)

    Charvet, Claude L.; Robertson, Alan P.; Cabaret, Jacques; Martin, Richard J.; Neveu, Cédric

    2012-01-01

    Acetylcholine receptors (AChRs) are pentameric ligand-gated ion channels involved in the neurotransmission of both vertebrates and invertebrates. A number of anthelmintic compounds like levamisole and pyrantel target the AChRs of nematodes producing spastic paralysis of the worms. The muscle AChRs of nematode parasites fall into three pharmacological classes that are preferentially activated by the cholinergic agonists levamisole (L-type), nicotine (N-type) and bephenium (B-type), respectively. Despite a number of studies of the B-type AChR in parasitic species, this receptor remains to be characterized at the molecular level. Recently, we have reconstituted and functionally characterized two distinct L-AChR subtypes of the gastro-intestinal parasitic nematode Haemonchus contortus in the Xenopus laevis oocyte expression system by providing the cRNAs encoding the receptor subunits and three ancillary proteins (Boulin et al. in Br J Pharmacol 164(5):1421–1432, 2011). In the present study, the effect of the bephenium drug on Hco-L-AChR1 and Hco-L-AChR2 subtypes was examined using the two microelectrode voltage-clamp technique. We demonstrate that bephenium selectively activates the Hco-L-AChR1 subtype made of Hco-UNC-29.1, Hco-UNC-38, Hco-UNC-63, Hco-ACR-8 subunits that is more sensitive to levamisole than acetylcholine. Removing the Hco-ACR-8 subunit produced the Hco-L-AChR2 subtype that is more sensitive to pyrantel than acetylcholine and partially activated by levamisole, but which was bephenium-insensitive indicating that the bephenium-binding site involves Hco-ACR-8. Attempts were made to modify the subunit stoichiometry of the Hco-L-AChR1 subtype by injecting five fold more cRNA of individual subunits. Increased Hco-unc-29.1 cRNA produced no functional receptor. Increasing Hco-unc-63, Hco-unc-38 or Hco-acr-8 cRNAs did not affect the pharmacological characteristics of Hco-L-AChR1 but reduced the currents elicited by acetylcholine and the other agonists. Here

  3. Synthesis and characterization of a novel potato starch derivative with cationic acetylcholine groups.

    Science.gov (United States)

    Zhang, Bing; Ni, Boli; Lü, Shaoyu; Cui, Dapeng; Liu, Mingzhu; Gong, Honghong; Han, Fei

    2012-04-01

    A novel substance, cationic acetylcholine potato starch (CAPS), was developed for the first time. The synthesis process had three steps: first, carboxymethyl potato starch (CMPS) was synthesized under sodium hydroxide alkaline condition and in isopropyl alcohol organic media; second, bromocholine chloride (BCC) was synthesized with sulphuric acid as a catalytic agent; finally, CAPS was synthesized by the reaction of CMPS with BCC in N,N'-dimethylformamide (DMF). The degree of substitution (DS) of CAPS was determined by ammonia gas-sensing electrode and elemental analysis. CAPS was characterized by Fourier transformed infrared (FTIR) and near infrared (FTNIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC).

  4. Installation and Operation of Particle Transport Simulation Programs to Model the Detection and Measurement of Space Radiation of Space-Borne Sensors

    Science.gov (United States)

    2007-11-02

    realistic flight sensor computer models; (3) performance of particle transport calculations ; (4) analysis of transport simulation results, including...programs (LAHET, ACCEPT, CYLTRAN, MCNPX ) for particle transport simulation were applied to the modeling of the CEASE and HEP sensors. In addition, a...preliminary version of a post-processor program for analysis of single particle histories from MCNPX was written. Shown in this report are several listings

  5. The identification of acetylcholine and choline in oat seedlings by gas chromatography and nuclear magnetic resonance (NMR

    Directory of Open Access Journals (Sweden)

    Andrzej Tretyn

    2014-02-01

    Full Text Available Four methods of isolation and purification of choline esters from green 7-day-old oat ( Avena sativa L. cv. Diadem seedlings were tested The results showed that the best recovery of acetylcholine and choline from plant tissues was obtained using an extraction solution composed of 15% 1N formic acid and 85%, acetone followed by precipitation of both these substances with ammonium reineckate. The presence of acetylcholine and choline in the plant extracts was confirmed by nuclear magnetic resonance (NMR and gas chromatography. In the case of gas chromatography, after isolation and purification of the studied compounds from the plant material, estrification of choline followed by N-demethylation of acetylcholine and estrified choline were performed The demethylation reaction was conducted in a reaction mixture of 50 mM sodium thiophenolate and 25 mM thiophenol in anhydrous acetone. After its completion, the mixture was removed with pentanone and the demethylated esters were extracted into chloroform.

  6. Decreased cerebral {alpha}4{beta}2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer's disease assessed with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kendziorra, Kai; Meyer, Philipp Mael; Barthel, Henryk; Hesse, Swen; Becker, Georg Alexander; Luthardt, Julia; Schildan, Andreas; Patt, Marianne; Sorger, Dietlind; Seese, Anita; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Wolf, Henrike [University of Leipzig, Department of Psychiatry, Leipzig (Germany); University of Zurich, Department of Old Age Psychiatry and Psychiatry Research, Psychiatric University Hospital (PUK) Zurich, Zurich (Switzerland); Gertz, Herman-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany)

    2011-03-15

    Postmortem studies indicate a loss of nicotinic acetylcholine receptor (nAChRs) in Alzheimer's disease (AD). In order to establish whether these changes in the cholinergic system occur at an early stage of AD, we carried out positron emission tomography (PET) with a specific radioligand for the {alpha}4{beta}2* nicotinic acetylcholine receptor ({alpha}4{beta}2* nAChR) in patients with mild to moderate AD and in patients with amnestic mild cognitive impairment (MCI), who have a high risk to progress to AD. Nine patients with moderate AD, eight patients with MCI and seven age-matched healthy controls underwent 2-[{sup 18}F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[{sup 18}F]FA-85380) PET. After coregistration with individual magnetic resonance imaging the binding potential (BP{sub ND}) of 2-[{sup 18}F]FA-85380 was calculated using either the corpus callosum or the cerebellum as reference regions. PET data were analysed by region of interest analysis and by voxel-based analysis. Both patients with AD and MCI showed a significant reduction in 2-[{sup 18}F]FA-85380 BP{sub ND} in typical AD-affected brain regions. Thereby, the corpus callosum was identified as the most suitable reference region. The 2-[{sup 18}F]FA-85380 BP{sub ND} correlated with the severity of cognitive impairment. Only MCI patients that converted to AD in the later course (n = 5) had a reduction in 2-[{sup 18}F]FA-85380 BP{sub ND}. 2-[{sup 18}F]FA-85380 PET appears to be a sensitive and feasible tool for the detection of a reduction in {alpha}4{beta}2* nAChRs which seems to be an early event in AD. In addition, 2-[{sup 18}F]FA-85380 PET might give prognostic information about a conversion from MCI to AD. (orig.)

  7. Identification and comparison of amorphous calcium carbonate-binding protein and acetylcholine-binding protein in the abalone, Haliotis discus hannai.

    Science.gov (United States)

    Huang, Jing; Wang, Hongzhong; Cui, Yu; Zhang, Guiyou; Zheng, Guilan; Liu, Shiting; Xie, Liping; Zhang, Rongqing

    2009-01-01

    Nacre has two different microarchitectures: columnar nacre and sheet nacre. We previously identified an important regulator of the morphology of sheet nacre tablets, which was named amorphous calcium carbonate-binding protein (pf-ACCBP). However, little is known about its counterpart in columnar nacre. Moreover, pf-ACCBP shares significant sequence similarity with a group of acetylcholine-binding proteins (AChBP) that participate in neuronal synapses transmission, but the relationships between the two proteins, which are homologous in sequences but disparate in function, have not been studied yet. Here, we identified an amorphous calcium carbonate-binding protein and an acetylcholine-binding protein in the abalone, Haliotis discus hannai, named hdh-ACCBP and hdh-AChBP, respectively. Studies of hdh-ACCBP indicated that it was a counterpart of pf-ACCBP in gastropods that might function similarly in columnar nacre formation and supersaturated extrapallial fluid. Analysis of hdh-AChBP showed that unlike previously identified AChBP, hdh-AChBP was not only expressed in the nervous system but could also be detected in non-nervous system cells, such as the goblet cells of the mantle pallial. Additionally, its expression patterns during embryo and larval development did not accord with ganglion development. These phenomena indicated that AChBP might play more general roles than just in neuronal synapses transmission. Comparison of hdh-ACCBP and hdh-AChBP revealed that they were quite different in their post-translational modification and oligomerization and that they were controlled under different transcriptional regulation systems, consequently obtaining disparate expression profiles. Our results also implied that ACCBP and AChBP might come from a common ancestor through gene duplication and divergence.

  8. Technology and Application of the Automatic Detection in Testing Liquid Transport Properties of Textiles%织物液态水传递性能的自动检测技术及应用

    Institute of Scientific and Technical Information of China (English)

    詹永娟; 谢维斌; 姜晓云; 陈宝瑞; 虞树荣; 周小红

    2013-01-01

    Based on the vertical wicking measurement and image processing technology, this thesis introduces a kind of automatic detection device to test the liquid transport properties of textiles. According to the experiment, it shows that the deviations of the testing results obtained by the automatic detection device and the traditional test method are little, and the former method has high precision and simple operation , which can characterize the performance of water transportation through fabric well; and the automatic detection device with adjustable LED light is suitable for the automatic detection of liquid transport properties of fabrics from light-colored fabrics to deep-colored fabrics.%基于垂直芯吸法和图像处理技术,介绍了一种织物液态水传递性能的自动检测装置.并利用该装置进行了测试实验,结果表明:该自动检测装置得到的检测结果与传统检测结果偏差较小,测试精度高,操作简单方便,能较好地表征织物液态水传递特征;采用可调LED光源的织物湿传递自动检测装置适合浅色以及深色织物液态水传递性能的自动检测.

  9. Subtype-selective nicotinic acetylcholine receptor agonists enhance the responsiveness to citalopram and reboxetine in the mouse forced swim test.

    Science.gov (United States)

    Andreasen, Jesper T; Nielsen, Elsebet Ø; Christensen, Jeppe K; Olsen, Gunnar M; Peters, Dan; Mirza, Naheed R; Redrobe, John P

    2011-10-01

    Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. Accordingly, nicotine enhances antidepressant-like actions of reuptake inhibitors selective for serotonin or noradrenaline in the mouse forced swim test and the mouse tail suspension test. Both high-affinity α4β2 and low-affinity α7 nicotinic acetylcholine receptor subtypes are implicated in nicotine-mediated release of serotonin and noradrenaline. The present study therefore investigated whether selective agonism of α4β2 or α7 nicotinic acetylcholine receptors would affect the mouse forced swim test activity of two antidepressants with distinct mechanisms of action, namely the selective serotonin reuptake inhibitor citalopram and the noradrenaline reuptake inhibitor reboxetine. Subthreshold and threshold doses of citalopram (3 and 10 mg/kg) or reboxetine (10 and 20 mg/kg) were tested alone and in combination with the novel α4β2-selective partial nicotinic acetylcholine receptor agonist, NS3956 (0.3 and 1.0 mg/kg) or the α7-selective nicotinic acetylcholine receptor agonist, PNU-282987 (10 and 30 mg/kg). Alone, NS3956 and PNU-282987 were devoid of activity in the mouse forced swim test, but both 1.0 mg/kg NS3956 and 30 mg/kg PNU-282987 enhanced the effect of citalopram and also reboxetine. The data suggest that the activity of citalopram and reboxetine in the mouse forced swim test can be enhanced by agonists at either α4β2 or α7 nicotinic acetylcholine receptors, suggesting that both nicotinic acetylcholine receptor subtypes may be involved in the nicotine-enhanced action of antidepressants.

  10. Nicotinic acetylcholine receptor polymorphism, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases: a cohort study

    DEFF Research Database (Denmark)

    Kaur-Knudsen, Diljit; Bojesen, Stig E; Tybjærg-Hansen, Anne;

    2011-01-01

    We examined the associations between the nicotinic acetylcholine receptor polymorphism (rs1051730) on chromosome 15q25 marking the gene cluster CHRNA3-CHRNB4-CHRNA5, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases in the general population.......We examined the associations between the nicotinic acetylcholine receptor polymorphism (rs1051730) on chromosome 15q25 marking the gene cluster CHRNA3-CHRNB4-CHRNA5, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases in the general population....

  11. Mammalian 43-kD acetylcholine receptor-associated protein (RAPsyn) is expressed in some nonmuscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Musil, L.S.; Frail, D.E.; Merlie, J.P. (Washington Univ. School of Medicine, St. Louis, MO (USA))

    1989-05-01

    Torpedo electric organ and vertebrate neuromuscular junctions contain the receptor-associated protein of the synapse (RAPsyn) (previously referred to as the 43K protein), a nonactin, 43,000-Mr peripheral membrane protein associated with the cytoplasmic face of postsynaptic membranes at areas of high nicotinic acetylcholine receptor (AChR) density. Although not directly demonstrated, several lines of evidence suggest that RAPsyn is involved in the synthesis and/or maintenance of such AChR clusters. Microscopic and biochemical studies had previously indicated that RAPsyn expression is restricted to differentiated, AChR-synthesizing cells. Our recent finding that RAPsyn is also produced in undifferentiated myocytes led to to examine whether RAPsyn is synthesized in cell types that never express AChR (i.e., cells of other than skeletal muscle origin). Various primary and established rodent cell lines were metabolically labeled with (35S)methionine, and extracts were immunoprecipitated with a monospecific anti-RAPsyn serum. Analysis of these immunoprecipitates by SDS-PAGE revealed detectable RAPsyn synthesis in some (notably fibroblast and Leydig tumor cell lines and primary cardiac cells) but not all (hepatocyte- and lymphocyte-derived) cell types. These results were further substantiated by peptide mapping studies of RAPsyn immunoprecipitated from different cells and quantitation of RAPsyn-encoding mRNA levels in mouse tissues. RAPsyn synthesized in both muscle and nonmuscle cells was shown to be tightly associated with membranes. These findings demonstrate that RAPsyn is not specific to skeletal muscle-derived cells and imply that it may function in a capacity either in addition to or instead of AChR clustering.

  12. The Dinoflagellate Toxin 20-Methyl Spirolide-G Potently Blocks Skeletal Muscle and Neuronal Nicotinic Acetylcholine Receptors

    Science.gov (United States)

    Couesnon, Aurélie; Aráoz, Rómulo; Iorga, Bogdan I.; Benoit, Evelyne; Reynaud, Morgane; Servent, Denis; Molgó, Jordi

    2016-01-01

    The cyclic imine toxin 20-methyl spirolide G (20-meSPX-G), produced by the toxigenic dinoflagellate Alexandrium ostenfeldii/Alexandrium peruvianum, has been previously reported to contaminate shellfish in various European coastal locations, as revealed by mouse toxicity bioassay. The aim of the present study was to determine its toxicological profile and its molecular target selectivity. 20-meSPX-G blocked nerve-evoked isometric contractions in isolated mouse neuromuscular preparations, while it had no action on contractions elicited by direct electrical stimulation, and reduced reversibly nerve-evoked compound muscle action potential amplitudes in anesthetized mice. Voltage-clamp recordings in Xenopus oocytes revealed that 20-meSPX-G potently inhibited currents evoked by ACh on Torpedo muscle-type and human α7 nicotinic acetylcholine receptors (nAChR), whereas lower potency was observed in human α4β2 nAChR. Competition-binding assays showed that 20-meSPX-G fully displaced [3H]epibatidine binding to HEK-293 cells expressing the human α3β2 (Ki = 0.040 nM), whereas a 90-fold lower affinity was detected in human α4β2 nAChR. The spirolide displaced [125I]α-bungarotoxin binding to Torpedo membranes (Ki = 0.028 nM) and in HEK-293 cells expressing chick chimeric α7-5HT3 nAChR (Ki = 0.11 nM). In conclusion, this is the first study to demonstrate that 20-meSPX-G is a potent antagonist of nAChRs, and its subtype selectivity is discussed on the basis of molecular docking models. PMID:27563924

  13. Taurolithocholic acid promotes intrahepatic cholangiocarcinoma cell growth via muscarinic acetylcholine receptor and EGFR/ERK1/2 signaling pathway.

    Science.gov (United States)

    Amonyingcharoen, Sumet; Suriyo, Tawit; Thiantanawat, Apinya; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-01-01

    Cholangiocarcinoma (CCA) is a malignant cancer of the biliary tract and its occurrence is associated with chronic cholestasis which causes an elevation of bile acids in the liver and bile duct. The present study aimed to investigate the role and mechanistic effect of bile acids on the CCA cell growth. Intrahepatic CCA cell lines, RMCCA-1 and HuCCA-1, were treated with bile acids and their metabolites to determine the growth promoting effect. Cell viability, cell cycle analysis, EdU incorporation assays were conducted. Intracellular signaling proteins were detected by western immunoblotting. Among eleven forms of bile acids and their metabolites, only taurolithocholic acid (TLCA) concentration dependently (1-40 µM) increased the cell viability of RMCCA-1, but not HuCCA-1 cells. The cell cycle analysis showed induction of cells in the S phase and the EdU incorporation assay revealed induction of DNA synthesis in the TLCA-treated RMCCA-1 cells. Moreover, TLCA increased the phosphorylation of EGFR, ERK 1/2 and also increased the expression of cyclin D1 in RMCCA-1 cells. Furthermore, TLCA-induced RMCCA-1 cell growth could be inhibited by atropine, a non-selective muscarinic acetylcholine receptor (mAChR) antagonist, AG 1478, a specific EGFR inhibitor, or U 0126, a specific MEK 1/2 inhibitor. These results suggest that TLCA induces CCA cell growth via mAChR and EGFR/EKR1/2 signaling pathway. Moreover, the functional presence of cholinergic system plays a certain role in TLCA-induced CCA cell growth.

  14. Interfacial Recognition of Acetylcholine by an Amphiphilic p-Sulfonatocalix[8]arene Derivative Incorporated into Dimyristoyl Phosphatidylcholine Vesicles

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ooi

    2008-10-01

    Full Text Available Dodecyl ether derivatives 1-3 of p-sulfonatocalix[n]arene were incorporated into dimyristoyl phosphatidylcholine (DMPC vesicles, and their binding abilities for acetylcholine (ACh were examined by using steady-state fluorescence/fluorescence anisotropy and fluorescence correlation spectroscopy (FCS. For the detection of ACh binding to the DMPC vesicles containing 5 mol % of 1-3, competitive fluorophore displacement experiments were performed, where rhodamine 6G (Rh6G was used as a fluorescent guest. The addition of Rh6G to the DMPC vesicles containing 3 resulted in a decrease in the fluorescence intensity of Rh6G with an increase of its fluorescence anisotropy, indicating that Rh6G binds to the DMPC-3 vesicles. In the case of DMPC-1 and DMPC-2 vesicles, significant changes in the fluorescence spectra of Rh6G were not observed. When ACh was added to the DMPC-3 vesicles in the presence of Rh6G ([3]/[Rh6G]=100, the fluorescence intensity of Rh6G increased with a decrease in its fluorescence anisotropy. From the analysis of fluorescence titration data, the association constants were determined to be 7.1×105 M-1 for Rh6G-3 complex and 1.1×102 M-1 for ACh-3 complex at the DMPC-3 vesicles. To get a direct evidence for the binding of Rh6G and its displacement by ACh at the DMPC-3 vesicles, diffusion times of the Rh6G were measured by using FCS. Binding selectivity of the DMPC-3 vesicles for ACh, choline, GABA, L-aspartic acid, L-glutamic acid, L-arginine, L-lysine, L-histamine and ammonium chloride was also evaluated using FCS.

  15. Nicotine acts on growth plate chondrocytes to delay skeletal growth through the alpha7 neuronal nicotinic acetylcholine receptor.

    Directory of Open Access Journals (Sweden)

    Atsuo Kawakita

    Full Text Available BACKGROUND: Cigarette smoking adversely affects endochondral ossification during the course of skeletal growth. Among a plethora of cigarette chemicals, nicotine is one of the primary candidate compounds responsible for the cause of smoking-induced delayed skeletal growth. However, the possible mechanism of delayed skeletal growth caused by nicotine remains unclarified. In the last decade, localization of neuronal nicotinic acetylcholine receptor (nAChR, a specific receptor of nicotine, has been widely detected in non-excitable cells. Therefore, we hypothesized that nicotine affect growth plate chondrocytes directly and specifically through nAChR to delay skeletal growth. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effect of nicotine on human growth plate chondrocytes, a major component of endochondral ossification. The chondrocytes were derived from extra human fingers. Nicotine inhibited matrix synthesis and hypertrophic differentiation in human growth plate chondrocytes in suspension culture in a concentration-dependent manner. Both human and murine growth plate chondrocytes expressed alpha7 nAChR, which constitutes functional homopentameric receptors. Methyllycaconitine (MLA, a specific antagonist of alpha7 nAChR, reversed the inhibition of matrix synthesis and functional calcium signal by nicotine in human growth plate chondrocytes in vitro. To study the effect of nicotine on growth plate in vivo, ovulation-controlled pregnant alpha7 nAChR +/- mice were given drinking water with or without nicotine during pregnancy, and skeletal growth of their fetuses was observed. Maternal nicotine exposure resulted in delayed skeletal growth of alpha7 nAChR +/+ fetuses but not in alpha7 nAChR -/- fetuses, implying that skeletal growth retardation by nicotine is specifically mediated via fetal alpha7 nAChR. CONCLUSIONS/SIGNIFICANCE: These results suggest that nicotine, from cigarette smoking, acts directly on growth plate chondrocytes to decrease

  16. Reconstitution of Purified Acetylcholine Receptors with Functional Ion Channels in Planar Lipid Bilayers

    Science.gov (United States)

    Nelson, N.; Anholt, R.; Lindstrom, J.; Montal, M.

    1980-05-01

    Acetylcholine receptor, solubilized and purified from Torpedo californica electric organ under conditions that preserve the activity of its ion channel, was reconstituted into vesicles of soybean lipid by the cholate-dialysis technique. The reconstituted vesicles were then spread into monolayers at an air-water interface and planar bilayers were subsequently formed by apposition of two monolayers. Addition of carbamoylcholine caused an increase in membrane conductance that was transient and relaxed spontaneously to the base level (i.e., became desensitized). The response to carbamoylcholine was dose dependent and competitively inhibited by curare. Fluctuations of membrane conductance corresponding to the opening and closing of receptor channels were observed. Fluctuation analysis indicated a single-channel conductance of 16± 3 pS (in 0.1 M NaCl) with a mean channel open time estimated to be 35± 5 ms. Thus, purified acetylcholine receptor reconstituted into lipid bilayers exhibited the pharmacological specificity, activation, and desensitization properties expected of this receptor in native membranes.

  17. Mode of action of triflumezopyrim: A novel mesoionic insecticide which inhibits the nicotinic acetylcholine receptor.

    Science.gov (United States)

    Cordova, Daniel; Benner, Eric A; Schroeder, Mark E; Holyoke, Caleb W; Zhang, Wenming; Pahutski, Thomas F; Leighty, Robert M; Vincent, Daniel R; Hamm, Jason C

    2016-07-01

    Triflumezopyrim, a newly commercialized molecule from DuPont Crop Protection, belongs to the novel class of mesoionic insecticides. This study characterizes the biochemical and physiological action of this novel insecticide. Using membranes from the aphid, Myzus persicae, triflumezopyrim was found to displace (3)H-imidacloprid with a Ki value of 43 nM with competitive binding results indicating that triflumezopyrim binds to the orthosteric site of the nicotinic acetylcholine receptor (nAChR). In voltage clamp studies using dissociated Periplaneta americana neurons, triflumezopyrim inhibits nAChR currents with an IC50 of 0.6 nM. Activation of nAChR currents was minimal and required concentrations ≥100 μM. Xenopus oocytes expressing chimeric nAChRs (Drosophila α2/chick β2) showed similar inhibitory effects from triflumezopyrim. In P. americana neurons, co-application experiments with acetylcholine reveal the inhibitory action of triflumezopyrim to be rapid and prolonged in nature. Such physiological action is distinct from other insecticides in IRAC Group 4 in which the toxicological mode of action is attributed to nAChR agonism. Mesoionic insecticides act via inhibition of the orthosteric binding site of the nAChR despite previous beliefs that such action would translate to poor insect control. Triflumezopyrim is the first commercialized insecticide from this class and provides outstanding control of hoppers, including the brown planthopper, Nilaparvata lugens, which is already displaying strong resistance to neonicotinoids such as imidacloprid.

  18. Nicotine enhances alcohol intake and dopaminergic responses through β2* and β4* nicotinic acetylcholine receptors

    Science.gov (United States)

    Tolu, Stefania; Marti, Fabio; Morel, Carole; Perrier, Carole; Torquet, Nicolas; Pons, Stephanie; de Beaurepaire, Renaud; Faure, Philippe

    2017-01-01

    Alcohol and nicotine are the most widely co-abused drugs. Both modify the activity of dopaminergic (DA) neurons of the Ventral Tegmental Area (VTA) and lead to an increase in DA release in the Nucleus Accumbens, thereby affecting the reward system. Evidences support the hypothesis that distinct nicotinic acetylcholine receptors (nAChRs), the molecular target of acetylcholine (ACh) and exogenous nicotine, are also in addition implicated in the response to alcohol. The precise molecular and neuronal substrates of this interaction are however not well understood. Here we used in vivo electrophysiology in the VTA to characterise acute and chronic interactions between nicotine and alcohol. Simultaneous injections of the two drugs enhanced their responses on VTA DA neuron firing and chronic exposure to nicotine increased alcohol-induced DA responses and alcohol intake. Then, we assessed the role of β4 * nAChRs, but not β2 * nAChRs, in mediating acute responses to alcohol using nAChR subtypes knockout mice (β2−/− and β4−/− mice). Finally, we showed that nicotine-induced modifications of alcohol responses were absent in β2−/− and β4−/− mice, suggesting that nicotine triggers β2* and β4 * nAChR-dependent neuroadaptations that subsequently modify the responses to alcohol and thus indicating these receptors as key mediators in the complex interactions between these two drugs. PMID:28332590

  19. Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation.

    Science.gov (United States)

    Gais, Steffen; Born, Jan

    2004-02-17

    The neurotransmitter acetylcholine is considered essential for proper functioning of the hippocampus-dependent declarative memory system, and it represents a major neuropharmacological target for the treatment of memory deficits, such as those in Alzheimer's disease. During slow-wave sleep (SWS), however, declarative memory consolidation is particularly strong, while acetylcholine levels in the hippocampus drop to a minimum. Observations in rats led to the hypothesis that the low cholinergic tone during SWS is necessary for the replay of new memories in the hippocampus and their long-term storage in neocortical networks. However, this low tone should not affect nondeclarative memory systems. In this study, increasing central nervous cholinergic activation during SWS-rich sleep by posttrial infusion of 0.75 mg of the cholinesterase inhibitor physostigmine completely blocked SWS-related consolidation of declarative memories for word pairs in human subjects. The treatment did not interfere with consolidation of a nondeclarative mirror tracing task. Also, physostigmine did not alter memory consolidation during waking, when the endogenous central nervous cholinergic tone is maximal. These findings are in line with predictions that a low cholinergic tone during SWS is essential for declarative memory consolidation.

  20. A fluorinated quinuclidine benzamide named LMA 10203 acts as an agonist of insect nicotinic acetylcholine receptors.

    Science.gov (United States)

    Mathé-Allainmat, Monique; Bodereau-Dubois, Béatrice; Lapied, Bruno; Lebreton, Jacques; Thany, Steeve H

    2012-06-01

    In the present study, we take advantage of the fact that cockroach dorsal unpaired median neurons express different nicotinic acetylcholine receptor subtypes to demonstrate that simple quinuclidine benzamides such as the 2-fluorinated benzamide LMA 10203, could act as an agonist of cockroach α-bungarotoxin-insensitive nicotinic acetylcholine receptor subtype, called nAChR2. Indeed, 1 mM LMA 10203 induced ionic currents which were partially blocked by 0.5 μM α-bungarotoxin and methyllycaconitine and completely blocked by 5 μM mecamylamine. Moreover, the current-voltage curve revealed that the ionic current induced by LMA 10203 increased from -30 mV to +20 mV confirming that it acted as an agonist of α-bungarotoxin-insensitive nAChR2. In addition, 1 mM LMA 10203 induced a depolarization of the sixth abdominal ganglion and this neuroexcitatory activity was completely blocked by 5 μM mecamylamine. These data suggest that nAChR2 was also expressed at the postsynaptic level on the synapse between the cercal afferent nerve and the giant interneurons. Interestingly, despite LMA 10203 being an agonist of cockroach nicotinic receptors, it had a poor insecticidal activity. We conclude that LMA 10203 could be used as an interesting compound to identify specific insect nAChR subtypes.

  1. Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine.

    Science.gov (United States)

    Mukhametshina, Alsu R; Fedorenko, Svetlana V; Zueva, Irina V; Petrov, Konstantin A; Masson, Patrick; Nizameev, Irek R; Mustafina, Asiya R; Sinyashin, Oleg G

    2016-03-15

    This work highlights the H-function of Tb(III)-doped silica nanoparticles in aqueous solutions of acetic acid as a route to sense acetylcholinesterase-catalyzed hydrolysis of acetylcholine (ACh). The H-function results from H(+)-induced quenching of Tb(III)-centered luminescence due to protonation of Tb(III) complexes located close to silica/water interface. The H-function can be turned on/switched off by the concentration of complexes within core or nanoparticle shell zones, by the silica surface decoration and adsorption of both organic and inorganic cations on silica surface. Results indicate the optimal synthetic procedure for making nanoparticles capable of sensing acetic acid produced by enzymatic hydrolysis of acetylcholine. The H-function of nanoparticles was determined at various concentrations of ACh and AChE. The measurements show experimental conditions for fitting the H-function to Michaelis-Menten kinetics. Results confirm that reliable fluorescent monitoring AChE-catalyzed hydrolysis of ACh is possible through the H-function properties of Tb(III)-doped silica nanoparticles.

  2. The Anti-Acetylcholine Receptor Antibody Test in Suspected Ocular Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Jung Jin Lee

    2014-01-01

    Full Text Available Aim. To estimate the clinical significance of anti-acetylcholine receptor antibody (anti-AChR-Ab levels in suspected ocular myasthenia gravis. Methods. In total, 144 patients complaining of fluctuating diplopia and ptosis were evaluated for serum levels of anti-acetylcholine receptor antibody and their medical charts were retrospectively reviewed. Subjects were classified into three groups: variable diplopia only, ptosis only, and both variable diplopia and ptosis. We investigated serum anti-AChR-Ab titer levels and performed thyroid autoantibody tests. Results. Patients’ chief complaints were diplopia (N=103, ptosis (N=12, and their concurrence (N=29. Abnormal anti-AChR-Ab was observed in 21 of 144 patients (14.1%. Between the three groups, mean age, number of seropositive patients, and mean anti-AChR-Ab level were not significantly different (P=0.224, 0.073, and 0.062, resp.. Overall, 27.5% of patients had abnormal thyroid autoantibodies. Conclusion. The sensitivity of anti-AChR-Ab was 14.1% in suspected ocular myasthenia gravis and seropositivity in myasthenia gravis patients showed a high correlation with the presence of thyroid autoantibodies.

  3. A Mathematical Model of Neonatal Rat Atrial Monolayers with Constitutively Active Acetylcholine-Mediated K+ Current.

    Science.gov (United States)

    Majumder, Rupamanjari; Jangsangthong, Wanchana; Feola, Iolanda; Ypey, Dirk L; Pijnappels, Daniël A; Panfilov, Alexander V

    2016-06-01

    Atrial fibrillation (AF) is the most frequent form of arrhythmia occurring in the industrialized world. Because of its complex nature, each identified form of AF requires specialized treatment. Thus, an in-depth understanding of the bases of these arrhythmias is essential for therapeutic development. A variety of experimental studies aimed at understanding the mechanisms of AF are performed using primary cultures of neonatal rat atrial cardiomyocytes (NRAMs). Previously, we have shown that the distinct advantage of NRAM cultures is that they allow standardized, systematic, robust re-entry induction in the presence of a constitutively-active acetylcholine-mediated K+ current (IKACh-c). Experimental studies dedicated to mechanistic explorations of AF, using these cultures, often use computer models for detailed electrophysiological investigations. However, currently, no mathematical model for NRAMs is available. Therefore, in the present study we propose the first model for the action potential (AP) of a NRAM with constitutively-active acetylcholine-mediated K+ current (IKACh-c). The descriptions of the ionic currents were based on patch-clamp data obtained from neonatal rats. Our monolayer model closely mimics the action potential duration (APD) restitution and conduction velocity (CV) restitution curves presented in our previous in vitro studies. In addition, the model reproduces the experimentally observed dynamics of spiral wave rotation, in the absence and in the presence of drug interventions, and in the presence of localized myofibroblast heterogeneities.

  4. An ER-resident membrane protein complex regulates nicotinic acetylcholine receptor subunit composition at the synapse

    Science.gov (United States)

    Almedom, Ruta B; Liewald, Jana F; Hernando, Guillermina; Schultheis, Christian; Rayes, Diego; Pan, Jie; Schedletzky, Thorsten; Hutter, Harald; Bouzat, Cecilia; Gottschalk, Alexander

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are homo- or heteropentameric ligand-gated ion channels mediating excitatory neurotransmission and muscle activation. Regulation of nAChR subunit assembly and transfer of correctly assembled pentamers to the cell surface is only partially understood. Here, we characterize an ER transmembrane (TM) protein complex that influences nAChR cell-surface expression and functional properties in Caenorhabditis elegans muscle. Loss of either type I TM protein, NRA-2 or NRA-4 (nicotinic receptor associated), affects two different types of muscle nAChRs and causes in vivo resistance to cholinergic agonists. Sensitivity to subtype-specific agonists of these nAChRs is altered differently, as demonstrated by whole-cell voltage-clamp of dissected adult muscle, when applying exogenous agonists or after photo-evoked, channelrhodopsin-2 (ChR2) mediated acetylcholine (ACh) release, as well as in single-channel recordings in cultured embryonic muscle. These data suggest that nAChRs desensitize faster in nra-2 mutants. Cell-surface expression of different subunits of the ‘levamisole-sensitive' nAChR (L-AChR) is differentially affected in the absence of NRA-2 or NRA-4, suggesting that they control nAChR subunit composition or allow only certain receptor assemblies to leave the ER. PMID:19609303

  5. Dopamine transporter distribution in patients with Parkinson disease of different stages detected using single-photon emission computed tomography brain imaging

    Institute of Scientific and Technical Information of China (English)

    Jiwu Zhang; Lijuan Zhu; Jianqiang Du; Bo Liu

    2007-01-01

    BACKGROUND: Literatures have reported that the density changes of dopamine transporter is negatively correlated with the severity degree and grading of disease condition of Parkinson disease (PD). However, the distribution of dopamine transporter in each nucleus of corpora striatum at each period is still unclear.OBJECTIVE: To observe the radioactive uptake distribution of dopamine transporter in bilateral corpora striata of patients with different stages of PD using single photon emission computed tomography (SPECT),and make a comparison with healthy controls.DESIGN: Case-control analysis.SETTING: Department of Imageology, Second Hospital Affiliated to Guangzhou University of Chinese Medicine.PARTICIPANTS: Thirty patients with PD admitted to Second Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine between January and December 2005 were recruited. The involved patients,19 male and 11 female, were aged from 36 to 80 years and with disease course of 2.5 months to 10 years.They all met the clinical diagnosis criteria of Britain Parkinson's disease Association Think Tank; Following Hoehn-Yahr grading: grade Ⅰ: unilateral morbidity; grade Ⅱ: bilateral morbidity, but without balance disorder; grade Ⅲ: bilateral morbidity, accompanied with early posture balance disorder; grade Ⅳ: severe morbidity, needs more help; grade Ⅴ: without help, only in bed or wheelchair. There were 11 patients with mild PD (grade Ⅰ - Ⅱ ), 9 patients with moderate PD (grade Ⅲ) and 10 patients with advanced PD (grade Ⅳ -V). Meanwhile, 6 healthy persons were selected as normal controls. Informed consents were obtained from all the subjects.METHODS: Twenty-four hours after withdrawal of PD drugs, 30 patients with PD and 6 healthy controls took kalium perchloricum 400 mg orally. After lying down for 30 minutes, all the subjects were intravenously injected with 740 MBq 99Tc m-TRODAT-1 (Jiangsu Institute of Atomic Medicine, Batch No.20040310) at elbow part

  6. Experimental performances study of a transportable GC-PID and two thermo-desorption based methods coupled to FID and MS detection to assess BTEX exposure at sub-ppb level in air.

    Science.gov (United States)

    Liaud, C; Nguyen, N T; Nasreddine, R; Le Calvé, S

    2014-09-01

    BTEX compounds are of particular interest, above all benzene because it is a carcinogenic compound for which guideline value in European indoor environments is set to be 1.6 ppb. Therefore, the detection of such relatively low value requires the use of particularly sensitive analytical techniques. Several existing chromatographic techniques, such as fast and transportable Gas Chromatograph with Photoionization Detection (GC-PID) or sedentary chromatographic-based techniques equipped with a thermo-desorption device (ATD) and coupled to either Flame Ionization Detection (FID) or Mass Spectrometry (MS), can quantify benzene and its derivatives at such low levels. These instruments involve different injection modes, i.e. on-line gaseous sampling or thermo-desorption of adsorbent tubes spiked with liquid or gas samples. In this study, the performances of 3 various analytical techniques mentioned above were compared in terms of sensitivity, linearity, accuracy and repeatability for the 6 BTEX. They were also discussed related to their analyses time consumption or transportability. The considered analytical techniques are ATD-GC-FID, ATD-GC-MS where both full scan and SIM modes were tested and a transportable GC-PID. For benzene with on-line injection, Limits of Detection (LOD) were significantly below the European guideline with values of 0.085, 0.022, 0.007 and 0.058 ppb for ATD-GC-FID, ATD-GC-MS in a full scan mode, ATD-GC-MS in an SIM mode and transportable GC-PID, respectively. LOD obtained with adsorbent tubes spiked with liquid standards were approximately in the same order of magnitude.

  7. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  8. Comparative effects of niflumic acid and nifedipine on 5-hydroxytryptamine- and acetylcholine-induced contraction of the rat trachea.

    Science.gov (United States)

    Teixeira, M C; Coelho, R R; Leal-Cardoso, J H; Criddle, D N

    2000-04-07

    The effects of niflumic acid, an inhibitor of Ca(2+)-activated Cl(-) (Cl((Ca))) channels, were compared with those of the voltage-dependent Ca(2+) channel (VDCC) blocker nifedipine on 5-hydroxytryptamine (5-HT)- and acetylcholine-induced contractions of the rat isolated trachea. Niflumic acid (3-100 microM) induced a concentration-dependent inhibition of 5-HT (10 microM)-induced contractions, with a reduction to 37.0+/-9.5% of the control at the highest concentration. One micromolar nifedipine, which completely blocked 60 mM KCl-induced contractions, reduced the response to 5-HT similarly to 39.2+/-11.5% of the control. The inhibition of the 5-HT response was not significantly different from that produced by the combined presence of nifedipine (1 microM) and niflumic acid (100 microM), suggesting that their effects were not additive. In contrast, neither niflumic acid (3-100 microM) nor nifedipine (1 microM) inhibited acetylcholine-induced contractions. The contraction to 5-HT (10 microM) in Cl(-)-free solution was decreased by more than approximately 85% of the control, whilst that of acetylcholine was reduced only by approximately 36%. Our data show that niflumic acid exerts selective inhibitory effects on 5-HT-induced contraction, and suggest that activation of Cl((Ca)) channels may be a mechanism whereby 5-HT (but not acetylcholine) induces Ca(2+) entry via VDCCs to elicit contraction.

  9. Activation and desensitization of peripheral muscle and neuronal nicotinic acetylcholine receptors by selected, naturally-occurring pyridine alkaloids

    Science.gov (United States)

    Teratogenic alkaloids can cause developmental defects due to inhibition of fetal movement that results from desensitization of fetal muscletype nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiper...

  10. The role of the a7 subunit of the nicotinic acetylcholine receptor in the acute toxicosis of methyllycaconitine in mice.

    Science.gov (United States)

    The adverse physiological effects of methyllycaconitine (MLA) have been attributed to its competitive antagonism of nicotinic acetylcholine receptors (nAChRs). Recent research demonstrated a correlation between the LD50 of MLA and the amount of a7 nAChR in various mouse strains, suggesting that mice...

  11. Carbamoylcholine analogs as nicotinic acetylcholine receptor agonists--structural modifications of 3-(dimethylamino)butyl dimethylcarbamate (DMABC)

    DEFF Research Database (Denmark)

    Hansen, Camilla Petrycer; Jensen, Anders Asbjørn; Balle, Thomas;

    2009-01-01

    Compounds based on the 3-(dimethylamino)butyl dimethylcarbamate (DMABC) scaffold were synthesized and pharmacologically characterized at the alpha(4)beta(2), alpha(3)beta(4,) alpha(4)beta(4) and alpha(7) neuronal nicotinic acetylcholine receptors (nAChRs). The carbamate functionality and a small...

  12. Impaired hippocampal acetylcholine release parallels spatial memory deficits in Tg2576 mice subjected to basal forebrain cholinergic degeneration

    DEFF Research Database (Denmark)

    Laursen, Bettina; Mørk, Arne; Plath, Niels;

    2013-01-01

    , respectively. Conversely, there was no deterioration of cognitive functioning in sham lesioned Tg2576 mice or wild type littermates (wt) receiving the immunotoxin. At 10 months of age, release of acetylcholine (ACh) was addressed by microdialysis in conscious mice. Scopolamine-induced increases in hippocampal...

  13. Effects of acetylcholine and electrical stimulation on glial cell line-derived neurotrophic factor production in skeletal muscle cells.

    Science.gov (United States)

    Vianney, John-Mary; Miller, Damon A; Spitsbergen, John M

    2014-11-01

    Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor required for survival of neurons in the central and peripheral nervous system. Specifically, GDNF has been characterized as a survival factor for spinal motor neurons. GDNF is synthesized and secreted by neuronal target tissues, including skeletal muscle in the peripheral nervous system; however, the mechanisms by which GDNF is synthesized and released by skeletal muscle are not fully understood. Previous results suggested that cholinergic neurons regulate secretion of GDNF by skeletal muscle. In the current study, GDNF production by skeletal muscle myotubes following treatment with acetylcholine was examined. Acetylcholine receptors on myotubes were identified with labeled alpha-bungarotoxin and were blocked using unlabeled alpha-bungarotoxin. The question of whether electrical stimulation has a similar effect to that of acetylcholine was also investigated. Cells were stimulated with voltage pulses; at 1 and 5 Hz frequencies for times ranging from 30 min to 48 h. GDNF content in myotubes and GDNF in conditioned culture medium were quantified by enzyme-linked immunosorbant assay. Results suggest that acetylcholine and short-term electrical stimulation reduce GDNF secretion, while treatment with carbachol or long-term electrical stimulation enhances GDNF production by skeletal muscle.

  14. An allosteric enhancer of M(4) muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine

    DEFF Research Database (Denmark)

    Nielsen, Ditte Dencker; Weikop, Pia; Sørensen, Gunnar

    2012-01-01

    The mesostriatal dopamine system plays a key role in mediating the reinforcing effects of psychostimulant drugs like cocaine. The muscarinic M(4) acetylcholine receptor subtype is centrally involved in the regulation of dopamine release in striatal areas. Consequently, striatal M(4) receptors could...... be a novel target for modulating psychostimulant effects of cocaine....

  15. Acetylcholine in the accumbens is decreased by diazepam and increased by benzodiazepine withdrawal: a possible mechanism for dependency.

    Science.gov (United States)

    Rada, Pedro; Hoebel, Bartley G

    2005-01-31

    Diazepam is a benzodiazepine used in the treatment of anxiety, insomnia and seizures, but with the potential for abuse. Like the other benzodiazepine anxiolytics, diazepam does not increase dopamine in the nucleus accumbens. This raises the question as to which other neurotransmitter systems are involved in diazepam dependence. The goal was to monitor dopamine and acetylcholine simultaneously following acute and chronic diazepam treatment and after flumazenil-induced withdrawal. Rats were prepared with microdialysis probes in the nucleus accumbens and given diazepam (2, 5 and 7.5 mg/kg) acutely and again after chronic treatment. Accumbens dopamine and acetylcholine decreased, with signs of tolerance to the dopamine effect. When these animals were put into the withdrawal state with flumazenil, there was a significant rise in acetylcholine (145%, P<0.001) with a smaller significant rise in dopamine (124%, P<0.01). It is suggested that the increase in acetylcholine release, relative to dopamine, is a neural component of the withdrawal state that is aversive.

  16. Hippocampal α7 nicotinic acetylcholine receptor levels in patients with schizophrenia, bipolar disorder, or major depressive disorder

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Weyn, Annelies; Mikkelsen, Jens D

    2011-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is involved in cognitive function and synaptic plasticity. Consequently, changes in α7 nAChR function have been implicated in a variety of mental disorders, especially schizophrenia. However, there is little knowledge regarding the levels of the α7 n......AChR in patients with bipolar disorder....

  17. Dilatory responses to acetylcholine, calcitonin gene-related peptide and substance P in the congestive heart failure rat

    DEFF Research Database (Denmark)

    Bergdahl, A; Valdemarsson, S; Nilsson, T;

    1999-01-01

    It was examined to what extent congestive heart failure (CHF) in rats, induced by ligation of the left coronary artery, affects the vascular responses to the vasodilatory substances acetylcholine (ACh), calcitonin gene-related peptide (CGRP), and substance P (SP). After induction of CHF status...

  18. AMYGDALA KINDLING-INDUCED SEIZURES SELECTIVELY IMPAIR SPATIAL MEMORY .2. EFFECTS ON HIPPOCAMPAL NEURONAL AND GLIAL MUSCARINIC ACETYLCHOLINE-RECEPTOR

    NARCIS (Netherlands)

    BELDHUIS, HJA; EVERTS, HGJ; VANDERZEE, EA; LUITEN, PGM; BOHUS, B

    1992-01-01

    The muscarinic acetylcholine receptor is linked via hydrolysis of phosphoinositides to the protein kinase C pathway. In a preceding paper (Beldhuis, H. J. A., H. G. J. Everts, E. A. Vander Zee, P. G. M. Luiten, and B. Bohus (1992) Amygdala kindling-induced seizures selectively impair spatial memory.

  19. Rat neuronal nicotinic acetylcholine receptors containing a7 subunit: pharmacological properties of ligand binding and function

    Institute of Scientific and Technical Information of China (English)

    Yingxian XIAO; Galya R ABDRAKHMANOVA; Maryna BAYDYUK; Susan HERNANDEZ; Kenneth J KELLAR

    2009-01-01

    Aim: To compare pharmacological properties of heterologously expressed homomeric a7 nicotinic acetylcholine receptors (a.7 nAChRs) with those of native nAChRs containing a.7 subunit (a.7* nAChRs) in rat hippocampus and cerebral cortex. Methods: We established a stably transfected HEK-293 cell line that expresses homomeric rat a7 nAChRs. We studies ligand binding profiles and functional properties of nAChRs expressed in this cell line and native rat a.7* nAChRs in rat hippocampus and cerebral cortex. We used [125IJ-a-bungarotoxin to compare ligand binding profiles in these cells with those in rat hippocampus and cerebral cortex. The functional properties of the a.7 nAChRs expressed in this cell line were studied using whole-cell current recording.Results: The newly established cell line, KXa7Rl, expresses homomeric a7 nAChRs that bind [125I]-a-bungarotoxin with a Kd value of 0.38±0.06 nmol/L, similar to Kj values of native rat a.7* nAChRs from hippocampus (Kd=0.28±0.03 nmol/L) and cerebral cortex (Kd=0.33±0.05 nmol/L). Using whole-cell current recording, the homomeric a7 nAChRs expressed in the cells were activated by acetylcholine and (-)-nicotine with EC50 values of 280±19 nmol/L and 180±40 nmol/L, respectively. The acetylcholine activated currents were potently blocked by two selective antagonists of a.7 nAChRs, a-bungarotoxin (IC5o=19±2 nmol/L) and methyllycaconitine (IC50=100±10 pmol/L). A comparative study of ligand binding profiles, using 13 nicotinic ligands, showed many similarities between the homomeric a.7 nAChRs and native a.7* receptors in rat brain, but it also revealed several notable differences.Conclusion: This newly established stable cell line should be very useful for studying the properties of homomeric a7 nAChRs and comparing these properties to native a.7* nAChRs.

  20. Chamber transport

    Energy Technology Data Exchange (ETDEWEB)

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  1. The Protective Effect of Alpha 7 Nicotinic Acetylcholine Receptor Activation on Critical Illness and Its Mechanism

    Science.gov (United States)

    REN, Chao; TONG, Ya-lin; LI, Jun-cong; LU, Zhong-qiu; YAO, Yong-ming

    2017-01-01

    Critical illnesses and injuries are recognized as major threats to human health, and they are usually accompanied by uncontrolled inflammation and dysfunction of immune response. The alpha 7 nicotinic acetylcholine receptor (α7nAchR), which is a primary receptor of cholinergic anti-inflammatory pathway (CAP), exhibits great benefits for critical ill conditions. It is composed of 5 identical α7 subunits that form a central pore with high permeability for calcium. This putative structure is closely associated with its functional states. Activated α7nAChR exhibits extensive anti-inflammatory and immune modulatory reactions, including lowered pro-inflammatory cytokines levels, decreased expressions of chemokines as well as adhesion molecules, and altered differentiation and activation of immune cells, which are important in maintaining immune homeostasis. Well understanding of the effects and mechanisms of α7nAChR will be of great value in exploring effective targets for treating critical diseases. PMID:28123345

  2. Theoretical studies of interaction models of human acetylcholine esterase with different inhibitors

    Institute of Scientific and Technical Information of China (English)

    ZHENG QingChuan; CHU HuiYing; NIU RuiJuan; SUN ChiaChung

    2009-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and one of the most common causes of dementia in the elderly.Acetyicholine esterase inhibitors (AChEl) are the main drugs used in the treatment of AD.In this work,docking studies have been performed in order to understand the interaction between a number of inhibitors (tacrine,rivastigmine,huperzine A,TV-3326 (ladostigil),donepezil and anseculin) and acetylcholine esterase (AChE).The calculated binding affinities between inhibitors and AChE increase in the order tacrine<rivastigmine<huperzine A<TV-3326<donepezil<anseculin,which reflects the experimental inhibitory activity expressed in terms of the half maximal inhibitory concentration (the IC50 value).Of the above inhibitors,anseculin is the most useful drug for the treatment of dementia.

  3. Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings.

    Science.gov (United States)

    Bamel, Kiran; Gupta, Shrish Chandra; Gupta, Rajendra

    2007-05-30

    The animal neurotransmitter acetylcholine (ACh) induces rooting and promotes secondary root formation in leaf explants of tomato (Lycopersicon esculentum Miller var. Pusa Ruby), cultured in vitro on Murashige and Skoog's medium. The roots originate from the midrib of leaf explants and resemble taproot. ACh at 10(-5) M was found to be the optimum over a wide range of effective concentrations between 10(-7) and 10(-3) M. The breakdown products, choline and acetate were ineffective even at 10(-3) M concentration. ACh appears to have a natural role in tomato rhizogenesis because exogenous application of neostigmine, an inhibitor of ACh hydrolysis, could mimic the effect of ACh. Neostigmine, if applied in combination with ACh, potentiated the ACh effect.

  4. Conformational and stereoeletronic investigations of muscarinic agonists of acetylcholine by NMR and theoretical calculations

    Science.gov (United States)

    da Silva, Julio Cesar A.; Ducati, Lucas C.; Rittner, Roberto

    2012-05-01

    NMR solvent effects and theoretical calculations showed muscarinic agonists present a large stability for their near synclinal conformations, indicating the presence of significant stabilization factors. Analysis of the results clearly indicated that this stability is not determined by the dihedral around the substituted C-C ethane bond, as stated by some authors, but a consequence of the geometry adopted in order to maximize N+/O interactions in this type of molecules. It can be assumed that acetylcholine and its muscarinic agonists exhibit their biologic activity when the positively charged nitrogen and the oxygen atoms are in the same side of the molecule within an interatomic distance ranging from 3.0 to 6.0 Å.

  5. Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane

    Science.gov (United States)

    He, W.; Song, H.; Su, Y.; Geng, L.; Ackerson, B. J.; Peng, H. B.; Tong, P.

    2016-05-01

    The Brownian motion of molecules at thermal equilibrium usually has a finite correlation time and will eventually be randomized after a long delay time, so that their displacement follows the Gaussian statistics. This is true even when the molecules have experienced a complex environment with a finite correlation time. Here, we report that the lateral motion of the acetylcholine receptors on live muscle cell membranes does not follow the Gaussian statistics for normal Brownian diffusion. From a careful analysis of a large volume of the protein trajectories obtained over a wide range of sampling rates and long durations, we find that the normalized histogram of the protein displacements shows an exponential tail, which is robust and universal for cells under different conditions. The experiment indicates that the observed non-Gaussian statistics and dynamic heterogeneity are inherently linked to the slow-active remodelling of the underlying cortical actin network.

  6. Vector-averaged gravity does not alter acetylcholine receptor single channel properties

    Science.gov (United States)

    Reitstetter, R.; Gruener, R.

    1994-01-01

    To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.

  7. Neuronal nicotinic acetylcholine receptors serve as sensitive targets that mediate β-amyloid neurotoxicity

    Institute of Scientific and Technical Information of China (English)

    Qiang LIU; Jie WU

    2006-01-01

    Alzheimer's disease (AD) is the most common form of brain dementia characterized by the accumulation of β-amyloid peptides (Aβ) and loss of forebrain cholinergic neurons. Aβ accumulation and aggregation are thought to contribute to cholinergic neuronal degeneration, in turn causing learning and memory deficits, but the specific targets that mediate Aβ neurotoxicity remain elusive. Recently, accumlating lines of evidence have demonstrated that Aβ directly modulates the function of neuronal nicotinic acetylcholine receptors (nAChRs), which leads to the new hypothesis that neuronal nAChRs may serve as important targets that mediate Aβ neurotoxicity. In this review, we summarize current studies performed in our laboratory and in others to address the question of how Aβ modulates neuronal nAChRs, especially nAChR subunit function.

  8. Acetylcholine regulates pancreastatin secretion from the human pancreastatin-producing cell line (QGP-1N).

    Science.gov (United States)

    Funakoshi, A; Tateishi, K; Tsuru, M; Jimi, A; Wakasugi, H; Kono, A

    1991-07-01

    Studies were made of pancreastatin (PST) secretion from a human PST-producing cell line (QGP-1N) in response to various secretagogues. Cells with immunoreactivity for PST were observed in monolayer cultures of QGP-1N cells. Carbachol stimulated PST secretion and the intracellular Ca2+ mobilization concentration dependently in the range of 10(-6)-10(-4) M. The PST secretion and Ca2+ mobilization induced by carbachol were inhibited by atropine. The calcium ionophore (A23187) stimulated PST secretion. However, cholecystokinin and gastrin-releasing peptide did not stimulate either PST secretion or Ca2+ mobilization. Secretin also did not stimulate PST secretion. The glucose concentration in the culture medium had no effect on PST secretion. These results suggest that PST secretion is mainly regulated by acetylcholine through a muscarinic receptor, and that an increase in intracellular Ca2+ plays an important role in stimulus-secretion coupling in QGP-1N cells.

  9. Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia

    OpenAIRE

    Hsieh, Dennis Jine-Yuan; Liao, Ching-Fong

    2002-01-01

    A zebrafish M2 muscarinic acetylcholine receptor (mAChR) gene was cloned. It encodes 495 amino acids in a single exon. The derived amino acid sequence is 73.5% identical to its human homologue.Competitive binding studies of the zebrafish M2 receptor and [3H]-NMS gave negative log dissociation constants (pKi) for each antagonist as follows: atropine (9.16)>himbacine (8.05)⩾4-DAMP (7.83)>AF-DX 116 (7.26)⩾pirenzepine (7.18)⩾tropicamide (6.97)⩾methoctramine (6.82)⩾p-F-HHSiD (6.67)>carbachol (5.20...

  10. Design and synthesis of isoxazole containing bioisosteres of epibatidine as potent nicotinic acetylcholine receptor agonists.

    Science.gov (United States)

    Singh, S; Avor, K S; Pouw, B; Seale, T W; Basmadjian, G P

    1999-10-01

    An efficient synthesis of isoxazole containing isosteres of epibatidine is described. The synthesis proceeded from N-tert-butoxycarbonyl (Boc)-exo-2-(methoxycarbonyl)-7-azabicyclo[2.2.1]heptane (9). Compound 9 was reacted with the dilithium salt of an appropriately substituted oxime in tetrahydrofuran (THF). Cyclodehydration of the resultant beta-keto oxime and deprotection of the N-Boc group in 5 N aqueous HCl afforded the isoxazole containing isosteres of epibatidine (6-8). The binding affinities of these compounds were determined at the nicotinic acetylcholine receptor for the displacement of [3H]cystisine. The unsubstituted isoxazole containing isostere (6) showed the lower binding potency compared to the 3'-methylisoxazole isostere (7). Substitution with a phenyl group at the 3'-position of the isoxazole significantly reduced the binding potency. The in vivo toxicological studies of these analogs were also performed. The LD50 of the analogs ranged in the order: Me > H > Ph.

  11. M1 muscarinic acetylcholine receptor agonism alters sleep without affecting memory consolidation.

    Science.gov (United States)

    Nissen, Christoph; Power, Ann E; Nofzinger, Eric A; Feige, Bernd; Voderholzer, Ulrich; Kloepfer, Corinna; Waldheim, Bernhard; Radosa, Marc-Philipp; Berger, Mathias; Riemann, Dieter

    2006-11-01

    Preclinical studies have implicated cholinergic neurotransmission, specifically M1 muscarinic acetylcholine receptor (mAChR) activation, in sleep-associated memory consolidation. In the present study, we investigated the effects of administering the direct M1 mAChR agonist RS-86 on pre-post sleep memory consolidation. Twenty healthy human participants were tested in a declarative word-list task and a procedural mirror-tracing task. RS-86 significantly reduced rapid eye movement (REM) sleep latency and slow wave sleep (SWS) duration in comparison with placebo. Presleep acquisition and postsleep recall rates were within the expected ranges. However, recall rates in both tasks were almost identical for the RS-86 and placebo conditions. These results indicate that selective M1 mAChR activation in healthy humans has no clinically relevant effect on pre-post sleep consolidation of declarative or procedural memories at a dose that reduces REM sleep latency and SWS duration.

  12. Expression of nicotinic acetylcholine receptors on human B-lymphoma cells

    Directory of Open Access Journals (Sweden)

    Skok M. V.

    2009-12-01

    Full Text Available Aim. To find a correlation between the level of nicotinic acetylcholine receptor (nAChR expression and B lymphocyte differentiation or activation state. Methods. Expression of nAChRs in the REH, Ramos and Daudi cell lines was studied by flow cytometry using nAChR subunit-specific antibodies; cell proliferation was studied by MTT test. Results. It is shown that the level of 42/4 and 7 nAChRs expression increased along with B lymphocyte differentiation (Ramos > REH and activation (Daudi > > Ramos and depended on the antigen-specific receptor expression. The nAChR stimulation/blockade did not influence the intensity of cell proliferation.

  13. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M. (Stanford Univ. School of Medicine, CA (USA))

    1990-10-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications.

  14. Involvement of Ca2+/CaM in the signal transduction of acetylcholine regulating stomatal movement

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    It has been known that the neurotransmitter acetylcholine (ACh) also exists in plants and is able to regulate the movement of stomata. In another aspect, Ca2+/CaM as the second messengers have a critical role of signal transduction in stomatal guard-cell. Here we showed that Ca2+/CaM were also involved in theACh regulated stomatal movement. In the medium containing Ca2+, the Ca2+ channel blockers (NIF and Ver) and CaM inhibitors (TFP and W7) could neutralize the ACh induced stomatal opening, however, they are ineffective in the medium containing K+. Those results indicated that Ca2+/CaM were involved in the signal transduction pathway of ACh regulating stomatal movement.

  15. Nicotinic Acetylcholine Receptor Gene Family of the Pea Aphid, Acyrthosiphon pisum

    Institute of Scientific and Technical Information of China (English)

    LIU Yi-peng; LIN Ke-jian; LIU Yang; GUI Fu-rong; WANG Gui-rong

    2013-01-01

    The nicotinic acetylcholine receptors (nAchRs) are cholinergic receptors that form ligand-gated ion channels by ifve subunits in insect and vertebrate nervous systems. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Here, we identiifed and cloned 11 candidate nAChR subunit genes in Acyrthosiphon pisum using genome-based bioinformatics combined modern molecular techniques. Most A. pisum nAChRs including α1, α2, α3, α4, α6, α8, and β1 show highly sequence identities with the counterparts of other insects examined. Expression proifles analysis showed that all subunit genes were expressed in adult head. At least two subunits have alternative splicing that obviously increase A. pisum nicotinic receptor diversity. This study will be invaluable for exploring the molecular mechanisms of neonicotinoid-like insecticides in sucking pests, and for ultimately establishing the screening platform of novel insecticides.

  16. alpha(7) Nicotinic acetylcholine receptor activation prevents behavioral and molecular changes induced by repeated phencyclidine treatment

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Christensen, Ditte Z; Hansen, Henrik H;

    2009-01-01

    , and administration of the NMDA-antagonist phencyclidine (PCP) in rodents is a well validated model of such cognitive deficits. Here we show that repeated PCP treatment (10 mg/kg/day for 10 days) decreased the expression of parvalbumin and synaptophysin mRNA in the mouse PFC, which corresponds to changes seen...... in patients with schizophrenia. In addition, PCP increased the basal mRNA expression in the PFC of the activity-regulated cytoskeleton-associated protein (Arc), a molecule involved in synaptic plasticity. These molecular changes produced by PCP were accompanied by a behavioral impairment as determined...... in a modified Y-maze test. Polymorphisms in the alpha(7) nicotinic acetylcholine receptor (nAChR) gene have been linked to schizophrenia. Here we demonstrate that acute administration of the selective alpha(7) nAChR partial agonist SSR180711 dose-dependently reversed the behavioral impairment induced by PCP...

  17. DESENSITIZATION OF ACETYLCHOLINE ON THE INHIBITION EFFECTS OF BLOOD PRESSURE IN ANESTHETIZED CANINE

    Institute of Scientific and Technical Information of China (English)

    陈莉娜; 吕军; 臧伟进; 于晓江; 孙晓东; 高小利

    2004-01-01

    Objective To investigate the desensitization of acetylcholine (Ach) on the inhibition effects of blood pressure (BP) in anesthetized canine and build a model for studying desensitization in vivo. Methods Through changing the intervals (120, 100, 80, 60, 40, 20 seconds) of twice Ach administration (each was 15μg*kg-1,I.v.), the desensitization on the effect of systemic blood pressure of the first Ach injection towards the subsequent Ach administration was observed. Results When Ach administration intervals were 40, 60, 80, 100 seconds, the percentages of desensitization of Ach on systemic blood pressure were significantly increased (P0.05). Conclusion The results indicated that Ach contents in blood might influence the action of next Ach administration. To some extent, the higher the concentration of Ach in blood, the bigger the ratio of desensitization of exogenous Ach is. In addition, this method of twice drug administration could be used as a model of studying desensitization in vivo.

  18. Effect of oxotremorine, physostigmine, and scopolamine on brain acetylcholine synthesis: a study using HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, N.; Beley, A. (Laboratoire de Pharmacodynamie et de Physiologie Pharmaceutique, Faculte de Pharmacie, Dijon, (France))

    1990-11-01

    The synthesis rate of brain acetylcholine (ACh) was estimated in mice following i.v. administration of ({sup 3}H)choline (Ch). The measurements were performed 1 min after the tracer injection, using the ({sup 3}H)ACh/({sup 3}H)Ch specific radioactivity ratio as an index of ACh synthesis rate. Endogenous and labeled Ch and ACh were quantified using HPLC methodology. Oxotremorine and physostigmine (0.5 mg/kg, i.p.) increased the steady state concentration of brain ACh by + 130% and 84%, respectively and of Ch by + 60% (oxotremorine); they decreased ACh synthesis by 62 and 55%, respectively. By contrast, scopolamine (0.7 mg/kg, i.p.) decreased the cerebral content of Ch by - 26% and of ACh by - 23% without enhancing the synthesis of ACh. The results show the utility of HPLC methodology in the investigation of ACh turnover.

  19. Computational determination of the binding mode of α-conotoxin to nicotinic acetylcholine receptor

    Science.gov (United States)

    Tabassum, Nargis; Yu, Rilei; Jiang, Tao

    2016-12-01

    Conotoxins belong to the large families of disulfide-rich peptide toxins from cone snail venom, and can act on a broad spectrum of ion channels and receptors. They are classified into different subtypes based on their targets. The α-conotoxins selectively inhibit the current of the nicotinic acetylcholine receptors. Because of their unique selectivity towards distinct nAChR subtypes, α-conotoxins become valuable tools in nAChR study. In addition to the X-ray structures of α-conotoxins in complex with acetylcholine-binding protein, a homolog of the nAChR ligand-binding domain, the high-resolution crystal structures of the extracellular domain of the α1 and α9 subunits are also obtained. Such structures not only revealed the details of the configuration of nAChR, but also provided higher sequence identity templates for modeling the binding modes of α-conotoxins to nAChR. This mini-review summarizes recent modeling studies for the determination of the binding modes of α-conotoxins to nAChR. As there are not crystal structures of the nAChR in complex with conotoxins, computational modeling in combination of mutagenesis data is expected to reveal the molecular recognition mechanisms that govern the interactions between α-conotoxins and nAChR at molecular level. An accurate determination of the binding modes of α-conotoxins on AChRs allows rational design of α-conotoxin analogues with improved potency or selectivity to nAChRs.

  20. Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy.

    Science.gov (United States)

    Palma, Eleonora; Reyes-Ruiz, Jorge Mauricio; Lopergolo, Diego; Roseti, Cristina; Bertollini, Cristina; Ruffolo, Gabriele; Cifelli, Pierangelo; Onesti, Emanuela; Limatola, Cristina; Miledi, Ricardo; Inghilleri, Maurizio

    2016-03-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons that leads to progressive paralysis of skeletal muscle. Studies of ALS have revealed defects in expression of acetylcholine receptors (AChRs) in skeletal muscle that occur even in the absence of motor neuron anomalies. The endocannabinoid palmitoylethanolamide (PEA) modified the clinical conditions in one ALS patient, improving muscle force and respiratory efficacy. By microtransplanting muscle membranes from selected ALS patients into Xenopus oocytes, we show that PEA reduces the desensitization of acetylcholine-evoked currents after repetitive neurotransmitter application (i.e., rundown). The same effect was observed using muscle samples from denervated (non-ALS) control patients. The expression of human recombinant α1β1γδ (γ-AChRs) and α1β1εδ AChRs (ε-AChRs) in Xenopus oocytes revealed that PEA selectively affected the rundown of ACh currents in ε-AChRs. A clear up-regulation of the α1 subunit in muscle from ALS patients compared with that from non-ALS patients was found by quantitative PCR, but no differential expression was found for other subunits. Clinically, ALS patients treated with PEA showed a lower decrease in their forced vital capacity (FVC) over time as compared with untreated ALS patients, suggesting that PEA can enhance pulmonary function in ALS. In the present work, data were collected from a cohort of 76 ALS patients and 17 denervated patients. Our results strengthen the evidence for the role of skeletal muscle in ALS pathogenesis and pave the way for the development of new drugs to hamper the clinical effects of the disease.

  1. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines.

    Directory of Open Access Journals (Sweden)

    Avi Ring

    Full Text Available Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase, but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21 and neuronal (SH-SY5Y cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.

  2. Tramadol state-dependent memory: involvement of dorsal hippocampal muscarinic acetylcholine receptors.

    Science.gov (United States)

    Jafari-Sabet, Majid; Jafari-Sabet, Ali-Reza; Dizaji-Ghadim, Ali

    2016-08-01

    The effects on tramadol state-dependent memory of bilateral intradorsal hippocampal (intra-CA1) injections of physostigmine, an acetylcholinesterase inhibitor, and atropine, a muscarinic acetylcholine receptor antagonist, were examined in adult male NMRI mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention. Post-training intra-CA1 administration of an atypical μ-opioid receptor agonist, tramadol (0.5 and 1 μg/mouse), dose dependently impaired memory retention. Pretest injection of tramadol (0.5 and 1 μg/mouse, intra-CA1) induced state-dependent retrieval of the memory acquired under the influence of post-training tramadol (1 μg/mouse, intra-CA1). A pretest intra-CA1 injection of physostigmine (1 μg/mouse) reversed the memory impairment induced by post-training administration of tramadol (1 μg/mouse, intra-CA1). Moreover, pretest administration of physostigmine (0.5 and 1 μg/mouse, intra-CA1) with an ineffective dose of tramadol (0.25 μg/mouse, intra-CA1) also significantly restored retrieval. Pretest administration of physostigmine (0.25, 0.5, and 1 μg/mouse, intra-CA1) by itself did not affect memory retention. A pretest intra-CA1 injection of the atropine (1 and 2 μg/mouse) 5 min before the administration of tramadol (1 μg/mouse, intra-CA1) dose dependently inhibited tramadol state-dependent memory. Pretest administration of atropine (0.5, 1, and 2 μg/mouse, intra-CA1) by itself did not affect memory retention. It can be concluded that dorsal hippocampal muscarinic acetylcholine receptor mechanisms play an important role in the modulation of tramadol state-dependent memory.

  3. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs.

    Directory of Open Access Journals (Sweden)

    Nikita Abraham

    Full Text Available Nicotinic acetylcholine receptors (nAChR are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP. AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.

  4. Neuronal nicotinic acetylcholine receptors: Common molecular substrates of nicotine and alcohol dependence

    Directory of Open Access Journals (Sweden)

    Linzy M. Hendrickson

    2013-04-01

    Full Text Available Alcohol and nicotine are often co-abused. As many as 80-95% of alcoholics are also smokers, suggesting that ethanol and nicotine, the primary addictive component of tobacco smoke, may functionally interact in the central nervous system and/or share a common mechanism of action. While nicotine initiates dependence by binding to and activating neuronal nicotinic acetylcholine receptors (nAChRs, ligand-gated cation channels normally activated by endogenous acetylcholine (ACh, ethanol is much less specific with the ability to modulate multiple gene products including those encoding voltage-gated ion channels, and excitatory/inhibitory neurotransmitter receptors. However, emerging data indicate that ethanol interacts with nAChRs, both directly and indirectly, in the mesocorticolimbic dopaminergic (DAergic reward circuitry to affect brain reward systems. Like nicotine, ethanol activates DAergic neurons of the ventral tegmental area (VTA which project to the nucleus accumbens (NAc. Blockade of VTA nAChRs reduces ethanol-mediated activation of DAergic neurons, NAc DA release, consumption, and operant responding for ethanol in rodents. Thus, ethanol may increase ACh release into the VTA driving activation of DAergic neurons through nAChRs. In addition, ethanol potentiates distinct nAChR subtype responses to ACh and nicotine in vitro and in DAergic neurons. The smoking cessation therapeutic and nAChR partial agonist, varenicline, reduces alcohol consumption in heavy drinking smokers and rodent models of alcohol consumption. Finally, single nucleotide polymorphisms in nAChR subunit genes are associated with alcohol dependence phenotypes and smoking behaviors in human populations. Together, results from preclinical, clinical, and genetic studies indicate that nAChRs may have an inherent role in the abusive properties of ethanol, as well as in nicotine and alcohol co-dependence.

  5. Propoxur-induced acetylcholine esterase inhibition and impairment of cognitive function: attenuation by Withania somnifera.

    Science.gov (United States)

    Yadav, C S; Kumar, V; Suke, S G; Ahmed, R S; Mediratta, P K; Banerjee, B D

    2010-04-01

    Propoxur (2-isopropoxyphenyl N-methylcarbamate) is widely used as an acaricide in agriculture and public health programs. Studies have shown that sub-chronic exposure to propoxur can cause oxidative stress and immuno-suppression in rats. Carbamates are also known to exhibit inhibitory effect on cholinesterase activity, which is directly related to their cholinergic effects. In the present study, the effect of Withania somnifera (Ashwagandha), a widely used herbal drug possessing anti-stress and immunomodulatory properties was studied on propoxur-induced acetylcholine esterase inhibition and impairment of cognitive function in rats. Male Wistar rats were divided into four groups. Group I was treated with olive oil and served as control. Group II was administered orally with propoxur (10 mg/kg b.wt.) in olive oil, group III received a combination of propoxur (10 mg/kg b.wt.) and W. somnifera (100 mg/kg b.wt.) suspension and group IV W. somnifera (100 mg/kg b.wt.) only. All animals were treated for 30 days. Cognitive behaviour was assessed by transfer latency using elevated plus maze. Blood and brain acetylcholine esterase (AChE) activity was also assessed. Oral administration of propoxur (10 mg/kg b.wt.) resulted in a significant reduction of brain and blood AChE activity. A significant prolongation of the acquisition as well as retention transfer latency was observed in propoxur-treated rats. Oral treatment of W. somnifera exerts protective effect and attenuates AChE inhibition and cognitive impairment caused by sub-chronic exposure to propoxur.

  6. Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy

    Science.gov (United States)

    Palma, Eleonora; Reyes-Ruiz, Jorge Mauricio; Lopergolo, Diego; Roseti, Cristina; Bertollini, Cristina; Ruffolo, Gabriele; Cifelli, Pierangelo; Onesti, Emanuela; Limatola, Cristina; Miledi, Ricardo; Inghilleri, Maurizio

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons that leads to progressive paralysis of skeletal muscle. Studies of ALS have revealed defects in expression of acetylcholine receptors (AChRs) in skeletal muscle that occur even in the absence of motor neuron anomalies. The endocannabinoid palmitoylethanolamide (PEA) modified the clinical conditions in one ALS patient, improving muscle force and respiratory efficacy. By microtransplanting muscle membranes from selected ALS patients into Xenopus oocytes, we show that PEA reduces the desensitization of acetylcholine-evoked currents after repetitive neurotransmitter application (i.e., rundown). The same effect was observed using muscle samples from denervated (non-ALS) control patients. The expression of human recombinant α1β1γδ (γ-AChRs) and α1β1εδ AChRs (ε-AChRs) in Xenopus oocytes revealed that PEA selectively affected the rundown of ACh currents in ε-AChRs. A clear up-regulation of the α1 subunit in muscle from ALS patients compared with that from non-ALS patients was found by quantitative PCR, but no differential expression was found for other subunits. Clinically, ALS patients treated with PEA showed a lower decrease in their forced vital capacity (FVC) over time as compared with untreated ALS patients, suggesting that PEA can enhance pulmonary function in ALS. In the present work, data were collected from a cohort of 76 ALS patients and 17 denervated patients. Our results strengthen the evidence for the role of skeletal muscle in ALS pathogenesis and pave the way for the development of new drugs to hamper the clinical effects of the disease. PMID:26929355

  7. Menthol Enhances the Desensitization of Human α3β4 Nicotinic Acetylcholine Receptors.

    Science.gov (United States)

    Ton, Hoai T; Smart, Amanda E; Aguilar, Brittany L; Olson, Thao T; Kellar, Kenneth J; Ahern, Gerard P

    2015-08-01

    The α3β4 nicotinic acetylcholine receptor (nAChR) subtype is widely expressed in the peripheral and central nervous systems, including in airway sensory nerves. The nAChR subtype transduces the irritant effects of nicotine in tobacco smoke and, in certain brain areas, may be involved in nicotine addiction and/or withdrawal. Menthol, a widely used additive in cigarettes, is a potential analgesic and/or counterirritant at sensory nerves and may also influence nicotine's actions in the brain. We examined menthol's effects on recombinant human α3β4 nAChRs and native nAChRs in mouse sensory neurons. Menthol markedly decreased nAChR activity as assessed by Ca(2+) imaging, (86)Rb(+) efflux, and voltage-clamp measurements. Coapplication of menthol with acetylcholine or nicotine increased desensitization, demonstrated by an increase in the rate and magnitude of the current decay and a reduction of the current integral. These effects increased with agonist concentration. Pretreatment with menthol followed by its washout did not affect agonist-induced desensitization, suggesting that menthol must be present during the application of agonist to augment desensitization. Notably, menthol acted in a voltage-independent manner and reduced the mean open time of single channels without affecting their conductance, arguing against a simple channel-blocking effect. Further, menthol slowed or prevented the recovery of nAChRs from desensitization, indicating that it probably stabilizes a desensitized state. Moreover, menthol at concentrations up to 1 mM did not compete for the orthosteric nAChR binding site labeled by [(3)H]epibatidine. Taken together, these data indicate that menthol promotes desensitization of α3β4 nAChRs by an allosteric action.

  8. Molecular-Dynamics Simulations of ELIC a Prokaryotic Homologue of the Nicotinic Acetylcholine Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiaolin [ORNL; Ivanov, Ivaylo N [ORNL; Wang, Hailong [Mayo Clinic College of Medicine; McCammon, Jonathan [ORNL

    2009-01-01

    The ligand-gated ion channel from Erwinia chrysanthemi (ELIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. ELIC is similar to the nAChR in its primary sequence and overall subunit organization, but despite their structural similarity, it is not clear whether these two ligand-gated ion channels operate in a similar manner. Further, it is not known to what extent mechanistic insights gleaned from the ELIC structure translate to eukaryotic counterparts such as the nAChR. Here we use molecular-dynamics simulations to probe the conformational dynamics and hydration of the transmembrane pore of ELIC. The results are compared with those from our previous simulation of the human ?7 nAChR. Overall, ELIC displays increased stability compared to the nAChR, whereas the two proteins exhibit remarkable similarity in their global motion and flexibility patterns. The majority of the increased stability of ELIC does not stem from the deficiency of the models used in the simulations, and but rather seems to have a structural basis. Slightly altered dynamical correlation features are also observed among several loops within the membrane region. In sharp contrast to the nAChR, ELIC is completely dehydrated from the pore center to the extracellular end throughout the simulation. Finally, the simulation of an ELIC mutant substantiates the important role of F246 on the stability, hydration and possibly function of the ELIC channel.

  9. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines.

    Science.gov (United States)

    Ring, Avi; Strom, Bjorn Oddvar; Turner, Simon R; Timperley, Christopher M; Bird, Michael; Green, A Christopher; Chad, John E; Worek, Franz; Tattersall, John E H

    2015-01-01

    Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.

  10. Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors.

    Science.gov (United States)

    Ihara, Makoto; Buckingham, Steven D; Matsuda, Kazuhiko; Sattelle, David B

    2017-02-06

    Nicotinic acetylcholine receptors (nAChRs) are members of the cys-loop superfamily of ligand-gated ion channels (cys-loop LGICs) and mediate fast cholinergic synaptic transmission in the nervous system of insects. The completion of many insect genome projects has greatly enhanced our understanding of the individual subunits that make up nAChR gene families from an insect genetic model organism (Drosophila melanogaster), crop pests, disease vectors and beneficial (pollinator) species. In addition to considerable insect nAChR subunit diversity, individual subunits can be subject to alternative splicing and RNA editing and these post-transcriptional modifications can add significantly to the diversity of nAChR receptor subtypes. The actions of insecticides targeting nAChRs, notably cartap, neonicotinoids, sulfoximines, flupyradifurone, spinosyns and triflumezopyrim are reviewed. Structural studies obtained using an acetylcholine binding protein (AChBP) co-crystallised with neonicotinoids have yielded important new insights into the requirements for neonicotinoid insecticide - nAChR interactions. The persistent application of insecticides to crop pests leads to the onset of resistance and several examples of resistance to insecticides targeting nAChRs have been documented. Understanding the molecular basis of resistance can inform our understanding of the mechanism of insecticide action. It also provides an important driver for the development of new chemistry, diagnostic tests for resistance and the adoption of application strategies designed to attenuate such problems. Finally, we consider toxicity issues relating to nAChR-active insecticides, with particular reference to beneficial insect species (pollinators) as well as mammalian and avian toxicity. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity.".

  11. Online magnetic bead based dynamic protein affinity selection coupled to LC-MS for the screening of acetylcholine binding protein ligands.

    Science.gov (United States)

    Pochet, Lionel; Heus, Ferry; Jonker, Niels; Lingeman, Henk; Smit, August B; Niessen, Wilfried M A; Kool, Jeroen

    2011-06-15

    A magnetic beads based affinity-selection methodology towards the screening of acetylcholine binding protein (AChBP) binders in mixtures and pure compound libraries was developed. The methodology works as follows: after in solution incubation of His-tagged AChBP with potential ligands, and subsequent addition of cobalt (II)-coated paramagnetic beads, the formed bead-AChBP-ligand complexes are fetched out of solution by injection and trapping in LC tubing with an external adjustable magnet. Non binders are then washed to the waste followed by elution of ligands to a SPE cartridge by flushing with denaturing solution. Finally, SPE-LC-MS analysis is performed to identify the ligands. The advantage of the current methodology is the in solution incubation followed by immobilized AChBP ligand trapping and the capability of using the magnetic beads system as mobile/online transportable affinity SPE material. The system was optimized and then successfully demonstrated for the identification of AChBP ligands injected as pure compounds and for the fishing of ligands in mixtures. The results obtained with AChBP as target protein demonstrated reliable discrimination between binders with pK(i) values ranging from at least 6.26 to 8.46 and non-binders.

  12. Regional selectivity of a gamma-aminobutyric acid-induced (/sup 3/H)acetylcholine release sensitive to inhibitors of gamma-aminobutyric acid uptake

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, G.; Raiteri, M.

    1987-05-01

    The effects of gamma-aminobutyric acid (GABA) on the release of (/sup 3/H)acetylcholine ((/sup 3/H)ACh) were studied in synaptosomes prepared from rat hippocampus, cerebral cortex, hypothalamus, and striatum and prelabelled with (/sup 3/H)choline. When synaptosomes were exposed in superfusion to exogenous GABA (0.01-0.3 mM) the basal release of newly synthesized (/sup 3/H)ACh was increased in a concentration-dependent way in hippocampus, cortex, and hypothalamus nerve endings. In contrast, the release of (/sup 3/H)ACh was not significantly affected by GABA in striatal synaptosomes. The effect of GABA was not antagonized significantly by bicuculline or picrotoxin. Muscimol caused only a slight not significant increase of (/sup 3/H)ACh release when tested at 0.3 mM whereas, at this concentration, (-)-baclofen was totally inactive. The GABA-induced release of (/sup 3/H)ACh was counteracted by SKF 89976A, SKF 100561, and SKF 100330A, three strong and selective GABA uptake inhibitors. The data suggest that, in selective areas of the rat brain, GABA causes release of (/sup 3/H)ACh following penetration into cholinergic nerve terminals through a GABA transport system.

  13. An improved synthesis of a fluorescent gabapentin-choline conjugate for single molecule detection

    Science.gov (United States)

    Wu, Haitao; Kaur, Gurpreet; Griffiths, Gary L.

    2009-01-01

    Voltage-gated calcium ion channels are comprised of pore-forming α1 and auxiliary α2δ, β and γ subunits. They are important molecular devices involved in a variety of cell functions. Fluorescently labeled acylcholine analogues are important in studies such as ion channel regulation. Cy3-3-acetylcholine has recently been synthesized for single molecule detection studies; albeit in an extremely low overall yield (0.06 %). In this work, an alternative route to that used in the previous Cy3-3-acetylcholine synthesis was developed with a 90 % yield at a significantly lower material cost. PMID:20161233

  14. M-cholinoreactivity of erythrocytes of non-pregnant and pregnant women evaluated by changes in the rate of erythrocyte agglutination under the influence of acetylcholine.

    Science.gov (United States)

    Strelnikova, A I; Tsirkin, V I; Krysova, A V; Hlybova, S V; Dmitrieva, S L

    2012-12-01

    Acetylcholine (5.5×10(-10)-5.5×10(-6)M) accelerated erythrocyte agglutination in men, non-pregnant women in follicular phase of the menstrual cycle, and pregnant women in the first trimester. The effect was blocked with atropine (5.5×10(-6)M). Acetylcholine had no effect on the rate of erythrocyte agglutination in non-pregnant women in the luteal phase and pregnant women in the second and third trimesters, which coincided with the development of myometrium refractoriness to acetylcholine in pregnant women. The results indicate that erythrocytes can reflect M-cholinoreactivity of internal organs.

  15. Analogues of neuroactive polyamine wasp toxins that lack inner basic sites exhibit enhanced antagonism toward a muscle-type mammalian nicotinic acetylcholine receptor

    DEFF Research Database (Denmark)

    Stromgaard, K; Brierley, M J; Andersen, K;

    1999-01-01

    properties (stepwise macroscopic pK(a) values) were determined by (13)C NMR titrations. All analogues are fully protonated at physiological pH. The effects of these compounds on acetylcholine-induced currents in TE671 cells clamped at various holding potentials were determined. All of the analogues...... noncompetitively antagonized the nicotinic acetylcholine receptor (nAChR) in a concentration-, time-, and voltage-dependent manner. The amplitudes of acetylcholine-induced currents were compared at their peaks and at the end of a 1 s application in the presence or absence of the analogues. Most of the analogues...

  16. Mifepristone modulates serotonin transporter function

    Institute of Scientific and Technical Information of China (English)

    Chaokun Li; Linlin Shan; Xinjuan Li; Linyu Wei; Dongliang Li

    2014-01-01

    Regulating serotonin expression can be used to treat psychotic depression. Mifepristone, a glu-cocorticoid receptor antagonist, is an effective candidate for psychotic depression treatment. However, the underlying mechanism related to serotonin transporter expression is poorly un-derstood. In this study, we cloned the human brain serotonin transporter into Xenopus oocytes, to establish an in vitro expression system. Two-electrode voltage clamp recordings were used to detect serotonin transporter activity. Our results show that mifepristone attenuates serotonin transporter activity by directly inhibiting the serotonin transporter, and suggests that the se-rotonin transporter is a pharmacological target of mifepristone for the treatment of psychotic depression.

  17. Association of polymorphisms in nicotinic acetylcholine receptor alpha 4 subunit gene (CHRNA4), mu-opioid receptor gene (OPRM1), and ethanol-metabolizing enzyme genes with alcoholism in Korean patients.

    Science.gov (United States)

    Kim, Soon Ae; Kim, Jong-Woo; Song, Ji-Young; Park, Sunny; Lee, Hee Jae; Chung, Joo-Ho

    2004-01-01

    Findings obtained from several studies indicate that ethanol enhances the activity of alpha4beta2 neuronal nicotinic acetylcholine receptor and support the possibility that a polymorphism of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) modulates enhancement of nicotinic receptor function by ethanol. To identify the association between the CfoI polymorphism of the CHRNA4 and alcoholism, we examined distribution of genotypes and allele frequencies in Korean patients diagnosed with alcoholism (n = 127) and Korean control subjects without alcoholism (n = 185) with polymerase chain reaction-restriction fragment length polymorphism methods. We were able to detect the association between the CfoI polymorphism of the CHRNA4 and alcoholism in Korean patients (genotype P = .023; allele frequency P = .047). The genotypes and allele frequencies of known polymorphisms in other alcoholism candidate genes, such as alcohol metabolism-related genes [alcohol dehydrogenase 2 (ADH2), aldehyde dehydrogenase 2 (ALDH2), alcohol dehydrogenase 3 (ADH3), and cytochrome P450 2E1 (CYP2E1)] and mu-opioid receptor gene (OPRM1), were studied. The polymorphisms of ADH2, ALDH2, and CYP2E1 were significantly different in Korean patients with alcoholism and Korean control subjects without alcoholism, but ADH3 and OPRM1 did not differ between the two groups.

  18. Fault detection using artificial neural networks in pipelines for transport of oil and gas; Deteccao de falhas utilizando redes neurais artificiais em dutos para transporte de petroleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Guia, Jose G.C. da; Araujo, Adevid L. de [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia Mecanica; Irmao, Marcos A. da Silva [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia de Processos; Silva, Antonio A. [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia Mecanica

    2003-07-01

    The condition monitoring and diagnostic of structural faults in pipelines are an important problem for the petroleum's industry, being necessary to develop supervisory systems for detection, prediction and evaluation of a fault in the pipelines to avoid environmental and financial damages. In this work, three types of Artificial Neural Networks (ANNs) are reviewed and used to detect and locate a fault in a simulated pipe. The simulated pipe was modeled through the Finite Elements Method. In Neural Networks' analysis, the first six natural frequencies of the pipe are used as networks' inputs. The used ANNs were the Multi-Layer Perceptron Network with backpropagation, the Probabilistic Neural Network and the Generalized Regression Neural Network. After the analysis, it was concluded that the ANN are a good computational tool in problems of faults detection on pipelines with a great precision. In the localization of the faults were obtained errors smaller than 5%. (author)

  19. Nicotinic acetylcholine receptor α7 subunits with a C2 cytoplasmic loop yellow fluorescent protein insertion form functional receptors

    Institute of Scientific and Technical Information of China (English)

    Teresa A MURRAY; Qiang LIU; Paul WHITEAKER; Jie WU; Ronald J LUKAS

    2009-01-01

    Aim: Several nicotinic acetylcholine receptor (nAChR) subunits have been engineered as fluorescent protein (FP) fusions and exploited to illuminate features of nAChRs. The aim of this work was to create a FP fusion in the nAChR a.7 subunit without compromising formation of functional receptors.Methods: A gene construct was generated to introduce yellow fluorescent protein (YFP), in frame, into the otherwise unaltered, large, second cytoplamsic loop between the third and fourth transmembrane domains of the mouse nAChR al sub-unit (a7Y). SH-EP1 cells were transfected with mouse nAChR wild type a.7 subunits (a.7) or with a7Y subunits, alone or with the chaperone protein, hRJC-3. Receptor function was assessed using whole-cell current recording. Receptor expression was measured with 125I-labeled a-bungarotoxin (I-Bgt) binding, laser scanning confocal microscopy, and total internal reflectance fluorescence (TIRF) microscopy.Results: Whole-cell currents revealed that a7Y nAChRs and al nAChRs were functional with comparable EC50 values for the a7 nAChR-selective agonist, choline, and IC50 values for the a.7 nAChR-selective antagonist, methyllycaconitine. I-Bgt binding was detected only after co-expression with hRIC-3. Confocal microscopy revealed that a7Y had primarily intracel-lular rather than surface expression. TIRF microscopy confirmed that little a7Y localized to the plasma membrane, typical of a7 nAChRs.Conclusion: nAChRs composed as homooligomers of a7Y subunits containing cytoplasmic loop YFP have functional, ligand binding, and trafficking characteristics similar to those of a.7 nAChRs. a7Y nAChRs may be used to elucidate properties of a.7 nAChRs and to identify and develop novel probes for these receptors, perhaps in high-throughput fashion.

  20. Acetylcholine receptor subunit and P-glycoprotein transcription patterns in levamisole-susceptible and -resistant Haemonchus contortus

    Science.gov (United States)

    Sarai, Ranbir S.; Kopp, Steven R.; Coleman, Glen T.; Kotze, Andrew C.

    2013-01-01

    The mechanism of resistance to the anthelmintic levamisole in parasitic nematodes is poorly understood, although there is some evidence implicating changes in expression of nicotinic acetylcholine receptor (nAChR) subunit genes. Hence, in order to define levamisole resistance mechanisms in some Australian field-derived isolates of Haemonchus contortus we examined gene expression patterns and SNPs in nAChR subunit genes, as well as expression levels for P-glycoprotein (P-gp) and receptor ancillary protein genes, in various life stages of one levamisole-sensitive and three levamisole-resistant isolates of this species. Larvae of two isolates showed high-level resistance to levamisole (resistance ratios at the IC50 > 600) while the third isolate showed a degree of heterogeneity, with a resistance factor of only 1.1-fold at the IC50 alongside the presence of a resistant subpopulation. Transcription patterns for nAChR subunit genes showed a great degree of variability across the different life stages and isolates. The most consistent observation was the down-regulation of Hco-unc-63a in adults of all resistant isolates. Transcription of this gene was also reduced in the L3 stage of the two most resistant isolates, highlighting its potential as a resistance marker in the readily accessible free-living stages. There was down regulation of all four Hco-unc-29 paralogs in adults of one resistant isolate. There were no consistent changes in expression of P-gps or ancillary protein genes across the resistant isolates. The present study has demonstrated a complex pattern of nAChR subunit gene expression in H. contortus, and has highlighted several instances where reduced expression of subunit genes (Hco-unc-63a, Hco-unc-29) may be associated with the observed levamisole resistance. The data also suggests that it will be difficult to detect resistance using gene transcription-based methods on pooled larval samples from isolates containing only a resistant subpopulation due to

  1. Detecting moisture transport pathways to the subtropical North Atlantic free troposphere using paired H2O-δD in situ measurements

    Science.gov (United States)

    González, Yenny; Schneider, Matthias; Dyroff, Christoph; Rodríguez, Sergio; Christner, Emanuel; García, Omaira Elena; Cuevas, Emilio; Bustos, Juan Jose; Ramos, Ramon; Guirado-Fuentes, Carmen; Barthlott, Sabine; Wiegele, Andreas; Sepúlveda, Eliezer

    2016-04-01

    We present two years of in situ measurements of water vapour (H2O) and its isotopologue ratio (δD, the standardized ratio between H216O and HD16O), made at two remote mountain sites on Tenerife in the subtropical North Atlantic. We show that the data - if measured during night-time - are well representative for the lower/middle free troposphere. We use the measured H2O-δD pairs, together with dust measurements and back trajectory modelling for analysing the moisture pathways to this region. We can identify four principally different transport pathways. The air mass transport from high altitudes and high latitudes shows two different scenarios. The first scenario brings dry air masses to the stations, as the result of condensation events occurring at low temperatures. The second scenario brings humid air masses to the stations, due to cross-isentropic mixing with lower-level and more humid air during transport since last condensation (LC). The third pathway is transportation from lower latitudes and lower altitudes, whereby we can identify rain re-evaporation as an occasional source of moisture. The fourth pathway is linked to the African continent, where during summer, dry convection processes over the Sahara very effectively inject humidity from the boundary layer to higher altitudes. This so-called Saharan Air Layer (SAL) is then advected westward over the Atlantic and contributes to moisten the free troposphere. We demonstrate that the different pathways leave distinct fingerprints on the measured H2O-δD pairs.

  2. Real-time polymerase chain reaction for detection of encapsulated Haemophilus influenzae using degenerate primers to target the capsule transport gene bexA.

    Science.gov (United States)

    Law, Dennis K S; Tsang, Raymond S W

    2013-05-01

    A real-time polymerase chain reaction assay that uses degenerate primers and a dual-labelled probe was developed to detect the bexA gene of Haemophilus influenzae, including those belonging to non-b serotypes as well as clonal division II strains. This assay is sensitive and specific, detecting 20 copies of the gene, but negative with a variety of bacteria associated with meningitis and bacteremia or septicemia.

  3. Neurotransmitter transporters

    DEFF Research Database (Denmark)

    Gether, Ulrik; Andersen, Peter H; Larsson, Orla M

    2006-01-01

    The concentration of neurotransmitters in the extracellular space is tightly controlled by distinct classes of membrane transport proteins. This review focuses on the molecular function of two major classes of neurotransmitter transporter that are present in the cell membrane of neurons and....../or glial cells: the solute carrier (SLC)1 transporter family, which includes the transporters that mediate the Na(+)-dependent uptake of glutamate, and the SLC6 transporter family, which includes the transporters that mediate the Na(+)-dependent uptake of dopamine, 5-HT, norepinephrine, glycine and GABA....... Recent research has provided substantial insight into the structure and function of these transporters. In particular, the recent crystallizations of bacterial homologs are of the utmost importance, enabling the first reliable structural models of the mammalian neurotransmitter transporters...

  4. Flow- and acetylcholine-induced dilation in small arteries from rats with renovascular hypertension - effect of tempol treatment

    DEFF Research Database (Denmark)

    Christensen, Frank Holden; Stankevicius, Edgaras; Hansen, Thomas;

    2007-01-01

    We investigated whether renovascular hypertension alters vasodilatation mediated by nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) and the influence of the superoxide dismutase mimetic tempol on vasodilatation. One-kidney one-clip hypertensive Sprague–Dawley rats, treated...... with either vehicle or tempol (from weeks 5 to 10 after placement of the clip), and uninephrectomized control rats were investigated. In renal hypertensive rats systolic blood pressure increased to 171±6 mmHg (n=10), while in tempol-treated rats systolic blood pressure remained normal (139±7 mmHg, n=5......). In isolated pressurized mesenteric small arteries NO-mediated dilatation was obtained by increasing flow rate and EDHF-mediated dilatation by acetylcholine. In arteries from hypertensive rats, flow-induced dilatation was blunted, as compared to normotensive and tempol-treated rats, while acetylcholine...

  5. Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice

    DEFF Research Database (Denmark)

    de la Cour, Cecilie; Sørensen, Gunnar; Wörtwein, Gitta

    2015-01-01

    Modulation of cholinergic neurotransmission via nicotinic acetylcholine receptors is known to alter alcohol-drinking behavior. It is not known if muscarinic acetylcholine receptor subtypes have similar effects. The muscarinic M4 receptor is highly expressed in the brain reinforcement system......% and 10% alcohol in 60min sessions, 6 days/week, after having undergone a standard sucrose fading training procedure on a fixed ratio schedule. The mice were further subjected to an extinction period followed by a 1 day reinstatement trial. M4-/- mice consumed more alcohol at 5% and 8% compared to their M......-established. Moreover, the M4-/- mice displayed a reduced capacity to extinguish their alcohol-seeking behavior. Taken together, alcohol consumption is elevated in M4-/- mice, indicating that the M4 receptor is involved in mediating the reinforcing effects of alcohol. The M4 receptor should be further explored...

  6. School Transportation.

    Science.gov (United States)

    Executive Educator, 1990

    1990-01-01

    This special section on student transportation offers a case study of a school system that recycles buses for safety drills; articles on fuel-saving strategies, the pros and cons of contracting for transportation services or operating a publicly owned bus fleet, and advice on full cost accounting for transportation costs; and a transportation…

  7. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors

    Science.gov (United States)

    Lyukmanova, E. N.; Shulepko, M. A.; Shenkarev, Z. O.; Bychkov, M. L.; Paramonov, A. S.; Chugunov, A. O.; Kulbatskii, D. S.; Arvaniti, M.; Dolejsi, Eva; Schaer, T.; Arseniev, A. S.; Efremov, R. G.; Thomsen, M. S.; Dolezal, V.; Bertrand, D.; Dolgikh, D. A.; Kirpichnikov, M. P.

    2016-08-01

    Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a ‘three-finger’ fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the ‘classical’ orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.

  8. Cross-regulation between colocalized nicotinic acetylcholine and 5-HT3 serotonin receptors on presynaptic nerve terminals

    Institute of Scientific and Technical Information of China (English)

    John J DOUGHERTY; Robert A NICHOLS

    2009-01-01

    Aim: Substantial colocalization of functionally independent a4 nicotinic acetylcholine receptors and 5-HT3 serotonin receptors on presynaptic terminals has been observed in brain. The present study was aimed at addressing whether nicotinic acetylcholine receptors and 5-HT3 serotonin receptors interact on the same presynaptic terminal, suggesting a convergence of cholinergic and serotonergic regulation.Methods: Ca2+ responses in individual, isolated nerve endings purified from rat striatum were measured using confocal imaging.Results: Application of 500 nmol/L nicotine following sustained stimulation with the highly selective 5-HT3 receptor agonist m-chlorophenylbiguanide at 100 nmol/L resulted in markedly reduced Ca2* responses (28% of control) in only those striatal nerve endings that originally responded to m-chlorophenylbiguanide. The cross-regulation developed over several minutes. Presynaptic nerve endings that had not responded to m-chlorophenylbiguanide, indicating that 5-HT3 receptors were not present, displayed typical responses to nicotine. Application of m-chlorophenylbiguanide following sustained stimulation with nicotine resulted in partially attenuated Ca2* responses (49% of control). Application of m-chlorophenylbiguanide following sustained stimulation with m-chlorophenylbiguanide also resulted in a strong attenuation of Ca2+ responses (12% of control), whereas nicotine-induced Ca2t responses following sustained stimulation with nicotine were not significantly different from control.Conclusion: These results indicate that the presynaptic Ca2+ increases evoked by either 5-HT, receptor or nicotinic acetylcholine receptor activation regulate subsequent responses to 5-HT3 receptor activation, but that only 5-HT3 receptors cross-regulate subsequent nicotinic acetylcholine receptor-mediated responses. The findings suggest a specific interaction between the two receptor systems in the same striatal nerve terminal, likely involving Ca2+-dependent

  9. Differences in the interaction of acetylcholine receptor antibodies with receptor from normal, denervated and myasthenic human muscle.

    OpenAIRE

    Lefvert, A. K.

    1982-01-01

    The interaction of acetylcholine receptor antibodies with different kinds of human skeletal muscle receptor was investigated. The reaction of most receptor antibodies was strongest with receptor from a patient with myasthenia gravis and with receptor from denervated muscle. Results obtained with these receptors were well correlated. The binding of most receptor antibodies to receptor from functionally normal muscle was much weaker and also qualitatively different. In a few patients with moder...

  10. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

    OpenAIRE

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-01-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents....

  11. Role of gap junctions in acetylcholine-induced vasodilation of proximal and distal arteries of the rat mesentery.

    Science.gov (United States)

    Hill, C E; Hickey, H; Sandow, S L

    2000-07-01

    We have previously shown that myoendothelial gap junctions are more prevalent in distal than in proximal arteries of the rat mesentery. In the present study we have investigated the role of gap junctions in the mechanism of action of endothelium-derived hyperpolarizing factor (EDHF) in these same vessels following relaxation with acetylcholine. Arteries were pre-constricted with phenylephrine and concentration response curves to acetylcholine were constructed in the presence of N(G)-nitro-L-arginine methyl ester (L-NAME; 10(-5) M) and indomethacin (10(-5) M) to prevent effects due to the release of nitric oxide and prostacyclins. Nitric oxide was found to have only a small role in the relaxation of the proximal vessels and was not involved in the relaxations of the distal vessels. 18 alpha-Glycyrrhetinic acid (10(-5) M), a putative gap junction uncoupler, significantly reduced acetylcholine-induced relaxations by 50% in both proximal and distal vessels. Potassium channel antagonists, tetraethylammonium chloride (TEA; 10(-3) M) and barium chloride (10(-4) M), together abolished the dilatory response in the proximal mesenteric arteries, but did not completely block responses in the distal arteries. The data suggest that gap junctions contribute significantly to the acetylcholine-induced relaxation in both proximal and distal arteries of the rat mesentery. We hypothesize that the absence of a correlation between the role of gap junctions and the incidence of myoendothelial gap junctions in these same vessels is due to significant effects of the inhibitors on gap junctions located in the smooth muscle layers of the larger vessels.

  12. Mis-spliced transcripts of nicotinic acetylcholine receptor alpha6 are associated with field evolved spinosad resistance in Plutella xylostella (L..

    Directory of Open Access Journals (Sweden)

    Simon W Baxter

    2010-01-01

    Full Text Available The evolution of insecticide resistance is a global constraint to agricultural production. Spinosad is a new, low-environmental-risk insecticide that primarily targets nicotinic acetylcholine receptors (nAChR and is effective against a wide range of pest species. However, after only a few years of application, field evolved resistance emerged in the diamondback moth, Plutella xylostella, an important pest of brassica crops worldwide. Spinosad resistance in a Hawaiian population results from a single incompletely recessive and autosomal gene, and here we use AFLP linkage mapping to identify the chromosome controlling resistance in a backcross family. Recombinational mapping with more than 700 backcross progeny positioned a putative spinosad target, nAChR alpha 6 (Pxalpha6, at the resistance locus, PxSpinR. A mutation within the ninth intron splice junction of Pxalpha6 results in mis-splicing of transcripts, which produce a predicted protein truncated between the third and fourth transmembrane domains. Additional resistance-associated Pxalpha6 transcripts that excluded the mutation containing exon were detected, and these were also predicted to produce truncated proteins. Identification of the locus of resistance in this important crop pest will facilitate field monitoring of the spread of resistance and offer insights into the genetic basis of spinosad resistance in other species.

  13. A first principle study on the interaction between acetylcholinesterase and acetylcholine, and also rivastigmine in alzheimer's disease case

    Science.gov (United States)

    Khoirunisa, V.; Rusydi, F.; Kasai, H.; Gandaryus, A. G.; Dipojono, H. K.

    2016-08-01

    The catalytic activity of acetylcholinesterase enzyme (AChE) relates to the symptom progress in Alzheimer's disease. Interaction of AChE with rivastigmine (from the medicine) can reduce its catalytic activity toward acetylcholine to decelerate the progression of Alzheimer's disease. This research attempts to study the interaction between AChE and rivastigmine, and also acetylcholine (without the presence of rivastigmine) using density functional theory by simplifying the reaction occurs in the active site, which is assumed to be C2H5OH, C3N2H3(Ch3), and CH3COO-. The results suggest that AChE interacts easier with acetylcholine than with rivastigmine, which implies that the medicine does not effectively reduce the catalytic activity of AChE. At this stage, no experimental data is available to be compared with the calculation results. Nonetheless, this study has shown a good prospect to understand the AChE-substrate interaction using a first-principles calculation.

  14. Influence of Y151 F mutation in loop B on the agonist potency in insect nicotinic acetylcholine receptor

    Institute of Scientific and Technical Information of China (English)

    Feng Song; Yi-Xi Zhang; Xiang-Mei Yao; Ze-Wen Liu

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels,which mediate fast cholinergic synaptic transmission in insect and vertebrate nervous systems.The nAChR agonist-binding site is present at the interface of adjacent subunits and is formed by loops A-C present in α subunits together with loops D-F present in either non-α subunits or homomer-forrning α subunits.Although Y151 in loop B has been identified as important in agonist binding,various residues at the 151-site are found among vertebrate and invertebrate nAChR ot subunits,such as F151.In Xenopus oocytes expressing N1α1 or N1α1~(Y151F) plus rat β2,Y151F mutation was found to significantly change the rate of receptor desensitization and altered the pharmacological properties of acetylcholine,but not imidacloprid,including the decrease of I_(max),the increase of EC_(50)(the concentration causing 50% of the maximum response) and the fast time-constant of decay (τ_f).By comparisons of residue structure,the hydroxyl group in the side chain of Y151 was thought to be important in the interaction between N1α1/β2 nAChRs and acetylcholine,and the phenyl group to be important between N1α1/β2 nAChRs and imidacloprid.

  15. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    Science.gov (United States)

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors.

  16. Comparison of Inhibitory Effect of Gripe Mixture and Caraway Mixture on Acetylcholine Induced Spasm in Rat jejunum

    Directory of Open Access Journals (Sweden)

    F. Zeraati

    2003-10-01

    Full Text Available In comparison of effects of various drugs with the same indications produced by different companies or comparing drugs manufactured in Iran with their foreign counterparts may result in producing drugs with higher qualities in our country. In this study the spasmolithic effect of two herbal drugs , gripe mixture and caraway mixture , that are prescribed as spasmolithic and carminative in infants were compared. 2 cm of rat jejunum was placed in a organ bath containing tyrode solution (37 C , 100% O2 . The jejunum was contracted because of acetylcholine (1 ml. when the muscle contraction reached the plateau the different volumes of drug were added to the organ bath. The inhibitory effect of drug indicated by physiograph , the intestine was washed two times. When the intestine reached the basal tonicity , the different volumes of second drug were tested. The results were compared using paired t.test The results show that both drugs inhibit the spasm induced by acetylcholine in rat jejunum . This inhibitory effect was dose dependent. The caraway mixture showed a higher effect in comparison with gripe mixture (P<0.05. The caraway mixture has a higher inhibitory effect on acetylcholine induced spasm in rat jejunum . It seems that it has the same effect on human.

  17. Sustainable Transportation

    DEFF Research Database (Denmark)

    Hall, Ralph P.; Gudmundsson, Henrik; Marsden, Greg

    2014-01-01

    The transportation system is the backbone of economic and social progress and the means by which humans access goods and services and connect with one another. Yet, as the scale of transportation activities has grown worldwide, so too have the negative environmental, social, and economic impacts...... that relate to the construction and maintenance of transportation infrastructure and the operation or use of the different transportation modes. The concept of sustainable transportation emerged in response to these concerns as part of the broader notion of sustainable development. Given the transportation...... sector’s significant contribution to global challenges such as climate change, it is often said that sustainable development cannot be achieved without sustainable transportation....

  18. Effect of band offset on carrier transport and infrared detection in InP quantum dots/Si nano-heterojunction grown by metalorganic chemical vapor deposition technique

    Science.gov (United States)

    Halder, Nripendra N.; Biswas, Pranab; Nagabhushan, B.; Kundu, Souvik; Biswas, D.; Banerji, P.

    2014-05-01

    Epitaxy of III-V semiconductors on Si gets recent interest for next generation system on heterogeneous chip on wafer. The understanding of band offset is thus necessary for describing the charge transport phenomenon in these heterojunctions. In this work, x-ray photoemission spectroscopy has been used to determine the band offsets in a heterojunction made of InP quantum dots on Si. The valence and conduction band offset was found to be 0.12 eV and 0.35 eV, respectively, with a type-II band lineup. Deviation from theoretical prediction and previously published reports on quasi similar systems have been found and analyzed on the basis of the effect of strain, surface energy, shift in the electrostatic dipole and charge transfer at the interface. The carrier transport mechanisms along with different device parameters in the heterojunction have been studied for a temperature range of 180-300 K. This heterojunction is found to behave as an efficient infrared photodetector with an ON/OFF ratio of 21 at a reverse bias of 2 V. The corresponding rise and decay time was found to be 132 ms and 147 ms, respectively.

  19. Randomly detected genetically modified (GM maize (Zea mays L. near a transport route revealed a fragile 45S rDNA phenotype.

    Directory of Open Access Journals (Sweden)

    Nomar Espinosa Waminal

    Full Text Available Monitoring of genetically modified (GM crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a "beads-on-a-string" fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed.

  20. Immunohistochemical detection and gene expression of tyrosine hydroxylase and vesicular monoamine transporter type 2 in intrinsic cardiac ganglia of socially isolated rats

    Directory of Open Access Journals (Sweden)

    Jovanović Predrag

    2014-01-01

    Full Text Available Social isolation induced a significant increase in resting heart rate and reduction in heart rate variability. Dysfunction of the intrinsic cardiac nervous system is implicated in the genesis of cardiovascular diseases. Previous evidence suggests that cardiac ganglia contain noradrenergic neurons. Thus, immunohistochemical expression of catecholaminesynthesizing enzyme tyrosine hydroxylase (TH and vesicular monoamine transporter 2 (VMAT2 were analyzed, as well as the effects of social isolation stress on mRNA and protein levels of this enzyme and transporter in the intrinsic cardiac nervous system of adult rats. Our results indicate that cardiac ganglion neurons express TH and VMAT2 immunoreactivity. Chronic isolated stress of rats caused a decrease in TH mRNA and VMAT2 mRNA in the neurons of intrinsic cardiac ganglia. No significant alterations in the protein levels of TH and VMAT2 were observed in these neurons. These data indicate that the neurons of intrinsic cardiac ganglia express TH as well as VMAT2 but that social isolation stress does not change their protein levels. [Projekat Ministarstva nauke Republike Srbije, br. 173044

  1. Regulation of the high-affinity choline transporter activity and trafficking by its association with cholesterol-rich lipid rafts.

    Science.gov (United States)

    Cuddy, Leah K; Winick-Ng, Warren; Rylett, Rebecca Jane

    2014-03-01

    The sodium-coupled, hemicholinium-3-sensitive, high-affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts in both SH-SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH-SY5Y cells expressing rat CHT with filipin, methyl-β-cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol-saturated MβC. Kinetic analysis of binding of [(3)H]hemicholinium-3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax ); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol-rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis. The sodium-coupled choline transporter CHT moves choline into cholinergic nerve terminals to serve as substrate for acetylcholine synthesis. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts, and decreasing membrane cholesterol significantly reduces both choline uptake activity and cell surface CHT protein levels. CHT association with cholesterol-rich rafts is critical for its function, and alterations in plasma membrane cholesterol could diminish cholinergic

  2. A New Role for Attentional Corticopetal Acetylcholine in Cortical Memory Dynamics

    Science.gov (United States)

    Fujii, Hiroshi; Kanamaru, Takashi; Aihara, Kazuyuki; Tsuda, Ichiro

    2011-09-01

    Although the role of corticopetal acetylcholine (ACh) in higher cognitive functions is increasingly recognized, the questions as (1) how ACh works in attention(s), memory dynamics and cortical state transitions, and also (2) why and how loss of ACh is involved in dysfunctions such as visual hallucinations in dementia with Lewy bodies and deficit of attention(s), are not well understood. From the perspective of a dynamical systems viewpoint, we hypothesize that transient ACh released under top-down attention serves to temporarily invoke attractor-like memories, while a background level of ACh reverses this process returning the dynamical nature of the memory structure back to attractor ruins (quasi-attractors). In fact, transient ACh loosens inhibitions of py ramidal neurons (PYRs) by P V+ fas t spiking (FS) i nterneurons, while a baseline ACh recovers inhibitory actions of P V+ FS. Attentional A Ch thus dynamically modifies brain's connectivity. Th e core of this process is in the depression of GABAergic inhibitory currents in PYRs due to muscarinic (probably M2 subtype) presyn aptic effects on GABAergic synapses of PV+ FS neurons

  3. Role of calcium in the regulation of acetylcholine receptor synthese in cultured muscle cells*.

    Science.gov (United States)

    Birnbaum, M; Reis, M A; Shainberg, A

    1980-05-01

    Embroyonic muscles differentiated in vitro were used to study the effects of intracellular Ca2+ ([Ca2+1]i) variations on the amount of acetylcholine receptors ([AChR]) in the cell membrane. 2. Increased Ca2+ concentration in the growth medium ([Ca2+]o) caused a marked elevation of AChR levels, apparently through de novo synthesis. 3. Agents known to increase [Ca2+]i and its accumulation in the sarcoplasmic reticulum (SR), such as ionophore A23187, sodium dantrolene (DaNa), or high [Mg2+]o all enhanced alpha-bungarotoxin (alpha-BGT) binding after 48 h of treatment. 4. Electrical stimulation or caffeine, both affectors of SR calcium release, brought about a decrease in [AChR] probably by suppressing its synthesis. 5. The effects of simultaneous treatment with two AChR-inducing agents, namely, high [Ca2+]o in the presence of tetrodotoxin (TTX) or high [Mg2+]o were not additive, thus suggesting action via a common saturable mediator. 6. Intermediate AChR levels obtained following simultaneous treatments with opposing effects, e.g., electrical stimulation in the presence of high [Ca2+]o or DaNa, suggest contradictory actions on a common mediator. 7. All these observations indicate a strong correlation between SR calcium levels and [AChR] on myotubes; while calcium accumulation in the Sr was followed by increased AChR synthesis, calcium release was accompanied by suppression of receptor synthesis.

  4. A positive relationship between harm avoidance and brain nicotinic acetylcholine receptor availability.

    Science.gov (United States)

    Storage, Steven; Mandelkern, Mark A; Phuong, Jonathan; Kozman, Maggie; Neary, Meaghan K; Brody, Arthur L

    2013-12-30

    Prior research indicates that disturbance of cholinergic neurotransmission reduces anxiety, leading to the hypothesis that people with heightened cholinergic function have a greater tendency toward anxiety-like and/or harm-avoidant behavior. We sought to determine if people with elevated levels of harm avoidance (HA), a dimension of temperament from the Temperament and Character Inventory (TCI), have high α4β2* nicotinic acetylcholine receptor (nAChR) availability. Healthy adults (n=105; 47 non-smokers and 58 smokers) underwent bolus-plus-continuous infusion positron emission tomography (PET) scanning using the radiotracer 2-[18F]fluoro-3-(2(S)azetidinylmethoxy) pyridine (abbreviated as 2-FA). During the uptake period of 2-FA, participants completed the TCI. The central study analysis revealed a significant association between total HA and mean nAChR availability, with higher total HA scores being linked with greater nAChR availability. In examining HA subscales, both 'Fear of Uncertainty' and 'Fatigability' were significant, based on higher levels of these characteristics being associated with greater nAChR availabilities. This study adds to a growing body of knowledge concerning the biological basis of personality and may prove useful in understanding the pathophysiology of psychiatric disorders (such as anxiety disorders) that have similar characteristics to HA. Study findings may indicate that heightened cholinergic neurotransmission is associated with increased anxiety-like traits.

  5. Block of nicotinic acetylcholine receptors by philanthotoxins is strongly dependent on their subunit composition

    DEFF Research Database (Denmark)

    Kachel, Hamid S; Patel, Rohit N; Franzyk, Henrik;

    2016-01-01

    in response to application of acetylcholine alone or co-applied with PhTX analogue were studied by using two-electrode voltage-clamp. α3β4 nAChRs were most sensitive to PhTX-343 (IC50 = 12 nM at -80 mV) with α4β4, α4β2, α3β2, α7 and α1β1γδ being 5, 26, 114, 422 and 992 times less sensitive. In contrast α1β1γδ...... was most sensitive to PhTX-12 along with α3β4 (IC50 values of 100 nM) with α4β4, α4β2, α3β2 and α7 being 3, 3, 26 and 49 times less sensitive. PhTX-343 inhibition was strongly voltage-dependent for all subunit combinations except α7, whereas this was not the case for PhTX-12 for which weak voltage...

  6. Impaired acetylcholine release from the myenteric plexus of Trichinella-infected rats

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S.M.; Blennerhassett, P.A.; Blennerhassett, M.G.; Vermillion, D.L. (McMaster Univ., Hamilton, Ontario (Canada))

    1989-12-01

    We examined the release of acetylcholine (ACh) from jejunal longitudinal muscle-myenteric plexus preparations in noninfected control rats and in rats infected 6, 23, or 40 days previously with Trichinella spiralis. ACh release was assessed by preincubating the tissue with ({sup 3}H)choline and measuring the evoked release of tritium. The uptake of {sup 3}H was significantly less in tissue from T. spiralis-infected rats compared with control. In tissues from either infected or control animals, electrical field stimulation (30 V, 0.5 ms, 10 Hz for 1 min), or veratridine (6-30 microM) induced {sup 3}H release that was tetrodotoxin sensitive. Depolarization by KCl (25-75 mM) also caused {sup 3}H release, but this was only partially reduced by tetrodotoxin. Radiochromatographic analysis indicated evoked release of {sup 3}H to be almost entirely ({sup 3}H)ACh. In rats infected 6 days previously with T. spiralis, ({sup 3}H)ACh release induced by KCl, veratridine, and field stimulation were decreased at least 80%. The suppression of ({sup 3}H)ACh release induced by veratridine or KCl was fully reversible after 40 days postinfection, but field-stimulated responses remained approximately 50% of control values. These results indicate that T. spiralis infection in the rat is accompanied by a reversible suppression of ACh release from the longitudinal muscle-myenteric plexus of the jejunum.

  7. Methanol extract of Tephrosia vogelii leaves potentiates the contractile action of acetylcholine on isolated rabbit jejunum

    Institute of Scientific and Technical Information of China (English)

    Tavershima Dzenda; Joseph Olusegun Ayo; Alexander Babatunde Adelaiye; Ambrose Osemattah Adaudi

    2015-01-01

    To investigate the modulating role of methanol extract of Tephrosia vogelii leaves on acetylcholine (ACh)-induced contraction of isolated rabbit jejunum. Methods: Rabbit jejunum segment was removed and placed in an organ bath containing Tyrode’s solution, and its contractions were recorded isometrically. Results: ACh (2.0 × 10-10 g/mL) and the extract (2.0 × 10-4 g/mL) individually increased the frequency of contraction (mean ± SEM) of the isolated smooth muscle tissue by 47.6% ± 9.5%and 77.8% ± 66.5%, respectively. When ACh and the extract were combined, the frequency of contraction of the tissue was increased by 222.2% ± 25.9%, representing a 366.7% increase (P < 0.001) over the effect of ACh alone. Similarly, ACh (2.0 × 10-9 g/mL) and the extract individually increased significantly (P < 0.001) the amplitude of contraction of the tissue by 685.7% ± 61.1% and 455.2% ± 38.1%, respectively. When ACh and the extract were combined, the amplitude of contraction of the tissue rose by 1263.8% ± 69.0%, representing 84.3% increase over the effect of ACh alone. Conclusions: The findings demonstrate that methanol extract of Tephrosia vogelii leaves potentiates the contractile effect of ACh on intestinal smooth muscle, supporting the traditional claim that the plant is purgative.

  8. Mean field model of acetylcholine mediated dynamics in the thalamocortical system.

    Science.gov (United States)

    Clearwater, J M; Rennie, C J; Robinson, P A

    2008-12-01

    A recent continuum model of the large scale electrical activity of the thalamocortical system is generalized to include cholinergic modulation. The model is examined analytically and numerically to determine the effect of acetylcholine (ACh) on its steady states, linear stability, spectrum, and temporal responses. Changing the ACh concentration moves the system between zones of one, three, and five steady states, showing that neuromodulation of synaptic strength is a possible mechanism by which multiple steady states emerge in the brain. The lowest firing rate steady state is always stable, and subsequent fixed points alternate between stable and unstable. Increasing ACh concentration changes the form of the spectrum. Increasing the tonic level of ACh concentration increases the magnitudes of the N100 and P200 in the evoked response potential (ERP), without changing the timing of these peaks. Driving the system with a pulse of cholinergic activity results in a transient increase in the firing rate of cortical neurons that lasts over 10s. Step-like increases in cortical ACh concentration cause increases in the firing rate of cortical neurons, with rapid responses due to fast acting nicotinic receptors and slower responses due to muscarinic receptor suppression of intracortical connections.

  9. Segregation of acetylcholine and GABA in the rat superior cervical ganglia: functional correlation.

    Directory of Open Access Journals (Sweden)

    Diana eElinos

    2016-04-01

    Full Text Available Sympathetic neurons have the capability to segregate their neurotransmitters (NTs and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh and other classical NTs such as gamma aminobutyric acid (GABA. Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX. We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region show larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons.

  10. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors

    Science.gov (United States)

    Dacosta, Corrie J. B.; Free, Chris R.; Sine, Steven M.

    2015-08-01

    α-Bungarotoxin (α-Btx) binds to the five agonist binding sites on the homopentameric α7-acetylcholine receptor, yet the number of bound α-Btx molecules required to prevent agonist-induced channel opening remains unknown. To determine the stoichiometry for α-Btx blockade, we generate receptors comprised of wild-type and α-Btx-resistant subunits, tag one of the subunit types with conductance mutations to report subunit stoichiometry, and following incubation with α-Btx, monitor opening of individual receptor channels with defined subunit stoichiometry. We find that a single α-Btx-sensitive subunit confers nearly maximal suppression of channel opening, despite four binding sites remaining unoccupied by α-Btx and accessible to the agonist. Given structural evidence that α-Btx locks the agonist binding site in an inactive conformation, we conclude that the dominant mechanism of antagonism is non-competitive, originating from conformational arrest of the binding sites, and that the five α7 subunits are interdependent and maintain conformational symmetry in the open channel state.

  11. α7-Nicotinic acetylcholine receptor: role in early odor learning preference in mice.

    Directory of Open Access Journals (Sweden)

    Jennifer L Hellier

    Full Text Available Recently, we have shown that mice with decreased expression of α7-nicotinic acetylcholine receptors (α7 in the olfactory bulb were associated with a deficit in odor discrimination compared to wild-type mice. However, it is unknown if mice with decreased α7-receptor expression also show a deficit in early odor learning preference (ELP, an enhanced behavioral response to odors with attractive value observed in rats. In this study, we modified ELP methods performed in rats and implemented similar conditions in mice. From post-natal days 5-18, wild-type mice were stroked simultaneously with an odor presentation (conditioned odor for 90 s daily. Control mice were only stroked, exposed to odor, or neither. On the day of testing (P21, mice that were stroked in concert with a conditioned odor significantly investigated the conditioned odor compared to a novel odor, as observed similarly in rats. However, mice with a decrease in α7-receptor expression that were stroked during a conditioned odor did not show a behavioral response to that odorant. These results suggest that decreased α7-receptor expression has a role in associative learning, olfactory preference, and/or sensory processing deficits.

  12. Functional nicotinic acetylcholine receptor reconstitution in Au(111)-supported thiolipid monolayers

    Science.gov (United States)

    Pissinis, Diego E.; Diaz, Carolina; Maza, Eliana; Bonini, Ida C.; Barrantes, Francisco J.; Salvarezza, Roberto C.; Schilardi, Patricia L.

    2015-09-01

    The insertion and function of the muscle-type nicotinic acetylcholine receptor (nAChR) in Au(111)-supported thiolipid self-assembled monolayers have been studied by atomic force microscopy (AFM), surface plasmon resonance (SPR), and electrochemical techniques. It was possible for the first time to resolve the supramolecular arrangement of the protein spontaneously inserted in a thiolipid monolayer in an aqueous solution. Geometric supramolecular arrays of nAChRs were observed, most commonly in a triangular form compatible with three nAChR dimers of ~20 nm each. Addition of the full agonist carbamoylcholine activated and opened the nAChR ion channel, as revealed by the increase in capacitance relative to that of the nAChR-thiolipid system under basal conditions. Thus, the self-assembled system appears to be a viable biomimetic model to measure ionic conductance mediated by ion-gated ion channels under different experimental conditions, with potential applications in biotechnology and pharmacology.

  13. Captopril augments acetylcholine-induced bronchial smooth muscle contractions in vitro via kinin-dependent mechanisms.

    Science.gov (United States)

    Agrawal, Naman; Akella, Aparna; Deshpande, Shripad B

    2016-06-01

    Angiotensin converting enzyme (ACE) inhibitors therapy is aassociated with bothersome dry cough as an adverse effect. The mechanisms underlying this adverse effect are not clear. Therefore, influence of captopril (an ACE inhibitor) on acetylcholine (ACh)-induced bronchial smooth muscle contractions was investigated. Further, the mechanisms underlying the captopril-induced changes were also explored. In vitro contractions of rat bronchial smooth muscle to cumulative concentrations of ACh were recorded before and after exposure to captopril. Further, the involvement of kinin and inositol triphosphate (IP₃) pathways for captopril-induced alterations were explored. ACh produced concentration-dependent (5-500 µM) increase in bronchial smooth muscle contractions. Pre-treatment with captopril augmented the ACh-induced contractions at each concentration significantly. Pre-treatment with aprotinin (kinin synthesis inhibitor) or heparin (inositol triphosphate, IP₃-inhibitor), blocked the captopril-induced augmentation of bronchial smooth muscle contractions evoked by ACh. Further, captopril-induced augmentation was absent in calcium-free medium. These results suggest that captopril sensitizes bronchial smooth muscles to ACh-induced contractions. This sensitization may be responsible for dry cough associated with captopril therapy.

  14. Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage.

    Directory of Open Access Journals (Sweden)

    Francesca Prestori

    Full Text Available The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation.

  15. Acetylcholine-induced calcium oscillation in isolated outer hair cells in guinea pig

    Institute of Scientific and Technical Information of China (English)

    XIE Ding-hua; XIAO Zi-an; YANG Shu

    2006-01-01

    Abstract Objective This study is to explore the relationship between acetylcholine (ACh)-induced calcium release from intracellular Ca2+ stores and function of outer hair cell (OHC) motors, in an attempt to elucidate the mechanism of OHC electromotility at resting state. Methods OHCs were isolated from adult guinea pig (200-300 g) cochlea and loaded with Fluo-3/AM. The cells were treated with ACh/dHBSS, ACh/HBSS, dHBSS only or HBSS only. Intracellular [Ca2+]i variations in cells under the four treatments were observed using an Ar-Kr laser scan confocal microscope. Results [Ca2+]i oscillations were recorded in five OHCs treated with ACh/dHBSS but not in other cells. This is the first time that Ach-excited [Ca2+]i oscillations are reported in guinea pig OHCs independent of extracellular calcium. Conclusions ACh-excited [Ca2+]i oscillations in OHCs originates from intracellular calcium release and may play a crucial role in maintaining active mechanical motility of the OHC at resting and modulating OHC electromotility.

  16. Nicotinic Acetylcholine Receptor α4 Subunit Gene Variation Associated with Attention Deficit Hyperactivity Disorder

    Institute of Scientific and Technical Information of China (English)

    HUANG Xuezhu; XU Yong; LI Qianqian; LIU Pozi; YANG Yuan; ZHANG Fuquan; GUO Tianyou; YANG Chuang; GUO Lanting

    2009-01-01

    Previous pharmacological, human genetics, and animal models have implicated the nicotinic ace-tylcholine receptor a4 subunit (CHRNA4) gene in the pathogenesis of attention deficit/hyperactivity disorder (ADHD). The objective of this study is to examine the genetic association between single nucleotide poly-morphisms in the CHRNA4 gene (rs2273502, rs1044396, rs1044397, and rs3827020 loci) and ADHD. Both case-control and family-based designs are used. Children aged 6 to 16 years were interviewed and as-sessed with the children behavior checklist and the revised conner' parent rating scale to identify probands. No significant differences in the frequency distribution of genotypes or alleles were found between the case and control groups. However, further haplotype analyses showed the CCGG haplotype on dsk for ADHD in 164 case-control samples and the standard transmission disequilibrium test analyses suggest that the allele C of rs2273502 was over-transferred in 98 ADHD parent-offspring tdos. These findings suggest that the CHRNA4 gene may play a role in the pathogenesis of ADHD.

  17. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor.

    Science.gov (United States)

    Sansom, M S; Adcock, C; Smith, G R

    1998-01-01

    Molecular dynamics simulations with experimentally derived restraints have been used to develop atomic models of M2 helix bundles forming the pore-lining domains of the nicotinic acetylcholine receptor and related ligand-gated ion channels. M2 helix bundles have been used in microscopic simulations of the dynamics and energetics of water and ions within an ion channel. Translational and rotational motion of water are restricted within the pore, and water dipoles are aligned relative to the pore axis by the surrounding helix dipoles. Potential energy profiles for translation of a Na+ ion along the pore suggest that the protein and water components of the interaction energy exert an opposing effect on the ion, resulting in a relatively flat profile which favors cation permeation. Empirical conductance calculations based on a pore radius profile suggest that the M2 helix model is consistent with a single channel conductance of ca. 50 pS. Continuum electrostatics calculations indicate that a ring of glutamate residues at the cytoplasmic mouth of the alpha 7 nicotinic receptor M2 helix bundle may not be fully ionized. A simplified model of the remainder of the channel protein when added to the M2 helix bundle plays a significant role in enhancing the ion selectivity of the channel.

  18. Desensitization of human muscarinic acetylcholine receptor m2 subtypes is caused by their sequestration/internalization.

    Science.gov (United States)

    Tsuga, H; Kameyama, K; Haga, T

    1998-10-01

    Desensitization of human muscarinic acetylcholine receptor m2 subtypes (hm2 receptors) stably expressed in chinese hamster ovary cells was measured as decreases in the carbamylcholine-stimulated [35S]GTPgammaS binding activity in membrane preparations after pre-treatment of cells with carbamylcholine. The extent of carbamylcholine-stimulated [35S]GTPgammaS binding activity was found to decrease to 64% following pretreatment of cells with 10 microM carbamylcholine for 30 min, and under the same conditions 51-59% of hm2 receptors were sequestered/internalized as assessed by decreases in the [3H]N-methylscopolamine binding activity on the cell surface. A similar reduction in the carbamylcholine-stimulated [35S]GTPgammaS binding activity was observed by pretreatment of cells with 5 nM propylbenzylylcholine mustard, which irreversibly bound to and inactivated 58% of the hm2 receptors. When the cells were pretreated with 10 microM carbamylcholine in the presence of 0.32 M sucrose, which is known to inhibit clathrin-mediated endocytosis, no sequestration/internalization of hm2 receptors was observed, and the extent of carbamylcholine-stimulated [35S]GTPgammaS binding activity did not change. These results indicate that desensitization of hm2 receptors may be caused by reduction of receptor number on the cell surface through sequestration/internalization rather than by loss of the function of receptors.

  19. Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    Maria Di Bari

    2016-11-01

    Full Text Available Multiple sclerosis (MS is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE and butyrylcholinesterase (BuChE. Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD, is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis.

  20. Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients.

    Science.gov (United States)

    Di Bari, Maria; Reale, Marcella; Di Nicola, Marta; Orlando, Viviana; Galizia, Sabrina; Porfilio, Italo; Costantini, Erica; D'Angelo, Chiara; Ruggieri, Serena; Biagioni, Stefano; Gasperini, Claudio; Tata, Ada Maria

    2016-11-30

    Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis.

  1. Functional interaction of nicotinic acetylcholine receptors and Na+/K+ ATPase from Locusta migratoria manilensis (Meyen).

    Science.gov (United States)

    Bao, Haibo; Sun, Huahua; Xiao, Youxin; Zhang, Yixi; Wang, Xin; Xu, Xiaoyong; Liu, Zewen; Fang, Jichao; Li, Zhong

    2015-03-06

    Associated proteins are important for the correct functioning of nicotinic acetylcholine receptors (nAChRs). In the present study, a neonicotinoid-agarose affinity column was used to isolate related proteins from a solubilized membrane preparation from the nervous system of Locusta migratoria manilensis (Meyen). 1530 peptides were identified and most of them were involved in the membranous structure, molecular interaction and cellular communication. Among these peptides, Na(+)/K(+) ATPase had the highest MASCOT score and were involved in the molecular interaction, which suggested that Na(+)/K(+) ATPase and nAChRs might have strong and stable interactions in insect central nervous system. In the present study, functional interactions between nAChRs and Na(+)/K(+) ATPase were examined by heterologous expression in Xenopus oocytes. The results showed that the activated nAChRs increased pump currents of Na(+)/K(+) ATPase, which did not require current flow through open nAChRs. In turn, Na(+)/K(+) ATPase significantly increased agonist sensitivities of nAChRs in a pump activity-independent manner and reduced the maximum current (Imax) of nAChRs. These findings provide novel insights concerning the functional interactions between insect nAChRs and Na(+)/K(+) ATPase.

  2. Melanin concentrating hormone induces hippocampal acetylcholine release via the medial septum in rats.

    Science.gov (United States)

    Lu, Zhi-Hong; Fukuda, Satoru; Minakawa, Yoichi; Yasuda, Atsushi; Sakamoto, Hidetoshi; Sawamura, Shigehito; Takahashi, Hidenori; Ishii, Noriko

    2013-06-01

    Among various actions of melanin concentrating hormone (MCH), its memory function has been focused in animal studies. Although MCH neurons project to various areas in the brain, one main target site of MCH is hippocampal formation for memory consolidation. Recent immunohistochemical study shows that MCH neurons directly project to the hippocampal formation and may indirectly affect the hippocampus through the medial septum nucleus (MS). It has been reported that sleep is necessary for memory and that hippocampal acetylcholine (ACh) release is indispensable for memory consolidation. However, there is no report how MCH actually influences the hippocampal ACh effluxes in accordance with the sleep-wake cycle changes. Thus, we investigated the modulatory function of intracerebroventricular (icv) injection of MCH on the sleep-wake cycle and ACh release using microdialysis techniques. Icv injection of MCH significantly increased the rapid eye movement (REM) and non-REM episode time and the hippocampal, not cortical, ACh effluxes. There was a significant correlation between REM episode time and hippocampal ACh effluxes, but not between REM episode time and cortical ACh effluxes. Microinjection of MCH into the MS increased the hippocampal ACh effluxes with no influence on the REM episode time. It appears that the effect sites of icv MCH for prolongation of REM episode time may be other neuronal areas than the cholinergic neurons in the MS. We conclude that MCH actually increases the hippocampal ACh release at least in part through the MS in rats.

  3. Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism.

    Science.gov (United States)

    Karvat, Golan; Kimchi, Tali

    2014-03-01

    Autism spectrum disorders (ASD) are defined by behavioral deficits in social interaction and communication, repetitive stereotyped behaviors, and restricted interests/cognitive rigidity. Recent studies in humans and animal-models suggest that dysfunction of the cholinergic system may underlie autism-related behavioral symptoms. Here we tested the hypothesis that augmentation of acetylcholine (ACh) in the synaptic cleft by inhibiting acetylcholinesterase may ameliorate autistic phenotypes. We first administered the acetylcholinesterase inhibitor (AChEI) Donepezil systemically by intraperitoneal (i.p.) injections. Second, the drug was injected directly into the rodent homolog of the caudate nucleus, the dorsomedial striatum (DMS), of the inbred mouse strain BTBR T+tf/J (BTBR), a commonly-used model presenting all core autism-related phenotypes and expressing low brain ACh levels. We found that i.p. injection of AChEI to BTBR mice significantly relieved autism-relevant phenotypes, including decreasing cognitive rigidity, improving social preference, and enhancing social interaction, in a dose-dependent manner. Microinjection of the drug directly into the DMS, but not into the ventromedial striatum, led to significant amelioration of the cognitive-rigidity and social-deficiency phenotypes. Taken together, these findings provide evidence of the key role of the cholinergic system and the DMS in the etiology of ASD, and suggest that elevated cognitive flexibility may result in enhanced social attention. The potential therapeutic effect of AChEIs in ASD patients is discussed.

  4. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae.

    Science.gov (United States)

    Jones, Andrew K; Grauso, Marta; Sattelle, David B

    2005-02-01

    Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission in the insect nervous system and are targets of widely selling insecticides. We have identified the nAChR gene family from the genome of the malaria mosquito vector, Anopheles gambiae, to be the second complete insect nAChR gene family described following that of Drosophila melanogaster. Like Drosophila, Anopheles possesses 10 nAChR subunits with orthologous relationships evident between the two insects. Interestingly, the Anopheles orthologues of Dbeta2 and Dbeta3 possess the vicinal cysteines that define alpha subunits. As with Dalpha4 and Dalpha6, the Anopheles orthologues are alternatively spliced at equivalent exons. Reverse transcription-polymerase chain reaction analysis shows that RNA A-to-I editing sites conserved between Dalpha6 of Drosophila and alpha7-2 of the tobacco budworm, Heliothis virescens, are not shared with the equivalent nAChR subunit of Anopheles. Indeed, RNA-editing sites identified in functionally significant regions of Dbeta1, Dalpha5, and Dalpha6 are not conserved in the mosquito orthologues, indicating considerable divergence of RNA molecules targeted for editing within the insect order Diptera. These findings shed further light on the diversity of nAChR subunits and may present a useful basis for the development of improved malaria control agents by enhancing our understanding of a validated mosquito insecticide target.

  5. Lynx1 and Aβ1-42 bind competitively to multiple nicotinic acetylcholine receptor subtypes

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Arvaniti, Maria; Jensen, Majbrit M

    2016-01-01

    Lynx1 regulates synaptic plasticity in the brain by regulating nicotinic acetylcholine receptors (nAChRs). It is not known to which extent Lynx1 can bind to endogenous nAChR subunits in the brain or how this interaction is affected by Alzheimer's disease pathology. We apply affinity purification...... to demonstrate that a water-soluble variant of human Lynx1 (Ws-Lynx1) isolates α3, α4, α5, α6, α7, β2, and β4 nAChR subunits from human and rat cortical extracts, and rat midbrain and olfactory bulb extracts, suggesting that Lynx1 forms complexes with multiple nAChR subtypes in the human and rodent brain....... Incubation with Ws-Lynx1 decreases nicotine-mediated extracellular signal-regulated kinase phosphorylation in PC12 cells and striatal neurons, indicating that binding of Ws-Lynx1 is sufficient to inhibit signaling downstream of nAChRs. The effect of nicotine in PC12 cells is independent of α7 or α4β2 n...

  6. Intermolecular forces between acetylcholine and acetylcholinesterases studied with atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    张英鸽; 白春礼; 王琛; 赵德禄; 苏明; 林璋; 田芳

    1999-01-01

    With the aid of atomic force microscopy, the intermolecular forces between acetyleholinesterases (AChE) and its natural substrate acetylcholine (ACh) have been studied. Through force spectrum measurement based on imaging of AChE molecules it was found that the attraction force between individual molecule pairs of ACh and AChE was (10±1) pN just before the quaternary ammonium head of ACh got into contact with the negative end of AChE and the decaying distance of attraction was (4±1) nm from the surface of ACHE. The adhesion force between individual ACh and AChE molecule pairs was (25±2) pN, which had a decaying feature of fast-slow-fast (FSF). The attraction forces between AChE and choline (Ch), the quaternary ammonium moiety and hydrolysate of ACh molecule, were similar to those between AChE and ACh. The adhesion forces between AChE and Ch were (20±2) pN, a little weaker than that between ACh and ACHE. These results indicated that AChE had a steering role for the diffusion of ACh toward it and had r

  7. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Herholz, Karl [University of Manchester, Wolfson Molecular Imaging Centre, Clinical Neuroscience, Manchester (United Kingdom); University of Cologne, Cologne (Germany)

    2008-03-15

    Impairment of cholinergic neurotransmission is a well-established fact in Alzheimer's disease (AD), but there is controversy about its relevance at the early stages of the disease and in mild cognitive impairment (MCI). In vivo positron emission tomography imaging of cortical acetylcholine esterase (AChE) activity as a marker of cholinergic innervation that is expressed by cholinergic axons and cholinoceptive neurons has demonstrated a reduction of this enzyme activity in manifest AD. The technique is also useful to measure the inhibition of cerebral AChE induced by cholinesterase inhibitors for treatment of dementia symptoms. A reduction of cortical AchE activity was found consistently in all studies of AD and in few cases of MCI who later concerted to AD. The in vivo findings in MCI and very mild AD are still preliminary, and studies seem to suggest that cholinergic innervation and AChE as the main degrading enzyme are both reduced, which might result in partial compensation of their effect. (orig.)

  8. [Effect of acetylcholine and acetylcholinesterase on the activity of contractile vacuole of Amoeba proteus].

    Science.gov (United States)

    Bagrov, Ia Iu; Manusova, N B

    2011-01-01

    Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.

  9. Cruzipain induces autoantibodies against cardiac muscarinic acetylcholine receptors. Functional and pathological implications.

    Science.gov (United States)

    Sterin-Borda, Leonor; Giordanengo, Laura; Joensen, Lilian; Gea, Susana

    2003-09-01

    The goal of this study was to investigate whether cruzipain, a Trypanosoma cruzi immunodominant antigen, was able to induce antibodies reactive to the cardiac M(2) muscarinic acetylcholine receptor (M(2) mAChR). Immunization with cruzipain that was devoid of enzyme activity triggered IgG antibodies against cardiac M(2) mAChR. By radioligand competition assay we proved that the anti-cruzipain IgG fraction, purified from serum, inhibited binding of the specific M(2) mAChR radioligand [(3)H]quinuclidinyl benzilate. We also demonstrated that anti-cruzipain IgG reacted against the second extracellular loop of the M(2) mAChR. The corresponding affinity-purified serum anti-M(2)e2 IgG (reacting against a synthetic peptide corresponding to this loop in humans) displayed agonist-like activity associated with specific M(2) mAChR activation - increase of cGMP, inositol phosphate accumulation and nitric oxide synthase activity - triggering a decrease in myocardial contractility. Moreover, the same IgG fraction decreased heart frequency, related to inhibition of adenylate cyclase activity. These results imply that cruzipain plays a role in the production of antibodies against M(2) mAChR, which have been related to the pathogenesis of dysautonomic syndrome described in Chagas' disease.

  10. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    Directory of Open Access Journals (Sweden)

    Marlet Martinez-Archundia

    2012-01-01

    Full Text Available The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS. Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand.

  11. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  12. Acetylcholine promotes the emergence and elongation of lateral roots of Raphanus sativus.

    Science.gov (United States)

    Sugiyama, Kou-ichi; Tezuka, Takafumi

    2011-10-01

    Radish (Raphanus sativus L.) was grown on four layers of paper towel moistened with distilled water with and without acetylcholine (ACh) for five days in the dark after sowing. ACh at 1 nM promoted the growth (emergence and elongation) of lateral roots of radish plants, but had no effect on the stems and main roots. Moreover, ACh enhanced the dry weight of roots [main (primary) + lateral roots]. Neostigmine, an inhibitor of acetylcholinesterase (AChE) also promoted the emergence and elongation of lateral roots, and atropine, a competitive inhibitor of ACh receptor, suppressed the emergence and elongation. ACh suppressed the activity of AChE and increased the amount of proteins and pyridine nucleotides (NAD and NADH) in the roots of the seedlings. It also increased the activities of NAD-forming enzymes [NAD synthetase and ATP-nicotinamide mononucleotide (ATP-NMN) adenyltransferase], and enhanced the amount of DNA in the roots of the seedlings. The relationship between ACh and the emergence and growth of lateral roots was discussed from a biochemical viewpoint.

  13. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively, of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.

  14. Synthesis of carbon-11 labeled dexetimide and levetimide for studying muscarinic acetylcholine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Dannals, R.F.; Langstrom, B.; Ravert, H.T.; Wilson, A.A.; Wagner, H.N. Jr.

    1985-05-01

    The localization and quantitation of the muscarinic acetylcholine receptor (m-AChR) in the living human brain using a non-invasive method, such as positron emission tomography (PET), may provide valuable information about receptor changes which have been observed post mortem in patients with Huntington's chorea and Alzheimer's dementia, as well as normal brain mechanisms mediated by the m-AChR. Although quinuclidinyl benzilate has been radioiodinated and radiomethylatd, the former is not useful with PET and the latter does not penetrate the blood-brain barrier; therefore, the authors chose to radiolabel dexetimide, a ligand which labels m-AChR in vitro and in vivo, and levetimide, its inactive enantiomer. Carbon-11 labeled carbon dioxide is bubbled through a tetrahydrofuran (THF) solution of phenylmagnesium chloride (1 M, l ml) after which 2 mg of lithium aluminium hydride is added in THF (500 ..mu..l). After evaporation of the solvent, 48% hydriodic acid (l ml) is added and the solution is heated for 1 minute. Carbon-11 labeled benzyl iodide is extracted into methylene chloride, added to a solution of nor-benzyl dexetimide or levetimide, and heated for several minutes. Purification is accomplished using semi-preparative reverse phase high performance liquid chromatography (HPLC). Analytical HPLC is used to determine the radiochemical purity and specific activity.

  15. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees

    Science.gov (United States)

    Moffat, Christopher; Buckland, Stephen T.; Samson, Andrew J.; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A.; Huang, Jeffrey T.-J.; Connolly, Christopher N.

    2016-04-01

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species.

  16. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Supavilai, P.; Karobath, M.

    1985-02-04

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with /sup 3/H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 ..mu..M. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table.

  17. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    Science.gov (United States)

    Martinez-Archundia, Marlet; Cordomi, Arnau; Garriga, Pere; Perez, Juan J.

    2012-01-01

    The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC) and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS). Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand. PMID:22500107

  18. BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons.

    Science.gov (United States)

    Massey, Kerri A; Zago, Wagner M; Berg, Darwin K

    2006-12-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing alpha7 subunits (alpha7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of alpha7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABA(A) receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased alpha7-nAChR clusters were most prominent on interneuron subtypes known to directly innervate excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling alpha7-nAChR levels.

  19. Impaired acetylcholine-induced cutaneous vasodilation in young smokers: roles of nitric oxide and prostanoids.

    Science.gov (United States)

    Fujii, Naoto; Reinke, Maggie C; Brunt, Vienna E; Minson, Christopher T

    2013-03-01

    Cigarette smoking attenuates acetylcholine (ACh)-induced cutaneous vasodilation in humans, but the underlying mechanisms are unknown. We tested the hypothesis that smokers have impaired nitric oxide (NO)- and cyclooxygenase (COX)-dependent cutaneous vasodilation to ACh infusion. Twelve young smokers, who have smoked more than 5.2 ± 0.7 yr with an average daily consumption of 11.4 ± 1.2 cigarettes, and 12 nonsmokers were tested. Age, body mass index, and resting mean arterial pressure were similar between the groups. Cutaneous vascular conductance (CVC) was evaluated as laser-Doppler flux divided by mean arterial pressure, normalized to maximal CVC (local heating to 43.0°C plus sodium nitroprusside administration). We evaluated the increase in CVC from baseline to peak (CVCΔpeak) and area under the curve of CVC (CVCAUC) during a bolus infusion (1 min) of 137.5 μM ACh at four intradermal microdialysis sites: 1) Ringer (control), 2) 10 mM N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor), 3) 10 mM ketorolac (COX inhibitor), and 4) combination of l-NAME + ketorolac. CVCΔpeak and CVCAUC at the Ringer site in nonsmokers were greater than in smokers (CVCΔpeak, 42.9 ± 5.1 vs. 22.3 ± 3.5%max, P vasodilation in young smokers is related to diminished NO- and COX-dependent vasodilation.

  20. Relationship between Vasodilation Effect of Anisodamine and Endothelial Target for Acetylcholine on Microvessels in Rat

    Institute of Scientific and Technical Information of China (English)

    鲍颖霞; 李庆平; 汪海

    2002-01-01

    Objective To study the effects of anisodamine on microvessels and its relatwn-ship with endothelium target for acetylcholine (ETA). Methods Norepinephrine precontracted mesen-teric vascular beds in rat were used to determine changes of tension of vessels in response to anisodamineafter removal of endothelium , coincubated with L-NAME, nitric oxide synthase (NOS) inhibitor, in-domethacin , cyclo-oxygenase inhibitor and glibenclamide , ATP-dependent K+ channels (K ATP ) inhibitor.Results Anisodamine produced a vasodilation effect on mesenteric vascular beds, which was remark-ably inhibited after removal of endothelium (P< 0.01). The vasodilation effect of anisodamine was al-so significantly inhibited after coincubated with indomethacin (1 μmol/ L), NG-nitro-L-arginine methylester ( L- NAME, 100 μrmol / L) and glibenclamide (1 μmol/L, P<0. 01, vs control). Conclu-sion The vasodilation effect of ani.sodamine on microvessels was mediated by ETA. This is related toprostacyclin , endothelium derived relaxing factor (EDRF) and KATP besides M, a-receptor on vascularmooth muscle cell (VSMC) and calcium-antagonistic effects.

  1. Medial prefrontal cortex acetylcholine injection-induced hypotension: the role of hindlimb vasodilation

    Science.gov (United States)

    Crippa, G. E.; Lewis, S. J.; Johnson, A. K.; Correa, F. M.

    2000-01-01

    The injection of acetylcholine (ACh) into the cingulate region of the medial prefrontal cortex (MPFC) causes a marked fall in arterial blood pressure which is not accompanied by changes in heart rate. The purpose of the present study was to investigate the hemodynamic basis for this stimulus-induced hypotension in Sprague-Dawley rats. The study was designed to determine whether a change in the vascular resistance of hindlimb, renal or mesenteric vascular beds contributes to the fall in arterial pressure in response to ACh injection into the cingulate cortex. Miniature pulsed-Doppler flow probes were used to measure changes in regional blood flow and vascular resistance. The results indicated that the hypotensive response was largely due to a consistent and marked vasodilation in the hindlimb vascular bed. On this basis, an additional experiment was then undertaken to determine the mechanisms that contribute to hindlimb vasodilation. The effect of interrupting the autonomic innervation of one leg on the hindlimb vasodilator response was tested. Unilateral transection of the lumbar sympathetic chain attenuated the cingulate ACh-induced vasodilation in the ipsilateral, but not in the contralateral hindlimb. These results suggest that the hypotensive response to cingulate cortex-ACh injection is caused by skeletal muscle vasodilation mediated by a sympathetic chain-related vasodilator system.

  2. Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole-sensitive acetylcholine receptor

    Science.gov (United States)

    Boulin, Thomas; Gielen, Marc; Richmond, Janet E.; Williams, Daniel C.; Paoletti, Pierre; Bessereau, Jean-Louis

    2008-01-01

    Levamisole-sensitive acetylcholine receptors (L-AChRs) are ligand-gated ion channels that mediate excitatory neurotransmission at the neuromuscular junctions of nematodes. They constitute a major drug target for anthelminthic treatments because they can be activated by nematode-specific cholinergic agonists such as levamisole. Genetic screens conducted in Caenorhabditis elegans for resistance to levamisole toxicity identified genes that are indispensable for the biosynthesis of L-AChRs. These include 5 genes encoding distinct AChR subunits and 3 genes coding for ancillary proteins involved in assembly and trafficking of the receptors. Despite extensive analysis of L-AChRs in vivo, pharmacological and biophysical characterization of these receptors has been greatly hampered by the absence of a heterologous expression system. Using Xenopus laevis oocytes, we were able to reconstitute functional L-AChRs by coexpressing the 5 distinct receptor subunits and the 3 ancillary proteins. Strikingly, this system recapitulates the genetic requirements for receptor expression in vivo because omission of any of these 8 genes dramatically impairs L-AChR expression. We demonstrate that 3 α- and 2 non-α-subunits assemble into the same receptor. Pharmacological analysis reveals that the prototypical cholinergic agonist nicotine is unable to activate L-AChRs but rather acts as a potent allosteric inhibitor. These results emphasize the role of ancillary proteins for efficient expression of recombinant neurotransmitter receptors and open the way for in vitro screening of novel anthelminthic agents. PMID:19020092

  3. Transcriptomic Evaluation of the Nicotinic Acetylcholine Receptor Pathway in Levamisole-resistant and -sensitive Oesophagostomum dentatum

    Science.gov (United States)

    Romine, Nathan M.; Martin, Richard J.; Beetham, Jeffrey K.

    2014-01-01

    Nematode anthelminthic resistance is widespread for the 3 major drug classes commonly used in agriculture: benzamidazoles, macrocyclic lactones, and nicotinic agonists e.g. levamisole. In parasitic nematodes the genetics of resistance are unknown other than to the benzimidazoles which primarily involve a single gene. In previous work with a levamisole resistant Oesophagostomum dentatum isolate, the nicotinic acetylcholine receptor (nAChR) exhibited decreased levamisole sensitivity. Here, using a transcriptomic approach on the same isolate, we investigate whether that decreased nAChR sensitivity is achieved via a 1-gene mechanism involving 1 of 27 nAChR pathway genes. 3 nAChR receptor subunit genes exhibited ≥ 2-fold change in transcript abundance: acr-21 and acr-25 increased, and unc-63 decreased. 4 SNPs having a ≥ 2-fold change in frequency were also identified. These data suggest that resistance is likely polygenic, involving modulated abundance of multiple subunits comprising the heteropentameric nAChR, and is not due to a simple 1-gene mechanism. PMID:24530453

  4. Alpha7 Nicotinic Acetylcholine Receptor Is a Target in Pharmacology and Toxicology

    Directory of Open Access Journals (Sweden)

    Miroslav Pohanka

    2012-02-01

    Full Text Available Alpha7 nicotinic acetylcholine receptor (α7 nAChR is an important part of the cholinergic nerve system in the brain. Moreover, it is associated with a cholinergic anti-inflammatory pathway in the termination of the parasympathetic nervous system. Antagonists of α7 nAChR are a wide group represented by conotoxin and bungarotoxin. Even Alzheimer’s disease drug memantine acting as an antagonist in its side pathway belongs in this group. Agonists of α7 nAChR are suitable for treatment of multiple cognitive dysfunctions such as Alzheimer’s disease or schizophrenia. Inflammation or even sepsis can be ameliorated by the agonistic acting compounds. Preparations RG3487, SEN34625/WYE-103914, SEN12333, ABT-107, Clozapine, GTS-21, CNI-1493, and AR-R17779 are representative examples of the novel compounds with affinity toward the α7 nAChR. Pharmacological, toxicological, and medicinal significance of α7 nAChR are discussed throughout this paper.

  5. Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients

    Science.gov (United States)

    Di Bari, Maria; Reale, Marcella; Di Nicola, Marta; Orlando, Viviana; Galizia, Sabrina; Porfilio, Italo; Costantini, Erica; D’Angelo, Chiara; Ruggieri, Serena; Biagioni, Stefano; Gasperini, Claudio; Tata, Ada Maria

    2016-01-01

    Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis. PMID:27916909

  6. Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity

    Energy Technology Data Exchange (ETDEWEB)

    Rotzler, S.; Brenner, H.R. (Univ. of Basel (Switzerland))

    1990-08-01

    The effects of muscle activity on the growth of synaptic acetylcholine receptor (AChR) accumulations and on the metabolic AChR stability were investigated in rat skeletal muscle. Ectopic end plates induced surgically in adult soleus muscle were denervated early during development when junctional AChR number and stability were still low and, subsequently, muscles were either left inactive or they were kept active by chronic exogenous stimulation. AChR numbers per ectopic AChR cluster and AChR stabilities were estimated from the radioactivity and its decay with time, respectively, of end plate sites whose AChRs had been labeled with {sup 125}I-alpha-bungarotoxin (alpha-butx). The results show that the metabolic stability of the AChRs in ectopic clusters is reversibly increased by muscle activity even when innervation is eliminated very early in development. 1 d of stimulation is sufficient to stabilize the AChRs in ectopic AChR clusters. Muscle stimulation also produced an increase in the number of AChRs at early denervated end plates. Activity-induced cluster growth occurs mainly by an increase in area rather than in AChR density, and for at least 10 d after denervation is comparable to that in normally developing ectopic end plates. The possible involvement of AChR stabilization in end plate growth is discussed.

  7. Pathogenesis of Abdominal Aortic Aneurysms: Role of Nicotine and Nicotinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Zong-Zhuang Li

    2012-01-01

    Full Text Available Inflammation, proteolysis, smooth muscle cell apoptosis, and angiogenesis have been implicated in the pathogenesis of abdominal aortic aneurysms (AAAs, although the well-defined initiating mechanism is not fully understood. Matrix metalloproteinases (MMPs such as MMP-2 and -9 and other proteinases degrading elastin and extracellular matrix are the critical pathogenesis of AAAs. Among the risk factors of AAAs, cigarette smoking is an irrefutable one. Cigarette smoke is practically involved in various aspects of the AAA pathogenesis. Nicotine, a major alkaloid in tobacco leaves and a primary component in cigarette smoke, can stimulate the MMPs expression by vascular SMCs, endothelial cells, and inflammatory cells in vascular wall and induce angiogenesis in the aneurysmal tissues. However, for the inflammatory and apoptotic processes in the pathogenesis of AAAs, nicotine seems to be moving in just the opposite direction. Additionally, the effects of nicotine are probably dose dependent or associated with the exposure duration and may be partly exerted by its receptors—nicotinic acetylcholine receptors (nAChRs. In this paper, we will mainly discuss the pathogenesis of AAAs involving inflammation, proteolysis, smooth muscle cell apoptosis and angiogenesis, and the roles of nicotine and nAChRs.

  8. Mice Lacking M1 and M3 Muscarinic Acetylcholine Receptors Have Impaired Odor Discrimination and Learning

    Science.gov (United States)

    Chan, Wilson; Singh, Sanmeet; Keshav, Taj; Dewan, Ramita; Eberly, Christian; Maurer, Robert; Nunez-Parra, Alexia; Araneda, Ricardo C.

    2017-01-01

    The cholinergic system has extensive projections to the olfactory bulb (OB) where it produces a state-dependent regulation of sensory gating. Previous work has shown a prominent role of muscarinic acetylcholine (ACh) receptors (mAChRs) in regulating the excitability of OB neurons, in particular the M1 receptor. Here, we examined the contribution of M1 and M3 mAChR subtypes to olfactory processing using mice with a genetic deletion of these receptors, the M1−/− and the M1/M3−/− knockout (KO) mice. Genetic ablation of the M1 and M3 mAChRs resulted in a significant deficit in odor discrimination of closely related molecules, including stereoisomers. However, the discrimination of dissimilar molecules, social odors (e.g., urine) and novel object recognition was not affected. In addition the KO mice showed impaired learning in an associative odor-learning task, learning to discriminate odors at a slower rate, indicating that both short and long-term memory is disrupted by mAChR dysfunction. Interestingly, the KO mice exhibited decreased olfactory neurogenesis at younger ages, a deficit that was not maintained in older animals. In older animals, the olfactory deficit could be restored by increasing the number of new born neurons integrated into the OB after exposing them to an olfactory enriched environment, suggesting that muscarinic modulation and adult neurogenesis could be two different mechanism used by the olfactory system to improve olfactory processing. PMID:28210219

  9. Effects of Isoflurane on the Actions of Neuromuscular Blockers on the Muscle Nicotine Acetylcholine Receptors

    Institute of Scientific and Technical Information of China (English)

    李传翔; 姚尚龙; 聂辉; 吕斌

    2004-01-01

    In this study, we tested the hypothesis that volatile anesthetic enhancement of muscle relaxation is the result of combined drug effects on the nicotinic acetylcholine receptors. The poly A m RNA from muscle by isolation were microinjected into Xenopus oocytes for receptor expression.Concentration-effect curves for the inhibition of Ach-induced currents were established for vecuronium, rocuranium, and isoflurane. Subsequently, inhibitory effects of NDMRs were studied in the presence of the isoflurane at a concentration equivalent to half the concentration producing a 50 %inhibition alone. All tested drugs produced rapid and readily reversible concentration-dependent inhibition. The 50 % inhibitory concentration values were 889 μmol/L (95 % CI: 711-1214μmol),33.4 μmol (95 % CI: 27.1-41.7 nmol) and 9.2 nmol (95 % CI: 7.9-12.3 nmol) for isoflurane,rocuranium and vecuronium, respectively. Coapplication of isoflurane significantly enhanced the inhibitory effects of rocuranium and vecuronium, and it was especially so at low concentration of NMDRs. Isoflurane increases the potency of NDMRs, possibly by enhancing antagonist affinity at the receptor site.

  10. Action of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Raymond Delpech, Valérie; Ihara, Makoto; Coddou, Claudio; Matsuda, Kazuhiko; Sattelle, David B

    2003-11-01

    Nereistoxin (NTX), a natural neurotoxin from the salivary glands of the marine annelid worm Lumbriconereis heteropoda, is highly toxic to insects. Its synthetic analogue, Cartap, was the first commercial insecticide based on a natural product. We have used voltage-clamp electrophysiology to compare the actions of NTX on recombinant nicotinic acetylcholine receptors (nicotinic AChRs) expressed in Xenopus laevis oocytes following nuclear injection of cDNAs. The recombinant nicotinic AChRs investigated were chicken alpha7, chicken alpha4beta2 and the Drosophila melanogaster/chicken hybrid receptors SAD/beta2 and ALS/beta2. No agonist action of NTX (0.1-100 microM) was observed on chicken alpha7, chicken alpha4beta2 and the Drosophila/chicken hybrid nicotinic AChRs. Currents elicited by ACh were reduced in amplitude by NTX in a dose-dependent manner. The toxin was slightly more potent on recombinant Drosophila/vertebrate hybrid receptors than on vertebrate homomeric (alpha7) or heteromeric (alpha4beta2) nicotinic AChRs. Block by NTX of the chicken alpha7, chicken alpha4beta2 and the SAD/beta2 and ALS/beta2 Drosophila/chicken hybrid receptors is in all cases non-competitive. Thus, the site of action on nicotinic AChRs of NTX, to which the insecticide Cartap is metabolised in insects, differs from that of the major nicotinic AChR-active insecticide, imidacloprid.

  11. Nitric oxide modulates the cardiovascular effects elicited by acetylcholine in the NTS of awake rats.

    Science.gov (United States)

    da Silva, Liana Gouveia; Dias, Ana Carolina Rodrigues; Furlan, Elaina; Colombari, Eduardo

    2008-12-01

    Microinjection of acetylcholine chloride (ACh) in the nucleus of the solitary tract (NTS) of awake rats caused a transient and dose-dependent hypotension and bradycardia. Because it is known that cardiovascular reflexes are affected by nitric oxide (NO) produced in the NTS, we investigated whether these ACh-induced responses depend on NO in the NTS. Responses to ACh (500 pmol in 100 nl) were strongly reduced by ipsilateral microinjection of the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 nmol in 100 nl) in the NTS: mean arterial pressure (MAP) fell by 50 +/- 5 mmHg before L-NAME to 9 +/- 4 mmHg, 10 min after L-NAME, and HR fell by 100 +/- 26 bpm before L-NAME to 20 +/- 10 bpm, 10 min after L-NAME (both P NTS also reduced responses to ACh: MAP fell from 42 +/- 3 mmHg before TRIM to 27 +/- 6 mmHg, 10 min after TRIM (P NTS of conscious rats induces hypotension and bradycardia, and these effects may be mediated at least partly by NO produced in NTS neurons.

  12. Acetylcholine, GABA and neuronal networks: a working hypothesis for compensations in the dystrophic brain.

    Science.gov (United States)

    Cohen, Erez James; Quarta, Eros; Fulgenzi, Gianluca; Minciacchi, Diego

    2015-01-01

    Duchenne muscular dystrophy (DMD), a genetic disease arising from a mutation in the dystrophin gene, is characterized by muscle failure and is often associated with cognitive deficits. Studies of the dystrophic brain on the murine mdx model of DMD provide evidence of morphological and functional alterations in the central nervous system (CNS) possibly compatible with the cognitive impairment seen in DMD. However, while some of the alterations reported are a direct consequence of the absence of dystrophin, others seem to be associated only indirectly. In this review we reevaluate the literature in order to formulate a possible explanation for the cognitive impairments associated with DMD. We present a working hypothesis, demonstrated as an integrated neuronal network model, according to which within the cascade of events leading to cognitive impairments there are compensatory mechanisms aimed to maintain functional stability via perpetual adjustments of excitatory and inhibitory components. Such ongoing compensatory response creates continuous perturbations that disrupt neuronal functionality in terms of network efficiency. We have theorized that in this process acetylcholine and network oscillations play a central role. A better understating of these mechanisms could provide a useful diagnostic index of the disease's progression and, perhaps, the correct counterbalance of this process might help to prevent deterioration of the CNS in DMD. Furthermore, the involvement of compensatory mechanisms in the CNS could be extended beyond DMD and possibly help to clarify other physio-pathological processes of the CNS.

  13. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination from Intakes of Radionuclides Part II: Calibration Factors and ICAT Computer Program.

    Science.gov (United States)

    Anigstein, Robert; Olsher, Richard H; Loomis, Donald A; Ansari, Armin

    2016-12-01

    The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: Co, I, Cs, and Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of

  14. Sediment Transport

    DEFF Research Database (Denmark)

    Liu, Zhou

    Flow and sediment transport are important in relation to several engineering topics, e.g. erosion around structures, backfilling of dredged channels and nearshore morphological change. The purpose of the present book is to describe both the basic hydrodynamics and the basic sediment transport...... mechanics. Chapter 1 deals with fundamentals in fluid mechanics with emphasis on bed shear stress by currents, while chapter 3 discusses wave boundary layer theory. They are both written with a view to sediment transport. Sediment transport in rivers, cross-shore and longshore are dealt with in chapters 2...

  15. Detection of glutamate and acetylcholine with organic electrochemical transistors based on conducting polymer/platinum nanoparticle composites.

    Science.gov (United States)

    Kergoat, Loïg; Piro, Benoît; Simon, Daniel T; Pham, Minh-Chau; Noël, Vincent; Berggren, Magnus

    2014-08-27

    The aim of the study is to open a new scope for organic electrochemical transistors based on PEDOT:PSS, a material blend known for its stability and reliability. These devices can leverage molecular electrocatalysis by incorporating small amounts of nano-catalyst during the transistor manufacturing (spin coating). This methodology is very simple to implement using the know-how of nanochemistry and results in efficient enzymatic activity transduction, in this case utilizing choline oxidase and glutamate oxidase.

  16. Comparative studies of huperzine A,donepezil,and rivastigmine on brain acetylcholine,dopamine,norepinephrine,and 5-hydroxytryptamine levels in freely-moving rats

    Institute of Scientific and Technical Information of China (English)

    Yan-qi LIANG; Xi-can TANG

    2006-01-01

    Aim: To assess the effects of cholinesterase inhibitors huperzine A, donepezil and rivastigmine on cerebral neurotransmitters in the cortex and hippocampus in freely-moving rats. Methods: Double-probe cerebral microdialysis and HPLC with electrochemical detection were used to detect neurotransmitters. Results: Our results showed that huperzine A (0.25, 0.5, and 0.75 μmol/kg, po) dose-depen-dently elevated extracellular acetylcholine (Ach) levels in the medial prefrontal cortex (Mpfc) and hippocampus. Oral administration of donepezil (5.4 μmol/kg) or rivastigmine (1 μmol/kg) also elicited significant increases in Ach in the Mpfc and hippocampus. The time course of cortical acetylcholinesterase (AChE) inhibition with the 3 inhibitors mirrored the increases of Ach at the same dose. The marked elevation of Ach after oral administration of huperzine A (0.5 μmol/kg) and donepezil (5.4 μmol/kg) was associated with a significantly increased release of dopamine (DA) in the Mpfc or hippocampus. None of the 3 inhibitors affected norepinephrine (NE) and 5-hydroxytryptamine (5-HT) levels in the Mpfc and hippocampus. The effects of huperzine A and rivastigmine did not depend on the route of administration, but donepezil was less efficacious by the oral route than by ip injection. The ability of huperzine A to increase Ach levels was unchanged when tests were performed after multiple oral administration of the drug at 0.5 μmol/kg, once per day for 30 d. Conclusion: The present findings showed that, in molar terms, huperzine A had similar potency on increasing Mpfc Ach and DA levels as compared to the 11- and 2-fold dosages of donepezil and rivastigmine, respectively, and had longer lasting effects after oral dosing.

  17. Development of new atomic scale defect identification schemes in micro / nanoelectronics incorporating digital signal processing methods for investigating zero/low field spin dependent transport and passage effects in electrically detected magnetic resonance

    Science.gov (United States)

    Cochrane, Corey J.

    This work focuses on the development of new techniques for the study of spin dependent transport and trapping centers in fully processed micro and nanoelectronics. The first, and most interesting, technique offers a very low cost means to study spin dependent transport in microelectronics as an alternative to electrically detected magnetic resonance (EDMR). EDMR measurements generally require strong static magnetic fields, typically 3 kG or greater, and high frequency oscillating electromagnetic fields, typically 9 GHz or higher. In this work, it is demonstrated that large spin dependent recombination and tunneling signals can be detected in the absence of the oscillating electromagnetic field at zero magnetic field. The physics behind this technique is based upon the mixing of singlet and triplet energy states of the electron spin pairs involved in the spin dependent processes. In this study, we show that this technique can be applied to Si and SiC based devices. Theoretically, it can be applicable to devices of all material systems in which defects play a role in spin dependent transport, some of which include CdTe and GaN. Although the resolution of the g value is sacrificed in this new measurement, the technique can detect electron-nuclear hyperfine interactions and possibly dipolar and exchange interactions. The technique also has great promise in microelectronic device reliability studies as it is directly applicable to time dependent dielectric breakdown in thin film dielectrics and bias temperature instabilities in transistors. Other applications of this new physics include self-calibrating magnetometers, spin based memories, quantum computation, and miniature EDMR spectrometers for wafer probing stations. The second technique involves the utilization of passage effects that arise when performing magnetic field modulation in EDMR. When certain conditions are met, the higher order harmonics of the spin dependent signal can contain much useful information

  18. Transport Phenomena.

    Science.gov (United States)

    McCready, Mark J.; Leighton, David T.

    1987-01-01

    Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

  19. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals.

  20. Methanol extract of Tephrosia vogelii leaves potentiates the contractile action of acetylcholine on isolated rabbit jejunum

    Institute of Scientific and Technical Information of China (English)

    Tavershima; Dzenda; Joseph; Olusegun; Ayo; Alexander; Babatunde; Adelaiye; Ambrose; Osemattah; Adaudi

    2015-01-01

    Objective:To investigate the modulating role of methanol extract of Tephrosia vogelii leaves on acetylcholine(ACh)-induced contraction of isolated rabbit jejunum.Methods: Rabbit jejunum segment was removed and placed in an organ bath containing Tyrode’s solution, and its contractions were recorded isometrically.Results: ACh(2.0 × 10-10 g/m L) and the extract(2.0 × 10-4 g/m L) individually increased the frequency of contraction(mean ± SEM) of the isolated smooth muscle tissue by 47.6% ± 9.5% and 77.8% ± 66.5%, respectively. When ACh and the extract were combined, the frequency of contraction of the tissue was increased by 222.2% ± 25.9%, representing a 366.7% increase(P < 0.001) over the effect of ACh alone. Similarly, ACh(2.0 × 10-9 g/m L) and the extract individually increased significantly(P < 0.001) the amplitude of contraction of the tissue by 685.7% ± 61.1% and 455.2% ± 38.1%, respectively. When ACh and the extract were combined, the amplitude of contraction of the tissue rose by 1263.8% ± 69.0%, representing 84.3% increase over the ef ect of ACh alone. Conclusions: The findings demonstrate that methanol extract of Tephrosia vogelii leaves potentiates the contractile ef ect of ACh on intestinal smooth muscle, supporting the traditional claim that the plant is purgative.

  1. Effects of acetylcholine and noradrenalin on action potentials of isolated rabbit sinoatrial and atrial myocytes

    Directory of Open Access Journals (Sweden)

    Arie O. Verkerk

    2012-05-01

    Full Text Available The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh and noradrenalin (NA as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signalling proteins (RGS proteins suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 µM ACh and 1 µM NA on the intrinsic action potentials of sinotrial (SA nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1–1,000 nM, while a clear-cut frequency dependence in the range of 1–4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA or a combination of both and may thus guide further experiments with RGS proteins.

  2. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system

    Institute of Scientific and Technical Information of China (English)

    Jian-xin SHEN; Jerrel L YAKEL

    2009-01-01

    Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they are grouped into either heteromeric (comprising both α and β subunits) or homomeric (comprising only α subunits) recep-tors. The nAChRs are known to be differentially permeable to calcium ions, with the α7 nAChR subtype having one of the highest permeabilities to calcium. Calcium influx through nAChRs, particularly through the α-bungarotoxin-sensitive α7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels. The activation of nAChRs can mediate three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP3Rs). Downstream signaling events mediated by nAChR-mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular signaling cascades), and long-term effects (such as neuroprotection via gene expression). In addition, nAChR activity can be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship. Further advances in imaging techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understand-ing the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments.

  3. Regulation of nerve-evoked contractions of rabbit vas deferens by acetylcholine.

    Science.gov (United States)

    Wallace, Audrey; Gabriel, Deborah; McHale, Noel G; Hollywood, Mark A; Thornbury, Keith D; Sergeant, Gerard P

    2015-09-01

    Stimulation of intramural nerves in the vas deferens of many species yields a classical biphasic contraction comprised of an initial fast component, mediated by P2X receptors and a second slower component, mediated by α1-adrenoceptors. It is also recognized that sympathetic nerve-mediated contractions of the vas deferens can be modulated by acetylcholine (Ach), however there is considerable disagreement in the literature regarding the precise contribution of cholinergic nerves to contraction of the vas deferens. In this study we examined the effect of cholinergic modulators on electric field stimulation (EFS)-evoked contractions of rabbit vas deferens and on cytosolic Ca(2+) levels in isolated vas deferens smooth muscle cells (VDSMC). The sustained component of EFS-evoked contractions was inhibited by atropine and by the selective M3R antagonist, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP). EFS-evoked contractions were potentiated by Ach, carbachol (Cch), and neostigmine. The sustained phase of the EFS-evoked contraction was inhibited by prazosin, an α1-adrenoceptor antagonist and guanethidine, an inhibitor of noradrenaline release, even in the continued presence of Ach, Cch or neostigmine. The soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one enhanced the amplitude of EFS-evoked contractions and reduced the inhibitory effects of 4-DAMP. Isolated VDSMC displayed spontaneous Ca(2+) oscillations, but did not respond to Cch. However, the α1-adrenoceptor agonist, phenylephrine, evoked a Ca(2+) transient and contracted the cells. These data suggest that EFS-evoked contractions of the rabbit vas deferens are potentiated by activation of M3 receptors and reduced by activation of a sGC-dependent inhibitory pathway.

  4. Halogenated cytisine derivatives as agonists at human neuronal nicotinic acetylcholine receptor subtypes.

    Science.gov (United States)

    Slater, Y E; Houlihan, L M; Maskell, P D; Exley, R; Bermúdez, I; Lukas, R J; Valdivia, A C; Cassels, B K

    2003-03-01

    Cytisine (cy) is a potent and competitive partial agonist at alpha4 subunit-containing nicotinic acetylcholine (nACh) receptors while at homomeric alpha7-nACh receptors it behaves as a full agonist with a relatively lower potency. In the present study, we assessed the effects of bromination or iodination of the pyridone ring of cy and N-methylcytisine (N-Me-cy) on the effects of these compounds on recombinant human (h) alpha7, halpha4beta2 and halpha4beta4 nACh receptors expressed in clonal cell lines and Xenopus oocytes. Halogenation at C(3) of cy or N-Me-cy usually brings about a marked increase in both affinity and efficacy at halpha7, halpha4beta2 and halpha4beta4 nACh, the extent of which depends on whether the halogen is bromine or iodine, and upon receptor subtype. The effects of halogenation at C(5) are strongly influenced by the specific halogen substituent so that bromination causes a decrease in both affinity and efficacy while iodination decreases affinity but its effects on efficacy range from a decrease (halpha7, halpha4beta4 nACh receptors) to a marked increase (halpha4beta2 nACh receptors). Based on these findings, which differ from those showing that neither the affinity nor efficacy of nicotine, 3-(2-azetidinylmethoxy)-pyridine or epibatidine are greatly affected by halogenation, dehalogenation or halogen exchange at equivalent positions, we suggest that cy, N-Me-cy and their halo-isosteres bind to neuronal nACh receptors in a different orientation allowing the halogen atom to interact with a hydrophobic halogen-accepting region within the predominantly hydrophobic agonist-binding pocket of the receptors.

  5. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera.

    Science.gov (United States)

    Jones, Andrew K; Raymond-Delpech, Valerie; Thany, Steeve H; Gauthier, Monique; Sattelle, David B

    2006-11-01

    Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission and play roles in many cognitive processes. They are under intense research as potential targets of drugs used to treat neurodegenerative diseases and neurological disorders such as Alzheimer's disease and schizophrenia. Invertebrate nAChRs are targets of anthelmintics as well as a major group of insecticides, the neonicotinoids. The honey bee, Apis mellifera, is one of the most beneficial insects worldwide, playing an important role in crop pollination, and is also a valuable model system for studies on social interaction, sensory processing, learning, and memory. We have used the A. mellifera genome information to characterize the complete honey bee nAChR gene family. Comparison with the fruit fly Drosophila melanogaster and the malaria mosquito Anopheles gambiae shows that the honey bee possesses the largest family of insect nAChR subunits to date (11 members). As with Drosophila and Anopheles, alternative splicing of conserved exons increases receptor diversity. Also, we show that in one honey bee nAChR subunit, six adenosine residues are targeted for RNA A-to-I editing, two of which are evolutionarily conserved in Drosophila melanogaster and Heliothis virescens orthologs, and that the extent of editing increases as the honey bee lifecycle progresses, serving to maximize receptor diversity at the adult stage. These findings on Apis mellifera enhance our understanding of nAChR functional genomics and provide a useful basis for the development of improved insecticides that spare a major beneficial insect species.

  6. Centrally injected histamine increases posterior hypothalamic acetylcholine release in hemorrhage-hypotensive rats.

    Science.gov (United States)

    Altinbas, Burcin; Yilmaz, Mustafa S; Savci, Vahide; Jochem, Jerzy; Yalcin, Murat

    2015-01-01

    Histamine, acting centrally as a neurotransmitter, evokes a reversal of hemorrhagic hypotension in rats due to the activation of the sympathetic and the renin-angiotensin systems as well as the release of arginine vasopressin and proopiomelanocortin-derived peptides. We demonstrated previously that central nicotinic cholinergic receptors are involved in the pressor effect of histamine. The aim of the present study was to examine influences of centrally administrated histamine on acetylcholine (ACh) release at the posterior hypothalamus-a region characterized by location of histaminergic and cholinergic neurons involved in the regulation of the sympathetic activity in the cardiovascular system-in hemorrhage-hypotensive anesthetized rats. Hemodynamic and microdialysis studies were carried out in Sprague-Dawley rats. Hemorrhagic hypotension was induced by withdrawal of a volume of 1.5 ml blood/100 g body weight over a period of 10 min. Acute hemorrhage led to a severe and long-lasting decrease in mean arterial pressure (MAP), heart rate (HR), and an increase in extracellular posterior hypothalamic ACh and choline (Ch) levels by 56% and 59%, respectively. Intracerebroventricularly (i.c.v.) administered histamine (50, 100, and 200 nmol) dose- and time-dependently increased MAP and HR and caused an additional rise in extracellular posterior hypothalamic ACh and Ch levels at the most by 102%, as compared to the control saline-treated group. Histamine H1 receptor antagonist chlorpheniramine (50 nmol; i.c.v.) completely blocked histamine-evoked hemodynamic and extracellular posterior hypothalamic ACh and Ch changes, whereas H2 and H3/H4 receptor blockers ranitidine (50 nmol; i.c.v.) and thioperamide (50 nmol; i.c.v.) had no effect. In conclusion, centrally administered histamine, acting via H1 receptors, increases ACh release at the posterior hypothalamus and causes a pressor and tachycardic response in hemorrhage-hypotensive anesthetized rats.

  7. Signal transduction by M3 muscarinic acetylcholine receptor in prostate cancer

    Science.gov (United States)

    GUO, LIQIANG; LIU, YUQIANG; DING, ZHIBO; SUN, WENDONG; YUAN, MINGZHEN

    2016-01-01

    The present study aimed to investigate the potential mechanisms used during signal transduction by M3 muscarinic acetylcholine receptor (CHRM3) in prostate cancer. The microarray datasets of GSE3325, including 5 clinically localized primary prostate cancers and 4 benign prostate tissues, were downloaded from the Gene Expression Omnibus database. The differentially-expressed genes (DEGs) in primary prostate cancer tissues compared with benign controls were screened using the Limma package. Gene Ontology and pathway enrichment analyses were performed using the Database for Annotation Visualization and Integrated Discovery. Next, a protein-protein interaction (PPI) network was constructed. Additionally, microRNAs (miRNAs) associated with DEGs were predicted and miRNA-target DEG analysis was performed using a Web-based Gene Set Analysis Toolkit. Finally, the PPI network and the miRNA-target DEG network were integrated using Cytoscape. In total, 224 DEGs were screened in the prostate cancer tissues, including 113 upregulated and 111 downregulated genes. CHRM3 and epidermal growth factor (EGF) were enriched in the regulation of the actin cytoskeleton. EGF and v-myc avian myelocytomatosis viral oncogene homolog (Myc) were enriched in the mitogen-activated protein kinase (MAPK) signaling pathway. EGF with the highest degree of connectivity was the hub node in the PPI network, and miR-34b could interact with Myc directly in the miRNA-target DEG network. EGF and Myc may exhibit significant roles in the progression of prostate cancer via regulation of the actin cytoskeleton and the MAPK signaling pathway. CHRM3 may activate these two pathways in prostate cancer progression. Thus, these two key factors and pathways may be crucial mechanisms during signal transduction by CHRM3 in prostate cancer. PMID:26870222

  8. Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain

    Science.gov (United States)

    Romero, Haylie K.; Christensen, Sean B.; Gajewiak, Joanna; Ramachandra, Renuka; Elmslie, Keith S.; Vetter, Douglas E.; Ghelardini, Carla; Iadonato, Shawn P.; Mercado, Jose L.; Olivera, Baldomera M.; McIntosh, J. Michael

    2017-01-01

    Opioids are first-line drugs for moderate to severe acute pain and cancer pain. However, these medications are associated with severe side effects, and whether they are efficacious in treatment of chronic nonmalignant pain remains controversial. Medications that act through alternative molecular mechanisms are critically needed. Antagonists of α9α10 nicotinic acetylcholine receptors (nAChRs) have been proposed as an important nonopioid mechanism based on studies demonstrating prevention of neuropathology after trauma-induced nerve injury. However, the key α9α10 ligands characterized to date are at least two orders of magnitude less potent on human vs. rodent nAChRs, limiting their translational application. Furthermore, an alternative proposal that these ligands achieve their beneficial effects by acting as agonists of GABAB receptors has caused confusion over whether blockade of α9α10 nAChRs is the fundamental underlying mechanism. To address these issues definitively, we developed RgIA4, a peptide that exhibits high potency for both human and rodent α9α10 nAChRs, and was at least 1,000-fold more selective for α9α10 nAChRs vs. all other molecular targets tested, including opioid and GABAB receptors. A daily s.c. dose of RgIA4 prevented chemotherapy-induced neuropathic pain in rats. In wild-type mice, oxaliplatin treatment produced cold allodynia that could be prevented by RgIA4. Additionally, in α9 KO mice, chemotherapy-induced development of cold allodynia was attenuated and the milder, temporary cold allodynia was not relieved by RgIA4. These findings establish blockade of α9-containing nAChRs as the basis for the efficacy of RgIA4, and that α9-containing nAChRs are a critical target for prevention of chronic cancer chemotherapy-induced neuropathic pain. PMID:28223528

  9. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study.

    Science.gov (United States)

    Marcus, Monica M; Björkholm, Carl; Malmerfelt, Anna; Möller, Annie; Påhlsson, Ninni; Konradsson-Geuken, Åsa; Feltmann, Kristin; Jardemark, Kent; Schilström, Björn; Svensson, Torgny H

    2016-09-01

    Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression.

  10. Partial blockade of nicotinic acetylcholine receptors improves the counterregulatory response to hypoglycemia in recurrently hypoglycemic rats.

    Science.gov (United States)

    LaGamma, Edmund F; Kirtok, Necla; Chan, Owen; Nankova, Bistra B

    2014-10-01

    Recurrent exposure to hypoglycemia can impair the normal counterregulatory hormonal responses that guard against hypoglycemia, leading to hypoglycemia unawareness. This pathological condition known as hypoglycemia-associated autonomic failure (HAAF) is the main adverse consequence that prevents individuals with type 1 diabetes mellitus from attaining the long-term health benefits of tight glycemic control. The underlying molecular mechanisms responsible for the progressive loss of the epinephrine response to subsequent bouts of hypoglycemia, a hallmark sign of HAAF, are largely unknown. Normally, hypoglycemia triggers both the release and biosynthesis of epinephrine through activation of nicotinic acetylcholine receptors (nAChR) on the adrenal glands. We hypothesize that excessive cholinergic stimulation may contribute to impaired counterregulation. Here, we tested whether administration of the nAChR partial agonist cytisine to reduce postganglionic synaptic activity can preserve the counterregulatory hormone responses in an animal model of HAAF. Compared with nicotine, cytisine has limited efficacy to activate nAChRs and stimulate epinephrine release and synthesis. We evaluated adrenal catecholamine production and secretion in nondiabetic rats subjected to two daily episodes of hypoglycemia for 3 days, followed by a hyperinsulinemic hypoglycemic clamp on day 4. Recurrent hypoglycemia decreased epinephrine responses, and this was associated with suppressed TH mRNA induction (a measure of adrenal catecholamine synthetic capacity). Treatment with cytisine improved glucagon responses as well as epinephrine release and production in recurrently hypoglycemic animals. These data suggest that pharmacological manipulation of ganglionic nAChRs may be promising as a translational adjunctive therapy to avoid HAAF in type 1 diabetes mellitus.

  11. High Throughput Random Mutagenesis and Single Molecule Real Time Sequencing of the Muscle Nicotinic Acetylcholine Receptor

    Science.gov (United States)

    Groot-Kormelink, Paul J.; Ferrand, Sandrine; Kelley, Nicholas; Bill, Anke; Freuler, Felix; Imbert, Pierre-Eloi; Marelli, Anthony; Gerwin, Nicole; Sivilotti, Lucia G.; Miraglia, Loren; Orth, Anthony P.; Oakeley, Edward J.; Schopfer, Ulrich; Siehler, Sandra

    2016-01-01

    High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the α1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each α1 mutant was co-transfected with wildtype β1, δ, and ε subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either α-bungarotoxin or tubocurarine. Eight α1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation. PMID:27649498

  12. Effect of α₇ nicotinic acetylcholine receptor agonists and antagonists on motor function in mice.

    Science.gov (United States)

    Welch, Kevin D; Pfister, James A; Lima, Flavia G; Green, Benedict T; Gardner, Dale R

    2013-02-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline.

  13. Some properties of human neuronal α7 nicotinic acetylcholine receptors fused to the green fluorescent protein

    Science.gov (United States)

    Palma, Eleonora; Mileo, Anna M.; Martínez-Torres, Ataúlfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-01-01

    The functional properties and cellular localization of the human neuronal α7 nicotinic acetylcholine (AcCho) receptor (α7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutα7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtα7 receptors decay much faster than those elicited by the mutα7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated α7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable “run-down” of the AcCho currents generated by mutα7-GFP receptors, whereas those of the wtα7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutα7-GFP oocytes was accompanied by a marked decrease of α-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtα7 and mutα7 receptors provides powerful tools to study the distribution and function of α7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins. PMID:11891308

  14. Association of nicotinic acetylcholine receptor subunit alpha-4 polymorphisms with smoking behaviors in Chinese male smokers

    Institute of Scientific and Technical Information of China (English)

    CHU Cheng-jing; YANG Yan-chun; WEI Jin-xue; ZHANG Lan

    2011-01-01

    Background It has been reported that the nicotinic acetylcholine receptor subunit a4 gene (CHRNA4) might be associated with smoking behaviors in the previous studies. Up to now, there are few reports on the relationship between CHRNA4 and smoking initiation. In this study, we tried to explore the role of two polymorphisms in CHRNA4 (rs 1044396 and rs 1044397) in smoking initiation and nicotine dependence in Chinese male smokers.Methods Nine hundred and sixty-six Chinese male lifetime nonsmokers and smokers were assessed by the Fagerstr(o)m test for nicotine dependence (FTND), smoking quantity (SQ) and the heaviness of smoking index (HSI). All subjects were divided into four groups based on their tobacco use history and the FTND scores. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to find two polymorphisms of CHRNA4 in these subjects.Results The x2 test showed that rs1044396 was significantly associated with smoking initiation (x2=4.65, P=0.031),while both rs1044396 and rs1044397 were significantly associated with nicotine dependence (x2=5.42, P=0.020; x2=758,P=0.005). Furthermore, the T-G (3.9%) haplotype of rs1044396-rs1044397 showed significant association with smoking initiation (x2=6.30, P=0.012) and the C-G haplotype (58.9%) remained positive association with nicotine dependence (x2=8.64, P=0.003) after Bonferroni correction. The C-G haplotype also significantly increased the HSI (P=0.002) and FTND scores (P=0.001) after Bonferroni correction.Conclusion These findings suggest that CHRNA4 may be associated with smoking initiation and the C-G haplotype of rs1044396-rs1044397 might increase the vulnerability to nicotine dependence in Chinese male smokers.

  15. Mechanisms of acetylcholine-mediated vasodilation in systemic arteries from mourning doves (Zenaida macroura).

    Science.gov (United States)

    Jarrett, Catherine; Lekic, Mateja; Smith, Christina L; Pusec, Carolina M; Sweazea, Karen L

    2013-10-01

    For mammals, acetylcholine (ACh) promotes endothelium-dependent vasodilation primarily through nitric oxide (NO) and prostaglandin-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors. Currently, no studies have been conducted on small systemic arteries from wild birds. We hypothesized that ACh-mediated vasodilation of isolated small arteries from mourning doves (Zenaida macroura) would likewise depend on endothelial-derived factors. Small resistance mesenteric and cranial tibial (c. tibial) arteries (80-150 μm, inner diameter) were cannulated and pre-constricted to 50 % of resting inner diameter with phenylephrine then exposed to increasing concentrations of ACh (10(-9)-10(-5) M) or the NO donor, sodium nitroprusside (SNP; 10(-12)-10(-3) M). For mesenteric arteries, ACh-mediated vasodilation was significantly blunted with the potassium channel antagonist tetraethylammonium chloride (TEA, 10 mM); whereas responses were only moderately impaired with endothelial disruption or inhibition of prostaglandins (indomethacin, 10 μM). In contrast, endothelial disruption as well as exposure to TEA largely abolished vasodilatory responses to ACh in c. tibial arteries while no effect of prostaglandin inhibition was observed. For both vascular beds, responses to ACh were moderately dependent on the NO signaling pathway. Inhibition of NO synthase had no impact, despite complete reversal of phenylephrine-mediated tone with SNP, whereas inhibition of soluble guanylate cyclase (sGC) caused minor impairments. Endothelium-independent vasodilation also relied on potassium channels. In summary, ACh-mediated vasodilation of mesenteric and c. tibial arteries occurs through the activation of potassium channels to induce hyperpolarization with moderate reliance on sGC. Prostaglandins likewise play a small role in the vasodilatory response to ACh in mesenteric arteries.

  16. Improvement of Acetylcholine-Induced Vasodilation by Acute Exercise in Ovariectomized Hypertensive Rats.

    Science.gov (United States)

    Cheng, Tsung-Lin; Lin, Yi-Yuan; Su, Chia-Ting; Hu, Chun-Che; Yang, Ai-Lun

    2016-06-30

    Postmenopause is associated with the development of cardiovascular disease, such as hypertension. However, limited information is available regarding effects of exercise on cardiovascular responses and its underlying mechanisms in the simultaneous postmenopausal and hypertensive status. We aimed to investigate whether acute exercise could enhance vasodilation mediated by acetylcholine (ACh) and sodium nitroprusside (SNP) in ovariectomized hypertensive rats. The fifteen-week-old female spontaneously hypertensive rats (SHR) were bilaterally ovariectomized, at the age of twenty-four weeks, and randomly divided into sedentary (SHR-O) and acute exercise (SHR-OE) groups. Age-matched WKY rats were used as the normotensive control group. The SHR-OE group ran on a motor-driven treadmill at a speed of 24 m/min for one hour in a moderate-intensity program. Following a single bout of exercise, rat aortas were isolated for the evaluation of the endothelium-dependent (ACh-induced) and endothelium-independent (SNP-induced) vasodilation by the organ bath system. Also, the serum levels of oxidative stress and antioxidant activities, including malondialdehyde (MDA), superoxide dismutase (SOD), and catalase, were measured after acute exercise among the three groups. We found that acute exercise significantly enhanced the ACh-induced vasodilation, but not the SNP-induced vasodilation, in ovariectomized hypertensive rats. This increased vasodilation was eliminated after the inhibition of nitric oxide synthase (NOS). Also, the activities of SOD and catalase were significantly increased after acute exercise, whereas the level of MDA was comparable among the three groups. These results indicated that acute exercise improved the endothelium-dependent vasodilating response to ACh through the NOS-related pathway in ovariectomized hypertensive rats, which might be associated with increased serum antioxidant activities.

  17. Presynaptic α7 nicotinic acetylcholine receptors enhance hippocampal mossy fiber glutamatergic transmission via PKA activation.

    Science.gov (United States)

    Cheng, Qing; Yakel, Jerrel L

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed widely in the CNS, and mediate both synaptic and perisynaptic activities of endogenous cholinergic inputs and pharmacological actions of exogenous compounds (e.g., nicotine and choline). Behavioral studies indicate that nicotine improves such cognitive functions as learning and memory. However, the mechanism of nicotine's action on cognitive function remains elusive. We performed patch-clamp recordings from hippocampal CA3 pyramidal neurons to determine the effect of nicotine on mossy fiber glutamatergic synaptic transmission. We found that nicotine in combination with NS1738, an α7 nAChR-positive allosteric modulator, strongly potentiated the amplitude of evoked EPSCs (eEPSCs), and reduced the EPSC paired-pulse ratio. The action of nicotine and NS1738 was mimicked by PNU-282987 (an α7 nAChR agonist), and was absent in α7 nAChR knock-out mice. These data indicate that activation of α7 nAChRs was both necessary and sufficient to enhance the amplitude of eEPSCs. BAPTA applied postsynaptically failed to block the action of nicotine and NS1738, suggesting again a presynaptic action of the α7 nAChRs. We also observed α7 nAChR-mediated calcium rises at mossy fiber giant terminals, indicating the presence of functional α7 nAChRs at presynaptic terminals. Furthermore, the addition of PNU-282987 enhanced action potential-dependent calcium transient at these terminals. Last, the potentiating effect of PNU-282987 on eEPSCs was abolished by inhibition of protein kinase A (PKA). Our findings indicate that activation of α7 nAChRs at presynaptic sites, via a mechanism involving PKA, plays a critical role in enhancing synaptic efficiency of hippocampal mossy fiber transmission.

  18. Prostaglandins participate in the late phase of the vascular response to acetylcholine iontophoresis in humans.

    Science.gov (United States)

    Durand, S; Tartas, M; Bouyé, P; Koïtka, A; Saumet, J L; Abraham, P

    2004-12-15

    The participation of prostaglandins (PGs) in the cutaneous vasodilatation to acetylcholine (ACh) applied via iontophoresis is under debate. Using laser Doppler flowmetry, we studied the long lasting effect (20 min) of iontophoretic application (30 s; 0.1 mA) of ACh on the human forearm. Experiments were repeated (1) using deionized water instead of ACh to test the effect of current application, (2) after scopolamine treatment to inhibit muscarinic cholinergic receptors, and (3) 2 h, 3 days and 10 days following inhibition of PG synthesis with aspirin or a placebo control. Cutaneous vascular conductance (CVC) was calculated at rest (CVC(rest)), at peak vasodilatation in the first 5 min following ACh iontophoresis (CVC(peak)), and 20 min after iontophoresis (CVC(20)). The minimal CVC (CVC(min)) following iontophoresis was also determined. Cutaneous response to ACh displayed a biphasic pattern with an early and transient peak (CVC(peak): 62 +/- 8% of the maximal CVC induced by local heating (MVC)) followed by a long lasting slower vasodilatation (CVC(min): 44 +/- 6; CVC(20): 56 +/- 5%MVC). The current itself had no major effect. Scopolamine almost abolished both phases. The long lasting phase was aspirin sensitive but not the transient phase. At hour 2 post-aspirin, CVC(peak) was 61 +/- 10, CVC(min) 26 +/- 6 and CVC(20) 29 +/- 6%MVC. At day 3, CVC(peak) was 53 +/- 9, CVC(min) 22 +/- 3 and CVC(20) 25 +/- 4%MVC. At day 10, CVC(peak) was 67 +/- 10, CVC(min) 47 +/- 7 and CVC(20) 50 +/- 8%MVC. Placebo had no effect. We conclude that PGs participate in the vasodilator response following ACh iontophoresis. Previous non-steroidal anti-inflammatory drug treatments must be taken into account when studying the effect of ACh iontophoresis.

  19. Up-regulation of nicotinic acetylcholine receptors in menthol cigarette smokers.

    Science.gov (United States)

    Brody, Arthur L; Mukhin, Alexey G; La Charite, Jaime; Ta, Karen; Farahi, Judah; Sugar, Catherine A; Mamoun, Michael S; Vellios, Evan; Archie, Meena; Kozman, Maggie; Phuong, Jonathan; Arlorio, Franca; Mandelkern, Mark A

    2013-06-01

    One-third of smokers primarily use menthol cigarettes and usage of these cigarettes leads to elevated serum nicotine levels and more difficulty quitting in standard treatment programmes. Previous brain imaging studies demonstrate that smoking (without regard to cigarette type) leads to up-regulation of β(2)*-containing nicotinic acetylcholine receptors (nAChRs). We sought to determine if menthol cigarette usage results in greater nAChR up-regulation than non-menthol cigarette usage. Altogether, 114 participants (22 menthol cigarette smokers, 41 non-menthol cigarette smokers and 51 non-smokers) underwent positron emission tomography scanning using the α(4)β(2)* nAChR radioligand 2-[(18)F]fluoro-A-85380 (2-FA). In comparing menthol to non-menthol cigarette smokers, an overall test of 2-FA total volume of distribution values revealed a significant between-group difference, resulting from menthol smokers having 9-28% higher α(4)β(2)* nAChR densities than non-menthol smokers across regions. In comparing the entire group of smokers to non-smokers, an overall test revealed a significant between-group difference, resulting from smokers having higher α(4)β(2)* nAChR levels in all regions studied (36-42%) other than thalamus (3%). Study results demonstrate that menthol smokers have greater up-regulation of nAChRs than non-menthol smokers. This difference is presumably related to higher nicotine exposure in menthol smokers, although other mechanisms for menthol influencing receptor density are possible. These results provide additional information about the severity of menthol cigarette use and may help explain why these smokers have more trouble quitting in standard treatment programmes.

  20. Mechanism of action of magnesium on acetylcholine-evoked secretory responses in isolated rat pancreas.

    Science.gov (United States)

    Francis, L P; Lennard, R; Singh, J

    1990-09-01

    This study investigates the effects of magnesium (Mg2+) on acetylcholine (ACh)-evoked secretory responses and calcium (Ca2+) mobilization in the isolated rat pancreas. ACh induced marked dose-dependent increases in total protein output and amylase release from superfused pancreatic segments in zero, normal (1 x 1 mM) and elevated (10 mM) extracellular Mg2+. Elevated Mg2+ attenuated the ACh-evoked secretory responses compared to zero and normal Mg2+. In the absence of extracellular Ca2+, but presence of 1 mM-EGTA (ethylene glycol bis(beta-aminoethylether)-N,N,N',N''-tetraacetic acid), ACh elicited a small transient release of protein from pancreatic segments compared to a larger and more sustained secretion in the absence of both Ca2+ and Mg2+. Incubation of pancreatic segments with 45Ca2+ resulted in time-dependent uptake with maximum influx of 45Ca2+ occurring after 20 min of incubation period. ACh stimulated markedly the 45Ca2+ uptake compared to control tissues. In elevated extracellular Mg2+ the ACh-induced 45Ca2+ influx was significantly (P less than 0.001) reduced compared to zero and normal Mg2+. ACh also evoked dose-dependent increases in cytosolic free Ca2+ concentrations ([Ca2+]i) in pancreatic acinar cells loaded with the fluorescent dye Fura-2 AM. In elevated Mg2+ the ACh-induced cytosolic [Ca2+]i was significantly (P less than 0.001) reduced compared to zero and normal Mg2+. These results indicate that Mg2+ can influence ACh-evoked secretory responses possibly by controlling both Ca2+ influx and release in pancreatic acinar cells.