WorldWideScience

Sample records for acetylcholine release induced

  1. Choline acetyltransferase and organic cation transporters are responsible for synthesis and propionate-induced release of acetylcholine in colon epithelium.

    Bader, Sandra; Klein, Jochen; Diener, Martin

    2014-06-15

    Acetylcholine is not only a neurotransmitter, but is found in a variety of non-neuronal cells. For example, the enzyme choline acetyltransferase (ChAT), catalyzing acetylcholine synthesis, is expressed by the colonic epithelium of different species. These cells release acetylcholine across the basolateral membrane after luminal exposure to propionate, a short-chain fatty acid. The functional consequence is the induction of chloride secretion, measurable as increase in short-circuit current (Isc) in Ussing chamber experiments. It is unclear how acetylcholine is produced and released by colonic epithelium. Therefore, the aim of the present study was the identification (on mRNA and protein level) and functional characterization (in Ussing chamber experiments combined with HPLC detection of acetylcholine) of transporters/enzymes in the cholinergic system of rat colonic epithelium. Immunohistochemical staining as well as RT-PCR revealed the expression of high-affinity choline transporter, ChAT, carnitine acetyltransferase (CarAT), vesicular acetylcholine transporter (VAChT), and organic cation transporters (OCT 1, 2, 3) in colonic epithelium. In contrast to blockade of ChAT with bromoacetylcholine, inhibition of CarAT with mildronate did not inhibit the propionate-induced increase in Isc, suggesting a predominant synthesis of epithelial acetylcholine by ChAT. Although being expressed, blockade of VAChT with vesamicol was ineffective, whereas inhibition of OCTs with omeprazole and corticosterone inhibited propionate-induced Isc and the release of acetylcholine into the basolateral compartment. In summary, OCTs seem to be involved in regulated acetylcholine release by colonic epithelium, which is assumed to be involved in chemosensing of luminal short-chain fatty acids by the intestinal epithelium.

  2. Carrier-mediated release of monoamines induced by the nicotinic acetylcholine receptor agonist DMPP.

    Szász, Bernadett K; Mayer, Aliz; Zsilla, Gabriella; Lendvai, Balázs; Vizi, E Sylvester; Kiss, János P

    2005-09-01

    We have previously shown that dimethylphenylpiperazinium (DMPP) increases the release of noradrenaline (NA) from rat hippocampal slices via two distinct mechanisms: a nicotinic acetylcholine receptor (nAChR)-mediated exocytosis and a carrier-mediated release induced by the reversal of NA transporters. Our aim was to investigate whether other monoaminergic systems are also affected by the multiple actions of DMPP. In our experiments DMPP dose-dependently increased the release of dopamine (DA) and serotonin (5-HT) from rat striatal and hippocampal slices, respectively. The dual effect was observed, however, only in case of DA at a lower DMPP concentration (30 microM), where the response was partly inhibited by mecamylamine, TTX and Ca2+-free medium (nAChR-mediated exocytosis) while the other part of the response was blocked only by the DA uptake inhibitor nomifensine (carrier-mediated release). In contrast, the DMPP-evoked 5-HT release and the DA release induced by high concentration DMPP was not inhibited by nicotinic antagonists, TTX and Ca2+-free medium but only by selective uptake inhibitors. In addition, DMPP dose-dependently inhibited the [3H]DA and [3H]5-HT uptake in striatal and hippocampal synaptosome preparation with an IC50 of 3.18 and 0.49 microM, respectively. Our data show that DMPP interacts with monoamine transporters and induces a substantial carrier-mediated release of DA and 5-HT, therefore caution is needed for the interpretation of data, when this drug is used as a nAChR agonist.

  3. Melanin concentrating hormone induces hippocampal acetylcholine release via the medial septum in rats.

    Lu, Zhi-Hong; Fukuda, Satoru; Minakawa, Yoichi; Yasuda, Atsushi; Sakamoto, Hidetoshi; Sawamura, Shigehito; Takahashi, Hidenori; Ishii, Noriko

    2013-06-01

    Among various actions of melanin concentrating hormone (MCH), its memory function has been focused in animal studies. Although MCH neurons project to various areas in the brain, one main target site of MCH is hippocampal formation for memory consolidation. Recent immunohistochemical study shows that MCH neurons directly project to the hippocampal formation and may indirectly affect the hippocampus through the medial septum nucleus (MS). It has been reported that sleep is necessary for memory and that hippocampal acetylcholine (ACh) release is indispensable for memory consolidation. However, there is no report how MCH actually influences the hippocampal ACh effluxes in accordance with the sleep-wake cycle changes. Thus, we investigated the modulatory function of intracerebroventricular (icv) injection of MCH on the sleep-wake cycle and ACh release using microdialysis techniques. Icv injection of MCH significantly increased the rapid eye movement (REM) and non-REM episode time and the hippocampal, not cortical, ACh effluxes. There was a significant correlation between REM episode time and hippocampal ACh effluxes, but not between REM episode time and cortical ACh effluxes. Microinjection of MCH into the MS increased the hippocampal ACh effluxes with no influence on the REM episode time. It appears that the effect sites of icv MCH for prolongation of REM episode time may be other neuronal areas than the cholinergic neurons in the MS. We conclude that MCH actually increases the hippocampal ACh release at least in part through the MS in rats.

  4. Aspects of dopamine and acetylcholine release induced by glutamate receptors; Aspectos das liberacoes de dopamina e acetilcolina mediadas por receptores de glutamato

    Paes, Paulo Cesar de Arruda

    2002-07-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  5. The α7 nicotinic acetylcholine receptor ligands methyllycaconitine, NS6740 and GTS-21 reduce lipopolysaccharide-induced TNF-α release from microglia

    Thomsen, Morten S; Mikkelsen, Jens D

    2012-01-01

    The anti-inflammatory properties of, particularly the α7, nicotinic acetylcholine receptors (nAChRs) in the peripheral immune system are well documented. There are also reports of anti-inflammatory actions of nicotine in the CNS, but it is unclear, whether this is due to activation or inhibition...... of nAChRs. Here we investigate the mechanisms behind α7 nAChR-mediated modulation of TNF-α release. We show that α7 nAChR agonists or positive allosteric modulators do not affect LPS-induced release of the pro-inflammatory cytokine TNF-α from cultured microglia. This suggests that classical activation...... of, i.e. ion-flux through, the α7 nAChR does not reduce TNF-α release from activated microglia. Contrarily, the α7 nAChR antagonist methyllycaconitine and the weak (...

  6. Regional selectivity of a gamma-aminobutyric acid-induced (/sup 3/H)acetylcholine release sensitive to inhibitors of gamma-aminobutyric acid uptake

    Bonanno, G.; Raiteri, M.

    1987-05-01

    The effects of gamma-aminobutyric acid (GABA) on the release of (/sup 3/H)acetylcholine ((/sup 3/H)ACh) were studied in synaptosomes prepared from rat hippocampus, cerebral cortex, hypothalamus, and striatum and prelabelled with (/sup 3/H)choline. When synaptosomes were exposed in superfusion to exogenous GABA (0.01-0.3 mM) the basal release of newly synthesized (/sup 3/H)ACh was increased in a concentration-dependent way in hippocampus, cortex, and hypothalamus nerve endings. In contrast, the release of (/sup 3/H)ACh was not significantly affected by GABA in striatal synaptosomes. The effect of GABA was not antagonized significantly by bicuculline or picrotoxin. Muscimol caused only a slight not significant increase of (/sup 3/H)ACh release when tested at 0.3 mM whereas, at this concentration, (-)-baclofen was totally inactive. The GABA-induced release of (/sup 3/H)ACh was counteracted by SKF 89976A, SKF 100561, and SKF 100330A, three strong and selective GABA uptake inhibitors. The data suggest that, in selective areas of the rat brain, GABA causes release of (/sup 3/H)ACh following penetration into cholinergic nerve terminals through a GABA transport system.

  7. The effect of ketamine on intraspinal acetylcholine release

    Abelson, Klas S P; Goldkuhl, Renée Röstlinger; Nylund, Anders;

    2006-01-01

    The general anaesthetic ketamine affects the central cholinergic system in several manners, but its effect on spinal acetylcholine release, which may be an important transmitter in spinal antinociception, is unknown. This study aimed to investigate the effect of ketamine on spinal acetylcholine...... release. Microdialysis probes were placed intraspinally in male rats, and acetylcholine was quantified with HPLC. Anaesthesia was switched from isoflurane (1.3%) to ketamine (150 mg/kg h), which resulted in a 500% increased acetylcholine release. The increase was attenuated during nicotinic receptor...... blockade (50 microM mecamylamine). The nicotinic receptor agonist epibatidine (175 microM) produced a ten-fold higher relative increase of acetylcholine release during isoflurane anaesthesia compared to ketamine anaesthesia (270% to 27%). Intraspinal administration of ketamine and norketamine both...

  8. Detection of basal and potassium-evoked acetylcholine release from embryonic DRG explants.

    Bernardini, Nadia; Tomassy, Giulio Srubek; Tata, Ada Maria; Augusti-Tocco, Gabriella; Biagioni, Stefano

    2004-03-01

    Spontaneous and potassium-induced acetylcholine release from embryonic (E12 and E18) chick dorsal root ganglia explants at 3 and 7 days in culture was investigated using a chemiluminescent procedure. A basal release ranging from 2.4 to 13.8 pm/ganglion/5 min was detected. Potassium application always induced a significant increase over the basal release. The acetylcholine levels measured in E12 explants were 6.3 and 38.4 pm/ganglion/5 min at 3 and 7 days in culture, respectively, while in E18 explant cultures they were 10.7 and 15.5 pm/ganglion/5 min. In experiments performed in the absence of extracellular Ca2+ ions, acetylcholine release, both basal and potassium-induced, was abolished and it was reduced by cholinergic antagonists. A morphometric analysis of explant fibre length suggested that acetylcholine release was directly correlated to neurite extension. Moreover, treatment of E12 dorsal root ganglion-dissociated cell cultures with carbachol as cholinergic receptor agonist was shown to induce a higher neurite outgrowth compared with untreated cultures. The concomitant treatment with carbachol and the antagonists at muscarinic receptors atropine and at nicotinic receptors mecamylamine counteracted the increase in fibre outgrowth. Although the present data have not established whether acetylcholine is released by neurones or glial cells, these observations provide the first evidence of a regulated release of acetylcholine in dorsal root ganglia.

  9. Vasoactive intestinal polypeptide provokes acetylcholine release from the myenteric plexus

    Kusunoki, M.; Tsai, L.H.; Taniyama, K.; Tanaka, C.

    1986-07-01

    Effects of vasoactive intestinal polypeptide (VIP) on the release of acetylcholine (ACh) from longitudinal muscle strips with myenteric plexus (LM) preparations were examined in the guinea pig small intestine. VIP (10 to 10 W M) induced a concentration-dependent contraction of LM preparation. The VIP-induced contractions seem to be related to three components, the scopolamine-sensitive, the scopolamine-insensitive, the tetrodotoxin-sensitive, and the tetrodotoxin-insensitive contractions. VIP (10 to 10 W M) induced a concentration-dependent increase in the release of (TH)ACh from LM preparations preloaded with (TH)choline. The VIP-evoked (TH)ACh release was inhibited by removal of CaS from the perfusion medium and by treatment with tetrodotoxin but not by scopolamine and hexamethonium. The spontaneous and VIP-evoked (TH)ACh release was not affected by phentolamine, propranolol, methysergide, diphenhydramine, cimetidine, bicuculline, or (D-ProS, D-Trp/sup 7,9/)substance P. The result demonstrates that VIP induces contractions of longitudinal smooth muscle directly and indirectly by the stimulation of both cholinergic neurons and noncholinergic excitatory neurons.

  10. Acetylcholine is released from taste cells, enhancing taste signalling.

    Dando, Robin; Roper, Stephen D

    2012-07-01

    Acetylcholine (ACh), a candidate neurotransmitter that has been implicated in taste buds, elicits calcium mobilization in Receptor (Type II) taste cells. Using RT-PCR analysis and pharmacological interventions, we demonstrate that the muscarinic acetylcholine receptor M3 mediates these actions. Applying ACh enhanced both taste-evoked Ca2+ responses and taste-evoked afferent neurotransmitter (ATP) secretion from taste Receptor cells. Blocking muscarinic receptors depressed taste-evoked responses in Receptor cells, suggesting that ACh is normally released from taste cells during taste stimulation. ACh biosensors confirmed that, indeed, taste Receptor cells secrete acetylcholine during gustatory stimulation. Genetic deletion of muscarinic receptors resulted in significantly diminished ATP secretion from taste buds. The data demonstrate a new role for acetylcholine as a taste bud transmitter. Our results imply specifically that ACh is an autocrine transmitter secreted by taste Receptor cells during gustatory stimulation, enhancing taste-evoked responses and afferent transmitter secretion.

  11. Effect of vecuronium on the release of acetylcholine after nerve stimulation

    van Santen, G; Wierda, JMKH

    2000-01-01

    To test the hypothesis that vasodilation occurs because of the release of a vasoactive substance after a brief muscle contraction and to determine whether acetylcholine spillover from the motor nerve is involved in contraction-induced hyperemia, tetanic muscle contractions were produced by sciatic n

  12. Caffeine potentiates the enhancement by choline of striatal acetylcholine release

    Johnson, D. A.; Ulus, I. H.; Wurtman, R. J.

    1992-01-01

    We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.

  13. Impaired hippocampal acetylcholine release parallels spatial memory deficits in Tg2576 mice subjected to basal forebrain cholinergic degeneration

    Laursen, Bettina; Mørk, Arne; Plath, Niels;

    2013-01-01

    , respectively. Conversely, there was no deterioration of cognitive functioning in sham lesioned Tg2576 mice or wild type littermates (wt) receiving the immunotoxin. At 10 months of age, release of acetylcholine (ACh) was addressed by microdialysis in conscious mice. Scopolamine-induced increases in hippocampal...

  14. Impaired acetylcholine release from the myenteric plexus of Trichinella-infected rats

    Collins, S.M.; Blennerhassett, P.A.; Blennerhassett, M.G.; Vermillion, D.L. (McMaster Univ., Hamilton, Ontario (Canada))

    1989-12-01

    We examined the release of acetylcholine (ACh) from jejunal longitudinal muscle-myenteric plexus preparations in noninfected control rats and in rats infected 6, 23, or 40 days previously with Trichinella spiralis. ACh release was assessed by preincubating the tissue with ({sup 3}H)choline and measuring the evoked release of tritium. The uptake of {sup 3}H was significantly less in tissue from T. spiralis-infected rats compared with control. In tissues from either infected or control animals, electrical field stimulation (30 V, 0.5 ms, 10 Hz for 1 min), or veratridine (6-30 microM) induced {sup 3}H release that was tetrodotoxin sensitive. Depolarization by KCl (25-75 mM) also caused {sup 3}H release, but this was only partially reduced by tetrodotoxin. Radiochromatographic analysis indicated evoked release of {sup 3}H to be almost entirely ({sup 3}H)ACh. In rats infected 6 days previously with T. spiralis, ({sup 3}H)ACh release induced by KCl, veratridine, and field stimulation were decreased at least 80%. The suppression of ({sup 3}H)ACh release induced by veratridine or KCl was fully reversible after 40 days postinfection, but field-stimulated responses remained approximately 50% of control values. These results indicate that T. spiralis infection in the rat is accompanied by a reversible suppression of ACh release from the longitudinal muscle-myenteric plexus of the jejunum.

  15. Intravenously administered lidocaine in therapeutic doses increases the intraspinal release of acetylcholine in rats

    Abelson, Klas S P; Höglund, A Urban

    2002-01-01

    of acetylcholine. Ten and 30 mg/kg lidocaine injected intravenously significantly increased the intraspinal release of acetylcholine. The effect of lidocaine could be reduced by pretreatment with intraspinally administered atropine or mecamylamine. Our results suggest that the antinociceptive effect produced...

  16. Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans.

    Satoshi Suo

    Full Text Available Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system functions, including learning and drug addiction. In Caenorhabditis elegans, the amine neurotransmitter octopamine activates a CREB homolog, CRH-1, in cholinergic SIA neurons, whereas dopamine suppresses CREB activation by inhibiting octopamine signaling in response to food stimuli. However, the physiological role of this activation is unknown. In this study, the effect of dopamine, octopamine, and CREB on acetylcholine signaling was analyzed using the acetylcholinesterase inhibitor aldicarb. Mutants with decreased dopamine signaling exhibited reduced acetylcholine signaling, and octopamine and CREB functioned downstream of dopamine in this regulation. This study demonstrates that the regulation of CREB by amine neurotransmitters modulates acetylcholine release from the neurons of C. elegans.

  17. AGE-RELATED EFFECTS OF CHLORPYRIFOS ON ACETYLCHOLINE RELEASE IN RAT BRAIN. (R825811)

    Chlorpyrifos (CPF) is an organophosphorus insecticide that elicits toxicity through inhibition of acetylcholinesterase (AChE). Young animals are markedly more sensitive than adults to the acute toxicity of CPF. We evaluated acetylcholine (ACh) release and its muscarinic recept...

  18. Lack of CB1 receptors increases noradrenaline release in vas deferens without affecting atrial noradrenaline release or cortical acetylcholine release

    Schlicker, Eberhard; Redmer, Agnes; Werner, André; Kathmann, Markus

    2003-01-01

    We studied whether cannabinoid CB1 receptor gene disruption (to yield CB1−/− mice) affects the electrically evoked tritium overflow from vas deferens and atrial pieces preincubated with [3H]-noradrenaline (NA) (‘noradrenaline release') and from cerebral cortex slices preincubated with [3H]-choline (‘acetylcholine release').NA release was higher by 37% in vas deferens from CB1−/− mice than in vas deferens from CB1+/+ mice. The cannabinoid receptor agonist WIN 55,212-2 inhibited, and the CB1 re...

  19. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    Supavilai, P.; Karobath, M.

    1985-02-04

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with /sup 3/H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 ..mu..M. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table.

  20. Calcium-dependent (/sup 3/H)acetylcholine release and muscarinic autoreceptors in rat cortical synaptosomes during development

    Marchi, M.; Caviglia, A.; Paudice, P.; Raiteri, M.

    1983-05-01

    A number of presynaptic cholinergic parameters (high affinity (/sup 3/H)choline uptake, (/sup 3/H)acetylcholine synthesis, (/sup 3/H)acetylcholine release, and autoinhibition of (/sup 3/H)acetylcholine release mediated by muscarinic autoreceptors) were comparatively analyzed in rat brain cortex synaptosomes during postnatal development. These various functions showed a differential time course during development. At 10 days of age the release of (/sup 3/H)acetylcholine evoked by 15 mM KCl from superfused synaptosomes was Ca/sup 2 +/-dependent but insensitive to the inhibitory action of extrasynaptosomal acetylcholine. The muscarinic autoreceptors regulating acetylcholine release were clearly detectable only at 14 days, indicating that their appearance may represent a criterion of synaptic maturation more valuable than the onset of a Ca/sup 2 +/-dependent release.

  1. Both A1 and A2a purine receptors regulate striatal acetylcholine release.

    Brown, S J; James, S; Reddington, M; Richardson, P J

    1990-07-01

    The receptors responsible for the adenosine-mediated control of acetylcholine release from immunoaffinity-purified rat striatal cholinergic nerve terminals have been characterized. The relative affinities of three analogues for the inhibitory receptor were (R)-phenylisopropyladenosine greater than cyclohexyladenosine greater than N-ethylcarboxamidoadenosine (NECA), with binding being dependent of the presence of Mg2+ and inhibited by 5'-guanylylimidodiphosphate [Gpp(NH)p] and adenosine receptor antagonists. Adenosine A1 receptor agonists inhibited forskolin-stimulated cholinergic adenylate cyclase activity, with an IC50 of 0.5 nM for (R)-phenylisopropyladenosine and 500 nM for (S)-phenylisopropyladenosine. A1 agonists inhibited acetylcholine release at concentrations approximately 10% of those required to inhibit the cholinergic adenylate cyclase. High concentrations (1 microM) of adenosine A1 agonists were less effective in inhibiting both adenylate cyclase and acetylcholine release, due to the presence of a lower affinity stimulatory A2 receptor. Blockade of the A1 receptor with 8-cyclopentyl-1,3-dipropylxanthine revealed a half-maximal stimulation by NECA of the adenylate cyclase at 10 nM, and of acetylcholine release at approximately 100 nM. NECA-stimulated adenylate cyclase activity copurified with choline acetyltransferase in the preparation of the cholinergic nerve terminals, suggesting that the striatal A2 receptor is localized to cholinergic neurones. The possible role of feedback inhibitory and stimulatory receptors on cholinergic nerve terminals is discussed.

  2. Acetylcholine Release in the Hippocampus and Striatum during Place and Response Training

    Pych, Jason C.; Chang, Qing; Colon-Rivera, Cynthia; Haag, Renee; Gold, Paul E.

    2005-01-01

    These experiments examined the release of acetylcholine in the hippocampus and striatum when rats were trained, within single sessions, on place or response versions of food-rewarded mazes. Microdialysis samples of extra-cellular fluid were collected from the hippocampus and striatum at 5-min increments before, during, and after training. These…

  3. GABA receptors and benzodiazepine binding sites modulate hippocampal acetylcholine release in vivo

    Moor, E; de Boer, P; Westerink, B.H.C.

    1998-01-01

    In the present study, the regulation of acetylcholine release from the ventral hippocampus by gamma-aminobutyric acid (GABA) was investigated in vivo. GABA receptor agonists and antagonists were administered locally in the medial septum and the adjacent vertical limb of the diagonal band of Broca, o

  4. Acetylcholine released from cholinergic nerves contributes to cutaneous vasodilation during heat stress

    Shibasaki, Manabu; Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Nitric oxide (NO) contributes to active cutaneous vasodilation during a heat stress in humans. Given that acetylcholine is released from cholinergic nerves during whole body heating, coupled with evidence that acetylcholine causes vasodilation via NO mechanisms, it is possible that release of acetylcholine in the dermal space contributes to cutaneous vasodilation during a heat stress. To test this hypothesis, in seven subjects skin blood flow (SkBF) and sweat rate were simultaneously monitored over three microdialysis membranes placed in the dermal space of dorsal forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine (10 microM), the second membrane was perfused with the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 10 mM) dissolved in the aforementioned neostigmine solution (l-NAME(Neo)), and the third membrane was perfused with Ringer solution as a control site. Each subject was exposed to approximately 20 min of whole body heating via a water-perfused suit, which increased mean body temperature from 36.4 +/- 0.1 to 37.5 +/- 0.1 degrees C (P acetylcholine released from cholinergic nerves is capable of modulating cutaneous vasodilation via NO synthase mechanisms early in the heat stress but not after substantial cutaneous vasodilation.

  5. Effects of their nutrient precursors on the synthesis and release of serotonin, the catecholamines, and acetylcholine - Implications for behavioral disorders

    Wurtman, Richard J.

    1988-01-01

    Authentic foods affect brain serotonin synthesis by modifying brain tryptophan levels, carbohydrates increasing and proteins decreasing these levels. The carbohydrate-induced rise in brain serotonin tends to diminish the likelihood that one carbohydrate-rich, protein-poor meal or snack will be followed by another. This mechanism is apparently disturbed in carbohydrate-craving obesity, which may explain why this syndrome responds well to d-fenfluramine, a serotoninergic drug. Pure nutrients like tyrosine or choline can also affect the rates at which their neurotransmitter products, the catecholamines and acetylcholine, are synthesized in and released from nerve terminals, suggesting that these compounds may find uses as drugs.

  6. Centrally injected histamine increases posterior hypothalamic acetylcholine release in hemorrhage-hypotensive rats.

    Altinbas, Burcin; Yilmaz, Mustafa S; Savci, Vahide; Jochem, Jerzy; Yalcin, Murat

    2015-01-01

    Histamine, acting centrally as a neurotransmitter, evokes a reversal of hemorrhagic hypotension in rats due to the activation of the sympathetic and the renin-angiotensin systems as well as the release of arginine vasopressin and proopiomelanocortin-derived peptides. We demonstrated previously that central nicotinic cholinergic receptors are involved in the pressor effect of histamine. The aim of the present study was to examine influences of centrally administrated histamine on acetylcholine (ACh) release at the posterior hypothalamus-a region characterized by location of histaminergic and cholinergic neurons involved in the regulation of the sympathetic activity in the cardiovascular system-in hemorrhage-hypotensive anesthetized rats. Hemodynamic and microdialysis studies were carried out in Sprague-Dawley rats. Hemorrhagic hypotension was induced by withdrawal of a volume of 1.5 ml blood/100 g body weight over a period of 10 min. Acute hemorrhage led to a severe and long-lasting decrease in mean arterial pressure (MAP), heart rate (HR), and an increase in extracellular posterior hypothalamic ACh and choline (Ch) levels by 56% and 59%, respectively. Intracerebroventricularly (i.c.v.) administered histamine (50, 100, and 200 nmol) dose- and time-dependently increased MAP and HR and caused an additional rise in extracellular posterior hypothalamic ACh and Ch levels at the most by 102%, as compared to the control saline-treated group. Histamine H1 receptor antagonist chlorpheniramine (50 nmol; i.c.v.) completely blocked histamine-evoked hemodynamic and extracellular posterior hypothalamic ACh and Ch changes, whereas H2 and H3/H4 receptor blockers ranitidine (50 nmol; i.c.v.) and thioperamide (50 nmol; i.c.v.) had no effect. In conclusion, centrally administered histamine, acting via H1 receptors, increases ACh release at the posterior hypothalamus and causes a pressor and tachycardic response in hemorrhage-hypotensive anesthetized rats.

  7. Acetylcholine released from cholinergic nerves contributes to cutaneous vasodilation during heat stress

    Shibasaki, Manabu; Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Nitric oxide (NO) contributes to active cutaneous vasodilation during a heat stress in humans. Given that acetylcholine is released from cholinergic nerves during whole body heating, coupled with evidence that acetylcholine causes vasodilation via NO mechanisms, it is possible that release of acetylcholine in the dermal space contributes to cutaneous vasodilation during a heat stress. To test this hypothesis, in seven subjects skin blood flow (SkBF) and sweat rate were simultaneously monitored over three microdialysis membranes placed in the dermal space of dorsal forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine (10 microM), the second membrane was perfused with the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 10 mM) dissolved in the aforementioned neostigmine solution (l-NAME(Neo)), and the third membrane was perfused with Ringer solution as a control site. Each subject was exposed to approximately 20 min of whole body heating via a water-perfused suit, which increased mean body temperature from 36.4 +/- 0.1 to 37.5 +/- 0.1 degrees C (P vasodilation was significantly lower at the neostigmine-treated site relative to the other sites (neostigmine: 36.6 +/- 0.1 degrees C, l-NAME(Neo): 37.1 +/- 0.1 degrees C, control: 36.9 +/- 0.1 degrees C), whereas no significant threshold difference was observed between the l-NAME(Neo)-treated and control sites. At the end of the heat stress, SkBF was not different between the neostigmine-treated and control sites, whereas SkBF at the l-NAME(Neo)-treated site was significantly lower than the other sites. These results suggest that acetylcholine released from cholinergic nerves is capable of modulating cutaneous vasodilation via NO synthase mechanisms early in the heat stress but not after substantial cutaneous vasodilation.

  8. Intravenously administered oxotremorine and atropine, in doses known to affect pain threshold, affect the intraspinal release of acetylcholine in rats

    Abelson, Klas S P; Höglund, A Urban

    2002-01-01

    muscarinic agonists and antagonists modify nociceptive threshold by affecting intraspinal release of acetylcholine (ACh). Catheters were inserted into the femoral vein in rats maintained on isoflurane anaesthesia for administration of oxotremorine (10-300 microg/kg) and atropine (0.1, 10, 5000 microg....../kg). Spinal microdialysis probes were placed intraspinally at approximately the C2-C5 spinal level for sampling of acetylcholine and dialysis delivery of atropine (0.1, 1, 10 nM). Additionally, the tail-flick behaviour was tested on conscious rats injected intraperitoneally with saline, atropine (10, 100....... Intravenously administered atropine, in a dose that produced hyperalgesia (5000 microg/kg) in the tail-flick test, significantly decreased the intraspinal release of acetylcholine. Our results suggest an association between pain threshold and acetylcholine release in spinal cord. It is also suggested...

  9. Pharmacological characterization of dopamine, norepinephrine and serotonin release in the rat prefrontal cortex by neuronal nicotinic acetylcholine receptor agonists.

    Rao, Tadimeti S; Correa, Lucia D; Adams, Pamala; Santori, Emily M; Sacaan, Aida I

    2003-11-14

    Neuronal nicotinic acetylcholine receptors (nAChRs) modulate synaptic transmission by regulating neurotransmitter release, an action that involves multiple nAChRs. The effects of four nAChR agonists, nicotine (NIC), 1,1-dimethyl-4-phenylpiperzinium iodide (DMPP), cytisine (CYT) and epibatidine (EPI) were investigated on [3H]-norepinephrine (NE), [3H]-dopamine (DA) and [3H]-serotonin (5-HT) release from rat prefrontal cortical (PFC) slices. All four agonists evoked [3H]-DA release to a similar magnitude but with a differing rank order of potency of EPI>DMPP approximately NIC approximately CYT. Similarly, all four agonists also increased [3H]-NE release, but with a differing rank order of potency of EPI>CYT approximately DMPP>NIC. NIC-induced [3H]-NE and [3H]-DA release responses were both calcium-dependent and attenuated by the sodium channel antagonist, tetrodotoxin (TTX) and by the nAChR antagonists mecamylamine (MEC) and dihydro-beta-erythroidine (DHbetaE), but not by D-tubocurare (D-TC). The modulation of [3H]-5-HT release by nAChR agonists was distinct from that seen for catecholamines. DMPP produced robust increases with minimal release observed with other agonists. DMPP-induced [3H]-5-HT release was neither sensitive to known nAChR antagonists nor dependent on external calcium. The differences between nicotinic agonist induced catecholamine and serotonin release suggest involvement of distinct nAChRs.

  10. Real-time detection of acetylcholine release from the human endocrine pancreas.

    Rodriguez-Diaz, Rayner; Dando, Robin; Huang, Y Anthony; Berggren, Per-Olof; Roper, Stephen D; Caicedo, Alejandro

    2012-05-03

    Neurons, sensory cells and endocrine cells secrete neurotransmitters and hormones to communicate with other cells and to coordinate organ and system function. Validation that a substance is used as an extracellular signaling molecule by a given cell requires a direct demonstration of its secretion. In this protocol we describe the use of biosensor cells to detect neurotransmitter release from endocrine cells in real-time. Chinese hamster ovary cells expressing the muscarinic acetylcholine (ACh) receptor M3 were used as ACh biosensors to record ACh release from human pancreatic islets. We show how ACh biosensors loaded with the Ca(2+) indicator Fura-2 and pressed against isolated human pancreatic islets allow the detection of ACh release. The biosensor approach is simple; the Ca(2+) signal generated in the biosensor cell reflects the presence (release) of a neurotransmitter. The technique is versatile because biosensor cells expressing a variety of receptors can be used in many applications. The protocol takes ∼3 h.

  11. Cannabinoid CB1 receptor-mediated inhibition of hippocampal acetylcholine release is preserved in aged mice

    Redmer, Agnes; Kathmann, Markus; Schlicker, Eberhard

    2003-01-01

    The cannabinoid CB1 receptor inverse agonist/antagonist SR 141716 increases acetylcholine release in rodent hippocampus and improves memory in some experimental paradigms. Since drugs like SR 141716 may represent a novel class of cognition-enhancing drugs, we wanted to check whether the function of the CB1 receptor is preserved during ageing.Hippocampal and striatal slices from 2- to 3- and 24- to 28-month-old C57BL/6J mice were preincubated with [3H]-choline or [3H]-noradrenaline ([3H]-NA) a...

  12. Acetylcholine released from cholinergic nerves contributes to cutaneous vasodilation during heat stress

    Shibasaki, Manabu; Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Nitric oxide (NO) contributes to active cutaneous vasodilation during a heat stress in humans. Given that acetylcholine is released from cholinergic nerves during whole body heating, coupled with evidence that acetylcholine causes vasodilation via NO mechanisms, it is possible that release of acetylcholine in the dermal space contributes to cutaneous vasodilation during a heat stress. To test this hypothesis, in seven subjects skin blood flow (SkBF) and sweat rate were simultaneously monitored over three microdialysis membranes placed in the dermal space of dorsal forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine (10 microM), the second membrane was perfused with the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 10 mM) dissolved in the aforementioned neostigmine solution (l-NAME(Neo)), and the third membrane was perfused with Ringer solution as a control site. Each subject was exposed to approximately 20 min of whole body heating via a water-perfused suit, which increased mean body temperature from 36.4 +/- 0.1 to 37.5 +/- 0.1 degrees C (P heat stress, SkBF at each site was normalized to its maximum value, identified by administration of 28 mM sodium nitroprusside. Mean body temperature threshold for cutaneous vasodilation was significantly lower at the neostigmine-treated site relative to the other sites (neostigmine: 36.6 +/- 0.1 degrees C, l-NAME(Neo): 37.1 +/- 0.1 degrees C, control: 36.9 +/- 0.1 degrees C), whereas no significant threshold difference was observed between the l-NAME(Neo)-treated and control sites. At the end of the heat stress, SkBF was not different between the neostigmine-treated and control sites, whereas SkBF at the l-NAME(Neo)-treated site was significantly lower than the other sites. These results suggest that acetylcholine released from cholinergic nerves is capable of modulating cutaneous vasodilation via NO synthase mechanisms early in the heat stress but not after

  13. Spatial reference- (not working- or procedural-) memory performance of aged rats in the water maze predicts the magnitude of sulpiride-induced facilitation of acetylcholine release by striatal slices.

    Cassel, Jean-Christophe; Lazaris, Anelise; Birthelmer, Anja; Jackisch, Rolf

    2007-08-01

    Cluster analysis of water-maze reference-memory performance distinguished subpopulations of young adult (3-5 months), aged (25-27 months) unimpaired (AU) and aged impaired (AI) rats. Working-memory performances of AU and AI rats were close to normal (though young and aged rats differed in exploration strategies). All aged rats showed impaired procedural-memory. Electrically evoked release of tritium was assessed in striatal slices (preloaded with [(3)H]choline) in the presence of oxotremorine, physostigmine, atropine+physostigmine, quinpirole, nomifensine or sulpiride. Aged rats exhibited reduced accumulation of [(3)H]choline (-30%) and weaker transmitter release. Drug effects (highest concentration) were reductions of release by 44% (oxotremorine), 72% (physostigmine), 84% (quinpirole) and 65% (nomifensine) regardless of age. Sulpiride and atropine+physostigmine facilitated the release more efficiently in young rats versus aged rats. The sulpiride-induced facilitation was weaker in AI rats versus AU rats; it significantly correlated with reference-memory performance. The results confirm age-related alterations of cholinergic and dopaminergic striatal functions, and point to the possibility that alterations in the D(2)-mediated dopaminergic regulation of these functions contribute to age-related reference-memory deficits.

  14. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice.

    Dolejší, Eva; Liraz, Ori; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, Daniel M

    2016-02-01

    Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that

  15. Effects of lobeline and dimethylphenylpiperazinium iodide (DMPP) on N-methyl-D-aspartate (NMDA)-evoked acetylcholine release in vitro: evidence for a lack of involvement of classical neuronal nicotinic acetylcholine receptors.

    Rao, T S; Correa, L D; Lloyd, G K

    1997-01-01

    Biochemical, behavioral and electrophysiological evidence suggests interactions between pathways containing neuronal nicotinic acetylcholine receptors (NAChRs) and excitatory amino acid receptors. Recently, protective effects of nicotine against N-methyl-D-aspartate (NMDA)-induced toxicity in primary cortical cultures were reported. To address possible interactions between NAChR and NMDA receptor containing pathways, several NAChR agonists were evaluated for their effects on NMDA-evoked [3H]acetylcholine ([3H]ACh) release from slices of rat striatum. Nicotine, cytisine and epibatidine had no effect on NMDA-evoked release or basal release of [3H]ACh over a wide range of concentrations. Lobeline and dimethylphenylpiperazinium iodide (DMPP), however, decreased basal [3H]ACh release and attenuated NMDA-evoked [3H]ACh release with EC50 values of 35 and 155 microM, respectively. The NAChR antagonists, dihydro-beta-erythroidine (DH beta E) and d-tubocurarine had no effect on NMDA-evoked [3H]ACh release, whereas mecamylamine attenuated the NMDA-evoked [3H]ACh evoked release with an EC50 value of 144 microM. Methyllycaconitine (MLA), a highly selective and potent antagonist of the alpha-bungarotoxin-sensitive alpha 7 NAChR subtype, also had no effect on NMDA-evoked [3H]ACh release at concentrations upto 10 microM. The inhibitory effects of DMPP and lobeline on NMDA-evoked [3H[ACh release were relatively insensitive to mecamylamine, d-tubocurarine, MLA and DH beta E. In addition, DMPP or lobeline-induced attenuation of basal [3H]ACh release was insensitive to blockade by sulpiride, a dopamine (D2) receptor antagonist. In contrast to their effects on NMDA-evoked striatal [3H]ACh release, both DMPP and lobeline increased basal release of striatal [3H]DA and hippocampal [3H]norepinephrine ([3H]NE) and did not attenuate NMDA-evoked release of these two transmitters. Instead, DMPP and lobeline appeared to have an additive effect on both NMDA-evoked hippocampal [3H]NE release and

  16. Role of acetylcholine and muscarinic receptors in serotonin-induced bronchoconstriction in the mouse.

    Kummer, Wolfgang; Wiegand, Silke; Akinci, Sibel; Schinkel, Alfred H; Wess, Jürgen; Koepsell, Hermann; Haberberger, Rainer Viktor; Lips, Katrin Susanne

    2006-01-01

    For the murine trachea, it has been reported that constriction evoked by serotonin (5-HT) is largely dependent on acetylcholine (ACh) released from the epithelium, owing to the sensitivity of the 5-HT response to epithelium removal, sensitivity to atropine, and insensitivity to tetrodotoxin (Moffatt et al., 2003). Consistent with this assumption, the respiratory epithelium contains ACh, its synthesizing enzyme, and the high-affinity choline transporter CHT1 (Reinheimer et al., 1996; Pfeil et al., 2003; Proskocil et al., 2004). Recently, we demonstrated that ACh can be released from non-neuronal cells by corticosteroid-sensitive polyspecific organic cation transporters (OCTs), which are also expressed by airway epithelial cells (Lips et al., 2005). Hence, we proposed that 5-HT evokes release of ACh from epithelial cells via OCTs and that this epithelial-derived ACh induces bronchoconstriction. We tested this hypothesis in a well-established model of videomorphometric analysis of bronchial diameter in precision-cut murine lung slices utilizing epithelium removal to assess the role of the epithelium, OCT mouse knockout (KO) strains to assess the role of OCT isoforms, and muscarinic receptor M2/M3 double-KO mice to assess the cholinergic component of 5-HT induced bronchoconstriction, as bronchi of this strain are entirely unresponsive to cholinergic stimulation(Struckmann et al., 2003).

  17. In vivo release of non-neuronal acetylcholine from the human skin as measured by dermal microdialysis: effect of botulinum toxin.

    Schlereth, Tanja; Birklein, Frank; an Haack, Katrin; Schiffmann, Susanne; Kilbinger, Heinz; Kirkpatrick, Charles James; Wessler, Ignaz

    2006-01-01

    1.--Acetylcholine is synthesized in the majority of non-neuronal cells, for example in human skin. In the present experiments, the in vivo release of acetylcholine was measured by dermal microdialysis. 2.--Two microdialysis membranes were inserted intradermally at the medial shank of volunteers. Physiological saline containing 1 muM neostigmine was perfused at a constant rate of 4 microl min(-1) and the effluent was collected in six subsequent 20 min periods. Acetylcholine was measured by high-pressure liquid chromatography (HPLC) combined with bioreactors and electrochemical detection. 3.--Analysis of the effluent by HPLC showed an acetylcholine peak that disappeared, when the analytical column was packed with acetylcholine-specific esterase, confirming the presence of acetylcholine. 4.--In the absence of neostigmine, 71+/-51 pmol acetylcholine (n=4) was found during a 120 min period. The amount increased to 183+/-43 pmol (n=34), when the perfusion medium contained 1 microM neostigmine. 5.--Injection of 100 MU botulinum toxin subcutaneously blocked sweating completely, but the release of acetylcholine was not affected (botulinum toxin treated skin: 116+/-70 pmol acetylcholine/120 min; untreated skin: 50+/-20 pmol; n=4). 6.--Quinine (1 mM), inhibitor of organic cation transporters, and carnitine (0.1 mM), substrate of the Na(+)-dependent carnitine transporter OCTN2, tended to reduce acetylcholine release (by 40%, not significant). 7.--Our experiments demonstrate, for the first time, the in vivo release of non-neuronal acetylcholine in human skin. Organic cation transporters are not predominantly involved in the release of non-neuronal acetylcholine from the human skin.

  18. Acetylcholine Attenuates Hypoxia/ Reoxygenation-Induced Mitochondrial and Cytosolic ROS Formation in H9c2 Cells via M2 Acetylcholine Receptor

    Yi Miao

    2013-02-01

    Full Text Available Background: The anti-infammatory and cardioprotective effect of acetylcholine (ACh has been reported; nevertheless, whether and how ACh exhibits an antioxidant property against ischemia/reperfusion (I/R-induced oxidative stress remains obscure. Methods: In the present study, H9c2 rat cardiomyocytes were exposed to hypoxia/reoxygenation (H/R to mimic I/R injury. We estimated intracellular different sources of reactive oxygen species (ROS by measuring mitochondrial ROS (mtROS, mitochondrial DNA (mtDNA copy number, xanthine oxidase (XO and NADPH oxidase (NOX activity and expression of rac 1. Cell injury was determined by lactate dehydrogenase (LDH release and cleaved caspase-3 expression. The siRNA transfection was performed to knockdown of M2 acetylcholine receptor (M2 AChR expression. Results: 12-h hypoxia followed by 2-h reoxygenation resulted in an abrupt burst of ROS in H9c2 cells. Administration of ACh reduced the levels of ROS in a concentration-dependent manner. Compared to the H/R group, ACh decreased mtROS, recovered mtDNA copy number, diminished XO and NOX activity, rac 1 expression as well as cell injury. Co- treatment with atropine rather than hexamethonium abolished the antioxidant and cardioprotective effect of ACh. Moreover, knockdown of M2 AChR by siRNA showed the similar trends as atropine co-treatment group. Conclusions: ACh inhibits mitochondria-, XO- and NOX-derived ROS production thus protecting H9c2 cells against H/R-induced oxidative stress, and these benefcial effects are mainly mediated by M2 AChR. Our findings suggested that increasing ACh release could be a potential therapeutic strategy for treatment and prevention of I/R injury.

  19. N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine in striatal compartments of the rat: regulatory roles of dopamine and GABA

    Glowinski, J.; Perez, S.; Desban, M.; Gauchy, C.; Kemel, M.L.; Blanchet, F. [Chaire de Neuropharmacologie, INSERM U114, College de France, 11 place Marcelin Berthelot, 75231 Paris (France)

    1997-08-26

    The N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine previously formed from [{sup 3}H]choline was estimated in striosome- (identified by [{sup 3}H]naloxone binding) or matrix-enriched areas of the rat striatum using an in vitro microsuperfusion procedure. Experiments were performed in either the absence or the presence of dopaminergic and/or GABAergic receptor antagonists. Although the cell bodies of the cholinergic interneurons were mainly found in the matrix, in the absence of magnesium, N-methyl-d-aspartate (50 {mu}M) stimulated the release of [{sup 3}H]acetylcholine in both striatal compartments. These responses were blocked by either magnesium, dizocilpine maleate, 7-chlorokynurenate or tetrodotoxin. N-Methyl-d-aspartate responses were concentration-dependent, but the 1 mM N-methyl-d-aspartate response was higher in striosomes than in the matrix. The co-application of d-serine (10 {mu}M) enhanced the 10 {mu}M N-methyl-d-aspartate response in both compartments, but reduced those induced by 1 mM N-methyl-d-aspartate, this reduction being higher in striosomes. The blockade of dopaminergic transmission with the D{sub 2} and D{sub 1} dopaminergic receptor antagonists, (-)-sulpiride (1 {mu}M) and SCH23390 (1 {mu}M), was without effect on the 50 {mu}M N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine, but markedly enhanced the 1 mM N-methyl-d-aspartate + d-serine-evoked response in striosomes and to a lesser extent in the matrix. Disinhibitory responses of similar amplitude were observed not only in striosomes but also in the matrix when (-)-sulpiride was used alone, while SCH23390 alone enhanced the 1 mM N-methyl-d-aspartate + d-serine response only in striosomes and to a lower extent than (-)-sulpiride. These results indicate that D{sub 2} receptors are mainly involved in the inhibitory effect of dopamine on the 1 mM N-methyl-d-aspartate + d-serine-evoked release of [{sup 3}H]acetylcholine. They also show that the stimulation of D{sub 1

  20. Differential acetylcholine release in the prefrontal cortex and hippocampus during pavlovian trace and delay conditioning.

    Flesher, M Melissa; Butt, Allen E; Kinney-Hurd, Brandee L

    2011-09-01

    Pavlovian trace conditioning critically depends on the medial prefrontal cortex (mPFC) and hippocampus (HPC), whereas delay conditioning does not depend on these brain structures. Given that the cholinergic basal forebrain system modulates activity in both the mPFC and HPC, it was reasoned that the level of acetylcholine (ACh) release in these regions would show distinct profiles during testing in trace and delay conditioning paradigms. To test this assumption, microdialysis probes were implanted unilaterally into the mPFC and HPC of rats that were pre-trained in appetitive trace and delay conditioning paradigms using different conditional stimuli in the two tasks. On the day of microdialysis testing, dialysate samples were collected during a quiet baseline interval before trials were initiated, and again during performance in separate blocks of trace and delay conditioning trials in each animal. ACh levels were quantified using high-performance liquid chromatography and electrochemical detection techniques. Consistent with our hypothesis, results showed that ACh release in the mPFC was greater during trace conditioning than during delay conditioning. The level of ACh released during trace conditioning in the HPC was also greater than the levels observed during delay conditioning. While ACh efflux in both the mPFC and HPC selectively increased during trace conditioning, ACh levels in the mPFC during trace conditioning testing showed the greatest increases observed. These results demonstrate a dissociation in cholinergic activation of the mPFC and HPC during performance in trace but not delay appetitive conditioning, where this cholinergic activity may contribute to attentional mechanisms, adaptive response timing, or memory consolidation necessary for successful trace conditioning.

  1. Role of gap junctions in acetylcholine-induced vasodilation of proximal and distal arteries of the rat mesentery.

    Hill, C E; Hickey, H; Sandow, S L

    2000-07-01

    We have previously shown that myoendothelial gap junctions are more prevalent in distal than in proximal arteries of the rat mesentery. In the present study we have investigated the role of gap junctions in the mechanism of action of endothelium-derived hyperpolarizing factor (EDHF) in these same vessels following relaxation with acetylcholine. Arteries were pre-constricted with phenylephrine and concentration response curves to acetylcholine were constructed in the presence of N(G)-nitro-L-arginine methyl ester (L-NAME; 10(-5) M) and indomethacin (10(-5) M) to prevent effects due to the release of nitric oxide and prostacyclins. Nitric oxide was found to have only a small role in the relaxation of the proximal vessels and was not involved in the relaxations of the distal vessels. 18 alpha-Glycyrrhetinic acid (10(-5) M), a putative gap junction uncoupler, significantly reduced acetylcholine-induced relaxations by 50% in both proximal and distal vessels. Potassium channel antagonists, tetraethylammonium chloride (TEA; 10(-3) M) and barium chloride (10(-4) M), together abolished the dilatory response in the proximal mesenteric arteries, but did not completely block responses in the distal arteries. The data suggest that gap junctions contribute significantly to the acetylcholine-induced relaxation in both proximal and distal arteries of the rat mesentery. We hypothesize that the absence of a correlation between the role of gap junctions and the incidence of myoendothelial gap junctions in these same vessels is due to significant effects of the inhibitors on gap junctions located in the smooth muscle layers of the larger vessels.

  2. Acetylcholine-induced calcium oscillation in isolated outer hair cells in guinea pig

    XIE Ding-hua; XIAO Zi-an; YANG Shu

    2006-01-01

    Abstract Objective This study is to explore the relationship between acetylcholine (ACh)-induced calcium release from intracellular Ca2+ stores and function of outer hair cell (OHC) motors, in an attempt to elucidate the mechanism of OHC electromotility at resting state. Methods OHCs were isolated from adult guinea pig (200-300 g) cochlea and loaded with Fluo-3/AM. The cells were treated with ACh/dHBSS, ACh/HBSS, dHBSS only or HBSS only. Intracellular [Ca2+]i variations in cells under the four treatments were observed using an Ar-Kr laser scan confocal microscope. Results [Ca2+]i oscillations were recorded in five OHCs treated with ACh/dHBSS but not in other cells. This is the first time that Ach-excited [Ca2+]i oscillations are reported in guinea pig OHCs independent of extracellular calcium. Conclusions ACh-excited [Ca2+]i oscillations in OHCs originates from intracellular calcium release and may play a crucial role in maintaining active mechanical motility of the OHC at resting and modulating OHC electromotility.

  3. Acetylcholine release in the hippocampus during the operant conditioned reflex and the footshock stimulus in rats.

    Dong, Yu; Mao, Jianjun; Shangguan, Dihua; Zhao, Rui; Liu, Guoquan

    2004-10-14

    The activity of the septo-hippocampal cholinergic pathway was investigated by measuring changes in the extracellular acetylcholine (ACh) levels in the hippocampus, by means of microdialysis, during the operant conditioned reflex and the repeated footshock stimulus. Microdialysis samplings were conducted in a Skinner box where lights were delivered as conditioned stimuli (CS) paired with footshocks as unconditioned stimuli (US). Two groups of rats were used. Extracellular ACh and choline (Ch) in samples collected at 6min intervals were assessed by high-performance liquid chromatography with electrochemical detection. The elevation of hippocampus ACh was observed in the two experimental groups. The increase in ACh during aversive stimulus (footshock) was significantly larger and was probably related to the number of footshocks. There might be moderate increase in the hippocampal ACh release during the retrieval of information. The concentration of choline showed no significant fluctuation in the two groups during the whole process. This experiment explored in more detail hippocampal cholinergic activity in relation to the two different procedures.

  4. Different sensitivities to rocuronium of the neuromuscular junctions innervated by normal/damaged facial nerves and somatic nerve in rats: the role of the presynaptic acetylcholine quantal release

    CHEN Jun-liang; LI Shao-qin; CHI Fang-lu; CHEN Lian-hua; LI Shi-tong

    2012-01-01

    Background Muscles present different responses to muscle relaxants,a mechanism of importance in surgeries requiring facial nerve evoked electromyography under general anaesthesia.The non-depolarizing muscle relaxants have multiple reaction formats in the neuromuscular junction,in which pre-synaptic quantal release of acetylcholine was one of the important mechanisms.This study was to compare the pre-synaptic quantal release of acetylcholine from the neuromuscular junctions innervated by normal/damaged facial nerves and somatic nerve under the effect of rocuronium in rats in vitro.Methods Acute right-sided facial nerve injury was induced by nerve crush axotomies.Both sided facial nerve connected orbicularis oris strips and tibial nerve connected gastrocnemius strips were isolated to measure endplate potentials (EPP) and miniature endplate potentials (MEPP) using an intracellular microelectrode gauge under different rocuronium concentrations.Then,the pre-synaptic quantal releases of acetylcholine were calculated by the ratios of the EPPs and the MEPPs,and compared among the damaged or normal facial nerve innervated orbicularis oris and tibial nerve innervated gastrocnemius.Results The EPP/MEPP ratios of the three neuromuscular junctions decreased in a dose dependent manner with the increase of the rocuronium concentration.With the concentrations of rocuronium being 5 μg/ml,7.5 μg/ml and 10 μg/ml,the decrease of the EPP/MEPP ratio in the damaged facial nerve group was greater than that in the normal facial nerve group.The decrease in the somatic nerve group was the biggest,with significant differences.Conclusions Rocuronium presented different levels of inhibition on the pre-synaptic quantal release of acetylcholine in the three groups of neuromuscular junctions.The levels of the inhibition showed the following sequence:somatic nerve >damaged facial nerve > normal facial nerve.The difference may be one of the reasons causing the different sensitivities to

  5. Intrahippocampal Infusions of Anisomycin Produce Amnesia: Contribution of Increased Release of Norepinephrine, Dopamine, and Acetylcholine

    Qi, Zhenghan; Gold, Paul E.

    2009-01-01

    Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the beta-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and…

  6. Anterior Thalamic Lesions Alter Both Hippocampal-Dependent Behavior and Hippocampal Acetylcholine Release in the Rat

    Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.

    2011-01-01

    The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…

  7. Differential impact of genetically modulated choline transporter expression on the release of endogenous versus newly synthesized acetylcholine.

    Iwamoto, Hideki; Calcutt, M Wade; Blakely, Randy D

    2016-09-01

    The efficient import of choline into cholinergic nerve terminals by the presynaptic, high-affinity choline transporter (CHT, SLC5A7) dictates the capacity for acetylcholine (ACh) synthesis and release. Tissue levels of ACh are significantly reduced in mice heterozygous for a loss of function mutation in Slc5a7 (HET, CHT(+/-)), but significantly elevated in overexpressing, Slc5a7 BAC-transgenic mice (BAC). Since the readily-releasable pool of ACh is thought to constitute a small fraction of the total ACh pool, these genotype-dependent changes raised the question as to whether CHT expression or activity might preferentially influence the size of reserve pool ACh vesicles. In the current study, we approached this question by evaluating CHT genotype effects on the release of ACh from suprafused mouse forebrain slices. We treated slices from HET, BAC or wildtype (WT) controls with elevated K(+) and monitored release of both newly synthesized and storage pools of ACh. Newly synthesized ACh produced following uptake of [(3)H]choline was quantified by scintillation spectrometry whereas release of endogenous ACh storage pools was quantified by an HPLC-MS approach, from the same samples. Whereas endogenous ACh release scaled with CHT gene dosage, preloaded [(3)H]ACh release displayed no significant genotype dependence. Our findings suggest that CHT protein levels preferentially impact the capacity for ACh release afforded by mobilization of reserve pool vesicles.

  8. Pharmacokinetics and dopamine/acetylcholine releasing effects of ginsenoside Re in hippocampus and mPFC of freely moving rats

    Jing SHI; Wei XUE; Wen-jie ZHAO; Ke-xin LI

    2013-01-01

    Aim: To investigate the pharmacokinetics and dopamine/acetylcholine-releasing effects of ginsenoside Re (Re) in brain regions related to learning and memory,and to clarify the neurochemical mechanisms underlying its anti-dementia activity.Methods: Microdialysis was conducted on awake,freely moving adult male SD rats with dialysis probes implanted into the hippocampus,medial prefrontal cortex (mPFC) or the third ventricle.The concentrations of Re,dopamine (DA) and acetylcholine (ACh) in dialysates were determined using LC-MS/MS.Results: Subcutaneous administration of a single dose of Re (12.5,25 or 50 mg/kg) rapidly distributed to the cerebrospinal fluid and exhibited linear pharmacokinetics.The peak concentration (Cmax) occurred at 60 min for all doses.Re was not detectable after 240 min in the dialysates for the low dose of 12.5 mg/kg.At the same time,Re dose-dependently increased extracellular levels of DA and ACh in the hippocampus and mPFC,and more prominent effects were observed in the hippocampus.Conclusion: The combined study of the pharmacokinetics and pharmacodynamics of Re demonstrate that increase of extracellular levels of DA and ACh,particularly in the hippocampus,may contribute,at least in part,to the anti-dementia activity of Re.

  9. N-methyl-D-aspartate increases acetylcholine release from rat striatum and cortex: its effect is augmented by choline

    Ulus, I. H.; Buyukuysal, R. L.; Wurtman, R. J.

    1992-01-01

    We examined the effects of N-methyl-D-aspartate (NMDA), a glutamate agonist, and of glutamate itself, on acetylcholine (ACh) release from superfused rat striatal slices. In a Mg(++)-free medium, NMDA (32-1000 microM) as well as glutamate (1 mM) increased basal ACh release by 35 to 100% (all indicated differences, P less than .05), without altering tissue ACh or choline contents. This augmentation was blocked by Mg++ (1.2 mM) or by MK-801 (10 microM). Electrical stimulation (15 Hz, 75 mA) increased ACh release 9-fold (from 400 to 3660 pmol/mg of protein): this was enhanced (to 4850 pmol/mg of protein) by NMDA (100 microM). ACh levels in stimulated slices fell by 50 or 65% depending on the absence or presence of NMDA. The addition of choline (40 microM) increased ACh release both basally (570 pmol/mg of protein) and with electrical stimulation (6900 pmol/mg of protein). In stimulated slices choline acted synergistically with NMDA, raising ACh release to 10,520 pmol/mg of protein. The presence of choline also blocked the fall in tissue ACh. No treatment affected tissue phospholipid or protein levels. NMDA (32-320 microM) also augmented basal ACh release from cortical but not hippocampal slices. Choline efflux from striatal and cortical (but not hippocampal) slices decreased by 34 to 50% in Mg(++)-free medium. These data indicate that NMDA-like drugs may be useful, particularly in combination with choline, to enhance striatal and cortical cholinergic activity. ACh release from rat hippocampus apparently is not affected by NMDA receptors.

  10. Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice.

    Abbas, Muzaffar; Rahman, Shafiqur

    2016-07-15

    Evidence indicates that microglial activation contributes to the pathophysiology and maintenance of neuroinflammatory pain involving central nervous system alpha-7 nicotinic acetylcholine receptors. The objective of the present study was to determine the effects of 3a,4,5,9b-Tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an alpha-7 nicotinic acetylcholine receptor positive allosteric modulator (PAM), on tactile allodynia and thermal hyperalgesia following lipopolysaccharide (LPS)-induced microglial activation in hippocampus, a neuroinflammatory pain model in mice. In addition, we examined the effects of TQS on microglial activation marker, an ionized calcium-binding adapter molecule 1 (Iba-1), in the hippocampus may be associated with neuroinflammatory pain. Pretreatment of TQS (4mg/kg) significantly reduced LPS (1mg/kg)-induced tactile allodynia and thermal hyperalgesia. Moreover, pretreatment of methyllycaconitine (3mg/kg) significantly reversed TQS-induced antiallodynic and antihyperalgesic responses indicating the involvement of alpha-7 nicotinic acetylcholine receptor. Pretreatment of TQS significantly decreased LPS-induced increased in hippocampal Iba-1 expression. Overall, these results suggest that TQS reduces LPS-induced neuroinflammatory pain like symptoms via modulating microglial activation likely in the hippocampus and/or other brain region by targeting alpha-7 nicotinic acetylcholine receptor. Therefore, alpha-7 nicotinic acetylcholine receptor PAM such as TQS could be a potential drug candidate for the treatment of neuroinflammatory pain.

  11. Comparative effects of niflumic acid and nifedipine on 5-hydroxytryptamine- and acetylcholine-induced contraction of the rat trachea.

    Teixeira, M C; Coelho, R R; Leal-Cardoso, J H; Criddle, D N

    2000-04-07

    The effects of niflumic acid, an inhibitor of Ca(2+)-activated Cl(-) (Cl((Ca))) channels, were compared with those of the voltage-dependent Ca(2+) channel (VDCC) blocker nifedipine on 5-hydroxytryptamine (5-HT)- and acetylcholine-induced contractions of the rat isolated trachea. Niflumic acid (3-100 microM) induced a concentration-dependent inhibition of 5-HT (10 microM)-induced contractions, with a reduction to 37.0+/-9.5% of the control at the highest concentration. One micromolar nifedipine, which completely blocked 60 mM KCl-induced contractions, reduced the response to 5-HT similarly to 39.2+/-11.5% of the control. The inhibition of the 5-HT response was not significantly different from that produced by the combined presence of nifedipine (1 microM) and niflumic acid (100 microM), suggesting that their effects were not additive. In contrast, neither niflumic acid (3-100 microM) nor nifedipine (1 microM) inhibited acetylcholine-induced contractions. The contraction to 5-HT (10 microM) in Cl(-)-free solution was decreased by more than approximately 85% of the control, whilst that of acetylcholine was reduced only by approximately 36%. Our data show that niflumic acid exerts selective inhibitory effects on 5-HT-induced contraction, and suggest that activation of Cl((Ca)) channels may be a mechanism whereby 5-HT (but not acetylcholine) induces Ca(2+) entry via VDCCs to elicit contraction.

  12. Agonist-induced hump current production in heterologously-expressed human α4β2-nicotinic acetylcholine receptors

    Qiang LIE; Ke-wei YU; Yong-chang CHANG; Ronald J LUKAS; Jie WU

    2008-01-01

    Aim:To characterize the functional and pharmacological features of agonist-induced hump currents in human α4β2-nicotinic acetylcholine receptors (nAChR).Methods:Whole-cell and outside-out patch recordings were performed using human α4β2-nAChR heterologously expressed in stably-transfected,native nAChR-null subclonal human epithelial 1 (SH-EP1) cells.RT-PCR was used to test the mRNA expression of transfected nAChR.Homology modeling and ace-tylcholine (Ach) docking were applied to show the possible Ach-binding site in the channel pore.Results:The rapid exposure of 10 mmol/L Ach induced an inward current with a decline from peak to steady-state.However,after the re-moval of Ach,an additional inward current,called "hump" current,reoccurred.The ability of agonists to produce these hump currents cannot be easily explained based on drug size,charge,acute potency,or actions as full or partial agonists.Hump currents were associated with a rebound increase in whole-cell conductance,and they had voltage dependence-like peak currents induced by agonist action.Hump currents blocked by the α4β2-nAChR antagonist dihydro-β-erythroidine were reduced when α4β2-nAChR were desensitized,and were more pronounced in the absence of external Ca2+.Outside-out single-channel recordings demon-strated that compared to 1 μmol/L nicotine,100 μmol/L nicotine reduced channel current amplitude,shortened the channel mean open time,and prolonged the channel mean closed time,supporting an agonist-induced open-channel block before hump current production.A docking model also simulated the agonist-binding site in the channel pore.Conclusion:These results support the hypoth-esis that hump currents reflect a rapid release of agonists from the α4β2-nAChR channel pore and a rapid recovery from desensitized α4β2-nAChR.

  13. Captopril augments acetylcholine-induced bronchial smooth muscle contractions in vitro via kinin-dependent mechanisms.

    Agrawal, Naman; Akella, Aparna; Deshpande, Shripad B

    2016-06-01

    Angiotensin converting enzyme (ACE) inhibitors therapy is aassociated with bothersome dry cough as an adverse effect. The mechanisms underlying this adverse effect are not clear. Therefore, influence of captopril (an ACE inhibitor) on acetylcholine (ACh)-induced bronchial smooth muscle contractions was investigated. Further, the mechanisms underlying the captopril-induced changes were also explored. In vitro contractions of rat bronchial smooth muscle to cumulative concentrations of ACh were recorded before and after exposure to captopril. Further, the involvement of kinin and inositol triphosphate (IP₃) pathways for captopril-induced alterations were explored. ACh produced concentration-dependent (5-500 µM) increase in bronchial smooth muscle contractions. Pre-treatment with captopril augmented the ACh-induced contractions at each concentration significantly. Pre-treatment with aprotinin (kinin synthesis inhibitor) or heparin (inositol triphosphate, IP₃-inhibitor), blocked the captopril-induced augmentation of bronchial smooth muscle contractions evoked by ACh. Further, captopril-induced augmentation was absent in calcium-free medium. These results suggest that captopril sensitizes bronchial smooth muscles to ACh-induced contractions. This sensitization may be responsible for dry cough associated with captopril therapy.

  14. AMYGDALA KINDLING-INDUCED SEIZURES SELECTIVELY IMPAIR SPATIAL MEMORY .2. EFFECTS ON HIPPOCAMPAL NEURONAL AND GLIAL MUSCARINIC ACETYLCHOLINE-RECEPTOR

    BELDHUIS, HJA; EVERTS, HGJ; VANDERZEE, EA; LUITEN, PGM; BOHUS, B

    1992-01-01

    The muscarinic acetylcholine receptor is linked via hydrolysis of phosphoinositides to the protein kinase C pathway. In a preceding paper (Beldhuis, H. J. A., H. G. J. Everts, E. A. Vander Zee, P. G. M. Luiten, and B. Bohus (1992) Amygdala kindling-induced seizures selectively impair spatial memory.

  15. alpha(7) Nicotinic acetylcholine receptor activation prevents behavioral and molecular changes induced by repeated phencyclidine treatment

    Thomsen, Morten Skøtt; Christensen, Ditte Z; Hansen, Henrik H;

    2009-01-01

    , and administration of the NMDA-antagonist phencyclidine (PCP) in rodents is a well validated model of such cognitive deficits. Here we show that repeated PCP treatment (10 mg/kg/day for 10 days) decreased the expression of parvalbumin and synaptophysin mRNA in the mouse PFC, which corresponds to changes seen...... in patients with schizophrenia. In addition, PCP increased the basal mRNA expression in the PFC of the activity-regulated cytoskeleton-associated protein (Arc), a molecule involved in synaptic plasticity. These molecular changes produced by PCP were accompanied by a behavioral impairment as determined...... in a modified Y-maze test. Polymorphisms in the alpha(7) nicotinic acetylcholine receptor (nAChR) gene have been linked to schizophrenia. Here we demonstrate that acute administration of the selective alpha(7) nAChR partial agonist SSR180711 dose-dependently reversed the behavioral impairment induced by PCP...

  16. Electroacupuncture pretreatment attenuates cerebral ischemic injury through α7 nicotinic acetylcholine receptor-mediated inhibition of high-mobility group box 1 release in rats

    Wang Qiang

    2012-01-01

    Full Text Available Abstract Background We have previously reported that electroacupuncture (EA pretreatment induced tolerance against cerebral ischemic injury, but the mechanisms underlying this effect of EA are unknown. In this study, we assessed the effect of EA pretreatment on the expression of α7 nicotinic acetylcholine receptors (α7nAChR, using the ischemia-reperfusion model of focal cerebral ischemia in rats. Further, we investigated the role of high mobility group box 1 (HMGB1 in neuroprotection mediated by the α7nAChR and EA. Methods Rats were treated with EA at the acupoint "Baihui (GV 20" 24 h before focal cerebral ischemia which was induced for 120 min by middle cerebral artery occlusion. Neurobehavioral scores, infarction volumes, neuronal apoptosis, and HMGB1 levels were evaluated after reperfusion. The α7nAChR agonist PHA-543613 and the antagonist α-bungarotoxin (α-BGT were used to investigate the role of the α7nAChR in mediating neuroprotective effects. The roles of the α7nAChR and HMGB1 release in neuroprotection were further tested in neuronal cultures exposed to oxygen and glucose deprivation (OGD. Results Our results showed that the expression of α7nAChR was significantly decreased after reperfusion. EA pretreatment prevented the reduction in neuronal expression of α7nAChR after reperfusion in the ischemic penumbra. Pretreatment with PHA-543613 afforded neuroprotective effects against ischemic damage. Moreover, EA pretreatment reduced infarct volume, improved neurological outcome, inhibited neuronal apoptosis and HMGB1 release following reperfusion, and the beneficial effects were attenuated by α-BGT. The HMGB1 levels in plasma and the penumbral brain tissue were correlated with the number of apoptotic neurons in the ischemic penumbra. Furthermore, OGD in cultured neurons triggered HMGB1 release into the culture medium, and this effect was efficiently suppressed by PHA-543,613. Pretreatment with α-BGT reversed the inhibitory effect

  17. Propoxur-induced acetylcholine esterase inhibition and impairment of cognitive function: attenuation by Withania somnifera.

    Yadav, C S; Kumar, V; Suke, S G; Ahmed, R S; Mediratta, P K; Banerjee, B D

    2010-04-01

    Propoxur (2-isopropoxyphenyl N-methylcarbamate) is widely used as an acaricide in agriculture and public health programs. Studies have shown that sub-chronic exposure to propoxur can cause oxidative stress and immuno-suppression in rats. Carbamates are also known to exhibit inhibitory effect on cholinesterase activity, which is directly related to their cholinergic effects. In the present study, the effect of Withania somnifera (Ashwagandha), a widely used herbal drug possessing anti-stress and immunomodulatory properties was studied on propoxur-induced acetylcholine esterase inhibition and impairment of cognitive function in rats. Male Wistar rats were divided into four groups. Group I was treated with olive oil and served as control. Group II was administered orally with propoxur (10 mg/kg b.wt.) in olive oil, group III received a combination of propoxur (10 mg/kg b.wt.) and W. somnifera (100 mg/kg b.wt.) suspension and group IV W. somnifera (100 mg/kg b.wt.) only. All animals were treated for 30 days. Cognitive behaviour was assessed by transfer latency using elevated plus maze. Blood and brain acetylcholine esterase (AChE) activity was also assessed. Oral administration of propoxur (10 mg/kg b.wt.) resulted in a significant reduction of brain and blood AChE activity. A significant prolongation of the acquisition as well as retention transfer latency was observed in propoxur-treated rats. Oral treatment of W. somnifera exerts protective effect and attenuates AChE inhibition and cognitive impairment caused by sub-chronic exposure to propoxur.

  18. Dopamine D3 receptor antagonism contributes to blonanserin-induced cortical dopamine and acetylcholine efflux and cognitive improvement.

    Huang, Mei; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-11-01

    Blonanserin is a novel atypical antipsychotic drug (APD), which, unlike most atypical APDs, has a slightly higher affinity for dopamine (DA) D2 than serotonin (5-HT)2A receptors, and is an antagonist at both, as well as at D3 receptors. The effects of atypical APDs to enhance rodent cortical, hippocampal, limbic, and dorsal striatal (dSTR) DA and acetylcholine (ACh) release, contribute to their ability to improve novel object recognition (NOR) in rodents treated with sub-chronic (sc) phencyclidine (PCP) and cognitive impairment associated with schizophrenia (CIAS). Here we determined the ability of blonanserin, the D3 antagonist NGB 2904, and the typical APD, haloperidol, a D2 antagonist, to enhance neurotransmitter efflux in the medial prefrontal cortex (mPFC) and dSTR of mice, and to ameliorate the scPCP-induced deficit in NOR in rats. Blonanserin, 10mg/kg, i.p., increased DA, norepinephrine (NE), and ACh efflux in mPFC and dSTR. NGB 2904, 3mg/kg, increased DA and ACh, but not NE, efflux in mPFC, and DA, but not ACh, efflux in dSTR. Haloperidol increased DA and NE efflux in dSTR only. The selective D3 agonist PD 128907 partially blocked the blonanserin-induced cortical ACh, DA, NE and striatal DA efflux. NGB 2904, 3mg/kg, like blonanserin, 1mg/kg, and the combination of sub-effective doses of NGB 2904 and blonanserin (both 0.3mg/kg), ameliorated the scPCP-induced NOR deficit in rats. These results suggest that D3 receptor blockade may contribute to the ability of blonanserin to increase cortical DA and ACh efflux, as well as to restore NOR and improve CIAS.

  19. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  20. Medial prefrontal cortex acetylcholine injection-induced hypotension: the role of hindlimb vasodilation

    Crippa, G. E.; Lewis, S. J.; Johnson, A. K.; Correa, F. M.

    2000-01-01

    The injection of acetylcholine (ACh) into the cingulate region of the medial prefrontal cortex (MPFC) causes a marked fall in arterial blood pressure which is not accompanied by changes in heart rate. The purpose of the present study was to investigate the hemodynamic basis for this stimulus-induced hypotension in Sprague-Dawley rats. The study was designed to determine whether a change in the vascular resistance of hindlimb, renal or mesenteric vascular beds contributes to the fall in arterial pressure in response to ACh injection into the cingulate cortex. Miniature pulsed-Doppler flow probes were used to measure changes in regional blood flow and vascular resistance. The results indicated that the hypotensive response was largely due to a consistent and marked vasodilation in the hindlimb vascular bed. On this basis, an additional experiment was then undertaken to determine the mechanisms that contribute to hindlimb vasodilation. The effect of interrupting the autonomic innervation of one leg on the hindlimb vasodilator response was tested. Unilateral transection of the lumbar sympathetic chain attenuated the cingulate ACh-induced vasodilation in the ipsilateral, but not in the contralateral hindlimb. These results suggest that the hypotensive response to cingulate cortex-ACh injection is caused by skeletal muscle vasodilation mediated by a sympathetic chain-related vasodilator system.

  1. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors.

  2. Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain

    Romero, Haylie K.; Christensen, Sean B.; Gajewiak, Joanna; Ramachandra, Renuka; Elmslie, Keith S.; Vetter, Douglas E.; Ghelardini, Carla; Iadonato, Shawn P.; Mercado, Jose L.; Olivera, Baldomera M.; McIntosh, J. Michael

    2017-01-01

    Opioids are first-line drugs for moderate to severe acute pain and cancer pain. However, these medications are associated with severe side effects, and whether they are efficacious in treatment of chronic nonmalignant pain remains controversial. Medications that act through alternative molecular mechanisms are critically needed. Antagonists of α9α10 nicotinic acetylcholine receptors (nAChRs) have been proposed as an important nonopioid mechanism based on studies demonstrating prevention of neuropathology after trauma-induced nerve injury. However, the key α9α10 ligands characterized to date are at least two orders of magnitude less potent on human vs. rodent nAChRs, limiting their translational application. Furthermore, an alternative proposal that these ligands achieve their beneficial effects by acting as agonists of GABAB receptors has caused confusion over whether blockade of α9α10 nAChRs is the fundamental underlying mechanism. To address these issues definitively, we developed RgIA4, a peptide that exhibits high potency for both human and rodent α9α10 nAChRs, and was at least 1,000-fold more selective for α9α10 nAChRs vs. all other molecular targets tested, including opioid and GABAB receptors. A daily s.c. dose of RgIA4 prevented chemotherapy-induced neuropathic pain in rats. In wild-type mice, oxaliplatin treatment produced cold allodynia that could be prevented by RgIA4. Additionally, in α9 KO mice, chemotherapy-induced development of cold allodynia was attenuated and the milder, temporary cold allodynia was not relieved by RgIA4. These findings establish blockade of α9-containing nAChRs as the basis for the efficacy of RgIA4, and that α9-containing nAChRs are a critical target for prevention of chronic cancer chemotherapy-induced neuropathic pain. PMID:28223528

  3. Improvement of Acetylcholine-Induced Vasodilation by Acute Exercise in Ovariectomized Hypertensive Rats.

    Cheng, Tsung-Lin; Lin, Yi-Yuan; Su, Chia-Ting; Hu, Chun-Che; Yang, Ai-Lun

    2016-06-30

    Postmenopause is associated with the development of cardiovascular disease, such as hypertension. However, limited information is available regarding effects of exercise on cardiovascular responses and its underlying mechanisms in the simultaneous postmenopausal and hypertensive status. We aimed to investigate whether acute exercise could enhance vasodilation mediated by acetylcholine (ACh) and sodium nitroprusside (SNP) in ovariectomized hypertensive rats. The fifteen-week-old female spontaneously hypertensive rats (SHR) were bilaterally ovariectomized, at the age of twenty-four weeks, and randomly divided into sedentary (SHR-O) and acute exercise (SHR-OE) groups. Age-matched WKY rats were used as the normotensive control group. The SHR-OE group ran on a motor-driven treadmill at a speed of 24 m/min for one hour in a moderate-intensity program. Following a single bout of exercise, rat aortas were isolated for the evaluation of the endothelium-dependent (ACh-induced) and endothelium-independent (SNP-induced) vasodilation by the organ bath system. Also, the serum levels of oxidative stress and antioxidant activities, including malondialdehyde (MDA), superoxide dismutase (SOD), and catalase, were measured after acute exercise among the three groups. We found that acute exercise significantly enhanced the ACh-induced vasodilation, but not the SNP-induced vasodilation, in ovariectomized hypertensive rats. This increased vasodilation was eliminated after the inhibition of nitric oxide synthase (NOS). Also, the activities of SOD and catalase were significantly increased after acute exercise, whereas the level of MDA was comparable among the three groups. These results indicated that acute exercise improved the endothelium-dependent vasodilating response to ACh through the NOS-related pathway in ovariectomized hypertensive rats, which might be associated with increased serum antioxidant activities.

  4. Activation of a7 Nicotinic Acetylcholine Receptors Prevents Monosodium Iodoacetate-Induced Osteoarthritis in Rats

    Yuan Liu

    2015-01-01

    Full Text Available Background/Aims: Although some evidence suggests that the prevalence of osteoarthritis (OA is lower in smokers compared to nonsmokers, the mechanisms of nicotine-induced protection remain unclear. Stimulation of the a7 nicotinic acetylcholine receptor (a7-nAChR appears to be a critical mechanism underlying the anti-inflammatory potential of cholinergic agonists in immune cells. The inhibition of secreted inflammatory molecules and the subsequent inflammatory processes have been proposed as a novel strategy for the treatment of OA. The objective of the present study was to determine whether nicotine-induced protection in a monosodium iodoacetate (MIA rat model of OA occurs via a7-nAChR-mediated inhibition of chondrocytes. Methods: Both in vivo (MIA and in vitro (MIA; Interleukin-1ß, IL-1ß models of OA were used to investigate the roles and the possible mechanisms whereby a7-nAChRs protect against knee joint degradation. Multiple experimental approaches, including macroscopic, histological analysis, chondrocyte cell cultures, confocal microscopy, and western blotting, were employed to elucidate the mechanisms of a7-nAChR-mediated protection. Results: Systemic administration of nicotine alleviated MIA-induced joint degradation. The protective effects of nicotine were abolished by administration of the a7-nAChR-selective antagonist methyllycaconitine (MLA. In primary cultured rat chondrocytes, pretreatment with nicotine suppressed both p38, extracellular regulated kinase (Erk 1/2 and c-Jun-N-terminal kinase (JNK mitogen-activated protein kinases (MAPK phosphorylation and phosphorylated nuclear factor-kappa B (NF-κB p65 activation induced by MIA- or IL-1ß, and these effects were also reversed by MLA. Conclusion: Taken together, our results suggest that activation a7-nAChRs is an important mechanism underlying the protective effects of nicotine.

  5. Cruzipain induces autoantibodies against cardiac muscarinic acetylcholine receptors. Functional and pathological implications.

    Sterin-Borda, Leonor; Giordanengo, Laura; Joensen, Lilian; Gea, Susana

    2003-09-01

    The goal of this study was to investigate whether cruzipain, a Trypanosoma cruzi immunodominant antigen, was able to induce antibodies reactive to the cardiac M(2) muscarinic acetylcholine receptor (M(2) mAChR). Immunization with cruzipain that was devoid of enzyme activity triggered IgG antibodies against cardiac M(2) mAChR. By radioligand competition assay we proved that the anti-cruzipain IgG fraction, purified from serum, inhibited binding of the specific M(2) mAChR radioligand [(3)H]quinuclidinyl benzilate. We also demonstrated that anti-cruzipain IgG reacted against the second extracellular loop of the M(2) mAChR. The corresponding affinity-purified serum anti-M(2)e2 IgG (reacting against a synthetic peptide corresponding to this loop in humans) displayed agonist-like activity associated with specific M(2) mAChR activation - increase of cGMP, inositol phosphate accumulation and nitric oxide synthase activity - triggering a decrease in myocardial contractility. Moreover, the same IgG fraction decreased heart frequency, related to inhibition of adenylate cyclase activity. These results imply that cruzipain plays a role in the production of antibodies against M(2) mAChR, which have been related to the pathogenesis of dysautonomic syndrome described in Chagas' disease.

  6. Impaired acetylcholine-induced cutaneous vasodilation in young smokers: roles of nitric oxide and prostanoids.

    Fujii, Naoto; Reinke, Maggie C; Brunt, Vienna E; Minson, Christopher T

    2013-03-01

    Cigarette smoking attenuates acetylcholine (ACh)-induced cutaneous vasodilation in humans, but the underlying mechanisms are unknown. We tested the hypothesis that smokers have impaired nitric oxide (NO)- and cyclooxygenase (COX)-dependent cutaneous vasodilation to ACh infusion. Twelve young smokers, who have smoked more than 5.2 ± 0.7 yr with an average daily consumption of 11.4 ± 1.2 cigarettes, and 12 nonsmokers were tested. Age, body mass index, and resting mean arterial pressure were similar between the groups. Cutaneous vascular conductance (CVC) was evaluated as laser-Doppler flux divided by mean arterial pressure, normalized to maximal CVC (local heating to 43.0°C plus sodium nitroprusside administration). We evaluated the increase in CVC from baseline to peak (CVCΔpeak) and area under the curve of CVC (CVCAUC) during a bolus infusion (1 min) of 137.5 μM ACh at four intradermal microdialysis sites: 1) Ringer (control), 2) 10 mM N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor), 3) 10 mM ketorolac (COX inhibitor), and 4) combination of l-NAME + ketorolac. CVCΔpeak and CVCAUC at the Ringer site in nonsmokers were greater than in smokers (CVCΔpeak, 42.9 ± 5.1 vs. 22.3 ± 3.5%max, P vasodilation in young smokers is related to diminished NO- and COX-dependent vasodilation.

  7. Vesicular acetylcholine transporter knock down-mice are more susceptible to inflammation, c-Fos expression and sickness behavior induced by lipopolysaccharide.

    Leite, Hércules Ribeiro; Oliveira-Lima, Onésia Cristina de; Pereira, Luciana de Melo; Oliveira, Vinícius Elias de Moura; Prado, Vania Ferreira; Prado, Marco Antônio Máximo; Pereira, Grace Schenatto; Massensini, André Ricardo

    2016-10-01

    In addition to the well-known functions as a neurotransmitter, acetylcholine (ACh) can modulate of the immune system. Nonetheless, how endogenous ACh release inflammatory responses is still not clear. To address this question, we took advantage of an animal model with a decreased ACh release due a reduction (knockdown) in vesicular acetylcholine transporter (VAChT) expression (VAChT-KD(HOM)). These animals were challenged with lipopolysaccharide (LPS). Afterwards, we evaluated sickness behavior and quantified systemic and cerebral inflammation as well as neuronal activation in the dorsal vagal complex (DVC). VAChT-KD(HOM) mice that were injected with LPS (10mg/kg) showed increased mortality rate as compared to control mice. In line with this result, a low dose of LPS (0.1mg/kg) increased the levels of pro-inflammatory (TNF-α, IL-1β, and IL-6) and anti-inflammatory (IL-10) cytokines in the spleen and brain of VAChT-KD(HOM) mice in comparison with controls. Similarly, serum levels of TNF-α and IL-6 were increased in VAChT-KD(HOM) mice. This excessive cytokine production was completely prevented by administration of a nicotinic receptor agonist (0.4mg/kg) prior to the LPS injection. Three hours after the LPS injection, c-Fos expression increased in the DVC region of VAChT-KD(HOM) mice compared to controls. In addition, VAChT-KD(HOM) mice showed behavioral changes such as lowered locomotor and exploratory activity and reduced social interaction after the LPS challenge, when compared to control mice. Taken together, our results show that the decreased ability to release ACh exacerbates systemic and cerebral inflammation and promotes neural activation and behavioral changes induced by LPS. In conclusion, our findings support the notion that activity of cholinergic pathways, which can be modulated by VAChT expression, controls inflammatory and neural responses to LPS challenge.

  8. Potentiation by choline of basal and electrically evoked acetylcholine release, as studied using a novel device which both stimulates and perfuses rat corpus striatum

    Farber, S. A.; Kischka, U.; Marshall, D. L.; Wurtman, R. J.

    1993-01-01

    We examined the release of acetylcholine (ACh) and dopamine (DA) using a novel probe through which striatal neurons could be both superfused and stimulated electrically in both anesthetized and freely moving awake animals. Optimal stimulation parameters for eliciting ACh release from cholinergic neurons differed from those required for eliciting DA release from dopaminergic terminals: at 0.6 ms pulse duration, 20 Hz and 200 microA, ACh release increased to 357 +/- 30% (P < 0.01) of baseline and was blocked by the addition of tetrodotoxin (TTX). Pulse durations of 2.0 ms or greater were required to increase DA release. Unlike ACh release, DA release showed no frequency dependence above 5 Hz. The maximal evoked releases of ACh and DA were 556 +/- 94% (P < 0.01) and 254 +/- 38% (P < 0.05) of baseline, respectively. Peripheral administration of choline (Ch) chloride (30-120 mg/kg) to anesthetized animals caused dose-related (r = 0.994, P < 0.01) increases in ACh release; basal release rose from 117 +/- 7% to 141 +/- 5% of initial baseline levels (P < 0.05) and electrically evoked ACh release rose from 386 +/- 38% to 600 +/- 34% (P < 0.01) in rats given 120 mg/kg. However, Ch failed to affect basal or evoked DA release although neostigmine (10 microM) significantly elevated basal DA release (from 36.7 fmol/10 min to 71.5 fmol/10 min; P < 0.05). In awake animals, Ch (120 mg/kg) also elevated both basal (from 106 +/- 7% to 154 +/- 17%; P < 0.05) and electrically evoked (from 146 +/- 13 to 262 +/- 16%; P < 0.01) ACh release.(ABSTRACT TRUNCATED AT 250 WORDS).

  9. An examination of the 5-HT3 receptor mediating contraction and evoked [3H]-acetylcholine release in the guinea-pig ileum.

    Fox, A; Morton, I. K.

    1990-01-01

    1. The relative contributions of two classes of 5-hydroxytryptamine (5-HT) receptor (5-HT2 and 5-HT3) to the contractile action of 5-HT, 2-methyl-5-hydroxytryptamine (2-methyl-5-HT) and alpha-methyl-5-hydroxytryptamine (alpha-methyl-5-HT) were studied in the guinea-pig ileum longitudinal muscle-myenteric plexus strip (LMMP) preparation. Contractility studies were combined with an analysis of the effects of the three agonists on [3H]-acetylcholine ([3H]-ACh) release from preparations preincuba...

  10. Comparison of Inhibitory Effect of Gripe Mixture and Caraway Mixture on Acetylcholine Induced Spasm in Rat jejunum

    F. Zeraati

    2003-10-01

    Full Text Available In comparison of effects of various drugs with the same indications produced by different companies or comparing drugs manufactured in Iran with their foreign counterparts may result in producing drugs with higher qualities in our country. In this study the spasmolithic effect of two herbal drugs , gripe mixture and caraway mixture , that are prescribed as spasmolithic and carminative in infants were compared. 2 cm of rat jejunum was placed in a organ bath containing tyrode solution (37 C , 100% O2 . The jejunum was contracted because of acetylcholine (1 ml. when the muscle contraction reached the plateau the different volumes of drug were added to the organ bath. The inhibitory effect of drug indicated by physiograph , the intestine was washed two times. When the intestine reached the basal tonicity , the different volumes of second drug were tested. The results were compared using paired t.test The results show that both drugs inhibit the spasm induced by acetylcholine in rat jejunum . This inhibitory effect was dose dependent. The caraway mixture showed a higher effect in comparison with gripe mixture (P<0.05. The caraway mixture has a higher inhibitory effect on acetylcholine induced spasm in rat jejunum . It seems that it has the same effect on human.

  11. Flow- and acetylcholine-induced dilation in small arteries from rats with renovascular hypertension - effect of tempol treatment

    Christensen, Frank Holden; Stankevicius, Edgaras; Hansen, Thomas;

    2007-01-01

    We investigated whether renovascular hypertension alters vasodilatation mediated by nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) and the influence of the superoxide dismutase mimetic tempol on vasodilatation. One-kidney one-clip hypertensive Sprague–Dawley rats, treated...... with either vehicle or tempol (from weeks 5 to 10 after placement of the clip), and uninephrectomized control rats were investigated. In renal hypertensive rats systolic blood pressure increased to 171±6 mmHg (n=10), while in tempol-treated rats systolic blood pressure remained normal (139±7 mmHg, n=5......). In isolated pressurized mesenteric small arteries NO-mediated dilatation was obtained by increasing flow rate and EDHF-mediated dilatation by acetylcholine. In arteries from hypertensive rats, flow-induced dilatation was blunted, as compared to normotensive and tempol-treated rats, while acetylcholine...

  12. Trophic factor-induced excitatory synaptogenesis involves postsynaptic modulation of nicotinic acetylcholine receptors.

    Woodin, Melanie A; Munno, David W; Syed, Naweed I

    2002-01-15

    Neurotrophic factors have well established roles in neuronal development, although their precise involvement in synapse formation and plasticity is yet to be fully determined. Using soma-soma synapses between identified Lymnaea neurons, we have shown recently that trophic factors are required for excitatory but not inhibitory synapse formation. However, neither the precise site (presynaptic versus postsynaptic cell) nor the underlying mechanisms have yet been defined. In the present study, synapse formation between the presynaptic cell visceral dorsal 4 (VD4) and its postsynaptic partner right pedal dorsal 1 (RPeD1) was examined to define the cellular mechanisms mediating trophic factor-induced excitatory synaptogenesis in cell culture. When paired in a soma-soma configuration in the presence of defined media (DM, nonproteinacious), mutually inhibitory synapses were appropriately reconstructed between VD4 and RPeD1. However, when cells were paired in the presence of increasing concentrations of Lymnaea brain-conditioned medium (CM), a biphasic synapse (initial excitatory synaptic component followed by inhibition) developed. The CM-induced excitatory synapse formation required trophic factor-mediated activation of receptor tyrosine kinases in the postsynaptic cell, RPeD1, and a concomitant modulation of existing postsynaptic nicotinic acetylcholine receptors (nAChRs). Specifically, when RPeD1 was isolated in DM, exogenously applied ACh induced a hyperpolarizing response that was sensitive to the AChR antagonist methyllycaconitine (MLA). In contrast, a single RPeD1 isolated in CM exhibited a biphasic response to exogenously applied ACh. The initial depolarizing phase of the biphasic response was sensitive to both mecamylamine and hexamethonium chloride, whereas the hyperpolarizing phase was blocked by MLA. In soma-soma-paired neurons, the VD4-induced synaptic responses in RPeD1 were sensitive to the cholinergic antagonists in a concentration range similar to that

  13. THE EFFECT OF INTRASTRIATAL APPLICATION OF DIRECTLY AND INDIRECTLY ACTING DOPAMINE AGONISTS AND ANTAGONISTS ON THE INVIVO RELEASE OF ACETYLCHOLINE MEASURED BY BRAIN MICRODIALYSIS - THE IMPORTANCE OF THE POSTSURGERY INTERVAL

    DEBOER, P; DAMSMA, G; SCHRAM, Q; STOOF, JC; ZAAGSMA, J; WESTERINK, BHC

    1992-01-01

    The effect of intrastriatal application of D-1, D-2 and indirect dopaminergic drugs on the release of striatal acetylcholine as a function of the post-implantation intervals was studied using in vivo microdialysis. The dopamine D-2 agonists LY 171555 and (-)N0437 inhibited the release of striatal ac

  14. Electrochemically triggered release of acetylcholine from scCO2 impregnated conductive polymer films evokes intracellular Ca(2+) signaling in neurotypic SH-SY5Y cells.

    Löffler, Susanne; Seyock, Silke; Nybom, Rolf; Jacobson, Gunilla B; Richter-Dahlfors, Agneta

    2016-12-10

    Implantable devices for electronically triggered drug release are attractive to achieve spatial and temporal control over drug concentrations in patients. Realization of such devices is, however, associated with technical and biological challenges. Among these are containment of drug reservoirs, lack of precise control cues, as well as the charge and size of the drug. Here, we present a method for electronically triggered release of the quaternary ammonium cation acetylcholine (ACh) from an impregnated conductive polymer film. Using supercritical carbon dioxide (scCO2), a film of PEDOT/PSS (poly(3,4)-ethylenedioxythiophene doped with poly(styrenesulfonate)) is impregnated with the neurotransmitter acetylcholine. The gentle scCO2 process generated a dry, drug-impregnated surface, well suited for interaction with biological material, while maintaining normal electrochemical properties of the polymer. Electrochemical switching of impregnated PEDOT/PSS films stimulated release of ACh from the polymer matrix, likely due to swelling mediated by the influx and efflux of charged and solvated ions. Triggered release of ACh did not affect the biological activity of the drug. This was shown by real-time monitoring of intracellular Ca(2+) signaling in neurotypic cells growing on the impregnated polymer surface. Collectively, scCO2 impregnation of conducting polymers offers the first one-step, dopant-independent drug impregnation process, potentially facilitating loading of both anionic and cationic drugs that can be dissolved in scCO2 on its own or by using a co-solvent. We foresee that scCO2-loaded devices for electronically triggered drug release will create novel opportunities when generating active bio-coatings, tunable for specific needs, in a variety of medical settings.

  15. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  16. Muscarinic acetylcholine receptor is involved in acetylcholine regulating stomatal movement

    2000-01-01

    In animal cells, action of acetylcholine depends on its binding with its two specific receptors on the plasma membrane: the nicotinic and muscarinic respectively. The present investigation has shown that agonists of muscarinic receptor (muscarine) could induce stomatal opening, while the antagonists (atropine) could block stomatal opening induced by acetylcholine. Their effects can only be realized in medium containing Ca2+, but not in medium containing K+. The results tend to reveal that the muscarinic receptor is involved in acetylcholine-induced stomatal movement.

  17. Acetylcholine release in mouse hippocampal CA1 preferentially activates inhibitory-selective interneurons via alpha4 beta2* nicotinic receptor activation

    L. Andrew Bell

    2015-04-01

    Full Text Available Acetylcholine (ACh release onto nicotinic receptors directly activates subsets of inhibitory interneurons in hippocampal CA1. However, the specific interneurons activated and their effect on the hippocampal network is not completely understood. Therefore, we investigated subsets of hippocampal CA1 interneurons that respond to ACh release through the activation of nicotinic receptors and the potential downstream effects this may have on hippocampal CA1 network function. ACh was optogenetically released in mouse hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated viral mediated transfection. The actions of optogenetically released ACh were assessed on both pyramidal neurons and different interneuron subtypes via whole cell patch clamp methods. Vasoactive intestinal peptide (VIP-expressing interneurons that selectively innervate other interneurons (VIP/IS were excited by ACh through the activation of nicotinic receptors containing alpah4 and beta2 subunits (alpha4 beta2*. ACh release onto VIP/IS was presynaptically inhibited by M2 muscarinic autoreceptors. ACh release produced spontaneous inhibitory postsynaptic current (sIPSC barrages blocked by dihydro-beta-erythroidine in interneurons but not pyramidal neurons. Optogenetic suppression of VIP interneurons did not inhibit these sIPSC barrages suggesting other interneuron-selective interneurons were also excited by 42* nicotinic receptor activation. In contrast, interneurons that innervate pyramidal neuron perisomatic regions were not activated by ACh release onto nicotinic receptors. Therefore, we propose ACh release in CA1 facilitates disinhibition through activation of 42* nicotinic receptors on interneuron-selective interneurons whereas interneurons that innervate pyramidal neurons are less affected by nicotinic receptor activation.

  18. Two novel α7 nicotinic acetylcholine receptor ligands: in vitro properties and their efficacy in collagen-induced arthritis in mice.

    Marjolein A van Maanen

    Full Text Available The cholinergic anti-inflammatory pathway can downregulate inflammation via the release of acetylcholine (ACh by the vagus nerve. This neurotransmitter binds to the α7 subunit of nicotinic acetylcholine receptors (α7nAChR, expressed on macrophages and other immune cells. We tested the pharmacological and functional profile of two novel compounds, PMP-311 and PMP-072 and investigated their role in modulating collagen-induced arthritis (CIA in mice.Both compounds were characterized with binding, electrophysiological, and pharmacokinetic studies. For in vivo efficacy studies in the CIA model the compounds were administered daily by oral gavage from day 20 till sacrifice at day 34. Disease progression was monitored by visual clinical scoring and measurement of paw swelling. Inflammation and joint destruction were examined by histology and radiology.Treatment with PMP-311 was effective in preventing disease onset, reducing clinical signs of arthritis, and reducing synovial inflammation and bone destruction. PMP-072 also showed a trend in arthritis reduction at all concentrations tested. The data showed that while both compounds bind to α7nAChR with high affinity, PMP-311 acts like a classical agonist of ion channel activity, and PMP-072 can actually act as an ion channel antagonist. Moreover, PMP-072 was clearly distinct from typical competitive antagonists, since it was able to act as a silent agonist. It synergizes with the allosteric modulator PNU-120596, and subsequently activates desensitized α7nAChR. However, PMP-072 was less efficacious than PMP-311 at both channel activation and desensitization, suggesting that both conducting and non-conducting states maybe of importance in driving an anti-inflammatory response. Finally, we found that the anti-arthritic effect can be observed despite limited penetration of the central nervous system.These data provide direct evidence that the α7nAChR in immune cells does not require typical ion channel

  19. Acetylcholine induces neurite outgrowth and modulates matrix metalloproteinase 2 and 9.

    Anelli, Tonino; Mannello, Ferdinando; Salani, Monica; Tonti, Gaetana A; Poiana, Giancarlo; Biagioni, Stefano

    2007-10-19

    The matrix metalloproteinases (MMPs), responsible for the degradation of extracellular matrix (ECM) proteins, may regulate brain cellular functions. Choline acetyltransferase (ChAT) transfected murine neuroblastoma cell line N18TG2, that synthesize acetylcholine and show enhancement of several neurospecific markers (i.e., sinapsin I, voltage gated Na(+) channels, high affinity choline uptake) and fiber outgrowth, were studied for the MMP regulation during neuronal differentiation. Zymography of N18TG2 culture medium revealed no gelatinolytic activity, whereas after carbachol treatment of cells both MMP-9 and activated MMP-2 forms were detected. ChAT-transfected clone culture medium contains three MMP forms at 230, 92, and 66kDa. Carbachol treatment increased MMP-2 and MMP-9 gene expression in N18TG2 cells and higher levels for both genes were also observed in ChAT transfected cells. The data are consistent with the hypothesis that acetylcholine brings about the activation of an autocrine loop modulating MMP expression.

  20. Acetylcholine release in the mesocorticolimbic dopamine system during cocaine seeking: conditioned and unconditioned contributions to reward and motivation.

    You, Zhi-Bing; Wang, Bin; Zitzman, Dawnya; Wise, Roy A

    2008-09-03

    Microdialysis was used to assess the contribution to cocaine seeking of cholinergic input to the mesocorticolimbic dopamine system in ventral tegmental area (VTA). VTA acetylcholine (ACh) was elevated in animals lever pressing for intravenous cocaine and in cocaine-experienced and cocaine-naive animals passively receiving similar "yoked" injections. In cocaine-trained animals, the elevations comprised an initial (first hour) peak to approximately 160% of baseline and a subsequent plateau of 140% of baseline for the rest of the cocaine intake period. In cocaine-naive animals, yoked cocaine injections raised ACh levels to the 140% plateau but did not cause the initial 160% peak. In cocaine-trained animals that received unexpected saline (extinction conditions) rather than the expected cocaine, the initial peak was seen but the subsequent plateau was absent. VTA ACh levels played a causal role and were not just a correlate of cocaine seeking. Blocking muscarinic input to the VTA increased cocaine intake; the increase in intake offset the decrease in cholinergic input, resulting in the same VTA dopamine levels as were seen in the absence of the ACh antagonists. Increased VTA ACh levels (resulting from 10 microM VTA neostigmine infusion) increased VTA dopamine levels and reinstated cocaine seeking in cocaine-trained animals that had undergone extinction; these effects were strongly attenuated by local infusion of a muscarinic antagonist and weakly attenuated by a nicotinic antagonist. These findings identify two cholinergic responses to cocaine self-administration, an unconditioned response to cocaine itself and a conditioned response triggered by cocaine-predictive cues, and confirm that these cholinergic responses contribute to the control of cocaine seeking.

  1. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M. (Stanford Univ. School of Medicine, CA (USA))

    1990-10-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications.

  2. The release of acetylcholine from the spinal cord of the cat by antidromic stimulation of motor nerves.

    Kuno, M; Rudomin, P

    1966-11-01

    1. ACh was measured in the effluent from the perfused lumbosacral cord of the cat with or without stimulation of the central ends of the cut left sciatic and femoral nerves after section of the left dorsal roots.2. In about 30% of the preparations ACh was obtained in the samples collected at rest (average 3.3 ng/min); the amount of ACh release was increased 1.3-9 times by stimulation of the peripheral nerves. The average amount of ACh collected during stimulation of the peripheral nerves at 5/sec was 6.9 ng/min. Antidromic motor nerve impulses responsible for the ACh release were likely to be only those in alpha motor fibres.3. There was a depression in ACh release/stimulus as the stimulus frequency was increased more than 10/sec. Such changes in ACh release with various stimulus frequencies were correlated with depression in the response of Renshaw cells to excitation through motor-axon collaterals.4. Amounts of ACh release during stimulation of the peripheral nerves at 5/sec were significantly increased for 1 or 2 min after a short tetanic stimulation of the nerves.5. Intravenous injection of dihydro-beta-erythroidine did not reduce the amount of ACh release produced by stimulation of the peripheral nerves.6. It is concluded that antidromic impulses in alpha motor fibres liberate ACh from the presynaptic terminals at the central synapses on Renshaw cells.

  3. Acetylcholine-induced neuronal differentiation: muscarinic receptor activation regulates EGR-1 and REST expression in neuroblastoma cells.

    Salani, Monica; Anelli, Tonino; Tocco, Gabriella Augusti; Lucarini, Elena; Mozzetta, Chiara; Poiana, Giancarlo; Tata, Ada Maria; Biagioni, Stefano

    2009-02-01

    Neurotransmitters are considered part of the signaling system active in nervous system development and we have previously reported that acetylcholine (ACh) is capable of enhancing neuronal differentiation in cultures of sensory neurons and N18TG2 neuroblastoma cells. To study the mechanism of ACh action, in this study, we demonstrate the ability of choline acetyltransferase-transfected N18TG2 clones (e.g. 2/4 clone) to release ACh. Analysis of muscarinic receptors showed the presence of M1-M4 subtypes and the activation of both IP(3) and cAMP signal transduction pathways. Muscarinic receptor activation increases early growth response factor-1 (EGR-1) levels and treatments with agonists, antagonists, and signal transduction enzyme inhibitors suggest a role for M3 subtype in EGR-1 induction. The role of EGR-1 in the enhancement of differentiation was investigated transfecting in N18TG2 cells a construct for EGR-1. EGR-1 clones show increased neurite extension and a decrease in Repressor Element-1 silencing transcription factor (REST) expression: both these features have also been observed for the 2/4 clone. Transfection of this latter with EGR zinc-finger domain, a dominant negative inhibitor of EGR-1 action, increases REST expression, and decreases fiber outgrowth. The data reported suggest that progression of the clone 2/4 in the developmental program is dependent on ACh release and the ensuing activation of muscarinic receptors, which in turn modulate the level of EGR-1 and REST transcription factors.

  4. Dopamine D₂-receptor antagonists ameliorate indomethacin-induced small intestinal ulceration in mice by activating α7 nicotinic acetylcholine receptors.

    Yasuda, Masashi; Kawahara, Ryoji; Hashimura, Hiroshi; Yamanaka, Naoki; Iimori, Maho; Amagase, Kikuko; Kato, Shinichi; Takeuchi, Koji

    2011-01-01

    We have reported that nicotine and the specific α7AChR agonist ameliorate indomethacin-induced intestinal lesions in mice by activating α7 nicotinic acetylcholine receptors (α7nAChR). Dopamine D₂-receptor antagonists, such as domperidone and metoclopramide, enhance the release of ACh from vagal efferent nerves. The present study examined the effects of domperidone and metoclopramide on indomethacin-induced small intestinal ulceration in mice, focusing on the α7AChR. Male C57BL/6 mice were administered indomethacin (10 mg/kg, s.c.) and sacrificed 24 h later. Domperidone (0.1-10 mg/kg) and metoclopramide (0.03-0.3 mg/kg) were administered i.p. twice, at 0.5 h before and 8 h after indomethacin treatment, while methyllycaconitine (a selective antagonist of α7nAChR, 30 mg/kg) was administered twice, at 0.5 h before each domperidone treatment. Indomethacin caused severe hemorrhagic lesions in the small intestine, mostly to the jejunum and ileum, with a concomitant increase in myeloperoxidase (MPO) activity. Domperidone suppressed the severity of lesions and the increase in MPO activity at low doses (0.1-3 mg/kg), but not at a high dose (10 mg/kg). Similar effects were also observed by metoclopramide. The protective effects of domperidone and metoclopramide were totally abolished by prior administration of methyllycaconitine. Indomethacin treatment markedly enhanced inducible nitric oxide synthase and chemokine mRNA expression in the small intestine, but these responses were all significantly attenuated by either domperidone or metoclopramide. These findings suggest that dopamine D₂-receptor antagonists ameliorate indomethacin-induced small intestinal ulceration through the activation of endogenous anti-inflammatory pathways mediated by α7nAChR.

  5. Acetylcholine Attenuated TNF-α-Induced Apoptosis in H9c2 Cells: Role of Calpain and the p38-MAPK Pathway

    Ming Zhao

    2015-07-01

    Full Text Available Background: Previous studies have shown that inflammation is associated with excessive activation of calpains. Acetylcholine (ACh has been reported to inhibit pro-inflammatory cytokine release and protect against cardiomyocyte injury. However, there is no direct evidence regarding whether ACh can regulate calpains to exert cardioprotection. To this end, we investigated the effect of ACh on tumour necrosis factor alpha (TNF-α-induced cardiomyocyte injury and further explored the underlying mechanism. Methods: Flow cytometry and transmission electron microscopy were performed to evaluate apoptosis and cellular ultrastructure. Western blotting was performed to assess changes in protein expression. siRNA was employed to silence specific proteins. Results: TNF-α treatment increased the expression of cleaved caspase-3, calpain-1 and p38-mitogen-activated protein kinase (p38-MAPK. The calpain inhibitor PD150606 and the p38-MAPK inhibitor SB203580 inhibited apoptosis induced by TNF-α. Moreover, SB203580 decreased the expression and activity of calpain-1, possibly related to the up-regulation of calpastatin. ACh significantly inhibited TNF-α-induced cell apoptosis, as evidenced by decreases in caspase-3 cleavage, p38-MAPK phosphorylation, and calpain-1 expression and activity as well as increases in calpastatin expression. These beneficial effects of ACh were abolished by atropine or M2AChR siRNA. Conclusion: Our results suggest that ACh ameliorated TNF-α-induced calpain activation by decreasing p38-MAPK phosphorylation and enhancing calpastatin expression, indicating that calpain may be an important link between inflammatory factors and myocardial cell apoptosis.

  6. Phosphocholine-Modified Macromolecules and Canonical Nicotinic Agonists Inhibit ATP-Induced IL-1β Release.

    Hecker, Andreas; Küllmar, Mira; Wilker, Sigrid; Richter, Katrin; Zakrzewicz, Anna; Atanasova, Srebrena; Mathes, Verena; Timm, Thomas; Lerner, Sabrina; Klein, Jochen; Kaufmann, Andreas; Bauer, Stefan; Padberg, Winfried; Kummer, Wolfgang; Janciauskiene, Sabina; Fronius, Martin; Schweda, Elke K H; Lochnit, Günter; Grau, Veronika

    2015-09-01

    IL-1β is a potent proinflammatory cytokine of the innate immune system that is involved in host defense against infection. However, increased production of IL-1β plays a pathogenic role in various inflammatory diseases, such as rheumatoid arthritis, gout, sepsis, stroke, and transplant rejection. To prevent detrimental collateral damage, IL-1β release is tightly controlled and typically requires two consecutive danger signals. LPS from Gram-negative bacteria is a prototypical first signal inducing pro-IL-1β synthesis, whereas extracellular ATP is a typical second signal sensed by the ATP receptor P2X7 that triggers activation of the NLRP3-containing inflammasome, proteolytic cleavage of pro-IL-1β by caspase-1, and release of mature IL-1β. Mechanisms controlling IL-1β release, even in the presence of both danger signals, are needed to protect from collateral damage and are of therapeutic interest. In this article, we show that acetylcholine, choline, phosphocholine, phosphocholine-modified LPS from Haemophilus influenzae, and phosphocholine-modified protein efficiently inhibit ATP-mediated IL-1β release in human and rat monocytes via nicotinic acetylcholine receptors containing subunits α7, α9, and/or α10. Of note, we identify receptors for phosphocholine-modified macromolecules that are synthesized by microbes and eukaryotic parasites and are well-known modulators of the immune system. Our data suggest that an endogenous anti-inflammatory cholinergic control mechanism effectively controls ATP-mediated release of IL-1β and that the same mechanism is used by symbionts and misused by parasites to evade innate immune responses of the host.

  7. Nicotinic Acetylcholine Receptors in Sensory Cortex

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  8. The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type II vestibular hair cells.

    Kong, Wei-Jia; Guo, Chang-Kai; Zhang, Xiao-Wen; Chen, Xiong; Zhang, Song; Li, Guan-Qiao; Li, Zhi-Wang; Van Cauwenberge, Paul

    2007-01-19

    Molecular biological studies and electrophysiological data have demonstrated that acetylcholine (ACh) is the principal cochlear and vestibular efferent neurotransmitter among mammalians. However, the functional roles of ACh in type II vestibular hair cells (VHCs II) among mammalians are still unclear, with the exception of the well-known alpha9-containing nicotinic ACh receptor (alpha9-containing nAChR)-activated small conductance, calcium-dependent potassium current (SK) in cochlear hair cells and frog saccular hair cells. The activation of SK current was necessary for the calcium influx through the alpha9-containing nAChR. Recently, we have demonstrated that ACh-induced big conductance, calcium-dependent potassium current (BK) was present in VHCs II of the vestibular end-organ of guinea pig. In this study, the nature of calcium influx for the activation of ACh-induced BK current in saccular VHCs II of guinea pig was investigated. Following extracellular perfusion of ACh, saccular VHCs II displayed a sustained outward current, which was sensitive to iberiotoxin (IBTX). High concentration of apamin failed to inhibit the current amplitude of ACh-induced outward current. Intracellular application of Cs(+) completely abolished the current evoked by ACh. ACh-induced current was potently inhibited by nifedipine, nimodipine, Cd(2+) and Ni(2+), respectively. The inhibition potency of these four calcium channel antagonists was nimodipine>nifedipine>cadmium>nickel. The L-type Ca(2+) channels agonist, (-)-Bay-K 8644 mimicked the effect of ACh and activated an IBTX-sensitive current. In addition, partial VHCs II displayed a biphasic waveform. In conclusion, the present data showed that in the guinea pig saccular VHCs II, ACh-induced BK channel was coupled with the calcium channel, but not the receptor. The perfusion of ACh will drive the opening of calcium channels; the influx of calcium ions will then activate the BK current.

  9. Positive allosteric modulators of alpha 7 nicotinic acetylcholine receptors reverse ketamine-induced schizophrenia-like deficits in rats.

    Nikiforuk, Agnieszka; Kos, Tomasz; Hołuj, Małgorzata; Potasiewicz, Agnieszka; Popik, Piotr

    2016-02-01

    Alpha 7 nicotinic acetylcholine receptors (α7-nAChRs) have generated great interest as targets of new pharmacological treatments for cognitive dysfunction in schizophrenia. One promising recent approach is based on the use of positive allosteric modulators (PAMs) of α7-nAChRs, which demonstrate several advantages over direct agonists. Nevertheless, the efficacy of these newly introduced α7-nAChR agents has not been extensively characterised in animal models of schizophrenia. The aim of the present study was to evaluate the efficacy of type I and II PAMs, N-(5-chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)urea (PNU-120596) and N-(4-chlorophenyl)-[[(4-chlorophenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide (CCMI), respectively, and galantamine, an acetylcholinesterase inhibitor (AChE) that also allosterically modulates nAChRs, against ketamine-induced cognitive deficits and social withdrawal in rats. The orthosteric α7-nAChR agonist octahydro-2-methyl-5-(6-phenyl-3-pyridazinyl)-pyrrolo[3,4-c]pyrrole (A-582941) was used as a positive control. Additionally, the antipsychotic activities of the tested compounds were assessed using the conditioned avoidance response (CAR) test. PNU-120596, CCMI, galantamine and A-582941 reversed ketamine-induced cognitive inflexibility, as assessed in the attentional set-shifting task (ASST). The tested compounds were also effective against ketamine-induced impairment in the novel object recognition task (NORT). PNU-120596, CCMI, and A-582941 ameliorated ketamine-induced social interaction deficits, whereas galantamine was ineffective. Moreover, all tested compounds selectively suppressed the CAR. The positive allosteric modulation of α7-nAChRs demonstrates preclinical efficacy not only against schizophrenia-like cognition impairments but also positive and negative symptoms. Therefore, the use of α7-nAChR PAMs as a potential treatment strategy in schizophrenia is supported.

  10. Efficacy of naltrexone on acetylcholine-induced alloknesis in atopic eczema.

    Heyer, G; Groene, D; Martus, P

    2002-10-01

    Atopic eczema (AE) is a chronically pruritic inflammatory skin disease. Although the mediators and exact mechanisms eliciting and sustaining pruritus are not completely known, AE patients in clinical trials have been shown to benefit under treatment with morphine antagonists. Naltrexone (NAL) is a relatively pure morphine antagonist that blocks the effects of opioids twice as much as naloxone. NAL exhibits minimal pharmacological activity and displaces endorphines at mu- and kappa-receptors without its own intrinsic activity. NAL's excellent oral bioavailability and linear increases in the area under plasma concentration-time curve make it ideal for use in experimental studies. We designed our present experiments similar to former experiments evaluating both peripheral cutaneous sensations and central itch procession in order to gain more information about the possible distribution of opioid receptors and their involvement in the pathophysiology of pruritus. Eleven AE patients participated in our double-blind study. Either 25 mg of NAL (Nemexin) or a placebo (PLA) was given to the participants 60 min prior to the acetylcholine (ACH) injection [intracutaneous (i.c.) injection of 0.02 ml of 0.55 M]. A PLA stimulus with buffered saline served as control on the opposite forearm. We used laser Doppler flowmetry to measure the vasomotoric changes after ACH injection and recorded the duration and intensity of itch with a visual analogue scale (VAS). Following the evaluation of wheal and flare sensation, we obtained the area of itchy skin around the injection site (alloknesis) by gently stroking the surrounding skin with a brush in the centripetal direction towards the injection site. The results were planimetrically evaluated. Oral NAL reduced the perifocal itch significantly (P 0.50) and especially failed to decrease the initial flux response, which is a typical sign of an altered vascular reaction (P > 0.25). The decrease of wheal (P = 0.008) and flare (P = 0

  11. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.; Lennon, V.A.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodies to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.

  12. Acute but not chronic metabolic acidosis potentiates the acetylcholine-induced reduction in blood pressure: an endothelium-dependent effect.

    Celotto, A C; Ferreira, L G; Capellini, V K; Albuquerque, A A S; Rodrigues, A J; Evora, P R B

    2016-02-01

    Metabolic acidosis has profound effects on vascular tone. This study investigated the in vivo effects of acute metabolic acidosis (AMA) and chronic metabolic acidosis (CMA) on hemodynamic parameters and endothelial function. CMA was induced by ad libitum intake of 1% NH4Cl for 7 days, and AMA was induced by a 3-h infusion of 6 M NH4Cl (1 mL/kg, diluted 1:10). Phenylephrine (Phe) and acetylcholine (Ach) dose-response curves were performed by venous infusion with simultaneous venous and arterial blood pressure monitoring. Plasma nitrite/nitrate (NOx) was measured by chemiluminescence. The CMA group had a blood pH of 7.15±0.03, which was associated with reduced bicarbonate (13.8±0.98 mmol/L) and no change in the partial pressure of arterial carbon dioxide (PaCO2). The AMA group had a pH of 7.20±0.01, which was associated with decreases in bicarbonate (10.8±0.54 mmol/L) and PaCO2 (47.8±2.54 to 23.2±0.74 mmHg) and accompanied by hyperventilation. Phe or ACh infusion did not affect arterial or venous blood pressure in the CMA group. However, the ACh infusion decreased the arterial blood pressure (ΔBP: -28.0±2.35 mm Hg [AMA] to -4.5±2.89 mmHg [control]) in the AMA group. Plasma NOx was normal after CMA but increased after AMA (25.3±0.88 to 31.3±0.54 μM). These results indicate that AMA, but not CMA, potentiated the Ach-induced decrease in blood pressure and led to an increase in plasma NOx, reinforcing the effect of pH imbalance on vascular tone and blood pressure control.

  13. Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells.

    Arai, Yuki; Ishii, Hirotaka; Kobayashi, Makito; Ozawa, Hitoshi

    2017-03-01

    GnRH neurons form a final common pathway for the central regulation of reproduction. Although the involvement of acetylcholine in GnRH secretion has been reported, direct effects of acetylcholine and expression profiles of acetylcholine receptors (AChRs) still remain to be studied. Using immortalized GnRH neurons (GT1-7 cells), we analyzed molecular expression and functionality of AChRs. Expression of the mRNAs were identified in the order α7 > β2 = β1 ≧ α4 ≧ α5 = β4 = δ > α3 for nicotinic acetylcholine receptor (nAChR) subunits and m4 > m2 for muscarinic acetylcholine receptor (mAChR) subtypes. Furthermore, this study revealed that α7 nAChRs contributed to Ca(2+) influx and GnRH release and that m2 and m4 mAChRs inhibited forskolin-induced cAMP production and isobutylmethylxanthine-induced GnRH secretion. These findings demonstrate the molecular profiles of AChRs, which directly contribute to GnRH secretion in GT1-7 cells, and provide one possible regulatory action of acetylcholine in GnRH neurons.

  14. The essential oil of Eucalyptus tereticornis, and its constituents alpha- and beta-pinene, potentiate acetylcholine-induced contractions in isolated rat trachea.

    Lima, Francisco J B; Brito, Teresinha S; Freire, Walter B S; Costa, Roberta C; Linhares, Maria I; Sousa, Francisca C F; Lahlou, Saad; Leal-Cardoso, José H; Santos, Armênio A; Magalhães, Pedro J C

    2010-09-01

    The effects of the essential oil of Eucalyptus tereticornis (EOET), especially the effects of its constituents alpha- and beta-pinene, were studied on rat trachea in vitro. In tracheal rings, EOET, alpha- or beta-pinene potentiated the contractions induced by acetylcholine (ACh). Contractions induced by K(+) (60mM) were also potentiated by alpha- and beta-pinene, but were reduced by EOET. Our findings show that EOET has myorelaxant effects on rat airways, but potentiates ACh-induced contractions. Monoterpenes alpha- and beta-pinene are involved in its potentiating actions, but are not responsible for its myorelaxant effects. A putative inhibition of the acetylcholinesterase enzyme is involved.

  15. Alpha7 nicotinic acetylcholine receptor activation ameliorates scopolamine-induced behavioural changes in a modified continuous Y-maze task in mice.

    Redrobe, John P; Nielsen, Elsebet Ø; Christensen, Jeppe K; Peters, Dan; Timmermann, Daniel B; Olsen, Gunnar M

    2009-01-01

    The alpha7 (alpha7) nicotinic acetylcholine receptor may represent a drug target for the treatment of disorders associated with working memory/attentional dysfunction. We investigated the effects of three distinct alpha7 nicotinic acetylcholine receptor agonists: 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941; 0.01-0.1 mg/kg), 4-bromophenyl 1,4-diazabicyclo(3.2.2) nonane-4-carboxylate (SSR180711; 0.3-3 mg/kg) and N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide (PNU-282987; 1-10 mg/kg), on scopolamine-induced deficits in a modified Y-maze procedure. Mice were forced to choose one of two visually distinct arms, and were confined there for a 5 min exploration period before being allowed to explore both arms for a 2 min test session, immediately thereafter. The time spent in each arm, entries and total distance travelled were recorded using an automated system. Characterisation experiments showed that scopolamine-treated (1 mg/kg) mice spent less time exploring the unfamiliar arm, when compared with vehicle-treated animals. Combination experiments showed that all three alpha7 agonists ameliorated scopolamine-induced changes in unfamiliar arm exploration. In conclusion, the present data support the idea that alpha7 nicotinic acetylcholine receptors may represent an interesting target for the treatment of conditions associated with attentional/working memory dysfunction.

  16. Antipsychotic-induced catalepsy is attenuated in mice lacking the M4 muscarinic acetylcholine receptor

    Fink-Jensen, Anders; Schmidt, Lene S; Dencker, Ditte

    2011-01-01

    of the striatum, suggesting a role for muscarinic M4 receptors in the motor side effects of antipsychotics, and in the alleviation of these side effects by anticholinergics. Here we investigated the potential role of the muscarinic M4 receptor in catalepsy induced by antipsychotics (haloperidol and risperidone...

  17. Morphine-induced anxiolytic-like effect in morphine-sensitized mice: involvement of ventral hippocampal nicotinic acetylcholine receptors.

    Rezayof, Ameneh; Assadpour, Sara; Alijanpour, Sakineh

    2013-01-01

    In the present study, the effects of repeated intra-ventral hippocampal (intra-VH) microinjections of nicotinic acetylcholine receptor agonist or antagonist on morphine-induced anxiolytic-like behavior were investigated in morphine-sensitized mice using elevated plus-maze. Intraperitoneal (i.p.) administration of different doses of morphine (5, 7.5 and 10mg/kg) increased the percentage of open arm time (%OAT), open arm entries (%OAE), but not locomotor activity, indicating an anxiolytic-like response to morphine. The maximum response was obtained by 7.5mg/kg of the opioid. The anxiety-like behavior which was induced by a lower dose of morphine (5mg/kg) was significantly increased in mice that had previously received once daily injections of morphine (10 and 20mg/kg, i.p.) for 3 days. It should be considered that this treatment also increased locomotor activity in morphine-sensitized mice. Furthermore, the response to an ineffective dose of morphine (5mg/kg, i.p.) in the EPM was significantly increased in the animals that had previously received nicotine for 3 days (0.1, 0.3, 0.5 and 0.7 μg/mouse; intra-VH), 5 min prior to the injections of morphine (5mg/kg/day × 3 days; i.p.). On the other hand, the increase of morphine-induced anxiolytic-like effect in animals that had previously received the 3-day morphine (20mg/kg) was dose dependently suppressed by once daily injections of mecamylamine (0.5, 1 and 2 μg/mouse/day × 3 days; intra-VH). It is important to note that repeated intra-VH administrations of the same doses of nicotine or mecamylamine alone caused no significant change in morphine (5mg/kg)-induced anxiety-like parameters in the EPM. In conclusion, it seems that morphine sensitization affects the anxiety-like behavior in the EPM and the cholinergic system in the ventral hippocampus, via nicotinic receptors, may play an important role in this effect.

  18. Alpha 7 nicotinic acetylcholine receptor-mediated protection against ethanol-induced neurotoxicity.

    de Fiebre, NancyEllen C; de Fiebre, Christopher M

    2003-11-01

    The alpha(7)-selective nicotinic partial agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB) was examined for its ability to modulate ethanol-induced neurotoxicity in primary cultures of rat neurons. Primary cultures of hippocampal neurons were established from Long-Evans, embryonic day (E)-18 rat fetuses and maintained for 7 days. Ethanol (0-150 mM), DMXB (0-56 microM), or both were subsequently co-applied to cultures. Ethanol was added two additional times to the cultures to compensate for evaporation. After 5 days, neuronal viability was assessed with the MTT cell proliferation assay. Results demonstrated that ethanol reduces neuronal viability in a concentration-dependent fashion and that DMXB protects against this ethanol-induced neurotoxicity, also in a concentration-dependent fashion. These results support the suggestion that nicotinic partial agonists may be useful in treating binge drinking-induced neurotoxicity and may provide clues as to why heavy drinkers are usually smokers.

  19. Positive allosteric modulators of the α7 nicotinic acetylcholine receptor potentiate glutamate release in the prefrontal cortex of freely-moving rats

    Bortz, D M; Upton, B A; Mikkelsen, J D

    2016-01-01

    Positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (α7nAChRs) exhibit pro-cognitive effects in animal models of schizophrenia and are targets for the discovery of cognition-enhancing drugs. However, little is known about their in vivo mechanism of action because such st...

  20. Acetylcholine receptor antibody

    ... page: //medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood ...

  1. Exercise and neuromodulators: choline and acetylcholine in marathon runners

    Conlay, L. A.; Sabounjian, L. A.; Wurtman, R. J.

    1992-01-01

    Certain neurotransmitters (i.e., acetylcholine, catecholamines, and serotonin) are formed from dietary constituents (i.e., choline, tyrosine and tryptophan). Changing the consumption of these precursors alters release of their respective neurotransmitter products. The neurotransmitter acetylcholine is released from the neuromuscular junction and from brain. It is formed from choline, a common constituent in fish, liver, and eggs. Choline is also incorporated into cell membranes; membranes may likewise serve as an alternative choline source for acetylcholine synthesis. In trained athletes, running a 26 km marathon reduced plasma choline by approximately 40%, from 14.1 to 8.4 uM. Changes of similar magnitude have been shown to reduce acetylcholine release from the neuromuscular junction in vivo. Thus, the reductions in plasma choline associated with strenuous exercise may reduce acetylcholine release, and could thereby affect endurance or performance.

  2. Scutellarin protects against Aβ-induced learning and memory deficits in rats: involvement of nicotinic acetylcholine receptors and cholinesterase

    Li-li GUO; Zhi-zhong GUAN; Yong-lin WANG

    2011-01-01

    To examine the protective effects of scutellarin (Scu) on rats with learning and memory deficit induced by β-amyloid peptide (Aβ).Methods:Fifty male Wistar rats were randomly divided into 5 groups:control,sham operation,Aβ,Aβ+Scu,and Aβ+piracetam groups.Aβ25-35 was injected into the lateral ventricle (10 μg each side).Scu (10 mg/2 mL) or piracetam (10 mg/2 mL was intragastrically administered per day for 20 consecutive days following Aβ treatment.Learning and memory was assessed with Morris water maze test.The protein and mRNA levels of nicotinic acetylcholine receptor (nAChR) α4,α7,and β2 subunits in the brain were examined using Western blotting and real-time PCR,respectively.The activities of acetylcholinesterase (ACHE) and butyrylcholinesterase (BuChE) in the brain and plasma were measured using EIIman's colorimetric method.Results:In Aβ group,the escape latency period and first platform cross was significantly increased,and the total number of platform crossings was significantly decreased,as compared with the control and the sham operation groups.Both Scu and piracetam treatment significantly reduced the escape latency period and time to cross platform,and increased the number of platform crosses,but there were no significant differences between Aβ+Scu and Aβ+piracetam groups.In Aβ group,the protein levels of nAChR α4 and αx7 subunits in the cerebral cortex were significantly decreased by 42%-47% and 58%-61%,respectively,as compared to the control and the sham operation groups.Scu treatment caused upregulation of αx4 and α7 subunit proteins by around 24% and 30%,respectively,as compared to Aβ group,but there were no significant differences between Aβ+Scu and Aβ+piracetam groups.The protein level of nAChR β2 subunit had no significant difference among different groups.The mRNA levels of nAChR α4,αx7,and β2 subunits were not significantly changed.In Aβ group,the activities of AChE and BuChE in the brain were significantly

  3. Acetylcholine receptor binding antibody-associated myasthenia gravis and rhabdomyolysis induced by nivolumab in a patient with melanoma.

    Shirai, Takushi; Sano, Tasuku; Kamijo, Fuminao; Saito, Nana; Miyake, Tomomi; Kodaira, Minori; Katoh, Nagaaki; Nishie, Kenichi; Okuyama, Ryuhei; Uhara, Hisashi

    2016-01-01

    We reported an 81-year-old woman with metastatic melanoma, in whom myasthenia gravis and rhabdomyolysis developed after nivolumab monotherapy. The first symptom of myasthenia gravis was dyspnea. Ultrasonography detected hypokinesis of the bilateral diaphragm suggesting myasthenia gravis, although there was no abnormal finding of the lungs in computed tomography images. Acetylcholine receptor binding antibodies were low-titer positive in the preserved serum before administration of nivolumab, strongly suggesting that the myasthenia gravis was a nivolumab-related immune adverse event. Despite the remarkable clinical benefits of immune checkpoint inhibitors for patients with advanced melanoma, it is important to recognize unexpected immune-related adverse events.

  4. Spinosad induces programmed cell death involves mitochondrial dysfunction and cytochrome C release in Spodoptera frugiperda Sf9 cells.

    Yang, Mingjun; Wang, Bo; Gao, Jufang; Zhang, Yang; Xu, Wenping; Tao, Liming

    2017-02-01

    Spinosad, a reduced-risk insecticide, acts on the nicotinic acetylcholine receptors and the gamma-aminobutyric acid receptor in the nervous system of target insects. However, its mechanism of action in non-neural insect cells is unclear. This study aimed to evaluate mitochondrial functional changes associated with spinosad in Spodoptera frugiperda (Sf9) insect cells. Our results indicate that in Sf9 cells, spinosad induces programmed cell death and mitochondrial dysfunction through enhanced reactive oxygen species production, mitochondrial permeability transition pore (mPTP) opening, and mitochondrial membrane potential collapse, eventually leading to cytochrome C release and apoptosis. The cytochrome C release induced by spinosad treatment was partly inhibited by the mPTP inhibitors cyclosporin A and bongkrekic acid. Subsequently, we found that spinosad downregulated Bcl-2 expression and upregulated p53 and Bax expressions, activated caspase-9 and caspase-3, and triggered PARP cleavage in Sf9 cells. These findings suggested that spinosad-induced programmed cell death was modulated by mitochondrial dysfunction and cytochrome C release.

  5. External Dentin Stimulation Induces ATP Release in Human Teeth.

    Liu, X; Wang, C; Fujita, T; Malmstrom, H S; Nedergaard, M; Ren, Y F; Dirksen, R T

    2015-09-01

    ATP is involved in neurosensory processing, including nociceptive transduction. Thus, ATP signaling may participate in dentin hypersensitivity and dental pain. In this study, we investigated whether pannexins, which can form mechanosensitive ATP-permeable channels, are present in human dental pulp. We also assessed the existence and functional activity of ecto-ATPase for extracellular ATP degradation. We further tested if ATP is released from dental pulp upon dentin mechanical or thermal stimulation that induces dentin hypersensitivity and dental pain and if pannexin or pannexin/gap junction channel blockers reduce stimulation-dependent ATP release. Using immunofluorescence staining, we demonstrated immunoreactivity of pannexin 1 and 2 in odontoblasts and their processes extending into the dentin tubules. Using enzymatic histochemistry staining, we also demonstrated functional ecto-ATPase activity within the odontoblast layer, subodontoblast layer, dental pulp nerve bundles, and blood vessels. Using an ATP bioluminescence assay, we found that mechanical or cold stimulation to the exposed dentin induced ATP release in an in vitro human tooth perfusion model. We further demonstrated that blocking pannexin/gap junction channels with probenecid or carbenoxolone significantly reduced external dentin stimulation-induced ATP release. Our results provide evidence for the existence of functional machinery required for ATP release and degradation in human dental pulp and that pannexin channels are involved in external dentin stimulation-induced ATP release. These findings support a plausible role for ATP signaling in dentin hypersensitivity and dental pain.

  6. Tetrodotoxin effects in the stimulated acetylcholine release by agonist of glutamate in mice striatum tissue; Efeito da tetrodotoxina na liberacao de acetilcolina estimulada por agonistas glutamatergicos em tecido estriatal de ratos

    Paes, Paulo Cesar de Arruda; Camillo, Maria A.P.; Rogero, Jose Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Biologia Molecular; Troncone, Lanfranco R.P. [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Farmacologia

    2002-07-01

    The toxins of animal venoms have been used as important tools for biochemical studies of physiological and pathological processes of diverse systems. In this work we used the action of tetrodotoxin on sodium channels to map the localization of glutamate receptors in cholinergic neurons from striatum tissue of rats. All glutamate receptors are exciting, so they promote the release of other neurotransmitters. In this work we focus on acetylcholine. The localization of glutamate receptor, on the soma or on the excitatory terminal, may contribute for a better understanding of its function. For this work we applied the in vitro method of tritiated neurotransmitter release. The agonists of glutamate receptors chosen were glutamic acid 500{mu}M, NMDA 100{mu}M, kainic acid 300{mu}M, quisqualic acid 300{mu}M and AMPA 1mM. In the first part of the assay the basal and stimulated releases were measured and in the second, the same protocol was performed in the presence of tetrodotoxin 1{mu}M. The reductions observed in basal and stimulated release in the presence of tetrodotoxin suggested that the receptors type AMPA and NMDA were located in soma of cholinergic cell preferentially and the other ones presented a more equilibrate distribution among the axons and the soma. (author)

  7. Acetylcholine- and sodium hydrosulfide-induced endothelium-dependent relaxation and hyperpolarization in cerebral vessels of global cerebral ischemia-reperfusion rat.

    Han, Jun; Chen, Zhi-Wu; He, Guo-Wei

    2013-01-01

    We investigated the effects of endothelium-derived hyperpolarizing factor (EDHF) and the role of hydrogen sulphide (H2S) in the cerebral vasorelaxation induced by acetylcholine (ACh) in global cerebral ischemia-reperfusion (CIR) rats. CIR was induced by occlusion of bilateral carotid and vertebral arteries. Isolated arterial segments from the cerebral basilar (CBA) and middle artery (MCA) of CIR rats were studied in a pressurized chamber. Transmembrane potential was recorded using glass microelectrodes to evaluate hyperpolarization. In the CIR CBAs and MCAs preconstricted by 30 mM KCl, ACh induced concentration-dependent vasorelaxation and hyperpolarization that were partially attenuated by NG-nitro-l-arginine methyl ester (l-NAME, 30 μM) and l-NAME plus indomethacin (10 μM). The residual responses were abolished by the H2S inhibitor dl-propargylglycine (PPG, 100 μM). The H2S donor NaHS and l-Cys, the substrate of endogenous H2S synthase, elicited similar responses to ACh and was inhibited by tetraethylamonine (1 mM) or PPG. ACh induces EDHF-mediated vasorelaxation and hyperpolarization in rat cerebral arteries. These responses are up-regulated by ischemia-reperfusion while NO-mediated responses are down-regulated. Further, the ACh-induced, EDHF-mediated relaxation, and hyperpolarization and the inhibition of these responses are similar to the H2S-induced responses, suggesting that H2S is a possible candidate for EDHF in rat cerebral vessels.

  8. Ionizing Radiation Induces HMGB1 Cytoplasmic Translocation and Extracellular Release

    Lili Wang; Li He; Guoqiang Bao; Xin He; Saijun Fan; Haichao Wang

    2016-01-01

    Objective A nucleosomal protein,HMGBI,can be secreted by activated immune cells or passively released by dying cells,thereby amplifying rigorous inflammatory responses.In this study we aimed to test the possibility that radiation similarly induces cytoplasmic HMGB1 translocation and release.Methods Human skin fibroblast (GM0639) and bronchial epithelial (16HBE) cells and rats were exposed to X-ray radiation,and HMGB1 translocation and release were then assessed by immunocytochemistry and immunoassay,respectively.Results At a wide dose range(4.0-12.0 Gy),X-ray radiation induced a dramatic cytoplasmic HMGB1 translocation,and triggered a time-and dose-dependent HMGB1 release both in vitro and in vivo.The radiation-mediated HMGB1 release was also associated with noticeable chromosomal DNA damage and loss of cell viability.Conclusions Radiation induces HMGB1 cytoplasmic translocation and extracellular release through active secretion and passive leakage processes.

  9. Effect of angiotensin II, catecholamines and glucocorticoid on corticotropin releasing factor (CRF-induced ACTH release in pituitary cell cultures.

    Murakami,Kazuharu

    1984-08-01

    Full Text Available The effects of angiotensin II, catecholamines and glucocorticoid on CRF-induced ACTH release were examined using rat anterior pituitary cells in monolayer culture. Synthetic ovine CRF induced a significant ACTH release in this system. Angiotensin II produced an additive effect on CRF-induced ACTH release. The ACTH releasing activity of CRF was potentiated by epinephrine and norepinephrine. Dopamine itself at 0.03-30 ng/ml did not show any significant effect on ACTH release, but it inhibited CRF-induced ACTH release. Corticosterone at 10(-7 and 10(-6M inhibited CRF-induced ACTH release. These results indicate that angiotensin II, catecholamines and glucocorticoid modulate ACTH release at the pituitary level.

  10. Structural Studies of Nicotinic Acetylcholine Receptors

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette S;

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for development of drugs...

  11. High frequency stimulation induces sonic hedgehog release from hippocampal neurons

    Su, Yujuan; Yuan, Yuan; Feng, Shengjie; Ma, Shaorong; Wang, Yizheng

    2017-01-01

    Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreover, removal of extracellular Ca2+, application of tetrodotoxin (TTX), an inhibitor of voltage-dependent sodium channels, or downregulation of soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) proteins, all blocked SHH release from the neurons in response to HFS. Our findings suggest a novel mechanism to control SHH release from the hippocampal neurons. PMID:28262835

  12. Imaging of dopamine release induced by pharmacologic and nonpharmacologic stimulations

    Cho, Sang Soo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Technological advances in molecular imaging made it possible to image synaptic neurotransmitter concentration in living human brain. The dopaminergic system has been most intensively studied because of its importance in neurological as well as psychiatric disorders. This paper provides a brief overview of recent progress in imaging studies of dopamine release induced by pharmacologic and nonpharmacologic stimulations.

  13. Niflumic acid-induced increase in potassium currents in frog motor nerve terminals: effects on transmitter release.

    Miralles, F; Marsal, J; Peres, J; Solsona, C

    1996-04-01

    The actions of the nonsteroidal antiinflammatory drug niflumic acid were studied on frog neuromuscular preparations by conventional electrophysiological techniques. Niflumic acid reduced the amplitude and increased the latency of endplate potentials in a concentration-dependent manner. Neuromuscular junctions pretreated with niflumic acid (0.05-0.5 mM) showed much less depression than control when they were stimulated with trains of impulses. Inhibition of acetylcholine release was reverted by raising the extracellular Ca(2+) concentration but not by simply washing out the preparations with niflumic acid-free solutions. Pretreatment with indomethacin (0.1 mM), another nonsteroidal antiinflammatory drug, did not affect the niflumic acid-induced inhibition of evoked responses. Niflumic acid (0.1 mM) did not change the amplitude of miniature endplate potentials and had a dual action on the frequency of miniatures: it decreased their frequency at 0.1 mM whereas it produced an enormous increase in the rate of spontaneous discharge at 0.5 mM. Niflumic acid (0.1 - 1 mM) reversibly increased the amplitude and affected the kinetics of presynaptic voltage-activated K+ current and Ca(2+)-activated K(+) current in a concentration-dependent manner. Niflumic acid (0.1 - 1 mM) irreversibly decreased the amplitude and reversibly affected the kinetics of the nodal Na(+) current. Indomethacin (0.1 mM) had no effect on presynaptic currents. In conclusion, niflumic acid reduces acetylcholine release by increasing presynaptic K+ currents. This may shorten the depolarizing phase of the presynaptic action potential and may reduce the entry of Ca(2+) with each impulse.

  14. Type I and II positive allosteric modulators differentially modulate agonist-induced up-regulation of α7 nicotinic acetylcholine receptors

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    Long-term treatment with nicotine or selective α7 nicotinic acetylcholine receptor (nAChR) agonists increases the number of α7 nAChRs and this up-regulation may be involved in the mechanism underlying the sustained procognitive effect of these compounds. Here, we investigate the influence of type I...... expressing human α7 nAChR, whereas the type I PAMs AVL-3288 or NS1738 do not. Contrarily, neither type I nor II PAMs affect 10 μM nicotine-induced receptor up-regulation, suggesting that nicotine and A-582941 induce up-regulation through different mechanisms. We further show in vivo that 3 mg/kg PNU-120596...... inhibits up-regulation of the α7 nAChR induced by 10 mg/kg A-582941, as measured by [(125)I]-bungarotoxin autoradiography, whereas 1 mg/kg AVL-3288 does not. Given that type II PAMs decrease desensitization of the receptor, whereas type I PAMs do not, these results suggest that receptor desensitization...

  15. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis.

  16. Cyanide intoxication induced exocytotic epinephrine release in rabbit myocardium.

    Kawada, T; Yamazaki, T; Akiyama, T; Sato, T; Shishido, T; Inagaki, M; Tatewaki, T; Yanagiya, Y; Sugimachi, M; Sunagawa, K

    2000-05-12

    Cyanide intoxication, which has been used as a model of energy depletion at cardiac sympathetic nerve terminals, causes non-exocytotic release of norepinephrine (NE). However, the effect of cyanide intoxication on cardiac epinephrine (Epi) release remains unknown. Using cardiac microdialysis in the rabbit, we measured dialysate Epi and NE concentrations as indices of myocardial interstitial Epi and NE levels, respectively. Local administration of sodium cyanide (30 mM) through the dialysis probe increased both Epi and NE levels (from 11.3+/-2.3 to 32.3+/-4.4 pg/ml and from 33.6+/-6.1 to 389.0+/-71.8 pg/ml, respectively, mean+/-S.E., P<0.01). Local desipramine (100 microM) administration suppressed the cyanide induced NE response without affecting the Epi response. In contrast, local omega-conotoxin GVIA (10 microM) administration partially suppressed the cyanide induced NE response and totally abolished the Epi response. In conclusion, cyanide intoxication causes N-type Ca(2+) channel dependent exocytotic Epi release as well as inducing N-type Ca(2+) channel independent non-exocytotic NE release.

  17. Overexpression of human CD38/ADP-ribosyl cyclase enhances acetylcholine-induced Ca2+ signalling in rodent NG108-15 neuroblastoma cells.

    Higashida, Haruhiro; Bowden, Sarah E H; Yokoyama, Shigeru; Salmina, Alla; Hashii, Minako; Hoshi, Naoto; Zhang, Jia-Sheng; Knijnik, Rimma; Noda, Mami; Zhong, Zen-Guo; Jin, Duo; Higashida, Kazuhiro; Takeda, Hisashi; Akita, Tenpei; Kuba, Kenji; Yamagishi, Sayaka; Shimizu, Noriaki; Takasawa, Shin; Okamoto, Hiroshi; Robbins, Jon

    2007-03-01

    The role of cyclic ADP-ribose (cADPR) and its synthetic enzyme, CD38, as a downstream signal of muscarinic acetylcholine receptors (mAChRs) was examined in neuroblastoma cells expressing M1 mAChRs (NGM1). NGM1 cells were further transformed with both wild-type and mutant (C119K/C201E) human CD38. The dual transformed cells exhibited higher cADPR formation than ADPR production and elevated intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in response to ACh. These phenotypes were analyzed in detail in a representative CD38 clone. The intracellular cADPR concentration by ACh application was significantly increased by CD38 overexpression. Digital image analysis by a confocal microscopy revealed that topographical distribution of the sites of Ca(2+) release was unchanged between control and overexpressed cells. These results indicate that cADPR is an intracellular messenger of Ca(2+) signalling, suggesting that CD38 can contribute to mAChR-cADPR signalling.

  18. Intra-atrial reentry as a mechanism for atrial flutter induced by acetylcholine and rapid pacing in the dog.

    Allessie, M A; Lammers, W J; Bonke, I M; Hollen, J

    1984-07-01

    In the isolated blood-perfused canine heart we produced episodes of rapid atrial flutter by continuous infusion of acetylcholine and rapid pacing. The spread of excitation during atrial flutter was mapped with the aid of two endocavitary mapping electrodes containing 960 leads and recording from 192 different sites simultaneously. The flutter maps clearly showed that intra-atrial reentry was the mechanism responsible for the arrhythmia. However, the localization and size of the intra-atrial circuits differed from case to case even in the same heart. The orifices of the venae cavae or the atrioventricular ring did not serve as a central anatomic obstacle for circus movement. We also failed to identify a special role of the internodal pathways in the formation of the loop. Instead, the intra-atrial circuits could be found everywhere, provided sufficient atrial mass was available to accommodate the circuit. The diameter of the circuits varied between 1.5 and 3 cm at a cycle length between 65 and 155 msec. The average conduction velocity of the circulating impulse varied between 60 and 80 cm/sec. Spontaneous termination of atrial flutter frequently occurred and was based on local conduction block in a narrow part of the circuit. Another interesting aspect of these studies is the finding that during continuous circus movement of the impulse, the amount of myocardium that is activated may vary considerably. This marked periodicity in excited tissue mass during atrial flutter could adequately explain the continuously undulating baseline or typical sawtoothlike F waves as seen in the surface electrocardiogram during atrial flutter.

  19. NeuroD1 mediates nicotine-induced migration and invasion via regulation of the nicotinic acetylcholine receptor subunits in a subset of neural and neuroendocrine carcinomas.

    Osborne, Jihan K; Guerra, Marcy L; Gonzales, Joshua X; McMillan, Elizabeth A; Minna, John D; Cobb, Melanie H

    2014-06-01

    Cigarette smoking is a major risk factor for acquisition of small cell lung cancer (SCLC). A role has been demonstrated for the basic helix-loop-helix transcription factor NeuroD1 in the pathogenesis of neural and neuroendocrine lung cancer, including SCLC. In the present study we investigate the possible function of NeuroD1 in established tumors, as well as actions early on in pathogenesis, in response to nicotine. We demonstrate that nicotine up-regulates NeuroD1 in immortalized normal bronchial epithelial cells and a subset of undifferentiated carcinomas. Increased expression of NeuroD1 subsequently leads to regulation of expression and function of the nicotinic acetylcholine receptor subunit cluster of α3, α5, and β4. In addition, we find that coordinated expression of these subunits by NeuroD1 leads to enhanced nicotine-induced migration and invasion, likely through changes in intracellular calcium. These findings suggest that aspects of the pathogenesis of neural and neuroendocrine lung cancers may be affected by a nicotine- and NeuroD1-induced positive feedback loop.

  20. Inhibitory effects of the volatile oils of Callistemon citrinus (Curtis) Skeels and Eucalyptus citriodora Hook (Myrtaceae) on the acetylcholine induced contraction of isolated rat ileum.

    Adesina, Ayinde Buniyamin; Josephine, Owolabi Omonkhelin

    2012-04-01

    Using steam distillation method, the volatile oils of Eucalyptus citriodora and Callistemon citrinus were obtained and their chromatographic profiles examined in hexane: ethylacetate (4:1; 7:3) and hexane-chloroform (7:3). The effects of the volatile oils on acetylcholine (Ach) induced contraction of the rat isolated ileum were investigated based on the ethnomedicinal use of the volatile oil of E. citriodora in treating diarrhoea. Relative to the weight of the fresh leaves (200g in each case), E. citriodora produced 0.75% of the volatile oil while the C. citrinus yielded 0.5%. Combination of hexane-ethylacetate (4:1) gave the best resolution of the constituents as E. citriodora produced six major spots while Callistemon citrinus produced three. The concentration-dependent contractions of the ileum produced by the increasing concentration of the Ach were observed to be remarkably attenuated in the presence of the volatile oils at 5 and 10 mg/ml. At 5mg/ ml, the volatile oils of E. citriodora and C. citrinus independently reduced the Ach maximum contraction to 74.11 ± 12.4 and 19.05 ± 5.17% respectively. At 10mg/ml, the volatile oils further significantly (P<0.05) inhibited the contraction induced by the Ach. The results obtained validated the ethnomedicinal use of the volatile oils particularly that of E. citriodora in reducing ilea contractions occasioned by diarrhoea. However, C. citrinus volatile oil seems to be more effective.

  1. Acetylcholine plays an antinociceptive role by modulating pain-induced discharges of pain-related neurons in the caudate putamen of rats.

    Li, Chun-Mei; Zhang, Da-Ming; Yang, Chun-Xiao; Ma, Xu; Gao, He-Ren; Zhang, Duo; Xu, Man-Ying

    2014-02-12

    The caudate putamen (CPu) has been suggested to be involved in nociceptive modulation. Some neurotransmitters, including acetylcholine (ACh), participate in pain modulation in the central nervous system. However, the active mechanism of ACh on the pain-related neurons in the CPu remains unclear. This study aimed to investigate the effects of the cholinergic agonists ACh and pilocarpine and the muscarinic ACh receptor antagonist atropine on the pain-induced response of pain-related neurons in the CPu of Wistar rats. Trains of electrical impulses applied to the sciatic nerve of rat were used as the noxious stimulus. The electrical activities of pain-excited neurons (PENs) or pain-inhibited neurons (PINs) in the CPu were recorded by a glass microelectrode. Our results showed that an intra-CPu injection of 4 μg/2 μl ACh or pilocarpine decreased and increased the pain-induced discharge frequency in the PENs and PINs, respectively. Intra-CPu administration of 1 μg/2 μl atropine produced the opposite effect on these neurons. These findings indicate that ACh may play an analgesic role by affecting the electric activities of PENs and PINs, and the muscarinic pathway may be involved in the modulation of pain perception in the CPu.

  2. Osteodifferentiation of Human Preadipocytes Induced by Strontium Released from Hydrogels

    Valeria Nardone

    2012-01-01

    Full Text Available In recent years, there has been an increasing interest in interactive application principles of biology and engineering for the development of valid biological systems for tissue regeneration, such as for the treatment of bone fractures or skeletal defects. The application of stem cells together with biomaterials releasing bioactive factors promotes the formation of bone tissue by inducing proliferation and/or cell differentiation. In this study, we used a clonal cell line from human adipose tissue-derived mesenchymal stem cells (hADSCs or preadipocytes, named PA2-E12, to evaluate the effects of strontium (Sr2+ released in the culture medium from an amidated carboxymethylcellulose (CMCA hydrogel enriched with different Sr2+ concentrations on osteodifferentiation. The osteoinductive effect was evaluated through both the expression of alkaline phophatase (ALP activity and the hydroxyapatite (HA production during 42 days of induction. Present data have shown that Sr2+ released from CMCA promotes the osteodifferentiation induced by an osteogenic medium as shown by the increase of ALP activity at 7 and 14 days and of HA production at 14 days. In conclusion, the use of biomaterials able to release in situ osteoinductive agents, like Sr2+, could represent a new strategy for future applications in bone tissue engineering.

  3. Borrelia burgdorferi Spirochetes Induce Mast Cell Activation and Cytokine Release

    Talkington, Jeffrey; Nickell, Steven P.

    1999-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, is introduced into human hosts via tick bites. Among the cell types present in the skin which may initially contact spirochetes are mast cells. Since spirochetes are known to activate a variety of cell types in vitro, we tested whether B. burgdorferi spirochetes could activate mast cells. We report here that freshly isolated rat peritoneal mast cells or mouse MC/9 mast cells cultured in vitro with live or freeze-thawed B. burgdorferi spirochetes undergo low but detectable degranulation, as measured by [5-3H] hydroxytryptamine release, and they synthesize and secrete the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). In contrast to findings in previous studies, where B. burgdorferi-associated activity was shown to be dependent upon protein lipidation, mast cell TNF-α release was not induced by either lipidated or unlipidated recombinant OspA. This activity was additionally shown to be protease sensitive and surface expressed. Finally, comparisons of TNF-α-inducing activity in known low-, intermediate-, and high-passage B. burgdorferi B31 isolates demonstrated passage-dependent loss of activity, indicating that the activity is probably plasmid encoded. These findings document the presence in low-passage B. burgdorferi spirochetes of a novel lipidation-independent activity capable of inducing cytokine release from host cells. PMID:10024550

  4. Mercury induces inflammatory mediator release from human mast cells

    Peterson Erika

    2010-03-01

    Full Text Available Abstract Background Mercury is known to be neurotoxic, but its effects on the immune system are less well known. Mast cells are involved in allergic reactions, but also in innate and acquired immunity, as well as in inflammation. Many patients with Autism Spectrum Disorders (ASD have "allergic" symptoms; moreover, the prevalence of ASD in patients with mastocytosis, characterized by numerous hyperactive mast cells in most tissues, is 10-fold higher than the general population suggesting mast cell involvement. We, therefore, investigated the effect of mercuric chloride (HgCl2 on human mast cell activation. Methods Human leukemic cultured LAD2 mast cells and normal human umbilical cord blood-derived cultured mast cells (hCBMCs were stimulated by HgCl2 (0.1-10 μM for either 10 min for beta-hexosaminidase release or 24 hr for measuring vascular endothelial growth factor (VEGF and IL-6 release by ELISA. Results HgCl2 induced a 2-fold increase in β-hexosaminidase release, and also significant VEGF release at 0.1 and 1 μM (311 ± 32 pg/106 cells and 443 ± 143 pg/106 cells, respectively from LAD2 mast cells compared to control cells (227 ± 17 pg/106 cells, n = 5, p 2 (0.1 μM to the proinflammatory neuropeptide substance P (SP, 0.1 μM had synergestic action in inducing VEGF from LAD2 mast cells. HgCl2 also stimulated significant VEGF release (360 ± 100 pg/106 cells at 1 μM, n = 5, p 6 cells, and IL-6 release (466 ± 57 pg/106 cells at 0.1 μM compared to untreated cells (13 ± 25 pg/106 cells, n = 5, p 2 (0.1 μM to SP (5 μM further increased IL-6 release. Conclusions HgCl2 stimulates VEGF and IL-6 release from human mast cells. This phenomenon could disrupt the blood-brain-barrier and permit brain inflammation. As a result, the findings of the present study provide a biological mechanism for how low levels of mercury may contribute to ASD pathogenesis.

  5. Rescue of amyloid-Beta-induced inhibition of nicotinic acetylcholine receptors by a peptide homologous to the nicotine binding domain of the alpha 7 subtype.

    Arthur A Nery

    Full Text Available Alzheimer's disease (AD is characterized by brain accumulation of the neurotoxic amyloid-β peptide (Aβ and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs. Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD.

  6. Acetylcholinesterase and Acetylcholine Receptor

    1989-01-30

    placing the ester group at th- estera - tic site. K. values for AcCh and DMBAc are similar, indicating no substantial coulombic effe,-t, and the...V. P. (1950) Biochim. BioDhys. Acta 4, 543-558. 2. "Studies on Cholinesterase. VII. The Active Surface of Acetylcholine Esterase Derived from Effects...L., Chang, H. W., and Chen-, Y. T. (1972) J. Biol. Chem. 247, 1555-1565. 42. "Rapid and Complete Purification of Acetylcholin- esterases of Electric

  7. Opioid/naloxone prolonged release combinations for opioid induced constipation

    Shailendra Kapoor

    2012-01-01

    I read with great interest the recent article by Chen et a/in a recent issue of your esteemed journal.The article is highly thought provoking.One emerging therapeutic alternative for opioid induced constipation is the emergence of opioid/naloxone prolonged release combinations.For instance,naloxone when administered in a 1∶2 ratio with oxycodone reverses the inhibitory effect of oxycodone on the gastrointestinal tract.The advantage of oxycodone/naloxone prolonged release (OXN) is that while its anti-nociceptive efficacy is equivalent to that of oxycodone prolonged release (OXC),it significantly decreases the "Bowel Function Index" thereby ameliorating symptoms of opioid induced constipation to a large extent.Schutter et al in a recent study have reported a decrease in the bowel function index from 38.2 to 15.1.Similarly,L(o)wenstein et al in another recent study have reported that following a month of therapy,complete spontaneous bowel movements per week is increased from one in OXC therapy to three in OXN therapy.

  8. Type I and II positive allosteric modulators differentially modulate agonist-induced up-regulation of α7 nicotinic acetylcholine receptors.

    Thomsen, Morten S; Mikkelsen, Jens D

    2012-10-01

    Long-term treatment with nicotine or selective α7 nicotinic acetylcholine receptor (nAChR) agonists increases the number of α7 nAChRs and this up-regulation may be involved in the mechanism underlying the sustained procognitive effect of these compounds. Here, we investigate the influence of type I and II α7 nAChR positive allosteric modulators (PAMs) on agonist-induced α7 nAChR up-regulation. We show that the type II PAMs, PNU-120596 (10 μM) or TQS (1 and 10 μM), inhibit up-regulation, as measured by protein levels, induced by the α7 nAChR agonist A-582941 (10 nM or 10 μM), in SH-EP1 cells stably expressing human α7 nAChR, whereas the type I PAMs AVL-3288 or NS1738 do not. Contrarily, neither type I nor II PAMs affect 10 μM nicotine-induced receptor up-regulation, suggesting that nicotine and A-582941 induce up-regulation through different mechanisms. We further show in vivo that 3 mg/kg PNU-120596 inhibits up-regulation of the α7 nAChR induced by 10 mg/kg A-582941, as measured by [(125)I]-bungarotoxin autoradiography, whereas 1 mg/kg AVL-3288 does not. Given that type II PAMs decrease desensitization of the receptor, whereas type I PAMs do not, these results suggest that receptor desensitization is involved in A-582941-induced up-regulation. Our results are the first to show an in vivo difference between type I and II α7 nAChR PAMs, and demonstrate an agonist-dependent effect of type II PAMs occurring on a much longer time scale than previously appreciated. Furthermore, our data suggest that nicotine and A-582941 induce up-regulation through different mechanisms, and that this confers differential sensitivity to the effects of α7 nAChR PAMs. These results may have implications for the clinical development of α7 nAChR PAMs.

  9. 乙酰胆碱诱导的离体兔心房颤动模型的建立%Establishment of acetylcholine-induced atrial fibrillation model in isolated rabbit heart

    潘磊; 李俊

    2012-01-01

    Objective To establish an acetylcholine-induced atrial fibrillation (AF) model in the isolated rabbit heart. Methods Forty healthy male New Zealand rabbits (2.2-2.5 kg) were used in the study. The isolated rabbit hearts were randomly assigned to normal perfusion (group A), normal perfusion with burst high-frequency electric stimulation (group B), acetylcholine perfusion (group C) and acetylcholine perfusion with burst electric stimulation (group D) (n = 10 in each group). The isolated hearts were perfused with Langendorff perfusion system. Results The AF incidence in group D ( acetylcholine perfusion combined with burst electric stimulation) was 50% ; while no AF was induced in other three groups. Conclusion A simple and stable acetylcholine-induced atrial fibrillation model has been established in isolated rabbit heart with Langendorff perfusion system.%目的 建立乙酰胆碱诱导的离体Langendorff灌流的兔的心房颤动模型.方法 健康雄性的新西兰兔40只,2.2 ~2.5 kg,分为4组,分别为正常灌流组、正常灌流+burst刺激组、正常灌流+乙酰胆碱灌注组和正常灌流+乙酰胆碱灌注+ burst刺激组,每组各10只.在Langendorff灌流装置下行主动脉逆行灌流,通过乙酰胆碱灌注和burst刺激诱发心房颤动.结果 正常灌流组、正常灌流+burst刺激组和正常灌流+乙酰胆碱灌注组均没有发生心房颤动,而正常灌流+乙酰胆碱灌注+ burst刺激组心房颤动的发生率为50%.结论 在Langendorff心脏灌流时,给予乙酰胆碱灌注模拟胆碱能激活,并给予burst刺激模拟应激事件,可以稳定地诱导心房颤动的发生.

  10. Shaker-type Kv1 channel blockers increase the peristaltic activity of guinea-pig ileum by stimulating acetylcholine and tachykinins release by the enteric nervous system.

    Vianna-Jorge, Rosane; Oliveira, Cyntia F; Garcia, Maria L; Kaczorowski, Gregory J; Suarez-Kurtz, Guilherme

    2003-01-01

    1 A constant intraluminal pressure system was used to evaluate the effects of Kv1 channel blockers on the peristaltic activity of guinea-pig ileum. 2 The nortriterpene correolide, a non-selective inhibitor of all Kv1 sub-types, causes progressive and sustained reduction of the pressure threshold for eliciting peristaltic contractions. 3 Margatoxin (MgTX), alpha-dendrotoxin (alpha-DTX) and dendrotoxin-K (DTX-K), highly selective peptidyl inhibitors of certain Kv1 sub-types, cause immediate reduction of the pressure threshold. This effect subsides with time, irrespective of the peptides' concentration in the bath. In preparations pretreated with saturating concentrations of MgTX, correolide further stimulates the peristaltic activity. 4 Iberiotoxin (IbTX), a selective inhibitor of the high-conductance Ca(2+)-activated K(+) (BK) channels, and charybdotoxin (ChTX), which inhibits Kv1.2 and Kv1.3 as well as BK channels, fail to stimulate the peristaltic activity. 5 Blockade of muscarinic receptors by atropine reduces, and occasionally suppresses the peristaltic activity of guinea-pig ileum. In atropine-treated preparations, correolide and MgTX retain their abilities to reduce the pressure threshold and are able to restore the peristaltic reflex in the preparations where this reflex was suppressed by atropine. 6 The stimulatory effect of correolide and MgTX in atropine-treated preparations is abolished by subsequent addition of selective antagonists of both NK1 and NK2 receptors. 7 In conclusion, blockade of Kv1, particularly Kv1.1 channels, increases the peristaltic activity of guinea-pig ileum by enhancing the release of neurotransmitters at the enteric nervous system. In contrast, stimulation of the myogenic motility by blockade of BK channels does not affect the threshold for the peristaltic reflex.

  11. Synergism between insecticides permethrin and propoxur occurs through activation of presynaptic muscarinic negative feedback of acetylcholine release in the insect central nervous system.

    Corbel, Vincent; Stankiewicz, Maria; Bonnet, Julien; Grolleau, Françoise; Hougard, Jean Marc; Lapied, Bruno

    2006-07-01

    Although synergism between pesticides has been widely documented, the physiological mechanisms by which an insecticide synergizes another remains unclear. Toxicological and electrophysiological studies were carried out on two susceptible pest species (the mosquito Culex quinquefasciatus and the cockroach Periplaneta americana) to understand better the physiological process involved in pyrethroid and carbamate interactions. Larval bioassays were conducted with the susceptible reference strain SLAB of C. quinquefasciatus to assess the implication of multi-function oxidases and non-specific esterases in insecticide detoxification and synergism. Results showed that the general theory of synergism (competition between pesticides for a common detoxification enzyme) was unlikely to occur in the SLAB strain since the level of synergy recorded between permethrin and propoxur was unchanged in the presence of piperonyl butoxide and tribufos, two inhibitors of oxidases and esterases, respectively (synergism ratios were similar with and without synergists). We also showed that addition of a sub-lethal concentration of nicotine significantly increased the toxicity of permethrin and propoxur at the lower range of the dose-mortality regression lines, suggesting the manifestation of important physiological disruptions at synaptic level. The effects of both permethrin and propoxur were studied on the cercal-afferent giant-interneuron synapses in the terminal abdominal ganglion of the cockroach P. americana using the single-fibre oil-gap method. We demonstrated that permethrin and propoxur increased drastically the ACh concentration within the synaptic cleft, which thereby stimulated a negative feedback of ACh release. Atropine, a muscarinic receptor antagonist, reversed the effect of permethrin and propoxur mixtures. This demonstrates the implication of the presynaptic muscarinic receptors in the negative feedback regulation process and in synergism. Based on these findings, we

  12. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Li, Ruisheng [Institute of Infectious Diseases, 302 Military Hospital, Beijing 100039 (China); Jia, Ying; Zhao, Yun; Xiao, Dongjie [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Dang, Ningning [Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Wang, Yunshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China)

    2014-07-15

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  13. α7 Nicotinic acetylcholine receptor-specific antibody induces inflammation and amyloid β42 accumulation in the mouse brain to impair memory.

    Olena Lykhmus

    Full Text Available Nicotinic acetylcholine receptors (nAChRs expressed in the brain are involved in regulating cognitive functions, as well as inflammatory reactions. Their density is decreased upon Alzheimer disease accompanied by accumulation of β-amyloid (Aβ42, memory deficit and neuroinflammation. Previously we found that α7 nAChR-specific antibody induced pro-inflammatory interleukin-6 production in U373 glioblastoma cells and that such antibodies were present in the blood of humans. We raised a hypothesis that α7 nAChR-specific antibody can cause neuroinflammation when penetrating the brain. To test this, C57Bl/6 mice were either immunized with extracellular domain of α7 nAChR subunit α7(1-208 or injected with bacterial lipopolysaccharide (LPS for 5 months. We studied their behavior and the presence of α3, α4, α7, β2 and β4 nAChR subunits, Aβ40 and Aβ42 and activated astrocytes in the brain by sandwich ELISA and confocal microscopy. It was found that either LPS injections or immunizations with α7(1-208 resulted in region-specific decrease of α7 and α4β2 and increase of α3β4 nAChRs, accumulation of Aβ42 and activated astrocytes in the brain of mice and worsening of their episodic memory. Intravenously transferred α7 nAChR-specific-antibodies penetrated the brain parenchyma of mice pre-injected with LPS. Our data demonstrate that (1 neuroinflammation is sufficient to provoke the decrease of α7 and α4β2 nAChRs, Aβ42 accumulation and memory impairment in mice and (2 α7(1-208 nAChR-specific antibodies can cause inflammation within the brain resulting in the symptoms typical for Alzheimer disease.

  14. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents

    Bubser, Michael; Bridges, Thomas M; Dencker, Ditte;

    2014-01-01

    an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central...... PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801...

  15. Ca2+ is involved in muscarine-acetylcholine-receptor-mediated acetylcholine signal transduction in guard cells of Vicia faba L.

    MENG Fanxia; MIAO Long; ZHANG Shuqiu; LOU Chenghou

    2004-01-01

    Acetylcholine (ACh) is an important neurochemical transmitter in animals; it also exists in plants and plays a significant role in various kinds of physiological functions in plants. ACh has been known to induce the stomatal opening. By monitoring the changes of cytosolic Ca2+ with fluorescent probe Fluo-3 AM under the confocal microscopy,we found that exogenous ACh increased cytosolic Ca2+ concentration of guard cells of Vicia faba L. Muscarine, an agonist of muscarine acetylcholine receptor (mAChR), could do so as well. In contrast, atropine, the antagonist of mAChR abolished the ability of ACh to increase Ca2+ in guard cells.This mechanism is similar to mAChR in animals. When EGTA was used to chelate Ca2+ or ruthenium red to block Ca2+ released from vacuole respectively, the results showed that the increased cytosolic Ca2+ mainly come from intracellular Ca2+ store. The evidence supports that Ca2+ is involved in guard-cell response to ACh and that Ca2+ signal is coupled to mAChRs in ACh signal transduction in guard cells.

  16. Failure of growth hormone-suppressing agents to affect TSH-releasing hormone- and LH-releasing hormone-induced growth hormone release in acromegaly.

    Nakagawa, K; Obara, T

    1977-01-01

    In patients with acromegaly whose basal plasma GH levels were suppressed with 9 mg/day of dexamethasone for 2 days, TRH-(6 cases) and LHRH-(1 case) induced GH release were unaffected when the responses were compared to the basal levels. Phentolamine infusion, 70 mg in 150 min, or hyperglycemia induced by iv infusion of 700 ml of 50% glucose solution also did not suppress TRH-induced GH release in 2 acromegalic patients whose basal GH levels were lowered with these agents alone. These results seem to indicate that dexamethasone does not affect TRH- or LHRH-induced GH release per se, but affects the basal state which determines the absolute level of response. They also support the concept that TRH and LHRH act directly on pituitary tumor cells to release GH in acromegaly.

  17. The α4β2 nicotine acetylcholine receptor agonist ispronicline induces c-Fos expression in selective regions of the rat forebrain

    Jacobsen, Julie; Hansen, Henrik H; Kiss, Alexander;

    2012-01-01

    The dominant nicotine acetylcholine receptor (nAChR) subtype in the brain is the pentameric receptor containing both α4 and β2 subunits (α4β2). Due to the lack of selective agonists it has not been ruled out what neuronal circuits that are stimulated after systemic administration with nicotine. W...

  18. Acetylcholine activity in selective striatal regions supports behavioral flexibility.

    Ragozzino, Michael E; Mohler, Eric G; Prior, Margaret; Palencia, Carlos A; Rozman, Suzanne

    2009-01-01

    Daily living often requires individuals to flexibly respond to new circumstances. There is considerable evidence that the striatum is part of a larger neural network that supports flexible adaptations. Cholinergic interneurons are situated to strongly influence striatal output patterns which may enable flexible adaptations. The present experiments investigated whether acetylcholine actions in different striatal regions support behavioral flexibility by measuring acetylcholine efflux during place reversal learning. Acetylcholine efflux selectively increased in the dorsomedial striatum, but not dorsolateral or ventromedial striatum during place reversal learning. In order to modulate the M2-class of autoreceptors, administration of oxotremorine sesquifumurate (100 nM) into the dorsomedial striatum, concomitantly impaired reversal learning and an increase in acetylcholine output. These effects were reversed by the m(2) muscarinic receptor antagonist, AF-DX-116 (20 nM). The effects of oxotremorine sesquifumurate and AF-DX-116 on acetylcholine efflux were selective to behaviorally-induced changes as neither treatment affected acetylcholine output in a resting condition. In contrast to reversal learning, acetylcholine efflux in the dorsomedial striatum did not change during place acquisition. The results reveal an essential role for cholinergic activity and define its locus of control to the dorsomedial striatum in cognitive flexibility.

  19. Cigarette smoke-induced damage-associated molecular pattern release from necrotic neutrophils triggers proinflammatory mediator release.

    Heijink, Irene H; Pouwels, Simon D; Leijendekker, Carin; de Bruin, Harold G; Zijlstra, G Jan; van der Vaart, Hester; ten Hacken, Nick H T; van Oosterhout, Antoon J M; Nawijn, Martijn C; van der Toorn, Marco

    2015-05-01

    Cigarette smoking, the major causative factor for the development of chronic obstructive pulmonary disease, is associated with neutrophilic airway inflammation. Cigarette smoke (CS) exposure can induce a switch from apoptotic to necrotic cell death in airway epithelium. Therefore, we hypothesized that CS promotes neutrophil necrosis with subsequent release of damage-associated molecular patterns (DAMPs), including high mobility group box 1 (HMGB1), alarming the innate immune system. We studied the effect of smoking two cigarettes on sputum neutrophils in healthy individuals and of 5-day CS or air exposure on neutrophil counts, myeloperoxidase, and HMGB1 levels in bronchoalveolar lavage fluid of BALB/c mice. In human peripheral blood neutrophils, mitochondrial membrane potential, apoptosis/necrosis markers, caspase activity, and DAMP release were studied after CS exposure. Finally, we assessed the effect of neutrophil-derived supernatants on the release of chemoattractant CXCL8 in normal human bronchial epithelial cells. Cigarette smoking caused a significant decrease in sputum neutrophil numbers after 3 hours. In mice, neutrophil counts were significantly increased 16 hours after repeated CS exposure but reduced 2 hours after an additional exposure. In vitro, CS induced necrotic neutrophil cell death, as indicated by mitochondrial dysfunction, inhibition of apoptosis, and DAMP release. Supernatants from CS-treated neutrophils significantly increased the release of CXCL8 in normal human bronchial epithelial cells. Together, these observations show, for the first time, that CS exposure induces neutrophil necrosis, leading to DAMP release, which may amplify CS-induced airway inflammation by promoting airway epithelial proinflammatory responses.

  20. Vagus Nerve Activity Augments Intestinal Macrophage Phagocytosis via Nicotinic Acetylcholine Receptor alpha 4 beta 2

    van der Zanden, Esmerij P.; Snoek, Susanne A.; Heinsbroek, Sigrid E.; Stanisor, Oana I.; Verseijden, Caroline; Boeckxstaens, Guy E.; Peppelenbosch, Maikel P.; Greaves, David R.; Gordon, Siamon; de Jonge, Wouter J.

    2009-01-01

    BACKGROUND & AIMS: The vagus nerve negatively regulates macrophage cytokine production via the release of acetylcholine (ACh) and activation of nicotinic acetylcholine receptors (nAChR). In various models of intestinal inflammation, vagus nerve efferent stimulation ameliorates disease. Given the act

  1. Acetylcholine in the accumbens is decreased by diazepam and increased by benzodiazepine withdrawal: a possible mechanism for dependency.

    Rada, Pedro; Hoebel, Bartley G

    2005-01-31

    Diazepam is a benzodiazepine used in the treatment of anxiety, insomnia and seizures, but with the potential for abuse. Like the other benzodiazepine anxiolytics, diazepam does not increase dopamine in the nucleus accumbens. This raises the question as to which other neurotransmitter systems are involved in diazepam dependence. The goal was to monitor dopamine and acetylcholine simultaneously following acute and chronic diazepam treatment and after flumazenil-induced withdrawal. Rats were prepared with microdialysis probes in the nucleus accumbens and given diazepam (2, 5 and 7.5 mg/kg) acutely and again after chronic treatment. Accumbens dopamine and acetylcholine decreased, with signs of tolerance to the dopamine effect. When these animals were put into the withdrawal state with flumazenil, there was a significant rise in acetylcholine (145%, P<0.001) with a smaller significant rise in dopamine (124%, P<0.01). It is suggested that the increase in acetylcholine release, relative to dopamine, is a neural component of the withdrawal state that is aversive.

  2. Live Imaging of Nicotine Induced Calcium Signaling and Neurotransmitter Release Along Ventral Hippocampal Axons.

    Zhong, Chongbo; Talmage, David A; Role, Lorna W

    2015-06-24

    Sustained enhancement of axonal signaling and increased neurotransmitter release by the activation of pre-synaptic nicotinic acetylcholine receptors (nAChRs) is an important mechanism for neuromodulation by acetylcholine (ACh). The difficulty with access to probing the signaling mechanisms within intact axons and at nerve terminals both in vitro and in vivo has limited progress in the study of the pre-synaptic components of synaptic plasticity. Here we introduce a gene-chimeric preparation of ventral hippocampal (vHipp)-accumbens (nAcc) circuit in vitro that allows direct live imaging to analyze both the pre- and post-synaptic components of transmission while selectively varying the genetic profile of the pre- vs post-synaptic neurons. We demonstrate that projections from vHipp microslices, as pre-synaptic axonal input, form multiple, reliable glutamatergic synapses with post-synaptic targets, the dispersed neurons from nAcc. The pre-synaptic localization of various subtypes of nAChRs are detected and the pre-synaptic nicotinic signaling mediated synaptic transmission are monitored by concurrent electrophysiological recording and live cell imaging. This preparation also provides an informative approach to study the pre- and post-synaptic mechanisms of glutamatergic synaptic plasticity in vitro.

  3. Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist.

    White, B H; Cohen, J B

    1992-08-05

    To characterize structural changes induced in the nicotinic acetylcholine receptor (AChR) by agonists, we have mapped the sites of photoincorporation of the cholinergic noncompetitive antagonist 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (]125I]TID) in the presence and absence of 50 microM carbamylcholine. [125I]TID binds to the AChR with similar affinity under both these conditions, but agonist inhibits photoincorporation into all subunits by greater than 75% (White, B. H., Howard, S., Cohen, S. G., and Cohen, J. B. (1991) J. Biol. Chem. 266, 21595-21607). [125I]TID-labeled sites on the beta- and delta-subunits were identified by amino-terminal sequencing of both cyanogen bromide (CNBr) and tryptic fragments purified by Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by reversed-phase high-performance liquid chromatography. In the absence of agonist, [125I]TID specifically labels homologous aliphatic residues (beta L-257, delta L-265, beta V-261, and delta V-269) in the M2 region of both subunits. In the presence of agonist, labeling of these residues is reduced approximately 90%, and the distribution of labeled residues is broadened to include a homologous set of serine residues at the amino terminus of M2. In the beta-subunit residues beta S-250, beta S-254, beta L-257, and beta V-261 are all labeled in the presence of carbamylcholine. This pattern of labeling supports an alpha-helical model for M2 with the labeled face forming the ion channel lumen. The observed redistribution of label in the resting and desensitized states provides the first direct evidence for an agonist-dependent rearrangement of the M2 helices. The efficient labeling of the resting state channel in a region capable of structural change also suggests a plausible model for AChR gating in which the aliphatic residues labeled by [125I]TID form a permeability barrier to the passage of ions. We also report increased labeling of the M1 region of the delta

  4. Relationship between the tissue redox state potential and dak/dt changes of [K+]0 activity during k-strophantoside or acetylcholine induced contractures.

    Wittmann, I; Puppi, A; Dely, M

    1982-01-01

    It was established that oxidosis evoked by methylene blue during k-strophantoside and acetylcholine contractures in skeletal muscle was accompanied by an increase in the changes of [K+]0 activity, while redosis evoked by ascorbate under the same conditions was accompanied by a decrease in the changes of [K+]0 activity. These changes in [K+]0 activity parallelled the alterations of contractures caused by oxidosis or redosis suggesting that changes in the [K+]0 transient play an important role in these phenomena.

  5. Drug-sensing hydrogels for the inducible release of biopharmaceuticals

    Ehrbar, Martin; Schoenmakers, Ronald; Christen, Erik H.; Fussenegger, Martin; Weber, Wilfried

    2008-10-01

    Drug-dependent dissociation or association of cellular receptors represents a potent pharmacologic mode of action for regulating cell fate and function. Transferring the knowledge of pharmacologically triggered protein-protein interactions to materials science will enable novel design concepts for stimuli-sensing smart hydrogels. Here, we show the design and validation of an antibiotic-sensing hydrogel for the trigger-inducible release of human vascular endothelial growth factor. Genetically engineered bacterial gyrase subunit B (GyrB) (ref. 4) coupled to polyacrylamide was dimerized by the addition of the aminocoumarin antibiotic coumermycin, resulting in hydrogel formation. Addition of increasing concentrations of clinically validated novobiocin (Albamycin) dissociated the GyrB subunits, thereby resulting in dissociation of the hydrogel and dose- and time-dependent liberation of the entrapped protein pharmaceutical VEGF121 for triggering proliferation of human umbilical vein endothelial cells. Pharmacologically controlled hydrogels have the potential to fulfil the promises of stimuli-sensing materials as smart devices for spatiotemporally controlled delivery of drugs within the patient.

  6. Gonadotropin-releasing hormone agonist-induced pituitary apoplexy

    Fergus Keane

    2016-06-01

    Full Text Available Pituitary apoplexy represents an uncommon endocrine emergency with potentially life-threatening consequences. Drug-induced pituitary apoplexy is a rare but important consideration when evaluating patients with this presentation. We describe an unusual case of a patient with a known pituitary macroadenoma presenting with acute-onset third nerve palsy and headache secondary to tumour enlargement and apoplexy. This followed gonadotropin-releasing hormone (GNRH agonist therapy used to treat metastatic prostate carcinoma. Following acute management, the patient underwent transphenoidal debulking of his pituitary gland with resolution of his third nerve palsy. Subsequent retrospective data interpretation revealed that this had been a secretory gonadotropinoma and GNRH agonist therapy resulted in raised gonadotropins and testosterone. Hence, further management of his prostate carcinoma required GNRH antagonist therapy and external beam radiotherapy. This case demonstrates an uncommon complication of GNRH agonist therapy in the setting of a pituitary macroadenoma. It also highlights the importance of careful, serial data interpretation in patients with pituitary adenomas. Finally, this case presents a unique insight into the challenges of managing a hormonal-dependent prostate cancer in a patient with a secretory pituitary tumour.

  7. Characterization of nicotinic receptors involved in the release of noradrenaline from the hippocampus

    Vizi, E.S. [Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O. Box 67, H-1450 Budapest (Hungary); Lajtha, A. [Center of Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY (United States); Balla, A. [Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O. Box 67, H-1450 Budapest (Hungary); Sershen, H. [Center of Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY (United States)

    1997-01-06

    The pharmacological features of putative nicotinic acetylcholine receptor sites involved in the release of [{sup 3}H]noradrenaline were assessed in rat hippocampus. The effect of nicotinic agonists to induce [{sup 3}H]noradrenaline release was examined in superfused slices. The nicotinic agonists (-)-epibatidine, (+)-anatoxin-a, dimethylphenylpiperazinium, (-)-nicotine and (-)-lobeline released [{sup 3}H]noradrenaline. The dose-response curves to nicotinic agonists were bell shaped, and indicated that their functional efficacies and potency vary across agonists. Maximal efficacy was seen with dimethylphenylpiperazinium and lobeline (E{sub max} values two to three times higher than other agonists). The rank order of potency for the agonists to release [{sup 3}H]noradrenaline was (-)-epibatidine (+)-anatoxin-a dimethylphenylpiperazinium cytisine nicotine (-)-lobeline. The nicotinic acetylcholine receptor antagonists [n-bungarotoxin (+)-tubocurarine hexamethonium>>{alpha}-bungarotoxin=dihydro-{beta}-erythroidine] and tetrodotoxin antagonized the effect of dimethylphenylpiperazinium to release [{sup 3}H]noradrenaline. The results, based on these pharmacological profiles, suggest the possible involvement of nicotinic acetylcholine receptor {alpha}3 and {beta}2 nicotinic acetylcholine receptor subunits in the control of [{sup 3}H]noradrenaline release from hippocampal slices. The absence of effect of {alpha}-bungarotoxin and {alpha}-conotoxin-IMI excludes the possible involvement of nicotinic acetylcholine receptors containing the {alpha}7 subunit. The release of [{sup 3}H]noradrenaline by dimethylphenylpiperazinium was Ca{sup 2+} dependent. Nifedipine failed to prevent the dimethylphenylpiperazinium-induced release of [{sup 3}H]noradrenaline, but Cd{sup 2+}, {omega}-conotoxin and Ca{sup 2+}-free conditions significantly reduced the dimethylphenylpiperazinium-induced release, suggesting that N-type voltage-sensitive Ca{sup 2+} channels are involved in the nicotinic

  8. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process.

  9. Influence of complement on neutrophil extracellular trap release induced by bacteria

    Palmer, Lisa Joanne; Damgaard, Christian; Holmstrup, Palle;

    2016-01-01

    Background and Objectives Neutrophil extracellular trap (NET) release has generally been studied in the absence of serum, or at low concentrations of untreated or heat-inactivated serum. The influence of serum complement on NET release therefore remains unclear. We examined the DNA release induce...

  10. Tissue-specific effects of acetylcholine in the canine heart

    Callø, Kirstine; Goodrow, Robert; Olesen, Søren-Peter

    2013-01-01

    INTRODUCTION: Acetylcholine (ACh) release from the vagus nerve slows heart rate and atrioventricular conduction. ACh stimulates a variety of receptors and channels, including an inward rectifying current (IK,ACh). The effect of ACh in ventricle is still debated. We compare the effect of ACh...

  11. Teaching Calcium-Induced Calcium Release in Cardiomyocytes Using a Classic Paper by Fabiato

    Liang, Willmann

    2008-01-01

    This teaching paper utilizes the materials presented by Dr. Fabiato in his review article entitled "Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum." In the review, supporting evidence of calcium-induced calcium release (CICR) is presented. Data concerning potential objections to the CICR theory are discussed as well. In…

  12. Extracellular adenosine 5'-triphosphate and lipopolysaccharide induce interleukin-1β release in canine blood.

    Spildrejorde, Mari; Curtis, Stephen J; Curtis, Belinda L; Sluyter, Ronald

    2014-01-15

    Binding of extracellular adenosine 5'-triphosphate (ATP) or lipopolysaccharide (LPS) to the damage-associated molecular pattern receptor P2X7 or the pathogen-associated molecular pattern receptor Toll-like receptor (TLR)4, respectively, can induce the release of the pleiotropic cytokine interleukin (IL)-1β in humans and mice. However, the release of IL-1β in dogs remains poorly defined. Using a canine IL-1β enzyme-linked immunosorbent assay, this study investigated whether ATP or LPS could induce IL-1β release in a canine blood-based assay. Short-term incubations (30 min) with ATP induced IL-1β release in LPS-primed canine blood, and this process could be near-completely impaired by the P2X7 antagonist, A438079. In contrast, ATP failed to induce IL-1β release from blood not primed with LPS. ATP-induced IL-1β release was observed with LPS-primed blood from eight different pedigrees or cross breeds. Long-term incubations (24h) with LPS induced IL-1β release in canine blood in a concentration-dependent manner. This process was not altered by co-incubation with A438079. LPS-induced IL-1β release was observed with blood from 10 different pedigrees or cross breeds. These results demonstrate that both extracellular ATP and LPS can induce IL-1β release in dogs, and that ATP- but not LPS-induced IL-1β release in blood is dependent on P2X7 activation. These findings support the role of both P2X7 and TLR4 in IL-1β release in dogs.

  13. Antigen-induced and non-antigen-induced histamine release from rat mast cells sensitized with mouse antiserum.

    Kurose,Masao

    1981-10-01

    Full Text Available Marked IgE-mediated histamine release from rat mast cells sensitized in vitro with mouse antiserum occurs in the presence of added Ca++ and phosphatidylserine (PS, although a considerable degree of antigen-induced histamine release which may utilize intracellular or cell-bound calcium is also observed. The decay in the responsiveness to Ca++ of the sensitized cells stimulated by antigen in Ca++-free medium in the presence of PS is relatively slow, and maximum release is produced by Ca++ added 1 min after antigen. Histamine release also occurs when Ca++ is added after PS in the absence of antigen to the sensitized cells suspended in Ca++-free medium. Unlike the antigen-induced release, the intensity of this non-antigen-induced release varies depending on both mast-cell and antiserum pools. A heat-labile factor(s, which is different from antigen-specific IgE antibody and is also contained in normal mouse serum, is involved in this reaction. In the antigen-nondependent (PS + Ca++-induced release, no decay in the responsiveness to Ca++ is observed after PS addition. Both the antigen-induced and non-antigen-induced release are completed fairly rapidly and are dependent of temperature, pH and energy.

  14. Acetylcholine Inhibits LPS-Induced MMP-9 Production and Cell Migration via the a7 nAChR-JAK2/STAT3 Pathway in RAW264.7 Cells

    Yong-Hua Yang

    2015-07-01

    Full Text Available Background: Excessive activation of matrix metalloproteinase 9 (MMP-9 has been found in several inflammatory diseases. Previous studies have shown that acetylcholine (ACh reduced the levels of pro-inflammatory cytokines and decreased tissue damage. Therefore, this study was designed to explore the potential effects and mechanisms of ACh on MMP-9 production and cell migration in response to lipopolysaccharide (LPS stimulation in RAW264.7 cells. Methods: MMP-9 expression and activity were induced by LPS in RAW264.7 cells, and examined by real-time PCR, western blotting and gelatin zymography, respectively. ELISA was used to determine the changes in MMP-9 secretion among the groups. Macrophage migration was evaluated using transwell migration assay. Knockdown of a7 nicotinic acetylcholine receptor (a7 nAChR expression was performed using siRNA transfection. Results: Pre-treatment with ACh inhibited LPS-induced MMP-9 production and macrophage migration in RAW264.7 cells. These effects were abolished by the a7 nAChR antagonist methyllycaconitine (MLA and a7 nAChR siRNA. The a7 nAChR agonist PNU282987 was found to have an effect similar to that of ACh. Moreover, ACh enhanced the expression of JAK2 and STAT3, and the JAK2 inhibitor AG490 and the STAT3 inhibitor static restored the effect of ACh. Meanwhile, ACh decreased the phosphorylation and nuclear translocation of NF-κB, and this effect was abrogated in the presence of MLA. In addition, the JAK2 and STAT3 inhibitor abolished the inhibitory effects of ACh on phosphorylation of NF-κB. Conclusions: Activation of a7 nAChR by ACh inhibited LPS-induced MMP-9 production and macrophage migration through the JAK2/STAT3 signaling pathway. These results provide novel insights into the anti-inflammatory effects and mechanisms of ACh.

  15. Acetylcholine mobilization in a sympathetic ganglion in the presence and absence of 2-(4-phenylpiperidino)cyclohexanol (AH5183)

    Cabeza, R.; Collier, B.

    1988-01-01

    The present experiments measured the release of acetylcholine (ACh) by the cat superior cervical ganglia in the presence of, and after exposure to, 2-(4-phenylpiperidino)cyclohexanol (AH5183), a compound known to block the uptake of ACh by cholinergic synaptic vesicles. We confirmed that AH5183 blocks evoked ACh release during preganglionic nerve stimulation when approximately 13-14% of the initial ganglial ACh stores had been released; periods of rest in the presence of the drug did not promote recovery from the block, but ACh release recovered following the washout of AH5183. ACh was synthesized in AH5183-treated ganglia, as determined by the synthesis of (/sup 3/H)ACh from (/sup 3/H)choline, and this (/sup 3/H)ACh could be released by stimulation following drug washout. The specific activity of the released ACh matched that of the tissue's ACh, and thus we conclude that ACh synthesized in the presence of AH5183 is a releasable as pre-existing ACh stores once the drug is removed. We tested the relative releasability of ACh synthesized during AH5183 exposure (perfusion with (/sup 3/H)choline) and that synthesized during recovery from the drug's effects (perfusion with (/sup 14/C)choline: the ratio of (/sup 3/H)ACh to (/sup 14/C)ACh released by stimulation was similar to the ratio in the tissue. These results suggest that the mobilization of ACh for release by ganglia during recovery from an AH5183-induced block is independent of the conditions under which the ACh was synthesized. Unlike nerve impulses, black widow spider venom (BWSV) induced the release of ACh from AH5183-blocked ganglia, even in the drug's continued presence. Venom-induced release of ACh from AH5183-treated ganglia was not less than the venom-induced release from tissues not exposed to AH5183.

  16. Impulsive behavior and nicotinic acetylcholine receptors.

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  17. Alcohol and nicotinic acetylcholine receptors

    Jinsong Tang

    2013-05-01

    Full Text Available Background The frequent co-abuse of alcohol and tobacco may suggest that they share some common neurological mechanisms. For example, nicotine acts on Nicotinic acetylcholine receptors (nAChRs in the brain to release dopamine to sustain addiction. Might nAChRs be entwined with alcohol? Objectives This review summarizes recent studies on the relationship between alcohol and nAChRs, including the role of nAChRs in molecular biological studies, genetic studies and pharmacological studies on alcohol, which indicate that nAChRs have been potently modulated by alcohol. Methods We performed a cross-referenced literature search on biological, genetic and pharmacological studies of alcohol and nAChRs. Results Molecular biological and genetic studies indicated that nAChR (genes may be important in mediating alcohol intake, but we still lack substantial evidence about how it works. Pharmacological studies proved the correlation between nAChRs and alcohol intake, and the association between nicotine and alcohol at the nAChRs. The positive findings of varenicline (a partial agonist at the _4_2 nAChR, smoking-cessation pharmaceutical treatment for alcoholism, provides a new insight for treating co-abuse of these two substances. >Conclusions Molecular biological, genetic and pharmacological studies of alcohol at the nAChR level, provide a new sight for preventing and treating the co-abuse of alcohol and nicotine. Given the important role of nAChRs in nicotine dependence, the interaction between alcohol and nAChRs would provide a new insight in finding effective pharmacological treatments, in decreasing or stopping alcohol consumption and cigarette smoking concurrently.

  18. Bacteria-induced histamine release from human bronchoalveolar cells and blood leukocytes

    Clementsen, P; Milman, N; Struve-Christensen, E

    1991-01-01

    Histamine release induced by Staphylococcus aureus was examined in cells obtained by bronchoalveolar lavage (BAL) in non-atopic individuals. Approximately half of the individuals responded with mediator release to the bacterium, and the release was found to be time- and concentration dependent....... No difference was found between the patients who responded and those who did not respond in regard to age, sex, smoker/non-smoker, % recovery of BAL-fluid, total cell count, differential cell counts, histamine content per mast cell, or diagnoses. Also stimulation of the BAL-cells with the calcium-ionophore A......23187 resulted in histamine release. S. aureus-induced histamine release from basophils was examined in leukocyte suspensions obtained from the same individuals, and in all experiments release was found. The dose-response curves were similar to those obtained with BAL cells. The bacteria...

  19. The P2X7 receptor–pannexin-1 complex decreases muscarinic acetylcholine receptor–mediated seizure susceptibility in mice

    Kim, Ji-Eun; Kang, Tae-Cheon

    2011-01-01

    Pannexin-1 (Panx1) plays a role in the release of ATP and glutamate in neurons and astrocytes. Panx1 can be opened at the resting membrane potential by extracellular ATP via the P2X7 receptor (P2X7R). Panx1 opening has been shown to induce neuronal death and aberrant firing, but its role in neuronal activity has not been established. Here, we report the role of the P2X7R-Panx1 complex in regulating muscarinic acetylcholine 1 (M1) receptor function. P2X7R knockout (P2X7–/–) mice showed greater...

  20. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    Ripken, Dina; Wielen, van der, S.; Wortelboer, Heleen M.; Meijerink, Jocelijn; Witkamp, Renger F.; Henk F J Hendriks

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects...

  1. Wave-induced release of methane : littoral zones as a source of methane in lakes

    Hofmann, Hilmar; Federwisch, Luisa; Peeters, Frank

    2010-01-01

    This study investigates the role of surface waves and the associated disturbance of littoral sediments for the release and later distribution of dissolved methane in lakes. Surface wave field, wave-induced currents, acoustic backscatter strength, and the concentration and distribution of dissolved methane were measured simultaneously in Lake Constance, Germany. The data indicate that surface waves enhance the release of dissolved methane in the shallow littoral zone via burst-like releases of...

  2. Effects of bicarbonate buffer on acetylcholine-, adenosine 5'triphosphate-, and cyanide-induced responses in the cat petrosal ganglion in vitro.

    Soto, Carolina R; Arroyo, Jorge; Alcayaga, Julio

    2002-01-01

    Acetylcholine (ACh), adenosine 5'-triphosphate (ATP) and sodium cyanide (NaCN) activate petrosal ganglion (PG) neurons in vitro, and evoke ventilatory reflexes in situ, which are abolished after bilateral chemosensory denervation. Because in our previous experiments we superfused the isolated PG with solutions free of CO2/HCO3- buffer, we studied its effects on the PG responses evoked in vitro. PGs from adult cats were superfused at a constant pH, with HEPES-supplemented (5 mM) saline with or without CO2/HCO3- (5%/26.2 mM) buffer, and carotid (sinus) nerve frequency discharge (fCN) recorded. Increases in fCN evoked by ACh, ATP and NaCN in CO2- free saline were significantly reduced (P buffer appears to reduce PG neurons sensitivity to ACh, ATP and NaCN, an effect that may underlie the lack of ventilatory reflexes after bilateral chemodenervation.

  3. Development and Optimization of a Novel Prolonged Release Formulation to Resist Alcohol-Induced Dose Dumping

    Gujjar, Chaitanya Yogananda; Rallabandi, Balaramesha Chary; Gannu, Ramesh; Deulkar, Vallabh Subashrao

    2015-01-01

    Alcohol-induced dose dumping is a serious concern for the orally administered prolonged release dosage forms. The study was designed to optimize the independent variables, propylene glycol alginate (PGA), Eudragit RS PO (ERS) and coating in mucoadhesive quetiapine prolonged release tablets 200 mg required for preventing the alcohol-induced dose dumping. Optimal design based on response surface methodology was employed for the optimization of the composition. The formulations are evaluated for...

  4. Free fatty acids normalize a rosiglitazone-induced visfatin release.

    Haider, Dominik G; Mittermayer, Friedrich; Schaller, Georg; Artwohl, Michaela; Baumgartner-Parzer, Sabina M; Prager, Gerhard; Roden, Michael; Wolzt, Michael

    2006-11-01

    The detrimental effect of elevated free fatty acids (FFAs) on insulin sensitivity can be improved by thiazolidinediones (TZDs) in patients with type 2 diabetes mellitus. It is unknown whether this salutary action of TZD is associated with altered release of the insulin-mimetic adipocytokine visfatin. In this study, we investigated whether visfatin concentrations are altered by FFA and TZD treatment. In a randomized, double-blind, placebo-controlled, parallel-group study 16 healthy volunteers received an infusion of triglycerides/heparin to increase plasma FFA after 3 wk of treatment with rosiglitazone (8 mg/day, n = 8) or placebo (n = 8), and circulating plasma visfatin was measured. As a corollary, human adipocytes were incubated with synthetic fatty acids and rosiglitazone to assess visfatin release in vitro. The results were that rosiglitazone treatment increased systemic plasma visfatin concentrations from 0.6 +/- 0.1 to 1.7 +/- 0.2 ng/ml (P < 0.01). Lipid infusion caused a marked elevation of plasma FFA but had no effect on circulating visfatin in controls. In contrast, elevated visfatin concentrations in subjects receiving rosiglitazone were normalized by lipid infusion. In isolated adipocytes, visfatin was released into supernatant medium by acute addition and long-term treatment of rosiglitazone. This secretion was blocked by synthetic fatty acids and by inhibition of phosphatidylinositol 3-kinase or Akt. In conclusion, release of the insulin-mimetic visfatin may represent a major mechanism of metabolic TZD action. The presence of FFA antagonizes this action, which may have implications for visfatin bioactivity.

  5. Neisseria gonorrhoeae infection induces altered amphiregulin processing and release.

    Sonja Löfmark

    Full Text Available Adhesion of the human pathogen Neisseria gonorrhoeae has established effects on the host cell and evokes a variety of cellular events including growth factor activation. In the present study we report that infection with N. gonorrhoeae causes altered amphiregulin processing and release in human epithelial cells. Amphiregulin is a well-studied growth factor with functions in various cell processes and is upregulated in different forms cancer and proliferative diseases. The protein is prototypically cleaved on the cell surface in response to external stimuli. We demonstrate that upon infection, a massive upregulation of amphiregulin mRNA is seen. The protein changes its subcellular distribution and is also alternatively cleaved at the plasma membrane, which results in augmented release of an infection-specific 36 kDa amphiregulin product from the surface of human cervical epithelial cells. Further, using antibodies directed against different domains of the protein we could determine the impact of infection on pro-peptide processing. In summary, we present data showing that the infection of N. gonorrhoeae causes an alternative amphiregulin processing, subcellular distribution and release in human epithelial cervical cells that likely contribute to the predisposition cellular abnormalities and anti-apoptotic features of N. gonorrhoeae infections.

  6. Rituximab-Induced Splenic Rupture and Cytokine Release

    Nair, Ranjit; Gheith, Shereen; Lamparella, Nicholas

    2016-01-01

    Patient: Female, 55 Final Diagnosis: Mantle cell lymphoma Symptoms: Cytokine release syndrome • hypoglycemia • hypotension • splenic rupture • splenomegaly • vision loss Medication: — Clinical Procedure: Case Report Specialty: Oncology Objective: Unusual clinical course Background: Rituximab is a therapeutic monoclonal antibody that is used for many different lymphomas. Post-marketing surveillance has revealed that the risk of fatal reaction with rituximab use is extremely low. Splenic rupture and cytokine release syndrome are rare fatal adverse events related to the use of therapeutic monoclonal antibodies, especially in aggressive malignancies with high tumor burden. Case Report: A 55-year-old woman presented with abdominal pain and type B symptoms and was diagnosed with mantle cell lymphoma. Initial peripheral blood flow cytometry showed findings that mimicked features of chronic lymphocytic leukemia. Further treatment with rituximab led to catastrophic treatment complications that proved to be fatal for the patient. Conclusions: Severe cytokine release syndrome associated with biologics carries a very high morbidity and case fatality rate. With this case report we aim to present the diagnostic challenge with small B-cell neoplasms, especially mantle cell lymphoma and chronic lymphocytic lymphomas, and underscore the importance of thorough risk assessment for reactions prior to treatment initiation. PMID:26972227

  7. Effects of antihistamines on the function of human α7-nicotinic acetylcholine receptors.

    Sadek, Bassem; Khanian, Seyedeh Soha; Ashoor, Abrar; Prytkova, Tatiana; Ghattas, Mohammad A; Atatreh, Noor; Nurulain, Syed M; Yang, Keun-Hang Susan; Howarth, Frank Christopher; Oz, Murat

    2015-01-05

    Effects of the histamine H₁ receptor (H1R) antagonists (antihistamines), promethazine (PMZ), orphenadrine (ORP), chlorpheniramine (CLP), pyrilamine (PYR), diphenhydramine (DPH), citerizine (CTZ), and triprolidine (TRP) on the functional properties of the cloned α7 subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes were investigated. Antihistamines inhibited the α7-nicotinic acetylcholine receptor in the order PYR>CLP>TRP>PMZ>ORP≥DPH≥CTZ. Among the antihistamines, PYR showed the highest reversible inhibition of acetylcholine (100 µM)-induced responses with IC₅₀ of 6.2 µM. PYR-induced inhibition was independent of the membrane potential and could not be reversed by increasing the concentration of acetylcholine. Specific binding of [¹²⁵I] α-bungarotoxin, a selective antagonist for α7-nicotinic acetylcholine receptor, was not changed in the presence of PYR suggesting a non-competitive inhibition of nicotinic receptors. In line with functional experiments, docking studies indicated that PYR can potentially bind allosterically with the α7 transmembrane domain. Our results indicate that the H₂-H₄ receptor antagonists tested in this study (10 µM) showed negligible inhibition of α7-nicotinic acetylcholine receptors. On the other hand, H₁ receptor antagonists inhibited the function of human α7-nicotinic acetylcholine receptor, with varying potencies. These results emphasize the importance of α7-nicotinic acetylcholine receptor for future pharmacological/toxicological profiling.

  8. Nicotine enhances alcohol intake and dopaminergic responses through β2* and β4* nicotinic acetylcholine receptors

    Tolu, Stefania; Marti, Fabio; Morel, Carole; Perrier, Carole; Torquet, Nicolas; Pons, Stephanie; de Beaurepaire, Renaud; Faure, Philippe

    2017-01-01

    Alcohol and nicotine are the most widely co-abused drugs. Both modify the activity of dopaminergic (DA) neurons of the Ventral Tegmental Area (VTA) and lead to an increase in DA release in the Nucleus Accumbens, thereby affecting the reward system. Evidences support the hypothesis that distinct nicotinic acetylcholine receptors (nAChRs), the molecular target of acetylcholine (ACh) and exogenous nicotine, are also in addition implicated in the response to alcohol. The precise molecular and neuronal substrates of this interaction are however not well understood. Here we used in vivo electrophysiology in the VTA to characterise acute and chronic interactions between nicotine and alcohol. Simultaneous injections of the two drugs enhanced their responses on VTA DA neuron firing and chronic exposure to nicotine increased alcohol-induced DA responses and alcohol intake. Then, we assessed the role of β4 * nAChRs, but not β2 * nAChRs, in mediating acute responses to alcohol using nAChR subtypes knockout mice (β2−/− and β4−/− mice). Finally, we showed that nicotine-induced modifications of alcohol responses were absent in β2−/− and β4−/− mice, suggesting that nicotine triggers β2* and β4 * nAChR-dependent neuroadaptations that subsequently modify the responses to alcohol and thus indicating these receptors as key mediators in the complex interactions between these two drugs. PMID:28332590

  9. Envenomations by Bothrops and Crotalus snakes induce the release of mitochondrial alarmins.

    Irene Zornetta

    Full Text Available Skeletal muscle necrosis is a common manifestation of viperid snakebite envenomations. Venoms from snakes of the genus Bothrops, such as that of B. asper, induce muscle tissue damage at the site of venom injection, provoking severe local pathology which often results in permanent sequelae. In contrast, the venom of the South American rattlesnake Crotalus durissus terrificus, induces a clinical picture of systemic myotoxicity, i.e., rhabdomyolysis, together with neurotoxicity. It is known that molecules released from damaged muscle might act as 'danger' signals. These are known as 'alarmins', and contribute to the inflammatory reaction by activating the innate immune system. Here we show that the venoms of B. asper and C. d. terrificus release the mitochondrial markers mtDNA (from the matrix and cytochrome c (Cyt c from the intermembrane space, from ex vivo mouse tibialis anterior muscles. Cyt c was released to a similar extent by the two venoms whereas B. asper venom induced the release of higher amounts of mtDNA, thus reflecting hitherto some differences in their pathological action on muscle mitochondria. At variance, injection of these venoms in mice resulted in a different time-course of mtDNA release, with B. asper venom inducing an early onset increment in plasma levels and C. d. terrificus venom provoking a delayed release. We suggest that the release of mitochondrial 'alarmins' might contribute to the local and systemic inflammatory events characteristic of snakebite envenomations.

  10. T-2 Toxin Regulated Ganoderma lucidum Induced Cytokine Release

    Kazem Ahmadi

    2008-01-01

    Full Text Available The water-soluble extract of Ganoderma lucidum (Reishi has been used as immunomodulator to stimulate spleen cells proliferation and cytokine expression. It has also been shown that at some level of exposure, T-2 toxin typically act as immunosuppressive agent and can increase disease susceptibility. The aim of this study was to investigate the effect of T-2 toxin on cytokine production by Ganoderma lucidum (G. lucidum treated-cells. Mice peritoneal macrophages and lymphoid T cells were prepared by usual manner and plated out at 1106 or 1104 cell/well respectively in RPMI 1640 supplemented with 10% FCS, 50 µg streptomycin and 50U penicillin. Cells were incubated with different concentrations of G. lucidum in the presence or absence of 1 ng mL-­1 T-2 toxin at 37°C and 5% CO2 for 48 h. Cell free medium was removed and used for cytokine assay by ELISA method. The results showed that T-2 toxin in the absence of G.lucidum enhanced IL-2, IFN-γ release compared with control group, but it reduced the production of other cytokines. G. lucidum enhanced the production of IL-1β TNF-α, IL-12, IL-2 and IFN-γ compared with control group, but reduced IL-4 and IL-10 release. T-2 toxin, up regulated the enhancement effect of G. lucidum on IFN-γ, IL-2 and TNF-α, but it down regulated its effect on the production of other cytokines. In conclution our results indicate that T-2 toxin at 1 ng mL-1 may augment the immunomodulating effects of G. lucidum on cytokine release.

  11. Role of calcium in gonadotropin releasing hormone-induced luteinizing hormone secretion from the bovine pituitary

    Kile, J.P.

    1986-01-01

    The hypothesis was tested that GnRH acts to release LH by increasing calcium uptake by gonadotroph which in turn stimulates calcium-calmodulin activity and results in LH release from bovine pituitary cells as it does in the rat. Pituitary glands of calves (4-10 months of age) were enzymatically dispersed (0.2% collagenase) and grown for 5 days to confluency in multiwell plates (3 x 10/sup 5//well). Cells treated with GnRH Ca/sup + +/ ionophore A23187, and ouabain all produced significant releases of LH release in a pronounced all or none fashion, while thorough washing of the cells with 0.5 mM EGTA in Ca/sup + +/-free media prevented the action of GnRH. GnRH caused a rapid efflux of /sup 45/Ca/sup + +/. Both GnRH-stimulated /sup 45/Ca efflux and LH release could be partially blocked by verapamil GnRH-induced LH release could also be blocked by nifedipine and tetrodotoxin, although these agents did not affect /sup 45/Ca efflux. The calmodulin antagonists calmidazolium and W7 were found to block GnRH induced LH release, as well as LH release induced by theophylline, KC PGE/sub 2/ and estradiol. These data indicated that: (1) calcium is required for GnRH action, but extracellular Ca/sup + +/ does not regulate LH release; (2) GnRH elevates intracellular Ca/sup + +/ by opening both voltage sensitive and receptor mediated Ca/sup + +/ channels; (3) activation of calmodulin is one mechanism involved in GnRH-induced LH release.

  12. Release of dengue virus genome induced by a peptide inhibitor.

    Shee-Mei Lok

    Full Text Available Dengue virus infects approximately 100 million people annually, but there is no available therapeutic treatment. The mimetic peptide, DN59, consists of residues corresponding to the membrane interacting, amphipathic stem region of the dengue virus envelope (E glycoprotein. This peptide is inhibitory to all four serotypes of dengue virus, as well as other flaviviruses. Cryo-electron microscopy image reconstruction of dengue virus particles incubated with DN59 showed that the virus particles were largely empty, concurrent with the formation of holes at the five-fold vertices. The release of RNA from the viral particle following incubation with DN59 was confirmed by increased sensitivity of the RNA genome to exogenous RNase and separation of the genome from the E protein in a tartrate density gradient. DN59 interacted strongly with synthetic lipid vesicles and caused membrane disruptions, but was found to be non-toxic to mammalian and insect cells. Thus DN59 inhibits flavivirus infectivity by interacting directly with virus particles resulting in release of the genomic RNA.

  13. Nitroglycerin-induced headache is not dependent on histamine release

    Iversen, Helle Klingenberg; Olesen, J

    1994-01-01

    The molecular mechanisms of migraine pain have not yet been clarified. Monoamine and the peptide neurotransmitters involved in neurogenic inflammation do not cause significant head pain. Our previous studies of glyceryl trinitrate (GTN) and histamine-induced headaches have suggested that nitric...

  14. Novel acetylcholine and carbamoylcholine analogues

    Hansen, Camilla Petrycer; Jensen, Anders Asbjørn; Christensen, Jeppe K.;

    2008-01-01

    A series of carbamoylcholine and acetylcholine analogues were synthesized and characterized pharmacologically at neuronal nicotinic acetylcholine receptors (nAChRs). Several of the compounds displayed low nanomolar binding affinities to the alpha 4beta 2 nAChR and pronounced selectivity for this ......A series of carbamoylcholine and acetylcholine analogues were synthesized and characterized pharmacologically at neuronal nicotinic acetylcholine receptors (nAChRs). Several of the compounds displayed low nanomolar binding affinities to the alpha 4beta 2 nAChR and pronounced selectivity...... for this subtype over alpha 3beta 4, alpha 4beta 4, and alpha 7 nAChRs. The high nAChR activity of carbamoylcholine analogue 5d was found to reside in its R-enantiomer, a characteristic most likely true for all other compounds in the series. Interestingly, the pronounced alpha 4beta 2 selectivities exhibited......AChR agonists published to date. Ligand-protein docking experiments using homology models of the amino-terminal domains of alpha 4beta 2 and alpha 3beta 4 nAChRs identified residues Val111(beta 2)/Ile113(beta 4), Phe119(beta 2)/Gln121(beta 4), and Thr155(alpha 4)/Ser150(alpha 3) as possible key determinants...

  15. Acetylcholine : Future research and perspectives

    Van der Zee, E. A.; Platt, B.; Riedel, G.

    2011-01-01

    Ever since the initial description of chemical transmission in the early part of the 20th century and the identification of acetylcholine (ACh) as the first such transmitter, interests grew to define the multiple facets of its functions. This multitude is only partially covered here, but even in the

  16. Histamine release induced from rat mast cells by the ionophore A23187 in the absence of extracellular calcium

    Johansen, Torben

    1980-01-01

    Isolated rat mast cells were used to study whether ionophore A23187 could induce histamine release by mobilizing cellular calcium. The histamine release was a slow process which was completed after about 20 min incubation with A23187. The A23187-induced histamine release was inhibited after...... incubation of the cells with EDTA for 1 h in a 37 degrees C water bath in calcium-free medium. Reintroduction of calcium in excess of EDTA induced the release of histamine. The observations suggest that A23187 can induce histamine release by mobilizing a cellular pool of calcium....

  17. Enzyme-linked DNA dendrimer nanosensors for acetylcholine

    Walsh, Ryan; Morales, Jennifer M.; Skipwith, Christopher G.; Ruckh, Timothy T.; Clark, Heather A.

    2015-10-01

    It is currently difficult to measure small dynamics of molecules in the brain with high spatial and temporal resolution while connecting them to the bigger picture of brain function. A step towards understanding the underlying neural networks of the brain is the ability to sense discrete changes of acetylcholine within a synapse. Here we show an efficient method for generating acetylcholine-detecting nanosensors based on DNA dendrimer scaffolds that incorporate butyrylcholinesterase and fluorescein in a nanoscale arrangement. These nanosensors are selective for acetylcholine and reversibly respond to levels of acetylcholine in the neurophysiological range. This DNA dendrimer architecture has the potential to overcome current obstacles to sensing in the synaptic environment, including the nanoscale size constraints of the synapse and the ability to quantify the spatio-temporal fluctuations of neurotransmitter release. By combining the control of nanosensor architecture with the strategic placement of fluorescent reporters and enzymes, this novel nanosensor platform can facilitate the development of new selective imaging tools for neuroscience.

  18. Cleavage by MALT1 induces cytosolic release of A20.

    Malinverni, Claire; Unterreiner, Adeline; Staal, Jens; Demeyer, Annelies; Galaup, Marion; Luyten, Marcel; Beyaert, Rudi; Bornancin, Frédéric

    2010-10-01

    The MALT1 paracaspase has arginine-directed proteolytic activity. A20 is a dual ubiquitin-editing enzyme involved in termination of NF-κB signaling. Upon T- or B-cell receptor engagement human (h) A20 is cleaved by MALT1 after arginine 439, yielding an N-terminal fragment (hA20p50) and a C-terminal one (hA20p37). The hA20p50 fragment has never been detected directly, thus limiting insight into the functional consequences of MALT1-mediated cleavage of A20. Here, various antibodies were tested, including newly generated hA20p50 and hA20p37 specific antibodies, leading to detection of the hA20p50 fragment produced after MALT1-mediated cleavage of ectopically expressed as well as endogenous A20 proteins. The properties of both A20 fragments, generated upon co-expression with a constitutively active MALT1 protein, were further studied by sub-cellular fractionation and fluorescence microscopy. In contrast to full-length A20 which is particulate and insoluble, we found hA20p50 to be soluble and readily released into the cytosol whereas hA20p37 was partially soluble, thus suggesting loss of compartmentalization as a possible mechanism for MALT1-mediated dampening of A20 function.

  19. Riluzole and gabapentinoids activate glutamate transporters to facilitate glutamate-induced glutamate release from cultured astrocytes

    Yoshizumi, Masaru; Eisenach, James C.; Hayashida, Ken-ichiro

    2011-01-01

    We have recently demonstrated that the glutamate transporter activator riluzole paradoxically enhanced glutamate-induced glutamate release from cultured astrocytes. We further showed that both riluzole and the α2δ subunit ligand gabapentin activated descending inhibition in rats by increasing glutamate receptor signaling in the locus coeruleus and hypothesized that these drugs share common mechanisms to enhance glutamate release from astrocytes. In the present study, we examined the effects o...

  20. Inhibition of adenosine deaminase attenuates endotoxin-induced release of cytokines in vivo in rats.

    Tofovic, S P; Zacharia, L; Carcillo, J A; Jackson, E K

    2001-09-01

    The purpose of this study was to investigate in vivo the effects of modulating the adenosine system on endotoxin-induced release of cytokines and changes in heart performance and neurohumoral status in early, profound endotoxemia in rats. Time/pressure variables of heart performance and blood pressure were recorded continuously, and plasma levels of tumor necrosis factor alpha (TNFalpha), interleukin 1-beta (IL-1beta), plasma renin activity (PRA), and catecholamines were determined before and 90 min after administration of endotoxin (30 mg/kg of lipopolysaccharide, i.v.). Erythro-9[2-hydroxyl-3-nonyl] adenine (EHNA; an adenosine deaminase inhibitor) had no effects on measured time-pressure variables of heart performance under baseline conditions and during endotoxemia, yet significantly attenuated endotoxin-induced release of cytokines and PRA. Pretreatment with the non-selective adenosine receptor antagonist DPSPX not only prevented the effects of EHNA but also increased the basal release of cytokines and augmented PRA. At baseline, caffeine (a non-selective adenosine receptor antagonist) increased HR, +dP/dtmax, heart rate x ventricular pressure product (HR x VPSP) and +dP/dtmax normalized by pressure (+dP/dtmax/VPSP), and these changes persisted during endotoxemia. Caffeine attenuated endotoxin-induced release of cytokines and augmented endotoxin-induced increases in plasma catecholamines and PRA. Pretreatment with propranolol abolished the effects of caffeine on heart performance and neurohumoral activation during the early phase of endotoxemia. 6N-cyclopentyladenosine (CPA; selective A1 adenosine receptor agonist) induced bradicardia and negative inotropic effects, reduced work load (i.e., decreased HR, VPSP, +dP/dtmax, +dP/dtmax/VPSP and HR x VPSP) and inhibited endotoxin-induced tachycardia and renin release. CGS 21680 (selective A2A adenosine receptor agonist) decreased blood pressure under basal condition but did not potentiate decreases in blood pressure

  1. Acetylcholine regulates pancreastatin secretion from the human pancreastatin-producing cell line (QGP-1N).

    Funakoshi, A; Tateishi, K; Tsuru, M; Jimi, A; Wakasugi, H; Kono, A

    1991-07-01

    Studies were made of pancreastatin (PST) secretion from a human PST-producing cell line (QGP-1N) in response to various secretagogues. Cells with immunoreactivity for PST were observed in monolayer cultures of QGP-1N cells. Carbachol stimulated PST secretion and the intracellular Ca2+ mobilization concentration dependently in the range of 10(-6)-10(-4) M. The PST secretion and Ca2+ mobilization induced by carbachol were inhibited by atropine. The calcium ionophore (A23187) stimulated PST secretion. However, cholecystokinin and gastrin-releasing peptide did not stimulate either PST secretion or Ca2+ mobilization. Secretin also did not stimulate PST secretion. The glucose concentration in the culture medium had no effect on PST secretion. These results suggest that PST secretion is mainly regulated by acetylcholine through a muscarinic receptor, and that an increase in intracellular Ca2+ plays an important role in stimulus-secretion coupling in QGP-1N cells.

  2. Effects of cannabinoid receptor agonists on immunologically induced histamine release from rat peritoneal mast cells.

    Lau, Alaster H Y; Chow, Sharron S M

    2003-03-19

    Immunologic activation of mast cells through the cross-linking of high affinity IgE receptors results in the release of inflammatory mediators which are important in the pathogenesis of allergic reactions. Early studies investigating the effects of palmitoylethanolamide on animal models of inflammation and on rat mast cells led to the hypothesis that endogenous cannabinoids might act as local autacoids which suppressed inflammation by reducing the activation of mast cells. However, more recent studies produced contradicting results. In order to evaluate if cannabinoid receptors are present in mast cells, we studied the effects of endocannabinoids (anandamide and palmitoylethanolamide) and synthetic cannabimimetics (CP 55,940, WIN 55,212-2 and HU-210) on histamine release from rat peritoneal mast cells. When incubated with mast cells alone, only anandamide could induce significant level of histamine release at concentrations higher than 10(-6) M. When mast cells were activated with anti-IgE, the histamine release induced was not affected by anandamide, palmitoylethanolamide and CP 55,940. In contrast, both WIN 55,212-2 and HU-210 enhanced anti-IgE-induced histamine release at 10(-5) M and preincubation did not increase the potency. The histamine releasing action of anandamide and the enhancing effects of WIN 55,212-2 and HU-210 on anti-IgE-induced histamine release were not reduced by the cannabinoid receptor antagonists, AM 281 and AM 630. In conclusion, the present study does not support the hypothesis that cannabinoids suppress mast cell activation. Instead, some of the cannabinoid receptor-directed ligands tested enhanced mast cell activation. However, the high concentrations required and the failure of cannabinoid receptor antagonists to reverse such effects also question the existence of functional cannabinoid receptors in mast cells.

  3. Cyclosporin A inhibits programmed cell death and cytochrome c release induced by fusicoccin in sycamore cells.

    Contran, N; Cerana, R; Crosti, P; Malerba, M

    2007-01-01

    Programmed cell death plays a vital role in normal plant development, response to environmental stresses, and defense against pathogen attack. Different types of programmed cell death occur in plants and the involvement of mitochondria is still under investigation. In sycamore (Acer pseudoplatanus L.) cultured cells, the phytotoxin fusicoccin induces cell death that shows apoptotic features, including chromatin condensation, DNA fragmentation, and release of cytochrome c from mitochondria. In this work, we show that cyclosporin A, an inhibitor of the permeability transition pore of animal mitochondria, inhibits the cell death, DNA fragmentation, and cytochrome c release induced by fusicoccin. In addition, we show that fusicoccin induces a change in the shape of mitochondria which is not prevented by cyclosporin A. These results suggest that the release of cytochrome c induced by fusicoccin occurs through a cyclosporin A-sensitive system that is similar to the permeability transition pore of animal mitochondria and they make it tempting to speculate that this release may be involved in the phytotoxin-induced programmed cell death of sycamore cells.

  4. Cyclic nucleotides of canine antral smooth muscle. Effects of acetylcholine, catecholamines and gastrin.

    Baur, S; Grant, B; Wooton, J

    1981-01-01

    1. The effects of acetylcholine, catecholamines and gastrin on the intracellular content of cyclic AMP and cyclic GMP in antral circular muscle have been determined. 2. Acetylcholine results in a significant but transient increase in intracellular cyclic GMP. 3. Isoproterenol and norepinephrine increase intracellular cyclic AMP. Based on half-maximal effective doses, isoproterenol is 2.7-times more effective than norepinephrine. The increase in intracellular cyclic AMP by both agents is inhibited by propranolol but not phentolamine, indicating that both agents act on the muscle cell by a beta-receptor-coupled mechanism. 4. Gastrin has no demonstrable effect on either cyclic AMP or cyclic GMP. This suggests that while gastrin and acetylcholine can produce a like myoelectric response in the muscle cell, the action of gastrin is mediated by a separate receptor, presumably on the muscle cell, and not by a release of acetylcholine.

  5. Effect of MK-801 on methamphetamine-induced dopaminergic neurotoxicity: long-term attenuation of methamphetamine-induced dopamine release

    Kim, Sang Eun; Kim, Yu Ri; Hwang, Se Hwan [Sungkyunkwan Univ., School of Medicine, Seoul (Korea, Republic of)

    2001-08-01

    Repeated administration of methamphetamine (METH) produces high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. The effect of MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, on METH-induced changes in DA transporter (DAT) and DA release evoked by an acute METH challenge was evaluated in rodent striatum using [{sup 3}H] WIN 38,428 ex vivo auto-radiography and in vivo microdialysis. Four injections of METH (10 mg/kg, i.p.), each given 2 h apart, produced 71% decrease in DAT levels in mouse striatum 3 d after administration. Pretreatment with MK-801 (2.5 g/kg, i.p.) 15 min before each of the four METH injections protected completely against striatal DAT depletions. Four injections of MK-801 alone did not significantly change striatal DAT levels. Striatal DA release evoked by an acute METH challenge (4mg/kg, i.p.) at 3 d after repeated administration of METH in rats was decreased but significant compared with controls, which was attenuated by repeated pretreatment with MK-801. Also, repeated injections of MK-801 alone attenuated acute METH-induced striatal DA release 3 d after administration. These results suggest that repeated administration of MK-801 may exert a preventive effect against METH-induced DA terminal injury through long-term attenuation of DA release induced by METH and other stimuli.

  6. Neuronal injury induces the release of pro-interleukin-1beta from activated microglia in vitro.

    Wang, Penglian; Rothwell, Nancy J; Pinteaux, Emmanuel; Brough, David

    2008-10-21

    Microglia activated after brain injury, are a major source of the pro-inflammatory cytokine interleukin-1 (IL-1), which is known to further exacerbate damage. However, the mechanisms that control IL-1 release in acute neuronal injury are unknown and the purpose of this study was to test the hypothesis that neuronal injury induces IL-1beta release from microglial cells. Here we report that lipopolysaccharide (LPS)-activated rat microglia co-cultured with healthy rat neurons express pro-IL-1beta, which in the absence of cell death accumulates in the cells. Treatment of co-cultures with the excitotoxin N-methyl-D-aspartate (NMDA) induced neuronal cell death leading to the appearance of pro-IL-1beta in the culture supernatant. This effect was reversed by the NMDA receptor antagonist MK-801, and was neuron-dependent, since NMDA had no effect on cell death or pro-IL-1beta release in mixed glial cell cultures. In addition, we show that pro-IL-1beta release from LPS-treated mixed glia or LPS-treated microglia is significantly reduced in the presence of conditioned medium from healthy co-cultures or neuronal cultures respectively. These results demonstrate that injured neurons promote the release of pro-IL-1beta from microglia, possibly by regulating microglial cell viability, and suggest an important alternative mechanism of IL-1beta release that occurs in response to neuronal injury.

  7. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones

    Beynon, Amy L; Brown, M. Rowan; Wright, Rhiannon; Rees, Mark I.; Sheldon, I Martin; Davies, Jeffrey S.

    2013-01-01

    Background Ghrelin is an orexigenic stomach hormone that acts centrally to increase mid-brain dopamine neurone activity, amplify dopamine signaling and protect against neurotoxin-induced dopamine cell death in the mouse substantia nigra pars compacta (SNpc). In addition, ghrelin inhibits the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines from peripheral macrophages, T-cells and from LPS stimulated microglia. Here we sought to determine whether ghrelin attenuates pro-in...

  8. Repeated potentiation of the metabotropic glutamate receptor 5 and the alpha 7 nicotinic acetylcholine receptor modulates behavioural and GABAergic deficits induced by early postnatal phencyclidine (PCP) treatment

    Kjaerby, Celia; Bundgaard, Christoffer; Fejgin, Kim;

    2013-01-01

    treatment, pyramidal neurons displayed a reduced mIPSC frequency and up-regulation of extrasynaptic THIP-induced current. ADX47273 treatment restored this up-regulation of THIP-induced current. Reduced receptor function seems to be the underlying cause of the reported changes, since repeated treatment...

  9. The mechanism of gastrin release in cysteamine-induced duodenal ulcer

    Poulsen, Steen Seier

    1982-01-01

    a rise in serum gastrin from 29 +/- 5 pg/ml to a maximum of 203 +/- 62 pg/ml after 3 h in unoperated rats, whereas no rise was seen in vagotomized or antrectomized rats. The beta-adrenergic blocking agent propranolol strongly inhibited cysteamine-induced gastrin release, whereas atropine dependent...

  10. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  11. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model.

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon; Nile, Christopher

    2015-08-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections.

  12. Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells

    Angela Marina Montalbano

    2016-01-01

    Full Text Available IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation, Bay11-7082 (inhibitor of IkBα phosphorylation, Hemicholinium-3 (HCh-3 (choline uptake blocker, and Tiotropium bromide (Spiriva® (anticholinergic drug was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells.

  13. Dose protocols of acetylcholine test in Chinese

    向定成; 龚志华; 何建新; 洪长江; 邱建; 马骏

    2004-01-01

    @@ Acetylcholine test has been widely used clinically in several countries as a practical test provoking coronary artery spasm.1-3 Although it has also been launched recently in a few hospitals in China, the dose protocol for acetylcholine test used in these hospitals were from abroad.4,5 This study was aimed at developing a dose protocol for acetylcholine test suitable for Chinese people.

  14. Phosphocholine – an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors

    Richter, K.; Mathes, V.; Fronius, M.; Althaus, M.; Hecker, A.; Krasteva-Christ, G.; Padberg, W.; Hone, A. J.; McIntosh, J. M.; Zakrzewicz, A.; Grau, V.

    2016-01-01

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions. PMID:27349288

  15. Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors.

    Richter, K; Mathes, V; Fronius, M; Althaus, M; Hecker, A; Krasteva-Christ, G; Padberg, W; Hone, A J; McIntosh, J M; Zakrzewicz, A; Grau, V

    2016-06-28

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions.

  16. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN.

    Haseneen, Nadia A; Vaday, Gayle G; Zucker, Stanley; Foda, Hussein D

    2003-03-01

    High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury.

  17. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  18. Cisplatin-induced peptic ulcers, vagotomy, adrenal and calcium modulation.

    Aggarwal, S K; San Antonio, J D; Sokhansanj, A; Miller, C

    1994-04-01

    Cytochemical and autoradiographic studies in Wistar rats [Crl:(WI)BR] show that cisplatin treatment (9 mg/kg) inhibits the release of acetylcholine from the axonal endings of the stomach smooth muscle resulting in bloating of the stomach and ulceration. Cisplatin also induces corticosteroid release from the adrenal gland stimulating peptic ulceration. Vagotomy helps ameliorate the effect but not eliminate it. Calcium supplementation restores normal neuromuscular function to gastric smooth muscle, thereby eliminating the gastro-intestinal toxicity due to cisplatin.

  19. Alpha7 Nicotinic Acetylcholine Receptors and Temporal Memory: Synergistic Effects of Combining Prenatal Choline and Nicotine on Reinforcement-Induced Resetting of an Interval Clock

    Cheng, Ruey-Kuang; Meck, Warren H.; Williams, Christina L.

    2006-01-01

    We previously showed that prenatal choline supplementation could increase the precision of timing and temporal memory and facilitate simultaneous temporal processing in mature and aged rats. In the present study, we investigated the ability of adult rats to selectively control the reinforcement-induced resetting of an internal clock as a function…

  20. Pulmonary inflammation is regulated by the levels of the vesicular acetylcholine transporter.

    Nathalia M Pinheiro

    Full Text Available Acetylcholine (ACh plays a crucial role in physiological responses of both the central and the peripheral nervous system. Moreover, ACh was described as an anti-inflammatory mediator involved in the suppression of exacerbated innate response and cytokine release in various organs. However, the specific contributions of endogenous release ACh for inflammatory responses in the lung are not well understood. To address this question we have used mice with reduced levels of the vesicular acetylcholine transporter (VAChT, a protein required for ACh storage in secretory vesicles. VAChT deficiency induced airway inflammation with enhanced TNF-α and IL-4 content, but not IL-6, IL-13 and IL-10 quantified by ELISA. Mice with decreased levels of VAChT presented increased collagen and elastic fibers deposition in airway walls which was consistent with an increase in inflammatory cells positive to MMP-9 and TIMP-1 in the lung. In vivo lung function evaluation showed airway hyperresponsiveness to methacholine in mutant mice. The expression of nuclear factor-kappa B (p65-NF-kB in lung of VAChT-deficient mice were higher than in wild-type mice, whereas a decreased expression of janus-kinase 2 (JAK2 was observed in the lung of mutant animals. Our findings show the first evidence that cholinergic deficiency impaired lung function and produce local inflammation. Our data supports the notion that cholinergic system modulates airway inflammation by modulation of JAK2 and NF-kB pathway. We proposed that intact cholinergic pathway is necessary to maintain the lung homeostasis.

  1. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    María A. Hidalgo

    2015-01-01

    Full Text Available N-Formyl-methionyl-leucyl-phenylalanine (fMLP and platelet-activating factor (PAF induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8 release and nicotinamide adenine dinucleotide phosphate reduced (NADPH oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP, diphenyleneiodonium (DPI, and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.

  2. Subpopulations of rat dorsal root ganglion neurons express active vesicular acetylcholine transporter.

    Tata, Ada Maria; De Stefano, M Egle; Tomassy, Giulio Srubek; Vilaró, M Teresa; Levey, Allan I; Biagioni, Stefano

    2004-01-15

    The vesicular acetylcholine transporter (VAChT) is a transmembrane protein required, in cholinergic neurons, for selective storage of acetylcholine into synaptic vesicles. Although dorsal root ganglion (DRG) neurons utilize neuropeptides and amino acids for neurotransmission, we have previously demonstrated the presence of a cholinergic system. To investigate whether, in sensory neurons, the vesicular accumulation of acetylcholine relies on the same mechanisms active in classical cholinergic neurons, we investigated VAChT presence, subcellular distribution, and activity. RT-PCR and Western blot analysis demonstrated the presence of VAChT mRNA and protein product in DRG neurons and in the striatum and cortex, used as positive controls. Moreover, in situ hybridization and immunocytochemistry showed VAChT staining located mainly in the medium/large-sized subpopulation of the sensory neurons. A few small neurons were also faintly labeled by immunocytochemistry. In the electron microscope, immunolabeling was associated with vesicle-like elements distributed in the neuronal cytoplasm and in both myelinated and unmyelinated intraganglionic nerve fibers. Finally, [(3)H]acetylcholine active transport, evaluated either in the presence or in the absence of ATP, also demonstrated that, as previously reported, the uptake of acetylcholine by VAChT is ATP dependent. This study suggests that DRG neurons not only are able to synthesize and degrade ACh and to convey cholinergic stimuli but also are capable of accumulating and, possibly, releasing acetylcholine by the same mechanism used by the better known cholinergic neurons.

  3. Molecular recognition of the neurotransmitter acetylcholine by an acetylcholine binding protein reveals determinants of binding to nicotinic acetylcholine receptors.

    Jeppe A Olsen

    Full Text Available Despite extensive studies on nicotinic acetylcholine receptors (nAChRs and homologues, details of acetylcholine binding are not completely resolved. Here, we report the crystal structure of acetylcholine bound to the receptor homologue acetylcholine binding protein from Lymnaea stagnalis. This is the first structure of acetylcholine in a binding pocket containing all five aromatic residues conserved in all mammalian nAChRs. The ligand-protein interactions are characterized by contacts to the aromatic box formed primarily by residues on the principal side of the intersubunit binding interface (residues Tyr89, Trp143 and Tyr185. Besides these interactions on the principal side, we observe a cation-π interaction between acetylcholine and Trp53 on the complementary side and a water-mediated hydrogen bond from acetylcholine to backbone atoms of Leu102 and Met114, both of importance for anchoring acetylcholine to the complementary side. To further study the role of Trp53, we mutated the corresponding tryptophan in the two different acetylcholine-binding interfaces of the widespread α4β2 nAChR, i.e. the interfaces α4(+β2(- and α4(+α4(-. Mutation to alanine (W82A on the β2 subunit or W88A on the α4 subunit significantly altered the response to acetylcholine measured by oocyte voltage-clamp electrophysiology in both interfaces. This shows that the conserved tryptophan residue is important for the effects of ACh at α4β2 nAChRs, as also indicated by the crystal structure. The results add important details to the understanding of how this neurotransmitter exerts its action and improves the foundation for rational drug design targeting these receptors.

  4. Human, recombinant interleukin-2 induces in vitro histamine release in a dose-dependent manner

    Nielsen, Hans Jørgen; Petersen, L J; Skov, P S

    1995-01-01

    We previously observed that human, recombinant interleukin-2 in a pharmacologic dose (200 u/ml) induced histamine release from monocyte-depleted peripheral blood mononuclear cells in vitro. Therefore, we studied the role of various pharmacologic doses of rIL-2 on in vitro histamine release......, for 1, 24 and 48 hours under standard conditions. Histamine was analysed in supernatants using the glass fiber method. Simultaneously, total cell-bound histamine was analysed in lysate from 5 x 10(6) mononuclear cells from all patients and volunteers, thus allowing determination of percent histamine...... release. Supernatant histamine concentration from unstimulated cells was 17.2 +/- 1.5 ng/ml in patients compared to 7.9 +/- 1.0 ng/ml in volunteers (#p Histamine concentration increased...

  5. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    Carr, Michael H.

    1989-01-01

    The question as to whether high impact rates early in the history of Mars could have aided in maintaining a relatively thick CO2 atmosphere is discussed. Such impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by the addition of carbon to Mars from the impacting bolides. On the assumption that cratering rates on Mars were comparable to those of the moon's Nectarial period, burial rates are a result of 'impact gardening' at the end of heavy bombardment are estimated to have ranged from 20 to 45 m/million years; at these rates, 0.1-0.2 bar of CO2 would have been released every 10 million years as a result of burial to depths at which carbonate dissociation temperatures are encountered.

  6. Docking to flexible nicotinic acetylcholine receptors

    Sander, Tommy; Bruun, Anne T; Balle, Thomas

    2010-01-01

    Computational docking to nicotinic acetylcholine receptors (nAChRs) and other members of the Cys-loop receptor family is complicated by the flexibility of the so-called C-loop. As observed in the large number of published crystal structures of the acetylcholine binding protein (AChBP), a structural...

  7. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats.

    Tzu-Yu Lin

    Full Text Available An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L. Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+ concentration ([Ca(2+]C in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type and Cav2.1 (P/Q-type channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.

  8. IGF-1 alleviates ox-LDL-induced inflammation via reducing HMGB1 release in HAECs

    Xiaofeng Yu; Chunyan Xing; Yinghua Pan; Housheng Ma; Jie Zhang; Wenjun Li

    2012-01-01

    Atherosclerosis,a multifactorial chronic inflammatory response,is closely associated with oxidatively modified lowdensity lipoprotein (ox-LDL).High-mobility group box 1 (HMGB1) is a DNA-binding protein,which upon release from cells exhibits potent inflammatory action.Insulin-like growth factor 1 (IGF-1) can elicit a repertoire of cellular responses including proliferation and anti-apoptosis.However,the role of IGF-1 in inflammation is still unclear.In the present study,we aimed to investigate the role of IGF-1 in inflammation and the underlying mechanism.Human aortic endothelial cells were stimulated by ox-LDL (50 μg/ml) to induce inflammation.The expression of intercellular adhesion molecule 1 (ICAM-1) was assessed by western blot analysis and immunofluorescence.The release of HMGB1 was determined by enzyme-linked immunosorbent assay.IGF-1 receptor (IGF-1R) expression was assessed by reverse transcription-polymerase chain reaction and western blot analysis.IGF-1R phosphorylation was determined by western blot analysis.Ox-LDL stimulation reduced IGF-1R mRNA and protein expression but increased HMGB1 release.IGF-1 treatment decreased oxLDL-induced ICAM-1 expression potentially through reducing HMGB1 release,while picropodophyllin,an IGF-1R specific inhibitor,increased the inflammatory response.In conclusion,IGF-1 can alleviate ox-LDL-induced inflammation by reducing HMGB1 release,suggesting an unexpected beneficial role of IGF-1 in inflammatory disease.

  9. Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release.

    Thornton, Peter; Pinteaux, Emmanuel; Gibson, Rosemary M; Allan, Stuart M; Rothwell, Nancy J

    2006-07-01

    Interleukin (IL)-1 expression is induced rapidly in response to diverse CNS insults and is a key mediator of experimentally induced neuronal injury. However, the mechanisms of IL-1-induced neurotoxicity are unknown. The aim of the present study was to examine the toxic effects of IL-1 on rat cortical cell cultures. Treatment with IL-1beta did not affect the viability of pure cortical neurones. However, IL-1 treatment of cocultures of neurones with glia or purified astrocytes induced caspase activation resulting in neuronal death. Neuronal cell death induced by IL-1 was prevented by pre-treatment with the IL-1 receptor antagonist, the broad spectrum caspase inhibitor Boc-Asp-(OMe)-CH(2)F or the antioxidant alpha-tocopherol. The NMDA receptor antagonist dizolcipine (MK-801) attenuated cell death induced by low doses of IL-1beta but the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) had no effect. Inhibition of inducible nitric oxide synthase with N(omega)-nitro-l-arginine methyl ester had no effect on neuronal cell death induced by IL-1beta. Thus, IL-1 activates the IL-1 type 1 receptor in astrocytes to induce caspase-dependent neuronal death, which is dependent on the release of free radicals and may contribute to neuronal cell death in CNS diseases.

  10. Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra.

    Jang K Kim

    Full Text Available We investigated emersion-induced nitrogen (N release from Porphyra umbilicalis Kütz. Thallus N concentration decreased during 4 h of emersion. Tissue N and soluble protein contents of P. umbilicalis were positively correlated and decreased during emersion. Growth of P. umbilicalis did not simply dilute the pre-emersion tissue N concentration. Rather, N was lost from tissues during emersion. We hypothesize that emersion-induced N release occurs when proteins are catabolized. While the δ(15N value of tissues exposed to emersion was higher than that of continuously submerged tissues, further discrimination of stable N isotopes did not occur during the 4 h emersion. We conclude that N release from Porphyra during emersion did not result from bacterial denitrification, but possibly as a consequence of photorespiration. The release of N by P. umbilicalis into the environment during emersion suggests a novel role of intertidal seaweeds in the global N cycle. Emersion also altered the physiological function (nitrate uptake, nitrate reductase and glutamine synthetase activity, growth rate of P. umbilicalis and the co-occurring upper intertidal species P. linearis Grev., though in a seasonally influenced manner. Individuals of the year round perennial species P. umbilicalis were more tolerant of emersion than ephemeral, cold temperate P. linearis in early winter. However, the mid-winter populations of both P. linearis and P. umbilicalis, had similar temporal physiological patterns during emersion.

  11. Gold nanoparticle–choline complexes can block nicotinic acetylcholine receptors

    Chur Chin

    2010-04-01

    Full Text Available Chur Chin1, In Kyeom Kim2, Dong Yoon Lim3, Ki Suk Kim4, Hyang Ae Lee4, Eun Joo Kim41Department of Pediatrics, Fatima Hospital, Daegu, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea; 3Department of Pharmacology, School of Medicine, Chosun University, Gwangju, Korea; 4Korea Institute of Toxicology, Daejeon, KoreaAbstract: We identified a novel class of direct ion-channel blockers of ligand-gated ion channels called the gold nanoparticle–choline complex. Negatively charged gold nanoparticles (1.4 nm block ion pores by binding to the sulfur group of the cysteine loop of nicotinic acetylcholine receptors (nAChRs, and currents evoked by acetylcholine (Ach can break these bonds. The current evoked by ACh in nAChRs was blocked directly in ion pores by the gold nanoparticle–choline complex. In adrenal-gland perfusion studies, the complex also blocked nAChRs by diminishing catecholamine release by about 75%. An in vivo study showed muscle relaxation in rats after injection of the complex. These results will foster the application of gold nanoparticles as a direct ion-channel blocker. Keywords: negatively charged gold nanoparticle, choline, gold–sulfur bond, nicotinic acetylcholine receptor, direct ion-channel blocker

  12. Mechanism of angiotensin II-induced arachidonic acid metabolite release in aortic smooth muscle cells: involvement of phospholipase D.

    Shinoda, J; Kozawa, O; Suzuki, A; Watanabe-Tomita, Y; Oiso, Y; Uematsu, T

    1997-02-01

    In a previous study, we have shown that angiotensin II (Ang II) activates phosphatidylcholine-hydrolyzing phospholipase D due to Ang II-induced Ca2+ influx from extracellular space in subcultured rat aortic smooth muscle cells. In the present study, we have investigated the role of phospholipase D in Ang II-induced arachidonic acid (AA) metabolite release and prostacyclin synthesis in subcultured rat aortic smooth muscle cells. Ang II significantly stimulated AA metabolite release in a concentration-dependent manner in the range between 1 nmol/I and 0.1 mumol/I. D.L.-Propranolol hydrochloride (propranolol), an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the Ang II-induced release of AA metabolites. The Ang II-induced AA metabolite release was reduced by chelating extracellular Ca2+ with EGTA. Genistein, an inhibitor of protein tyrosine kinases, significantly suppressed the Ang II-induced AA metabolite release. 1,6-Bis-(cyclohexyloximinocarbonylamino)-hexane (RHC-80267), a potent and selective inhibitor of diacylglycerol lipase, significantly inhibited the Ang II-induced AA metabolite release. Both propranolol and RHC-80267 inhibited the Ang II-induced synthesis of 6-keto-prostaglandin F1 alpha, a stable metabolite of prostacyclin. The synthesis was suppressed by genistein. These results strongly suggest that the AA metabolite release induced by Ang II is mediated, at least in part, through phosphatidylcholine hydrolysis by phospholipase D activation in aortic smooth muscle cells.

  13. Activated platelets release sphingosine 1-phosphate and induce hypersensitivity to noxious heat stimuli in vivo

    Daniela eWeth

    2015-04-01

    Full Text Available At the site of injury activated platelets release various mediators, one of which is sphingosine 1-phosphate (S1P. It was the aim of this study to explore whether activated human platelets had a pronociceptive effect in an in vivo mouse model and whether this effect was based on the release of S1P and subsequent activation of neuronal S1P receptors 1 or 3. Human platelets were prepared in different concentrations (105/µl, 106/µl, 107/µl and assessed in mice with different genetic backgrounds (WT, S1P1fl/fl, SNS-S1P1-/-, S1P3-/-. Intracutaneous injections of activated human platelets induced a significant, dose-dependent hypersensitivity to noxious thermal stimulation. The degree of heat hypersensitivity correlated with the platelet concentration as well as the platelet S1P content and the amount of S1P released upon platelet activation as measured with LC MS/MS. Despite the significant correlations between S1P and platelet count, no difference in paw withdrawal latency (PWL was observed in mice with a global null mutation of the S1P3 receptor or a conditional deletion of the S1P1 receptor in nociceptive primary afferents. Furthermore, neutralisation of S1P with a selective anti-S1P antibody did not abolish platelet induced heat hypersensitivity. Our results suggest that activated platelets release S1P and induce heat hypersensitivity in vivo. However, the platelet induced heat hypersensitivity was caused by mediators other than S1P.

  14. Evidence for Non-Competitive Modulation of Substrate-Induced Serotonin Release

    Rothman, Richard B.; Baumann, Michael H.; Blough, Bruce E.; Jacobson, Arthur E.; Rice, Kenner C.; Partilla, John S.

    2010-01-01

    Prior work indicated that SERT inhibitors competitively inhibit substrate-induced [3H]5-HT release, producing rightward shifts in the substrate-dose response curve and increasing the EC50 value without altering the EMAX. We hypothesized that this finding would not generalize across a number of SERT inhibitors and substrates, and that the functional dissociation constant (Ke) of a given SERT inhibitor would not be the same for all tested substrates. To test this hypothesis, we utilized a well ...

  15. Thyroid hormone and estrogen regulate exercise-induced growth hormone release.

    Ignacio, Daniele Leão; da S Silvestre, Diego H; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade; Carvalho, Denise P; Werneck-de-Castro, João Pedro

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response.

  16. Thyroid hormone and estrogen regulate exercise-induced growth hormone release.

    Daniele Leão Ignacio

    Full Text Available Growth hormone (GH regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1 activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60% in sham-operated animals and GH was higher (~6-fold 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response.

  17. Bronchoconstriction Induces TGF-β Release and Airway Remodelling in Guinea Pig Lung Slices.

    Tjitske A Oenema

    Full Text Available Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A or TGF-β receptor kinase (SB431542 prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.

  18. Development and Optimization of a Novel Prolonged Release Formulation to Resist Alcohol-Induced Dose Dumping.

    Gujjar, Chaitanya Yogananda; Rallabandi, Balaramesha Chary; Gannu, Ramesh; Deulkar, Vallabh Subashrao

    2016-04-01

    Alcohol-induced dose dumping is a serious concern for the orally administered prolonged release dosage forms. The study was designed to optimize the independent variables, propylene glycol alginate (PGA), Eudragit RS PO (ERS) and coating in mucoadhesive quetiapine prolonged release tablets 200 mg required for preventing the alcohol-induced dose dumping. Optimal design based on response surface methodology was employed for the optimization of the composition. The formulations are evaluated for in vitro drug release in hydrochloric acid alone and with 40% v/v ethanol. The responses, dissolution at 120 min without alcohol (R1) and dissolution at 120 min with alcohol (R2), were statistically evaluated and regression equations are generated. PGA as a hydrophilic polymeric matrix was dumping the dose when dissolutions are carried in 0.1 N hydrochloric acid containing 40% v/v ethanol. ERS addition was giving structural support to the swelling and gelling property of PGA, and thus, was reducing the PGA erosion in dissolution media containing ethanol. Among the formulations, four formulations with diverse composition were meeting the target dissolution (30-40%) in both the conditions. The statistical validity of the mathematical equations was established, and the optimum concentration of the factors was established. Validation of the study with six confirmatory runs indicated high degree of prognostic ability of response surface methodology. Further coating with ReadiLycoat was providing an additional resistance to the alcohol-induced dose dumping. Optimized compositions showed resistance to dose dumping in the presence of alcohol.

  19. Ethanol alters vasoactive intestinal peptide-induced steroid release from immature rat ovaries in vitro

    Dees, W.L.; Hiney, J.K.; Fuentes, F.; Forrest, D.W. (Texas A M Univ., College Station (USA))

    1990-01-01

    The present study was conducted to examine the acute effects of ethanol (ETOH) on basal and VIP-induced release of testosterone (T) and estradiol (E{sub 2}) from immature ovaries in vitro. Ovaries were collected from anestrus (A) and both naturally occurring and pregnant mare's serum gonadotropin (PMSG)-induced early proestrus (EP) animals. The ovaries were incubated in wither media alone, media plus 1 {mu}M VIP, media plus ETOH in doses ranging from 25 to 100 mM, or media plus each dose of ETOH containing VIP. The present results demonstrate that ETOH did not affect either basal or VIP-induced steroid release from ovaries collected from A animals. Likewise, the ETOH did not alter basal steroid secretion from EP animals; however, the drug significantly reduced the VIP-stimulated release of both T and E, from EP ovaries. Thus, these data demonstrate for the first time that ETOH is capable of altering prepubertal ovarian responsiveness to VIP, a peptide known to be involved in the developmental regulation of ovarian function.

  20. κ-银环蛇毒素敏感的烟碱受体激活引起的去甲肾上腺素释放参与烟碱诱导的长时程增强样反应%Noradrenaline release by activation of κ-bungarotoxin-sensitive nicotinic acetylcholine receptors participates in long-term potentiation-like response inducea by nicotine

    余剑平; 何进; 刘丹; 邓春玉; 朱小南; 汪雪兰; 王勇; 陈汝筑

    2007-01-01

    烟碱可以增强学习记忆功能,但其相关机制仍不清楚.海马长时程增强被认为是学习记忆的细胞机制.本研究室以往研究表明,当单脉冲的强度为诱发80%最大群体锋电位时,烟碱(10μmol/L)可以在海马CAI区诱导长时程增强样反应.本文通过细胞外记录离体海马脑片CA1区锥体细胞层群体锋电位,探讨烟碱诱导长时程增强样反应所涉及的烟碱受体亚型与相应的神经递质释放.结果显示,烟碱诱导的长时程增强样反应可以被美加明(mecamylamine,1 μmol/L)或κ-银环蛇毒素(κ-bungarotoxin,0.1μmol/L)阻断,但不被dihydro-β-erythtroidine(DHβE,10μmol/L)阻断.烟碱诱导的长时程增强样反应可以被普萘洛尔(propranolol,10μmol/L)阻断,但不被酚妥拉明(phentolamine,10μmol/L)或阿托品(atropine,10 μmol/L)阻断.以上结果提示,κ-银环蛇毒素敏感的烟碱受体激活引起的去甲肾上腺素释放参与烟碱诱导的海马CA1区长时程增强样反应.%Nicotine enhances the function of learning and memory,but the underlying mechanism still remains unclear.Hippocampal long-term potentiation (LTP)is assumed to be a cellular mechanism of learning and memory.Our previous experiments showed that with the single pulses evoking 80% of the maximal population spike(PS) amplitude,nicotine(10 μmol/L)induced LTP-like response in the hippocampal CA1 region.In the present study,the nicotinic acetylcholine receptor(nAChR)subtypes and relevant neurotransmitter releases involved in LTP-like response induced by nicotine were investigated by extracellularly recording the PS in the pyramidal cell layer in the hippocampal CA1 region in vitro.LTP-like response induced by nicotine was blocked by mecamylamine(1μmol/L) or κ-bungarotoxin(0.1 μmol/L),but not by dihydro-β-erythtroidine(DHIβE,10 μmol/L).Moreover,it was inhibited by propranolol(10μmol/L),but not by phentolamine(10 μmol/L)or atropine(10 μmol/L).The results suggest that

  1. 166 Assessment of Chronic Spontaneous Urticaria by Serum-Induced TNF & ALPHA; and MMP-9 Release

    Falkencronec, Sidsel; Poulsen, Lars; Maurer, Marcus; Bindslev-Jensen, Carsten; Skov, Per Stahl

    2012-01-01

    Background Previous studies from our group have demonstrated that IgE-mediated basophil activation leads to release of TNFα that in turn can induce matrix metallo-proteinase-9 (MMP-9) release from monocytes. We wished to investigate if serum from chronic spontaneous urticaria-patients with auto-antibodies against IgE/IgE-receptor could induce TNFα and MMP-9 release from donor PBMCs, and if release levels could be used to assess severity and activity of chronic spontaneous urticaria (CSU). Met...

  2. Fractalkine is a "find-me" signal released by neurons undergoing ethanol-induced apoptosis

    Jennifer D Sokolowski

    2014-11-01

    Full Text Available Apoptotic neurons generated during normal brain development or secondary to pathologic insults are efficiently cleared from the central nervous system. Several soluble factors, including nucleotides, cytokines, and chemokines are released from injured neurons, signaling microglia to find and clear debris. One such chemokine that serves as a neuronal-microglial communication factor is fractalkine, with roles demonstrated in several models of adult neurological disorders. Lacking, however, are studies investigating roles for fractalkine in perinatal brain injury, an important clinical problem with no effective therapies. We used a well-characterized mouse model of ethanol-induced apoptosis to assess the role of fractalkine in neuronal-microglial signaling. Quantification of apoptotic debris in fractalkine-knockout and CX3CR1-knockout mice following ethanol treatment revealed increased apoptotic bodies compared to wild type mice. Ethanol-induced injury led to release of soluble, extracellular fractalkine. The extracellular media harvested from apoptotic brains induces microglial migration in a fractalkine-dependent manner that is prevented by neutralization of fractalkine with a blocking antibody or by deficiency in the receptor, CX3CR1. This suggests fractalkine acts as a ‘find-me’ signal, recruiting microglial processes toward apoptotic cells to promote their clearance. Next, we aimed to determine whether there are downstream alterations in cytokine gene expression due to fractalkine signaling. We examined mRNA expression in fractalkine-knockout and CX3CR1-knockout mice after alcohol-induced apoptosis and found differences in cytokine production in the brains of these knockouts by 6 hours after ethanol treatment. Collectively, this suggests that fractalkine acts as a ‘find me’ signal released by apoptotic neurons, and subsequently plays a critical role in modulating both phagocytic clearance and inflammatory cytokine gene expression after

  3. Halothane potentiates the alcohol-adduct induced TNF-alpha release in heart endothelial cells

    Freeman Thomas L

    2005-04-01

    Full Text Available Abstract Background The possibility exists for major complications to occur when individuals are intoxicated with alcohol prior to anesthetization. Halothane is an anesthetic that can be metabolized by the liver into a highly reactive product, trifluoroacetyl chloride, which reacts with endogenous proteins to form a trifluoroacetyl-adduct (TFA-adduct. The MAA-adduct which is formed by acetaldehyde (AA and malondialdehyde reacting with endogenous proteins, has been found in both patients and animals chronically consuming alcohol. These TFA and MAA-adducts have been shown to cause the release of inflammatory products by various cell types. If both adducts share a similar mechanism of cell activation, receiving halothane anesthesia while intoxicated with alcohol could exacerbate the inflammatory response and lead to cardiovascular injury. Methods We have recently demonstrated that the MAA-adduct induces tumor necrosis factor-α (TNF-α release by heart endothelial cells (HECs. In this study, pair and alcohol-fed rats were randomized to receive halothane pretreatments intra peritoneal. Following the pretreatments, the intact heart was removed, HECs were isolated and stimulated with unmodified bovine serum albumin (Alb, MAA-modified Alb (MAA-Alb, Hexyl-MAA, or lipopolysaccharide (LPS, and supernatant concentrations of TNF-α were measured by ELISA. Results Halothane pre-treated rat HECs released significantly greater TNF-α concentration following MAA-adduct and LPS stimulation than the non-halothane pre-treated in both pair and alcohol-fed rats, but was significantly greater in the alcohol-fed rats. Conclusion These results demonstrate that halothane and MAA-adduct pre-treatment increases the inflammatory response (TNF-α release. Also, these results suggest that halothane exposure may increase the risk of alcohol-induced heart injury, since halothane pre-treatment potentiates the HEC TNF-α release measured following both MAA-Alb and LPS

  4. Signaling Mechanisms in the Nitric Oxide Donor- and Amphetamine-Induced Dopamine Release in Mesencephalic Primary Cultured Neurons.

    Salum, Cristiane; Schmidt, Fanny; Michel, Patrick P; Del-Bel, Elaine; Raisman-Vozari, Rita

    2016-01-01

    Previous research has shown that nitric oxide (NO) synthase inhibitors prevent rodents' sensorimotor gating impairments induced by dopamine releasing drugs, such as amphetamine (Amph) and methylphenidate. The mechanisms of this effect have not been entirely understood. In the present work, we investigated some possible mechanisms by which the NO donor, NOC-12 (3-ethyl-3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene), influence spontaneous and Amph-induced dopamine release, using rat mesencephalic primary cultured neurons preparations. Our results showed that NOC-12 increased dopamine release in a concentration-dependent manner and potentiated the Amph-induced one. Dopamine release induced by NOC-12 was disrupted by N-acetyl-L-cystein (NAC-a free radical scavenger) and MK-801, a NMDA (N-methyl-D-aspartate) non-competitive antagonist, and was concentration dependently affected by oxadiazolo[4,3]quinoxalin-1-one, an inhibitor of the soluble guanylate cyclase (sGC). In contrast, dopamine released by Amph was facilitated by NAC and by MK-801 and not affected by nifedipine (a L-type-Ca(+2) channel blocker), which enhanced NOC-12-induced dopamine release. The present work demonstrates that DA release induced by NOC-12 is partially dependent on sGC and on NMDA activation, and is modulated by L-type Ca(+2) channel and the antioxidant NAC. This mechanism differs from the Amph-induced one, which appears not to depend on L-type Ca(+2) channel and seems to be facilitated by NMDA channel blocking and by NAC. These results suggest that Amph and NOC-12 induce dopamine release through complementary pathways, which may explain the potentiation of Amph-induced dopamine release by NOC-12. These findings contribute to understand the involvement of NO in dopamine-related neuropsychiatric and neurodegenerative diseases.

  5. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex.

  6. Activation of JNK triggers release of Brd4 from mitotic chromosomes and mediates protection from drug-induced mitotic stress.

    Nishiyama, Akira; Dey, Anup; Tamura, Tomohiko; Ko, Minoru; Ozato, Keiko

    2012-01-01

    Some anti-cancer drugs, including those that alter microtubule dynamics target mitotic cells and induce apoptosis in some cell types. However, such drugs elicit protective responses in other cell types allowing cells to escape from drug-induced mitotic inhibition. Cells with a faulty protective mechanism undergo defective mitosis, leading to genome instability. Brd4 is a double bromodomain protein that remains on chromosomes during mitosis. However, Brd4 is released from mitotic chromosomes when cells are exposed to anti-mitotic drugs including nocodazole. Neither the mechanisms, nor the biological significance of drug-induced Brd4 release has been fully understood. We found that deletion of the internal C-terminal region abolished nocodazole induced Brd4 release from mouse P19 cells. Furthermore, cells expressing truncated Brd4, unable to dissociate from chromosomes were blocked from mitotic progression and failed to complete cell division. We also found that pharmacological and peptide inhibitors of the c-jun-N-terminal kinases (JNK) pathway, but not inhibitors of other MAP kinases, prevented release of Brd4 from chromosomes. The JNK inhibitor that blocked Brd4 release also blocked mitotic progression. Further supporting the role of JNK in Brd4 release, JNK2-/- embryonic fibroblasts were defective in Brd4 release and sustained greater inhibition of cell growth after nocodazole treatment. In sum, activation of JNK pathway triggers release of Brd4 from chromosomes upon nocodazole treatment, which mediates a protective response designed to minimize drug-induced mitotic stress.

  7. Release of Mannoproteins during Saccharomyces cerevisiae Autolysis Induced by Pulsed Electric Field

    Martínez, Juan M.; Cebrián, Guillermo; Álvarez, Ignacio; Raso, Javier

    2016-01-01

    The potential of the application of pulsed electric fields (PEF) to induce accelerate autolysis of a commercial strain of Saccharomyces cerevisiae for winemaking use was evaluated. The influence of PEF treatments of different intensity (5–25 kV/cm for 30–240 μs) on cell viability, cytoplasmic membrane permeabilization and release of mannoproteins and compounds absorbing at 260 and 280 nm has been investigated. After 8 days of incubation at 25°C the Abs600 of the suspension containing the control cells was kept constant while the Abs600 of the suspension containing the cells treated by PEF decreased. The measurement of the absorbance at 260 and 280 nm revealed no release of UV absorbing material from untreated cells after 8 days of incubation but the amount of UV absorbing material released drastically increased in the samples that contained cells treated by PEF after the same storage period. After 18 days of storage the amount of mannoproteins released from the untreated cell was negligible. Conversely, mannoprotein concentration increased linearly for the samples containing cells of S. cerevisiae treated by PEF. After 18 days of incubation the concentration of mannoproteins in the supernatant increased 4.2 times for the samples containing cells treated by PEF at 15 and 25 kV/cm for 45 and 150 μs. Results obtained in this study indicates that PEF could be used in winemaking to accelerate the sur lie aging or to obtain mannoproteins from yeast cultures. PMID:27672386

  8. Release of mannoproteins during Saccharomyces cerevisiae autolysis induced by Pulsed Electric Field

    Juan Manuel Martínez

    2016-09-01

    Full Text Available The potential of the application of PEF to induce accelerate autolysis of a commercial strain of Sacharomyces cerevisiae for winemaking use was evaluated. The influence of PEF treatments of different intensity (5-25 kV/cm for 30-240 µs on cell viability, cytoplasmic membrane permeabilization, release of mannoproteins and compounds absorbing at 260 and 280 nm has been investigated.After 8 days of incubation at 25 ºC the Abs600 of the suspension containing the control cells was kept constant while the Abs600 of the suspension containing the cells treated by PEF decreased. The measurement of the absorbance at 260 and 280 nm revealed no release of UV absorbing material from untreated cells after 8 days of incubation but the amount of UV absorbing material released drastically increased in the samples that contained cells treated by PEF after the same storage period. After 18 days of storage the amount of mannoproteins released from the untreated cell was negligible. Conversely, mannoprotein concentration increased linearly for the samples containing cells of S. cerevisiae treated by PEF. After 18 days of incubation the concentration of mannoproteins in the supernatant increased 4.2 times for the samples containing cells treated by PEF at 15 and 25 kV/cm for 45 and 150 µs.Results obtained in this study indicates that PEF could be used in winemaking to accelerate the sur lie aging or to obtain mannoproteins from yeast cultures to be used in winemaking.

  9. Release of Mannoproteins during Saccharomyces cerevisiae Autolysis Induced by Pulsed Electric Field.

    Martínez, Juan M; Cebrián, Guillermo; Álvarez, Ignacio; Raso, Javier

    2016-01-01

    The potential of the application of pulsed electric fields (PEF) to induce accelerate autolysis of a commercial strain of Saccharomyces cerevisiae for winemaking use was evaluated. The influence of PEF treatments of different intensity (5-25 kV/cm for 30-240 μs) on cell viability, cytoplasmic membrane permeabilization and release of mannoproteins and compounds absorbing at 260 and 280 nm has been investigated. After 8 days of incubation at 25°C the Abs600 of the suspension containing the control cells was kept constant while the Abs600 of the suspension containing the cells treated by PEF decreased. The measurement of the absorbance at 260 and 280 nm revealed no release of UV absorbing material from untreated cells after 8 days of incubation but the amount of UV absorbing material released drastically increased in the samples that contained cells treated by PEF after the same storage period. After 18 days of storage the amount of mannoproteins released from the untreated cell was negligible. Conversely, mannoprotein concentration increased linearly for the samples containing cells of S. cerevisiae treated by PEF. After 18 days of incubation the concentration of mannoproteins in the supernatant increased 4.2 times for the samples containing cells treated by PEF at 15 and 25 kV/cm for 45 and 150 μs. Results obtained in this study indicates that PEF could be used in winemaking to accelerate the sur lie aging or to obtain mannoproteins from yeast cultures.

  10. Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress?

    Contreras-Zentella, Martha Lucinda; Hernández-Muñoz, Rolando

    2016-01-01

    Hepatic diseases are a major concern worldwide. Increased specific plasma enzyme activities are considered diagnostic features for liver diseases, since enzymes are released into the blood compartment following the deterioration of the organ. Release of liver mitochondrial enzymes is considered strong evidence for hepatic necrosis, which is associated with an increased production of ROS, often leading to greater hepatic lipid peroxidation. Lipotoxic mediators and intracellular signals activated Kupffer cells, which provides evidence strongly suggesting the participation of oxidant stress in acute liver damage, inducing the progression of liver injury to chronic liver damage. Elevated transaminase activities are considered as an index marker of hepatotoxicity, linked to oxidant stress. However, a drastic increase of serum activities of liver enzyme markers ought not necessarily to reflect liver cell death. In fact, increased serum levels of cytoplasmic enzymes have readily been observed after partial hepatectomy (PH) in the regenerating liver of rats. In this regard, we are now showing that in vitro modifications of the oxidant status affect differentially the release of liver enzymes, indicating that this release is a strictly controlled event and not directly related to the onset of oxidant stress of the liver.

  11. Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress?

    Martha Lucinda Contreras-Zentella

    2016-01-01

    Full Text Available Hepatic diseases are a major concern worldwide. Increased specific plasma enzyme activities are considered diagnostic features for liver diseases, since enzymes are released into the blood compartment following the deterioration of the organ. Release of liver mitochondrial enzymes is considered strong evidence for hepatic necrosis, which is associated with an increased production of ROS, often leading to greater hepatic lipid peroxidation. Lipotoxic mediators and intracellular signals activated Kupffer cells, which provides evidence strongly suggesting the participation of oxidant stress in acute liver damage, inducing the progression of liver injury to chronic liver damage. Elevated transaminase activities are considered as an index marker of hepatotoxicity, linked to oxidant stress. However, a drastic increase of serum activities of liver enzyme markers ought not necessarily to reflect liver cell death. In fact, increased serum levels of cytoplasmic enzymes have readily been observed after partial hepatectomy (PH in the regenerating liver of rats. In this regard, we are now showing that in vitro modifications of the oxidant status affect differentially the release of liver enzymes, indicating that this release is a strictly controlled event and not directly related to the onset of oxidant stress of the liver.

  12. Microglial migration mediated by ATP-induced ATP release from lysosomes

    Ying Dou; Qing-ming Luo; Shumin Duan; Hang-jun Wu; Hui-quan Li; Song Qin; Yin-er Wang; Jing Li; Hui-fang Lou; Zhong Chen; Xiao-ming Li

    2012-01-01

    Microglia are highly motile cells that act as the main form of active immune defense in the central nervous system.Attracted by factors released from damaged cells,microglia are recruited towards the damaged or infected site,where they are involved in degenerative and regenerative responses and phagocytotic clearance of cell debris.ATP release from damaged neural tissues has been suggested to mediate the rapid extension of microglial process towards the site of injury.However,the mechanisms of the long-range migration of microglia remain to be clarified.Here,we found that lysosomes in microglia contain abundant ATP and exhibit Ca2+-dependent exocytosis in response to various stimuli.By establishing an efficient in vitro chemotaxis assay,we demonstrated that endogenously-released ATP from microglia triggered by local microinjection of ATPγS is critical for the long-range chemotaxis of microglia,a response that was significantly inhibited in microglia treated with an agent inducing iysosome osmodialysis or in cells derived from mice deficient in Rab 27a (ashen mice),a small GTPase required for the trafficking and exocytosis of secretory iysosomes.These results suggest that microglia respond to extracellular ATP by releasing ATP themselves through lysosomal exocytosis,thereby providing a positive feedback mechanism to generate a long-range extracellular signal for attracting distant microglia to migrate towards and accumulate at the site of injury.

  13. [Suppression by dopamine of GH release induced by GRF in a case of acromegaly].

    Matsubara, M; Odagaki, E; Morioka, T

    1987-03-20

    Inhibition of plasma GH by dopaminergic agonists is one of the characteristics of the GH secretion in acromegaly. GRF is known to stimulate GH secretion in most patients with acromegaly. In order to elucidate the relationship between GRF and dopamine in regulating the secretion of GH in this disease, we examined plasma GH responses to dopamine (DA) infusion (4 micrograms/kg/min), GRF injection (100 micrograms i.v.), sulpiride (SP) injection (200 mg i.v.), a DA blocker, DA plus GRF and SP plus GRF in a 51-year-old male patient with acromegaly. Plasma GH was reduced to 14% of the initial level by iv infusion of DA, and was elevated to 158% by iv injection of GRF. No considerable change was observed in plasma GH by iv infusion of SP (114% of the initial level). GH release induced by GRF was remarkably reduced by simultaneous administration of DA (28% of the initial level), whereas SP administration did not affect GRF-induced GH release (154%). The marked reduction of GH release after DA plus GRF seems to suggest that the effect of DA on the GH regulation is stronger than that of GRF in this acromegalic patient. It is suggested also that endogenous DA may not play an inhibitory role in GH secretion in this case since DA blockade by SP did not raise basal GH levels and the GH response to GRF.

  14. Intraperitoneal administration of gonadotropin-releasing hormone-PE40 induces castration in male rats

    Li Yu; Zhong-Fang Zhang; Chun-Xia Jing; Feng-Lin Wu

    2008-01-01

    AIM: To evaluate the long-term effects of gonadotropin-releasing hormone (GnRH)-based vaccine on levels of GnRH antibody and testosterone, and vaccine-induced immunocastration on sexual behavior of male rats.METHODS: The rats were treated with GnRH-PE40 intraperitoneally every other day for 12 wk. GnRH antibody and testosterone level in rat blood were determined by ELISA and radioimmunoassay, respectively. Morphological changes in testes and sexual behavior of rats were evaluated.RESULTS: GnRH-PE40 induced a high production in GnRH antibody, decreased the serum testosterone level, testis atrophy and sexual function in rats.CONCLUSION: Intraperitoneal administration of GnRH-PE40 produces structural and functional castration of male rat reproductive system by inducing anti-GnRH antibody.

  15. Gender Difference of the Antinociceptive Effect Induced by Intrathecal Nicotinic Acetylcholine Receptor Agonist Epibatidine in Rats%鞘内注射蛙皮素在大鼠引起镇痛效应的性别差异

    崔宇; 夏杰华; 张旭宇; 胡芬; 陈宇

    2011-01-01

    摘要:[目的]探讨烟碱型乙酰胆碱受体(nAChR)激动剂蛙皮索引起镇痛效应的性别差异及其可能的受体机制.[方法]采用痛行为学测试观察鞘内注射蛙皮素在雌雄大鼠引起的镇痛效应以及其拮抗剂美加明对抗其镇痛作用的差异性;利用免疫荧光组织化学方法,观察雌雄大鼠脊髓背角nAChR亚单位α4的表达是否存在性别差异,以探讨蛙皮素镇痛效应性别差异的可能机制.[结果]①鞘内给予蛙皮素剂量依赖性地发挥镇痛作用,且在雌性大鼠的镇痛作用大于雄性大鼠;②nAChR特异的非竞争性拮抗剂-美加明能够阻断蛙皮素的镇痛作用,且阻断效应于雄鼠大于雌鼠;③介导蛙皮素镇痛作用的nAChRα4表达于脊髓背角神经元,但雌雄大鼠间的表达未发现性别差异.[结论]鞘内注射蛙皮素产生的镇痛效应在大鼠具有性别差异,但蛙皮素受体nAChRα4的表达可能与镇痛效应的差异性没有关系.%[Objective] To investigate the gender difference of the antinociceptive effect induced by intrathecal nicotinic acetylcholine receptor agonist epibatidine in rats and the potential receptor mechanisms underlying such gender difference. [Method] The antinociceptive behavioral test was performed to observe the difference of analgesia induced by intrathecal epibatidine, as well as the inhibition of mecamylamine on the analgesia, between male and female rats. The nAChRa4 expression was observed by immunofluorescence staining to investigate the mechanism underlying the gender difference of epibatidine-induced analgesia. [Result] Intrathecal injection of epibatidine induced analgesia in dose-dependent manner with more potent analgesic effect in female rat than male rat. Although non-competent antagonist of nAChR mecamylamine pretreatment partially blocked the analgesia induced by epibatidine, stronger analgesic effect maintained in female than male rate. Immunohistochemistry staining showed that

  16. Effect of organophosphorus insecticides on phosphorylation of the M2 muscarinic acetylcholine receptor

    Shuyin Li; Liming Zou; Carry Pope

    2008-01-01

    BACKGROUND: Organophosphorus insecticides may promote the accumulation of acetylcholine at synapses and the neuromuscular junction by inhibiting acetylcholinesterase activity to cause disturbance of neural signal conduction and induce a toxic reaction. Organophosphorus insecticides may act on M2 muscarinic acetylcholine receptors, whose combination with G proteins is regulated by phosphorylation of G protein-coupled receptor kinase 2.OBJECTIVE: To investigate the effects of organophosphorus insecticides on the phosphorylation of G protein-coupled receptor kinase 2-mediated M2 muscarinic acetylcholine receptors and to reveal other possible actions of organophosphorus insecticides.DESIGN, TIME AND SETTING: An observational study, which was performed in the Central Laboratory of Shenyang Medical College, and Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University from June 2002 to December 2004.METHODS: The M2 muscarinic acetylcholine receptor was extracted and purified from pig brain using affinity chromatography. Subsequently, the purified M2 muscarinic acetylcholine receptor, G protein-coupled receptor kinase 2, and [OP32] ATP were incubated with different concentrations of paraoxon and chlorpyrifos oxon together. The mixture then underwent polyacrylamide gel electrophoresis, and the gel film was dried and radioactively autographed to detect phosphorylation of the M2 muscarinic acetylcholine receptor. Finally, the radio-labeled phosphorylated M2 receptor protein band was excised for counting with an isotope liquid scintillation counter.MAIN OUTCOME MEASURES: Effects of chlorpyrifos oxon, paraoxon, chlorpyrifos, and parathion in different concentrations on the phosphorylation of the M2 muscarinic acetylcholine receptor; effects of chlorpyrifos oxon on the phosphorylation of the adrenergic receptor.CONCLUSION: Different kinds of organophosphorus insecticides have different effects on the phosphorylation of the G protein

  17. Utilization of adenosine triphosphate in rat mast cells during histamine release induced by the ionophore A23187

    Johansen, Torben

    1979-01-01

    The role of endogenous adenosine triphosphate (ATP) in histamine release from rat mast cells induced by the ionophore A23187 in vitro has been studied. 2 The amount of histamine released by calcium from rat mast cells primed with the ionophore A23187 was dependent on the ATP content of the mast...... cells. 3 In aerobic experiments a drastic reduction in mast cell ATP content was found during the time when histamine release induced by A23187 takes place. 4 Anaerobic experiments were performed with metabolic inhibitors (antimycin A, oligomycin, and carbonyl cyanide p......-trifluorometroxyphenylnydrazone), which are known to block the energy-dependent calcium uptake by isolated mitochondria. The mast cell ATP content was reduced during A23187-induced histamine release under anaerobic conditions in the presence of glucose. This indicates an increased utilization of ATP during the release process. 5...

  18. Different particle determinants induce apoptosis and cytokine release in primary alveolar macrophage cultures

    Schwarze Per E

    2006-06-01

    Full Text Available Abstract Background Particles are known to induce both cytokine release (MIP-2, TNF-α, a reduction in cell viability and an increased apoptosis in alveolar macrophages. To examine whether these responses are triggered by the same particle determinants, alveolar macrophages were exposed in vitro to mineral particles of different physical-chemical properties. Results The crystalline particles of the different stone types mylonite, gabbro, basalt, feldspar, quartz, hornfels and fine grain syenite porphyr (porphyr, with a relatively equal size distribution (≤ 10 μm, but different chemical/mineral composition, all induced low and relatively similar levels of apoptosis. In contrast, mylonite and gabbro induced a marked MIP-2 response compared to the other particles. For particles of smaller size, quartz (≤ 2 μm seemed to induce a somewhat stronger apoptotic response than even smaller quartz (≤ 0.5 μm and larger quartz (≤ 10 μm in relation to surface area, and was more potent than hornfels and porphyr (≤ 2 μm. The reduction in cell viability induced by quartz of the different sizes was roughly similar when adjusted to surface area. With respect to cytokines, the release was more marked after exposure to quartz ≤ 0.5 μm than to quartz ≤ 2 μm and ≤ 10 μm. Furthermore, hornfels (≤ 2 μm was more potent than the corresponding hornfels (≤ 10 μm and quartz (≤ 2 μm to induce cytokine responses. Pre-treatment of hornfels and quartz particles ≤ 2 μm with aluminium lactate, to diminish the surface reactivity, did significantly reduce the MIP-2 response to hornfels. In contrast, the apoptotic responses to the particles were not affected. Conclusion These results indicate that different determinants of mineral/stone particles are critical for inducing cytokine responses, reduction in cell viability and apoptosis in alveolar macrophages. The data suggest that the particle surface reactivity was critical for cytokine responses

  19. ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge.

    Lafaurie-Janvore, Julie; Maiuri, Paolo; Wang, Irène; Pinot, Mathieu; Manneville, Jean-Baptiste; Betz, Timo; Balland, Martial; Piel, Matthieu

    2013-03-29

    The last step of cell division, cytokinesis, produces two daughter cells that remain connected by an intercellular bridge. This state often represents the longest stage of the division process. Severing the bridge (abscission) requires a well-described series of molecular events, but the trigger for abscission remains unknown. We found that pulling forces exerted by daughter cells on the intercellular bridge appear to regulate abscission. Counterintuitively, these forces prolonged connection, whereas a release of tension induced abscission. Tension release triggered the assembly of ESCRT-III (endosomal sorting complex required for transport-III), which was followed by membrane fission. This mechanism may allow daughter cells to remain connected until they have settled in their final locations, a process potentially important for tissue organization and morphogenesis.

  20. Human, recombinant interleukin-2 induces in vitro histamine release in a dose-dependent manner

    Nielsen, Hans Jørgen; Petersen, L J; Skov, P S

    1995-01-01

    We previously observed that human, recombinant interleukin-2 in a pharmacologic dose (200 u/ml) induced histamine release from monocyte-depleted peripheral blood mononuclear cells in vitro. Therefore, we studied the role of various pharmacologic doses of rIL-2 on in vitro histamine release....... Peripheral blood mononuclear cells (5 x 10(6) cells/ml), which also contain basophils, from 13 patients scheduled for elective colorectal cancer surgery and 10 age and sex matched healthy volunteers were stimulated with rIL-2 in concentrations of 0, 50, 100, 200, 450, 900, 1,800 and 3,600 u/ml, respectively......, for 1, 24 and 48 hours under standard conditions. Histamine was analysed in supernatants using the glass fiber method. Simultaneously, total cell-bound histamine was analysed in lysate from 5 x 10(6) mononuclear cells from all patients and volunteers, thus allowing determination of percent histamine...

  1. Depolarization-induced release of [(3)H]D-aspartate from GABAergic neurons caused by reversal of glutamate transporters

    Jensen, J B; Pickering, D S; Schousboe, A;

    2000-01-01

    was blocked by 6-chloro-3,4-dihydro-3-(2-norbornen-5-yl)-2H-1,2, 4-benzothiadiazine-7-sulphonamide-1,1-dioxide (cyclothiazide). Under the non-desensitizing conditions, the AMPA-induced release of [(3)H]D-aspartate was highly enhanced showing about a 10-fold increase over basal release. Addition of cobalt...

  2. Enhancement of mite antigen-induced histamine release by deuterium oxide from leucocytes of chronic urticarial patients

    Numata, T.; Yamamoto, S.; Yamura, T.

    1981-09-01

    The mite antigen-induced histamine release from leucocytes of chronic urticarial patients was enhanced in the presence of deuterium oxide, which stabilizes microtubules. This enhancing effect of deuterium oxide on the histamine release from leucocytes may provide a useful means for the detection of allergens in vitro in chronic urticaria.

  3. Mechanism of action of magnesium on acetylcholine-evoked secretory responses in isolated rat pancreas.

    Francis, L P; Lennard, R; Singh, J

    1990-09-01

    This study investigates the effects of magnesium (Mg2+) on acetylcholine (ACh)-evoked secretory responses and calcium (Ca2+) mobilization in the isolated rat pancreas. ACh induced marked dose-dependent increases in total protein output and amylase release from superfused pancreatic segments in zero, normal (1 x 1 mM) and elevated (10 mM) extracellular Mg2+. Elevated Mg2+ attenuated the ACh-evoked secretory responses compared to zero and normal Mg2+. In the absence of extracellular Ca2+, but presence of 1 mM-EGTA (ethylene glycol bis(beta-aminoethylether)-N,N,N',N''-tetraacetic acid), ACh elicited a small transient release of protein from pancreatic segments compared to a larger and more sustained secretion in the absence of both Ca2+ and Mg2+. Incubation of pancreatic segments with 45Ca2+ resulted in time-dependent uptake with maximum influx of 45Ca2+ occurring after 20 min of incubation period. ACh stimulated markedly the 45Ca2+ uptake compared to control tissues. In elevated extracellular Mg2+ the ACh-induced 45Ca2+ influx was significantly (P less than 0.001) reduced compared to zero and normal Mg2+. ACh also evoked dose-dependent increases in cytosolic free Ca2+ concentrations ([Ca2+]i) in pancreatic acinar cells loaded with the fluorescent dye Fura-2 AM. In elevated Mg2+ the ACh-induced cytosolic [Ca2+]i was significantly (P less than 0.001) reduced compared to zero and normal Mg2+. These results indicate that Mg2+ can influence ACh-evoked secretory responses possibly by controlling both Ca2+ influx and release in pancreatic acinar cells.

  4. Endocannabinoids Induce Lateral Long-Term Potentiation of Transmitter Release by Stimulation of Gliotransmission.

    Gómez-Gonzalo, Marta; Navarrete, Marta; Perea, Gertrudis; Covelo, Ana; Martín-Fernández, Mario; Shigemoto, Ryuichi; Luján, Rafael; Araque, Alfonso

    2015-10-01

    Endocannabinoids (eCBs) play key roles in brain function, acting as modulatory signals in synaptic transmission and plasticity. They are recognized as retrograde messengers that mediate long-term synaptic depression (LTD), but their ability to induce long-term potentiation (LTP) is poorly known. We show that eCBs induce the long-term enhancement of transmitter release at single hippocampal synapses through stimulation of astrocytes when coincident with postsynaptic activity. This LTP requires the coordinated activity of the 3 elements of the tripartite synapse: 1) eCB-evoked astrocyte calcium signal that stimulates glutamate release; 2) postsynaptic nitric oxide production; and 3) activation of protein kinase C and presynaptic group I metabotropic glutamate receptors, whose location at presynaptic sites was confirmed by immunoelectron microscopy. Hence, while eCBs act as retrograde signals to depress homoneuronal synapses, they serve as lateral messengers to induce LTP in distant heteroneuronal synapses through stimulation of astrocytes. Therefore, eCBs can trigger LTP through stimulation of astrocyte-neuron signaling, revealing novel cellular mechanisms of eCB effects on synaptic plasticity.

  5. Paclitaxel-induced peripheral neuropathy increases substance P release in rat spinal cord.

    Chiba, Terumasa; Oka, Yusuke; Kambe, Toshie; Koizumi, Naoya; Abe, Kenji; Kawakami, Kazuyoshi; Utsunomiya, Iku; Taguchi, Kyoji

    2016-01-05

    Peripheral neuropathy is a common adverse effect of paclitaxel treatment. The major dose-limiting side effect of paclitaxel is peripheral sensory neuropathy, which is characterized by painful paresthesia of the hands and feet. To analyze the contribution of substance P to the development of paclitaxel-induced mechanical hyperalgesia, substance P expression in the superficial layers of the rat spinal dorsal horn was analyzed after paclitaxel treatment. Behavioral assessment using the von Frey test and the paw thermal test showed that intraperitoneal administration of 2 and 4mg/kg paclitaxel induced mechanical allodynia/hyperalgesia and thermal hyperalgesia 7 and 14 days after treatment. Immunohistochemistry showed that paclitaxel (4mg/kg) treatment significantly increased substance P expression (37.6±3.7% on day 7, 43.6±4.6% on day 14) in the superficial layers of the spinal dorsal horn, whereas calcitonin gene-related peptide (CGRP) expression was unchanged. Moreover, paclitaxel (2 and 4mg/kg) treatment significantly increased substance P release in the spinal cord on day 14. These results suggest that paclitaxel treatment increases release of substance P, but not CGRP in the superficial layers of the spinal dorsal horn and may contribute to paclitaxel-induced painful peripheral neuropathy.

  6. Anandamide induces sperm release from oviductal epithelia through nitric oxide pathway in bovines.

    Claudia Osycka-Salut

    Full Text Available Mammalian spermatozoa are not able to fertilize an egg immediately upon ejaculation. They acquire this ability during their transit through the female genital tract in a process known as capacitation. The mammalian oviduct acts as a functional sperm reservoir providing a suitable environment that allows the maintenance of sperm fertilization competence until ovulation occurs. After ovulation, spermatozoa are gradually released from the oviductal reservoir in the caudal isthmus and ascend to the site of fertilization. Capacitating-related changes in sperm plasma membrane seem to be responsible for sperm release from oviductal epithelium. Anandamide is a lipid mediator that participates in the regulation of several female and male reproductive functions. Previously we have demonstrated that anandamide was capable to release spermatozoa from oviductal epithelia by induction of sperm capacitation in bovines. In the present work we studied whether anandamide might exert its effect by activating the nitric oxide (NO pathway since this molecule has been described as a capacitating agent in spermatozoa from different species. First, we demonstrated that 1 µM NOC-18, a NO donor, and 10 mM L-Arginine, NO synthase substrate, induced the release of spermatozoa from the oviductal epithelia. Then, we observed that the anandamide effect on sperm oviduct interaction was reversed by the addition of 1 µM L-NAME, a NO synthase inhibitor, or 30 µg/ml Hemoglobin, a NO scavenger. We also demonstrated that the induction of bull sperm capacitation by nanomolar concentrations of R(+-methanandamide or anandamide was inhibited by adding L-NAME or Hemoglobin. To study whether anandamide is able to produce NO, we measured this compound in both sperm and oviductal cells. We observed that anandamide increased the levels of NO in spermatozoa, but not in oviductal cells. These findings suggest that anandamide regulates the sperm release from oviductal epithelia probably by

  7. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  8. High K+-induced contraction requires depolarization-induced Ca2+ release from internal stores in rat gut smooth muscle

    Timo KIRSCHSTEIN; Mirko REHBERG; Rika BAJORAT; Tursonjan TOKAY; Katrin PORATH; Rudiger KOHLING

    2009-01-01

    Aim: Depolarization-induced contraction of smooth muscle is thought to be mediated by Ca2+influx through voltage-gated L-type Ca2+channels. We describe a novel contraction mechanism that is independent of Ca2+ entry.Methods: Pharmacological experiments were carried out on isolated rat gut longitudinal smooth muscle preparations, measuring iso-metric contraction strength upon high K+-induced depolarization.Results: Treatment with verapamil, which presumably leads to a conformational change in the channel, completely abolished K+-induced contraction, while residual contraction still occurred when Ca2+ entry was blocked with Cd2+. These results were further con-firmed by measuring intracellular Ca2+ transients using Fura-2. Co-application of Cd2+ and the ryanodine receptor blocker DHBP further reduced contraction, albeit incompletely. Additional blockage of either phospholipase C (U 73122) or inositol 1,4,5-trisphophate (IP3)receptors (2-APB) abolished most contractions, while sole application of these blockers and Cd2+ (without parallel ryanodine receptor manipulation) also resulted in incomplete contraction block.Conclusion: We conclude that there are parallel mechanisms of depolarization-induced smooth muscle contraction via (a) Ca2+ entry and (b) Ca2+ entry-independent, depolarization-induced Ca2+-release through ryanodine receptors and IP3, with the latter being depen-dent on phospholipase C activation.

  9. Compound 48/80-induced serotonin release from brain mast cells

    Lambracht-Hall, M.; Marathias, K.P.; Theoharides, T.C.

    1986-03-01

    Mast cells secrete a variety of potent mediators and are mostly known to participate in allergic reactions. Here the authors report that perfused brain mast cells can take up and release serotonin (5-HT) in response to compound 48/80. Thalamic or hypothalamic slices were loaded with /sup 3/H-5-HT (5 x 10/sup -7/M, for 12 min at 37/sup 0/C), washed and placed in individual 2 ml-perfusion wells. A Krebs-Ringer bicarbonate buffer with 1 x 10/sup -6/M imipramine (KRB + IMI) saturated with 5% CO/sub 2//95% O/sub 2/ at 37/sup 0/C and pH 7.4, was used throughout at a perfusion rate of 1 ml/min. After a 60 min wash in KRB + IMI, with or without Ca/sup +2/ + 0.1 M EDTA, the slices were perfused for 45 min with 100 ..mu..g/ml compound 48/80 with or without Ca/sup +2/. The tissue was washed for 30 min as before and then perfused with high K/sup +/ KRB (40mM KCl) for 45 min to induce neuronal depolarization. Finally, calcium was restored to Ca/sup +2/-depleted tissues and all samples were again perfused for 45 min with high K/sup +/ KRB. The first 5-HT peak due to 48/80-induced mast cell release was independent of extracellular Ca/sup +2/, while the second 5-HT peak due to high K/sup +/ was not. These studies indicate that the 48/80-induced 5-HT release was not of neuronal origin and that brain mast cells can utilize intracellular Ca/sup +2/, much like their peritoneal counterparts. The authors are now studying brain mast cells secretion in response to neuropeptides.

  10. Metal release in metallothioneins induced by nitric oxide: X-ray absorption spectroscopy study.

    Casero, Elena; Martín-Gago, José A; Pariente, Félix; Lorenzo, Encarnación

    2004-12-01

    Metallothioneins (MTs) are low molecular weight proteins that include metal ions in thiolate clusters. The capability of metallothioneins to bind different metals has suggested their use as biosensors for different elements. We study here the interaction of nitric oxide with rat liver MTs by using in situ X-ray absorption spectroscopy techniques. We univocally show that the presence of NO induces the release of Zn atoms from the MT structure to the solution. Zn ions transform in the presence of NO from a tetrahedral four-fold coordinated environment in the MT into a regular octahedral six-fold coordinated state, with interatomic distances compatible with those of Zn solvated in water.

  11. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging.

  12. Role of calcium in the regulation of acetylcholine receptor synthese in cultured muscle cells*.

    Birnbaum, M; Reis, M A; Shainberg, A

    1980-05-01

    Embroyonic muscles differentiated in vitro were used to study the effects of intracellular Ca2+ ([Ca2+1]i) variations on the amount of acetylcholine receptors ([AChR]) in the cell membrane. 2. Increased Ca2+ concentration in the growth medium ([Ca2+]o) caused a marked elevation of AChR levels, apparently through de novo synthesis. 3. Agents known to increase [Ca2+]i and its accumulation in the sarcoplasmic reticulum (SR), such as ionophore A23187, sodium dantrolene (DaNa), or high [Mg2+]o all enhanced alpha-bungarotoxin (alpha-BGT) binding after 48 h of treatment. 4. Electrical stimulation or caffeine, both affectors of SR calcium release, brought about a decrease in [AChR] probably by suppressing its synthesis. 5. The effects of simultaneous treatment with two AChR-inducing agents, namely, high [Ca2+]o in the presence of tetrodotoxin (TTX) or high [Mg2+]o were not additive, thus suggesting action via a common saturable mediator. 6. Intermediate AChR levels obtained following simultaneous treatments with opposing effects, e.g., electrical stimulation in the presence of high [Ca2+]o or DaNa, suggest contradictory actions on a common mediator. 7. All these observations indicate a strong correlation between SR calcium levels and [AChR] on myotubes; while calcium accumulation in the Sr was followed by increased AChR synthesis, calcium release was accompanied by suppression of receptor synthesis.

  13. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming human beta cell function

    Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M. Caroline; Fachado, Alberto; Molina, Judith; Abdulreda, Midhat; Ricordi, Camillo; Roper, Stephen D.; Berggren, Per-Olof; Caicedo, Alejandro

    2011-01-01

    Acetylcholine is a neurotransmitter that plays a major role in the function of the insulin secreting pancreatic beta cell1,2. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species1,3,4, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of the human islet provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. We anticipate these results to revise models about neural input and cholinergic signaling in the endocrine pancreas. Cholinergic signaling within the islet represents a potential therapeutic target in diabetes5, highlighting the relevance of this advance to future drug development. PMID:21685896

  14. Sphingosine-1-phosphate receptor 3 mediates sphingosine-1-phosphate induced release of weibel-palade bodies from endothelial cells.

    Kathinka W E M van Hooren

    Full Text Available Sphingosine-1-phosphate (S1P is an agonist for five distinct G-protein coupled receptors, that is released by platelets, mast cells, erythrocytes and endothelial cells. S1P promotes endothelial cell barrier function and induces release of endothelial cell-specific storage-organelles designated Weibel-Palade bodies (WPBs. S1P-mediated enhancement of endothelial cell barrier function is dependent on S1P receptor 1 (S1PR1 mediated signaling events that result in the activation of the small GTPase Rac1. Recently, we have reported that Rac1 regulates epinephrine-induced WPB exocytosis following its activation by phosphatidylinositol-3,4,5-triphosphate-dependent Rac exchange factor 1 (PREX1. S1P has also been described to induce WPB exocytosis. Here, we confirm that S1P induces release of WPBs using von Willebrand factor (VWF as a marker. Using siRNA mediated knockdown of gene expression we show that S1PR1 is not involved in S1P-mediated release of WPBs. In contrast depletion of the S1PR3 greatly reduced S1P-induced release of VWF. S1P-mediated enhancement of endothelial barrier function was not affected by S1PR3-depletion whereas it was greatly impaired in cells lacking S1PR1. The Rho kinase inhibitor Y27632 completely abrogated S1P-mediated release of VWF. Also, the calcium chelator BAPTA-AM significantly reduced S1P-induced release of VWF. Our findings indicate that S1P-induced release of haemostatic, inflammatory and angiogenic components stored within WPBs depends on the S1PR3.

  15. Sphingosine-1-phosphate receptor 3 mediates sphingosine-1-phosphate induced release of weibel-palade bodies from endothelial cells.

    van Hooren, Kathinka W E M; Spijkers, Léon J A; van Breevoort, Dorothee; Fernandez-Borja, Mar; Bierings, Ruben; van Buul, Jaap D; Alewijnse, Astrid E; Peters, Stephan L M; Voorberg, Jan

    2014-01-01

    Sphingosine-1-phosphate (S1P) is an agonist for five distinct G-protein coupled receptors, that is released by platelets, mast cells, erythrocytes and endothelial cells. S1P promotes endothelial cell barrier function and induces release of endothelial cell-specific storage-organelles designated Weibel-Palade bodies (WPBs). S1P-mediated enhancement of endothelial cell barrier function is dependent on S1P receptor 1 (S1PR1) mediated signaling events that result in the activation of the small GTPase Rac1. Recently, we have reported that Rac1 regulates epinephrine-induced WPB exocytosis following its activation by phosphatidylinositol-3,4,5-triphosphate-dependent Rac exchange factor 1 (PREX1). S1P has also been described to induce WPB exocytosis. Here, we confirm that S1P induces release of WPBs using von Willebrand factor (VWF) as a marker. Using siRNA mediated knockdown of gene expression we show that S1PR1 is not involved in S1P-mediated release of WPBs. In contrast depletion of the S1PR3 greatly reduced S1P-induced release of VWF. S1P-mediated enhancement of endothelial barrier function was not affected by S1PR3-depletion whereas it was greatly impaired in cells lacking S1PR1. The Rho kinase inhibitor Y27632 completely abrogated S1P-mediated release of VWF. Also, the calcium chelator BAPTA-AM significantly reduced S1P-induced release of VWF. Our findings indicate that S1P-induced release of haemostatic, inflammatory and angiogenic components stored within WPBs depends on the S1PR3.

  16. Lysophosphatidate induces chemo-resistance by releasing breast cancer cells from taxol-induced mitotic arrest.

    Nasser Samadi

    Full Text Available BACKGROUND: Taxol is a microtubule stabilizing agent that arrests cells in mitosis leading to cell death. Taxol is widely used to treat breast cancer, but resistance occurs in 25-69% of patients and it is vital to understand how Taxol resistance develops to improve chemotherapy. The effects of chemotherapeutic agents are overcome by survival signals that cancer cells receive. We focused our studies on autotaxin, which is a secreted protein that increases tumor growth, aggressiveness, angiogenesis and metastasis. We discovered that autotaxin strongly antagonizes the Taxol-induced killing of breast cancer and melanoma cells by converting the abundant extra-cellular lipid, lysophosphatidylcholine, into lysophosphatidate. This lipid stimulates specific G-protein coupled receptors that activate survival signals. METHODOLOGY/PRINCIPAL FINDINGS: In this study we determined the basis of these antagonistic actions of lysophosphatidate towards Taxol-induced G2/M arrest and cell death using cultured breast cancer cells. Lysophosphatidate does not antagonize Taxol action in MCF-7 cells by increasing Taxol metabolism or its expulsion through multi-drug resistance transporters. Lysophosphatidate does not lower the percentage of cells accumulating in G2/M by decreasing exit from S-phase or selective stimulation of cell death in G2/M. Instead, LPA had an unexpected and remarkable action in enabling MCF-7 and MDA-MB-468 cells, which had been arrested in G2/M by Taxol, to normalize spindle structure and divide, thus avoiding cell death. This action involves displacement of Taxol from the tubulin polymer fraction, which based on inhibitor studies, depends on activation of LPA receptors and phosphatidylinositol 3-kinase. CONCLUSIONS/SIGNIFICANCE: This work demonstrates a previously unknown consequence of lysophosphatidate action that explains why autotaxin and lysophosphatidate protect against Taxol-induced cell death and promote resistance to the action of this

  17. Nicotine Withdrawal-Induced Deficits in Trace Fear Conditioning in C57BL/6 Mice: A Role for High-Affinity β2 Subunit-Containing Nicotinic Acetylcholine Receptors

    Raybuck, J. D.; Gould, T. J.

    2009-01-01

    Nicotine alters cognitive processes that include working memory and long-term memory. Trace fear conditioning may involve working memory during acquisition while also allowing the assessment of long-term memory. The present study used trace fear conditioning in C57BL/6 mice to investigate the effects of acute nicotine, chronic nicotine, and withdrawal of chronic nicotine on processes active during acquisition and recall 24 hours later and examine the nicotinic acetylcholine receptor subtypes ...

  18. Acetylcholine elongates neuronal growth cone filopodia via activation of nicotinic acetylcholine receptors.

    Zhong, Lei Ray; Estes, Stephen; Artinian, Liana; Rehder, Vincent

    2013-07-01

    In addition to acting as a classical neurotransmitter in synaptic transmission, acetylcholine (ACh) has been shown to play a role in axonal growth and growth cone guidance. What is not well understood is how ACh acts on growth cones to affect growth cone filopodia, structures known to be important for neuronal pathfinding. We addressed this question using an identified neuron (B5) from the buccal ganglion of the pond snail Helisoma trivolvis in cell culture. ACh treatment caused pronounced filopodial elongation within minutes, an effect that required calcium influx and resulted in the elevation of the intracellular calcium concentration ([Ca]i ). Whole-cell patch clamp recordings showed that ACh caused a reduction in input resistance, a depolarization of the membrane potential, and an increase in firing frequency in B5 neurons. These effects were mediated via the activation of nicotinic acetylcholine receptors (nAChRs), as the nAChR agonist dimethylphenylpiperazinium (DMPP) mimicked the effects of ACh on filopodial elongation, [Ca]i elevation, and changes in electrical activity. Moreover, the nAChR antagonist tubucurarine blocked all DMPP-induced effects. Lastly, ACh acted locally at the growth cone, because growth cones that were physically isolated from their parent neuron responded to ACh by filopodial elongation with a similar time course as growth cones that remained connected to their parent neuron. Our data revealed a critical role for ACh as a modulator of growth cone filopodial dynamics. ACh signaling was mediated via nAChRs and resulted in Ca influx, which, in turn, caused filopodial elongation.

  19. Luteinizing hormone-releasing hormone induces thyroxine release together with testosterone in the neotenic axolotl Ambystoma mexicanum.

    Jacobs, G F; Kühn, E R

    1988-09-01

    In male neotenic axolotls Ambystoma mexicanum plasma concentrations of thyroxine (T4) and testosterone were increased following intravenous injection of 10 micrograms luteinizing hormone-releasing hormone. A dose of 50 micrograms influenced only plasma T4 levels. This observation suggests for the first time that a hypothalamic hormone is capable of stimulating the thyroidal axis in the neotenic axolotl.

  20. The effects of Haemophilus influenzae vaccination on an aphylactic mediator release and isoprenaline-induced inhibition of mediator release

    Schreurs, A.J.M.; Terpstra, G.K.; Raaijmakers, J.A.M.; Nijkamp, F.P.

    1980-01-01

    The influence of Haemophilus influenzae on anaphylactic mediator from ovalbumin-sensitized isolated guinea pig lungs was investigated. Lungs from H. influenzae-vaccinated animals released protaglandins and thromboxanes following a smaller dose of ovalbumin than was effective in non-vaccinated animal

  1. Outer Mitochondrial Membrane Localization of Apoptosis-Inducing Factor: Mechanistic Implications for Release

    Seong-Woon Yu

    2009-10-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  2. Instantaneous stress release in fault surface asperities during mining-induced fault-slip

    Atsushi Sainoki; Hani S. Mitri

    2016-01-01

    Fault-slip taking place in underground mines occasionally causes severe damage to mine openings as a result of strong ground motion induced by seismic waves arising from fault-slip. It is indicated from previous studies that intense seismic waves could be generated with the shock unloading of fault surface asperities during fault-slip. This study investigates the shock unloading with numerical simulation. A three-dimensional (3D) numerical model with idealized asperities is constructed with the help of discrete element code 3DEC. The idealization is conducted to particularly focus on simulating the shock unloading that previous numerical models, which replicate asperity degradation and crack development during the shear behavior of a joint surface in previous studies, fail to capture and simulate. With the numerical model, static and dynamic analyses are carried out to simulate unloading of asperities in the course of fault-slip. The results obtained from the dynamic analysis show that gradual stress release takes place around the center of the asperity tip at a rate of 45 MPa/ms for the base case, while an instantaneous stress release greater than 80 MPa occurs near the periphery of the asperity tip when the contact between the upper and lower asperities is lost. The instantaneous stress release becomes more intense in the vicinity of the asperity tip, causing tensile stress more than 20 MPa. It is deduced that the tensile stress could further increase if the numerical model is discretized more densely and analysis is carried out under stress conditions at a great depth. A model parametric study shows that in-situ stress state has a significant influence on the magnitude of the generated tensile stress. The results imply that the rapid stress release generating extremely high tensile stress on the asperity tip can cause intense seismic waves when it occurs at a great depth.

  3. Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release

    Seong‑Woon Yu

    2009-11-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  4. Neuronal release of endogenous dopamine from corpus of guinea pig stomach.

    Shichijo, K; Sakurai-Yamashita, Y; Sekine, I; Taniyama, K

    1997-11-01

    Neuronal release of endogenous dopamine was identified in mucosa-free preparations (muscle layer including intramural plexus) from guinea pig stomach corpus by measuring tissue dopamine content and dopamine release and by immunohistochemical methods using a dopamine antiserum. Dopamine content in mucosa-free preparations of guinea pig gastric corpus was one-tenth of norepinephrine content. Electrical transmural stimulation of mucosa-free preparations of gastric corpus increased the release of endogenous dopamine in a frequency-dependent (3-20 Hz) manner. The stimulated release of dopamine was prevented by either removal of external Ca2+ or treatment with tetrodotoxin. Dopamine-immunopositive nerve fibers surrounding choline acetyltransferase-immunopositive ganglion cells were seen in the myenteric plexus of whole mount preparations of gastric corpus even after bilateral transection of the splanchnic nerve proximal to the junction with the vagal nerve (section of nerves between the celiac ganglion and stomach). Domperidone and sulpiride potentiated the stimulated release of acetylcholine and reversed the dopamine-induced inhibition of acetylcholine release from mucosa-free preparations. These results indicate that dopamine is physiologically released from neurons and from possible dopaminergic nerve terminals and regulates cholinergic neuronal activity in the corpus of guinea pig stomach.

  5. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2014-06-05

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors.

  6. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals.

  7. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro.

    Spallarossa, Paolo; Garibaldi, Silvano; Altieri, Paola; Fabbi, Patrizia; Manca, Valeria; Nasti, Sabina; Rossettin, Pierfranco; Ghigliotti, Giorgio; Ballestrero, Alberto; Patrone, Franco; Barsotti, Antonio; Brunelli, Claudio

    2004-10-01

    The clinical use of doxorubicin, a highly active anticancer drug, is limited by its severe cardiotoxic side effects. Increased oxidative stress and apoptosis have been implicated in the cardiotoxicity of doxorubicin. Carvedilol is an adrenergic blocking agent with potent anti-oxidant activity. In this study we investigated whether carvedilol has protective effects against doxorubicin-induced free radical production and apoptosis in cultured cardiac muscle cells, and we compared the effects of carvedilol to atenolol, a beta-blocker with no anti-oxidant activity. Reactive oxygen species (ROS) generation in cultured cardiac muscle cells (H9c2 cells) was evaluated by flow cytometry using dichlorofluorescein (DCF) and hydroethidine (HE). Apoptosis was assessed by measuring annexin V-FITC/propidium iodide double staining, DNA laddering, levels of expression of the pro-apoptotic protein Bax-alpha and the anti-apoptotic protein Bcl-2, and caspase-3 activity. Pre-treatment with carvedilol significantly attenuated the doxorubicin-induced increases in DCF (P carvedilol) and HE (P carvedilol reduced the number of positive fluorescent cells (P Doxorubicin-induced DNA fragmentation to a clear ladder pattern, while carvedilol prevented DNA fragmentation. Doxorubicin-induced a fall in mRNA expression of the anti-apoptotic Bcl-2 and an increase in the expression of the pro-apoptotic Bax-alpha. Carvedilol pre-treatment blunted both the decrease of Bcl-2 (P carvedilol partially inhibited the doxorubicin-induced activation of caspase-3 (P preventing doxorubicin-induced ROS generation and cardiac apoptosis. Our results suggest that carvedilol is potentially protective against doxorubicin cardiotoxicity by decreasing free radical release and apoptosis in cardiomyocytes.

  8. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors.

    Chatzidaki, A.; D Oyley, J. M.; Gill-Thind, J. K.; Sheppard, T. D.; Millar, N S

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have divers...

  9. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors

    Chatzidaki, Anna; D'Oyley, Jarryl M; Gill-Thind, JasKiran K.; Sheppard, Tom D; Millar, Neil S.

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have divers...

  10. Revisiting the Endocytosis of the M2 Muscarinic Acetylcholine Receptor

    Wymke Ockenga; Ritva Tikkanen

    2015-01-01

    The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimul...

  11. Augmentation of moxonidine-induced increase in ANP release by atrial hypertrophy.

    Cao, Chunhua; Kang, Chang Won; Kim, Sung Zoo; Kim, Suhn Hee

    2004-07-01

    Imidazoline receptors are divided into I(1) and I(2) subtypes. I(1)-imidazoline receptors are distributed in the heart and are upregulated during hypertension or heart failure. The aim of this study was to define the possible role of I(1)-imidazoline receptors in the regulation of atrial natriuretic peptide (ANP) release in hypertrophied atria. Experiments were performed on isolated, perfused, hypertrophied atria from remnant-kidney hypertensive rats. The relatively selective I(1)-imidazoline receptor agonist moxonidine caused a decrease in pulse pressure. Moxonidine (3, 10, and 30 micromol/l) also caused dose-dependent increases in ANP secretion, but clonidine (an alpha(2)-adrenoceptor agonist) did not. Pretreatment with efaroxan (a selective I(1)-imidazoline receptor antagonist) or rauwolscine (a selective alpha(2)-adrenoceptor antagonist) inhibited the moxonidine-induced increases in ANP secretion and interstitial ANP concentration and decrease in pulse pressure. However, the antagonistic effect of efaroxan on moxonidine-induced ANP secretion was greater than that of rauwolscine. Neither efaroxan nor rauwolscine alone has any significant effects on ANP secretion and pulse pressure. In hypertrophied atria, the moxonidine-induced increase in ANP secretion and decrease in pulse pressure were markedly augmented compared with nonhypertrophied atria, and the relative change in ANP secretion by moxonidine was positively correlated to atrial hypertrophy. The accentuation by moxonidine of ANP secretion was attenuated by efaroxan but not by rauwolscine. These results show that moxonidine increases ANP release through (preferentially) the activation of atrial I(1)-imidazoline receptors and also via different mechanisms from clonidine, and this effect is augmented in hypertrophied atria. Therefore, we suggest that cardiac I(1)-imidazoline receptors play an important role in the regulation of blood pressure.

  12. Calcium buffering properties of sarcoplasmic reticulum and calcium-induced Ca(2+) release during the quasi-steady level of release in twitch fibers from frog skeletal muscle.

    Fénelon, Karine; Lamboley, Cédric R H; Carrier, Nicole; Pape, Paul C

    2012-10-01

    Experiments were performed to characterize the properties of the intrinsic Ca(2+) buffers in the sarcoplasmic reticulum (SR) of cut fibers from frog twitch muscle. The concentrations of total and free calcium ions within the SR ([Ca(T)](SR) and [Ca(2+)](SR)) were measured, respectively, with the EGTA/phenol red method and tetramethylmurexide (a low affinity Ca(2+) indicator). Results indicate SR Ca(2+) buffering was consistent with a single cooperative-binding component or a combination of a cooperative-binding component and a linear binding component accounting for 20% or less of the bound Ca(2+). Under the assumption of a single cooperative-binding component, the most likely resting values of [Ca(2+)](SR) and [Ca(T)](SR) are 0.67 and 17.1 mM, respectively, and the dissociation constant, Hill coefficient, and concentration of the Ca-binding sites are 0.78 mM, 3.0, and 44 mM, respectively. This information can be used to calculate a variable proportional to the Ca(2+) permeability of the SR, namely d[Ca(T)](SR)/dt ÷ [Ca(2+)](SR) (denoted release permeability), in experiments in which only [Ca(T)](SR) or [Ca(2+)](SR) is measured. In response to a voltage-clamp step to -20 mV at 15°C, the release permeability reaches an early peak followed by a rapid decline to a quasi-steady level that lasts ~50 ms, followed by a slower decline during which the release permeability decreases by at least threefold. During the quasi-steady level of release, the release amplitude is 3.3-fold greater than expected from voltage activation alone, a result consistent with the recruitment by Ca-induced Ca(2+) release of 2.3 SR Ca(2+) release channels neighboring each channel activated by its associated voltage sensor. Release permeability at -60 mV increases as [Ca(T)](SR) decreases from its resting physiological level to ~0.1 of this level. This result argues against a release termination mechanism proposed in mammalian muscle fibers in which a luminal sensor of [Ca(2+)](SR) inhibits

  13. Nicotinic acetylcholine receptors: from basic science to therapeutics.

    Hurst, Raymond; Rollema, Hans; Bertrand, Daniel

    2013-01-01

    Substantial progress in the identification of genes encoding for a large number of proteins responsible for various aspects of neurotransmitter release, postsynaptic detection and downstream signaling, has advanced our understanding of the mechanisms by which neurons communicate and interact. Nicotinic acetylcholine receptors represent a large and well-characterized family of ligand-gated ion channels that is expressed broadly throughout the central and peripheral nervous system, and in non-neuronal cells. With 16 mammalian genes identified that encode for nicotinic receptors and the ability of the subunits to form heteromeric or homomeric receptors, the repertoire of conceivable receptor subtype combinations is enormous and offers unique possibilities for the design and development of new therapeutics that target nicotinic acetylcholine receptors. The aim of this review is to provide the reader with recent insights in nicotinic acetylcholine receptors from genes, structure and function to diseases, and with the latest findings on the pharmacology of these receptors. Although so far only a few nicotinic drugs have been marketed or are in late stage development, much progress has been made in the design of novel chemical entities that are being explored for the treatment of various diseases, including addiction, depression, ADHD, cognitive deficits in schizophrenia and Alzheimer's disease, pain and inflammation. A pharmacological analysis of these compounds, including those that were discontinued, can improve our understanding of the pharmacodynamic and pharmacokinetic requirements for nicotinic 'drug-like' molecules and will reveal if hypotheses on therapies based on targeting specific nicotinic receptor subtypes have been adequately tested in the clinic.

  14. Mechanism of histamine release from rat mast cells induced by the ionophore A23187: effects of calcium and temperature

    Johansen, Torben

    1978-01-01

    1 The mechanism of histamine release from a pure population of rat mast cells induced by the lipid soluble antibiotic, A23187, has been studied and compared with data for anaphylactic histamine release reported in the literature. 2 Histamine release induced by A23187 in the presence of calcium 10......(-3) mol/l was completed in 10 minutes. By preincubation of the mast cells with A23187 for 10 min in the absence of calcium the histamine release induced by calcium, 10(-3) mol/l or 5 x 10(-3) mol/l, was completed in 90 s and 45 s, respectively. 3 A23187-induced histamine release was maximal with calcium...... 10(-3) mol/l when the cells were incubated at 33 to 39 degrees C for 10 minutes. 4 The cellular mechanism, which was stimulated by A23187 and calcium for the release of histamine, was irreversibly inactivated by incubation at 45 degrees C. 5 An inhibition of energy metabolism was excluded...

  15. The effects of nabumetone, a cyclooxygenase-2 inhibitor, on cisplatin-induced 5-hydroxytryptamine release from the isolated rat ileum.

    Kudo, C; Minami, M; Hirafuji, M; Endo, T; Hamaue, N; Akita, K; Murakami, T; Kawaguchi, H

    2001-01-01

    In order to elucidate 5-HT release influenced by PGE2 in the background of the anticancer drug-induced emesis, the effect of nabumetone, a COX-2 inhibitor, on the release of 5-HT from the isolated rat ileum was investigated. PGE2 produced a concentration-dependent increase (10(-9) to 10 M) and decrease (10(-8) to 10(-6) M) in 5-HT release. Arachidonic acid also demonstrated a similar bell-shaped 5-HT release. The arachidonic acid-induced 5-HT release at 3 x 10(-6) M (313.04 +/- 25.90%) was significantly inhibited by the concomitant perfusion with BRL10720 (10(-6) M) (161.98 +/- 19.4%, pnabumetone, or indomethacin (3 x 10(-7) M)(190.01 +/- 16.19%, pnabumetone or BRL10720, but was not affected by the 3-day administration of dexamethasone. After 72 hours, however, the in vivo 3-days administration of nabumetone, BRL10720 or dexamethasone had no effect on the increase in ileal 5-HT levels induced by cisplatin. The use of COX-2 inhibitors to ameliorate delayed emesis induced by cisplatin-based anticancer chemotherapy has been proposed. On the other hand, there is a possibility that dexamethasone works through a mechanism other than 5-HT release in delayed emesis.

  16. Fluoxetine-induced inhibition of synaptosomal ( sup 3 H)5-HT release: Possible Ca sup 2+ -channel inhibition

    Stauderman, K.A. (Marion Merrell Dow Research Inst., Cincinnati, OH (United States)); Gandhi, V.C.; Jones, D.J. (Univ. of Texas Health Science Center, San Antonio, TX (United States))

    1992-01-01

    Fluoxetine, a selective 5-Ht uptake inhibitor, inhibited 15 mM K{sup +}-induced ({sup 3}H)5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K{sup +} used to depolarize the synaptosomes and the concentration of external Ca{sup 2+}. Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of ({sup 3}H)5-HT release induced by the Ca{sup 2+}-ionophore A 23187 or Ca{sup 2+}-independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K{sup +}-induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca{sup 2+} channels and Ca{sup 2+} entry.

  17. Contribution of SK and BK channels in the control of catecholamine release by electrical stimulation of the cat adrenal gland.

    Montiel, C; López, M G; Sánchez-García, P; Maroto, R; Zapater, P; García, A G

    1995-01-01

    on catecholamine release induced by electrical stimulation was observed at low but not at high [Ca2+]o. 6. Simultaneous release of acetylcholine and catecholamines upon electrical stimulation was achieved in glands in which the endogenous acetylcholine stores in the splanchnic nerve terminals had been prelabelled by perfusion with [3H]choline. While apamin enhanced more than 2-fold the postsynaptic release of catecholamines, the presynaptic release of acetylcholine remained unaffected. 7. The results are compatible with the hypothesis that, under physiological conditions, Ca(2+)-activated SK channels present in chromaffin cells control the firing patterns of action potentials induced by the acetylcholine released from splanchnic nerves during stress.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 3 Figure 4 Figure 6 PMID:7473208

  18. Contribution of SK and BK channels in the control of catecholamine release by electrical stimulation of the cat adrenal gland.

    Montiel, C; López, M G; Sánchez-García, P; Maroto, R; Zapater, P; García, A G

    1995-07-15

    on catecholamine release induced by electrical stimulation was observed at low but not at high [Ca2+]o. 6. Simultaneous release of acetylcholine and catecholamines upon electrical stimulation was achieved in glands in which the endogenous acetylcholine stores in the splanchnic nerve terminals had been prelabelled by perfusion with [3H]choline. While apamin enhanced more than 2-fold the postsynaptic release of catecholamines, the presynaptic release of acetylcholine remained unaffected. 7. The results are compatible with the hypothesis that, under physiological conditions, Ca(2+)-activated SK channels present in chromaffin cells control the firing patterns of action potentials induced by the acetylcholine released from splanchnic nerves during stress.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. Filler particles used in dental biomaterials induce production and release of inflammatory mediators in vitro.

    Ansteinsson, Vibeke E; Samuelsen, Jan Tore; Dahl, Jon E

    2009-04-01

    Although dental composites are in extensive use today, little is known about the biological effects of the filler particles. As composite materials are gradually broken down in the aggressive environment of the oral cavity, the filler particles may leak and induce toxic effects on the surrounding tissue and cells. The aim of this study was to elucidate possible adverse biological effects of commonly used dental filler particles; bariumaluminiumsilica (BaAlSi) and bariumaluminiumfluorosilica (BaAlFSi) with mean size of 1 microm. BEAS-2B cells were used as a model system. Particle morphology, mean particle size in solution, and particle surface charge were determined by scanning electron microscopy and Malvern zetasizer technology, respectively. Enzyme-linked immunosorbent assay was used to detect secretion of cytokine and chemokine (IL-8 and IL-6) and quantitative PCR for detection of gene activity. Both types of particle increased the release of IL-6 and IL-8 in a dose-dependent manner. BaAlFSi particles induced a more marked IL-8 response compared to BaAlSi particles, whereas no significant difference was observed for the IL-6 response. Mechanistic studies using specific inhibitors and activators indicated that cyclic AMP-dependent protein kinase A is partly involved in the observed IL-8 response. In conclusion, we consider dental filler particles to have potential to induce adverse biological response in cell cultures.

  20. Assessment of chronic spontaneous urticaria by serum-induced tumor necrosis factor alpha and matrix metalloproteinase-9 release

    Falkencrone, Sidsel; Bindslev-Jensen, Carsten; Skov, Per Stahl;

    isolated with MACS Basophil Isolation Kit to 97-99% purity. Cells were pulsed 1 hour with/without anti-IgE or with sera from CSU-patients/healthy controls and incubated for a total of 21 h before protein analysis of supernatants. MMP-9 and TNFα in supernatants were measured with commercial ELISAs (R......BACKGROUND Previous studies from our group have demonstrated that IgE-mediated basophil activation leads to release of TNFα that in turn can induce matrix metallo-proteinase-9 (MMP-9) release from monocytes. We wished to investigate if serum from chronic spontaneous urticaria-patients with auto......-antibodies against IgE/IgE-receptor could induce TNFα and MMP-9 release from donor PBMCs, and if release levels could be used to assess severity and activity of chronic spontaneous urticaria (CSU). METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood from healthy donors and basophils...

  1. Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice.

    Akiko Mizokami

    Full Text Available The uncarboxylated form (ucOC, but not the γ-carboxylated form (GlaOC, of the bone-derived protein osteocalcin stimulates insulin secretion and regulates energy metabolism in insulin target tissues. Glucagon-like peptide-1 (GLP-1 is an insulin secretagogue that is released from the gut in response to food intake. We have now found that Gprc6a, a putative ucOC receptor, is expressed in epithelial cells of the mouse small intestine as well as in STC-1 enteroendocrine cells. Secretion of GLP-1 by STC-1 cells was stimulated by ucOC but not by GlaOC. The serum GLP-1 concentration in mice was increased by intraperitoneal or oral administration of ucOC, whereas GlaOC was effective in this regard only after oral application. Serum insulin levels were also increased by ucOC, and this effect was potentiated by an inhibitor of dipeptidyl peptidase IV and blocked by a GLP-1 receptor antagonist. Intravenous injection of ucOC in mice increased the serum GLP-1 concentration, and also increased the serum level of insulin. Our results suggest that ucOC acts via Gprc6a to induce GLP-1 release from the gut, and that the stimulatory effect of ucOC on insulin secretion is largely mediated by GLP-1.

  2. Outward potassium current oscillations in macrophage polykaryons: extracellular calcium entry and calcium-induced calcium release

    Saraiva R.M.

    1997-01-01

    Full Text Available Outward current oscillations associated with transient membrane hyperpolarizations were induced in murine macrophage polykaryons by membrane depolarization in the absence of external Na+. Oscillations corresponded to a cyclic activation of Ca2+-dependent K+ currents (IKCa probably correlated with variations in intracellular Ca2+ concentration. Addition of external Na+ (8 mM immediately abolished the outward current oscillations, suggesting that the absence of the cation is necessary not only for their induction but also for their maintenance. Oscillations were completely blocked by nisoldipine. Ruthenium red and ryanodine reduced the number of outward current cycles in each episode, whereas quercetin prolonged the hyperpolarization 2- to 15-fold. Neither low molecular weight heparin nor the absence of a Na+ gradient across the membrane had any influence on oscillations. The evidence suggests that Ca2+ entry through a pathway sensitive to Ca2+ channel blockers is elicited by membrane depolarization in Na+-free medium and is essential to initiate oscillations, which are also dependent on the cyclic release of Ca2+ from intracellular Ca2+-sensitive stores; Ca2+ ATPase acts by reducing intracellular Ca2+, thus allowing slow deactivation of IKCa. Evidence is presented that neither a Na+/Ca2+ antiporter nor Ca2+ release from IP3-sensitive Ca2+ stores participate directly in the mechanism of oscillation

  3. Granule stores from cellubrevin/VAMP-3 null mouse platelets exhibit normal stimulus-induced release.

    Schraw, Todd D; Rutledge, Tara W; Crawford, Garland L; Bernstein, Audrey M; Kalen, Amanda L; Pessin, Jeffery E; Whiteheart, Sidney W

    2003-09-01

    It is widely accepted that the platelet release reaction is mediated by heterotrimeric complexes of integral membrane proteins known as SNAREs (SNAP receptors). In an effort to define the precise molecular machinery required for platelet exocytosis, we have analyzed platelets from cellubrevin/VAMP-3 knockout mice. Cellubrevin/VAMP-3 has been proposed to be a critical v-SNARE for human platelet exocytosis; however, data reported here suggest that it is not required for platelet function. Upon stimulation with increasing concentrations of thrombin, collagen, or with thrombin for increasing time there were no differences in secretion of [3H]-5HT (dense core granules), platelet factor IV (alpha granules), or hexosaminidase (lysosomes) between null and wild-type platelets. There were no gross differences in bleeding times nor in agonist-induced aggregation measured in platelet-rich plasma or with washed platelets. Western blotting of wild-type, heterozygous, and null platelets confirmed the lack of cellubrevin/VAMP-3 in nulls and showed that most elements of the secretion machinery are expressed at similar levels. While the secretory machinery in mice was similar to humans, mice did express apparently higher levels of synaptobrevin/VAMP-2. These data show that the v-SNARE, cellubrevin/VAMP-3 is not a requirement for the platelet release reaction in mice.

  4. Gas dynamics of heat-release-induced waves in supercritical fluids: revisiting the Piston Effect

    Migliorino, Mario Tindaro; Scalo, Carlo

    2016-11-01

    We investigate a gasdynamic approach to the modeling of heat-release-induced compression waves in supercritical fluids. We rely on highly resolved one-dimensional fully compressible Navier-Stokes simulations of CO2 at pseudo-boiling conditions in a closed duct inspired by the experiments of Miura et al.. Near-critical fluids exhibit anomalous variations of thermodynamic variables taken into account by adopting the Peng-Robinson equation of state and Chung's Method. An idealized heat source is applied, away from the boundaries, resulting in the generation of compression waves followed by contact discontinuities bounding a region of hot expanding fluid. For higher heat-release rates such compressions are coalescent with distinct shock-like features (i.e. non-isentropicity and propagation Mach numbers measurably greater than unity) and a non-uniform post-shock state, not present in ideal gas simulations, caused by the highly nonlinear equation of state. Thermoacoustic effects are limited to: (1) a one-way/one-time thermal-to-acoustic energy conversion, and (2) cumulative non-isentropic bulk heating due to the resonating compression waves, resulting in what is commonly referred to as the Piston Effect.

  5. Peripheral kisspeptin reverses short photoperiod-induced gonadal regression in Syrian hamsters by promoting GNRH release

    Ansel, L; Bentsen, A H; Ancel, C;

    2011-01-01

    stimulators of GNRH neurons. Both central and peripheral acute injections of Kp have been reported to activate the gonadotropic axis in mammals. The aim of this study was to determine if and how peripheral administration of Kp54 could restore gonadal function in photo-inhibited hamsters. Testicular activity...... of hamsters kept in SD was reactivated by two daily i.p. injections of Kp54 but not by chronic subcutaneous delivery of the same peptide via mini-pumps. Acute i.p. injection of Kp54-induced FOS (c-Fos) expression in a large number of GNRH neurons and pituitary gonadotrophs together with a strong increase...... in circulating testosterone. The activation of pituitary cells by Kp was inhibited by preadministration of the GNRH receptor antagonist acyline. Altogether, our results demonstrate that peripheral Kp54 activates the gonadotropic axis by stimulating GNRH release and indicate that an appropriate protocol of long...

  6. Activation of muscarinic and nicotinic acetylcholine receptors in the nucleus accumbens core is necessary for the acquisition of drug reinforcement.

    Crespo, Jose A; Sturm, Katja; Saria, Alois; Zernig, Gerald

    2006-05-31

    Neurotransmitter release in the nucleus accumbens core (NACore) during the acquisition of remifentanil or cocaine reinforcement was determined in an operant runway procedure by simultaneous tandem mass spectrometric analysis of dopamine, acetylcholine, and remifentanil or cocaine itself. Run times for remifentanil or cocaine continually decreased over the five consecutive runs of the experiment. Intra-NACore dopamine, acetylcholine, and drug peaked with each intravenous remifentanil or cocaine self-administration and decreased to pre-run baseline with half-lives of approximately 10 min. As expected, remifentanil or cocaine peaks did not vary between the five runs. Surprisingly, however, drug-contingent dopamine peaks also did not change over the five runs, whereas acetylcholine peaks did. Thus, the acquisition of drug reinforcement was paralleled by a continuous increase in acetylcholine overflow in the NACore, whereas the overflow of dopamine, the expected prime neurotransmitter candidate for conditioning in drug reinforcement, did not increase. Local intra-accumbens administration by reverse microdialysis of either atropine or mecamylamine completely and reversibly blocked the acquisition of remifentanil reinforcement. Our findings suggest that activation of muscarinic and nicotinic acetylcholine receptors in the NACore by acetylcholine volume transmission is necessary during the acquisition phase of drug reinforcement conditioning.

  7. Effects of propofol on lipopolysaccharide-induced expression and release of HMGB1 in macrophages

    Wang, T.; Wei, X.Y.; Liu, B.; Wang, L.J.; Jiang, L.H. [Department of Anesthesiology, the Third Affiliated Hospital, Zhengzhou University, Zhengzhou (China)

    2015-02-24

    This study aimed to determine the effects of different concentrations of propofol (2,6-diisopropylphenol) on lipopolysaccharide (LPS)-induced expression and release of high-mobility group box 1 protein (HMGB1) in mouse macrophages. Mouse macrophage cell line RAW264.7 cells were randomly divided into 5 treatment groups. Expression levels of HMGB1 mRNA were detected using RT-PCR, and cell culture supernatant HMGB1 protein levels were detected using enzyme-linked immunosorbent assay (ELISA). Translocation of HMGB1 from the nucleus to the cytoplasm in macrophages was observed by Western blotting and activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus was detected using ELISA. HMGB1 mRNA expression levels increased significantly in the cell culture supernatant and in cells after 24 h of stimulating RAW264.7 cells with LPS (500 ng/mL). However, HMGB1 mRNA expression levels in the P2 and P3 groups, which received 500 ng/mL LPS with 25 or 50 μmol/mL propofol, respectively, were significantly lower than those in the group receiving LPS stimulation (P<0.05). After stimulation by LPS, HMGB1 protein levels were reduced significantly in the nucleus but were increased in the cytoplasm (P<0.05). Simultaneously, the activity of NF-κB was enhanced significantly (P<0.05). After propofol intervention, HMGB1 translocation from the nucleus to the cytoplasm and NF-κB activity were inhibited significantly (each P<0.05). Thus, propofol can inhibit the LPS-induced expression and release of HMGB1 by inhibiting HMGB1 translocation and NF-κB activity in RAW264.7 cells, suggesting propofol may be protective in patients with sepsis.

  8. Bacterial antigen induced release of soluble vascular endothelial growth factor (VEGF) and VEGFR1 before and after surgery

    Svendsen, Mads N; Lykke, J; Werther, Kim

    2005-01-01

    -induced release of sVEGF and sVEGFR1 from whole blood in vitro. MATERIAL AND METHODS: Sixty-one patients with abdominal diseases undergoing five different surgical procedures were included in the study. Blood samples were drawn from patients before and after the operation. White blood cells and platelets were...... significantly with neutrophil cell counts (0.53 led to increased release of sVEGF, which...

  9. Effect of allergen-specific immunotherapy on recombinant human interleukin 3-mediated amplification of allergen-induced basophil histamine release.

    Kowal, Krzysztof; Nolte, Hendrik; Skov, Per Stahl; DuBuske, Lawrence M

    2005-01-01

    Decreased allergen-induced histamine release from peripheral blood basophils in allergic rhinitis patients treated with specific immunotherapy (SIT) correlates with clinical outcomes of SIT. The aim of this study was to investigate if decreased histamine release is a permanent effect of SIT. Fifty-one patients (mean age, 35.3 years) with allergic rhinitis, diagnosed based on clinical history and positive skin-prick test results to common aeroallergens, were studied. Twenty-three patients had never received SIT (group A), and 28 patients had been treated with inhalant allergen extracts (group B). Eleven patients from group A participated in a prospective part of this study. Basophil histamine release in these patients was evaluated before (TO) and after-1 year (TI) of SIT. Histamine release from peripheral blood with and without interleukin (IL)-3 pretreatment was performed using the glass-fiber-based histamine release test. Brief pretreatment of whole blood basophils with one of the four concentrations (0.01, 0.1, 1, or 10 ng/mL) of recombinant human IL(rhIL)-3, rhIL-5, or rh-granulocyte-macrophage colony-stimulating factor resulted in a significant amplification of allergen-induced basophil histamine release. The amplification using cytokines at the optimal concentrations was the greatest with rhIL-3 and the lowest with rhIL-5; therefore, for further studies rhIL-3 was used. Prospective analysis showed no significant difference in allergen-induced basophil histamine release on rhIL-3 pretreatment after 1 year of SIT (192.7 +/- 75.3 ng and 176.1 +/- 76.4 ng for T0 and T1, respectively; p = 0.18). Short-term SIT does not decrease rhIL-3-mediated amplification of allergen-induced histamine release from peripheral blood basophils.

  10. Functional aspects of dexamethasone upregulated nicotinic acetylcholine receptors in C2C12 myotubes

    Maestrone, E; Lagostena, L; Henning, RH; DenHertog, A; Nobile, M

    1995-01-01

    Three days of treatment with the glucocorticoid dexamethasone (1 nM-mu M) induced a concentration-dependent up-regulation of muscle nicotinic acetylcholine receptor (nAChR) in C2C12 mouse myotubes (EC(50)=10+/-7.3 nM), as assessed by [H-3]alpha-BuTx binding. The maximum increase in binding amounted

  11. How can an inert gas counterbalance a NMDA-induced glutamate release?

    Vallee, Nicolas; Rostain, Jean-Claude; Risso, Jean-Jacques

    2009-12-01

    Previous neurochemical studies performed in rats have revealed a decrease of striatal dopamine and glutamate induced by inert gas narcosis. We sought to establish the hypothetical role of glutamate and its main receptor, the N-methyl-d-aspartate (NMDA) receptor, in this syndrome. We aimed to counteract the nitrogen narcosis-induced glutamate and dopamine decreases by stimulating the NMDA receptor in the striatum. We used bilateral retrodialysis on awake rats, submitted to nitrogen under pressure (3 MPa). Continuous infusion of 2 mM of NMDA under normobaric conditions (0.01 MPa) (n = 8) significantly increased extracellular average levels of glutamate, aspartate, glutamine, and asparagine by 241.8%, 292.5%, 108.3%, and 195.3%, respectively. The same infusion conducted under nitrogen at 3 MPa (n = 6) revealed significant lower levels of these amino acids (n = 8/6, P > 0.001). In opposition, the NMDA-induced effects on dopamine, dihydrophenylacetic acid (DOPAC), and homovanillic acid (HVA) levels were statistically not affected by the nitrogen at 3 MPa exposure (n = 8/6, P > 0.05). Dopamine was increased by >240% on average. HVA was decreased (down to 40%), and there was no change in DOPAC levels, in both conditions. Results highlight that the NMDA receptor is not directly affected by nitrogen under pressure as indicated by the elevation in NMDA-induced dopamine release under hyperbaric nitrogen. On the other hand, the NMDA-evoked glutamate increase is counteracted by nitrogen narcosis. No improvement in motor and locomotor disturbances was observed with high striatal concentration in dopamine. Further experiments have to be done to specify why the striatal glutamate pathways, in association with the inhibition of its metabolism, only are affected by nitrogen narcosis in this study.

  12. The α7 nicotinic acetylcholine receptor complex

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds and prote......The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds...

  13. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    Shrestha, Chandan [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ito, Takashi [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kawahara, Ko-ichi [Department of Biomedical Engineering, Osaka Institute of Technology, Osaka (Japan); Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Maruyama, Ikuro, E-mail: rinken@m3.kufm.kagoshima-u.ac.jp [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2013-08-09

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.

  14. Magnesium sulfate enhances non-depolarizing muscle relaxant vecuronium action at adult muscle-type nicotinic acetylcholine receptor in vitro

    Hong WANG; Qi-sheng LIANG; Lan-ren CHENG; Xiao-hong LI; Wei FU; Wen-tao DAI; Shi-tong LI

    2011-01-01

    To investigate the effect of magnesium sulfate and its interaction with the non-depolarizing muscle relaxant vecuronium at adult muscle-type acetylcholine receptors in vitro.Methods:Adult muscle-type acetylcholine receptors were expressed in HEK293 cells.Drug-containing solution was applied via a gravity-driven perfusion system.The inward currents were activated by brief application of acetylcholine (ACh),and recorded using whole-cell voltage-clamp technique.Results:Magnesium sulfate (1-100 mmol/L) inhibited the inward currents induced ACh (10 μmol/L) in a concentration-dependent manner (IC5o=29.2 mmol/L).The inhibition of magnesium sulfate was non-competitive.In contrast,vecuronium produced a potent inhibition on the adult muscle-type acetylcholine receptor (IC50=8.7 nmol/L) by competitive antagonism.Magnesium sulfate at the concentrations of 1,3,and 6 mmol/L markedly enhanced the inhibition of vecuronium (10 nmol/L) on adult muscle-type acetylcholine receptors.Conclusion:Clinical enhancement of vecuronium-induced muscle relaxation by magnesium sulfate can be attributed partly to synergism between magnesium sulfate and non-depolarizing muscle relaxants at adult muscle-type acetylcholine receptors.

  15. β2 integrin mediates hantavirus-induced release of neutrophil extracellular traps.

    Raftery, Martin J; Lalwani, Pritesh; Krautkrӓmer, Ellen; Peters, Thorsten; Scharffetter-Kochanek, Karin; Krüger, Renate; Hofmann, Jörg; Seeger, Karl; Krüger, Detlev H; Schönrich, Günther

    2014-06-30

    Rodent-borne hantaviruses are emerging human pathogens that cause severe human disease. The underlying mechanisms are not well understood, as hantaviruses replicate in endothelial and epithelial cells without causing any cytopathic effect. We demonstrate that hantaviruses strongly stimulated neutrophils to release neutrophil extracellular traps (NETs). Hantavirus infection induced high systemic levels of circulating NETs in patients and this systemic NET overflow was accompanied by production of autoantibodies to nuclear antigens. Analysis of the responsible mechanism using neutrophils from β2 null mice identified β2 integrin receptors as a master switch for NET induction. Further experiments suggested that β2 integrin receptors such as complement receptor 3 (CR3) and 4 (CR4) may act as novel hantavirus entry receptors. Using adenoviruses, we confirmed that viral interaction with β2 integrin induced strong NET formation. Collectively, β2 integrin-mediated systemic NET overflow is a novel viral mechanism of immunopathology that may be responsible for characteristic aspects of hantavirus-associated disease such as kidney and lung damage.

  16. The autocrine role of tryptase in pressure overload-induced mast cell activation, chymase release and cardiac fibrosis

    Jianping Li

    2016-03-01

    Results and conclusion: The results indicate the presence of PAR-2 on MCs and that tryptase inhibition and nedocromil prevented TAC-induced fibrosis and increases in MC density, activation, and chymase release. Tryptase also significantly increased chymase concentration in ventricular slice culture media, which was prevented by the tryptase inhibitor. Hydroxyproline concentration in culture media was significantly increased with tryptase incubation as compared to the control group and the tryptase group incubated with nafamostat mesilate or chymostatin. We conclude that tryptase contributes to TAC-induced cardiac fibrosis primarily via activation of MCs and the amplified release of chymase.

  17. Analogues of neuroactive polyamine wasp toxins that lack inner basic sites exhibit enhanced antagonism toward a muscle-type mammalian nicotinic acetylcholine receptor

    Stromgaard, K; Brierley, M J; Andersen, K;

    1999-01-01

    properties (stepwise macroscopic pK(a) values) were determined by (13)C NMR titrations. All analogues are fully protonated at physiological pH. The effects of these compounds on acetylcholine-induced currents in TE671 cells clamped at various holding potentials were determined. All of the analogues...... noncompetitively antagonized the nicotinic acetylcholine receptor (nAChR) in a concentration-, time-, and voltage-dependent manner. The amplitudes of acetylcholine-induced currents were compared at their peaks and at the end of a 1 s application in the presence or absence of the analogues. Most of the analogues...

  18. Effect of Tongjingbushen complex prescription on acetylcholine esterase,choline acetyltransferase and acetylcholine in hippocampus of Alzheimer's disease rat induced by aluminum%通经补肾复方对铝诱导阿尔茨海默病模型大鼠海马乙酰胆碱酯酶、胆碱乙酰转移酶、乙酰胆碱的影响

    程书珍; 王丽君; 刘恒; 王晓梅; 刘爱民; 骆朋好

    2012-01-01

    目的 观察通经补肾中药方对铝诱导的AD模型大鼠海马组织中乙酰胆碱酯酶(AchE)和胆碱乙酰转移酶(ChAT)活性及乙酰胆碱(Ach)含量变化.方法 选择健康3月龄SD大鼠84只,随机分为对照组、模型组(分为低、中、高剂量铝饲料组)、中药组(分为低、中、高剂量中药组),每组各12只.模型组在常规饲料中添加不同剂量A1C13·6H20喂饲大鼠,持续染毒3个月,制作AD动物模型.中药组大鼠喂饲含铝饲料,并以通经补肾中药方灌胃.上述实验结束后,处死大鼠,取海马组织,测定海马中的AchE和ChAT的活性及Ach含量.结果 与对照组比较,中、高剂量铝饲料组大鼠海马中AchE的活性明显增高(P<0.01),ChAT活性明显降低(P<0.01),Ach含量显著减少(P<0.01).与高剂量铝饲料组比较,中、高剂量中药组大鼠海马中AchE活性明显降低(P<0.01),ChAT活性明显升高(P<0.01),Ach含量明显增加(P<0.01).结论 铝的过多摄入使大鼠海马Ach减少可能是AD发病的机制之一,中药方可提高海马中ChAT活性,抑制AchE活性,增加Ach的含量,改善大鼠中枢胆碱能系统失衡状况.%Objective To observe the effect of Tongjingbushen complex prescription on acetylcholine esterase (AchE), choline acetyltransferase (ChAT) and acetylcholine (Ach) in hippocampus of Alzheimer's disease (AD) rat induced by aluminum. Methods 84 3-month-old SD rats were divided into control, model (low, middle and high dose of aluminum) , traditional Chinese medicine (low, middle and high dose of traditional Chinese medicine) groups (n = 12). Rats of AD were made by adding A1C13 · 6H2o to normal feed for 3 months. Rats in traditional Chinese medicine groups were given Tongjingbushen traditional Chinese medicine i. g. AchE, ChAT and Ach in hippocampus were detected. Results Compared with control group, AchE activity were higher, ChAT activity were decreased, Ach were increased in middle and high dose model groups (P <0

  19. Diazepam-induced release of behavior in an extinction procedure: its reversal by Ro 15-1788.

    Thiébot, M H; Childs, M; Soubrié, P; Simon, P

    1983-03-18

    The effects of the benzodiazepine receptor antagonist Ro 15-1788, an imidazobenzodiazepine derivative, were studied with respect to three pharmacological activities exerted by diazepam in rats. Two of these, release of shock-induced suppression of drinking and attenuation of non-reward-induced cessation of responding for food, reflect the anxiolytic property of benzodiazepines. The amnesic-like effect of diazepam was also investigated. Ro 15-1788 (in doses ranging from 4 to 16 mg/kg p.o.) completely reversed diazepam (2 mg/kg)-induced release of behavior in both punishment and non-reward procedures. In contrast, Ro 15-1788 reduced but did not completely abolish diazepam-induced amnesia. These data suggest that the anticonflict and anti-frustration effects of benzodiazepines probably involve similar receptor types which nevertheless differ from those chiefly implicated in the amnesic-like activity of benzodiazepines.

  20. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation

    Yu, Huangfei; Xia, Hongwei; Tang, Qiulin; Xu, Huanji; Wei, Guoqing; Chen, Ying; Dai, Xinyu; Gong, Qiyong; Bi, Feng

    2017-01-01

    Acetylcholine (ACh), known as a neurotransmitter, regulates the functions of numerous fundamental central and peripheral nervous system. Recently, emerging evidences indicate that ACh also plays an important role in tumorigenesis. However, little is known about the role of ACh in gastric cancer. Here, we reported that ACh could be auto-synthesized and released from MKN45 and BGC823 gastric cancer cells. Exogenous ACh promoted cell proliferation in a does-dependent manner. The M3R antagonist 4-DAMP, but not M1R antagonist trihexyphenidyl and M2/4 R antagonist AFDX-116, could reverse the ACh-induced cell proliferation. Moreover, ACh, via M3R, activated the EGFR signaling to induce the phosphorylation of ERK1/2 and AKT, and blocking EGFR pathway by specific inhibitor AG1478 suppressed the ACh induced cell proliferation. Furthermore, the M3R antagonist 4-DAMP and darifenacin could markedly inhibit gastric tumor formation in vivo. 4-DAMP could also significantly enhance the cytotoxic activity of 5-Fu against the MKN45 and BGC823 cells, and induce the expression of apoptosis-related proteins such as Bax and Caspase-3. Together, these findings indicated that the autocrine ACh could act through M3R and the EGFR signaling to promote gastric cancer cells proliferation, targeting M3R or EGFR may provide us a potential therapeutic strategy for gastric cancer treatment. PMID:28102288

  1. Primary Structure of Nicotinic Acetylcholine Receptor

    1986-08-01

    quantities of starting material (for reviews of receptor, see Popot and Changeux, 1984; Stroud and Finer-Moore, 1985). This work led to the...Cloning of the Acetylcholine Receptor. Cold Spring Harbor Symp. on Quant. Biol. XLVIH: 71-78. 15. Popot , J-L. and Changeux, J-P. (1984) The

  2. Effects of extracerebral dopamine on salsolinol- or thyrotropin-releasing hormone-induced prolactin (PRL) secretion in goats.

    Inaba, Yuki; Kato, Yuki; Itou, Azumi; Chiba, Aoi; Sawai, Ken; Fülöp, Ferenc; Nagy, György Miklos; Hashizume, Tsutomu

    2016-12-01

    The aim of the present study was to clarify the effect of extracerebral dopamine (DA) on salsolinol (SAL)-induced prolactin (PRL) secretion in goats. An intravenous injection of SAL or thyrotropin-releasing hormone (TRH) was given to female goats before and after treatment with an extracerebral DA receptor antagonist, domperidone (DOM), and the PRL-releasing response to SAL was compared with that to TRH. DOM alone increased plasma PRL concentrations and the PRL-releasing response to DOM alone was greater than that to either SAL alone or TRH alone. The PRL-releasing response to DOM plus SAL was similar to that to DOM alone, and no additive effect of DOM and SAL on the secretion of PRL was observed. In contrast, the PRL-releasing response to DOM plus TRH was greater than that to either TRH alone or DOM alone and DOM synergistically increased TRH-induced PRL secretion. The present results demonstrate that the mechanism involved in PRL secretion by SAL differs from that by TRH, and suggest that the extracerebral DA might be associated in part with the modulation of SAL-induced PRL secretion in goats.

  3. An allosteric enhancer of M(4) muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine

    Nielsen, Ditte Dencker; Weikop, Pia; Sørensen, Gunnar

    2012-01-01

    The mesostriatal dopamine system plays a key role in mediating the reinforcing effects of psychostimulant drugs like cocaine. The muscarinic M(4) acetylcholine receptor subtype is centrally involved in the regulation of dopamine release in striatal areas. Consequently, striatal M(4) receptors could...... be a novel target for modulating psychostimulant effects of cocaine....

  4. Microdose gonadotropin-releasing hormone agonist in the absence of exogenous gonadotropins is not sufficient to induce multiple follicle development.

    Chung, Karine; Fogle, Robin; Bendikson, Kristin; Christenson, Kamilee; Paulson, Richard

    2011-01-01

    Because the effectiveness of the "microdose flare" stimulation protocol often is attributed to the dramatic endogenous gonadotropin release induced by the GnRH agonist, the aim of this study was to determine whether use of microdose GnRH agonist alone could induce multiple ovarian follicle development in normal responders. Based on these data, the duration of gonadotropin rise is approximately 24 to 48 hours and is too brief to sustain continued multiple follicle growth.

  5. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I.; Okada, Tetsuji; Kobilka, Brian K.; Haga, Tatsuya; Kobayashi, Takuya (Stanford-MED); (Kyoto); (Gakushuin); (Kyushu)

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  6. The role of calcium in endotoxin-induced release of calcitonin gene-related peptide (CGRP) from rat spinal cord

    唐跃明; 韩启德; 王宪

    1997-01-01

    In the present study, the role of calcium in endotoxin-induced CGRP release was studied. 2 .5-50 μg/mL endotoxin and 1 -10 mmol/L caffeine caused concentration-dependent increase of CGRP release from rat spinal cord in vitro. However, no additive effect could he found when caffeine and endotoxin were concomitantly incubated. By using capsaicin, Ca2+-free medium, Omega-Conotoxin, nifedipine, W-7, ryanodine, MgCl2, Tris-ATP, rutheni-um red, the results indicate that the release of CGRP evoked by endotoxin from the sensory fibers of rat spinal cord is dependent on extracellular calcium. After entering into the cell through the N-type calcium channel, calcium binds to calmodulin, and triggers calcium release from intracellular calcium store by activating the caffeine-sensitive but ryan-odine-insensitive mechanism.

  7. LPA5 is abundantly expressed by human mast cells and important for lysophosphatidic acid induced MIP-1β release.

    Anders Lundequist

    Full Text Available BACKGROUND: Lysophosphatidic acid (LPA is a bioactive lipid inducing proliferation, differentiation as well as cytokine release by mast cells through G-protein coupled receptors. Recently GPR92/LPA5 was identified as an LPA receptor highly expressed by cells of the immune system, which prompted us to investigate its presence and influence on mast cells. PRINCIPAL FINDINGS: Transcript analysis using quantitative real-time PCR revealed that LPA5 is the most prevalent LPA-receptor in human mast cells. Reduction of LPA5 levels using shRNA reduced calcium flux and abolished MIP-1β release in response to LPA. CONCLUSIONS: LPA5 is a bona fide LPA receptor on human mast cells responsible for the majority of LPA induced MIP-1β release.

  8. Experimental elaboration of faulting induced by fluid-releasing mineral reactions in subduction zones

    Green, H.; Zhang, J.; Jung, H.; Dobrzinetskaya, L.

    2003-04-01

    Dehydration embrittlement has been cited repeatedly as a potential mechanism for triggering earthquakes at depths where unassisted brittle failure is impossible due to the normal-stress-dependence of friction. We are investigating two different aspects of this problem in the laboratory: (i) dehydration of antigorite under stress where the ΔV of reaction varies from strongly positive to distinctly negative; (ii) deformation of eclogite in which the nominally anhydrous minerals contain small amounts of dissolved H_2O that can lead to faulting induced by very small amounts of melting stimulated by exsolution of H_2O. (i) Antigorite has the largest stability field of the serpentines and is often cited as potentially being the source of most or all mantle earthquakes to a depth of over 200 km. However, like other low-pressure hydrous phases, the net volume change accompanying antigorite dehydration varies from strongly positive at low P to negative at P > ˜2-2.5 GPa. Fracture mechanics theory predicts that dehydration should not induce shear failure if ΔV<0. To test the effect of ΔV on faulting, we have deformed an extensively-serpentinized peridotite at P = 1-6 GPa. We conducted constant strain rate experiments in a Griggs-type apparatus at P = 1.0 - 3.4 GPa and rapid-pumping experiments in a Walker-type multianvil apparatus, culminating in pressures as high as 6 GPa. Independent of the sign of ΔV, specimens subjected to stress during dehydration yielded extremely thin zones of reaction products with shear offset across them. Some were clearly faults whereas others could be precursors to faulting. Fluid released at grain boundaries between antigorite and relict olivine locally produced Mode I cracks &fluid inclusions. (ii) Deformation of "wet" eclogite at 3 GPa and temperatures between the wet and dry solidi induced exsolution of H_2O and formation of very small amounts (<1%) of melt, leading to faulting. At lower temperature the rock was extremely strong but

  9. Asymmetrical dimethylarginine plasma concentrations are related to basal nitric oxide release but not endothelium-dependent vasodilation of resistance arteries in peritoneal dialysis patients.

    Mittermayer, Friedrich; Schaller, Georg; Pleiner, Johannes; Vychytil, Andreas; Sunder-Plassmann, Gere; Hörl, Walter H; Wolzt, Michael

    2005-06-01

    Vascular dysfunction in chronic renal failure may be linked to reduced nitric oxide (NO) bioactivity and increased circulating concentrations of the endogenous NO synthase inhibitor asymmetrical dimethyl L-arginine (ADMA). The association between ADMA and basal endothelial NO release and endothelium-dependent vasodilation in resistance arteries of chronic renal failure patients is unknown. Forearm blood flow responses to the endothelium-dependent vasodilator acetylcholine, the endothelium-independent vasodilator nitroglycerine, and the endothelium-dependent vasoconstrictor N(G)-monomethyl-L-arginine (L-NMMA) were assessed in 37 peritoneal dialysis patients. L-arginine and ADMA plasma concentrations were measured by HPLC. ADMA (mean +/- SEM: 0.68 +/- 0.02 micromol/L) was associated with basal forearm blood flow (r = -0.33; P < 0.05) and L-NMMA induced vasoconstriction (r = -0.55; P < 0.0005), but not with dilator effects of acetylcholine or nitroglycerine. L-arginine (68 +/- 3 micromol/L) tended to correlate with acetylcholine-induced vasodilation (r = 0.32; P = 0.05) but was not associated with other parameters. ADMA is related to basal but not to acetylcholine-stimulated NO bioactivity in patients on peritoneal dialysis. Impaired endothelium-dependent vasodilation found in chronic renal failure is not explained by elevated circulating NO synthase inhibitors in renal failure.

  10. S100B modulates IL-6 release and cytotoxicity from hypothermic brain cells and inhibits hypothermia-induced axonal outgrowth.

    Schmitt, Katharina R L; Kern, Claudia; Lange, Peter E; Berger, Felix; Abdul-Khaliq, Hashim; Hendrix, Sven

    2007-09-01

    Brain protection is essential during neonatal and pediatric cardiac surgery. Deep hypothermia is still the most important method for achieving neuroprotection during cardiopulmonary bypass. Previously, we could demonstrate that deep hypothermia induces substantial cytotoxicity in brain cells as well as increased release of the pro-inflammatory cytokine interleukin-6 (IL-6), which plays an important role in neuroprotection and neuroregeneration. Deep hypothermia is also associated with increased levels of the astrocytic protein S100B in the serum and cerebrospinal fluid of patients. Since S100B may modulate pro-inflammatory cytokines and may stimulate neurite outgrowth, we have tested the hypothesis that nanomolar concentrations of S100B may increase IL-6 release from brain cells and support axonal outgrowth from organotypic brain slices under hypothermic conditions. S100B administration substantially reduced neuronal and glial cytotoxicity under hypothermic conditions. In the presence of S100B hypothermia-induced IL-6 release in primary astrocytes was significantly increased but reduced in BV-2 microglial cells and primary neurons. Surprisingly, deep hypothermia increased axonal outgrowth from brain slices and--in contrast to our hypothesis--this hypothermia-induced neurite outgrowth was inhibited by S100B. These data suggest that S100B differentially influences cytokine release and cytotoxicity from distinct brain cells and may inhibit neuroregeneration by suppressing hypothermia-induced axonal outgrowth.

  11. Differential response to dexamethasone on the TXB2 release in guinea-pig alveolar macrophages induced by zymosan and cytokines

    M. E. Salgueiro

    1997-01-01

    Full Text Available Glucocorticosteroids reduce the production of inflammatory mediators but this effect may depend on the stimulus. We have compared the time course of the effect of dexamethasone on the thromboxane B2 (TXB2 release induced by cytokine stimulation and zymosan in guinea-pig alveolar macrophages. Interleukin-1β (IL-1β, tumour necrosis factor-α (TNF-α and opsonized zymosan (OZ, all stimulate TXB2 release. High concentrations of dexamethasone (1–10 μM inhibit the TXB2 production induced by both cytokines and OZ, but the time course of this response is different. Four hours of incubation with dexamethasone reduce the basal TXB2 release and that induced by IL-1β and TNF-α, but do not modify the TXB2 release induced by OZ. However, this stimulus was reduced after 24 h incubation. Our results suggest that the antiinflammatory activity of glucocorticosteroids shows some dependence on stimulus and, therefore, may have more than one mechanism involved.

  12. D2 autoreceptor inhibition reveals oxygen-glucose deprivation-induced release of dopamine in guinea-pig cochlea

    Halmos, G; Doleviczényi, Z; Répássy, G; Kittel, A; Vizi, E S; Lendvai, B; Zelles, T

    2005-01-01

    Dopamine (DA), released from the lateral olivocochlear (LOC) efferent terminals, the efferent arm of the short-loop feedback in the cochlea, is considered as a protective factor in the inner ear since it inhibits auditory nerve dendrite firing in ischemia- or noise-induced excitotoxicity leading to

  13. Increased nitric oxide release and expression of endothelial and inducible nitric oxide synthases in mildly changed porcine mitral valve leaflets

    Moesgaard, Sophia Gry; Olsen, Lisbeth Høier; Viuff, Birgitte;

    2007-01-01

    Background and aim of the study: Little is known of the local role of nitric oxide (NO) in heart valves in relation to heart valve diseases. The study aim was to examine NO release and the expression of both endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (i...

  14. Simultaneous spectroscopic measurements of the interior temperature and induced cargo release from pore-restricted mesoporous silica nanoparticles

    Dong, Juyao; Zink, Jeffrey I.

    2016-05-01

    Temperature changes initiated within nano structures are being increasingly used to externally activate responsive delivery vehicles. Yet, the precise measurement of the nano environment temperature increase and its correlation with the induced macroscopic cargo release are difficult to achieve. In this study, we focus on a photothermally activated drug delivery system based on mesoporous silica nanoparticles, and use an optical nanothermometer - NaYF4:Yb3+,Er3+ crystals - for a ratiometric temperature measurement. Using fluorescent dyes as the payload molecule, both the nanoparticle interior temperature change and the macroscopic cargo release amount are monitored simultaneously by fluorescent spectroscopy. We found that the cargo release lags the temperature increase by about 5 min, revealing the threshold temperature that the particles have to reach before a substantial release could happen. Using this spectroscopic method, we are able to directly compare and correlate a nano environment event with its stimulated macroscopic results.Temperature changes initiated within nano structures are being increasingly used to externally activate responsive delivery vehicles. Yet, the precise measurement of the nano environment temperature increase and its correlation with the induced macroscopic cargo release are difficult to achieve. In this study, we focus on a photothermally activated drug delivery system based on mesoporous silica nanoparticles, and use an optical nanothermometer - NaYF4:Yb3+,Er3+ crystals - for a ratiometric temperature measurement. Using fluorescent dyes as the payload molecule, both the nanoparticle interior temperature change and the macroscopic cargo release amount are monitored simultaneously by fluorescent spectroscopy. We found that the cargo release lags the temperature increase by about 5 min, revealing the threshold temperature that the particles have to reach before a substantial release could happen. Using this spectroscopic method, we are

  15. Noradrenaline-induced release of newly-synthesized accumbal dopamine: differential role of alpha- and beta-adrenoceptors

    Francisca eMeyer

    2014-08-01

    Full Text Available Previous studies have shown that intra-accumbens infusion of isoproterenol (ISO, a beta-adrenoceptor-agonist, and phenylephrine (PE, an alpha-adrenoceptor-agonist, increase the release of accumbal dopamine (DA. In the present study we analyzed whether the ISO-induced release of DA is sensitive to pretreatment with the DA synthesis inhibitor alpha-methyl-para-tyrosine (AMPT. Earlier studies have shown that the PE-induced release of DA is derived from DA pools that are resistant to AMPT. In addition to PE, the alpha-adrenoceptor-antagonist phentolamine (PA was also found to increase accumbal DA release. Therefore, we investigated whether similar to the DA-increasing effect of PE, the DA increase induced by PA is resistant to AMPT. Pretreatment with AMPT prevented the ISO-induced increase of accumbal DA. The accumbal DA increase after PA was not reduced by the DA synthesis inhibitor, independently of the amount of DA released. These results show that mesolimbic beta-, but not alpha-adrenoceptors, control the release of accumbal newly-synthesized DA pools. The DA-increasing effects of PE have previously been ascribed to stimulation of presynaptic receptors located on noradrenergic terminals, whereas the DA-increasing effects of PA and ISO have been ascribed to an action of these drugs at postsynaptic receptors on dopaminergic terminals. The fact that AMPT did not affect the accumbal DA response to PE and PA, whereas it did prevent the accumbal DA increase to ISO, supports our previously reported hypothesis that the noradrenergic neurons of the nucleus accumbens containing presynaptic alpha-adrenoceptors impinge upon the dopaminergic terminals in the nucleus accumbens containing postsynaptic adrenoceptors of the alpha but not of the beta type. The putative therapeutic effects of noradrenergic agents in the treatment of DA-related disorders are shortly discussed.

  16. Effects of dopamine antagonists on methamphetamine-induced dopamine release in high and low alcohol preference rats.

    Nishiguchi, Minori; Kinoshita, Hiroshi; Kasuda, Shogo; Takahashi, Montonori; Yamamura, Takehiko; Matsui, Kiyoshi; Ouchi, Harumi; Minami, Takako; Hishida, Shigeru; Nishio, Hajime

    2010-03-01

    The authors have previously shown that high alcohol preference rats (HAP) have a significantly higher sensitivity than low alcohol preference rats (LAP) for methamphetamine (MAP). In this study, changes in dopamine and serotonin release induced by MAP (1 mg/kg, intraperitoneally) after pre-treatment with D1 and D2 receptor antagonists were examined in the striatum of rats with different alcohol preferences to elucidate differences in receptor levels between the two rat strains. D1 receptor antagonist SCH23390 or D2 receptor antagonist haloperidol were administrated intracerebroventricularly 10 min before MAP stimulation. This study investigated the effect of methamphetamine-induced dopamine and serotonin release in striatum using microdialysis of freely moving rats coupled to ECD-HPLC. With haloperidol treatment both strains of rats showed a significantly greater maximum increase on MAP-induced dopamine release compared with respective control rats. However, after SCH23390 treatment only HAP rats showed a significantly greater increase in dopamine release compared with controls. SCH23390 blocks mainly D1 receptors only in the post-synaptic membrane, whereas haloperidol blocks D2 receptors in both the pre-synaptic and post-synaptic membranes. The MAP-induced increase in dopamine release following haloperidol pre-treatment was greater than SCH23390 pre-treatment in both strains. This result indicates that D2 receptors (autoreceptors) in the pre-synaptic membrane were blocked, leading to the elimination of the feedback function that regulates dopamine release. These data suggested that alcohol preference is associated with the action of MAP, and the dopaminergic mechanism, specifically the D1 system in the striatum, might have a different pathway dependent on alcohol preference.

  17. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n......AChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human...... brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit n...

  18. The celiac ganglion modulates LH-induced inhibition of androstenedione release in late pregnant rat ovaries

    Rastrilla Ana M

    2006-12-01

    was found on day 21 of pregnancy resulting in the inhibition of androstenedione release from the ovarian compartment. In addition on day 15 of pregnancy, LH placed in the ovarian compartment led to an inhibition of the release of androstenedione, and this inhibitory effect was further reinforced by the joint action of noradrenaline in the celiac ganglion and LH in the ovary. The levels of catecholamines in the ovarian compartment showed differences among the experiments; of significance, the joint treatment of noradrenaline in the celiac ganglion and LH in the ovary resulted in a remarkable increase in the ovarian levels of noradrenaline and adrenaline when compared to the effect achieved by either one of the compounds added alone. Conclusion Our results demonstrate that the noradrenergic stimulation of the celiac ganglion reinforces the LH-induced inhibition of androstenedione production by the ovary of late pregnant rats, and that this effect is associated with marked changes in the release of catecholamines in the ovary.

  19. Azadirachtin-induced apoptosis involves lysosomal membrane permeabilization and cathepsin L release in Spodoptera frugiperda Sf9 cells.

    Wang, Zheng; Cheng, Xingan; Meng, Qianqian; Wang, Peidan; Shu, Benshui; Hu, Qiongbo; Hu, Meiying; Zhong, Guohua

    2015-07-01

    Azadirachtin as a kind of botanical insecticide has been widely used in pest control. We previously reported that azadirachtin could induce apoptosis of Spodoptera litura cultured cell line Sl-1, which involves in the up-regulation of P53 protein. However, the detailed mechanism of azadirachtin-induced apoptosis is not clearly understood in insect cultured cells. The aim of the present study was to address the involvement of lysosome and lysosomal protease in azadirachtin-induced apoptosis in Sf9 cells. The result confirmed that azadirachtin indeed inhibited proliferation and induced apoptosis. The lysosomes were divided into different types as time-dependent manner, which suggested that changes of lysosomes were necessarily physiological processes in azadirachtin-induced apoptosis in Sf9 cells. Interestingly, we noticed that azadirachtin could trigger lysosomal membrane permeabilization and cathepsin L releasing to cytosol. Z-FF-FMK (a cathepsin L inhibitor), but not CA-074me (a cathepsin B inhibitor), could effectively hinder the apoptosis induced by azadirachtin in Sf9 cells. Meanwhile, the activity of caspase-3 could also be inactivated by the inhibition of cathepsin L enzymatic activity induced by Z-FF-FMK. Taken together, our findings suggest that azadirachtin could induce apoptosis in Sf9 cells in a lysosomal pathway, and cathepsin L plays a pro-apoptosis role in this process through releasing to cytosol and activating caspase-3.

  20. Formalin-induced release of excitatory amino acids in the skin of the rat hindpaw.

    Omote, K; Kawamata, T; Kawamata, M; Namiki, A

    1998-03-16

    Application of glutamate to skin evokes pain-related behaviors [S.M. Carlton, G.L. Hargett, R.E. Coggeshall, Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin, Neurosci. Lett., 197 (1995) 25-28; D.L. Jackson, C.B. Graff, J.D. Richardson, K.M. Hargreaves, Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats, Eur. J. Pharmacol., 284 (1995) 321-325.] and peripherally-administered glutamate antagonists can prevent the nociception produced by inflammation [E.M. Davidson, R.E. Coggeshall, S.M. Carlton, Peripheral NMDA and non-NMDA glutamate receptors contribute to nociceptive behaviors in the rat formalin test, NeuroReport, 8 (1997) 941-946; Jackson et al., 1995.] In this study, the concentrations of glutamate and aspartate in the plantar of the rat hindpaws were measured before and after the subcutaneous administration of formalin. Increases in glutamate and aspartate concentrations were observed on the ipsilateral side, but not on the contralateral side, to the injection. This shows that nociception and inflammation caused by formalin injection induces the release of peripheral glutamate and aspartate, which would contribute to nociception and inflammatory pain.

  1. Bradykinin or acetylcholine as vasodilators to test endothelial venous function in healthy subjects

    Eneida R. Rabelo

    2008-01-01

    Full Text Available INTRODUCTION: The evaluation of endothelial function has been performed in the arterial bed, but recently evaluation within the venous system has also been explored. Endothelial function studies employ different drugs that act as endothelium-dependent vasodilatory response inductors. OBJECTIVES: The aim of this study is to compare the endothelium-dependent venous vasodilator response mediated by either acetylcholine or bradykinin in healthy volunteers. METHODS AND RESULTS: Changes in vein diameter after phenylephrine-induced venoconstriction were measured to compare venodilation induced by acetylcholine or bradykinin (linear variable differential transformer dorsal hand vein technique. We studied 23 healthy volunteers; 31% were male, and the subject had a mean age of 33 ± 8 years and a mean body mass index of 23 ± 2 kg/m². The maximum endothelium-dependent venodilation was similar for both drugs (p = 0.13, as well as the mean responses for each dose of both drugs (r = 0.96. The maximum responses to acetylcholine and bradykinin also had good agreement. CONCLUSION: There were no differences between acetylcholine and bradykinin as venodilators in this endothelial venous function investigation.

  2. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells.

    Takahara, Norihiro; Ito, Satoru; Furuya, Kishio; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-12-01

    Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway.

  3. Feedback effects of estradiol and progesterone on ovulation and fertility of dairy cows after gonadotropin-releasing hormone-induced release of luteinizing hormone.

    Stevenson, J S; Pulley, S L

    2016-04-01

    An experiment was conducted with the objective to determine the effects of estradiol, progesterone, presence of a corpus luteum (CL), and size of a dominant follicle on the characteristics and patterns of GnRH-induced LH release and subsequent ovulation during a timed artificial insemination (TAI) program, or a combination of these. In 70 lactating dairy cows, a total of 163 blood collection periods resulting in a GnRH-induced LH release were analyzed. Concentrations of LH were measured in hourly samples (0 through 6 h after GnRH) during each of the blood collection periods, whereas concentrations of progesterone and estradiol were measured in the sample before GnRH treatment (0 h). Measures of LH included time to LH peak concentration during the 6-h blood collection period, the 2 largest concentrations of LH, mean, and variance of the 6 LH concentrations under each LH curve. Individual and combination effects of CL presence and a dominant follicle ≤ or >13.5mm, in addition to individual and combination effects of progesterone: low (release during 6 h after each of 163 injections. Measures of GnRH-induced LH concentration were inhibited at greater concentrations of progesterone and in the presence of a CL. In contrast, GnRH-induced LH concentrations were increased when estradiol was ≥4.0 pg/mL, but relatively unaffected by the size of the dominant follicle. Furthermore, resulting incidences of ovulation were decreased at greater progesterone concentrations and presence of a CL, and increased at greater estradiol concentrations and presence of follicles >13.5mm. In cows with or without a CL, the presence of a follicle >13.5mm did not increase mean LH concentration or incidence of ovulation. We conclude that when progesterone concentration exceeded 0.5 ng/mL at the time of GnRH treatment, subsequent LH concentrations and ovulation were suppressed. At that same concentration of progesterone or when concentrations of estradiol were ≥4 pg/mL, TAI pregnancy

  4. HSF-1 is involved in attenuating the release of inflammatory cytokines induced by LPS through regulating autophagy.

    Tong, Zhongyi; Jiang, Bimei; Zhang, Lingli; Liu, Yanjuan; Gao, Min; Jiang, Yu; Li, Yuanbin; Lu, Qinglan; Yao, Yongming; Xiao, Xianzhong

    2014-05-01

    Autophagy plays a protective role in endotoxemic mice. Heat shock factor 1 (HSF-1) also plays a crucial protective role in endotoxemic mice by decreasing inflammatory cytokines. The purpose of this study was to determine whether HSF-1 is involved in attenuating the release of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated mice and peritoneal macrophages (PMs) through regulating autophagy activity. Autophagosome formation in HSF-1(+/+) and HSF-1(-/-) mice and PMs stimulated by LPS was examined by Western blotting and immunofluorescence. Lipopolysaccharide-induced autophagy and inflammatory cytokines were examined in HSF-1(+/+) and HSF-1(-/-) PMs treated with 3-methyladenine (3-MA) or rapamycin. Results showed that LPS-induced autophagy was elevated transiently at 12 h but declined at 24 h in the livers and lungs of mice. Higher levels of inflammatory cytokines and lower autophagy activity were detected in HSF-1(-/-) mice and PMs compared with HSF-1(+/+) mice and PMs. Interestingly, LPS-induced release of inflammatory cytokines did not further increase in HSF-1(-/-) PMs treated with 3-MA but aggravated in HSF-1(+/+) PMs. Lipopolysaccharide-induced autophagy did not decrease in HSF-1(-/-) PMs treated with 3-MA but decreased in HSF-1 PMs(+/+). Taken together, our results suggested that HSF-1 attenuated the release of inflammatory cytokines induced by LPS by regulating autophagy activity.

  5. The mast cell stabilizer sodium cromoglycate reduces histamine release and status epilepticus-induced neuronal damage in the rat hippocampus.

    Valle-Dorado, María Guadalupe; Santana-Gómez, César Emmanuel; Orozco-Suárez, Sandra Adela; Rocha, Luisa

    2015-05-01

    Experiments were designed to evaluate changes in the histamine release, mast cell number and neuronal damage in hippocampus induced by status epilepticus. We also evaluated if sodium cromoglycate, a stabilizer of mast cells with a possible stabilizing effect on the membrane of neurons, was able to prevent the release of histamine, γ-aminobutyric acid (GABA) and glutamate during the status epilepticus. During microdialysis experiments, rats were treated with saline (SS-SE) or sodium cromoglycate (CG-SE) and 30 min later received the administration of pilocarpine to induce status epilepticus. Twenty-four hours after the status epilepticus, the brains were used to determine the neuronal damage and the number of mast cells in hippocampus. During the status epilepticus, SS-SE group showed an enhanced release of histamine (138.5%, p = 0.005), GABA (331 ± 91%, p ≤ 0.001) and glutamate (467%, p ≤ 0.001), even after diazepam administration. One day after the status epilepticus, SS-SE group demonstrated increased number of mast cells in Stratum pyramidale of CA1 (88%, p histamine (but not GABA and glutamate) release, lower number of mast cells (p = 0.008) and reduced neuronal damage in hippocampus. Our data revealed that histamine, possibly from mast cells, is released in hippocampus during the status epilepticus. This effect may be involved in the subsequent neuronal damage and is diminished with sodium cromoglycate pretreatment.

  6. The design of controlled-release formulations resistant to alcohol-induced dose dumping--a review.

    Jedinger, N; Khinast, J; Roblegg, E

    2014-07-01

    The concomitant intake of alcoholic beverages together with oral controlled-release opioid formulations poses a serious safety concern since alcohol has the potential to alter the release rate controlling mechanism of the dosage form which may result in an uncontrolled and immediate drug release. This effect, known as alcohol-induced dose dumping, has drawn attention of the regulatory authorities. Thus, the Food and Drug Administration (FDA) recommends that in vitro drug release studies of controlled-release dosage forms containing drugs with narrow therapeutic range should be conducted in ethanolic media up to 40%. So far, only a limited number of robust dosage forms that withstand the impact of alcohol are available and the development of such dosage forms is still a challenge. This review deals with the physico-chemical key factors which have to be considered for the preparation of alcohol-resistant controlling dosage forms. Furthermore, appropriate matrix systems and promising technological strategies, which are suitable to prevent alcohol-induced dose dumping, are discussed.

  7. Improved wound healing in pressure-induced decubitus ulcer with controlled release of basic fibroblast growth factor

    Jiang Wei [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Hailun [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Faguang [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)], E-mail: nidewenzhang@163.com; Yu Chunyan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Chu Dongling [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Lin [Department of Internal Medicine, 316 Hospital of PLA, Beijing 100093 (China); Lu Xian [93942 Unit Hospital of PLA, Xianyang 710012 (China)

    2008-07-14

    The purpose was to evaluate the efficacy of the wound dressing containing basic fibroblast growth factor (bFGF)-loaded microspheres on promoting healing in pressure-induced decubitus ulcer. In this study, the pressure-induced ulcer in swine was used as a model to demonstrate the hypothesis that controlled release of bFGF has the potential to provide optimal healing milieu for chronic wounds in the repair process. Average size of the microspheres was 14.36 {+-} 3.56 {mu}m and the network gelatin sponges were characterized with an average pore size of 80-160 {mu}m. Both the in vitro release efficiency and the protein bioactivity revealed that bFGF was released from the microspheres in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of fibroblasts. Pressure-induced ulcer was created at 500 g/cm{sup 2} pressure loaded on swine dorsal skin 12 h daily for 2 consecutive days. After removal of the pressure load, the gelatin sponge containing bFGF gelatin microspheres or bFGF in solution was implanted into the wound. Swine were sacrificed at 7, 14, and 21 days after implantation, and a full-thickness biopsy was taken and stained for histological analysis. It was observed that controlled release of bFGF provided an accelerated recovery in the wound areas. Histological investigations showed that the dressings were biocompatible and had capability of proliferating fibroblasts and inducing neovascularisation. The present study implied the clinical potential of gelatin sponge with bFGF microspheres to promote the healing in pressure-induced decubitus ulcer.

  8. Tph2 gene deletion enhances amphetamine-induced hypermotility: effect of 5-HT restoration and role of striatal noradrenaline release.

    Carli, Mirjana; Kostoula, Chrysaugi; Sacchetti, Giuseppina; Mainolfi, Pierangela; Anastasia, Alessia; Villani, Claudia; Invernizzi, Roberto William

    2015-11-01

    Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2.

  9. Potentiation of glucose-induced insulin release in islets by desHis1[Glu9]glucagon amide

    Kofod, Hans; Unson, C G; Merrifield, R B

    1988-01-01

    Glucagon and secretin and some of their hybrid analogs potentiate glucose-induced release of insulin from isolated mouse pancreatic islets. It was recently shown that the synthetic glucagon analog, desHis1[Glu9]glucagon amide, does not stimulate the formation of cyclic adenosine monophosphate...... in the rat hepatocyte membrane, but binds well to the glucagon receptor and is a good competitive antagonist of glucagon. In the present study the effect of this analog on isolated islets was examined. desHis1-[Glu9]glucagon amide at 3 x 10(-7) M, in the presence of 0.01 M D-glucose, increased the release...

  10. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system

    Jian-xin SHEN; Jerrel L YAKEL

    2009-01-01

    Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they are grouped into either heteromeric (comprising both α and β subunits) or homomeric (comprising only α subunits) recep-tors. The nAChRs are known to be differentially permeable to calcium ions, with the α7 nAChR subtype having one of the highest permeabilities to calcium. Calcium influx through nAChRs, particularly through the α-bungarotoxin-sensitive α7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels. The activation of nAChRs can mediate three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP3Rs). Downstream signaling events mediated by nAChR-mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular signaling cascades), and long-term effects (such as neuroprotection via gene expression). In addition, nAChR activity can be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship. Further advances in imaging techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understand-ing the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments.

  11. Neurotransmitter release: vacuolar ATPase V0 sector c-subunits in possible gene or cell therapies for Parkinson's, Alzheimer's, and psychiatric diseases.

    Higashida, Haruhiro; Yokoyama, Shigeru; Tsuji, Chiharu; Muramatsu, Shin-Ichi

    2017-01-01

    We overview the 16-kDa proteolipid mediatophore, the transmembrane c-subunit of the V0 sector of the vacuolar proton ATPase (ATP6V0C) that was shown to mediate the secretion of acetylcholine. Acetylcholine, serotonin, and dopamine (DA) are released from cell soma and/or dendrites if ATP6V0C is expressed in cultured cells. Adeno-associated viral vector-mediated gene transfer of ATP6V0C into the caudate putamen enhanced the depolarization-induced overflow of endogenous DA in Parkinson-model mice. Motor impairment was ameliorated in hemiparkinsonian model mice when ATP6V0C was expressed with DA-synthesizing enzymes. The review discusses application in the future as a potential tool for gene therapy, cell transplantation therapy, and inducible pluripotent stem cell therapy in neurological diseases, from the view point of recent findings regarding vacuolar ATPase.

  12. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.

    Lufang Zhou

    2010-01-01

    Full Text Available Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS. Here, we develop a mathematical model of ROS-induced ROS release (RIRR based on reaction-diffusion (RD-RIRR in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA cycle, oxidative phosphorylation, and Ca(2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.- diffusion and the O2.(--dependent activation of an inner membrane anion channel (IMAC. In a 2D network composed of 500 mitochondria, model simulations reveal DeltaPsi(m depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O(2.- diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that DeltaPsi(m depolarization is mediated specifically by O2.-. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the

  13. Detection of Exosomal Biomarker by Electric Field-induced Release and Measurement (EFIRM)

    Tu, Michael; Wei, Fang; Yang, Jieping; Wong, David

    2015-01-01

    Exosomes are microvesicular structures that play a mediating role in intercellular communication. It is of interest to study the internal cargo of exosomes to determine if they carry disease discriminatory biomarkers. For performing exosomal analysis, it is necessary to develop a method for extracting and analyzing exosomes from target biofluids without damaging the internal content. Electric field-induced release and measurement (EFIRM) is a method for specifically extracting exosomes from biofluids, unloading their cargo, and testing their internal RNA/protein content. Using an anti-human CD63 specific antibody magnetic microparticle, exosomes are first precipitated from biofluids. Following extraction, low-voltage electric cyclic square waves (CSW) are applied to disrupt the vesicular membrane and cause cargo unloading. The content of the exosome is hybridized to DNA primers or antibodies immobilized on an electrode surface for quantification of molecular content. The EFIRM method is advantageous for extraction of exosomes and unloading cargo for analysis without lysis buffer. This method is capable of performing specific detection of both RNA and protein biomarker targets in the exosome. EFIRM extracts exosomes specifically based on their surface markers as opposed to size-based techniques. Transmission electron microscopy (TEM) and assay demonstrate the functionality of the method for exosome capture and analysis. The EFIRM method was applied to exosomal analysis of 9 mice injected with human lung cancer H640 cells (a cell line transfected to express the exosome marker human CD63-GFP) in order to test their exosome profile against 11 mice receiving saline controls. Elevated levels of exosomal biomarkers (reference gene GAPDH and protein surface marker human CD63-GFP) were found for the H640 injected mice in both serum and saliva samples. Furthermore, saliva and serum samples were demonstrated to have linearity (R = 0.79). These results are suggestive for the

  14. Aryl Hydrocarbon Receptor (AhR Modulates Cockroach Allergen-Induced Immune Responses through Active TGFβ1 Release

    Yufeng Zhou

    2014-01-01

    Full Text Available Background. Aryl hydrocarbon receptor (AhR, a multifunctional regulator that senses and responds to environmental stimuli, plays a role in normal cell development and immune regulation. Recent evidence supports a significant link between environmental exposure and AhR in the development of allergic diseases. We sought to investigate whether AhR plays a role in mediating cockroach allergen-induced allergic immune responses. Methods. AhR expression in human lung fibroblasts from asthmatic and healthy individuals and in cockroach extract (CRE treated human lung fibroblasts (WI-38 was examined. The role of AhR in modulating CRE induced TGFβ1 production was investigated by using AhR agonist, TCDD, antagonist CH122319, and knockdown of AhR. The role of latent TGFβ1 binding protein-1 (LTBP1 in mediating TCDD induced active TGFβ1 release was also examined. Results. AhR expression was higher in airway fibroblasts from asthmatic subjects as compared to healthy controls. AhR in fibroblasts was activated by TCDD with an increased expression of cyp1a1 and cyp1b1. Increased AhR expression was observed in CRE-treated fibroblasts. Importantly, CRE induced TGFβ1 production in fibroblasts was significantly enhanced by TCDD but inhibited by CH122319. Reduced TGFβ1 production was further confirmed in fibroblasts with AhR knockdown. Moreover, AhR knockdown inhibited CRE induced fibroblast differentiation. Furthermore, TCDD induced active TGFβ1 release was significantly inhibited by LTBP1 knockdown. Conclusion. These results provide evidence for the role of AhR in modulating cockroach allergen-induced immune responses through controlling the active TGFβ1 release, suggesting a possible synergistic effect between exposure to allergens and environmental chemicals on the development of allergic diseases.

  15. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    Ripken, D.; Wielen, N. van der; Wortelboer, H.M.; Meijerink, J.; Witkamp, R.F.; Hendriks, H.F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis fo

  16. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    Ripken, Dina; Wielen, van der Nikkie; Wortelboer, Heleen M.; Meijerink, Jocelijn; Witkamp, Renger F.; Hendriks, Henk F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis

  17. Toluene-induced, Ca2+-dependent vesicular catecholamine release in rat PC12 cells

    Westerink, R.H.S.; Vijverberg, H.P.M.

    2002-01-01

    Acute effects of toluene on vesicular catecholamine release from intact PC12 phaeochromocytoma cells have been investigated using carbon fiber microelectrode amperometry. The frequency of vesicles released is low under basal conditions and is enhanced by depolarization. Toluene causes an increase in

  18. Subtype-selective nicotinic acetylcholine receptor agonists enhance the responsiveness to citalopram and reboxetine in the mouse forced swim test.

    Andreasen, Jesper T; Nielsen, Elsebet Ø; Christensen, Jeppe K; Olsen, Gunnar M; Peters, Dan; Mirza, Naheed R; Redrobe, John P

    2011-10-01

    Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. Accordingly, nicotine enhances antidepressant-like actions of reuptake inhibitors selective for serotonin or noradrenaline in the mouse forced swim test and the mouse tail suspension test. Both high-affinity α4β2 and low-affinity α7 nicotinic acetylcholine receptor subtypes are implicated in nicotine-mediated release of serotonin and noradrenaline. The present study therefore investigated whether selective agonism of α4β2 or α7 nicotinic acetylcholine receptors would affect the mouse forced swim test activity of two antidepressants with distinct mechanisms of action, namely the selective serotonin reuptake inhibitor citalopram and the noradrenaline reuptake inhibitor reboxetine. Subthreshold and threshold doses of citalopram (3 and 10 mg/kg) or reboxetine (10 and 20 mg/kg) were tested alone and in combination with the novel α4β2-selective partial nicotinic acetylcholine receptor agonist, NS3956 (0.3 and 1.0 mg/kg) or the α7-selective nicotinic acetylcholine receptor agonist, PNU-282987 (10 and 30 mg/kg). Alone, NS3956 and PNU-282987 were devoid of activity in the mouse forced swim test, but both 1.0 mg/kg NS3956 and 30 mg/kg PNU-282987 enhanced the effect of citalopram and also reboxetine. The data suggest that the activity of citalopram and reboxetine in the mouse forced swim test can be enhanced by agonists at either α4β2 or α7 nicotinic acetylcholine receptors, suggesting that both nicotinic acetylcholine receptor subtypes may be involved in the nicotine-enhanced action of antidepressants.

  19. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor, a calcium release channel, through non-enzymatic posttranslational modification by nitric oxide

    Sho eKakizawa

    2013-10-01

    Full Text Available Nitric oxide (NO is a typical gaseous messenger involved in a wide range of biological processes. In our classical knowledge, effects of NO are largely achieved by activation of soluble guanylyl cyclase to form cyclic guanosine-3’, 5’-monophosphate. However, emerging evidences have suggested another signaling mechanism mediated by NO: S-nitrosylation of target proteins.S-nitrosylation is a covalent addition of an NO group to a cysteine thiol/sulfhydryl (RSH, and categorized into non-enzymatic posttranslational modification of proteins, contrasted to enzymatic posttranslational modification of proteins, such as phosphorylation mediated by various protein kinases.Very recently, we found novel intracellular calcium (Ca2+ mobilizing mechanism, NO-induced Ca2+ release (NICR in cerebellar Purkinje cells. NICR is mediated by type 1 ryanodine receptor (RyR1, a Ca2+ release channel expressed in endoplasmic-reticular membrane. Furthermore, NICR is indicated to be dependent on S-nitrosylation of RyR1, and involved in synaptic plasticity in the cerebellum. In this review, molecular mechanisms and functional significance of NICR, as well as non-enzymatic posttranslational modification of proteins by gaseous signals, are described.

  20. Ceramide induces release of mitochondrial proapoptotic proteins in caspase-dependent and -independent manner in HT-29 cells

    2008-01-01

    In this study, the release of mitochondrial proapoptotic intermembrane space proteins induced by exogenous C2-ceramide in human colon carcinoma (HT-29) cell line was investigated. HT-29 cells were treated with 12.5, 25 and 50 μmol/L C2-ceramide in vitro. Flow cytometer was used to detect the mitochondrial membrane potential (△Ψm). Subcellular fractions were extracted by Mitochondrial/Cytosol Fractionation Kit after C2-ceramide treatment for 24 h. SDS-PAGE was used to determine the level of cytochrome c (Cyt c), high temperature requirement A2 (HtrA2) and second mitochondrial-derived activator of caspases (Smac) released from mitochondria, the expression of X-linked inhibitor of apoptosis protein (XIAP) and caspase-3 for 24 h. The results showed that △Ψm began to decrease from 6 h after 25 and 50 μmol/L C2-ceramide treatment (P<0.05) and cyclosporin A (CsA) could inhibit the collapse of △Ψm through regulating mitochondrial membrane permeability transition pore. There was no effect of C2-ceramide on the expression of Cyt c, HtrA2 and Smac in the total levels. 12.5, 25 and 50 μmol/L C2-ceramide could induce Cyt c, HtrA2 and Smac to release from mitochondria to cytosol and down-regulate the expression of XIAP (P<0.05). Also there was expression of cleaved caspase-3 with C2-ceramide treatment. After the treatment with caspase inhibitor, C2-ceramide still induced the release of Cyt c and HtrA2, but Smac did not. Therefore, C2-ceramide could induce apoptosis of HT-29 cells through the mitochondria pathway. The release of Cyt c, HtrA2 and Smac from mitochondria did not occur via the same mechanism, the release of Cyt c and HtrA2 was caspase-independent and the release of Smac was caspase-dependent.

  1. Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors.

    Sun, Dahui; Junger, Wolfgang G; Yuan, Changji; Zhang, Wenyan; Bao, Yi; Qin, Daming; Wang, Chengxue; Tan, Lei; Qi, Baochang; Zhu, Dong; Zhang, Xizheng; Yu, Tiecheng

    2013-06-01

    Shockwave treatment promotes bone healing of nonunion fractures. In this study, we investigated whether this effect could be due to adenosine 5'-triphosphate (ATP) release-induced differentiation of human mesenchymal stem cells (hMSCs) into osteoprogenitor cells. Cultured bone marrow-derived hMSCs were subjected to shockwave treatment and ATP release was assessed. Osteogenic differentiation and mineralization of hMSCs were evaluated by examining alkaline phosphatase activity, osteocalcin production, and calcium nodule formation. Expression of P2X7 receptors and c-fos and c-jun mRNA was determined with real-time reverse transcription polymerase chain reaction and Western blotting. P2X7-siRNA, apyrase, P2 receptor antagonists, and p38 MAPK inhibitors were used to evaluate the roles of ATP release, P2X7 receptors, and p38 MAPK signaling in shockwave-induced osteogenic hMSCs differentiation. Shockwave treatment released significant amounts (≈ 7 μM) of ATP from hMSCs. Shockwaves and exogenous ATP induced c-fos and c-jun mRNA transcription, p38 MAPK activation, and hMSC differentiation. Removal of ATP with apyrase, targeting of P2X7 receptors with P2X7-siRNA or selective antagonists, or blockade of p38 MAPK with SB203580 prevented osteogenic differentiation of hMSCs. Our findings indicate that shockwaves release cellular ATP that activates P2X7 receptors and downstream signaling events that caused osteogenic differentiation of hMSCs. We conclude that shockwave therapy promotes bone healing through P2X7 receptor signaling, which contributes to hMSC differentiation.

  2. Noxa induces apoptosis in oncogene-expressing cells through catch-and-release mechanism operating between Puma and Mcl-1.

    Nakajima, Wataru; Tanaka, Nobuyuki

    2011-10-07

    Tumor suppressor p53 induces apoptosis by transcriptional induction of Noxa and Puma, which encode the proapoptotic BH3-only member of the Bcl-2 family proteins. In the p53-mediated tumor surveillance system, p53 induces apoptosis or replicative senescence in oncogene-expressing cells, resulting in elimination of such cells. In this context, we previously found that Noxa and Puma synergistically induce apoptosis. Here, we found the adenovirus oncogene E1A to induce p53-dependently expression of Puma, but not Noxa. The induced Puma associates with antiapoptotic Bcl-2 protein Mcl-1, accompanied by accumulated Mcl-1 protein on mitochondria. Moreover, E1A also reduces expression of the antiapoptotic Bcl-2 protein Bcl-X(L). In contrast, the DNA-damaging agent adriamycin induces Noxa expression in E1A-expressing cells. Interestingly, Mcl-1 knockdown itself induced apoptosis in E1A-expressing MEFs. Furthermore, Noxa displaced Puma's association with Mcl-1, accompanied by Mcl-1 degradation and apoptosis induction by activating mitochondrial apoptotic executers Bax and Bak. These results suggest that p53-induced apoptosis in oncogene-expressing cells is regulated by differential induction and sequential activation of Noxa and Puma. Accumulated Puma by oncogene enhances susceptibility to apoptosis through "catch" in mitochondria by Mcl-1. Subsequently, in response to DNA-damage, Noxa efficiently induces apoptosis by "release" of Puma from Mcl-1.

  3. Vagally mediated inhibition of acoustic stress-induced cortisol release by orally administered kappa-opioid substances in dogs.

    Bueno, L; Gue, M; Fargeas, M J; Alvinerie, M; Junien, J L; Fioramonti, J

    1989-04-01

    The effects of oral vs. iv administration of kappa- and mu-opioid agonists on plasma cortisol release induced by acoustic stress (AS) were evaluated in fasted dogs with an implanted jugular catheter. AS was induced by 1 h of music (less than or equal to 86 decibels) played through earphones and was accompanied by a 382% maximal rise in plasma cortisol after 15-30 min. Administered orally 30 min before the AS session, both U-50488 (0.1 mg/kg) and PD 117-302 (0.05 mg/kg) significantly (P less than or equal to 0.01) decreased (by 71.2% and 80.9%, respectively) the maximal increase in plasma cortisol induced by AS, while bremazocine, morphine, as well as iv administration of U-50488 at similar doses were ineffective. The effects of U-50488 and PD 117-302 orally administered (0.1 mg/kg) on the hypercortisolemia induced by AS were abolished by pretreatment with iv naloxone (0.1 mg/kg) or MR 2266 (0.1 mg/kg). Naloxone given alone significantly (P less than 0.01) increased basal plasma cortisol, without affecting cortisol increase induced by AS. Vagotomy abolished the effects of orally administered U-50488 on the AS-induced increase in plasma cortisol. Neither U-50488 nor PD 117302 (0.1 mg/kg, orally) reduced the increase in plasma cortisol induced by intracerebroventricular administration of ovine CRF (100 ng/kg). It is concluded that kappa- but not mu-opioid agonists are able to inhibit the stimulation of the hypothalamo-pituitary-adrenocortical axis induced by AS by acting selectively on peripheral kappa-receptors located in the wall of the proximal gut. This action is neurally mediated through afferent vagal fibers affecting central nervous system release of CRF induced by a centrally acting stressor.

  4. The nucleotide exchange factors Grp170 and Sil1 induce cholera toxin release from BiP to enable retrotranslocation.

    Williams, Jeffrey M; Inoue, Takamasa; Chen, Grace; Tsai, Billy

    2015-06-15

    Cholera toxin (CT) intoxicates cells by trafficking from the cell surface to the endoplasmic reticulum (ER), where the catalytic CTA1 subunit hijacks components of the ER-associated degradation (ERAD) machinery to retrotranslocate to the cytosol and induce toxicity. In the ER, CT targets to the ERAD machinery composed of the E3 ubiquitin ligase Hrd1-Sel1L complex, in part via the activity of the Sel1L-binding partner ERdj5. This J protein stimulates BiP's ATPase activity, allowing BiP to capture the toxin. Presumably, toxin release from BiP must occur before retrotranslocation. Here, using loss-and gain-of-function approaches coupled with binding studies, we demonstrate that the ER-resident nucleotide exchange factors (NEFs) Grp170 and Sil1 induce CT release from BiP in order to promote toxin retrotranslocation. In addition, we find that after NEF-dependent release from BiP, the toxin is transferred to protein disulfide isomerase; this ER redox chaperone is known to unfold CTA1, which allows the toxin to cross the Hrd1-Sel1L complex. Our data thus identify two NEFs that trigger toxin release from BiP to enable successful retrotranslocation and clarify the fate of the toxin after it disengages from BiP.

  5. Gibberellic-acid-induced synthesis and release of cell-wall-degrading endoxylanase by isolated aleurone layers of barley

    Dashek, W.V.; Chrispeels, M.J.

    1977-01-01

    When aleurone layers of barley (Hordeum vulgare L.) are incubated with gibberellic acid (GA/sub 3/), xylose and arabinose, both as free sugars and bound to larger molecules, are released into the medium. Release begins 10 to 12 h after the start of incubation and continues for at least 60 h. At the same time there is a GA/sub 3/-induced breakdown of the cell wall resulting in a loss of /sup 2///sub 3/ of the cell-wall pentose during 60 h of incubation. GA/sub 3/ causes the appearance in the medium of an enzyme (or enzymes) which hydrolyze larchwood xylan and aleurone-layer arabinoxylan. Release of the enzyme(s) into the medium begins 28 to 32 h after the start of incubation. Enzyme activity does not accumulate to any large extent in the tissue prior to release into the medium, and is present in very low levels only in the absence of GA/sub 3/. Xylanase activity is associated with a protein (or proteins) with a molecular weight of 29,000. The hydrolysis of the xylans is largely caused by endoxylanase activity, indicating the importance of endoglycosidases in the GA/sub 3/-induced breakdown of the aleurone cell wall.

  6. Evidence of muscarinic acetylcholine receptors in the retinal centrifugal system of the chick

    Calaza K.C.

    2000-01-01

    Full Text Available In this study we characterize the presence of muscarinic acetylcholine receptors (mAChR in the isthmo-optic nucleus (ION of chicks by immunohistochemistry with the M35 antibody. Some M35-immunoreactive fibers were observed emerging from the retinal optic nerve insertion, suggesting that they could be centrifugal fibers. Indeed, intraocular injections of cholera toxin B (CTb, a retrograde tracer, and double-labeling with M35 and CTb in the ION confirmed this hypothesis. The presence of M35-immunoreactive cells and the possible mAChR expression in ION and ectopic neuron cells in the chick brain strongly suggest the existence of such a cholinergic system in this nucleus and that acetylcholine release from amacrine cells may mediate interactions between retinal cells and ION terminals.

  7. Involvement of myristoylated alanine-rich C kinase substrate phosphorylation and translocation in cholecystokinin-induced amylase release in rat pancreatic acini.

    Satoh, Keitaro; Narita, Takanori; Katsumata-Kato, Osamu; Sugiya, Hiroshi; Seo, Yoshiteru

    2016-03-15

    Cholecystokinin (CCK) is a gastrointestinal hormone that induces exocytotic amylase release in pancreatic acinar cells. The activation of protein kinase C (PKC) is involved in the CCK-induced pancreatic amylase release. Myristoylated alanine-rich C kinase substrate (MARCKS) is a ubiquitously expressed substrate of PKC. MARCKS has been implicated in membrane trafficking in several cell types. The phosphorylation of MARCKS by PKC results in the translocation of MARCKS from the membrane to the cytosol. Here, we studied the involvement of MARCKS in the CCK-induced amylase release in rat pancreatic acini. Employing Western blotting, we detected MARCKS protein in the rat pancreatic acini. CCK induced MARCKS phosphorylation. A PKC-δ inhibitor, rottlerin, inhibited the CCK-induced MARCKS phosphorylation and amylase release. In the translocation assay, we also observed CCK-induced PKC-δ activation. An immunohistochemistry study showed that CCK induced MARCKS translocation from the membrane to the cytosol. When acini were lysed by a detergent, Triton X-100, CCK partially induced displacement of the MARCKS from the GM1a-rich detergent-resistant membrane fractions (DRMs) in which Syntaxin2 is distributed. A MARCKS-related peptide inhibited the CCK-induced amylase release. These findings suggest that MARCKS phosphorylation by PKC-δ and then MARCKS translocation from the GM1a-rich DRMs to the cytosol are involved in the CCK-induced amylase release in pancreatic acinar cells.

  8. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study.

    Marcus, Monica M; Björkholm, Carl; Malmerfelt, Anna; Möller, Annie; Påhlsson, Ninni; Konradsson-Geuken, Åsa; Feltmann, Kristin; Jardemark, Kent; Schilström, Björn; Svensson, Torgny H

    2016-09-01

    Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression.

  9. ATP induced MUC5AC release from human airways in vitro

    Patricia Roger

    2000-01-01

    Full Text Available Background: Chronic airway diseases are often associated with marked mucus production, however, little is known about the regulation of secretory activity by locally released endogenous mediators.

  10. Nicotine-morphine interactions at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors.

    Talka, Reeta; Salminen, Outi; Whiteaker, Paul; Lukas, Ronald J; Tuominen, Raimo K

    2013-02-15

    Nicotine and opioids share several behavioral and rewarding properties. Although both opioids and nicotine have their own specific mechanism of action, there is empirical and experimental evidence of interactions between these drugs. We studied receptor-level interactions of nicotine and morphine at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors. [(3)H]epibatidine displacement was used to determine if morphine binds competitively to nicotinic acetylcholine receptors. Functional interactions of morphine and nicotine were studied with calcium fluorometry and (86)Rb(+) efflux assays. Morphine displaced [(3)H]epibatidine from nicotinic agonist binding sites in all cell lines studied. The Ki values for morphine were 13.2μM in SH-EP1-hα4β2 cells, 0.16μM and 126μM in SH-SY5Y cells and 43.7μM in SH-EP1-hα7 cells. In SH-EP1-hα4β2 cells expressing α4β2 nicotinic acetylcholine receptors, morphine acted as a partial agonist of (86)Rb(+) efflux comparable to cytisine (with EC50 values of 53.3μM for morphine and 5.38μM for cytisine). The effect of morphine was attenuated concentration-dependently by the nicotinic antagonist mecamylamine. In the SH-SY5Y cell line expressing several subtypes of nicotinic acetylcholine receptors morphine had an inhibitory effect on nicotine induced (86)Rb(+) ion efflux mediated by α3(⁎) nicotinic acetylcholine receptors. These results suggest that morphine acts as a partial agonist at α4β2 nicotinic acetylcholine receptors and as a weak antagonist at α3(⁎) nicotinic acetylcholine receptors.

  11. Toward Acetylcholine Sensor Devices: Facile Synthesis of 2-Cyanoresorcin[4 ] arene and Its High Affinity toward Acetylcholine

    TAN Song-De; WEI Ying; WANG Bo; XU Zun-Le; CHEN Wen-Hua

    2003-01-01

    @@ The biological importance of acetylcholine spurs the efforts to construct its synthetic receptors with the aims to develop acetylcholine sensor devices. Among the various building blocks used to synthesize artificial acetylcholine receptors, resorcin [4 ]arenes, [1] which can be conveniently obtained from the acid-catalyzed condensation of resorcinol with aldehyde, were shown to serve as one of the most strongest synthetic receptors for choline type guests.

  12. Distinct Dasatinib-Induced Mechanisms of Apoptotic Response and Exosome Release in Imatinib-Resistant Human Chronic Myeloid Leukemia Cells

    Juan Liu

    2016-04-01

    Full Text Available Although dasatinib is effective in most imatinib mesylate (IMT-resistant chronic myeloid leukemia (CML patients, the underlying mechanism of its effectiveness in eliminating imatinib-resistant cells is only partially understood. This study investigated the effects of dasatinib on signaling mechanisms driving-resistance in imatinib-resistant CML cell line K562 (K562RIMT. Compared with K562 control cells, exsomal release, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt/ mammalian target of rapamycin (mTOR signaling and autophagic activity were increased significantly in K562RIMT cells and mTOR-independent beclin-1/Vps34 signaling was shown to be involved in exosomal release in these cells. We found that Notch1 activation-mediated reduction of phosphatase and tensin homolog (PTEN was responsible for the increased Akt/mTOR activities in K562RIMT cells and treatment with Notch1 γ-secretase inhibitor prevented activation of Akt/mTOR. In addition, suppression of mTOR activity by rapamycin decreased the level of activity of p70S6K, induced upregulation of p53 and caspase 3, and led to increase of apoptosis in K562RIMT cells. Inhibition of autophagy by spautin-1 or beclin-1 knockdown decreased exosomal release, but did not affect apoptosis in K562RIMT cells. In summary, in K562RIMT cells dasatinib promoted apoptosis through downregulation of Akt/mTOR activities, while preventing exosomal release and inhibiting autophagy by downregulating expression of beclin-1 and Vps34. Our findings reveal distinct dasatinib-induced mechanisms of apoptotic response and exosomal release in imatinib-resistant CML cells.

  13. Proapoptotic chemotherapeutic drugs induce noncanonical processing and release of IL-1β via caspase-8 in dendritic cells.

    Antonopoulos, Christina; El Sanadi, Caroline; Kaiser, William J; Mocarski, Edward S; Dubyak, George R

    2013-11-01

    The identification of noncanonical (caspase-1-independent) pathways for IL-1β production has unveiled an intricate interplay between inflammatory and death-inducing signaling platforms. We found a heretofore unappreciated role for caspase-8 as a major pathway for IL-1β processing and release in murine bone marrow-derived dendritic cells (BMDC) costimulated with TLR4 agonists and proapoptotic chemotherapeutic agents such as doxorubicin (Dox) or staurosporine (STS). The ability of Dox to stimulate release of mature (17-kDa) IL-1β was nearly equivalent in wild-type (WT) BMDC, Casp1(-/-)Casp11(-/-) BMDC, WT BMDC treated with the caspase-1 inhibitor YVAD, and BMDC lacking the inflammasome regulators ASC, NLRP3, or NLRC4. Notably, Dox-induced production of mature IL-1β was temporally correlated with caspase-8 activation in WT cells and greatly suppressed in Casp8(-/-)Rip3(-/-) or Trif(-/-) BMDC, as well as in WT BMDC treated with the caspase-8 inhibitor, IETD. Similarly, STS stimulated robust IL-1β processing and release in Casp1(-/-)Casp11(-/-) BMDC that was IETD sensitive. These data suggest that TLR4 induces assembly of caspase-8-based signaling complexes that become licensed as IL-1β-converting enzymes in response to Dox and STS. The responses were temporally correlated with downregulation of cellular inhibitor of apoptosis protein 1, suggesting suppressive roles for this and likely other inhibitor of apoptosis proteins on the stability and/or proteolytic activity of the caspase-8 platforms. Thus, proapoptotic chemotherapeutic agents stimulate the caspase-8-mediated processing and release of IL-1β, implicating direct effects of such drugs on a noncanonical inflammatory cascade that may modulate immune responses in tumor microenvironments.

  14. Physical exercise induces rapid release of small extracellular vesicles into the circulation

    Carsten Frühbeis

    2015-07-01

    Full Text Available Cells secrete extracellular vesicles (EVs by default and in response to diverse stimuli for the purpose of cell communication and tissue homeostasis. EVs are present in all body fluids including peripheral blood, and their appearance correlates with specific physiological and pathological conditions. Here, we show that physical activity is associated with the release of nano-sized EVs into the circulation. Healthy individuals were subjected to an incremental exercise protocol of cycling or running until exhaustion, and EVs were isolated from blood plasma samples taken before, immediately after and 90 min after exercise. Small EVs with the size of 100–130 nm, that carried proteins characteristic of exosomes, were significantly increased immediately after cycling exercise and declined again within 90 min at rest. In response to treadmill running, elevation of small EVs was moderate but appeared more sustained. To delineate EV release kinetics, plasma samples were additionally taken at the end of each increment of the cycling exercise protocol. Release of small EVs into the circulation was initiated in an early phase of exercise, before the individual anaerobic threshold, which is marked by the rise of lactate. Taken together, our study revealed that exercise triggers a rapid release of EVs with the characteristic size of exosomes into the circulation, initiated in the aerobic phase of exercise. We hypothesize that EVs released during physical activity may participate in cell communication during exercise-mediated adaptation processes that involve signalling across tissues and organs.

  15. Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release

    Khan, I. John [The State Univ. of New Jersey, Piscataway, NJ (United States); Murthy, N. Sanjeeva [The State Univ. of New Jersey, Piscataway, NJ (United States); Kohn, Joachim [The State Univ. of New Jersey, Piscataway, NJ (United States)

    2015-10-30

    Voclosporin is a highly potent, new cyclosporine -- a derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. It was selected as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE) and desaminotyrosyl-tyrosine (DT), and the hydrophilic component is poly(ethylene glycol) (PEG). Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide) (PLGA), which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin.

  16. Xanthohumol-induced presynaptic reduction of glutamate release in the rat hippocampus.

    Chang, Yi; Lin, Tzu Yu; Lu, Cheng Wei; Huang, Shu Kuei; Wang, Ying Chou; Wang, Su Jane

    2016-01-01

    This study examined whether xanthohumol, a hop-derived prenylated flavonoid present in beer, affects glutamate release in the rat hippocampus. In the rat hippocampal nerve terminals (synaptosomes), xanthohumol inhibited the release of 4-aminopyridine (4-AP)-evoked glutamate and the elevation of cytosolic Ca(2+) concentration, whereas it had no effect on 4-AP-mediated depolarization. The inhibitory effect of xanthohumol on the evoked glutamate release was prevented by removing extracellular Ca(2+), using the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker ω-CgTX MVIIC, the calmodulin antagonists W7 and calmidazolium, and the protein kinase A inhibitor H89; however, no such effect was observed when the G-protein inhibitor N-ethylmaleimide was used. In addition, immunocytochemical data demonstrated that GABAA receptors are present in the hippocampal synaptosomes and that the xanthohumol effect on evoked glutamate release was antagonized by the GABAA receptor antagonist SR95531. Furthermore, in slice preparations, xanthohumol reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude. We conclude that xanthohumol acts at GABAA receptors present in the hippocampal nerve terminals to decrease the Ca(2+) influx through N- and P/Q-type Ca(2+) channels, which subsequently suppresses the Ca(2+)-calmodulin/PKA cascade to decrease the evoked glutamate release.

  17. AhV_aPA-induced vasoconstriction involves the IP₃Rs-mediated Ca²⁺ releasing.

    Zeng, Fuxing; Zou, Zhisong; Niu, Liwen; Li, Xu; Teng, Maikun

    2013-08-01

    AhV_aPA, the acidic PLA₂ purified from Agkistrodon halys pallas venom, was previously reported to possess a strong enzymatic activity and can remarkably induce a further contractile response on the 60 mM K⁺-induced contraction with an EC₅₀ in 369 nM on mouse thoracic aorta rings. In the present study, we found that the p-bromo-phenacyl-bromide (pBPB), which can completely inhibit the enzymatic activity of AhV_aPA, did not significantly reduce the contractile response on vessel rings induced by AhV_aPA, indicating that the vasoconstrictor effects of AhV_aPA are independent of the enzymatic activity. The inhibitor experiments showed that the contractile response induced by AhV_aPA is mainly attributed to the Ca²⁺ releasing from Ca²⁺ store, especially sarcoplasmic reticulum (SR). Detailed studies showed that the Ca²⁺ release from SR is related to the activation of inositol trisphosphate receptors (IP₃Rs) rather than ryanodine receptors (RyRs). Furthermore, the vasoconstrictor effect could be strongly reduced by pre-incubation with heparin, indicating that the basic amino acid residues on the surface of AhV_aPA may be involved in the interaction between AhV_aPA and the molecular receptors. These findings offer new insights into the functions of snake PLA₂ and provide a novel pathogenesis of A. halys pallas venom.

  18. Retinoic acid prevents virus-induced airway hyperreactivity and M2 receptor dysfunction via anti-inflammatory and antiviral effects

    Moreno-Vinasco, Liliana; Verbout, Norah G.; Fryer, Allison D.; Jacoby, David B.

    2009-01-01

    Inhibitory M2 muscarinic receptors on airway parasympathetic nerves normally limit acetylcholine release. Viral infections decrease M2 receptor function, increasing vagally mediated bronchoconstriction. Since retinoic acid deficiency causes M2 receptor dysfunction, we tested whether retinoic acid would prevent virus-induced airway hyperreactivity and prevent M2 receptor dysfunction. Guinea pigs infected with parainfluenza virus were hyperreactive to electrical stimulation of the vagus nerves,...

  19. Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells

    Caswell eBarry

    2012-02-01

    Full Text Available Pharmacological and lesion data indicate that acetylcholine plays an important role in memory formation. Increased levels of acetylcholine in the hippocampal formation are associated with successful encoding while disruption of the cholinergic system leads to impairments on a range of mnemonic tasks. Cholinergic signalling from the medial septum also plays a central role in generating and pacing theta-band oscillations throughout the hippocampal formation. New results suggest a potential link between these distinct phenomena. Environmental novelty, a condition associated with strong cholinergic drive, has been shown to induce an expansion in the firing pattern of entorhinal grid cells and a reduction in the frequency of theta measured from the LFP. Computational modelling suggests the spatial activity of grid cells is produced by interference between neuronal oscillators; scale being determined by theta-band oscillations in entorhinal stellate cells, the frequency of which are modulated by acetylcholine. We propose a causal link: increased cholinergic signalling in response to environmental novelty triggers grid expansion. Cholinergic induced grid expansion may enhance, or even induce, encoding by producing a mismatch between spatial inputs to the hippocampus, such as barrier cells and grids cell with different scales.

  20. Effects of dichlorobenzene on acetylcholine receptors in human neuroblastoma SH-SY5Y cells.

    Yan, Ren-Ming; Chiung, Yin-Mei; Pan, Chien-Yuan; Liu, Jenn-Hwa; Liu, Pei-Shan

    2008-11-20

    para-Dichlorobenzene (DCB), a deodorant and an industrial chemical, is a highly volatile compound and is known to be an indoor air contaminant. Because of its widespread use and volatility, the toxicity of DCB presents a concern to industrial workers and public. Some toxic aspects of DCB have already been focused but its effects on neuronal signal transduction have been hitherto unknown. The effects of DCB on the cytosolic calcium homeostasis are investigated in human neuroblastoma SH-SY5Y cells in this study. DCB, above 200 microM, was found to induce a rise in cytosolic calcium concentration that could not be counteracted by nicotinic acetylcholine receptor (nAChR) and muscarinic acetylcholine receptor (mAChR) antagonists but was partially inhibited by thapsigargin. To understand the actions of DCB on the acetylcholine receptors, we investigated its effects on the changes of cytosolic calcium concentration following nicotinic AChR stimulation with epibatidine and muscarinic AChR stimulation with methacholine in human neuroblastoma SH-SY5Y cells. DCB inhibited the cytosolic calcium concentration rise induced by epibatidine and methacholine with respective IC(50)s of 34 and 294 microM. The inhibitions of DCB were not the same as thapsigargin's inhibition. In the electrophysiological observations, DCB blocked the influx currents induced by epibatidine. Our findings suggest that DCB interferes with the functional activities of AChR, including its coupling influx currents and cytosolic calcium elevations.

  1. Complex viscosity induced by protein composition variation influences the aroma release of flavored stirred yogurt.

    Saint-Eve, Anne; Juteau, Alexandre; Atlan, Samuel; Martin, Nathalie; Souchon, Isabelle

    2006-05-31

    Dairy protein composition is known to influence the structure and the texture characteristics of yogurt. The objective of the present work was therefore to investigate the impact of protein composition, at a constant protein level, on the physicochemical properties of 4% fat flavored stirred yogurt and, more specifically, on the rheological properties, the microstructure, and the aroma release. The results showed that caseinate-enriched yogurt generally presented changes in their microstructure network and had a higher complex viscosity than whey protein-enriched yogurt. To a lesser extent, the release of the majority of aroma compounds was lower in caseinate-enriched yogurt. It was therefore possible to quantify physicochemical interactions between aroma compounds and proteins. The influence of gel structure on the flavor release was observed and was in agreement with sensory characteristics previously studied for these products.

  2. Cellular trafficking of nicotinic acetylcholine receptors

    Paul A ST JOHN

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular location and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs.

  3. Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview

    2014-01-01

    Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV), potassium- (KV), and calcium- (CaV) channels as well as nicotinic acetylcholine receptors (nAChRs) which are classified as ligand-gated ion channels. The mode of action ...

  4. Naegleria fowleri Lysate Induces Strong Cytopathic Effects and Pro-inflammatory Cytokine Release in Rat Microglial Cells

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul

    2011-01-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A 51Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response. PMID:22072830

  5. Integration of porous coordination polymers and gold nanorods into core-shell mesoscopic composites toward light-induced molecular release.

    Khaletskaya, Kira; Reboul, Julien; Meilikhov, Mikhail; Nakahama, Masashi; Diring, Stéphane; Tsujimoto, Masahiko; Isoda, Seiji; Kim, Franklin; Kamei, Ken-ichiro; Fischer, Roland A; Kitagawa, Susumu; Furukawa, Shuhei

    2013-07-31

    Besides conventional approaches for regulating in-coming molecules for gas storage, separation, or molecular sensing, the control of molecular release from the pores is a prerequisite for extending the range of their application, such as drug delivery. Herein, we report the fabrication of a new porous coordination polymer (PCP)-based composite consisting of a gold nanorod (GNR) used as an optical switch and PCP crystals for controlled molecular release using light irradiation as an external trigger. The delicate core-shell structures of this new platform, composed of an individual GNR core and an aluminum-based PCP shell, were achieved by the selective deposition of an aluminum precursor onto the surface of GNR followed by the replication of the precursor into aluminum-based PCPs. The mesoscopic structure was characterized by electron microscopy, energy dispersive X-ray elemental mapping, and sorption experiments. Combination at the nanoscale of the high storage capacity of PCPs with the photothermal properties of GNRs resulted in the implementation of unique motion-induced molecular release, triggered by the highly efficient conversion of optical energy into heat that occurs when the GNRs are irradiated into their plasmon band. Temporal control of the molecular release was demonstrated with anthracene as a guest molecule and fluorescent probe by means of fluorescence spectroscopy.

  6. Naegleria fowleri lysate induces strong cytopathic effects and pro-inflammatory cytokine release in rat microglial cells.

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul; Shin, Ho-Joon

    2011-09-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A (51)Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response.

  7. Novel nitric oxide-releasing spirolactone-type diterpenoid derivatives with in vitro synergistic anticancer activity as apoptosis inducer.

    Li, Dahong; Han, Tong; Tian, Kangtao; Tang, Shuang; Xu, Shengtao; Hu, Xu; Wang, Lei; Li, Zhanlin; Hua, Huiming; Xu, Jinyi

    2016-09-01

    Herein, we reported the cytotoxicity, NO-releasing property, and apoptosis induced ability of two series of novel nitric oxide-releasing spirolactone-type diterpenoid derivatives (10a-f and 15a-f). All the title compounds were more potent than oridonin (7) and parent compound (9 or 14) against human tumor Bel-7402, K562, MGC-803 and CaEs-17 cells. SARs were concluded based on above data. Compound 15d exhibited the strongest antiproliferative activity with the IC50 of 0.86, 1.74, 1.16 and 3.75μM, respectively, and could produce high level (above 25μM) of NO at the time point of 60min. Further mechanism evaluation showed that 15d could induce S phase cell cycle arrest and apoptosis at low micromolar concentrations in Bel-7402 cells via mitochondria-related pathways. It was expected that the remarkable biological profile of the synthetic NO-releasing spirolactone-type diterpenoid analogs make them possible as promising candidates for the development of anticancer agents.

  8. Acute pancreatitis-induced enzyme release and necrosis are attenuated by IL-1 antagonism through an indirect mechanism.

    Fink, G; Yang, J; Carter, G; Norman, J

    1997-01-01

    Interleukin-1 beta (IL-1) is a proinflammatory cytokine which is produced within the pancreas during acute pancreatitis reaching levels which are toxic to many cell types. Since antagonism of this cytokine provides dramatic survival benefits during lethal pancreatitis, we hypothesized that IL-1 had direct secretagogue and cytolytic effects within the pancreas. The effect of IL-1 on pancreatic exocrine function and tissue viability was assessed in vivo by blockade of IL-1 with varying doses of IL-1 receptor antagonist (IL-1ra) prior to the induction of either moderate (caerulein-induced) or severe (choline deficient diet-induced) necrotizing pancreatitis. Subsequent in vitro studies were conducted to determine the direct effect of IL-1 on dispersed rat acini prepared through collagenase digestion. Amylase release was measured after a 30-min incubation with varying doses of recombinant IL-1 beta. Viability was determined in the presence of IL-1 via trypan blue exclusion at multiple time points. Blockade of the IL-1 receptor decreased pancreatic amylase release and tissue necrosis in both models of pancreatitis in a dose-dependent fashion (1.0 mg/kg, P = NS; 10 mg/kg, P amylase release and tissue necrosis are significantly attenuated during experimental pancreatitis by IL-1 antagonism. These changes do not appear to be due to the direct action of IL-1 on pancreatic acini and are likely due to more complex interactions between acini and cytokine-producing leukocytes.

  9. Release of Periplasmic Nucleotidase Induced by Human Antimicrobial Peptide in E. coli Causes Accumulation of the Immunomodulator Adenosine.

    Andreia Bergamo Estrela

    Full Text Available Previous work by our group described that human β-defensin-2 induces accumulation of extracellular adenosine (Ado in E. coli cultures through a non-lytic mechanism causing severe plasmolysis. Here, we investigate the presence of AMP as a direct precursor and the involvement of a bacterial enzyme in the generation of extracellular Ado by treated bacteria. Following hBD-2 treatment, metabolites were quantified in the supernatants using targeted HPLC-MS/MS analysis. Microbial growth was monitored by optical density and cell viability was determined by colony forming units counts. Phosphatase activity was measured using chromogenic substrate pNPP. The results demonstrate that defensin-treated E. coli strain W releases AMP in the extracellular space, where it is converted to Ado by a bacterial soluble factor. An increase in phosphatase activity in the supernatant was observed after peptide treatment, similar to the effect of sucrose-induced osmotic stress, suggesting that the periplasmic 5'nucleotidase (5'-NT is released following the plasmolysis event triggered by the peptide. Ado accumulation was enhanced in the presence of Co2+ ion and inhibited by EDTA, further supporting the involvement of a metallo-phosphatase such as 5'-NT in extracellular AMP conversion into Ado. The comparative analysis of hBD-induced Ado accumulation in different E. coli strains and in Pseudomonas aeruginosa revealed that the response is not correlated to the peptide's effect on cell viability, but indicates it might be dependent on the subcellular distribution of the nucleotidase. Taken together, these data shed light on a yet undescribed mechanism of host-microbial interaction: a human antimicrobial peptide inducing selective release of a bacterial enzyme (E. coli 5'-NT, leading to the formation of a potent immunomodulator metabolite (Ado.

  10. GBR12909 attenuates amphetamine-induced striatal dopamine release as measured by [(11)C]raclopride continuous infusion PET scans.

    Villemagne, V L; Wong, D F; Yokoi, F; Stephane, M; Rice, K C; Matecka, D; Clough, D J; Dannals, R F; Rothman, R B

    1999-09-15

    Major neurochemical effects of methamphetamine include release of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) via a carrier-mediated exchange mechanism. Preclinical research supports the hypothesis that elevations of mesolimbic DA mediate the addictive and reinforcing effects of methamphetamine and amphetamine. This hypothesis has not been adequately tested in humans. Previous in vivo rodent microdialysis demonstrated that the high affinity DA uptake inhibitor, GBR12909, attenuates cocaine- and amphetamine-induced increases in mesolimbic DA. The present study determined the ability of GBR12909 to attenuate amphetamine-induced increases in striatal DA as measured by [(11)C]raclopride continuous infusion positron emission tomography (PET) scans in two Papio anubis baboons. [(11)C]Raclopride was given in a continuous infusion paradigm resulting in a flat volume of distribution vs. time for up to 45 min postinjection. At that time, a 1.5 mg/kg amphetamine i.v. bolus was administered which caused a significant (30.3%) reduction in the volume of distribution (V(3)"). The percent reduction in the volume of distribution and, hence, a measure of the intrasynaptic DA release ranged between 22-41%. GBR12909 (1 mg/kg, slow i.v. infusion) was administered 90 min before the administration of the radiotracer. The comparison of the volume of distribution before and after administration of GBR12909 showed that GBR12909 inhibited amphetamine-induced DA release by 74%. These experiments suggest that GBR12909 is an important prototypical medication to test the hypothesis that stimulant-induced euphoria is mediated by DA and, if the DA hypothesis is correct, a potential treatment agent for cocaine and methamphetamine abuse. Furthermore, this quantitative approach demonstrates a way of testing various treatment medications, including other forms of GBR12909 such as a decanoate derivative.

  11. Dilatory responses to acetylcholine, calcitonin gene-related peptide and substance P in the congestive heart failure rat

    Bergdahl, A; Valdemarsson, S; Nilsson, T;

    1999-01-01

    It was examined to what extent congestive heart failure (CHF) in rats, induced by ligation of the left coronary artery, affects the vascular responses to the vasodilatory substances acetylcholine (ACh), calcitonin gene-related peptide (CGRP), and substance P (SP). After induction of CHF status...

  12. Involvement of tissue plasminogen activator-plasmin system in depolarization-evoked dopamine release in the nucleus accumbens of mice.

    Ito, Mina; Nagai, Taku; Kamei, Hiroyuki; Nakamichi, Noritaka; Nabeshima, Toshitaka; Takuma, Kazuhiro; Yamada, Kiyofumi

    2006-11-01

    Tissue plasminogen activator (tPA), a serine protease, catalyzes the conversion of plasminogen to plasmin. In the present study, we investigated the role of the tPA-plasmin system in depolarization-evoked dopamine (DA) and acetylcholine (ACh) release in the nucleus accumbens (NAc) and hippocampus, respectively, of mice, by using in vivo microdialysis. Microinjection of either tPA or plasmin significantly potentiated 40 mM KCl-induced DA release without affecting basal DA levels. In contrast, plasminogen activator inhibitor-1 dose-dependently reduced 60 mM KCl-induced DA release. The 60 mM KCl-evoked DA release in the NAc was markedly diminished in tPA-deficient (tPA-/-) mice compared with wild-type mice, although basal DA levels did not differ between the two groups. Microinjections of either exogenous tPA (100 ng) or plasmin (100 ng) into the NAc of tPA-/-mice restored 60 mM KCl-induced DA release, as observed in wild-type mice. In contrast, there was no difference in either basal or 60 mM KCl-induced ACh release in the hippocampus between wild-type and tPA-/-mice. Our findings suggest that the tPA-plasmin system is involved in the regulation of depolarization-evoked DA release in the NAc.

  13. Surfactant-induced non-lethal release of anthraquinones from suspension culture of Morinda citrifolia.

    Bassetti, L.; Hagendoorn, M.J.M.; Tramper, J.

    1995-01-01

    A new approach based on the use of the surfactant Pluronic F-68 to obtain non-lethal release of plant cell intracellular products was investigated. Suspension cultures of Morinda citrifolia (Rubiaceae), producing anthraquinones as secondary metabolites, were selected as model system. By supplementin

  14. Growth hormone-releasing factor induces c-fos expression in cultured primary pituitary cells

    Billestrup, Nils; Mitchell, R L; Vale, W;

    1987-01-01

    GH-releasing factor (GRF) and somatostatin regulates the secretion and biosynthesis of GH as well as the proliferation of GH-producing cells. In order to further characterize the mitogenic effect of GRF, we studied the expression of the proto-oncogene c-fos in primary pituitary cells. Maximal...

  15. Cyclodextrin-gated mesoporous silica nanoparticles as drug carriers for red light-induced drug release

    Chai, Shiqiang; Guo, Yu; Zhang, Zhenyu; Chai, Zhen; Ma, Yurong; Qi, Limin

    2017-04-01

    Long wavelength light-responsive drug delivery systems based on mesoporous silica nanoparticles (MSNs) have attracted much attention in the last few years. In this paper, a red light (660 nm)-responsive drug delivery system based on low-cost cyclodextrin (CD)-gated MSNs containing a photodynamic therapy (PDT) photosensitizer (Chlorin e6, Ce6) was developed for the first time. The drug release experiment in water demonstrated that with the irradiation of red light, Ce6 can be excited to generate singlet oxygen, which can further cleave the singlet oxygen sensitive linker to trigger the departure of CD and the release of cargo. Further in vitro release experiments confirmed that cargo can be released from MSNs with the irradiation of red light and spread into the entire cell. The relative low power density (0.5 W cm‑2) of excitation light together with the short irradiation time (one–three min) result in a low light dose (30–90 J cm‑2) for the drug delivery, contributing to their potential clinical applications.

  16. Dissociation of CO induced by He2+ ions : I. Fragmentation and kinetic energy release spectra

    Bliek, FW; de Jong, MC; Hoekstra, R; Morgenstern, R

    1997-01-01

    The dissociation of COq+ ions (q less than or equal to 3) produced in collisions of keV amu(-1) He2+ ions with CO has been studied by time-of-flight measurements. Both singles and coincidence time-of-flight techniques have been used to determine the kinetic energy release of the dissociating CO mole

  17. Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice

    Pouwels, Simon D; van der Toorn, Marco; Hesse, Laura; Gras, Renee; Ten Hacken, Nick H T; Krysko, Dmitri V; Vandenabeele, Peter; de Vries, Maaike; van Oosterhout, Antoon J M; Heijink, Irene H; Nawijn, Martijn C

    2015-01-01

    Recent data indicate a role for airway epithelial necroptosis, a regulated form of necrosis, and the associated release of damage associated molecular patterns (DAMPs) in the development of COPD. DAMPs can activate pattern recognition receptors (PRRs), triggering innate immune responses. We hypothes

  18. Inducible nitric oxide synthase is responsible for nitric oxide release from murine pituicytes

    Kjeldsen, T H; Rivier, C; Lee, S;

    2003-01-01

    This study investigated whether pituicytes were able to produce and release nitric oxide (NO), and which type of nitric oxide synthase (NOS) would be responsible for this phenomenon. Lipopolysaccharide (LPS) 1 micro g/ml was used as inflammatory mediator. Because pituicytes are known to secrete...

  19. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.

    Mikhailova, Maria A; Bass, Caroline E; Grinevich, Valentina P; Chappell, Ann M; Deal, Alex L; Bonin, Keith D; Weiner, Jeff L; Gainetdinov, Raul R; Budygin, Evgeny A

    2016-10-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors.

  20. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine.

    Bébarová, Markéta; Matejovič, Peter; Švecová, Olga; Kula, Roman; Šimurdová, Milena; Šimurda, Jiří

    2017-02-03

    Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach), a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.

  1. Biosensor cell assay for measuring real-time aldosterone-induced release of histamine from mesenteric arteries

    Dalgaard, Emil G; Andersen, Kenneth; Svenningsen, Per

    2017-01-01

    as a sensitive biosensor assay for histamine release from isolated mouse mesenteric arteries. Activation of the H1 receptor by histamine was measured as an increased number of intracellular Ca(2+) transient peaks using fluorescence imaging RESULTS: The developed biosensor was sensitive to histamine...... in physiological relevant concentrations and responded to substances released by the artery preparation. Aldosterone treatment of mesenteric arteries from wild type mice for 50 minutes resulted in an increased number of intracellular Ca(2+) transient peaks in the biosensor cells, which was significantly inhibited...... by the histamine H1 blocker pyrilamine. Mesenteric arteries from mast cell deficient SASH mice induced similar pyrilamine-sensitive Ca(2+) transient response in the biosensor cells. Mesenteric arteries from wild type and SASH mice expressed histamine decarboxylase mRNA, indicating that mast cells are not the only...

  2. Bacteria-induced release of white cell--and platelet-derived vascular endothelial growth factor in vitro

    Nielsen, Hans Jørgen; Werther, K; Mynster, T;

    2001-01-01

    endothelial growth factor (VEGF), may be involved in this process. Therefore, we studied the in vitro release of VEGF from white blood cells and platelets stimulated by bacterial antigens and supernatants from stored red cell components. MATERIALS AND METHODS: Eight units of whole blood (WB) and eight units...... of the supernatants were removed from the units and frozen at -80 degrees C. WB from other healthy donors was stimulated for 2 h with sodium chloride (controls), with Escherichia coli lipopolysaccharide (LPS) alone, or with LPS plus supernatants from the non-filtered or prestorage leucofiltered WB units (diluted 1....... CONCLUSIONS: Extracellular VEGF may accumulate in non-filtered red cell components, but this can be prevented by prestorage leucocyte depletion using filtration. In addition, bacterial antigens appear to induce release of VEGF from white blood cells and platelets. Addition of supernatants from stored, non...

  3. Adsorption and protein-induced metal release from chromium metal and stainless steel.

    Lundin, M; Hedberg, Y; Jiang, T; Herting, G; Wang, X; Thormann, E; Blomberg, E; Wallinder, I Odnevall

    2012-01-15

    A research effort is undertaken to understand the mechanism of metal release from, e.g., inhaled metal particles or metal implants in the presence of proteins. The effect of protein adsorption on the metal release process from oxidized chromium metal surfaces and stainless steel surfaces was therefore examined by quartz crystal microbalance with energy dissipation monitoring (QCM-D) and graphite furnace atomic absorption spectroscopy (GFAAS). Differently charged and sized proteins, relevant for the inhalation and dermal exposure route were chosen including human and bovine serum albumin (HSA, BSA), mucin (BSM), and lysozyme (LYS). The results show that all proteins have high affinities for chromium and stainless steel (AISI 316) when deposited from solutions at pH 4 and at pH 7.4 where the protein adsorbed amount was very similar. Adsorption of albumin and mucin was substantially higher at pH 4 compared to pH 7.4 with approximately monolayer coverage at pH 7.4, whereas lysozyme adsorbed in multilayers at both investigated pH. The protein-surface interaction was strong since proteins were irreversibly adsorbed with respect to rinsing. Due to the passive nature of chromium and stainless steel (AISI 316) surfaces, very low metal release concentrations from the QCM metal surfaces in the presence of proteins were obtained on the time scale of the adsorption experiment. Therefore, metal release studies from massive metal sheets in contact with protein solutions were carried out in parallel. The presence of proteins increased the extent of metals released for chromium metal and stainless steel grades of different microstructure and alloy content, all with passive chromium(III)-rich surface oxides, such as QCM (AISI 316), ferritic (AISI 430), austentic (AISI 304, 316L), and duplex (LDX 2205).

  4. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    Rajinder S Mann

    Full Text Available Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las, affects host preference behavior of its psyllid (Diaphorina citri Kuwayama vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of

  5. Activities of nicotinic acetylcholine receptors modulate neurotransmission and synaptic architecture

    Akira Oda; Hidekazu Tanaka

    2014-01-01

    The cholinergic system is involved in a broad spectrum of brain function, and its failure has been implicated in Alzheimer’s disease. Acetylcholine transduces signals through muscarinic and nicotinic acetylcholine receptors, both of which inlfuence synaptic plasticity and cognition. However, the mechanisms that relate the rapid gating of nicotinic acetylcholine receptors to per-sistent changes in brain function have remained elusive. Recent evidence indicates that nicotinic acetylcholine receptors activities affect synaptic morphology and density, which result in per-sistent rearrangements of neural connectivity. Further investigations of the relationships between nicotinic acetylcholine receptors and rearrangements of neural circuitry in the central nervous system may help understand the pathogenesis of Alzheimer’s disease.

  6. Expression and function of nicotinic acetylcholine receptors in stem cells

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  7. PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells

    Halayko Andrew J

    2009-09-01

    Full Text Available Abstract Background Airway smooth muscle contributes to the pathogenesis of pulmonary diseases by secreting inflammatory mediators such as interleukin-8 (IL-8. IL-8 production is in part regulated via activation of Gq-and Gs-coupled receptors. Here we study the role of the cyclic AMP (cAMP effectors protein kinase A (PKA and exchange proteins directly activated by cAMP (Epac1 and Epac2 in the bradykinin-induced IL-8 release from a human airway smooth muscle cell line and the underlying molecular mechanisms of this response. Methods IL-8 release was assessed via ELISA under basal condition and after stimulation with bradykinin alone or in combination with fenoterol, the Epac activators 8-pCPT-2'-O-Me-cAMP and Sp-8-pCPT-2'-O-Me-cAMPS, the PKA activator 6-Bnz-cAMP and the cGMP analog 8-pCPT-2'-O-Me-cGMP. Where indicated, cells were pre-incubated with the pharmacological inhibitors Clostridium difficile toxin B-1470 (GTPases, U0126 (extracellular signal-regulated kinases ERK1/2 and Rp-8-CPT-cAMPS (PKA. The specificity of the cyclic nucleotide analogs was confirmed by measuring phosphorylation of the PKA substrate vasodilator-stimulated phosphoprotein. GTP-loading of Rap1 and Rap2 was evaluated via pull-down technique. Expression of Rap1, Rap2, Epac1 and Epac2 was assessed via western blot. Downregulation of Epac protein expression was achieved by siRNA. Unpaired or paired two-tailed Student's t test was used. Results The β2-agonist fenoterol augmented release of IL-8 by bradykinin. The PKA activator 6-Bnz-cAMP and the Epac activator 8-pCPT-2'-O-Me-cAMP significantly increased bradykinin-induced IL-8 release. The hydrolysis-resistant Epac activator Sp-8-pCPT-2'-O-Me-cAMPS mimicked the effects of 8-pCPT-2'-O-Me-cAMP, whereas the negative control 8-pCPT-2'-O-Me-cGMP did not. Fenoterol, forskolin and 6-Bnz-cAMP induced VASP phosphorylation, which was diminished by the PKA inhibitor Rp-8-CPT-cAMPS. 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP induced GTP

  8. Exposure to wear particles generated from studded tires and pavement induces inflammatory cytokine release from human macrophages.

    Lindbom, John; Gustafsson, Mats; Blomqvist, Göran; Dahl, Andreas; Gudmundsson, Anders; Swietlicki, Erik; Ljungman, Anders G

    2006-04-01

    Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. Lately, wear particles generated from traffic have been recognized to be a major contributing source to the overall particle load, especially in the Nordic countries were studded tires are used. In this work, we investigated the inflammatory effect of PM10 generated from the wear of studded tires on two different types of pavement. As comparison, we also investigated PM10 from a traffic-intensive street, a subway station, and diesel exhaust particles (DEP). Human monocyte-derived macrophages, nasal epithelial cells (RPMI 2650), and bronchial epithelial cells (BEAS-2B) were exposed to the different types of particles, and the secretion of IL-6, IL-8, IL-10, and TNF-alpha into the culture medium was measured. The results show a significant release of cytokines from macrophages after exposure for all types of particles. When particles generated from asphalt/granite pavement were compared to asphalt/quartzite pavement, the granite pavement had a significantly higher capacity to induce the release of cytokines. The granite pavement particles induced cytokine release at the same magnitude as the street particles did, which was higher than what particles from both a subway station and DEP did. Exposure of epithelial cells to PM10 resulted in a significant increase of TNF-alpha secreted from BEAS-2B cells for all types of particles used (DEP was not tested), and the highest levels were induced by subway particles. None of the particle types were able to evoke detectable cytokine release from RPMI 2650 cells. The results indicate that PM10 generated by the wear of studded tires on the street surface is a large contributor to the cytokine-releasing ability of particles in traffic-intensive areas and that the type of pavement used is important for the level of this contribution

  9. Inhibition of diazepam and gamma-aminobutyric acid of depolarization-induced release of (/sup 14/C)cysteine sulfinate and (/sup 3/H)glutamate in rat hippocampal slices

    Baba, A.; Okumura, S.; Mizuo, H.; Iwata, H.

    1983-01-01

    Effects of diazepam and gamma-aminobutyric acid-related compounds on the release of (/sup 14/C)cysteine sulfinate and (/sup 3/H)glutamate from preloaded hippocampal slices of rat brain were examined by a superfusion method. Diazepam markedly inhibited the release of cysteine sulfinate and glutamate evoked either by high K/sup +/ or veratridine without affecting that of other neurotransmitter candidates, e.g., gamma-aminobutyric acid, acetylcholine, noradrenaline, and dopamine; IC50 values for the release of cysteine sulfinate and glutamate were about 20 and 7 microM, respectively. gamma-Aminobutyric acid (1 to 10 microM) and muscimol (100 microM) significantly reduced high K+-stimulated release of glutamate. Bicuculline, which had no effect on the release at a concentration of 50 microM by itself, antagonized the inhibitor effects of diazepam and gamma-aminobutyric acid on glutamate release. Similar results were obtained with the release of cysteine sulfinate except that a high concentration (100 microM) of gamma-aminobutyric acid was required for the inhibition. These results indicate the modulation by gamma-aminobutyric acid innervation of the release of excitatory amino acids in rat hippocampal formation, and also suggest that some of the pharmacological effects of diazepam may be a consequence of inhibition of excitatory amino acid transmission.

  10. An empirical approach to estimate near-infra-red photon propagation and optically induced drug release in brain tissues

    Prabhu Verleker, Akshay; Fang, Qianqian; Choi, Mi-Ran; Clare, Susan; Stantz, Keith M.

    2015-03-01

    The purpose of this study is to develop an alternate empirical approach to estimate near-infra-red (NIR) photon propagation and quantify optically induced drug release in brain metastasis, without relying on computationally expensive Monte Carlo techniques (gold standard). Targeted drug delivery with optically induced drug release is a noninvasive means to treat cancers and metastasis. This study is part of a larger project to treat brain metastasis by delivering lapatinib-drug-nanocomplexes and activating NIR-induced drug release. The empirical model was developed using a weighted approach to estimate photon scattering in tissues and calibrated using a GPU based 3D Monte Carlo. The empirical model was developed and tested against Monte Carlo in optical brain phantoms for pencil beams (width 1mm) and broad beams (width 10mm). The empirical algorithm was tested against the Monte Carlo for different albedos along with diffusion equation and in simulated brain phantoms resembling white-matter (μs'=8.25mm-1, μa=0.005mm-1) and gray-matter (μs'=2.45mm-1, μa=0.035mm-1) at wavelength 800nm. The goodness of fit between the two models was determined using coefficient of determination (R-squared analysis). Preliminary results show the Empirical algorithm matches Monte Carlo simulated fluence over a wide range of albedo (0.7 to 0.99), while the diffusion equation fails for lower albedo. The photon fluence generated by empirical code matched the Monte Carlo in homogeneous phantoms (R2=0.99). While GPU based Monte Carlo achieved 300X acceleration compared to earlier CPU based models, the empirical code is 700X faster than the Monte Carlo for a typical super-Gaussian laser beam.

  11. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    Kikuchi, Kiyoshi [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Department of Neurosurgery, Omuta City General Hospital, 2-19-1 Takarazaka, Omuta-City, Fukuoka 836-8567 (Japan); Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Tancharoen, Salunya [Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Rd., Rajthevee Bangkok 10400 (Thailand); Morimoto, Yoko [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Matsuda, Fumiyo [Division of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8560 (Japan); Oyama, Yoko; Takenouchi, Kazunori [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Miura, Naoki [Laboratory of Veterinary Diagnostic Imaging, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); and others

    2009-07-24

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  12. Acetylcholine secretion by motor neuron-like cells from umbilical cord mesenchymal stem cells

    Xueyuan Liu; Dehua Li; Dong Jiang; Yan Fang

    2013-01-01

    Umbilical cord mesenchymal stem cel s were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cel s was induced with heparin and/or basic fi-broblast growth factor. Results confirmed that cel morphology did not change after induction with basic fibroblast growth factor alone. However, neuronal morphology was visible, and microtu-bule-associated protein-2 expression and acetylcholine levels increased fol owing induction with heparin alone or heparin combined with basic fibroblast growth factor. Hb9 and choline acetyl-transferase expression was high fol owing inductive with heparin combined with basic fibroblast growth factor. Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious. Heparin combined with basic fibroblast growth factor noticeably promoted the differen-tiation of umbilical cord mesenchymal stem cel s into motor neuron-like cel s. Simultaneously, um-bilical cord mesenchymal stem cel s could secrete acetylcholine.

  13. Acetylcholine produces contraction mediated by cyclooxigenase pathway in arterial vessels in the marine fish (Isacia conceptionis

    FA. Moraga

    Full Text Available Preliminary studies showed that dorsal artery contraction mediated by acetylcholine (ACh is blocked with indomethacin in intertidal fish (G. laevifrons. Our objective was to characterize the cholinergic pathway in several artery vessels of the I. conceptionis. Afferent and efferent branchial, dorsal and mesenteric arteries were dissected of 6 juvenile specimens, isometric tension studies were done using doses response curves (DRC for Ach (10–13 to 10–3 M, and cholinergic pathways were obtained by blocking with atropine or indomethacin. CRC to ACh showed a pattern of high sensitivity only in efferente branchial artery and low sensibility in all vessels. Furthermore, these contractions were blocked in the presence of atropine and indomethacin in all vessels. Our results corroborate previous results observed in intertidal species that contraction induced by acetylcholine is mediated by receptors that activate a cyclooxygenase contraction pathway.

  14. Plasma and wave phenomena induced by neutral gas releases in the solar wind

    H. Laakso

    Full Text Available We investigate plasma and wave disturbances generated by nitrogen (N2 gas releases from the cooling system of an IR-camera on board the Vega 1 and Vega 2 spacecraft, during their flybys of comet Halley in March 1986. N2 molecules are ionized by solar UV radiation at a rate of ~ 7 · 10-7 s-1 and give rise to a plasma cloud expanding around the spacecraft. Strong disturbances due to the interaction of the solar wind with the N+2 ion cloud are observed with a plasma and wave experiment (APV-V instrument. Three gas releases are accompanied by increases in cold electron density and simultaneous decreases of the spacecraft potential; this study shows that the spacecraft potential can be monitored with a reference sensor mounted on a short boom. The comparison between the model and observations suggests that the gas expands as an exhaust plume, and approximately only 1% of the ions can escape the beam within the first meters. The releases are also associated with significant increases in wave electric field emission (8 Hz–300 kHz; this phenomenon lasts for more than one hour after the end of the release, which is most likely due to the temporary contamination of the spacecraft surface by nitrogen gas. DC electric fields associated with the events are complex but interesting. No magnetic field perturbations are detected, suggesting that no significant diamagnetic effect (i.e. magnetic cavity is associated with these events.

    Key words. Ionosphere (planetary ionosphere – Space plasma physics (active perturbation experiments; instruments and techniques

  15. A single-probe capillary microgripper induced by dropwise condensation and inertial release

    Fan, Zenghua; Rong, Weibin; Wang, Lefeng; Sun, Lining

    2015-11-01

    A micromanipulation method based on liquid droplets is widely used as a non-destructive technology to pick-and-place micrometer-scale objects. We focus on the development of a single-probe capillary microgripper to execute reliable micromanipulation tasks. By controlling dropwise condensation on a probe tip, the water droplet volume on the hydrophobic tip surface can be varied dynamically, which helps establish appropriate capillary lifting forces during capturing tasks. An inertia-releasing strategy was utilized to implement a piezoelectric actuator integrated with the capillary microgripper and to address release problems caused by adhesion force action. The influence of droplet formation and the capillary lifting force generated during the manipulation process were characterized experimentally. Micromanipulation tests were conducted using a customized motion platform with viewing microscopes to verify the performance potential of the capillary microgripping tool. Experimental results indicated that polystyrene microspheres with 20-100 μm radii and micro-silicon chips (1.63-12.1 μN) were grasped reliably, and that adhered micro-objects could be placed on a target using the proposed microhandling technique of inertial release in ambient conditions.

  16. Reward-Induced Phasic Dopamine Release in the Monkey Ventral Striatum and Putamen.

    Yoshimi, Kenji; Kumada, Shiori; Weitemier, Adam; Jo, Takayuki; Inoue, Masato

    2015-01-01

    In-vivo voltammetry has successfully been used to detect dopamine release in rodent brains, but its application to monkeys has been limited. We have previously detected dopamine release in the caudate of behaving Japanese monkeys using diamond microelectrodes (Yoshimi 2011); however it is not known whether the release pattern is the same in various areas of the forebrain. Recent studies have suggested variations in the dopaminergic projections to forebrain areas. In the present study, we attempted simultaneous recording at two locations in the striatum, using fast-scan cyclic voltammetry (FSCV) on carbon fibers, which has been widely used in rodents. Responses to unpredicted food and liquid rewards were detected repeatedly. The response to the liquid reward after conditioned stimuli was enhanced after switching the prediction cue. These characteristics were generally similar between the ventral striatum and the putamen. Overall, the technical application of FSCV recording in multiple locations was successful in behaving primates, and further voltammetric recordings in multiple locations will expand our knowledge of dopamine reward responses.

  17. Reward-Induced Phasic Dopamine Release in the Monkey Ventral Striatum and Putamen.

    Kenji Yoshimi

    Full Text Available In-vivo voltammetry has successfully been used to detect dopamine release in rodent brains, but its application to monkeys has been limited. We have previously detected dopamine release in the caudate of behaving Japanese monkeys using diamond microelectrodes (Yoshimi 2011; however it is not known whether the release pattern is the same in various areas of the forebrain. Recent studies have suggested variations in the dopaminergic projections to forebrain areas. In the present study, we attempted simultaneous recording at two locations in the striatum, using fast-scan cyclic voltammetry (FSCV on carbon fibers, which has been widely used in rodents. Responses to unpredicted food and liquid rewards were detected repeatedly. The response to the liquid reward after conditioned stimuli was enhanced after switching the prediction cue. These characteristics were generally similar between the ventral striatum and the putamen. Overall, the technical application of FSCV recording in multiple locations was successful in behaving primates, and further voltammetric recordings in multiple locations will expand our knowledge of dopamine reward responses.

  18. Carbohydrate and ethane release with Erwinia carotovora subspecies betavasculorum--induced necrosis.

    Kuykendall, L David; Hunter, William J

    2008-02-01

    Erwinia carotovora subspecies betavasculorum, also known as E. betavasculorum and Pectobacterium betavasculorum, is a soil bacterium that has the capacity to cause root rot necrosis of sugarbeets. The qualitatively different pathogenicity exhibited by the virulent E. carotovora strain and two avirulent strains, a Citrobacter sp. and an Enterobacter cloacae, was examined using digital analysis of photographic evidence of necrosis as well as for carbohydrate, ethane, and ethylene release compared with uninoculated potato tuber slices. Visual scoring of necrosis was superior to digital analysis of photographs. The release of carbohydrates and ethane from potato tuber slices inoculated with the soft rot necrosis-causing Erwinia was significantly greater than that of potato tuber slices that had not been inoculated or that had been inoculated with the nonpathogenic E. cloacae and Citrobacter sp. strains. Interestingly, ethylene production from potato slices left uninoculated or inoculated with the nonpathogenic Citrobacter strain was 5- to 10-fold higher than with potato slices inoculated with the pathogenic Erwinia strain. These findings suggest that (1) carbohydrate release might be a useful measure of the degree of pathogenesis, or relative virulence; and that (2) bacterial suppression of ethylene formation may be a critical step in root rot disease formation.

  19. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors

    Layla AZAM; J Michael MCINTOSH

    2009-01-01

    Cysteine-rich peptides from the venom of cone snails (Conus) target a wide variety of different ion channels. One family of conopeptides, the a-conotoxins, specifically target different isoforms of nicotinic acetylcholine receptors (nAChRs) found both in the neuromuscular junction and central nervous system. This family is further divided into subfamilies based on the number of amino acids between cysteine residues. The exquisite subtype selectivity of certain a-conotoxins has been key to the characterization of native nAChR isoforms involved in modulation of neurotransmitter release, the pathophysiol-ogy of Parkinson's disease and nociception. Structure/function characterization of a-conotoxins has led to the development of analogs with improved potency and/or subtype selectivity. Cyclization of the backbone structure and addition of lipo-philic moieties has led to improved stability and bioavailability of a-conotoxins, thus paving the way for orally available therapeutics. The recent advances in phylogeny, exogenomics and molecular modeling promises the discovery of an even greater number of a-conotoxins and analogs with improved selectivity for specific subtypes of nAChRs.

  20. Cycloxaprid insecticide: nicotinic acetylcholine receptor binding site and metabolism.

    Shao, Xusheng; Swenson, Tami L; Casida, John E

    2013-08-21

    Cycloxaprid (CYC) is a novel neonicotinoid prepared from the (nitromethylene)imidazole (NMI) analogue of imidacloprid. In this study we consider whether CYC is active per se or only as a proinsecticide for NMI. The IC50 values (nM) for displacing [(3)H]NMI binding are 43-49 for CYC and 2.3-3.2 for NMI in house fly and honeybee head membranes and 302 and 7.2, respectively, in mouse brain membranes, potency relationships interpreted as partial conversion of some CYC to NMI under the assay conditions. The 6-8-fold difference in toxicity of injected CYC and NMI to house flies is consistent with their relative potencies as in vivo nicotinic acetylcholine receptor (nAChR) inhibitors in brain measured with [(3)H]NMI binding assays. CYC metabolism in mice largely involves cytochrome P450 pathways without NMI as a major intermediate. Metabolites of CYC tentatively assigned are five monohydroxy derivatives and one each of dihydroxy, nitroso, and amino modifications. CYC appears be a proinsecticide, serving as a slow-release reservoir for NMI with selective activity for insect versus mammalian nAChRs.

  1. Nicotine suppresses lipopolysaccharide-induced release of interleukin-6 in mixed glia and microglia-enriched cultures

    Zhihua Li; Qingzan Zhao; Hua Zhang; Xiuhua Ren; Mingfu Zhou; Weidong Zang

    2011-01-01

    Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD) through the over-activation of microglia.Epidemiological studies show that smoking is associated with a lower incidence of PD.This study hypothesized that the neuroprotective effect of nicotine is mediated by modulating the activation of microglia via cytokine release.This study found that nicotine pretreatment suppressed the lipopolysaccharide-induced inflammatory reaction in the nervous system, especially microglia activation and interleukin-6 production.The inhibitory effects of 100 pmol/L nicotine were stronger compared with 1 and 10 pmol/L nicotine.These findings indicate that nicotine significantly decreases the production of proinflammatory interleukin-6 in mixed glia or microglia-enriched cultures, and plays an inhibitory effect on the lipopolysaccharide-induced inflammatory reaction.

  2. Inhibitory activity of the white wine compounds, tyrosol and caffeic acid, on lipopolysaccharide-induced tumor necrosis factor-alpha release in human peripheral blood mononuclear cells.

    Giovannini, L; Migliori, M; Filippi, C; Origlia, N; Panichi, V; Falchi, M; Bertelli, A A E; Bertelli, A

    2002-01-01

    The objective of this study was to assess whether tyrosol and caffeic acid are able to inhibit lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha release. TNF is one of the most important cytokines involved in inflammatory reactions. The results show that both tyrosol and caffeic acid are able to inhibit LPS-induced TNF-alpha release from human monocytes, even at low doses. Their mechanisms of action are discussed and we conclude that high doses of the two compounds are not required to achieve effective inhibition of inflammatory reactions due to TNF-alpha release.

  3. Photolabile acetals as profragrances: the effect of structural modifications on the light-induced release of volatile aldehydes on cotton.

    Trachsel, Alain; Buchs, Barbara; Herrmann, Andreas

    2016-09-31

    Because volatile compounds evaporate from surfaces that are usually exposed to daylight, photoresponsive delivery systems are particularly suitable to control their release. In the present study, we investigated 4,4-diphenyl-4H-benzo[d][1,3]dioxins as profragrances for the light-induced delivery of aldehydes in functional perfumery. The efficiency of fragrance release was investigated on cotton after direct and indirect surface deposition from a fabric softening formulation as a function of the substitution pattern of the profragrance structure. Dynamic headspace analysis above the cotton surface demonstrated that the structure of the profragrance had a much larger effect on the fragrance release than did the amount of deposition on the target surface. Although some trends observed for the photolysis in solution also applied to the reaction on cotton, it is not generally possible to predict the photochemical behaviour of structurally different precursors on surfaces from their solution properties. The fact that the present system performed on a dry surface makes it an interesting light-triggered delivery vehicle for other classes of bioactive volatile compounds, such as pheromones or agrochemicals.

  4. Release behavior of non-network proteins and its relationship to the structure of heat-induced soy protein gels.

    Wu, Chao; Hua, Yufei; Chen, Yeming; Kong, Xiangzhen; Zhang, Caimeng

    2015-04-29

    Heat-induced soy protein gels were prepared by heating protein solutions at 12%, 15% ,or 18% for 0.5, 1.0, or 2.0 h. The release of non-network proteins from gel slices was conducted in 10 mM pH 7.0 sodium phosphate buffer. SDS-PAGE and diagonal electrophoresis demonstrated that the released proteins consisted of undenatured AB subunits and denatured proteins including monomers of A polypeptides, disulfide bond linked dimers, trimers, and polymers of A polypeptides, and an unidentified 15 kDa protein. SEC-HPLC analysis of non-network proteins revealed three major protein peaks, with molecular weights of approximately 253.9, 44.8, and 9.7 kDa. The experimental data showed that the time-dependent release of the three fractions from soy protein gels fit Fick's second law. An increasing protein concentration or heating time resulted in a decrease in diffusion coefficients of non-network proteins. A power law expression was used to describe the relationship between non-network protein diffusion coefficient and molecular weight, for which the exponent (α) shifted to higher value with an increase in protein concentration or heating time, indicating that a more compact gel structure was formed.

  5. Thyroid Hormone and Estrogen Regulate Exercise-Induced Growth Hormone Release

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues w...

  6. Canine Neutrophil Extracellular Traps Release Induced by the Apicomplexan Parasite Neospora caninum In Vitro.

    Wei, Zhengkai; Hermosilla, Carlos; Taubert, Anja; He, Xuexiu; Wang, Xiaocen; Gong, Pengtao; Li, Jianhua; Yang, Zhengtao; Zhang, Xichen

    2016-01-01

    Neosporosis is considered as one of the main causes of abortion and severe economic losses in dairy industry. The Canis genus serving as one of the confirmed definitive hosts of the apicomplexan parasite Neospora caninum (N. caninum) plays a critical role in its life cycle. However, the effects of N. caninum on its definitive hosts of neutrophils extracellular traps (NETs) formation remain unclear. In the present study, N. caninum tachyzoite-induced canine NETs formation was observed by scanning electron microscopy (SEM). Visualization of DNA decorated with H3, neutrophil elastase (NE), and myeloperoxidase (MPO) within N. caninum tachyzoite-induced NETs were examined using fluorescence confocal microscopy analyses. Furthermore, the formation of canine NETs was quantified using Sytox Green staining, and the LDH levels in supernatants were examined by an LDH Cytotoxicity Assay(®) kit. The results clearly showed that NETs-like structures were induced by N. caninum tachyzoites, and the major components within these structures induced by N. caninum tachyzoite were further confirmed by fluorescence confocal microscopy visualization. These results suggest that N. caninum tachyzoites strongly induced NETs formation in canine polymorphonuclear neutrophils (PMN). In functional inhibition assays, the blockings of NADPH oxidase, NE, MPO, SOCE, ERK 1/2, and p38 MAPK signaling pathways significantly inhibited N. caninum tachyzoite-induced NETs formation. To our knowledge, this study is the first to report the formation of NETs in canine PMN against N. caninum infection.

  7. Canine Neutrophil Extracellular Traps Release Induced by the Apicomplexan Parasite Neospora caninum In Vitro

    Wei, Zhengkai; Hermosilla, Carlos; Taubert, Anja; He, Xuexiu; Wang, Xiaocen; Gong, Pengtao; Li, Jianhua; Yang, Zhengtao; Zhang, Xichen

    2016-01-01

    Neosporosis is considered as one of the main causes of abortion and severe economic losses in dairy industry. The Canis genus serving as one of the confirmed definitive hosts of the apicomplexan parasite Neospora caninum (N. caninum) plays a critical role in its life cycle. However, the effects of N. caninum on its definitive hosts of neutrophils extracellular traps (NETs) formation remain unclear. In the present study, N. caninum tachyzoite-induced canine NETs formation was observed by scanning electron microscopy (SEM). Visualization of DNA decorated with H3, neutrophil elastase (NE), and myeloperoxidase (MPO) within N. caninum tachyzoite-induced NETs were examined using fluorescence confocal microscopy analyses. Furthermore, the formation of canine NETs was quantified using Sytox Green staining, and the LDH levels in supernatants were examined by an LDH Cytotoxicity Assay® kit. The results clearly showed that NETs-like structures were induced by N. caninum tachyzoites, and the major components within these structures induced by N. caninum tachyzoite were further confirmed by fluorescence confocal microscopy visualization. These results suggest that N. caninum tachyzoites strongly induced NETs formation in canine polymorphonuclear neutrophils (PMN). In functional inhibition assays, the blockings of NADPH oxidase, NE, MPO, SOCE, ERK 1/2, and p38 MAPK signaling pathways significantly inhibited N. caninum tachyzoite-induced NETs formation. To our knowledge, this study is the first to report the formation of NETs in canine PMN against N. caninum infection. PMID:27843440

  8. Histamine released from epidermal keratinocytes plays a role in α-melanocyte-stimulating hormone-induced itching in mice.

    Shimizu, Kyoko; Andoh, Tsugunobu; Yoshihisa, Yoko; Shimizu, Tadamichi

    2015-11-01

    Sunburn, wound repair, and chronic renal failure with hemodialysis are usually accompanied by both pigmentation and itching. Proopiomelanocortin-derived α-melanocyte-stimulating hormone (α-MSH) is produced in response to external stimuli, such as UV irradiation, and is involved in cutaneous pigmentation. However, it is unclear whether α-MSH is also involved in the itching. We therefore investigated whether α-MSH elicited itch-related responses in mice. We found that an intradermal injection of α-MSH induced hind-paw scratching, an itch-related response, in mice. The α-MSH-induced scratching was inhibited by the μ-opioid receptor antagonist naltrexone and the H1 histamine receptor antagonist terfenadine. In mast cell-deficient mice, α-MSH also elicited scratching, which was inhibited by terfenadine. The immunoreactivity for l-histidine decarboxylase, a key enzyme required for the production of histamine, histamine, and the melanocortin 1 and 5 receptors were shown in not only mast cells but also keratinocytes in murine skin. In addition to the expression of l-histidine decarboxylase and melanocortin 1 and 5 receptors, the mouse keratinocyte cell lines (Pam212) also showed immunoreactivity for l-histidine decarboxylase, histamine, and melanocortin 1 and 5 receptors. The application of α-MSH induced the release of histamine from Pam212 cells. These findings indicate that α-MSH may play an important role in the itching associated with pigmented cutaneous lesions and that the histamine released from keratinocytes is involved in this α-MSH-induced itching.

  9. Involvement of reactive oxygen species in brominated diphenyl ether-47-induced inflammatory cytokine release from human extravillous trophoblasts in vitro

    Park, Hae-Ryung, E-mail: heaven@umich.edu; Kamau, Patricia W.; Loch-Caruso, Rita

    2014-01-15

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in human breast milk, serum and placenta. Despite the presence of PBDEs in human placenta, effects of PBDEs on placental cell function are poorly understood. The present study investigated BDE-47-induced reactive oxygen species (ROS) formation and its role in BDE-47-stimulated proinflammatory cytokine release in a first trimester human extravillous trophoblast cell line, HTR-8/SVneo. Exposure of HTR-8/SVneo cells for 4 h to 20 μM BDE-47 increased ROS generation 1.7 fold as measured by the dichlorofluorescein (DCF) assay. Likewise, superoxide anion production increased approximately 5 fold at 10 and 15 μM and 9 fold at 20 μM BDE-47 with a 1-h exposure, as measured by cytochrome c reduction. BDE-47 (10, 15 and 20 μM) decreased the mitochondrial membrane potential by 47–64.5% at 4, 8 and 24 h as assessed with the fluorescent probe Rh123. Treatment with 15 and 20 μM BDE-47 stimulated cellular release and mRNA expression of IL-6 and IL-8 after 12 and 24-h exposures: the greatest increases were a 35-fold increased mRNA expression at 12 h and a 12-fold increased protein concentration at 24 h for IL-6. Antioxidant treatments (deferoxamine mesylate, (±)α-tocopherol, or tempol) suppressed BDE-47-stimulated IL-6 release by 54.1%, 56.3% and 37.7%, respectively, implicating a role for ROS in the regulation of inflammatory pathways in HTR-8/SVneo cells. Solvent (DMSO) controls exhibited statistically significantly decreased responses compared with non-treated controls for IL-6 release and IL-8 mRNA expression, but these responses were not consistent across experiments and times. Nonetheless, it is possible that DMSO (used to dissolve BDE-47) may have attenuated the stimulatory actions of BDE-47 on cytokine responses. Because abnormal activation of proinflammatory responses can disrupt trophoblast functions

  10. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na(+) currents through intracellular Ca(2+) release.

    Liu, Dong-Dong; Ren, Zhen; Yang, Guang; Zhao, Qian-Ru; Mei, Yan-Ai

    2014-06-01

    Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa ) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca(2+) level, but it significantly elevated the intracellular Ca(2+) level evoked by the high K(+) stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca(2+) influx-induced Ca(2+) release.

  11. Effects of acetylcholine and electrical stimulation on glial cell line-derived neurotrophic factor production in skeletal muscle cells.

    Vianney, John-Mary; Miller, Damon A; Spitsbergen, John M

    2014-11-01

    Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor required for survival of neurons in the central and peripheral nervous system. Specifically, GDNF has been characterized as a survival factor for spinal motor neurons. GDNF is synthesized and secreted by neuronal target tissues, including skeletal muscle in the peripheral nervous system; however, the mechanisms by which GDNF is synthesized and released by skeletal muscle are not fully understood. Previous results suggested that cholinergic neurons regulate secretion of GDNF by skeletal muscle. In the current study, GDNF production by skeletal muscle myotubes following treatment with acetylcholine was examined. Acetylcholine receptors on myotubes were identified with labeled alpha-bungarotoxin and were blocked using unlabeled alpha-bungarotoxin. The question of whether electrical stimulation has a similar effect to that of acetylcholine was also investigated. Cells were stimulated with voltage pulses; at 1 and 5 Hz frequencies for times ranging from 30 min to 48 h. GDNF content in myotubes and GDNF in conditioned culture medium were quantified by enzyme-linked immunosorbant assay. Results suggest that acetylcholine and short-term electrical stimulation reduce GDNF secretion, while treatment with carbachol or long-term electrical stimulation enhances GDNF production by skeletal muscle.

  12. Sound Waves Induce Neural Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells via Ryanodine Receptor-Induced Calcium Release and Pyk2 Activation.

    Choi, Yura; Park, Jeong-Eun; Jeong, Jong Seob; Park, Jung-Keug; Kim, Jongpil; Jeon, Songhee

    2016-10-01

    Mesenchymal stem cells (MSCs) have shown considerable promise as an adaptable cell source for use in tissue engineering and other therapeutic applications. The aims of this study were to develop methods to test the hypothesis that human MSCs could be differentiated using sound wave stimulation alone and to find the underlying mechanism. Human bone marrow (hBM)-MSCs were stimulated with sound waves (1 kHz, 81 dB) for 7 days and the expression of neural markers were analyzed. Sound waves induced neural differentiation of hBM-MSC at 1 kHz and 81 dB but not at 1 kHz and 100 dB. To determine the signaling pathways involved in the neural differentiation of hBM-MSCs by sound wave stimulation, we examined the Pyk2 and CREB phosphorylation. Sound wave induced an increase in the phosphorylation of Pyk2 and CREB at 45 min and 90 min, respectively, in hBM-MSCs. To find out the upstream activator of Pyk2, we examined the intracellular calcium source that was released by sound wave stimulation. When we used ryanodine as a ryanodine receptor antagonist, sound wave-induced calcium release was suppressed. Moreover, pre-treatment with a Pyk2 inhibitor, PF431396, prevented the phosphorylation of Pyk2 and suppressed sound wave-induced neural differentiation in hBM-MSCs. These results suggest that specific sound wave stimulation could be used as a neural differentiation inducer of hBM-MSCs.

  13. A Novel Controllable Hydrogen Sulfide-Releasing Molecule Protects Human Skin Keratinocytes Against Methylglyoxal-Induced Injury and Dysfunction

    Chun-tao Yang

    2014-09-01

    Full Text Available Background/Aim: Delayed wound healing is a common skin complication of diabetes, which is associated with keratinocyte injury and dysfunction. Levels of methylglyoxal (MGO, an α-dicarbonyl compound, are elevated in diabetic skin tissue and plasma, while levels of hydrogen sulfide (H2S, a critical gaseous signaling molecule, are reduced. Interestingly, the gas has shown dermal protection in our previous study. To date, there is no evidence demonstrating whether MGO affects keratinocyte viability and function or H2S donation abolishes these effects and improves MGO-related impairment of wound healing. The current study was conducted to examine the effects of MGO on the injury and function in human skin keratinocytes and then to evaluate the protective action of a novel H2S-releasing molecule. Methods: An N-mercapto-based H2S donor (NSHD-1 was synthesized and its ability to release H2S was observed in cell medium and cells, respectively. HaCaT cells, a cell line of human skin keratinocyte, were exposed to MGO to establish an in vitro diabetic wound healing model. NSHD-1 was added to the cells before MGO exposure and the improvement of cell function was observed in respect of cellular viability, apoptosis, oxidative stress, mitochondrial membrane potential (MMP and behavioral function. Results: Treatment with MGO decreased cell viability, induced cellular apoptosis, increased intracellular reactive oxygen species (ROS content and depressed MMP in HaCaT cells. The treatment also damaged cell behavioral function, characterized by decreased cellular adhesion and migration. The synthesized H2S-releasing molecule, NSHD-1, was able to increase H2S levels in both cell medium and cells. Importantly, pretreatment with NSHD-1 inhibited MGO-induced decreases in cell viability and MMP, increases in apoptosis and ROS accumulation in HaCaT cells. The pretreatment was also able to improve adhesion and migration function. Conclusion: These results demonstrate that

  14. [Effects of steroid hormones on nicotinic acetylcholine receptor channel kinetics].

    Nurowska, E; Dworakowska, B; Dołowy, K

    2000-01-01

    Classically steroid hormones acts through genomic mechanism. In the last period there is more evidence that some steroid hormones exert fast (in order of seconds) effects on membrane receptors. In the presented work we analysed the effects of some steroid hormones on muscle acetylcholine receptor (AChR) channel kinetics. We divided steroid hormone on two groups which exert different effects. The first group including hydrocortisone (HC), corticosterone (COR), dexamethasone decrease the mean open time increasing the number of openings in bursts. The effects do not depend on agonist concentration. Some effects of HC and COR are voltage-dependent. The mechanism of such voltage dependent action caused by steroids hormones that are uncharged molecules, is unknown. Some experiments suggest however that an agonist molecule is involved in the mechanism of steroid action. The second group consists of progesterone, some of its derivatives and deoxycorticosterone. For this group the most evident effect was decrease in the probability of openings without a decrease in the mean open time. The effect depends on agonist concentration, suggesting an involvement of an agonist molecule in the mechanism. For this hormones an involvement of an charged agonist molecule does not however induce a voltage dependency. Most probably two groups of steroids acts on different part of the AChR. The localization of a steroid action site can be crucial for inducing voltage dependency.

  15. Shiga toxin type-2 (Stx2 induces glutamate release via phosphoinositide 3-kinase (PI3K pathway in murine neurons.

    Fumiko eObata

    2015-07-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC can cause central nervous system (CNS damage resulting in paralysis, seizures, and coma. The key STEC virulence factors associated with systemic illness resulting in CNS impairment are Shiga toxins (Stx. While neurons express the Stx receptor globotriaosylceramide (Gb3 in vivo, direct toxicity to neurons by Stx has not been studied. We used murine neonatal neuron cultures to study the interaction of Shiga toxin type 2 (Stx2 with cell surface expressed Gb3. Single molecule imaging three dimensional STochastic Optical Reconstruction Microscopy - Total Internal Reflection Fluorescence (3D STORM-TIRF allowed visualization and quantification of Stx2-Gb3 interactions. Furthermore, we demonstrate that Stx2 increases neuronal cytosolic Ca2+, and NMDA-receptor inhibition blocks Stx2-induced Ca2+ influx, suggesting that Stx2-mediates glutamate release. Phosphoinositide 3-kinase (PI3K-specific inhibition by Wortmannin reduces Stx2-induced intracellular Ca2+ indicating that the PI3K signaling pathway may be involved in Stx2-associated glutamate release, and that these pathways may contribute to CNS impairment associated with STEC infection.

  16. Effects of palmitoylethanolamide on immunologically induced histamine, PGD2 and TNFalpha release from canine skin mast cells.

    Cerrato, S; Brazis, P; della Valle, M F; Miolo, A; Puigdemont, A

    2010-01-15

    Palmitoylethanolamide (PEA) is an endocannabinoid-like compound and the parent molecule of the aliamide family, a group of fatty acid amides able to act through the down-regulation of mast cell degranulation. PEA has been proven to exert both analgesic and anti-inflammatory activity, and recent studies have shown its ability in reducing clinical symptoms of inflammatory skin diseases, both in humans and in animals. Although its pharmacological efficacy is well known, the mechanism of action of this family of compounds is still unclear. To better understand the cellular effects of aliamides in dogs, canine mast cells freshly isolated from skin biopsies were incubated with IgE-rich serum and were challenged with anti-canine IgE. Histamine, prostaglandin D(2) (PGD(2)) and tumour necrosis factor-alpha (TNFalpha) release was measured in the presence and absence of increasing concentrations of PEA, ranging from 10(-8)M to 10(-5)M. Histamine, PGD(2) and TNFalpha release, immunologically induced by canine anti-IgE, were significantly inhibited in the presence of PEA. The maximum inhibitory effect on histamine release was observed at 3x10(-6)M PEA concentration achieving an inhibition of 54.3+/-5.2%. PGD(2) release was significantly inhibited at 10(-5)M and 10(-6)M PEA concentrations with 25.5+/-10.2% and 14.6+/-5.6% of inhibition, respectively. Finally, PEA inhibited TNFalpha release to 29.2+/-2.0% and 22.1+/-7.2%, at concentrations of 10(-5)M and 3x10(-6)M, respectively. The results obtained in the present study showed the ability of the aliamide PEA to down-modulate skin mast cell activation. Therefore, our findings suggest that the beneficial effect of PEA, observed in inflammation and pain clinical studies, could be due, at least in part, to its ability to inhibit the release of both preformed and newly synthesised mast cell mediators.

  17. Canine neutrophil extracellular traps release induced by the apicomplexan parasite Neospora Caninum in vitro

    Zhengkai Wei

    2016-10-01

    Full Text Available Neosporosis is considered as one of the main causes of abortion and severe economic losses in dairy industry. The Canis genus serving as one of the confirmed definitive hosts of the apicomplexan parasite Neospora caninum (N. caninum plays a critical role in its life cycle. However, the effects of N. caninum on its definitive hosts of neutrophils extracellular traps (NETs formation remain unclear. In the present study, N. caninum tachyzoite-induced canine NETs formation was observed by scanning electron microscopy (SEM. Visualization of DNA decorated with H3, NE and MPO within N. caninum tachyzoite-induced NETs were examined using fluorescence confocal microscopy analyses. Furthermore, the formation of canine NETs was quantified using Sytox Green staining, and the LDH levels in supernatants were examined by an LDH Cytotoxicity Assay® kit. The results clearly showed that NETs-like structures were induced by N. caninum tachyzoites, and the major components within these structures induced by N. caninum tachyzoite were further confirmed by fluorescence confocal microscopy visualization. These results suggest that N. caninum tachyzoites strongly induced NETs formation in canine PMN. In functional inhibition assays, the blockings of NADPH oxidase, NE, MPO, SOCE, ERK 1/2 and p38 MAPK signaling pathways significantly inhibited N. caninum tachyzoite-induced NETs formation, which suggests that N. caninum tachyzoite-induced NETs formation is a NADPH oxidase-, NE-, MPO-, SOCE-, ERK 1/2- and p38 MAPK-dependent cell death process. To our knowledge, this study is the first to report the formation of NETs in canine PMN against N. caninum infection.

  18. [Sodium butyrate inhibits HMGB1 expression and release and attenuates concanavalin A-induced acute liver injury in mice].

    Gong, Quan; Chen, Mao-Jian; Wang, Chao; Nie, Hao; Zhang, Yan-Xiang; Shu, Ke-Gang; Li, Gang

    2014-10-25

    The purpose of the present study is to explore the protective effects of sodium butyrate (SB) pretreatment on concanavalin A (Con A)-induced acute liver injury in mice. The model animals were first administered intraperitoneally with SB. Half an hour later, acute liver injury mouse model was established by caudal vein injection with Con A (15 mg/kg). Then, levels of serous alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using standard clinical method by an automated chemistry analyzer, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were measured by ELISA, and pathological changes in hepatic tissue were observed by using HE staining and light microscopy. The expression and release of high-mobility group box 1 (HMGB1) were assessed by using reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry and ELISA. The results showed that the pretreatment of SB significantly protected Con A-treated mice from liver injury as evidenced by the decrease of serum ALT, AST (P < 0.01) and reduction of hepatic tissues necrosis. SB also decreased levels of serous TNF-α and IFN-γ (P < 0.01). Furthermore, the expression and release of HMGB1 were markedly inhibited by SB pretreatment (P < 0.05 or P < 0.01). These results suggest that the attenuating effect of SB on Con A-induced acute liver injury may be due to its role of reducing the TNF-α and IFN-γ production, and inhibiting HMGB1 expression and release.

  19. Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview

    Eline K. M. Lebbe

    2014-05-01

    Full Text Available Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV, potassium- (KV, and calcium- (CaV channels as well as nicotinic acetylcholine receptors (nAChRs which are classified as ligand-gated ion channels. The mode of action of several conotoxins has been the subject of investigation, while for many others this remains unknown. This review aims to give an overview of the knowledge we have today on the molecular pharmacology of conotoxins specifically interacting with nAChRs along with the structure–function relationship data.

  20. Total kinetic energy release in the fast neutron-induced fission of $^{235}$U

    Yanez, R; King, J; Barrett, J S; Fotiades, N; Lee, H Y

    2015-01-01

    We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. (To calibrate the apparatus, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the OSU TRIGA reactor). The TKE decreases non-linearly from 169.0 MeV to 161.4 MeV for $E_{n}$=2-90 MeV. The standard deviation of the TKE distribution is constant from $E_{n}$=20-90 MeV. Comparison of the data with the multi-modal fission model of Brosa indicates the TKE decrease is a consequence of the growth of symmetric fission and the corresponding decrease of asymmetric fission with increasing neutron energy. The average TKE associated with the Brosa superlong, standard I and standard II modes for a given mass is independent of neutron energy.

  1. Total kinetic energy release in the fast neutron-induced fission of $^{235}$U

    Yanez, R; King, J; Barrett, J S; Fotiades, N; Lee, H Y

    2016-01-01

    We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. To benchmark the TKE measurement, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the Oregon State University TRIGA reactor, giving pre-neutron emission $E^*_{TKE}=170.7\\pm0.4$ MeV in good agreement with known values. Our measurements are thus absolute measurements. The TKE in $^{235}$U(n,f) decreases non-linearly from 169.0 MeV to 161.4 MeV for $E_{n}$=2-90 MeV. Comparison of the data with the multi-modal fission model of Brosa indicates the TKE decrease is a consequence of the growth of symmetric fission and the corresponding decrease of asymmetric fission with increasing neutron energy. The average TKE associated with the Brosa superlong, standard I and standard II ...

  2. Modulation of nicotinic acetylcholine receptors by strychnine

    García-Colunga, Jesús; Miledi, Ricardo

    1999-01-01

    Strychnine, a potent and selective antagonist at glycine receptors, was found to inhibit muscle (α1β1γδ, α1β1γ, and α1β1δ) and neuronal (α2β2 and α2β4) nicotinic acetylcholine receptors (AcChoRs) expressed in Xenopus oocytes. Strychnine alone (up to 500 μM) did not elicit membrane currents in oocytes expressing AcChoRs, but, when applied before, concomitantly, or during superfusion of acetylcholine (AcCho), it rapidly and reversibly inhibited the current elicited by AcCho (AcCho-current). Although in the three cases the AcCho-current was reduced to the same level, its recovery was slower when the oocytes were preincubated with strychnine. The amount of AcCho-current inhibition depended on the receptor subtype, and the order of blocking potency by strychnine was α1β1γδ > α2β4 > α2β2. With the three forms of drug application, the Hill coefficient was close to one, suggesting a single site for the receptor interaction with strychnine, and this interaction appears to be noncompetitive. The inhibitory effects on muscle AcChoRs were voltage-independent, and the apparent dissociation constant for AcCho was not appreciably changed by strychnine. In contrast, the inhibitory effects on neuronal AcChoRs were voltage-dependent, with an electrical distance of ≈0.35. We conclude that strychnine regulates reversibly and noncompetitively the embryonic type of muscle AcChoR and some forms of neuronal AcChoRs. In the former case, strychnine presumably inhibits allosterically the receptor by binding at an external domain whereas, in the latter case, it blocks the open receptor-channel complex. PMID:10097172

  3. Growth Hormone Releasing Peptide-2 Attenuation of Protein Kinase C-Induced Inflammation in Human Ovarian Granulosa Cells

    Yi-Ning Chao

    2016-08-01

    Full Text Available Cyclooxygenase-2 (COX-2 and interleukin-8 (IL-8 are two important inflammatory mediators in ovulation. Ghrelin may modulate inflammatory signaling via growth hormone secretagogue receptors. We investigated the role of ghrelin in KGN human ovarian granulosa cells using protein kinase C (PKC activator phorbol 12, 13-didecanoate (PDD and synthetic ghrelin analog growth hormone releasing peptide-2 (GHRP-2. GHRP-2 attenuated PDD-induced expression of protein and mRNA, the promoter activity of COX-2 and IL-8 genes, and the secretion of prostaglandin E2 (PGE2 and IL-8. GHRP-2 promoted the degradation of PDD-induced COX-2 and IL-8 proteins with the involvement of proteasomal and lysosomal pathways. PDD-mediated COX-2 production acts via the p38, c-Jun N-terminal kinase (JNK, extracellular signal-regulated kinase (ERK and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB pathways; PDD-mediated IL-8 production acts via the p38, JNK and ERK pathways. GHRP-2 reduced the PDD-induced phosphorylation of p38 and JNK and activator protein 1 (AP-1 reporter activation and PDD-induced NF-κB nuclear translocation and reporter activation. The inhibitors of mitogen-activated protein kinase phosphatase-1 (MKP-1 and protein phosphatase 2 (PP2A reduced the inhibitory effect of GHRP-2 on PDD-induced COX-2 and IL-8 expression. Our findings demonstrate an anti-inflammatory role for ghrelin (GHRP-2 in PKC-mediated inflammation of granulosa cells, at least in part, due to its inhibitory effect on PKC-induced activation of p38, JNK and NF-κB, possibly by targeting to MKP-1 and PP2A.

  4. Validation of basophil histamine release against the autologous serum skin test and outcome of serum-induced basophil histamine release studies in a large population of chronic urticaria patients

    Platzer, M H; Grattan, C E H; Poulsen, Lars K.

    2005-01-01

    Endogenous histamine-releasing factors (HRFs) are involved in 30-60% of patients with chronic urticaria (CU). Evidence for their existence comes from in vivo studies of autoreactivity with the autologous serum skin test (ASST), in vitro immunoassays demonstrating autoantibodies against the immuno......Endogenous histamine-releasing factors (HRFs) are involved in 30-60% of patients with chronic urticaria (CU). Evidence for their existence comes from in vivo studies of autoreactivity with the autologous serum skin test (ASST), in vitro immunoassays demonstrating autoantibodies against...... the immunoglobulin E (IgE) or the high affinity IgE receptor (FcepsilonRI) and serum-induced histamine release (HR) from basophils and mast cells. We have examined the correlation between the ASST and a new basophil histamine-releasing assay (the HR-Urtikaria test) in a group of well-characterized CU patients...

  5. 2-methoxyestradiol induces vasodilation by stimulating NO release via PPARγ/PI3K/Akt pathway.

    Chen, Weiyu; Cui, Yuhong; Zheng, Shuhui; Huang, Jinghe; Li, Ping; Simoncini, Tommaso; Zhang, Yongfu; Fu, Xiaodong

    2015-01-01

    The endogenous estradiol metabolite 2-methoxyestradiol (2-ME) reduces atherosclerotic lesion formation, while the underlying mechanisms remain obscure. In this work, we investigated the vasodilatory effect of 2-ME and the role of nitric oxide (NO) involved. In vivo studies using noninvasive tail-cuff methods showed that 2-ME decreased blood pressure in Sprague Dawley rats. Furthermore, in vitro studies showed that cumulative addition of 2-ME to the aorta caused a dose- and endothelium-dependent vasodilation. This effect was unaffected by the pretreatment with the pure estrogen receptor antagonist ICI 182,780, but was largely impaired by endothelial nitric oxide synthase (eNOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) or by phosphoinositide 3-kinase (PI3K) inhibitor wortmannin (WM). Moreover, 2-ME(10-7 ∼10-5 M)enhanced phosphorylation of Akt and eNOS and promoted NO release from cultured human umbilical endothelial cells (HUVECs). These effects were blocked by PI3K inhibitor WM, or by the transfection with Akt specific siRNA, indicating that endothelial Akt/eNOS/NO cascade plays a crucial role in 2-ME-induced vasodilation. The peroxisome proliferator-activated receptor γ (PPARγ) mRNA and protein expression were detected in HUVECs and the antagonist GW9662 or the transfection with specific PPARγ siRNA inhibited 2-ME-induced eNOS and Akt phosphorylation, leading to the impairment of NO production and vasodilation. In conclusion, 2-ME induces vasodilation by stimulating NO release. These actions may be mediated by PPARγ and the subsequent activation of Akt/eNOS cascade in vascular endothelial cells.

  6. Selected scorpion toxin exposures induce cytokine release in human peripheral blood mononuclear cells.

    Corzo, Gerardo; Espino-Solis, Gerardo Pavel

    2017-03-01

    A cytokine screening on human peripheral blood mononuclear cells (PBMCs) stimulated with selected scorpion toxins (ScTx's) was performed in order to evaluate their effect on human immune cells. The ScTx's chosen for this report were three typical buthid scorpion venom peptides, one with lethal effects on mammals Centruroides suffussus suffusus toxin II (CssII), another, with lethal effects on insects and crustaceans Centruroides noxius toxin 5 (Cn5), and one more without lethal effects Tityus discrepans toxin (Discrepin). A Luminex multiplex analysis was performed in order to determine the amounts chemokines and cytokines IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12-p40, IL-13, interferon alpha (IFN-α), interferon gamma (IFN-γ), tumor necrosis factor alpha TNF-α, and interferon-inducible protein-10 (IP-10) secreted from human PBMCs exposed to these toxins. Although, the ScTx Cn5 is not lethal for mammals, it was able to induce the secretion of cytokines IL-1β, IL-6, and TNF-α, IL-10 and IP-10 in comparison to the lethal CssII, which was able to induce only IP-10 secretion. Discrepin also was able to induce only IP-10. Interestingly, only low amounts of interferons α and β were induced in the presence of the ScTx's assayed. In a synergic experiment, the combination of Discrepin and Cn5 displayed considerable reverse effects on induction of IL-1β, IL-6, IL-10 and TNF-α, but they had a slight synergic effect on IP-10 cytokine production in comparison with the single effect obtained with the Cn5 alone. Thus, the results obtained suggest that the profile of secreted cytokines promoted by ScTx Cn5 is highly related with a cytokine storm event, and also it suggests that the mammalian lethal neurotoxins are not solely responsible of the scorpion envenomation symptomatology.

  7. Sperm-induced Ca2+ release during egg activation in mammals.

    Kashir, Junaid; Nomikos, Michail; Lai, F Anthony; Swann, Karl

    2014-08-01

    This review discusses the role that the sperm-specific phospholipase C zeta (PLCζ) is proposed to play during the fertilization of mammalian eggs. At fertilization, the sperm initiates development by causing a series of oscillations in cytosolic concentrations of calcium [Ca(2)] within the egg. PLCζ mimics the sperm at fertilization, causing the same pattern of Ca(2+) release as seen at fertilization. Introducing PLCζ into mouse eggs also mimics a number of other features of the way in which the fertilizing sperm triggers Ca(2+) oscillations. We discuss the localization of PLCζ within the egg and present a hypothesis about the localization of PLCζ within the sperm before the initiation of fertilization.

  8. Massive impact-induced release of carbon and sulfur gases in the early Earth's atmosphere

    Marchi, S.; Black, B. A.; Elkins-Tanton, L. T.; Bottke, W. F.

    2016-09-01

    Recent revisions to our understanding of the collisional history of the Hadean and early-Archean Earth indicate that large collisions may have been an important geophysical process. In this work we show that the early bombardment flux of large impactors (>100 km) facilitated the atmospheric release of greenhouse gases (particularly CO2) from Earth's mantle. Depending on the timescale for the drawdown of atmospheric CO2, the Earth's surface could have been subject to prolonged clement surface conditions or multiple freeze-thaw cycles. The bombardment also delivered and redistributed to the surface large quantities of sulfur, one of the most important elements for life. The stochastic occurrence of large collisions could provide insights on why the Earth and Venus, considered Earth's twin planet, exhibit radically different atmospheres.

  9. Soluble ions more than particulate cobalt-alloy implant debris induce monocyte costimulatory molecule expression and release of proinflammatory cytokines critical to metal-induced lymphocyte reactivity.

    Caicedo, Marco S; Pennekamp, Peter H; McAllister, Kyron; Jacobs, Joshua J; Hallab, Nadim J

    2010-06-15

    Aseptic osteolysis has been associated with excessive immune reactivity to particulate implant debris; however, innate and adaptive immune mechanisms that underlie implant debris reactivity remain incompletely understood. Although particulate debris has been implicated as the major type of implant debris mediating macrophage-induced osteolysis, the degree to which metal ions affect a proinflammatory response (if at all) remains unknown. We hypothesized that both soluble and particulate metal implant debris will induce proinflammatory responses in human monocytes resulting in cytokine production and elevated expression of T cell costimulatory molecules, facilitating adaptive immune responses. We tested this hypothesis by characterizing the response of a human monocyte cell line (THP-1), isolated primary human monocytes and PBMCs challenged with Co-Cr-Mo alloy particles and soluble cobalt, chromium, molybdenum, and nickel ions. Our results indicate that soluble cobalt, nickel, and molybdenum can induce monocyte up-regulation of T cell costimulatory molecules (CD80, CD86, ICAM-1) in human monocytes/macrophages. Furthermore, cobalt, molybdenum ions, and Co-Cr-Mo alloy particles similarly induce elevated secretion of IL-1beta, TNFalpha, and IL-6. Antibody blockade of CD80 and CD86, crucial secondary molecules for adaptive responses, abrogated lymphocyte reactivity to metal challenge in metal reactive subjects. Also the addition of IL-1 receptor antagonist (IL-1ra), (which indirectly blocks pro-IL-1beta and thus IL-1beta release), significantly reduced lymphocyte reactivity in metal-reactive subjects. Thus, both soluble and particulate metal implant debris induce monocyte/macrophage proinflammatory responses that are metal and individual specific. This suggests metal-induced up-regulation of costimulatory molecules and proinflammatory cytokine production is necessary to induce lymphocyte activation/proliferation to metal implant debris.

  10. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct.

    Svenningsen, Per; Burford, James L; Peti-Peterdi, János

    2013-01-01

    ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD) and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30(-/-) mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca(2+)]i) signaling in the CD. Cortical CDs (CCDs) from wild type and Cx30(-/-) mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca(2+)]i in wild type CCDs. This response was blunted in Cx30(-/-) CCDs ([Ca(2+)]i increased only 1.2-fold, p < 0.0001 vs. WT, n = 6 each). To further test our hypothesis we performed CD [Ca(2+)]i imaging in intact mouse kidneys in vivo using multiphoton microscopy and micropuncture delivery of the calcium-sensitive fluorophore Rhod-2. We found intrinsic, spontaneous [Ca(2+)]i oscillations in free-flowing CDs of wild type but not Cx30(-/-) mice. The [Ca(2+)]i oscillations were sensitive also to P2-receptor inhibition by suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption.

  11. Partial nicotinic acetylcholine (α4β2 agonists as promising new medications for smoking cessation

    Singh J

    2008-01-01

    Full Text Available Objective: To review the pharmacology, clinical efficacy and safety of partial agonists of a4β 2 nicotinic acetylcholine receptor. Data Sources: Primary literature and review articles were obtained via a PUBMED search (1988-August 2006 using the key terms smoking cessation, partial agonist alpha4beta2 nicotinic acetylcholine receptor, varenicline, cytisine and SSR591813. Additional studies and abstracts were identified from the bibliographies of reviewed literature. Study Selection and Data Extraction: Studies and review articles related to varenicline, cytisine and the partial agonist alpha4beta2 nicotinic acetylcholine receptor were reviewed. Data Synthesis: Smoking is widely recognized as a serious health problem. Smoking cessation has major health benefits. According to the US Public Health Services, all patients attempting to quit smoking should be encouraged to use one or more effective pharmacotherapy. Currently, along with nicotine replacement therapy, bupropion, nortriptyline and clonidine, are the mainstay of pharmacotherapy. More than ¾ of patients receiving treatment for smoking cessation return to smoking within the first year. Nicotine, through stimulating α4β 2 nAChR, releases dopamine in the reward pathway. Partial agonist of α4β 2 nAChR elicits moderate and sustained release of dopamine, which is countered during the cessation attempts; it simultaneously blocks the effects of nicotine by binding with α4β 2 receptors during smoking. Recently, varenicline, a partial agonist at α4β 2 nAChR, has been approved by the FDA (Food and Drug Administration for smoking cessation. Conclusion: Partial agonist α4β 2 nAChR appears to be a promising target in smoking cessation. Varenicline of this group is approved for treatment of smoking cessation by the FDA in May 2006.

  12. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes.

    Yoo, Dae-goon; Floyd, Madison; Winn, Matthew; Moskowitz, Samuel M; Rada, Balázs

    2014-08-01

    Cystic fibrosis (CF) airway disease is characterized by Pseudomonas aeruginosa infection and recruitment of neutrophil granulocytes. Neutrophil granule components (myeloperoxidase (MPO), human neutrophil elastase (HNE)), extracellular DNA and P. aeruginosa can all be found in the CF respiratory tract and have all been associated with worsening CF lung function. Pseudomonas-induced formation of neutrophil extracellular traps (NETs) offers a likely mechanism for release of MPO, HNE and DNA from neutrophils. NETs are composed of a DNA backbone decorated with granule proteins like MPO and HNE. Here we sought to examine whether CF clinical isolates of Pseudomonas are capable of inducing NET release from human neutrophil granulocytes. We used two methods to quantify NETs. We modified a previously employed ELISA that detects MPO-DNA complexes and established a new HNE-DNA ELISA. We show that these methods reliably quantify MPO-DNA and HNE-DNA complexes, measures of NET formation. We have found that CF isolates of P. aeruginosa stimulate robust respiratory burst and NET release in human neutrophils. By comparing paired "early" and "late" bacterial isolates obtained from the same CF patient we have found that early isolates induced significantly more NET release than late isolates. Our data support that Pseudomonas-induced NET release represents an important mechanism for release of neutrophil-derived CF inflammatory mediators, and confirm that decreased induction of NET formation is required for long-term adaptation of P. aeruginosa to CF airways.

  13. Trolox reduces the effect of ethanol on acetylcholine-induced contractions and oxidative stress in the isolated rabbit duodenum El Trolox reduce el efecto del etanol sobre las contracciones inducidas a la acetilcolina y el estrés oxidativo en duodeno aislado de conejo

    Diego S. Fagundes

    2011-08-01

    Full Text Available Trolox is a hydrophilic analogue of vitamin E and a free radical scavenger. Ethanol diminishes the amplitude of spontaneous contractions and acetylcholine (ACh-induced contractions in rabbit duodenum. The aim of this work was to study the effect of Trolox on the alterations induced by ethanol on contractility and lipid peroxidation in the duodenum. The duodenal contractility studies in vitro were carried out in an organ bath and the levels of malondialdehyde and 4-hydroxyalkenals (MDA+4-HAD were measured by spectrophotometry. Trolox increased the reduction induced by ethanol on the amplitude of spontaneous contractions in longitudinal muscle but not in circular muscle. Trolox 4 mM decreased the effects of ethanol on ACh-induced contractions and on MDA+4-HDA concentrations. We conclude that Trolox might prevent oxidative stress induced by ethanol in the duodenum.El Trolox es un análogo hidrofílico de la vitamina E y un agente que secuestra radicales libres. El etanol disminuye la amplitud de las contracciones espontáneas y las contracciones inducidas a la acetilcolina en el duodeno de conejo. El objetivo de este trabajo era estudiar el efecto del Trolox en las alteraciones inducidas por el etanol sobre la contractilidad y la peroxidación lipídica en el duodeno. Los estudios de contractilidad duodenal in vitro se realizaron en un baño de órganos y los niveles de MDA+4-HDA se midieron por espectofotometría. El Trolox aumentó la reducción inducida por el etanol sobre la amplitud de las contracciones espontáneas en el músculo longitudinal pero no en el músculo circular de duodeno. El Trolox 4 mM redujo los efectos del etanol sobre las contracciones inducidas a la acetilcolina y sobre las concentraciones de MDA+4-HDA. Se concluye que el Trolox podría prevenir el estrés oxidativo inducido por el etanol en el duodeno.

  14. Protein tyrosine phosphatase non-receptor type 22 modulates NOD2-induced cytokine release and autophagy.

    Marianne R Spalinger

    Full Text Available BACKGROUND: Variations within the gene locus encoding protein tyrosine phosphatase non-receptor type 22 (PTPN22 are associated with the risk to develop inflammatory bowel disease (IBD. PTPN22 is involved in the regulation of T- and B-cell receptor signaling, but although it is highly expressed in innate immune cells, its function in other signaling pathways is less clear. Here, we study whether loss of PTPN22 controls muramyl-dipeptide (MDP-induced signaling and effects in immune cells. MATERIAL & METHODS: Stable knockdown of PTPN22 was induced in THP-1 cells by shRNA transduction prior to stimulation with the NOD2 ligand MDP. Cells were analyzed for signaling protein activation and mRNA expression by Western blot and quantitative PCR; cytokine secretion was assessed by ELISA, autophagosome induction by Western blot and immunofluorescence staining. Bone marrow derived dendritic cells (BMDC were obtained from PTPN22 knockout mice or wild-type animals. RESULTS: MDP-treatment induced PTPN22 expression and activity in human and mouse cells. Knockdown of PTPN22 enhanced MDP-induced activation of mitogen-activated protein kinase (MAPK-isoforms p38 and c-Jun N-terminal kinase as well as canonical NF-κB signaling molecules in THP-1 cells and BMDC derived from PTPN22 knockout mice. Loss of PTPN22 enhanced mRNA levels and secretion of interleukin (IL-6, IL-8 and TNF in THP-1 cells and PTPN22 knockout BMDC. Additionally, loss of PTPN22 resulted in increased, MDP-mediated autophagy in human and mouse cells. CONCLUSIONS: Our data demonstrate that PTPN22 controls NOD2 signaling, and loss of PTPN22 renders monocytes more reactive towards bacterial products, what might explain the association of PTPN22 variants with IBD pathogenesis.

  15. Preconditioning of Carbon Monoxide Releasing Molecule-derived CO Attenuates LPS-induced Activation of HUVEC

    Bingwei Sun, Xiangqian Zou, Yueling Chen, Ping Zhang, Gengsheng Shi

    2008-01-01

    Full Text Available Objective: To investigate the effects and potential mechanisms of preconditioning of tricarbonyldichlororuthenium (III dimer (CORM-2-liberated CO on LPS-induced activation of endothelial cells (HUVEC. Methods: HUVEC were pretreated with CORM-2 at the concentration of 50 or 100μM for 2 hrs, washed and stimulated with LPS (10μg/ml for additional 4 hrs. Activation (oxidative stress of HUVEC was assessed by measuring intracellular oxidation of DHR 123 or nitration of DAF-FM, specific H2O2 and NO fluorochromes, respectively. The expression of HO-1, iNOS (Western blot and ICAM-1 (cell ELISA proteins and activation of inflammation-relevant transcription factor, NF-κB (EMSA were assessed. In addition, PMN adhesion to HUVEC was also assessed. Results: The obtained data indicate that pretreatment of HUVEC with CORM-2 results in: 1 decrease of LPS-induced production of ROS and NO; 2 up-regulation of HO-1 but decrease in iNOS at the protein levels; 3 inhibition of LPS-induced activation of NF-κB; and 4 downregulation of expression of ICAM-1, and this was accompanied by a decrease of PMN adhesion to LPS-stimulated HUVEC. Conclusions: Preconditioning of CO liberated by CORM-2 elicited its anti-inflammatory effects by interfering with the induction of intracellular oxidative stress. In addition, it also supports the notion that CO is a potent inhibitor of iNOS and NF-κB.

  16. Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function.

    Xu, Bin; Li, Yan-Li; Xu, Ming; Yu, Chang-Chun; Lian, Meng-Qiao; Tang, Ze-Yao; Li, Chuan-Xun; Lin, Yuan

    2017-03-06

    Geniposide is an iridoid glycosides purified from the fruit of Gardenia jasminoides Ellis, which is known to have antiinflammatory, anti-oxidative and anti-tumor activities. The present study aimed to investigate the effects of geniposide on experimental rat colitis and to reveal the related mechanisms. Experimental rat colitis was induced by rectal administration of a TNBS solution. The rats were treated with geniposide (25, 50 mg·kg(-1)·d(-1), ig) or with sulfasalazine (SASP, 100 mg·kg(-1)·d(-1), ig) as positive control for 14 consecutive days. A Caco-2 cell monolayer exposed to lipopolysaccharides (LPS) was used as an epithelial barrier dysfunction model. Transepithelial electrical resistance (TER) was measured to evaluate intestinal barrier function. In rats with TNBS-induced colitis, administration of geniposide or SASP significantly increased the TNBS-decreased body weight and ameliorated TNBS-induced experimental colitis and related symptoms. Geniposide or SASP suppressed inflammatory cytokine (TNF-α, IL-1β, and IL-6) release and neutrophil infiltration (myeloperoxidase activity) in the colon. In Caco-2 cells, geniposide (25-100 μmol/L) ameliorated LPS-induced endothelial barrier dysfunction via dose-dependently increasing transepithelial electrical resistance (TER). The results from both in vivo and in vitro studies revealed that geniposide down-regulated NF-κB, COX-2, iNOS and MLCK protein expression, up-regulated the expression of tight junction proteins (occludin and ZO-1), and facilitated AMPK phosphorylation. Both AMPK siRNA transfection and AMPK overexpression abrogated the geniposide-reduced MLCK protein expression, suggesting that geniposide ameliorated barrier dysfunction via AMPK-mediated inhibition of the MLCK pathway. In conclusion, geniposide ameliorated TNBS-induced experimental rat colitis by both reducing inflammation and modulating the disrupted epithelial barrier function via activating the AMPK signaling pathway..

  17. New Insights on Plant Cell Elongation: A Role for Acetylcholine

    Gian-Pietro Di Sansebastiano

    2014-03-01

    Full Text Available We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and acetylcholine treatments after transient expression of chimerical markers of volume-control related compartments such as vacuoles. Here we describe the contribution of auxin and acetylcholine to LeEXPA2 expression regulation and we support the hypothesis that a possible subcellular target of acetylcholine signal is the vesicular transport, shedding some light on the characterization of this small molecule as local mediator in the plant physiological response.

  18. Cadmium-induced calcium release and prostaglandin E[sub 2] production in neonatal mouse calvaria are dependent on cox-2 induction and protein kinase C activation

    Romare, A. (Department of Pharmacology, Faculty of Health Sciences, Univ. of Linkoeping (Sweden)); Lundholm, C.E. (Department of Pharmacology, Univ. of Linkoeping (Sweden) Astra Haessle AB, Regulatory Affairs, Moendal (Sweden))

    The mechanisms by which cadmium (Cd) causes skeletal impairment have not been fully clarified. Release of calcium from neonatal mouse calvaria in organ culture is stimulated by submicromolar concentrations of Cd, an effect that is associated with increased production of prostaglandin E[sub 2] (PGE[sub 2]). The prostaglandin-synthesising enzyme cyclooxygenase (cox) exists in two forms, one constitutive (cox-1) and the other inducible (cox-2). Cox-2 can be induced by mitogenic stimuli and inflammatory cytokines, such as parathyroid hormone (PTH), interleukin-1[alpha] and tumour necrosis factor-[alpha]. Cd potently activates protein kinase C (PKC), which in turn induces cox-2 production in several cell types. Our aim was to determine whether Cd-induced Ca release and PGE[sub 2] production in neonatal mouse calvaria involve induction of cox-2 and, if so, to ascertain whether that effect is mediated by activation of PKC. Cd dose-dependently stimulated Ca release from cultured neonatal mouse calvaria, with a maximal effect at 0.4-0.8 [mu]M. Different sensitivity was observed to Cd-induced Ca release between two breeds of mice suggesting that the susceptibility to Cd may be genetically determined. Dexamethasone (10 [mu]M) added to the culture medium abolished the Ca releasing effect of Cd, an effect not overcome by addition of arachidonic acid (10 [mu]M). The cox-2-selective inhibitors NS-398 and DFU and the less selective inhibitor meloxicam, potently impeded Cd-induced Ca release (IC[sub 50] of 1 nM, 41 nM and 7 nM, respectively) and calvarial production of PGE[sub 2]. Cd-induced and phorbol 12-myristate 13-acetate (PMA; 20 nM)-induced Ca release was inhibited by the PKC inhibitor calphostin C (0.5 [mu]M) and by NS-398. The effects of PMA and Cd on Ca release were not additive, suggesting that both operated via the PKC pathway. We suggest that Cd-induced Ca release from neonatal mouse calvaria in culture depends on induction of cox-2 that occurs via the PKC signalling

  19. Cadmium-induced calcium release and prostaglandin E{sub 2} production in neonatal mouse calvaria are dependent on cox-2 induction and protein kinase C activation

    Romare, A. [Department of Pharmacology, Faculty of Health Sciences, Univ. of Linkoeping (Sweden); Lundholm, C.E. [Department of Pharmacology, Univ. of Linkoeping (Sweden)]|[Astra Haessle AB, Regulatory Affairs, Moendal (Sweden)

    1999-06-01

    The mechanisms by which cadmium (Cd) causes skeletal impairment have not been fully clarified. Release of calcium from neonatal mouse calvaria in organ culture is stimulated by submicromolar concentrations of Cd, an effect that is associated with increased production of prostaglandin E{sub 2} (PGE{sub 2}). The prostaglandin-synthesising enzyme cyclooxygenase (cox) exists in two forms, one constitutive (cox-1) and the other inducible (cox-2). Cox-2 can be induced by mitogenic stimuli and inflammatory cytokines, such as parathyroid hormone (PTH), interleukin-1{alpha} and tumour necrosis factor-{alpha}. Cd potently activates protein kinase C (PKC), which in turn induces cox-2 production in several cell types. Our aim was to determine whether Cd-induced Ca release and PGE{sub 2} production in neonatal mouse calvaria involve induction of cox-2 and, if so, to ascertain whether that effect is mediated by activation of PKC. Cd dose-dependently stimulated Ca release from cultured neonatal mouse calvaria, with a maximal effect at 0.4-0.8 {mu}M. Different sensitivity was observed to Cd-induced Ca release between two breeds of mice suggesting that the susceptibility to Cd may be genetically determined. Dexamethasone (10 {mu}M) added to the culture medium abolished the Ca releasing effect of Cd, an effect not overcome by addition of arachidonic acid (10 {mu}M). The cox-2-selective inhibitors NS-398 and DFU and the less selective inhibitor meloxicam, potently impeded Cd-induced Ca release (IC{sub 50} of 1 nM, 41 nM and 7 nM, respectively) and calvarial production of PGE{sub 2}. Cd-induced and phorbol 12-myristate 13-acetate (PMA; 20 nM)-induced Ca release was inhibited by the PKC inhibitor calphostin C (0.5 {mu}M) and by NS-398. The effects of PMA and Cd on Ca release were not additive, suggesting that both operated via the PKC pathway. We suggest that Cd-induced Ca release from neonatal mouse calvaria in culture depends on induction of cox-2 that occurs via the PKC signalling

  20. Presynaptically released Cbln1 induces dynamic axonal structural changes by interacting with GluD2 during cerebellar synapse formation.

    Ito-Ishida, Aya; Miyazaki, Taisuke; Miura, Eriko; Matsuda, Keiko; Watanabe, Masahiko; Yuzaki, Michisuke; Okabe, Shigeo

    2012-11-08

    Differentiation of pre- and postsynaptic sites is coordinated by reciprocal interaction across synaptic clefts. At parallel fiber (PF)-Purkinje cell (PC) synapses, dendritic spines are autonomously formed without PF influence. However, little is known about how presynaptic structural changes are induced and how they lead to differentiation of mature synapses. Here, we show that Cbln1 released from PFs induces dynamic structural changes in PFs by a mechanism that depends on postsynaptic glutamate receptor delta2 (GluD2) and presynaptic neurexin (Nrx). Time-lapse imaging in organotypic culture and ultrastructural analyses in vivo revealed that Nrx-Cbln1-GluD2 signaling induces PF protrusions that often formed circular structures and encapsulated PC spines. Such structural changes in PFs were associated with the accumulation of synaptic vesicles and GluD2, leading to formation of mature synapses. Thus, PF protrusions triggered by Nrx-Cbln1-GluD2 signaling may promote bidirectional maturation of PF-PC synapses by a positive feedback mechanism.

  1. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages.

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-13

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD(+) has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD(+) homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD(+) levels and expression levels of NAD(+) homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD(+) levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD(+) synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD(+) homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD(+) levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD(+). The agonist-induced rise in NAD(+) shows striking parallels to well-known second messengers and raises the possibility that NAD(+) is acting in a similar manner in this model.

  2. Stress Alone or associated with Ethanol Induces Prostanoid Release in Rat Aorta via α2-Adrenoceptor

    Baptista, Rafaela de Fátima Ferreira [Departamento de Farmacologia - Instituto de Biociências - Universidade Estadual Paulista - UNESP - São Paulo, SP (Brazil); Laboratório de Farmacologia - Faculdade de Medicina de Marília - FAMEMA, SP (Brazil); Taipeiro, Elane de Fátima [Laboratório de Farmacologia - Faculdade de Medicina de Marília - FAMEMA, SP (Brazil); Queiroz, Regina Helena Costa [Departamento de Análise Clínica - Toxicológica e Ciência de Alimentos - Faculdade de Ciências Farmacêuticas - USP, São Paulo, SP (Brazil); Chies, Agnaldo Bruno [Departamento de Farmacologia - Instituto de Biociências - Universidade Estadual Paulista - UNESP - São Paulo, SP (Brazil); Laboratório de Farmacologia - Faculdade de Medicina de Marília - FAMEMA, SP (Brazil); Cordellini, Sandra, E-mail: cordelli@ibb.unesp.br [Departamento de Farmacologia - Instituto de Biociências - Universidade Estadual Paulista - UNESP - São Paulo, SP (Brazil)

    2014-03-15

    Stress and ethanol are both, independently, important cardiovascular risk factors. To evaluate the cardiovascular risk of ethanol consumption and stress exposure, isolated and in association, in male adult rats. Rats were separated into 4 groups: Control, ethanol (20% in drinking water for 6 weeks), stress (immobilization 1h day/5 days a week for 6 weeks) and stress/ethanol. Concentration-responses curves to noradrenaline - in the absence and presence of yohimbine, L-NAME or indomethacin - or to phenylephrine were determined in thoracic aortas with and without endothelium. EC50 and maximum response (n=8-12) were compared using two-way ANOVA/Bonferroni method. Either stress or stress in association with ethanol consumption increased the noradrenaline maximum responses in intact aortas. This hyper-reactivity was eliminated by endothelium removal or by the presence of either indomethacin or yohimbine, but was not altered by the presence of L-NAME. Meanwhile, ethanol consumption did not alter the reactivity to noradrenaline. The phenylephrine responses in aortas both with and without endothelium also remained unaffected regardless of protocol. Chronic stress increased rat aortic responses to noradrenaline. This effect is dependent upon the vascular endothelium and involves the release of vasoconstrictor prostanoids via stimulation of endothelial alpha-2 adrenoceptors. Moreover, chronic ethanol consumption appeared to neither influence noradrenaline responses in rat thoracic aorta, nor did it modify the increase of such responses observed as a consequence of stress exposure.

  3. Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene.

    Diego H Sanchez

    2014-11-01

    Full Text Available Epigenetic mechanisms suppress the transcription of transposons and DNA repeats; however, this suppression can be transiently released under prolonged heat stress. Here we show that the Arabidopsis thaliana imprinted gene SDC, which is silent during vegetative growth due to DNA methylation, is activated by heat and contributes to recovery from stress. SDC activation seems to involve epigenetic mechanisms but not canonical heat-shock perception and signaling. The heat-mediated transcriptional induction of SDC occurs particularly in young developing leaves and is proportional to the level of stress. However, this occurs only above a certain window of absolute temperatures and, thus, resembles a thermal-sensing mechanism. In addition, the re-silencing kinetics during recovery can be entrained by repeated heat stress cycles, suggesting that epigenetic regulation in plants may conserve memory of stress experience. We further demonstrate that SDC contributes to the recovery of plant biomass after stress. We propose that transcriptional gene silencing, known to be involved in gene imprinting, is also co-opted in the specific tuning of SDC expression upon heat stress and subsequent recovery. It is therefore possible that dynamic properties of the epigenetic landscape associated with silenced or imprinted genes may contribute to regulation of their expression in response to environmental challenges.

  4. ATP Releasing Connexin 30 Hemichannels Mediate Flow-Induced Calcium Signaling in the Collecting Duct

    Per eSvenningsen

    2013-10-01

    Full Text Available ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC and AQP2. Recently, we have shown that connexin (Cx 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30-/- mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca2+]i signaling in the CD. Cortical CDs (CCDs from wild type and Cx30-/- mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca2+]i in wild type CCDs. This response was blunted in Cx30-/- CCDs ([Ca2+]i increased only 1.2-fold, p

  5. Rab3A deletion selectively reduces spontaneous neurotransmitter release at the mouse neuromuscular synapse.

    Sons, Michèle S; Plomp, Jaap J

    2006-05-17

    Rab3A is a synaptic vesicle-associated GTP-binding protein thought to be involved in modulation of presynaptic transmitter release through regulation of vesicle trafficking and membrane fusion. Electrophysiological studies at central nervous system synapses of Rab3A null-mutant mice have indicated that nerve stimulation-evoked transmitter release and its short- and long-term modulation are partly dependent on Rab3A, whereas spontaneous uniquantal release is completely independent of it. Here, we studied the acetylcholine (ACh) release at the neuromuscular junction (NMJ) of diaphragm and soleus muscles from Rab3A-deficient mice with intracellular microelectrode methods. Surprisingly, we found 20-40% reduction of spontaneous ACh release but completely intact nerve action potential-evoked release at both high- and low-rate stimulation and during recovery from intense release. The ACh release induced by hypertonic medium was also unchanged, indicating that the pool of vesicles for immediate release is unaltered at the Rab3A-deficient NMJ. These results indicate a selective role of Rab3A in spontaneous transmitter release at the NMJ which cannot or only partly be taken over by the closely related Rab3B, Rab3C, or Rab3D isoforms when Rab3A is deleted. It has been hypothesized that Rab3A mutation underlies human presynaptic myasthenic syndromes, in which severely reduced nerve action potential-evoked ACh release at the NMJ causes paralysis. Our observation that Rab3A deletion does not reduce evoked ACh release at any stimulation rate at the mouse NMJ, argues against this hypothesis.

  6. Revisiting the endocytosis of the m2 muscarinic acetylcholine receptor.

    Ockenga, Wymke; Tikkanen, Ritva

    2015-05-12

    The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimulation requires clathrin. The expression of various dominant-negative dynamin-2 mutants and the use of chemical inhibitors of dynamin function revealed that dynamin expression and membrane localization as such appear to be necessary for M2 endocytosis, whereas dynamin GTPase activity is not required for this process. Based on the data from the present and from previous studies, we propose that M2 endocytosis takes place by means of an atypical clathrin-mediated pathway that may involve a specific subset of clathrin-coated pits/vesicles.

  7. Revisiting the Endocytosis of the M2 Muscarinic Acetylcholine Receptor

    Wymke Ockenga

    2015-05-01

    Full Text Available The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimulation requires clathrin. The expression of various dominant-negative dynamin-2 mutants and the use of chemical inhibitors of dynamin function revealed that dynamin expression and membrane localization as such appear to be necessary for M2 endocytosis, whereas dynamin GTPase activity is not required for this process. Based on the data from the present and from previous studies, we propose that M2 endocytosis takes place by means of an atypical clathrin-mediated pathway that may involve a specific subset of clathrin-coated pits/vesicles.

  8. The utilization of adenosine triphosphate in rat mast cells during histamine release induced by anaphylactic reaction and compound 48/80

    Johansen, Torben; Chakravarty, N

    1975-01-01

    The ATP content of rat peritoneal mast cells has been studied in relation to histamine release induced by compound 48/80 and antigen-antibody (anaphylactic) reaction in vitro. When the ATP content of actively sensitized mast cells was reduced to different levels by oligomycin, a good correlation...... was obtained between the ATP levels and the amounts of histamine released by the anaphylactic reaction. A similar linear relation has previously been demonstrated between the ATP levels of mast cells and histamine release induced by compound 48/80. The ATP content of mast cells was also studied at different...... intervals after the exposure of the cells to antigen or compound 48/80. No significant change in the ATP content was observed in untreated mast cells during the short period when histamine release occurs. If, however, the mast cells were preincubated with oligomycin or 2-deoxyglucose to reduce the rate...

  9. Energy Release Rate in hydraulic fracture: can we neglect an impact of the hydraulically induced shear stress?

    Wrobel, Michal; Piccolroaz, Andrea

    2016-01-01

    A novel hydraulic fracture (HF) formulation is introduced which accounts for the hydraulically induced shear stress at the crack faces. It utilizes a general form of the elasticity operator alongside a revised fracture propagation condition based on the critical value of the energy release rate. It is shown that the revised formulation describes the underlying physics of HF in a more accurate way and is in agreement with the asymptotic behaviour of the linear elastic fracture mechanics. A number of numerical simulations by means of the universal HF algorithm previously developed in Wrobel & Mishuris (2015) are performed in order to: i) compare the modified HF formulation with its classic counterpart and ii) investigate the peculiarities of the former. Computational advantages of the revised HF model are demonstrated. Asymptotic estimations of the main solution elements are provided for the cases of small and large toughness. The modified formulation opens new ways to analyse the physical phenomenon of HF ...

  10. A whole blood in vitro cytokine release assay with aqueous monoclonal antibody presentation for the prediction of therapeutic protein induced cytokine release syndrome in humans.

    Wolf, Babette; Morgan, Hannah; Krieg, Jennifer; Gani, Zaahira; Milicov, Adriana; Warncke, Max; Brennan, Frank; Jones, Stewart; Sims, Jennifer; Kiessling, Andrea

    2012-12-01

    The administration of several monoclonal antibodies (mAbs) to humans has been associated with acute adverse events characterized by clinically significant release of cytokines in the blood. The limited predictive value of toxicology species in this field has triggered intensive research to establish human in vitro assays using peripheral blood mononuclear cells or blood to predict cytokine release in humans. A thorough characterization of these assays is required to understand their predictive value for hazard identification and risk assessment in an optimal manner, and to highlight potential limitations of individual assay formats. We have characterized a whole human blood cytokine release assay with only minimal dilution by the test antibodies (95% v/v blood) in aqueous presentation format, an assay which has so far received less attention in the scientific world with respect to the evaluation of its suitability to predict cytokine release in humans. This format was compared with a human PBMC assay with immobilized mAbs presentation already well-characterized by others. Cytokine secretion into plasma or cell culture supernatants after 24h incubation with the test mAbs (anti-CD28 superagonist TGN1412-like material (TGN1412L), another anti-CD28 superagonistic mAb (ANC28.1), a T-cell depleting mAb (Orthoclone™), and a TGN1412 isotype-matched control (Tysabri™) not associated with clinically-relevant cytokine release) was detected by a multiplex assay based on electrochemiluminescent excitation. We provide proof that this whole blood assay is a suitable new method for hazard identification of safety-relevant cytokine release in the clinic based on its ability to detect the typical cytokine signatures found in humans for the tested mAbs and on a markedly lower assay background and cytokine release with the isotype-matched control mAb Tysabri™ - a clear advantage over the PBMC assay. Importantly, quantitative and qualitative differences in the relative cytokine

  11. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice.

    Wang, Yungang; Tian, Jie; Tang, Xinyi; Rui, Ke; Tian, Xinyu; Ma, Jie; Ma, Bin; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2016-03-29

    Myeloid-derived suppressor cells (MDSC) have been described in inflammatory bowel disease (IBD), but their role in the disease remains controversial. We sought to define the effect of granulocytic MDSC-derived exosomes (G-MDSC exo) in dextran sulphate sodium (DSS)-induced murine colitis. G-MDSC exo-treated mice showed greater resistance to colitis, as reflected by lower disease activity index, decreased inflammatory cell infiltration damage. There was a decrease in the proportion of Th1 cells and an increase in the proportion of regulatory T cells (Tregs) in mesenteric lymph nodes (MLNs) from G-MDSC exo-treated colitis mice. Moreover, lower serum levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α were detected in G-MDSC exo-treated colitis mice. Interestingly, inhibition of arginase (Arg)-1 activity in G-MDSC exo partially abrogated the spontaneous improvement of colitis. In addition, G-MDSC exo could suppress CD4+ T cell proliferation and IFN-γ secretion in vitro and inhibit the delayed-type hypersensitivity (DTH) response, and these abilities were associated with Arg-1 activity. Moreover, G-MDSC exo promoted the expansion of Tregs in vitro. Taken together, these results suggest that G-MDSC exo attenuate DSS-induced colitis through inhibiting Th1 cells proliferation and promoting Tregs expansion.

  12. Radiation-induced defects, energy storage and release in nitrogen solids

    Savchenko, E.; Khyzhniy, I.; Uyutnov, S.; Bludov, M.; Barabashov, A.; Gumenchuk, G.; Bondybey, V.

    2017-02-01

    New trends in the study of radiation effects in nitrogen solids with a focus on the defect-induced processes are presented. An electron beam of subthreshold energy was used to generate radiation defects via electronic subsystem. Experimental techniques developed enabled us to detect neutral and charged defects of both signs. Defect production and desorption were monitored using optical and current emission spectroscopy: cathodoluminescence CL, thermally stimulated luminescence TSL and exoelectron emission TSEE along with the detection of postdesorption. Our results show stabilization and accumulation of radiation defects – ionic centres of both signs (N4 +, N3 +, N3 -), trapped electrons and radicals (N, N3). The neutralization reactions: N4 ++e-→N4 *→N2 *(a‘1Σu -)+N2 *(a‘1Σu -) +ΔE 1 →N2 +N2 +2hν+ΔE 2 and N3 ++e-→N*(2D)+N2(1Σg +)+ΔE 3→N(4S)+N2(1Σg +)+h γ+ΔE 3 are shown to be the basis of defect production and anomalous low-temperature post-desorption ALTpD. The part played by pre-existing and radiation-induced defects in energy storage is discussed.

  13. Modal gating of muscle nicotinic acetylcholine receptors

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that

  14. Leukotriene B4 induces release of antimicrobial peptides in lungs of virally infected mice.

    Gaudreault, Eric; Gosselin, Jean

    2008-05-01

    Leukotriene B(4) (LTB(4)) is a lipid mediator of inflammation that was recently shown to exert antiviral activities. In this study, we demonstrate that the release of antimicrobial proteins by neutrophils contribute to an early host defense against influenza virus infection in vitro as well as in vivo. Daily i.v. treatments with LTB(4) lead to a significant decrease in lung viral loads at day 5 postinfection in mice infected with influenza A virus compared with the placebo-treated group. This reduction in viral load was not present in mice deficient in the high-affinity LTB(4) receptor. Viral clearance in lungs was associated with up-regulated presence of antimicrobial peptides such as beta-defensin-3, members of the mouse eosinophil-related RNase family, and the mouse cathelicidin-related antimicrobial peptide. Our results also indicate that neutrophils are important in the antiviral effect of LTB(4). Viral loads in neutrophil-depleted mice were not diminished by LTB(4) administration, and a substantial reduction in the presence of murine cathelicidin-related antimicrobial peptide and the murine eosinophil-related RNase family in lung tissue was observed. Moreover, in vitro treatment of human neutrophil cultures with LTB(4) led rapidly to the secretion of the human cathelicidin LL-37 and eosinophil-derived neurotoxin, known as antiviral peptides. Pretreatment of cell cultures with specific LTB(4) receptor antagonists clearly demonstrate the implication of the high-affinity LTB(4) receptor in the LTB(4)-mediated activity. Together, these results demonstrate the importance of neutrophils and the secretion of antimicrobial peptides during the early immune response mediated by LTB(4) against a viral pathogen.

  15. Temperature-induced increase in methane release from peat bogs: a mesocosm experiment.

    van Winden, Julia F; Reichart, Gert-Jan; McNamara, Niall P; Benthien, Albert; Damsté, Jaap S Sinninghe

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs.

  16. Temperature-induced increase in methane release from peat bogs: a mesocosm experiment.

    Julia F van Winden

    Full Text Available Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs. Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs.

  17. Tacaribe virus but not junin virus infection induces cytokine release from primary human monocytes and macrophages.

    Allison Groseth

    Full Text Available The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV and the hemorrhagic fever-causing Junin virus (JUNV, in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-β and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation.

  18. Nitric oxide-releasing sulindac is a novel skin cancer chemopreventive agent for UVB-induced photocarcinogenesis.

    Chaudhary, Sandeep C; Singh, Tripti; Kapur, Puneet; Weng, Zhiping; Arumugam, Aadithya; Elmets, Craig A; Kopelovich, Levy; Athar, Mohammad

    2013-05-01

    Nitric oxide (NO)-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) which have been synthesized to reduce gastro-intestinal and cardiovascular toxicities of NSAIDs, possess anti-proliferative, pro-apoptotic and anti-cancer activities. Here, we show that NO-sulindac inhibited UVB-induced skin tumorigenesis in SKH-1 hairless mice. Topical application of NO-sulindac reduced tumor incidence, number (psulindac in this study. A reduced expression of PCNA and cyclin D1 associated with the dampening of cell cycle progression was observed. The mechanism of this inhibition was related to the reduction in UVB-induced Notch signaling pathway. UVB-induced inflammatory responses were diminished by NO-sulindac as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases Erk1/2, p38 and JNK1/2. In this regard, NO-sulindac also inhibited NFκB by enhancing IκBα as evidenced by the reduced expression of iNOS and COX-2, the direct NFκB transcription target proteins. NO-sulindac significantly diminished the progression of benign lesions to invasive carcinomas by suppressing the tumor aggressiveness and retarding epithelial-mesenchymal transition. A marked decrease in the expression of mesenchymal markers such as Fibronectin, N-cadherin, SNAI, Slug and Twist and an increase in epithelial cell polarity marker E-cadherin were noted in NO-sulindac-treated tumors. Our data suggest that NO-sulindac is a potent inhibitor of UVB-induced skin carcinogenesis and acts by targeting proliferation-regulatory pathways.

  19. Fungus induces the release of IL- 8 in human corneal epithelial cells, via Dectin-1-mediated protein kinase C pathways

    Xu-Dong; Peng; Gui-Qiu; Zhao; Jing; Lin; Nan; Jiang; Qiang; Xu; Cheng-Cheng; Zhu; Jian-Qiu; Qu; Lin; Cong; Hui; Li

    2015-01-01

    AIM: To identify whether Aspergillus fumigatus(A.fumigatus) hyphae antigens induced the release of interleukin-8(IL-8) in anti-fungal innate immunity of cultured human corneal epithelial cells(HCECs) and determine the involvement of intracellular signalling pathways. METHODS: HCECs were treated with A. fumigatus hyphae antigens with different concentrations and time.The cytoplasmic calcium of HCECs were assessed by fluorescence imaging. Western blot was used to detect the expression of Ca2 +-dependent protein kinase C(PKC). The IL-8 levels were determined by specific human IL-8 enzyme-linked immunosorbent assay(ELISA) and reverse transcriptase polymerase chain reaction(RT-PCR). Using a series of pharmacological inhibitors, we examined the upstream signalling pathway responsible for IL-8 expression in response to A.fumigatus hyphae antigens. RESULTS: Cells exposed to A. fumigatus hyphae antigens showed higher level of IL-8 m RNA expression and protein production. We demonstrated here that stimulation of HCECs with A. fumigatus hyphae triggers an intracellular Ca2 +flux and results in the activation of Ca2 +-dependent PKC(α, βⅠ and βⅡ) which can be attenuated by pre-treatment of cells with laminarin,suggesting that Dectin-1 signals pathway induced cytoplasmic calcium and influence the activation of PKC in HCECs. Inhibitors of Ca2 +-dependent PKC(Ro-31-8220 and Go6976) significantly abolished hyphae-induced expression of IL-8.CONCLUSION: Our findings suggest that A. fumigatushyphae-induced IL-8 expression was regulated by the activation of Dectin-1-mediated Ca2 +-dependent PKC in HCECs.

  20. Trait anger expressiveness and pain-induced beta-endorphin release: support for the opioid dysfunction hypothesis.

    Bruehl, Stephen; Chung, Ok Y; Burns, John W; Diedrich, Laura

    2007-08-01

    The anger management styles of anger-in (inhibition) and anger-out (direct expression) are positively associated with pain responsiveness. Opioid blockade studies suggest that hyperalgesic effects of trait anger-out, but not those of trait anger-in, are mediated in part by opioid analgesic system dysfunction. The current study tested the opioid dysfunction hypothesis of anger-out using an alternative index of opioid function: pain-induced changes in plasma endogenous opioids. Plasma beta-endorphin (BE) was assessed at rest and again following exposure to three laboratory acute pain tasks (finger pressure, ischemic, and thermal) in 14 healthy controls and 13 chronic low back pain (LBP) subjects. As expected, acute pain ratings correlated positively with measures of anger-in (both groups) and anger-out (LBP group; p'spain-induced increases in BE were associated with significantly lower pain ratings in both groups (p'sanger-out significantly predicted smaller pain-induced BE increases (p.10). Anger-in did not display significant main or interaction effects on pain-induced BE changes (p's>.10). The significant association between anger-out and BE release partially mediated the hyperalgesic effects of anger-out on pain unpleasantness, and was not attenuated by statistical control of general negative affect. This suggests unique associations with expressive anger regulation. Elevated trait anger-out therefore appears to be associated with opioid analgesic system dysfunction, whether it is indexed by responses to opioid blockade or by examining circulating endogenous opioid levels. Possible "statextrait" interactions on these anger-related opioid system differences are discussed.

  1. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  2. Prevention of infection after induced abortion: release date October 2010: SFP guideline 20102.

    Achilles, Sharon L; Reeves, Matthew F

    2011-04-01

    One known complication of induced abortion is upper genital tract infection, which is relatively uncommon in the current era of safe, legal abortion. Currently, rates of upper genital tract infection in the setting of legal induced abortion in the United States are generally less than 1%. Randomized controlled trials support the use of prophylactic antibiotics for surgical abortion in the first trimester. For medical abortion, treatment-dose antibiotics may lower the risk of serious infection. However, the number-needed-to-treat is high. Consequently, the balance of risk and benefits warrants further investigation. Perioperative oral doxycycline given up to 12 h before a surgical abortion appears to effectively reduce infectious risk. Antibiotics that are continued after the procedure for extended durations meet the definition for a treatment regimen rather than a prophylactic regimen. Prophylactic efficacy of antibiotics begun after abortion has not been demonstrated in controlled trials. Thus, the current evidence supports pre-procedure but not post-procedure antibiotics for the purpose of prophylaxis. No controlled studies have examined the efficacy of antibiotic prophylaxis for induced surgical abortion beyond 15 weeks of gestation. The risk of infection is not altered when an intrauterine device is inserted immediately post-procedure. The presence of Chlamydia trachomatis, Neisseria gonorrhoeae or acute cervicitis carries a significant risk of upper genital tract infection; this risk is significantly reduced with antibiotic prophylaxis. Women with bacterial vaginosis (BV) also have an elevated risk of post-procedural infection as compared with women without BV; however, additional prophylactic antibiotics for women with known BV has not been shown to reduce their risk further than with use of typical pre-procedure antibiotic prophylaxis. Accordingly, evidence to support pre-procedure screening for BV is lacking. Neither povidone-iodine nor chlorhexidine have

  3. Staphylococcus epidermidis Biofilm-Released Cells Induce a Prompt and More Marked In vivo Inflammatory-Type Response than Planktonic or Biofilm Cells

    França, Angela; Pérez-Cabezas, Begoña; Correia, Alexandra; Pier, Gerald B.; Cerca, Nuno; Vilanova, Manuel

    2016-01-01

    Staphylococcus epidermidis biofilm formation on indwelling medical devices is frequently associated with the development of chronic infections. Nevertheless, it has been suggested that cells released from these biofilms may induce severe acute infections with bacteraemia as one of its major associated clinical manifestations. However, how biofilm-released cells interact with the host remains unclear. Here, using a murine model of hematogenously disseminated infection, we characterized the interaction of cells released from S. epidermidis biofilms with the immune system. Gene expression analysis of mouse splenocytes suggested that biofilm-released cells might be particularly effective at activating inflammatory and antigen presenting cells and inducing cellular apoptosis. Furthermore, biofilm-released cells induced a higher production of pro-inflammatory cytokines, in contrast to mice infected with planktonic cells, even though these had a similar bacterial load in livers and spleens. Overall, these results not only provide insights into the understanding of the role of biofilm-released cells in S. epidermidis biofilm-related infections and pathogenesis, but may also help explain the relapsing character of these infections. PMID:27729907

  4. Different roles for non-receptor tyrosine kinases in arachidonate release induced by zymosan and Staphylococcus aureus in macrophages

    Sundler Roger

    2006-05-01

    Full Text Available Abstract Background Yeast and bacteria elicit arachidonate release in macrophages, leading to the formation of leukotrienes and prostaglandins, important mediators of inflammation. Receptors recognising various microbes have been identified, but the signalling pathways are not entirely understood. Cytosolic phospholipase A2 is a major down-stream target and this enzyme is regulated by both phosphorylation and an increase in intracellular Ca2+. Potential signal components are MAP kinases, phosphatidylinositol 3-kinase and phospholipase Cγ2. The latter can undergo tyrosine phosphorylation, and Src family kinases might carry out this phosphorylation. Btk, a Tec family kinase, could also be important. Our aim was to further elucidate the role of Src family kinases and Btk. Methods Arachidonate release from murine peritoneal macrophages was measured by prior radiolabeling. Furthermore, immunoprecipitation and Western blotting were used to monitor changes in activity/phosphorylation of intermediate signal components. To determine the role of Src family kinases two different inhibitors with broad specificity (PP2 and the Src kinase inhibitor 1, SKI-1 were used as well as the Btk inhibitor LFM-A13. Results Arachidonate release initiated by either Staphylococcus aureus or yeast-derived zymosan beads was shown to depend on members of the Src kinase family as well as Btk. Src kinases were found to act upstream of Btk, phosphatidylinositol 3-kinase, phospholipase Cγ2 and the MAP kinases ERK and p38, thereby affecting all branches of the signalling investigated. In contrast, Btk was not involved in the activation of the MAP-kinases. Since the cytosolic phospholipase A2 in macrophages is regulated by both phosphorylation (via ERK and p38 and an increase in intracellular Ca2+, we propose that members of the Src kinase family are involved in both types of regulation, while the role of Btk may be restricted to the latter type. Conclusion Arachidonate release

  5. Escitalopram prolonged fear induced by simulated public speaking and released hypothalamic-pituitary-adrenal axis activation.

    Garcia-Leal, C; Del-Ben, C M; Leal, F M; Graeff, F G; Guimarães, F S

    2010-05-01

    Simulated public speaking (SPS) test is sensitive to drugs that interfere with serotonin-mediated neurotransmission and is supposed to recruit neural systems involved in panic disorder. The study was aimed at evaluating the effects of escitalopram, the most selective serotonin-selective reuptake inhibitor available, in SPS. Healthy males received, in a double-blind, randomized design, placebo (n = 12), 10 (n = 17) or 20 (n = 14) mg of escitalopram 2 hours before the test. Behavioural, autonomic and neuroendocrine measures were assessed. Both doses of escitalopram did not produce any effect before or during the speech but prolonged the fear induced by SPS. The test itself did not significantly change cortisol and prolactin levels but under the higher dose of escitalopram, cortisol and prolactin increased immediately after SPS. This fear-enhancing effect of escitalopram agrees with previously reported results with less selective serotonin reuptake inhibitors and the receptor antagonist ritanserin, indicating that serotonin inhibits the fear of speaking in public.

  6. [Antagonistic effect of gingerols against TNF-α release, ROS overproduction and RIP3 expression increase induced by lectin from Pinellia ternata].

    Yu, Hong-li; Mao, Shan-hu; Zhao, Teng-fei; Wu, Hao; Pan, Yao-zong; Shu, Chen-yan

    2015-09-01

    To explore the antagonistic effect of gingerols against the inflammation induced by lectin from Pinellia ternata. In this study, ELISA method was used to determine the effect of different extracts from gingerols on the release of inflammatory factor TNF-α from macrophages induced by lectin from P. ternata. The fluorescence probe was used to determine the effect of gingerols on the changes in ROS of macrophages induced by lectin from P. ternata. The western-blot method was applied to study the effect of gingerols on the increase in expression of cell receptor interacting protein RIP3 in macrophages induced by lectin from P. ternata. The scanning electron microscope (SEM) was used to study the effect of gingerols on morphological changes in macrophages induced by lectin from P. ternata. According to the results, gingerols can significantly inhibit the release of inflammatory factor from macrophages induced by lectin from P. ternata, ROS overproduction and increase in RIP3 expression. SEM results showed that gingerols can inhibit the cytomorphosis and necrocytosis induced by lectin from P. ternata. Fresh ginger's detoxication may be related to gingerols' effects in inhibiing release of inflammatory factor, ROS overproduction and increase in RIP3 expression caused by macrophages induced by lectin from P. ternata, which are mainly inflammatory development.

  7. Differential stress-induced alterations of colonic corticotropin-releasing factor receptors in the Wistar Kyoto rat.

    o'malley, D; Julio-Pieper, M; Gibney, S M; Gosselin, R D; Dinan, T G; Cryan, J F

    2010-03-01

    BACKGROUND A growing body of data implicates increased life stresses with the initiation, persistence and severity of symptoms associated with functional gut disorders such as irritable bowel syndrome (IBS). Activation of central and peripheral corticotropin-releasing factor (CRF) receptors is key to stress-induced changes in gastrointestinal (GI) function. METHODS This study utilised immunofluorescent and Western blotting techniques to investigate colonic expression of CRF receptors in stress-sensitive Wistar Kyoto (WKY) and control Sprague Dawley (SD) rats. KEY RESULTS No intra-strain differences were observed in the numbers of colonic CRFR1 and CRFR2 positive cells. Protein expression of functional CRFR1 was found to be comparable in control proximal and distal colon samples. Sham levels of CRFR1 were also similar in the proximal colon but significantly higher in WKY distal colons (SD: 0.38 +/- 0.14, WKY: 2.06 +/- 0.52, P CRF receptor expression and further support a role for local colonic CRF signalling in stress-induced changes in GI function.

  8. Effects of shakuyakukanzoto and its absorbed components on twitch contractions induced by physiological Ca2+ release in rat skeletal muscle.

    Kaifuchi, Noriko; Omiya, Yuji; Kushida, Hirotaka; Fukutake, Miwako; Nishimura, Hiroaki; Kase, Yoshio

    2015-07-01

    Shakuyakukanzoto (SKT) is a kampo medicine composed of equal proportions of Glycyrrhizae radix (G. radix) and Paeoniae radix (P. radix). A double-blind study reported that SKT significantly ameliorated painful muscle cramp in cirrhosis patients without the typical severe side effects of muscle weakness and central nervous system (CNS) depression. Previous basic studies reported that SKT and its active components induced relaxation by a direct action on skeletal muscle and that SKT did not depress CNS functions; however, why SKT has a lower incidence of muscle weakness remains unknown. In the present study, we investigated which components are absorbed into the blood of rats after a single oral administration of SKT to identify the active components of SKT. We also investigated the effects of SKT and its components on the twitch contraction induced by physiological Ca(2+) release. Our study demonstrated that SKT and five G. radix isolates, which are responsible for the antispasmodic effect of SKT, did not inhibit the twitch contraction in contrast to dantrolene sodium, a direct-acting peripheral muscle relaxant, indicating that the mechanisms of muscle contraction of SKT and dantrolene in skeletal muscle differ. These findings suggest that SKT does not reduce the contractile force in skeletal muscle under physiological conditions, i.e., SKT may have a low risk of causing muscle weakness in clinical use. Considering that most muscle relaxants and anticonvulsants cause various harmful side effects such as weakness and CNS depression, SKT appears to have a benign safety profile.

  9. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

    Majumdar, Arnab; Arold, Stephen P; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2012-03-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes.

  10. Massage-induced release of subcutaneously injected liposome-encapsulated drugs to the blood.

    Trubetskoy, V S; Whiteman, K R; Torchilin, V P; Wolf, G L

    1998-01-01

    Liposome-based, externally regulated drug delivery system is described in which liposome-encapsulated bioactive molecules can be delivered into the blood in response to simple mechanical action. Without any mechanical stimulation, subcutaneously injected 200 mm liposomes are usually trapped in the interstitial for prolonged time. However, upon lymphotropic stimulation (such as manual massage of the injection site), the liposomes can be mobilized into the blood via lymphatic pathway. Up to 40% of the injection dose can be delivered to the blood via lymphatic pathway from the injection site at the rabbit's front paw dorsum during 5 min manual massage cycle. Using vasoconstricting hormone angiotensin II as liposome-encapsulated pharmacological marker, we demonstrated that physiological response to encapsulated drug (average blood pressure increase) can also induced and modulated by massage. Massage itself was found to have no effect on the blood pressure. Modification of liposome surface with polyethylene glycol was found to increase blood localization of the liposome-encapsulated drug presumably due to decreasing the uptake of the drug carrier by lymph node macrophages. Pressure-dependent gaps between lymphatic capillary endothelial cells are thought to play the role of the size discrimination device allowing larger particulates into the lymphatics and, eventually into the blood after increase of interstitial pressure caused by injection site massage.

  11. Insulin induces the release of vasodilator compounds from platelets by a nitric oxide-G kinase-VAMP-3-dependent pathway.

    Randriamboavonjy, Voahanginirina; Schrader, Jürgen; Busse, Rudi; Fleming, Ingrid

    2004-02-01

    Insulin-induced vasodilatation is sensitive to nitric oxide (NO) synthase (NOS) inhibitors. However, insulin is unable to relax isolated arteries or to activate endothelial NOS in endothelial cells. Since insulin can enhance platelet endothelial NOS activity, we determined whether insulin-induced vasodilatation can be attributed to a NO-dependent, platelet-mediated process. Insulin failed to relax endothelium-intact rings of porcine coronary artery. The supernatant from insulin-stimulated human platelets induced complete relaxation, which was prevented by preincubation of platelets with a NOS inhibitor, the soluble guanylyl cyclase inhibitor, NS 2028, or the G kinase inhibitor, KT 5823, and was abolished by an adenosine A2A receptor antagonist. Insulin induced the release of adenosine trisphosphate (ATP), adenosine, and serotonin from platelet-dense granules in a NO-dependent manner. This response was not detected using insulin-stimulated platelets from endothelial NOS-/- mice, although a NO donor elicited ATP release. Insulin-induced ATP release from human platelets correlated with the association of syntaxin 2 with the vesicle-associated membrane protein 3 but was not associated with the activation of alphaIIbbeta3 integrin. Thus, insulin elicits the release of vasoactive concentrations of ATP and adenosine from human platelets via a NO-G kinase-dependent signaling cascade. The mechanism of dense granule secretion involves the G kinase-dependent association of syntaxin 2 with vesicle-associated membrane protein 3.

  12. Insulin Induces the Release of Vasodilator Compounds From Platelets by a Nitric Oxide–G Kinase–VAMP-3–dependent Pathway

    Randriamboavonjy, Voahanginirina; Schrader, Jürgen; Busse, Rudi; Fleming, Ingrid

    2004-01-01

    Insulin-induced vasodilatation is sensitive to nitric oxide (NO) synthase (NOS) inhibitors. However, insulin is unable to relax isolated arteries or to activate endothelial NOS in endothelial cells. Since insulin can enhance platelet endothelial NOS activity, we determined whether insulin-induced vasodilatation can be attributed to a NO-dependent, platelet-mediated process. Insulin failed to relax endothelium-intact rings of porcine coronary artery. The supernatant from insulin-stimulated human platelets induced complete relaxation, which was prevented by preincubation of platelets with a NOS inhibitor, the soluble guanylyl cyclase inhibitor, NS 2028, or the G kinase inhibitor, KT 5823, and was abolished by an adenosine A2A receptor antagonist. Insulin induced the release of adenosine trisphosphate (ATP), adenosine, and serotonin from platelet-dense granules in a NO-dependent manner. This response was not detected using insulin-stimulated platelets from endothelial NOS−/− mice, although a NO donor elicited ATP release. Insulin-induced ATP release from human platelets correlated with the association of syntaxin 2 with the vesicle-associated membrane protein 3 but was not associated with the activation of αIIbβ3 integrin. Thus, insulin elicits the release of vasoactive concentrations of ATP and adenosine from human platelets via a NO–G kinase–dependent signaling cascade. The mechanism of dense granule secretion involves the G kinase–dependent association of syntaxin 2 with vesicle-associated membrane protein 3. PMID:14744991

  13. Dehydration-induced drinking decreases Fos expression in hypothalamic paraventricular neurons expressing vasopressin but not corticotropin-releasing hormone.

    Wotus, Cheryl; Arnhold, Michelle M; Engeland, William C

    2007-03-01

    Water-restricted (WR) rats exhibit a rapid suppression of plasma corticosterone following drinking. The present study monitored Fos-like immunoreactivity (Fos) to assess the effect of WR-induced drinking on the activity of vasopressin (VP)-positive magnocellular and parvocellular neurons and corticotropin-releasing hormone (CRH)-positive parvocellular neurons in the paraventricular nucleus of the hypothalamus. Adult male rats received water for 30 min (WR) in the post meridiem (PM) each day for 6 days and were killed without receiving water or at 1 h after receiving water for 15 min. In WR rats, Fos increased in VP magnocellular and parvocellular neurons but not CRH neurons. After drinking, Fos was reduced in VP magnocellular and parvocellular neurons but did not change in CRH neurons. To assess the severity of osmotic stress, rats were sampled throughout the final day of WR. Plasma osmolality, hematocrit and plasma VP were increased throughout the day before PM rehydration, and plasma ACTH and corticosterone were elevated at 1230 and 1430, respectively, showing that WR activates hypothalamic-pituitary-adrenal activity during the early PM before the time of rehydration. To determine the effects of WR-induced drinking on CRH neurons activated by acute stress, WR rats underwent restraint. Restraint increased plasma ACTH and corticosterone and Fos in CRH neurons; although rehydration reduced plasma ACTH and Fos expression in VP neurons, Fos in CRH neurons was not affected. These results suggest that inhibition of VP magnocellular and parvocellular neurons, but not CRH parvocellular neurons, contributes to the suppression of corticosterone after WR-induced drinking.

  14. Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles.

    Turner, Timothy J

    2004-12-15

    A major factor underlying compulsive tobacco use is nicotine-induced modulation of dopamine release in the mesolimbic reward pathway (Wise and Rompre, 1989). An established biochemical mechanism for nicotine-enhanced dopamine release is by activating presynaptic nicotinic acetylcholine receptors (nAChRs) (Wonnacott, 1997). Prolonged application of 10(-7) to 10(-5) m nicotine to striatal synaptosomes promoted a sustained efflux of [3H]dopamine. This nicotine effect was mediated by non-alpha7 nAChRs, because it was blocked by 5 mum mecamylamine but was resistant to 100 nm alpha-bungarotoxin (alphaBgTx). Dopamine release was diminished by omitting Na+ or by applying peptide calcium channel blockers, indicating that nAChRs trigger release by depolarizing the nerve terminals. However, because alpha7 receptors rapidly desensitize in the continuous presence of agonists, a repetitive stimulation protocol was used to evaluate the possible significance of desensitization. This protocol produced a transient increase in [3H]dopamine released by depolarization and a significant increase in the response to hypertonic solutions that measure the size of the readily releasable pool (RRP) of synaptic vesicles. The nicotine-induced increase in the size of the readily releasable pool was blocked by alphaBgTx and by the calmodulin antagonist calmidazolium, suggesting that Ca2+ entry through alpha7 nAChRs specifically enhances synaptic vesicle mobilization at dopamine terminals. Thus, nicotine enhances dopamine release by two complementary actions mediated by discrete nAChR subtypes and suggest that the alpha7 nAChR-mediated pathway is tightly and specifically coupled to refilling of the RRP of vesicles in dopamine terminals.

  15. Nitric oxide-releasing sulindac is a novel skin cancer chemopreventive agent for UVB-induced photocarcinogenesis

    Chaudhary, Sandeep C.; Singh, Tripti; Kapur, Puneet; Weng, Zhiping; Arumugam, Aadithya; Elmets, Craig A. [Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH509, Birmingham, AL 35294-0019 (United States); Kopelovich, Levy [Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd, Suite 2114, Bethesda, MD 20892 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH509, Birmingham, AL 35294-0019 (United States)

    2013-05-01

    Nitric oxide (NO)-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) which have been synthesized to reduce gastro-intestinal and cardiovascular toxicities of NSAIDs, possess anti-proliferative, pro-apoptotic and anti-cancer activities. Here, we show that NO-sulindac inhibited UVB-induced skin tumorigenesis in SKH-1 hairless mice. Topical application of NO-sulindac reduced tumor incidence, number (p < 0.05) and volume (p < 0.005) as compared to UVB (alone)-irradiated vehicle-treated mice. An increase in TUNEL-positive cells in skin lesions was accompanied by the enhanced Bax:Bcl-2 ratio. The expression of pro-apoptotic Bax was increased whereas anti-apoptotic Bcl-2 reduced. However, proliferation was identified as the major target of NO-sulindac in this study. A reduced expression of PCNA and cyclin D1 associated with the dampening of cell cycle progression was observed. The mechanism of this inhibition was related to the reduction in UVB-induced Notch signaling pathway. UVB-induced inflammatory responses were diminished by NO-sulindac as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases Erk1/2, p38 and JNK1/2. In this regard, NO-sulindac also inhibited NFκB by enhancing IκBα as evidenced by the reduced expression of iNOS and COX-2, the direct NFκB transcription target proteins. NO-sulindac significantly diminished the progression of benign lesions to invasive carcinomas by suppressing the tumor aggressiveness and retarding epithelial–mesenchymal transition. A marked decrease in the expression of mesenchymal markers such as Fibronectin, N-cadherin, SNAI, Slug and Twist and an increase in epithelial cell polarity marker E-cadherin were noted in NO-sulindac-treated tumors. Our data suggest that NO-sulindac is a potent inhibitor of UVB-induced skin carcinogenesis and acts by targeting proliferation-regulatory pathways. - Highlights: ► NO-sulindac is a potent chemopreventive agent for UVB-induced skin cancer. ► NO

  16. RNA from LPS-stirnulated macrophages induces the release of tumour necrosis factor-α and interleukin-1 by resident macrophages

    R. A. Ribeiro

    1993-01-01

    Full Text Available The effect of exogenous RNA on many cellular functions has been studied in a variety of eukaryotic cells but there are few reports on macrophages. In the present study, it is demonstrated that cytoplasmatic RNA extracted from rat macrophages stimulated with Escherichia coli lipopolysaccharide (LPS, referred to as L-RNA, induced the release of TNF-α and IL-1 from monolayers of peritoneal resident macrophages. The activity of L-RNA was not altered by polymyxin B but was abolished by ribonuclease (RNase pretreatment, indicating the absence of LPS contamination and that the integrity of the polynucleotide chain is essential for this activity. Both the poly A(− and poly A(+ fractions obtained from L-RNA applied to oligo(dT–cellulose chromatography induced TNF-α and IL-1 release. The L-RNA-induced cytokine release was inhibited by dexamethasone and seemed to be dependent on protein synthesis since this effect was abolished by cycloheximide or actinomycin-D. The LPS-stimulated macrophages, when pre-incubated with [5-3H]-uridine, secreted a trichloroacetic acid (TCA precipitable material which was sensitive to RNase and KOH hydrolysis, suggesting that the material is RNA. This substance was also released<