WorldWideScience

Sample records for acetylation curtails nucleosome

  1. Acetylated histone H3 increases nucleosome dissociation

    Science.gov (United States)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  2. Acetylation Mimics Within a Single Nucleosome Alter Local DNA Accessibility In Compacted Nucleosome Arrays

    Science.gov (United States)

    Mishra, Laxmi N.; Pepenella, Sharon; Rogge, Ryan; Hansen, Jeffrey C.; Hayes, Jeffrey J.

    2016-01-01

    The activation of a silent gene locus is thought to involve pioneering transcription factors that initiate changes in the local chromatin structure to increase promoter accessibility and binding of downstream effectors. To better understand the molecular requirements for the first steps of locus activation, we investigated whether acetylation of a single nucleosome is sufficient to alter DNA accessibility within a condensed 25-nucleosome array. We found that acetylation mimics within the histone H4 tail domain increased accessibility of the surrounding linker DNA, with the increased accessibility localized to the immediate vicinity of the modified nucleosome. In contrast, acetylation mimics within the H3 tail had little effect, but were able to synergize with H4 tail acetylation mimics to further increase accessibility. Moreover, replacement of the central nucleosome with a nucleosome free region also resulted in increased local, but not global DNA accessibility. Our results indicate that modification or disruption of only a single target nucleosome results in significant changes in local chromatin architecture and suggest that very localized chromatin modifications imparted by pioneer transcription factors are sufficient to initiate a cascade of events leading to promoter activation. PMID:27708426

  3. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF.

    Science.gov (United States)

    Chatterjee, Nilanjana; North, Justin A; Dechassa, Mekonnen Lemma; Manohar, Mridula; Prasad, Rashmi; Luger, Karolin; Ottesen, Jennifer J; Poirier, Michael G; Bartholomew, Blaine

    2015-12-01

    Signaling associated with transcription activation occurs through posttranslational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain/lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as "readers," which promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remains unclear. By using X-ray crystallography, we found that acetylated lysines 115 and 122 in histone H3 are solvent accessible, but in biochemical assays they appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization, as previously shown for acetylated lysines in H3 histone tails. Instead, we found that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to 7-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serves as a crucial regulator of nucleosomal dynamics distinct from the histone code readers and writers.

  4. Lysine Acetylation Facilitates Spontaneous DNA Dynamics in the Nucleosome.

    Science.gov (United States)

    Kim, Jongseong; Lee, Jaehyoun; Lee, Tae-Hee

    2015-12-01

    The nucleosome, comprising a histone protein core wrapped around by DNA, is the fundamental packing unit of DNA in cells. Lysine acetylation at the histone core elevates DNA accessibility in the nucleosome, the mechanism of which remains largely unknown. By employing our recently developed hybrid single molecule approach, here we report how the structural dynamics of DNA in the nucleosome is altered upon acetylation at histone H3 lysine 56 (H3K56) that is critical for elevated DNA accessibility. Our results indicate that H3K56 acetylation facilitates the structural dynamics of the DNA at the nucleosome termini that spontaneously and repeatedly open and close on a ms time scale. The results support a molecular mechanism of histone acetylation in catalyzing DNA unpacking whose efficiency is ultimately limited by the spontaneous DNA dynamics at the nucleosome temini. This study provides the first and unique experimental evidence revealing a role of protein chemical modification in directly regulating the kinetic stability of the DNA packing unit.

  5. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations

    Science.gov (United States)

    Chang, Le; Takada, Shoji

    2016-01-01

    Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA by performing molecular simulations at an unprecedentedly high resolution. We found versatile acetylation-dependent landscapes of tri-nucleosome. The H4 and H2A tail acetylation reduced the contact between the first and third nucleosomes mediated by the histone tails. The H3 tail acetylation reduced its interaction with neighboring linker DNAs resulting in increase of the distance between consecutive nucleosomes. Notably, two copies of the same histone in a single nucleosome have markedly asymmetric interactions with DNAs, suggesting specific pattern of nucleosome docking albeit high inherent flexibility. Estimated transcription factor accessibility was significantly high for the H4 tail acetylated structures. PMID:27698366

  6. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics.

    Science.gov (United States)

    Bernier, Morgan; Luo, Yi; Nwokelo, Kingsley C; Goodwin, Michelle; Dreher, Sarah J; Zhang, Pei; Parthun, Mark R; Fondufe-Mittendorf, Yvonne; Ottesen, Jennifer J; Poirier, Michael G

    2015-12-09

    H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF) binding within nucleosomes. H1 does not block TF binding, instead it suppresses nucleosome unwrapping to reduce DNA accessibility within H1-bound nucleosomes. We then investigated H1 regulation by H3K56 and H3K122 acetylation, two transcriptional activating histone post translational modifications (PTMs). Only H3K56 acetylation, which increases nucleosome unwrapping, abolishes H1.0 reduction of TF binding. These findings show that nucleosomes remain dynamic, while H1 is bound and H1 dissociation is not required for TF binding within the nucleosome. Furthermore, our H3K56 acetylation measurements suggest that a single-histone PTM can define regions of the genome that are not regulated by H1.

  7. Nucleosome Dancing at the Tempo of Histone Tail Acetylation

    Directory of Open Access Journals (Sweden)

    Angélique Galvani

    2015-07-01

    Full Text Available The impact of histone acetylation on transcription was revealed over 50 years ago by Allfrey and colleagues. However, it took decades for an understanding of the fine mechanism by which this posttranslational modification affects chromatin structure and promotes transcription. Here, we review breakthroughs linking histone tail acetylation, histone dynamics, and transcription. We also discuss the histone exchange during transcription and highlight the important function of a pool of non-chromatinized histones in chromatin dynamics.

  8. Intra- and inter-nucleosomal interactions of the histone H4 tail revealed with a human nucleosome core particle with genetically-incorporated H4 tetra-acetylation.

    Science.gov (United States)

    Wakamori, Masatoshi; Fujii, Yoshifumi; Suka, Noriyuki; Shirouzu, Mikako; Sakamoto, Kensaku; Umehara, Takashi; Yokoyama, Shigeyuki

    2015-11-26

    Post-translational modifications (PTMs) of histones, such as lysine acetylation of the N-terminal tails, play crucial roles in controlling gene expression. Due to the difficulty in reconstituting site-specifically acetylated nucleosomes with crystallization quality, structural analyses of histone acetylation are currently performed using synthesized tail peptides. Through engineering of the genetic code, translation termination, and cell-free protein synthesis, we reconstituted human H4-mono- to tetra-acetylated nucleosome core particles (NCPs), and solved the crystal structures of the H4-K5/K8/K12/K16-tetra-acetylated NCP and unmodified NCP at 2.4 Å and 2.2 Å resolutions, respectively. The structure of the H4-tetra-acetylated NCP resembled that of the unmodified NCP, and the DNA wrapped the histone octamer as precisely as in the unmodified NCP. However, the B-factors were significantly increased for the peripheral DNAs near the N-terminal tail of the intra- or inter-nucleosomal H4. In contrast, the B-factors were negligibly affected by the H4 tetra-acetylation in histone core residues, including those composing the acidic patch, and at H4-R23, which interacts with the acidic patch of the neighboring NCP. The present study revealed that the H4 tetra-acetylation impairs NCP self-association by changing the interactions of the H4 tail with DNA, and is the first demonstration of crystallization quality NCPs reconstituted with genuine PTMs.

  9. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription

    Science.gov (United States)

    Di Cerbo, Vincenzo; Mohn, Fabio; Ryan, Daniel P; Montellier, Emilie; Kacem, Salim; Tropberger, Philipp; Kallis, Eleni; Holzner, Monika; Hoerner, Leslie; Feldmann, Angelika; Richter, Florian Martin; Bannister, Andrew J; Mittler, Gerhard; Michaelis, Jens; Khochbin, Saadi; Feil, Robert; Schuebeler, Dirk; Owen-Hughes, Tom; Daujat, Sylvain; Schneider, Robert

    2014-01-01

    Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001 PMID:24668167

  10. Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin Remodeler RSC (Remodels Structure of Chromatin).

    Science.gov (United States)

    Duan, Ming-Rui; Smerdon, Michael J

    2014-03-21

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage.

  11. Drought Water Right Curtailment

    Science.gov (United States)

    Walker, W.; Tweet, A.; Magnuson-Skeels, B.; Whittington, C.; Arnold, B.; Lund, J. R.

    2016-12-01

    California's water rights system allocates water based on priority, where lower priority, "junior" rights are curtailed first in a drought. The Drought Water Rights Allocation Tool (DWRAT) was developed to integrate water right allocation models with legal objectives to suggest water rights curtailments during drought. DWRAT incorporates water right use and priorities with a flow-forecasting model to mathematically represent water law and hydrology and suggest water allocations among water rights holders. DWRAT is compiled within an Excel workbook, with an interface and an open-source solver. By implementing California water rights law as an algorithm, DWRAT provides a precise and transparent framework for the complicated and often controversial technical aspects of curtailing water rights use during drought. DWRAT models have been developed for use in the Eel, Russian, and Sacramento river basins. In this study, an initial DWRAT model has been developed for the San Joaquin watershed, which incorporates all water rights holders in the basin and reference gage flows for major tributaries. The San Joaquin DWRAT can assess water allocation reliability by determining probability of rights holders' curtailment for a range of hydrologic conditions. Forecasted flow values can be input to the model to provide decision makers with the ability to make curtailment and water supply strategy decisions. Environmental flow allocations will be further integrated into the model to protect and improve ecosystem water reliability.

  12. Nucleosome switches.

    Science.gov (United States)

    Schwab, David J; Bruinsma, Robijn F; Rudnick, Joseph; Widom, Jonathan

    2008-06-06

    We present a statistical-mechanical model for the positioning of nucleosomes along genomic DNA molecules as a function of the strength of the binding potential and the chemical potential of the nucleosomes. We show that a significant section of the DNA is composed of two-level nucleosome switching regions where the nucleosome distribution undergoes a localized, first-order transition. The location of the nucleosome switches shows a strong correlation with the location of gene-regulation regions.

  13. Curtailment and Stochastic Curtailment to Shorten the CES-D

    Science.gov (United States)

    Finkelman, Matthew D.; Smits, Niels; Kim, Wonsuk; Riley, Barth

    2012-01-01

    The Center for Epidemiologic Studies-Depression (CES-D) scale is a well-known self-report instrument that is used to measure depressive symptomatology. Respondents who take the full-length version of the CES-D are administered a total of 20 items. This article investigates the use of curtailment and stochastic curtailment (SC), two sequential…

  14. Insights into distinct regulatory modes of nucleosome positioning

    Directory of Open Access Journals (Sweden)

    Feng Jihua

    2009-12-01

    Full Text Available Abstract Background The nucleosome is the fundamental unit of eukaryotic genomes. Experimental evidence suggests that the genomic DNA sequence and a variety of protein factors contribute to nucleosome positioning in vivo. However, how nucleosome positioning is determined locally is still largely unknown. Results We found that transcription factor binding sites (TFBSs with particular nucleosomal contexts show a preference to reside on specific chromosomes. We identified four typical gene classes associated with distinct regulatory modes of nucleosome positioning, and further showed that they are distinguished by transcriptional regulation patterns. The first mode involves the cooperativity between chromatin remodeling and stable transcription factor (TF-DNA binding that is linked to high intrinsic DNA binding affinities, evicting nucleosomes from favorable DNA sequences. The second is the DNA-encoded low nucleosome occupancy that is associated with high gene activity. The third is through chromatin remodeling and histone acetylation, sliding nucleosomes along DNA. This mode is linked to more cryptic sites for TF binding. The last consists of the nucleosome-enriched organization driven by other factors that overrides nucleosome sequence preferences. In addition, we showed that high polymerase II (Pol II occupancy is associated with high nucleosome occupancy around the transcription start site (TSS. Conclusions We identified four different regulatory modes of nucleosome positioning and gave insights into mechanisms that specify promoter nucleosome location. We suggest two distinct modes of recruitment of Pol II, which are selectively employed by different genes.

  15. 10 CFR 580.03 - Curtailment priorities.

    Science.gov (United States)

    2010-01-01

    ... ESSENTIAL AGRICULTURAL USES § 580.03 Curtailment priorities. (a) Notwithstanding any provision of law other... curtailment of deliveries of natural gas for any essential agricultural use, unless: (1) Such curtailment does... practicable and that the fuel is reasonably available as an alternative for such essential agricultural...

  16. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis.

    Science.gov (United States)

    Lu, Lin-Yu; Wu, Jiaxue; Ye, Lin; Gavrilina, Galina B; Saunders, Thomas L; Yu, Xiaochun

    2010-03-16

    During spermatogenesis, global nucleosome removal occurs where histones are initially replaced by transition proteins and subsequently by protamines. This chromatin reorganization is thought to facilitate the compaction of the paternal genome into the sperm head and to protect the DNA from damaging agents. Histone ubiquitination has been suggested to be important for sex chromosome inactivation during meiotic prophase and nucleosome removal at postmeiotic stages. However, the mechanisms regulating these ubiquitin-mediated processes are unknown. In this study, we investigate the role of the ubiquitin ligase RNF8 during spermatogenesis and find that RNF8-deficient mice are proficient in meiotic sex chromosome inactivation (MSCI) but deficient in global nucleosome removal. Moreover, we show that RNF8-dependent histone ubiquitination induces H4K16 acetylation, which may be an initial step in nucleosome removal. Thus, our results show that RNF8 plays an important role during spermatogenesis through histone ubiquitination, resulting in trans-histone acetylation and global nucleosome removal.

  17. Qualitatively predicting acetylation and methylation areas in DNA sequences.

    Science.gov (United States)

    Pham, Tho Hoan; Tran, Dang Hung; Ho, Tu Bao; Satou, Kenji; Valiente, Gabriel

    2005-01-01

    Eukaryotic genomes are packaged by the wrapping of DNA around histone octamers to form nucleosomes. Nucleosome occupancy, acetylation, and methylation, which have a major impact on all nuclear processes involving DNA, have been recently mapped across the yeast genome using chromatin immunoprecipitation and DNA microarrays. However, this experimental protocol is laborious and expensive. Moreover, experimental methods often produce noisy results. In this paper, we introduce a computational approach to the qualitative prediction of nucleosome occupancy, acetylation, and methylation areas in DNA sequences. Our method uses support vector machines to discriminate between DNA areas with high and low relative occupancy, acetylation, or methylation, and rank k-gram features based on their support for these DNA modifications. Experimental results on the yeast genome reveal genetic area preferences of nucleosome occupancy, acetylation, and methylation that are consistent with previous studies. Supplementary files are available from http://www.jaist.ac.jp/~tran/nucleosome/.

  18. The prenucleosome, a stable conformational isomer of the nucleosome.

    Science.gov (United States)

    Fei, Jia; Torigoe, Sharon E; Brown, Christopher R; Khuong, Mai T; Kassavetis, George A; Boeger, Hinrich; Kadonaga, James T

    2015-12-15

    Chromatin comprises nucleosomes as well as nonnucleosomal histone-DNA particles. Prenucleosomes are rapidly formed histone-DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with ∼ 80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone-DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable conformational isomer of the nucleosome, is related to nonnucleosomal histone-DNA species in the cell.

  19. Site-specific acetylation of ISWI by GCN5

    Directory of Open Access Journals (Sweden)

    Chioda Mariacristina

    2007-08-01

    Full Text Available Abstract Background The tight organisation of eukaryotic genomes as chromatin hinders the interaction of many DNA-binding regulators. The local accessibility of DNA is regulated by many chromatin modifying enzymes, among them the nucleosome remodelling factors. These enzymes couple the hydrolysis of ATP to disruption of histone-DNA interactions, which may lead to partial or complete disassembly of nucleosomes or their sliding on DNA. The diversity of nucleosome remodelling factors is reflected by a multitude of ATPase complexes with distinct subunit composition. Results We found further diversification of remodelling factors by posttranslational modification. The histone acetyltransferase GCN5 can acetylate the Drosophila remodelling ATPase ISWI at a single, conserved lysine, K753, in vivo and in vitro. The target sequence is strikingly similar to the N-terminus of histone H3, where the corresponding lysine, H3K14, can also be acetylated by GCN5. The acetylated form of ISWI represents a minor species presumably associated with the nucleosome remodelling factor NURF. Conclusion Acetylation of histone H3 and ISWI by GCN5 is explained by the sequence similarity between the histone and ISWI around the acetylation site. The common motif RKT/SxGx(KacxPR/K differs from the previously suggested GCN5/PCAF recognition motif GKxxP. This raises the possibility of co-regulation of a nucleosome remodelling factor and its nucleosome substrate through acetylation of related epitopes and suggests a direct crosstalk between two distinct nucleosome modification principles.

  20. Wind and Solar Curtailment: International Experience and Practices

    DEFF Research Database (Denmark)

    Lew, Debra; Bird, Lori; Milligan, Michael

    2013-01-01

    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusse...

  1. Sustainable food consumption. Product choice or curtailment?

    NARCIS (Netherlands)

    Verain, M.C.D.; Dagevos, H.; Antonides, G.

    2015-01-01

    Food consumption is an important factor in shaping the sustainability of our food supply. The present paper empirically explores different types of sustainable food behaviors. A distinction between sustainable product choices and curtailment behavior has been investigated empirically and predictors

  2. Uncovering the forces between nucleosomes using DNA origami

    Science.gov (United States)

    Funke, Jonas J.; Ketterer, Philip; Lieleg, Corinna; Schunter, Sarah; Korber, Philipp; Dietz, Hendrik

    2016-01-01

    Revealing the energy landscape for nucleosome association may contribute to the understanding of higher-order chromatin structures and their impact on genome regulation. We accomplish this in a direct measurement by integrating two nucleosomes into a DNA origami–based force spectrometer, which enabled subnanometer-resolution measurements of nucleosome-nucleosome distance frequencies via single-particle electron microscopy imaging. From the data, we derived the Boltzmann-weighted distance-dependent energy landscape for nucleosome pair interactions. We find a shallow but long-range (~6 nm) attractive nucleosome pair potential with a minimum of −1.6 kcal/mol close to direct contact distances. The relative nucleosome orientation had little influence, but histone H4 acetylation or removal of histone tails drastically decreased the interaction strength. Because of the weak and shallow pair potential, higher-order nucleosome assemblies will be compliant and experience dynamic shape fluctuations in the absence of additional cofactors. Our results contribute to a more accurate description of chromatin and our force spectrometer provides a powerful tool for the direct and high-resolution study of molecular interactions using imaging techniques. PMID:28138524

  3. Uncovering the forces between nucleosomes using DNA origami.

    Science.gov (United States)

    Funke, Jonas J; Ketterer, Philip; Lieleg, Corinna; Schunter, Sarah; Korber, Philipp; Dietz, Hendrik

    2016-11-01

    Revealing the energy landscape for nucleosome association may contribute to the understanding of higher-order chromatin structures and their impact on genome regulation. We accomplish this in a direct measurement by integrating two nucleosomes into a DNA origami-based force spectrometer, which enabled subnanometer-resolution measurements of nucleosome-nucleosome distance frequencies via single-particle electron microscopy imaging. From the data, we derived the Boltzmann-weighted distance-dependent energy landscape for nucleosome pair interactions. We find a shallow but long-range (~6 nm) attractive nucleosome pair potential with a minimum of -1.6 kcal/mol close to direct contact distances. The relative nucleosome orientation had little influence, but histone H4 acetylation or removal of histone tails drastically decreased the interaction strength. Because of the weak and shallow pair potential, higher-order nucleosome assemblies will be compliant and experience dynamic shape fluctuations in the absence of additional cofactors. Our results contribute to a more accurate description of chromatin and our force spectrometer provides a powerful tool for the direct and high-resolution study of molecular interactions using imaging techniques.

  4. What controls nucleosome positions?

    Science.gov (United States)

    Segal, Eran; Widom, Jonathan

    2009-08-01

    The DNA of eukaryotic genomes is wrapped in nucleosomes, which strongly distort and occlude the DNA from access to most DNA-binding proteins. An understanding of the mechanisms that control nucleosome positioning along the DNA is thus essential to understanding the binding and action of proteins that carry out essential genetic functions. New genome-wide data on in vivo and in vitro nucleosome positioning greatly advance our understanding of several factors that can influence nucleosome positioning, including DNA sequence preferences, DNA methylation, histone variants and post-translational modifications, higher order chromatin structure, and the actions of transcription factors, chromatin remodelers and other DNA-binding proteins. We discuss how these factors function and ways in which they might be integrated into a unified framework that accounts for both the preservation of nucleosome positioning and the dynamic nucleosome repositioning that occur across biological conditions, cell types, developmental processes and disease.

  5. Single-nucleosome mapping of histone modifications in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Chih Long Liu

    2005-10-01

    Full Text Available Covalent modification of histone proteins plays a role in virtually every process on eukaryotic DNA, from transcription to DNA repair. Many different residues can be covalently modified, and it has been suggested that these modifications occur in a great number of independent, meaningful combinations. Published low-resolution microarray studies on the combinatorial complexity of histone modification patterns suffer from confounding effects caused by the averaging of modification levels over multiple nucleosomes. To overcome this problem, we used a high-resolution tiled microarray with single-nucleosome resolution to investigate the occurrence of combinations of 12 histone modifications on thousands of nucleosomes in actively growing S. cerevisiae. We found that histone modifications do not occur independently; there are roughly two groups of co-occurring modifications. One group of lysine acetylations shows a sharply defined domain of two hypo-acetylated nucleosomes, adjacent to the transcriptional start site, whose occurrence does not correlate with transcription levels. The other group consists of modifications occurring in gradients through the coding regions of genes in a pattern associated with transcription. We found no evidence for a deterministic code of many discrete states, but instead we saw blended, continuous patterns that distinguish nucleosomes at one location (e.g., promoter nucleosomes from those at another location (e.g., over the 3' ends of coding regions. These results are consistent with the idea of a simple, redundant histone code, in which multiple modifications share the same role.

  6. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders

    Directory of Open Access Journals (Sweden)

    Alberto J Lopez

    2015-04-01

    Full Text Available It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, schizophrenia, and Autism Spectrum Disorder. Together, these human developmental and intellectual disability disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development.

  7. Wind and solar energy curtailment: A review of international experience

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori; Lew, Debra; Milligan, Michael; Carlini, E. Maria; Estanqueiro, Ana; Flynn, Damian; Gomez-Lazaro, Emilio; Holttinen, Hannele; Menemenlis, Nickie; Orths, Antje; Eriksen, Peter Børre; Smith, J. Charles; Soder, Lennart; Sorensen, Poul; Altiparmakis, Argyrios; Yasuda, Yoh; Miller, John

    2016-11-01

    Greater penetrations of variable renewable generation on some electric grids have resulted in increased levels of curtailment in recent years. Studies of renewable energy grid integration have found that curtailment levels may grow as the penetration of wind and solar energy generation increases. This paper reviews international experience with curtailment of wind and solar energy on bulk power systems in recent years, with a focus on eleven countries in Europe, North America, and Asia. It examines levels of curtailment, the causes of curtailment, curtailment methods and use of market-based dispatch, as well as operational, institutional, and other changes that are being made to reduce renewable energy curtailment.

  8. Statistical mechanics of nucleosomes

    Science.gov (United States)

    Chereji, Razvan V.

    Eukaryotic cells contain long DNA molecules (about two meters for a human cell) which are tightly packed inside the micrometric nuclei. Nucleosomes are the basic packaging unit of the DNA which allows this millionfold compactification. A longstanding puzzle is to understand the principles which allow cells to both organize their genomes into chromatin fibers in the crowded space of their nuclei, and also to keep the DNA accessible to many factors and enzymes. With the nucleosomes covering about three quarters of the DNA, their positions are essential because these influence which genes can be regulated by the transcription factors and which cannot. We study physical models which predict the genome-wide organization of the nucleosomes and also the relevant energies which dictate this organization. In the last five years, the study of chromatin knew many important advances. In particular, in the field of nucleosome positioning, new techniques of identifying nucleosomes and the competing DNA-binding factors appeared, as chemical mapping with hydroxyl radicals, ChIP-exo, among others, the resolution of the nucleosome maps increased by using paired-end sequencing, and the price of sequencing an entire genome decreased. We present a rigorous statistical mechanics model which is able to explain the recent experimental results by taking into account nucleosome unwrapping, competition between different DNA-binding proteins, and both the interaction between histones and DNA, and between neighboring histones. We show a series of predictions of our new model, all in agreement with the experimental observations.

  9. Nucleosome Positioning and Epigenetics

    Science.gov (United States)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  10. Comparative studies of genome-wide maps of nucleosomes between deletion mutants of elp3 and hos2 genes of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available In order to elucidate the influence of histone acetylation upon nucleosomal DNA length and nucleosome position, we compared nucleosome maps of the following three yeast strains; strain BY4741 (control, the elp3 (one of histone acetyltransferase genes deletion mutant, and the hos2 (one of histone deactylase genes deletion mutant of Saccharomyces cerevisiae. We sequenced mononucleosomal DNA fragments after treatment with micrococcal nuclease. After mapping the DNA fragments to the genome, we identified the nucleosome positions. We showed that the distributions of the nucleosomal DNA lengths of the control and the hos2 disruptant were similar. On the other hand, the distribution of the nucleosomal DNA lengths of the elp3 disruptant shifted toward shorter than that of the control. It strongly suggests that inhibition of Elp3-induced histone acetylation causes the nucleosomal DNA length reduction. Next, we compared the profiles of nucleosome mapping numbers in gene promoter regions between the control and the disruptant. We detected 24 genes with low conservation level of nucleosome positions in promoters between the control and the elp3 disruptant as well as between the control and the hos2 disruptant. It indicates that both Elp3-induced acetylation and Hos2-induced deacetylation influence the nucleosome positions in the promoters of those 24 genes. Interestingly, in 19 of the 24 genes, the profiles of nucleosome mapping numbers were similar between the two disruptants.

  11. Baculoviruses and nucleosome management.

    Science.gov (United States)

    Volkman, Loy E

    2015-02-01

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management.

  12. Baculoviruses and nucleosome management

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Loy E., E-mail: lvolkman@berkeley.edu

    2015-02-15

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management. - Highlights: • Baculoviruses have negatively-supercoiled, circular ds DNA. • Negatively-supercoiled DNA spontaneously forms nucleosomes in the nucleus. • Nucleosomes must be mobilized for replication and transcription to proceed. • Actin-containing chromatin modifiers participate in baculovirus replication.

  13. Sustainable food consumption. Product choice or curtailment?

    Science.gov (United States)

    Verain, Muriel C D; Dagevos, Hans; Antonides, Gerrit

    2015-08-01

    Food consumption is an important factor in shaping the sustainability of our food supply. The present paper empirically explores different types of sustainable food behaviors. A distinction between sustainable product choices and curtailment behavior has been investigated empirically and predictors of the two types of behavior have been identified. Respondents were classified into four segments based on their sustainable food behaviors: unsustainers, curtailers, product-oriented consumers, and sustainers. Significant differences between the segments were found with regard to food choice motives, personal and social norms, food involvement, subjective knowledge on sustainable food, ability to judge how sustainably a product has been produced and socio-demographics. It is concluded that distinguishing between behavioral strategies toward sustainable food consumption is important as consumer segments can be identified that differ both in their level of sustainable food consumption and in the type of behavior they employ.

  14. Altered nucleosomes of active nucleolar chromatin contain accessible histone H3 in its hyperacetylated forms

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.M.; Sterner, R.; Allfrey, V.G.

    1987-05-25

    Chromatin of the organism Physarum polycephalum contains a class of conformationally altered nucleosomes previously localized to the transcribing regions of ribosomal genes in nucleoli. When nuclei are treated with 2-iodo(2-tritium)acetate, the histone H3 sulfhydryl group of the altered nucleosomes is derivatized while that of folded nucleosomes is not, and the labeled histones can then be identified by autoradiography of gels that separate H3 isoforms. The H3 derivatized is predominantly of tri- and tetraacetylated forms. In contrast, total free histone reacted with iodoacetate shows no preferential labeling of isoforms. Selective reaction of acetylated H3 is prevalent in both nucleolar and non-nucleolar chromatin. The results link specific patterns of H3 acetylation to changes in nucleosome conformation that occur during transcription.

  15. Wind and solar energy curtailment: A review of international experience

    DEFF Research Database (Denmark)

    Bird, Lori; Lew, Debra; Milligan, Michael

    2016-01-01

    Greater penetrations of variable renewable generation on some electric grids have resulted in increased levels of curtailment in recent years. Studies of renewable energy grid integration have found that curtailment levels may grow as the penetration of wind and solar energy generation increases....... This paper reviews international experience with curtailment of wind and solar energy on bulk power systems in recent years, with a focus on eleven countries in Europe, North America, and Asia. It examines levels of curtailment, the causes of curtailment, curtailment methods and use of market based dispatch......, as well as operational, institutional, and other changes that are being made to reduce renewable energy curtailment. (C) 2016 Elsevier Ltd. All rights reserved....

  16. The size of the nucleosome

    DEFF Research Database (Denmark)

    Bohr, Jakob; Olsen, Kasper

    2011-01-01

    The structural origin of the size of the 11 nm nucleosomal disc is addressed. On the nanometer length-scale the organization of DNA as chromatin in the chromosomes involves a coiling of DNA around the histone core of the nucleosome. We suggest that the size of the nucleosome core particle is dict......-pairs of the linker-DNA is included the estimate of the size of an ideal nucleosome is in close agreement with the experimental numbers. Interestingly, the size of the nucleosome is shown to be a consequence of intrinsic properties of the DNA double helix....

  17. Nucleosome Core Particle

    Science.gov (United States)

    1997-01-01

    Nucleosome Core Particle grown on STS-81. The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication. Principal Investigator's are Dr. Dan Carter and Dr. Gerard Bunick of New Century Pharmaceuticals.

  18. Sequence-dependent nucleosome positioning.

    Science.gov (United States)

    Chung, Ho-Ryun; Vingron, Martin

    2009-03-13

    Eukaryotic DNA is organized into a macromolecular structure called chromatin. The basic repeating unit of chromatin is the nucleosome, which consists of two copies of each of the four core histones and DNA. The nucleosomal organization and the positions of nucleosomes have profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is therefore of general interest. Among the many determinants of nucleosome positioning, the DNA sequence has been proposed to have a major role. Here, we analyzed more than 860,000 nucleosomal DNA sequences to identify sequence features that guide the formation of nucleosomes in vivo. We found that both a periodic enrichment of AT base pairs and an out-of-phase oscillating enrichment of GC base pairs as well as the overall preference for GC base pairs are determinants of nucleosome positioning. The preference for GC pairs can be related to a lower energetic cost required for deformation of the DNA to wrap around the histones. In line with this idea, we found that only incorporation of both signal components into a sequence model for nucleosome formation results in maximal predictive performance on a genome-wide scale. In this manner, one achieves greater predictive power than published approaches. Our results confirm the hypothesis that the DNA sequence has a major role in nucleosome positioning in vivo.

  19. Nucleosomes undergo slow spontaneous gaping.

    Science.gov (United States)

    Ngo, Thuy T M; Ha, Taekjip

    2015-04-30

    In eukaryotes, DNA is packaged into a basic unit, the nucleosome which consists of 147 bp of DNA wrapped around a histone octamer composed of two copies each of the histones H2A, H2B, H3 and H4. Nucleosome structures are diverse not only by histone variants, histone modifications, histone composition but also through accommodating different conformational states such as DNA breathing and dimer splitting. Variation in nucleosome structures allows it to perform a variety of cellular functions. Here, we identified a novel spontaneous conformational switching of nucleosomes under physiological conditions using single-molecule FRET. Using FRET probes placed at various positions on the nucleosomal DNA to monitor conformation of the nucleosome over a long period of time (30-60 min) at various ionic conditions, we identified conformational changes we refer to as nucleosome gaping. Gaping transitions are distinct from nucleosome breathing, sliding or tightening. Gaping modes switch along the direction normal to the DNA plane through about 5-10 angstroms and at minutes (1-10 min) time scale. This conformational transition, which has not been observed previously, may be potentially important for enzymatic reactions/transactions on nucleosomal substrate and the formation of multiple compression forms of chromatin fibers.

  20. Linear-programming approach to electricity demand-curtailment planning

    Energy Technology Data Exchange (ETDEWEB)

    Allentuck, J; Carroll, O; Schnader, M

    1980-05-01

    Curtailment planning at a generally rudimentary level has been undertaken by the governments of some twenty states. Many utilities have demand-curtailment plans, however, these are often incorporated in plans for meeting capacity shortages. In at least five states, there are apparently no curtailment plans either at the state-government level or at the utility level. Moreover, none of the existing electricity demand curtailment plans examined included an explicit statement of the planners' objective in arriving at a specified sharing of the burdens of curtailment among consumer classes. Yet clearly the actual allocations of such burdens will affect the cost of the shortage. Since a study of state planning failed to yield a clear-cut indication of which of many possible curtailment allocation schemes would best serve as a point of departure for the design of an optimal curtailment strategy to deal with prolonged supply deficiencies, it was then decided to use a linear-programming approach. The advantages of such an approach are examined first, after which some important conceptual and practical problems in the design of a specific linear-programming model are addressed. A mathematical statement of the model is then followed by a brief review the principal methodological shortcomings of the linear-programming approach. Finally, the authors discuss how the analysis might be expanded to account for inter-regional and other secondary effects of curtailment.

  1. Charge State of the Globular Histone Core Controls Stability of the Nucleosome

    Science.gov (United States)

    Fenley, Andrew T.; Adams, David A.; Onufriev, Alexey V.

    2010-01-01

    Presented here is a quantitative model of the wrapping and unwrapping of the DNA around the histone core of the nucleosome that suggests a mechanism by which this transition can be controlled: alteration of the charge state of the globular histone core. The mechanism is relevant to several classes of posttranslational modifications such as histone acetylation and phosphorylation; several specific scenarios consistent with recent in vivo experiments are considered. The model integrates a description based on an idealized geometry with one based on the atomistic structure of the nucleosome, and the model consistently accounts for both the electrostatic and nonelectrostatic contributions to the nucleosome free energy. Under physiological conditions, isolated nucleosomes are predicted to be very stable (38 ± 7 kcal/mol). However, a decrease in the charge of the globular histone core by one unit charge, for example due to acetylation of a single lysine residue, can lead to a significant decrease in the strength of association with its DNA. In contrast to the globular histone core, comparable changes in the charge state of the histone tail regions have relatively little effect on the nucleosome's stability. The combination of high stability and sensitivity explains how the nucleosome is able to satisfy the seemingly contradictory requirements for thermodynamic stability while allowing quick access to its DNA informational content when needed by specific cellular processes such as transcription. PMID:20816070

  2. A split personality for nucleosomes.

    Science.gov (United States)

    McKay, Daniel J; Lieb, Jason D

    2014-12-04

    A high-resolution look at where histones touch DNA reveals a surprisingly intricate, dynamic, and modular nucleosome. Three advances in the study by Rhee et al. include unexpected interactions between the H3 tail and linker DNA, new evidence for existence of subnucleosomal particles, and asymmetric patterns of histone modification within a single nucleosome that correspond to the direction of transcription.

  3. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila.

    Science.gov (United States)

    Liu, Jun; Zimmer, Kurt; Rusch, Douglas B; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R

    2015-10-15

    Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.

  4. Stimulation of V(D)J recombination by histone acetylation.

    Science.gov (United States)

    McBlane, F; Boyes, J

    2000-04-20

    V(D)J recombination assembles functional immunoglobulin and T cell receptor genes from individual gene segments [1]. A common recombination mechanism, initiated by the proteins RAG1 and RAG2 at conserved recombination signal sequences (RSSs), operates at all rearranging loci [2] [3]. It has been proposed that the key regulator of the reaction is 'accessibility' of the RSS within chromatin [4]. Recently, the packaging of RSSs into nucleosomes was shown to inhibit initiation of V(D)J recombination [5] [6]. Nevertheless, the tight tissue specificity of regulation cannot be explained by nucleosome-mediated repression alone because a significant fraction of RSSs would be predicted to lie in linker regions between nucleosomes. Therefore, some aspect of the regulation of the recombination reaction must rely on the disruption of higher-order chromatin structure. Here, we report that histone acetylation directly stimulates the recombination reaction in vivo in the correct cell- and stage-specific manner. Neither expression of RAG genes nor activity of RAG proteins was increased by acetylation. Furthermore, histone acetylation failed to overcome nucleosome-mediated repression of RSS recognition and cleavage in vitro. Our data suggest a role for histone acetylation in stimulating recombination in vivo through disruption of higher-order chromatin structures.

  5. Fluid curtailment during childhood diarrhea: a countdown analysis.

    Science.gov (United States)

    Perin, Jamie; Carvajal-Velez, Liliana; Carter, Emily; Bryce, Jennifer; Newby, Holly

    2015-06-26

    The foundation of recommended diarrhea management in young children is increased fluids and continued feeding. This increase in fluids is necessary to replace those lost during diarrhea and ultimately prevent dehydration. There may be an opportunity to prevent deaths in children under five by discouraging the practice of reducing or curtailing fluids during diarrhea episodes across different settings worldwide. We quantify and describe the extent of fluid curtailment in children with diarrhea in a selection of countries (Burkina Faso, Democratic Republic of Congo, Ethiopia, Nigeria, Tanzania, and Uganda) with high burden of diarrhea-related mortality with national cross sectional survey data. We examine the practice of fluid curtailment in these countries and its relationship to child and household traits and to characteristics of diarrhea management. The prevalence of fluid curtailment among children under five with diarrhea is strikingly high in these countries: 55 % in Nigeria, 49 % in Ethiopia, 44 % in Uganda, 37 % in Tanzania, 36 % in DR Congo and 32 % in Burkina Faso. Fluid curtailment is associated with giving less food, potentially worsening the impact of this harmful practice. Children who were reported to have had fluids curtailed during diarrhea episodes were also 3.51 (95 % confidence, 2.66 - 4.64) times more likely to be reported to have food withheld (α = 0.05; p water source. Children of poorer or less educated mothers and those living in rural areas are more likely to have curtailed fluids, compared to children of less poor or more educated mothers, or those living in urban areas. The harmful practice of curtailing fluids for a child with diarrhea is highly prevalent, representing an increased risk of dehydration and complications due to diarrhea, including death, especially for children in specific subgroups.

  6. Fluid curtailment during childhood diarrhea: a countdown analysis

    OpenAIRE

    Perin, Jamie; Carvajal-Velez, Liliana; Carter, Emily; Bryce,Jennifer; Newby, Holly

    2015-01-01

    Background The foundation of recommended diarrhea management in young children is increased fluids and continued feeding. This increase in fluids is necessary to replace those lost during diarrhea and ultimately prevent dehydration. There may be an opportunity to prevent deaths in children under five by discouraging the practice of reducing or curtailing fluids during diarrhea episodes across different settings worldwide. Methods We quantify and describe the extent of fluid curtailment in chi...

  7. Circulating Nucleosomes and Nucleosome Modifications as Biomarkers in Cancer

    Science.gov (United States)

    McAnena, Peter; Brown, James A. L.; Kerin, Michael J.

    2017-01-01

    Traditionally the stratification of many cancers involves combining tumour and clinicopathological features (e.g., patient age; tumour size, grade, receptor status and location) to inform treatment options and predict recurrence risk and survival. However, current biomarkers often require invasive excision of the tumour for profiling, do not allow monitoring of the response to treatment and stratify patients into broad heterogeneous groups leading to inconsistent treatment responses. Here we explore and describe the benefits of using circulating biomarkers (nucleosomes and/or modifications to nucleosomes) as a non-invasive method for detecting cancer and monitoring response to treatment. Nucleosomes (DNA wound around eight core histone proteins) are responsible for compacting our genome and their composition and post-translational modifications are responsible for regulating gene expression. Here, we focus on breast and colorectal cancer as examples where utilizing circulating nucleosomes as biomarkers hold real potential as liquid biopsies. Utilizing circulating nucleosomes as biomarkers is an exciting new area of research that promises to allow both the early detection of cancer and monitoring of treatment response. Nucleosome-based biomarkers combine with current biomarkers, increasing both specificity and sensitivity of current tests and have the potential to provide individualised precision-medicine based treatments for patients. PMID:28075351

  8. Inducible nucleosome depletion at OREBP-binding-sites by hypertonic stress.

    Directory of Open Access Journals (Sweden)

    Edith H Y Tong

    Full Text Available BACKGROUND: Osmotic Response Element-Binding Protein (OREBP, also known as TonEBP or NFAT5, is a unique transcription factor. It is hitherto the only known mammalian transcription factor that regulates hypertonic stress-induced gene transcription. In addition, unlike other monomeric members of the NFAT family, OREBP exists as a homodimer and it is the only transcription factor known to bind naked DNA targets by complete encirclement in vitro. Nevertheless, how OREBP interacts with target DNA, also known as ORE/TonE, and how it elicits gene transcription in vivo, remains unknown. METHODOLOGY: Using hypertonic induction of the aldose reductase (AR gene activation as a model, we showed that OREs contained dynamic nucleosomes. Hypertonic stress induced a rapid and reversible loss of nucleosome(s around the OREs. The loss of nucleosome(s was found to be initiated by an OREBP-independent mechanism, but was significantly potentiated in the presence of OREBP. Furthermore, hypertonic induction of AR gene was associated with an OREBP-dependent hyperacetylation of histones that spanned the 5' upstream sequences and at least some exons of the gene. Nevertheless, nucleosome loss was not regulated by the acetylation status of histone. SIGNIFICANCE: Our findings offer novel insights into the mechanism of OREBP-dependent transcriptional regulation and provide a basis for understanding how histone eviction and transcription factor recruitment are coupled.

  9. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis.

    Science.gov (United States)

    Hu, Jialei; Donahue, Greg; Dorsey, Jean; Govin, Jérôme; Yuan, Zuofei; Garcia, Benjamin A; Shah, Parisha P; Berger, Shelley L

    2015-12-01

    Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.

  10. FACT, the Bur kinase pathway, and the histone co-repressor HirC have overlapping nucleosome-related roles in yeast transcription elongation.

    Science.gov (United States)

    Stevens, Jennifer R; O'Donnell, Allyson F; Perry, Troy E; Benjamin, Jeremy J R; Barnes, Christine A; Johnston, Gerald C; Singer, Richard A

    2011-01-01

    Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of 'cryptic' promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4-Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4-Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the same FACT molecule

  11. Conditions for positioning of nucleosomes on DNA.

    Science.gov (United States)

    Sheinman, Michael; Chung, Ho-Ryun

    2015-08-01

    Positioning of nucleosomes along a eukaryotic genome plays an important role in its organization and regulation. There are many different factors affecting the location of nucleosomes. Some can be viewed as preferential binding of a single nucleosome to different locations along the DNA and some as interactions between neighboring nucleosomes. In this study, we analyze positioning of nucleosomes and derive conditions for their good positioning. Using analytic and numerical approaches we find that, if the binding preferences are very weak, an interplay between the interactions and the binding preferences is essential for a good positioning of nucleosomes, especially on correlated energy landscapes. Analyzing the empirical energy landscape, we conclude that good positioning of nucleosomes in vivo is possible only if they strongly interact. In this case, our model, predicting long-length-scale fluctuations of nucleosomes' occupancy along the DNA, accounts well for the empirical observations.

  12. Wind and Solar Energy Curtailment: Experience and Practices in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L.; Cochran, J.; Wang, X.

    2014-03-01

    This report examines U.S. curtailment practices, with a particular emphasis on utilities in the Western states. The information presented here is based on a series of interviews conducted with utilities, system operators, wind energy developers, and non-governmental organizations. The report provides case studies of curtailment experience and examines the reasons for curtailment, curtailment procedures, compensation, and practices that can minimize curtailment.

  13. Nucleosome Organization in Human Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Puya G Yazdi

    Full Text Available The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational

  14. Nucleosome Organization in Human Embryonic Stem Cells.

    Science.gov (United States)

    Yazdi, Puya G; Pedersen, Brian A; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E; Wang, Ping H

    2015-01-01

    The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of nucleosome

  15. The size of the nucleosome

    CERN Document Server

    Bohr, Jakob

    2011-01-01

    The structural origin of the size of the 11 nm nucleosomal disc is addressed. On the nanometer length-scale the organization of DNA as chromatin in the chromosomes involves a coiling of DNA around the histone core of the nucleosome. We suggest that the size of the nucleosome core particle is dictated by the fulfillment of two criteria: One is optimizing the volume fraction of the DNA double helix; this requirement for close-packing has its root in optimizing atomic and molecular interactions. The other criterion being that of having a zero strain-twist coupling; being a zero-twist structure is a necessity when allowing for transient tensile stresses during the reorganization of DNA, e.g., during the reposition, or sliding, of a nucleosome along the DNA double helix. The mathematical model we apply is based on a tubular description of double helices assuming hard walls. When the base-pairs of the linker-DNA is included the estimate of the size of an ideal nucleosome is in close agreement with the experimental ...

  16. Nucleosome repositioning underlies dynamic gene expression.

    Science.gov (United States)

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  17. Visible periodicity of strong nucleosome DNA sequences.

    Science.gov (United States)

    Salih, Bilal; Tripathi, Vijay; Trifonov, Edward N

    2015-01-01

    Fifteen years ago, Lowary and Widom assembled nucleosomes on synthetic random sequence DNA molecules, selected the strongest nucleosomes and discovered that the TA dinucleotides in these strong nucleosome sequences often appear at 10-11 bases from one another or at distances which are multiples of this period. We repeated this experiment computationally, on large ensembles of natural genomic sequences, by selecting the strongest nucleosomes--i.e. those with such distances between like-named dinucleotides, multiples of 10.4 bases, the structural and sequence period of nucleosome DNA. The analysis confirmed the periodicity of TA dinucleotides in the strong nucleosomes, and revealed as well other periodic sequence elements, notably classical AA and TT dinucleotides. The matrices of DNA bendability and their simple linear forms--nucleosome positioning motifs--are calculated from the strong nucleosome DNA sequences. The motifs are in full accord with nucleosome positioning sequences derived earlier, thus confirming that the new technique, indeed, detects strong nucleosomes. Species- and isochore-specific variations of the matrices and of the positioning motifs are demonstrated. The strong nucleosome DNA sequences manifest the highest hitherto nucleosome positioning sequence signals, showing the dinucleotide periodicities in directly observable rather than in hidden form.

  18. Nucleosome repositioning via loop formation

    CERN Document Server

    Kulic, M L

    2002-01-01

    Active (catalysed) and passive (intrinsic) nucleosome repositioning is known to be a crucial event during the transcriptional activation of certain eucaryotic genes. Here we consider theoretically the intrinsic mechanism and study in detail the energetics and dynamics of DNA-loop-mediated nucleosome repositioning, as previously proposed by Schiessel et al. (H. Schiessel, J. Widom, R. F. Bruinsma, and W. M. Gelbart. 2001. {\\it Phys. Rev. Lett.} 86:4414-4417). The surprising outcome of the present study is the inherent nonlocality of nucleosome motion within this model -- being a direct physical consequence of the loop mechanism. On long enough DNA templates the longer jumps dominate over the previously predicted local motion, a fact that contrasts simple diffusive mechanisms considered before. The possible experimental outcome resulting from the considered mechanism is predicted, discussed and compared to existing experimental findings.

  19. Brownian dynamics simulation of the effect of histone modification on nucleosome structure

    Science.gov (United States)

    Li, Wei; Dou, Shuo-Xing; Xie, Ping; Wang, Peng-Ye

    2007-05-01

    Using Brownian dynamics we simulate the effect of histone modification, such as phosphorylation, acetylation, and methylation, on nucleosome structure by varying the interaction force between DNA and the histone octamer. The simulation shows that the structural stability of nucleosome is very sensitive to the interaction force, and the DNA unwrapping from the modified histone octamer usually occurs turn by turn. Furthermore, the effects of temperature and DNA break as well as the competition between modified and normal histone octamers are investigated, with the simulation results being in agreement with the experimental observation that phosphorylated nucleosomes near DNA breaks are more easily depleted. Though the simulation study may only give a coarse grained view of the DNA unwrapping process for the modified histone octamer, it may provide insight into the mechanism of DNA repair.

  20. Crystal structure of the nucleosome containing histone H3 with crotonylated lysine 122.

    Science.gov (United States)

    Suzuki, Yuya; Horikoshi, Naoki; Kato, Daiki; Kurumizaka, Hitoshi

    2016-01-15

    The crotonylation of histones is an important post-translational modification, and epigenetically functions in the regulation of genomic DNA activity. The histone modifications in the structured "histone-fold" domains are considered to have an especially important impact on the nucleosome structure and dynamics. In the present study, we reconstituted the human nucleosome containing histone H3.2 crotonylated at the Lys122 residue, and determined its crystal structure at 2.56 Å resolution. We found that the crotonylation of the H3 Lys122 residue does not affect the overall nucleosome structure, but locally impedes the formation of the water-mediated hydrogen bond with the DNA backbone. Consistently, thermal stability assays revealed that the H3 Lys122 crotonylation, as well as the H3 Lys122 acetylation, clearly reduced the histone-DNA association. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. 27 CFR 40.114 - Extension or curtailment of factory.

    Science.gov (United States)

    2010-04-01

    ... of factory. 40.114 Section 40.114 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Products Changes in Location of Factory § 40.114 Extension or curtailment of factory. Where a tobacco products factory is to be changed to an extent which will make inaccurate the description of the factory...

  2. Variations on Stochastic Curtailment in Sequential Mastery Testing

    Science.gov (United States)

    Finkelman, Matthew David

    2010-01-01

    In sequential mastery testing (SMT), assessment via computer is used to classify examinees into one of two mutually exclusive categories. Unlike paper-and-pencil tests, SMT has the capability to use variable-length stopping rules. One approach to shortening variable-length tests is stochastic curtailment, which halts examination if the probability…

  3. Review fifteen years of search for strong nucleosomes.

    Science.gov (United States)

    Trifonov, Edward N; Nibhani, Reshma

    2015-08-01

    Don Crothers, Mikael Kubista, Jon Widom, and their teams have been first to look for strong nucleosomes, in a bid to reveal the nucleosome positioning pattern(s) carried by the nucleosome DNA sequences. They were first to demonstrate that the nucleosome stability correlates with 10-11 base sequence periodicity, and that the strong nucleosomes localize preferentially in centromeres. This review describes these findings and their connection to recent discovery of the strong nucleosomes (SNs) with visibly periodic nucleosome DNA sequences.

  4. Relationship between nucleosome positioning and DNA methylation

    Science.gov (United States)

    Chodavarapu, Ramakrishna K.; Feng, Suhua; Bernatavichute, Yana V.; Chen, Pao-Yang; Stroud, Hume; Yu, Yanchun; Hetzel, Jonathan; Kuo, Frank; Kim, Jin; Cokus, Shawn J.; Casero, David; Bernal, Maria; Huijser, Peter; Clark, Amander T.; Krämer, Ute; Merchant, Sabeeha S.; Zhang, Xiaoyu; Jacobsen, Steven E.; Pellegrini, Matteo

    2010-01-01

    Nucleosomes compact and regulate access to DNA in the nucleus, and are composed of approximately 147 bases of DNA wrapped around a histone octamer1, 2. Here we report a genome-wide nucleosome positioning analysis of Arabidopsis thaliana utilizing massively parallel sequencing of mononucleosomes. By combining this data with profiles of DNA methylation at single base resolution, we identified ten base periodicities in the DNA methylation status of nucleosome-bound DNA and found that nucleosomal DNA was more highly methylated than flanking DNA. These results suggest that nucleosome positioning strongly influences DNA methylation patterning throughout the genome and that DNA methyltransferases preferentially target nucleosome-bound DNA. We also observed similar trends in human nucleosomal DNA suggesting that the relationships between nucleosomes and DNA methyltransferases are conserved. Finally, as has been observed in animals, nucleosomes were highly enriched on exons, and preferentially positioned at intron-exon and exon-intron boundaries. RNA Pol II was also enriched on exons relative to introns, consistent with the hypothesis that nucleosome positioning regulates Pol II processivity. DNA methylation is enriched on exons, consistent with the targeting of DNA methylation to nucleosomes, and suggesting a role for DNA methylation in exon definition. PMID:20512117

  5. Functional roles of nucleosome stability and dynamics.

    Science.gov (United States)

    Chereji, Răzvan V; Morozov, Alexandre V

    2015-01-01

    Nucleosome is a histone-DNA complex known as the fundamental repeating unit of chromatin. Up to 90% of eukaryotic DNA is wrapped around consecutive octamers made of the core histones H2A, H2B, H3 and H4. Nucleosome positioning affects numerous cellular processes that require robust and timely access to genomic DNA, which is packaged into the tight confines of the cell nucleus. In living cells, nucleosome positions are determined by intrinsic histone-DNA sequence preferences, competition between histones and other DNA-binding proteins for genomic sequence, and ATP-dependent chromatin remodelers. We discuss the major energetic contributions to nucleosome formation and remodeling, focusing especially on partial DNA unwrapping off the histone octamer surface. DNA unwrapping enables efficient access to nucleosome-buried binding sites and mediates rapid nucleosome removal through concerted action of two or more DNA-binding factors. High-resolution, genome-scale maps of distances between neighboring nucleosomes have shown that DNA unwrapping and nucleosome crowding (mutual invasion of nucleosome territories) are much more common than previously thought. Ultimately, constraints imposed by nucleosome energetics on the rates of ATP-dependent and spontaneous chromatin remodeling determine nucleosome occupancy genome-wide, and shape pathways of cellular response to environmental stresses.

  6. spFRET reveals changes in nucleosome breathing by neighboring nucleosomes.

    Science.gov (United States)

    Buning, Ruth; Kropff, Wietske; Martens, Kirsten; van Noort, John

    2015-02-18

    Chromatin, the structure in which DNA is compacted in eukaryotic cells, plays a key role in regulating DNA accessibility. FRET experiments on single nucleosomes, the basic units in chromatin, have revealed a dynamic nucleosome where spontaneous DNA unwrapping from the ends provides access to the nucleosomal DNA. Here we investigated how this DNA breathing is affected by extension of the linker DNA and by the presence of a neighboring nucleosome. We found that both electrostatic interactions between the entering and exiting linker DNA and nucleosome-nucleosome interactions increase unwrapping. Interactions between neighboring nucleosomes are more likely in dinucleosomes spaced by 55 bp of linker DNA than in dinucleosomes spaced by 50 bp of linker DNA. Such increased unwrapping may not only increase the accessibility of nucleosomal DNA in chromatin fibers, it may also be key to folding of nucleosomes into higher order structures.

  7. Chromosomal protein HMGN1 enhances the acetylation of lysine 14 in histone H3

    OpenAIRE

    Lim, Jae-Hwan; West, Katherine L.; Rubinstein, Yaffa; Bergel, Michael; Postnikov, Yuri V.; Bustin, Michael

    2005-01-01

    The acetylation levels of lysine residues in nucleosomes, which are determined by the opposing activities of histone acetyltransferases (HATs) and deacetylases, play an important role in regulating chromatin-related processes, including transcription. We report that HMGN1, a nucleosomal binding protein that reduces the compaction of the chromatin fiber, increases the levels of acetylation of K14 in H3. The levels of H3K14ac in Hmgn1−/− cells are lower than in Hmgn1+/+ cells. Induced expressio...

  8. Conditions for positioning of nucleosomes on DNA

    CERN Document Server

    Sheinman, Michael

    2015-01-01

    Positioning of nucleosomes along eukaryotic genomes plays an important role in their organization and regulation. There are many different factors affecting the location of nucleosomes. Some can be viewed as preferential binding of a single nucleosome to different locations along the DNA and some as interactions between neighboring nucleosomes. In this study we analyzed how well nucleosomes are positioned along the DNA as a function of strength of the preferential binding, correlation length of the binding energy landscape, interactions between neighboring nucleosomes and others relevant system properties. We analyze different scenarios: designed energy landscapes and generically disordered ones and derive conditions for good positioning. Using analytic and numerical approaches we find that, even if the binding preferences are very weak, synergistic interplay between the interactions and the binding preferences is essential for a good positioning of nucleosomes, especially on correlated energy landscapes. Ana...

  9. Nucleosome architecture throughout the cell cycle.

    Science.gov (United States)

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-28

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity.

  10. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair.

    Science.gov (United States)

    Gursoy-Yuzugullu, Ozge; Ayrapetov, Marina K; Price, Brendan D

    2015-06-16

    The repair of DNA double-strand breaks (DSBs) requires open, flexible chromatin domains. The NuA4-Tip60 complex creates these flexible chromatin structures by exchanging histone H2A.Z onto nucleosomes and promoting acetylation of histone H4. Here, we demonstrate that the accumulation of H2A.Z on nucleosomes at DSBs is transient, and that rapid eviction of H2A.Z is required for DSB repair. Anp32e, an H2A.Z chaperone that interacts with the C-terminal docking domain of H2A.Z, is rapidly recruited to DSBs. Anp32e functions to remove H2A.Z from nucleosomes, so that H2A.Z levels return to basal within 10 min of DNA damage. Further, H2A.Z removal by Anp32e disrupts inhibitory interactions between the histone H4 tail and the nucleosome surface, facilitating increased acetylation of histone H4 following DNA damage. When H2A.Z removal by Anp32e is blocked, nucleosomes at DSBs retain elevated levels of H2A.Z, and assume a more stable, hypoacetylated conformation. Further, loss of Anp32e leads to increased CtIP-dependent end resection, accumulation of single-stranded DNA, and an increase in repair by the alternative nonhomologous end joining pathway. Exchange of H2A.Z onto the chromatin and subsequent rapid removal by Anp32e are therefore critical for creating open, acetylated nucleosome structures and for controlling end resection by CtIP. Dynamic modulation of H2A.Z exchange and removal by Anp32e reveals the importance of the nucleosome surface and nucleosome dynamics in processing the damaged chromatin template during DSB repair.

  11. Insights into DNA signals for nucleosome positioning

    Institute of Scientific and Technical Information of China (English)

    Zhiming DAI; Xianhua DAI; Jihua FENG; Qian XIANG; Yangyang DENG; Jiang WANG

    2008-01-01

    The nucleosome is the fundamental unit of eukaryotic genomes. Its positioning in the promoter region plays a central role in regulating gene transcription. Experimental evidence suggests that the genomic DNA sequence is one important determinant of nucleosome positioning. Several approaches have been developed to predict nucleosome positions based on DNA sequence features, but the results indicate that there is room for improvement. This paper presents a new computational approach to predict genome-wide nucleosome locations in promoter regions. Importantly, the proposed approach outperforms existing approaches in yeast. Further anal-ysis demonstrates that DNA signals for nucleosome posi-tioning vary with species and composition of histones. Analysis of individual genes reveals that the role of the underlying DNA sequence in nucleosome positioning var-ies with genes.

  12. On the role of inter-nucleosomal interactions and intrinsic nucleosome dynamics in chromatin function

    Directory of Open Access Journals (Sweden)

    Wladyslaw A. Krajewski

    2016-03-01

    Full Text Available Evidence is emerging that many diseases result from defects in gene functions, which, in turn, depend on the local chromatin environment of a gene. However, it still remains not fully clear how chromatin activity code is ‘translated’ to the particular ‘activating’ or ‘repressing’ chromatin structural transition. Commonly, chromatin remodeling in vitro was studied using mononucleosomes as a model. However, recent data suggest that structural reorganization of a single mononucleosome is not equal to remodeling of a nucleosome particle under multinucleosomal content – such as, interaction of nucleosomes via flexible histone termini could significantly alter the mode (and the resulting products of nucleosome structural transitions. It is becoming evident that a nucleosome array does not constitute just a ‘polymer’ of individual ‘canonical’ nucleosomes due to multiple inter-nucleosomal interactions which affect nucleosome dynamics and structure. It could be hypothesized, that inter-nucleosomal interactions could act in cooperation with nucleosome inherent dynamics to orchestrate DNA-based processes and promote formation and stabilization of highly-dynamic, accessible structure of a nucleosome array. In the proposed paper we would like to discuss the nucleosome dynamics within the chromatin fiber mainly as it pertains to the roles of the structural changes mediated by inter-nucleosomal interactions.

  13. Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density.

    Science.gov (United States)

    Lieleg, Corinna; Ketterer, Philip; Nuebler, Johannes; Ludwigsen, Johanna; Gerland, Ulrich; Dietz, Hendrik; Mueller-Planitz, Felix; Korber, Philipp

    2015-05-01

    Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the Hand-Sant-Slide (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms.

  14. spFRET studies of nucleosome dynamics modulated by histone modifications, histone variants and neighboring nucleosomes

    NARCIS (Netherlands)

    Buning, Ruth

    2015-01-01

    At the basis of the regulation of the genetic code (DNA) in eukaryotes is its organization into nucleosomes. Nucleosomes modulate DNA accessibility through conformational dynamics like DNA breathing - the transient unwrapping of DNA from the nucleosome. Single-pair Fluorescence Resonance Energy Tran

  15. Reading sequence-directed computational nucleosome maps.

    Science.gov (United States)

    Nibhani, Reshma; Trifonov, Edward N

    2015-01-01

    Recently developed latest version of the sequence-directed single-base resolution nucleosome mapping reveals existence of strong nucleosomes and chromatin columnar structures (columns). Broad application of this simple technique for further studies of chromatin and chromosome structure requires some basic understanding as to how it works and what information it affords. The paper provides such an introduction to the method. The oscillating maps of singular nucleosomes, of short and long oligonucleosome columns, are explained, as well as maps of chromatin on satellite DNA and occurrences of counter-phase (antiparallel) nucleosome neighbors.

  16. Sequence-based prediction of single nucleosome positioning and genome-wide nucleosome occupancy.

    Science.gov (United States)

    van der Heijden, Thijn; van Vugt, Joke J F A; Logie, Colin; van Noort, John

    2012-09-18

    Nucleosome positioning dictates eukaryotic DNA compaction and access. To predict nucleosome positions in a statistical mechanics model, we exploited the knowledge that nucleosomes favor DNA sequences with specific periodically occurring dinucleotides. Our model is the first to capture both dyad position within a few base pairs, and free binding energy within 2 k(B)T, for all the known nucleosome positioning sequences. By applying Percus's equation to the derived energy landscape, we isolate sequence effects on genome-wide nucleosome occupancy from other factors that may influence nucleosome positioning. For both in vitro and in vivo systems, three parameters suffice to predict nucleosome occupancy with correlation coefficients of respectively 0.74 and 0.66. As predicted, we find the largest deviations in vivo around transcription start sites. This relatively simple algorithm can be used to guide future studies on the influence of DNA sequence on chromatin organization.

  17. Fragile Nucleosomes Influence Pol II Promoter Function.

    Science.gov (United States)

    Pradhan, Suman K; Xue, Yong; Carey, Michael F

    2015-11-05

    In this issue of Molecular Cell, Kubik et al. (2015) describe how the RSC chromatin remodeling complex collaborates with two DNA sequence motifs and sequence-specific general regulatory factors to assemble fragile nucleosomes at highly transcribed yeast Pol II promoters, and they distinguish these from promoters bearing stable nucleosomes.

  18. Structural analysis of nucleosomal barrier to transcription.

    Science.gov (United States)

    Gaykalova, Daria A; Kulaeva, Olga I; Volokh, Olesya; Shaytan, Alexey K; Hsieh, Fu-Kai; Kirpichnikov, Mikhail P; Sokolova, Olga S; Studitsky, Vasily M

    2015-10-27

    Thousands of human and Drosophila genes are regulated at the level of transcript elongation and nucleosomes are likely targets for this regulation. However, the molecular mechanisms of formation of the nucleosomal barrier to transcribing RNA polymerase II (Pol II) and nucleosome survival during/after transcription remain unknown. Here we show that both DNA-histone interactions and Pol II backtracking contribute to formation of the barrier and that nucleosome survival during transcription likely occurs through allosterically stabilized histone-histone interactions. Structural analysis indicates that after Pol II encounters the barrier, the enzyme backtracks and nucleosomal DNA recoils on the octamer, locking Pol II in the arrested state. DNA is displaced from one of the H2A/H2B dimers that remains associated with the octamer. The data reveal the importance of intranucleosomal DNA-protein and protein-protein interactions during conformational changes in the nucleosome structure on transcription. Mechanisms of nucleosomal barrier formation and nucleosome survival during transcription are proposed.

  19. A physical analysis of nucleosome positioning

    Science.gov (United States)

    Gerland, Ulrich

    2015-03-01

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. A high nucleosome coverage is essential for cells, e.g. to prevent cryptic transcription, and the local positions of specific nucleosomes can play an important role in gene regulation. It is known that in vivo nucleosome positions are affected by a complex mix of passive and active mechanisms, including sequence-specific histone-DNA binding, nucleosome-nucleosome interactions, ATP-dependent remodeling enzymes, transcription, and DNA replication. Yet, the statistical distribution of nucleosome positions is extremely well described by simple physical models that treat the chromatin fiber as an interacting one-dimensional gas. I will discuss how can we interpret this surprising observation from a mechanistic perspective. I will also discuss the kinetics of the interacting gas model, which is pertinent to the question of how cells achieve the high nucleosome coverage within a short time, e.g. after DNA replication.

  20. A Positive Twist to the Centromeric Nucleosome

    Directory of Open Access Journals (Sweden)

    Josefina Ocampo

    2015-10-01

    Full Text Available Centromeric nucleosomes are critical for chromosome attachment to the mitotic spindle. In this issue of Cell Reports, Diaz-Ingelmo et al. (2015 propose that the yeast centromeric nucleosome is stabilized by a positively supercoiled loop formed by the sequence-specific CBF3 complex.

  1. Characterization of Dnmt1 Binding and DNA Methylation on Nucleosomes and Nucleosomal Arrays.

    Science.gov (United States)

    Schrader, Anna; Gross, Thomas; Thalhammer, Verena; Längst, Gernot

    2015-01-01

    The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.

  2. Characterization of Dnmt1 Binding and DNA Methylation on Nucleosomes and Nucleosomal Arrays.

    Directory of Open Access Journals (Sweden)

    Anna Schrader

    Full Text Available The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.

  3. Strong nucleosomes of A. thaliana concentrate in centromere regions.

    Science.gov (United States)

    Salih, Bilal; Trifonov, Edward N

    2015-01-01

    Earlier identified strongest nucleosome DNA sequences of A. thaliana, those with visible 10-11 base sequence periodicity, are mapped along chromosomes. Resulting positional distributions reveal distinct maxima, one per chromosome, located in the centromere regions. Sequence-directed nucleosome mapping demonstrates that the strong nucleosomes (SNs) make tight arrays, several 'parallel' nucleosomes each, suggesting a columnar chromatin structure. The SNs represent a new class of centromeric nucleosomes, presumably, participating in synapsis of chromatids and securing the centromere architecture.

  4. Structural basis for retroviral integration into nucleosomes.

    Science.gov (United States)

    Maskell, Daniel P; Renault, Ludovic; Serrao, Erik; Lesbats, Paul; Matadeen, Rishi; Hare, Stephen; Lindemann, Dirk; Engelman, Alan N; Costa, Alessandro; Cherepanov, Peter

    2015-07-16

    Retroviral integration is catalysed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration.

  5. Histone chaperone-mediated nucleosome assembly process.

    Science.gov (United States)

    Fan, Hsiu-Fang; Liu, Zi-Ning; Chow, Sih-Yao; Lu, Yi-Han; Li, Hsin

    2015-01-01

    A huge amount of information is stored in genomic DNA and this stored information resides inside the nucleus with the aid of chromosomal condensation factors. It has been reported that the repeat nucleosome core particle (NCP) consists of 147-bp of DNA and two copies of H2A, H2B, H3 and H4. Regulation of chromosomal structure is important to many processes inside the cell. In vivo, a group of histone chaperones facilitate and regulate nucleosome assembly. How NCPs are constructed with the aid of histone chaperones remains unclear. In this study, the histone chaperone-mediated nucleosome assembly process was investigated using single-molecule tethered particle motion (TPM) experiments. It was found that Asf1 is able to exert more influence than Nap1 and poly glutamate acid (PGA) on the nucleosome formation process, which highlights Asf1's specific role in tetrasome formation. Thermodynamic parameters supported a model whereby energetically favored nucleosomal complexes compete with non-nucleosomal complexes. In addition, our kinetic findings propose the model that histone chaperones mediate nucleosome assembly along a path that leads to enthalpy-favored products with free histones as reaction substrates.

  6. Stepwise nucleosome translocation by RSC remodeling complexes.

    Science.gov (United States)

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-02-19

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1-2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome.

  7. Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA.

    Science.gov (United States)

    Rogge, Ryan A; Kalashnikova, Anna A; Muthurajan, Uma M; Porter-Goff, Mary E; Luger, Karolin; Hansen, Jeffrey C

    2013-09-10

    Core histone octamers that are repetitively spaced along a DNA molecule are called nucleosomal arrays. Nucleosomal arrays are obtained in one of two ways: purification from in vivo sources, or reconstitution in vitro from recombinant core histones and tandemly repeated nucleosome positioning DNA. The latter method has the benefit of allowing for the assembly of a more compositionally uniform and precisely positioned nucleosomal array. Sedimentation velocity experiments in the analytical ultracentrifuge yield information about the size and shape of macromolecules by analyzing the rate at which they migrate through solution under centrifugal force. This technique, along with atomic force microscopy, can be used for quality control, ensuring that the majority of DNA templates are saturated with nucleosomes after reconstitution. Here we describe the protocols necessary to reconstitute milligram quantities of length and compositionally defined nucleosomal arrays suitable for biochemical and biophysical studies of chromatin structure and function.

  8. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases.

    Science.gov (United States)

    Dahlin, Jayme L; Chen, Xiaoyue; Walters, Michael A; Zhang, Zhiguo

    2015-01-01

    During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.

  9. FACT, the Bur kinase pathway, and the histone co-repressor HirC have overlapping nucleosome-related roles in yeast transcription elongation.

    Directory of Open Access Journals (Sweden)

    Jennifer R Stevens

    Full Text Available Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of 'cryptic' promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4-Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4-Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the

  10. Nucleosome

    Science.gov (United States)

    1998-01-01

    The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication.

  11. Dynamics of nucleosome invasion by DNA binding proteins.

    Science.gov (United States)

    Tims, Hannah S; Gurunathan, Kaushik; Levitus, Marcia; Widom, Jonathan

    2011-08-12

    Nucleosomes sterically occlude their wrapped DNA from interacting with many large protein complexes. How proteins gain access to nucleosomal DNA target sites in vivo is not known. Outer stretches of nucleosomal DNA spontaneously unwrap and rewrap with high frequency, providing rapid and efficient access to regulatory DNA target sites located there; however, rates for access to the nucleosome interior have not been measured. Here we show that for a selected high-affinity nucleosome positioning sequence, the spontaneous DNA unwrapping rate decreases dramatically with distance inside the nucleosome. The rewrapping rate also decreases, but only slightly. Our results explain the previously known strong position dependence on the equilibrium accessibility of nucleosomal DNA, which is characteristic of both selected and natural sequences. Our results point to slow nucleosome conformational fluctuations as a potential source of cell-cell variability in gene activation dynamics, and they reveal the dominant kinetic path by which multiple DNA binding proteins cooperatively invade a nucleosome.

  12. Analysis of the mechanism of nucleosome survival during transcription.

    Science.gov (United States)

    Chang, Han-Wen; Kulaeva, Olga I; Shaytan, Alexey K; Kibanov, Mikhail; Kuznedelov, Konstantin; Severinov, Konstantin V; Kirpichnikov, Mikhail P; Clark, David J; Studitsky, Vasily M

    2014-02-01

    Maintenance of nucleosomal structure in the cell nuclei is essential for cell viability, regulation of gene expression and normal aging. Our previous data identified a key intermediate (a small intranucleosomal DNA loop, Ø-loop) that is likely required for nucleosome survival during transcription by RNA polymerase II (Pol II) through chromatin, and suggested that strong nucleosomal pausing guarantees efficient nucleosome survival. To evaluate these predictions, we analysed transcription through a nucleosome by different, structurally related RNA polymerases and mutant yeast Pol II having different histone-interacting surfaces that presumably stabilize the Ø-loop. The height of the nucleosomal barrier to transcription and efficiency of nucleosome survival correlate with the net negative charges of the histone-interacting surfaces. Molecular modeling and analysis of Pol II-nucleosome intermediates by DNase I footprinting suggest that efficient Ø-loop formation and nucleosome survival are mediated by electrostatic interactions between the largest subunit of Pol II and core histones.

  13. SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes.

    Science.gov (United States)

    Liu, Ning; Peterson, Craig L; Hayes, Jeffrey J

    2011-10-01

    The multisubunit SWI/SNF and RSC complexes utilize energy derived from ATP hydrolysis to mobilize nucleosomes and render the DNA accessible for various nuclear processes. Here we test the idea that remodeling involves intermediates with mobile DNA bulges or loops within the nucleosome by cross-linking the H2A N- or C-terminal tails together to generate protein "loops" that constrict separation of the DNA from the histone surface. Analyses indicate that this intranucleosomal cross-linking causes little or no change in remodeling-dependent exposure of DNA sequences within the nucleosome to restriction enzymes. However, cross-linking inhibits nucleosome mobilization and blocks complete movement of nucleosomes to extreme end positions on the DNA fragments. These results are consistent with evidence that nucleosome remodeling involves intermediates with DNA loops on the nucleosome surface but indicate that such loops do not freely diffuse about the surface of the histone octamer. We propose a threading model for movement of DNA loops around the perimeter of the nucleosome core.

  14. Two arginine residues suppress the flexibility of nucleosomal DNA in the canonical nucleosome core.

    Science.gov (United States)

    Kono, Hidetoshi; Shirayama, Kazuyoshi; Arimura, Yasuhiro; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2015-01-01

    The dynamics of nucleosomes containing either canonical H3 or its centromere-specific variant CENP-A were investigated using molecular dynamics simulations. The simulations showed that the histone cores were structurally stable during simulation periods of 100 ns and 50 ns, while DNA was highly flexible at the entry and exit regions and partially dissociated from the histone core. In particular, approximately 20-25 bp of DNA at the entry and exit regions of the CENP-A nucleosome exhibited larger fluctuations than DNA at the entry and exit regions of the H3 nucleosome. Our detailed analysis clarified that this difference in dynamics was attributable to a difference in two basic amino acids in the αN helix; two arginine (Arg) residues in H3 were substituted by lysine (Lys) residues at the corresponding sites in CENP-A. The difference in the ability to form hydrogen bonds with DNA of these two residues regulated the flexibility of nucleosomal DNA at the entry and exit regions. Our exonuclease III assay consistently revealed that replacement of these two Arg residues in the H3 nucleosome by Lys enhanced endonuclease susceptibility, suggesting that the DNA ends of the CENP-A nucleosome are more flexible than those of the H3 nucleosome. This difference in the dynamics between the two types of nucleosomes may be important for forming higher order structures in different phases.

  15. Histone H4 hyperacetylation and rapid turnover of its acetyl groups in transcriptionally inactive rooster testis spermatids.

    Science.gov (United States)

    Oliva, R; Mezquita, C

    1982-12-20

    In order to study the relationship between acetylation of histones, chromatin structure and gene activity, the distribution and turnover of acetyl groups among nucleosomal core histones and the extent of histone H4 acetylation were examined in rooster testis cell nuclei at different stages of spermatogenesis. Histone H4 was the predominant acetylated histone in mature testes. Hyperacetylation of H4 and rapid turnover of its acetyl groups are not univocally correlated with transcriptional activity since they were detected in both genetically active testicular cells and genetically inactive elongated spermatids. During the transition from nucleohistone to nucleoprotamine in elongated spermatids the chromatin undergoes dramatic structural changes with exposition of binding sites on DNA (1). Hyperacetylation of H4 and rapid turnover of its acetyl groups could be correlated with the particular conformation of chromatin in elongated spermatids and might represent a necessary condition for binding of chromosomal proteins to DNA.

  16. Dynamic regulation of transcription factors by nucleosome remodeling.

    Science.gov (United States)

    Li, Ming; Hada, Arjan; Sen, Payel; Olufemi, Lola; Hall, Michael A; Smith, Benjamin Y; Forth, Scott; McKnight, Jeffrey N; Patel, Ashok; Bowman, Gregory D; Bartholomew, Blaine; Wang, Michelle D

    2015-06-05

    The chromatin landscape and promoter architecture are dominated by the interplay of nucleosome and transcription factor (TF) binding to crucial DNA sequence elements. However, it remains unclear whether nucleosomes mobilized by chromatin remodelers can influence TFs that are already present on the DNA template. In this study, we investigated the interplay between nucleosome remodeling, by either yeast ISW1a or SWI/SNF, and a bound TF. We found that a TF serves as a major barrier to ISW1a remodeling, and acts as a boundary for nucleosome repositioning. In contrast, SWI/SNF was able to slide a nucleosome past a TF, with concurrent eviction of the TF from the DNA, and the TF did not significantly impact the nucleosome positioning. Our results provide direct evidence for a novel mechanism for both nucleosome positioning regulation by bound TFs and TF regulation via dynamic repositioning of nucleosomes.

  17. Nucleosome positioning, nucleotide excision repair and photoreactivation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Guintini, Laetitia; Charton, Romain; Peyresaubes, François; Thoma, Fritz; Conconi, Antonio

    2015-12-01

    The position of nucleosomes on DNA participates in gene regulation and DNA replication. Nucleosomes can be repressors by limiting access of factors to regulatory sequences, or activators by facilitating binding of factors to exposed DNA sequences on the surface of the core histones. The formation of UV induced DNA lesions, like cyclobutane pyrimidine dimers (CPDs), is modulated by DNA bending around the core histones. Since CPDs are removed by nucleotide excision repair (NER) and photolyase repair, it is of paramount importance to understand how DNA damage and repair are tempered by the position of nucleosomes. In vitro, nucleosomes inhibit NER and photolyase repair. In vivo, nucleosomes slow down NER and considerably obstruct photoreactivation of CPDs. However, over-expression of photolyase allows repair of nucleosomal DNA in a second time scale. It is proposed that the intrinsic abilities of nucleosomes to move and transiently unwrap could facilitate damage recognition and repair in nucleosomal DNA.

  18. Featuring the nucleosome surface as a therapeutic target.

    Science.gov (United States)

    da Silva, Isabel Torres Gomes; de Oliveira, Paulo Sergio Lopes; Santos, Guilherme Martins

    2015-05-01

    Chromatin is the major regulator of gene expression and genome maintenance. Proteins that bind the nucleosome, the repetitive unit of chromatin, and the histone H4 tail are critical to establishing chromatin architecture and phenotypic outcomes. Intriguingly, nucleosome-binding proteins (NBPs) and the H4 tail peptide compete for the same binding site at an acidic region on the nucleosome surface. Although the essential facts about the nucleosome were revealed 17 years ago, new insights into its atomic structure and molecular mechanisms are still emerging. Several complex nucleosome:NBP structures were recently revealed, characterizing the NBP-binding sites on the nucleosome surface. Here we discuss the potential of the nucleosome surface as a therapeutic target and the impact and development of exogenous nucleosome-binding molecules (eNBMs).

  19. From nucleosome to chromosome: a dynamic organization of genetic information

    NARCIS (Netherlands)

    P. Fransz; H. de Jong

    2011-01-01

    Gene activity is controlled at different levels of chromatin organization, which involve genomic sequences, nucleosome structure, chromatin folding and chromosome arrangement. These levels are interconnected and influence each other. At the basic level nucleosomes generally occlude the DNA sequence

  20. From nucleosome to chromosome: a dynamic organization of genetic information

    NARCIS (Netherlands)

    Fransz, P.F.; Jong, de J.H.S.G.M.

    2011-01-01

    Gene activity is controlled at different levels of chromatin organization, which involve genomic sequences, nucleosome structure, chromatin folding and chromosome arrangement. These levels are interconnected and influence each other. At the basic level nucleosomes generally occlude the DNA sequence

  1. From nucleosome to chromosome : a dynamic organization of genetic information

    NARCIS (Netherlands)

    Fransz, P.; de Jong, H.

    2011-01-01

    Gene activity is controlled at different levels of chromatin organization, which involve genomic sequences, nucleosome structure, chromatin folding and chromosome arrangement. These levels are interconnected and influence each other. At the basic level nucleosomes generally occlude the DNA sequence

  2. Insights into distinct regulatory modes of nucleosome positioning

    OpenAIRE

    Feng Jihua; Xiang Qian; Dai Xianhua; Dai Zhiming; Deng Yangyang; Wang Jiang

    2009-01-01

    Abstract Background The nucleosome is the fundamental unit of eukaryotic genomes. Experimental evidence suggests that the genomic DNA sequence and a variety of protein factors contribute to nucleosome positioning in vivo. However, how nucleosome positioning is determined locally is still largely unknown. Results We found that transcription factor binding sites (TFBSs) with particular nucleosomal contexts show a preference to reside on specific chromosomes. We identified four typical gene clas...

  3. The Effect of Micrococcal Nuclease Digestion on Nucleosome Positioning Data

    OpenAIRE

    Ho-Ryun Chung; Ilona Dunkel; Franziska Heise; Christian Linke; Sylvia Krobitsch; Ehrenhofer-Murray, Ann E.; Sperling, Silke R; Martin Vingron

    2010-01-01

    Eukaryotic genomes are packed into chromatin, whose basic repeating unit is the nucleosome. Nucleosome positioning is a widely researched area. A common experimental procedure to determine nucleosome positions involves the use of micrococcal nuclease (MNase). Here, we show that the cutting preference of MNase in combination with size selection generates a sequence-dependent bias in the resulting fragments. This strongly affects nucleosome positioning data and especially sequence-dependent mod...

  4. Nucleosome positioning in yeasts: methods, maps, and mechanisms.

    Science.gov (United States)

    Lieleg, Corinna; Krietenstein, Nils; Walker, Maria; Korber, Philipp

    2015-06-01

    Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.

  5. A brief review of nucleosome structure.

    Science.gov (United States)

    Cutter, Amber R; Hayes, Jeffrey J

    2015-10-07

    The nucleosomal subunit organization of chromatin provides a multitude of functions. Nucleosomes elicit an initial ∼7-fold linear compaction of genomic DNA. They provide a critical mechanism for stable repression of genes and other DNA-dependent activities by restricting binding of trans-acting factors to cognate DNA sequences. Conversely they are engineered to be nearly meta-stable and disassembled (and reassembled) in a facile manner to allow rapid access to the underlying DNA during processes such as transcription, replication and DNA repair. Nucleosomes protect the genome from DNA damaging agents and provide a lattice onto which a myriad of epigenetic signals are deposited. Moreover, vast strings of nucleosomes provide a framework for assembly of the chromatin fiber and higher-order chromatin structures. Thus, in order to provide a foundation for understanding these functions, we present a review of the basic elements of nucleosome structure and stability, including the association of linker histones. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Traceless Synthesis of Asymmetrically Modified Bivalent Nucleosomes.

    Science.gov (United States)

    Lechner, Carolin C; Agashe, Ninad D; Fierz, Beat

    2016-02-18

    Nucleosomes carry extensive post-translational modifications (PTMs), which results in complex modification patterns that are involved in epigenetic signaling. Although two copies of each histone coexist in a nucleosome, they may not carry the same PTMs and are often differently modified (asymmetric). In bivalent domains, a chromatin signature prevalent in embryonic stem cells (ESCs), namely H3 methylated at lysine 4 (H3K4me3), coexists with H3K27me3 in asymmetric nucleosomes. We report a general, modular, and traceless method for producing asymmetrically modified nucleosomes. We further show that in bivalent nucleosomes, H3K4me3 inhibits the activity of the H3K27-specific lysine methyltransferase (KMT) polycomb repressive complex 2 (PRC2) solely on the same histone tail, whereas H3K27me3 stimulates PRC2 activity across tails, thereby partially overriding the H3K4me3-mediated repressive effect. To maintain bivalent domains in ESCs, PRC2 activity must thus be locally restricted or reversed.

  7. Triple helix DNA alters nucleosomal histone-DNA interactions and acts as a nucleosome barrier.

    Science.gov (United States)

    Westin, L; Blomquist, P; Milligan, J F; Wrange, O

    1995-06-25

    Oligonucleotides which form triple helical complexes on double-stranded DNA have been previously reported to selectively inhibit transcription both in vitro and in vivo by physically blocking RNA polymerase or transcription factor access to the DNA template. Here we show that a 16mer oligonucleotide, which forms triple helix DNA by binding to a 16 bp homopurine segment, alters the formation of histone-DNA contacts during in vitro nucleosome reconstitution. This effect was DNA sequence-specific and required the oligonucleotide to be present during in vitro nucleosome reconstitution. Binding of the triple helix oligonucleotide on a 199 bp mouse mammary tumour virus promoter DNA fragment with a centrally located triplex DNA resulted in interruption of histone-DNA contacts flanking the triplex DNA segment. When nucleosome reconstitution is carried out on a longer, 279 bp DNA fragment with an asymmetrically located triplex site, nucleosome formation occurred at the border of the triple helical DNA. In this case the triplex DNA functioned as a nucleosome barrier. We conclude that triplex DNA cannot be accommodated within a nucleosome context and thus may be used to site-specifically manipulate nucleosome organization.

  8. Dynamics and function of compact nucleosome arrays.

    Science.gov (United States)

    Poirier, Michael G; Oh, Eugene; Tims, Hannah S; Widom, Jonathan

    2009-09-01

    The packaging of eukaryotic DNA into chromatin sterically occludes polymerases, recombinases and repair enzymes. How chromatin structure changes to allow their actions is unknown. We constructed defined fluorescently labeled trinucleosome arrays, allowing analysis of chromatin conformational dynamics via fluorescence resonance energy transfer (FRET). The arrays undergo reversible Mg2+-dependent folding similar to that of longer arrays studied previously. We define two intermediate conformational states in the reversible folding of the nucleosome arrays and characterize the microscopic rate constants. Nucleosome arrays are highly dynamic even when compact, undergoing conformational fluctuations on timescales in the second to microsecond range. Compact states of the arrays allow binding to DNA within the central nucleosome via site exposure. Protein binding can also drive decompaction of the arrays. Thus, our results reveal multiple modes by which spontaneous chromatin fiber dynamics allow for the invasion and action of DNA-processing protein complexes.

  9. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo

    OpenAIRE

    Zhang, Y; Moqtaderi, Z.; Rattner, BP; Euskirchen, G.; Snyder, M; Kadonaga, JT; Liu, XS; Struhl, K

    2009-01-01

    We assess the role of intrinsic histone-DNA interactions by mapping nucleosomes assembled in vitro on genomic DNA. Nucleosomes strongly prefer yeast DNA over Escherichia coli DNA, indicating that the yeast genome evolved to favor nucleosome formation. Many yeast promoter and terminator regions intrinsically disfavor nucleosome formation, and nucleosomes assembled in vitro show strong rotational positioning. Nucleosome arrays generated by the ACF assembly factor have fewer nucleosome-free regi...

  10. Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks.

    Science.gov (United States)

    Gursoy-Yuzugullu, Ozge; House, Nealia; Price, Brendan D

    2016-05-08

    The ability of cells to detect and repair DNA double-strand breaks (DSBs) is dependent on reorganization of the surrounding chromatin structure by chromatin remodeling complexes. These complexes promote access to the site of DNA damage, facilitate processing of the damaged DNA and, importantly, are essential to repackage the repaired DNA. Here, we will review the chromatin remodeling steps that occur immediately after DSB production and that prepare the damaged chromatin template for processing by the DSB repair machinery. DSBs promote rapid accumulation of repressive complexes, including HP1, the NuRD complex, H2A.Z and histone methyltransferases at the DSB. This shift to a repressive chromatin organization may be important to inhibit local transcription and limit mobility of the break and to maintain the DNA ends in close contact. Subsequently, the repressive chromatin is rapidly dismantled through a mechanism involving dynamic exchange of the histone variant H2A.Z. H2A.Z removal at DSBs alters the acidic patch on the nucleosome surface, promoting acetylation of the H4 tail (by the NuA4-Tip60 complex) and shifting the chromatin to a more open structure. Further, H2A.Z removal promotes chromatin ubiquitination and recruitment of additional DSB repair proteins to the break. Modulation of the nucleosome surface and nucleosome function during DSB repair therefore plays a vital role in processing of DNA breaks. Further, the nucleosome surface may function as a central hub during DSB repair, directing specific patterns of histone modification, recruiting DNA repair proteins and modulating chromatin packing during processing of the damaged DNA template.

  11. Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.

    Science.gov (United States)

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2015-12-01

    During Cas9 genome editing in eukaryotic cells, the bacterial Cas9 enzyme cleaves DNA targets within chromatin. To understand how chromatin affects Cas9 targeting, we characterized Cas9 activity on nucleosome substrates in vitro. We find that Cas9 endonuclease activity is strongly inhibited when its target site is located within the nucleosome core. In contrast, the nucleosome structure does not affect Cas9 activity at a target site within the adjacent linker DNA. Analysis of target sites that partially overlap with the nucleosome edge indicates that the accessibility of the protospacer-adjacent motif (PAM) is the critical determinant of Cas9 activity on a nucleosome.

  12. Human nucleosomes: special role of CG dinucleotides and Alu-nucleosomes

    Directory of Open Access Journals (Sweden)

    Trifonov Edward N

    2011-05-01

    Full Text Available Abstract Background The periodical occurrence of dinucleotides with a period of 10.4 bases now is undeniably a hallmark of nucleosome positioning. Whereas many eukaryotic genomes contain visible and even strong signals for periodic distribution of dinucleotides, the human genome is rather featureless in this respect. The exact sequence features in the human genome that govern the nucleosome positioning remain largely unknown. Results When analyzing the human genome sequence with the positional autocorrelation method, we found that only the dinucleotide CG shows the 10.4 base periodicity, which is indicative of the presence of nucleosomes. There is a high occurrence of CG dinucleotides that are either 31 (10.4 × 3 or 62 (10.4 × 6 base pairs apart from one another - a sequence bias known to be characteristic of Alu-sequences. In a similar analysis with repetitive sequences removed, peaks of repeating CG motifs can be seen at positions 10, 21 and 31, the nearest integers of multiples of 10.4. Conclusions Although the CG dinucleotides are dominant, other elements of the standard nucleosome positioning pattern are present in the human genome as well. The positional autocorrelation analysis of the human genome demonstrates that the CG dinucleotide is, indeed, one visible element of the human nucleosome positioning pattern, which appears both in Alu sequences and in sequences without repeats. The dominant role that CG dinucleotides play in organizing human chromatin is to indicate the involvement of human nucleosomes in tuning the regulation of gene expression and chromatin structure, which is very likely due to cytosine-methylation/-demethylation in CG dinucleotides contained in the human nucleosomes. This is further confirmed by the positions of CG-periodical nucleosomes on Alu sequences. Alu repeats appear as monomers, dimers and trimers, harboring two to six nucleosomes in a run. Considering the exceptional role CG dinucleotides play in the

  13. Structure and function of human histone H3.Y nucleosome.

    Science.gov (United States)

    Kujirai, Tomoya; Horikoshi, Naoki; Sato, Koichi; Maehara, Kazumitsu; Machida, Shinichi; Osakabe, Akihisa; Kimura, Hiroshi; Ohkawa, Yasuyuki; Kurumizaka, Hitoshi

    2016-07-27

    Histone H3.Y is a primate-specific, distant H3 variant. It is evolutionarily derived from H3.3, and may function in transcription regulation. However, the mechanism by which H3.Y regulates transcription has not been elucidated. In the present study, we determined the crystal structure of the H3.Y nucleosome, and found that many H3.Y-specific residues are located on the entry/exit sites of the nucleosome. Biochemical analyses revealed that the DNA ends of the H3.Y nucleosome were more flexible than those of the H3.3 nucleosome, although the H3.Y nucleosome was stable in vitro and in vivo Interestingly, the linker histone H1, which compacts nucleosomal DNA, appears to bind to the H3.Y nucleosome less efficiently, as compared to the H3.3 nucleosome. These characteristics of the H3.Y nucleosome are also conserved in the H3.Y/H3.3 heterotypic nucleosome, which may be the predominant form in cells. In human cells, H3.Y preferentially accumulated around transcription start sites (TSSs). Taken together, H3.Y-containing nucleosomes around transcription start sites may form relaxed chromatin that allows transcription factor access, to regulate the transcription status of specific genes.

  14. Probing Nucleosome Stability with a DNA Origami Nanocaliper.

    Science.gov (United States)

    Le, Jenny V; Luo, Yi; Darcy, Michael A; Lucas, Christopher R; Goodwin, Michelle F; Poirier, Michael G; Castro, Carlos E

    2016-07-26

    The organization of eukaryotic DNA into nucleosomes and chromatin undergoes dynamic structural changes to regulate genome processing, including transcription and DNA repair. Critical chromatin rearrangements occur over a wide range of distances, including the mesoscopic length scale of tens of nanometers. However, there is a lack of methodologies that probe changes over this mesoscopic length scale within chromatin. We have designed, constructed, and implemented a DNA-based nanocaliper that probes this mesoscopic length scale. We developed an approach of integrating nucleosomes into our nanocaliper at two attachment points with over 50% efficiency. Here, we focused on attaching the two DNA ends of the nucleosome to the ends of the two nanocaliper arms, so the hinge angle is a readout of the nucleosome end-to-end distance. We demonstrate that nucleosomes integrated with 6, 26, and 51 bp linker DNA are partially unwrapped by the nanocaliper by an amount consistent with previously observed structural transitions. In contrast, the nucleosomes integrated with the longer 75 bp linker DNA remain fully wrapped. We found that the nanocaliper angle is a sensitive measure of nucleosome disassembly and can read out transcription factor (TF) binding to its target site within the nucleosome. Interestingly, the nanocaliper not only detects TF binding but also significantly increases the probability of TF occupancy at its site by partially unwrapping the nucleosome. These studies demonstrate the feasibility of using DNA nanotechnology to both detect and manipulate nucleosome structure, which provides a foundation of future mesoscale studies of nucleosome and chromatin structural dynamics.

  15. Tension-dependent Free Energies of Nucleosome Unwrapping

    CERN Document Server

    Lequieu, Joshua; Schwartz, David C; de Pablo, Juan J

    2016-01-01

    Nucleosomes form the basic unit of compaction within eukaryotic genomes and their locations represent an important, yet poorly understood, mechanism of genetic regulation. Quantifying the strength of interactions within the nucleosome is a central problem in biophysics and is critical to understanding how nucleosome positions influence gene expression. By comparing to single-molecule experiments, we demonstrate that a coarse-grained molecular model of the nucleosome can reproduce key aspects of nucleosome unwrapping. Using detailed simulations of DNA and histone proteins, we calculate the tension-dependent free energy surface corresponding to the unwrapping process. The model reproduces quantitatively the forces required to unwrap the nucleosome, and reveals the role played by electrostatic interactions during this process. We then demonstrate that histone modifications and DNA sequence can have significant effects on the energies of nucleosome formation. Most notably, we show that histone tails are crucial f...

  16. The effect of micrococcal nuclease digestion on nucleosome positioning data.

    Directory of Open Access Journals (Sweden)

    Ho-Ryun Chung

    Full Text Available Eukaryotic genomes are packed into chromatin, whose basic repeating unit is the nucleosome. Nucleosome positioning is a widely researched area. A common experimental procedure to determine nucleosome positions involves the use of micrococcal nuclease (MNase. Here, we show that the cutting preference of MNase in combination with size selection generates a sequence-dependent bias in the resulting fragments. This strongly affects nucleosome positioning data and especially sequence-dependent models for nucleosome positioning. As a consequence we see a need to re-evaluate whether the DNA sequence is a major determinant of nucleosome positioning in vivo. More generally, our results show that data generated after MNase digestion of chromatin requires a matched control experiment in order to determine nucleosome positions.

  17. The effect of micrococcal nuclease digestion on nucleosome positioning data.

    Science.gov (United States)

    Chung, Ho-Ryun; Dunkel, Ilona; Heise, Franziska; Linke, Christian; Krobitsch, Sylvia; Ehrenhofer-Murray, Ann E; Sperling, Silke R; Vingron, Martin

    2010-12-29

    Eukaryotic genomes are packed into chromatin, whose basic repeating unit is the nucleosome. Nucleosome positioning is a widely researched area. A common experimental procedure to determine nucleosome positions involves the use of micrococcal nuclease (MNase). Here, we show that the cutting preference of MNase in combination with size selection generates a sequence-dependent bias in the resulting fragments. This strongly affects nucleosome positioning data and especially sequence-dependent models for nucleosome positioning. As a consequence we see a need to re-evaluate whether the DNA sequence is a major determinant of nucleosome positioning in vivo. More generally, our results show that data generated after MNase digestion of chromatin requires a matched control experiment in order to determine nucleosome positions.

  18. Plasmodium falciparum Nucleosomes Exhibit Reduced Stability and Lost Sequence Dependent Nucleosome Positioning

    Science.gov (United States)

    Silberhorn, Elisabeth; Schwartz, Uwe; Symelka, Anne; de Koning-Ward, Tania; Längst, Gernot

    2016-01-01

    The packaging and organization of genomic DNA into chromatin represents an additional regulatory layer of gene expression, with specific nucleosome positions that restrict the accessibility of regulatory DNA elements. The mechanisms that position nucleosomes in vivo are thought to depend on the biophysical properties of the histones, sequence patterns, like phased di-nucleotide repeats and the architecture of the histone octamer that folds DNA in 1.65 tight turns. Comparative studies of human and P. falciparum histones reveal that the latter have a strongly reduced ability to recognize internal sequence dependent nucleosome positioning signals. In contrast, the nucleosomes are positioned by AT-repeat sequences flanking nucleosomes in vivo and in vitro. Further, the strong sequence variations in the plasmodium histones, compared to other mammalian histones, do not present adaptations to its AT-rich genome. Human and parasite histones bind with higher affinity to GC-rich DNA and with lower affinity to AT-rich DNA. However, the plasmodium nucleosomes are overall less stable, with increased temperature induced mobility, decreased salt stability of the histones H2A and H2B and considerable reduced binding affinity to GC-rich DNA, as compared with the human nucleosomes. In addition, we show that plasmodium histone octamers form the shortest known nucleosome repeat length (155bp) in vitro and in vivo. Our data suggest that the biochemical properties of the parasite histones are distinct from the typical characteristics of other eukaryotic histones and these properties reflect the increased accessibility of the P. falciparum genome. PMID:28033404

  19. Dynamic nucleosome organization at hox promoters during zebrafish embryogenesis.

    Directory of Open Access Journals (Sweden)

    Steven E Weicksel

    Full Text Available Nucleosome organization at promoter regions plays an important role in regulating gene activity. Genome-wide studies in yeast, flies, worms, mammalian embryonic stem cells and transformed cell lines have found well-positioned nucleosomes flanking a nucleosome depleted region (NDR at transcription start sites. This nucleosome arrangement depends on DNA sequence (cis-elements as well as DNA binding factors and ATP-dependent chromatin modifiers (trans-factors. However, little is understood about how the nascent embryonic genome positions nucleosomes during development. This is particularly intriguing since the embryonic genome must undergo a broad reprogramming event upon fusion of sperm and oocyte. Using four stages of early embryonic zebrafish development, we map nucleosome positions at the promoter region of 37 zebrafish hox genes. We find that nucleosome arrangement at the hox promoters is a progressive process that takes place over several stages. At stages immediately after fertilization, nucleosomes appear to be largely disordered at hox promoter regions. At stages after activation of the embryonic genome, nucleosomes are detectable at hox promoters, with positions becoming more uniform and more highly occupied. Since the genomic sequence is invariant during embryogenesis, this progressive change in nucleosome arrangement suggests that trans-factors play an important role in organizing nucleosomes during embryogenesis. Separating hox genes into expressed and non-expressed groups shows that expressed promoters have better positioned and occupied nucleosomes, as well as distinct NDRs, than non-expressed promoters. Finally, by blocking the retinoic acid-signaling pathway, we disrupt early hox gene transcription, but observe no effect on nucleosome positions, suggesting that active hox transcription is not a driving force behind the arrangement of nucleosomes at the promoters of hox genes during early development.

  20. Nucleosome positioning and composition modulate in silico chromatin flexibility.

    Science.gov (United States)

    Clauvelin, N; Lo, P; Kulaeva, O I; Nizovtseva, E V; Diaz-Montes, J; Zola, J; Parashar, M; Studitsky, V M; Olson, W K

    2015-02-18

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and

  1. Core promoter acetylation is not required for high transcription from the phosphoenolpyruvate carboxylase promoter in maize

    Directory of Open Access Journals (Sweden)

    Horst Ina

    2009-12-01

    Full Text Available Abstract Background Acetylation of promoter nucleosomes is tightly correlated and mechanistically linked to gene activity. However, transcription is not necessary for promoter acetylation. It seems, therefore, that external and endogenous stimuli control histone acetylation and by this contribute to gene regulation. Photosynthetic genes in plants are excellent models with which to study the connection between stimuli and chromatin modifications because these genes are strongly expressed and regulated by multiple stimuli that are easily manipulated. We have previously shown that acetylation of specific histone lysine residues on the photosynthetic phosphoenolpyruvate carboxylase (Pepc promoter in maize is controlled by light and is independent of other stimuli or gene activity. Acetylation of upstream promoter regions responds to a set of other stimuli which include the nutrient availability of the plant. Here, we have extended these studies by analysing histone acetylation during the diurnal and circadian rhythm of the plant. Results We show that histone acetylation of individual lysine residues is removed from the core promoter before the end of the illumination period which is an indication that light is not the only factor influencing core promoter acetylation. Deacetylation is accompanied by a decrease in gene activity. Pharmacological inhibition of histone deacetylation is not sufficient to prevent transcriptional repression, indicating that deacetylation is not controlling diurnal gene regulation. Variation of the Pepc promoter activity during the day is controlled by the circadian oscillator as it is maintained under constant illumination for at least 3 days. During this period, light-induced changes in histone acetylation are completely removed from the core promoter, although the light stimulus is continuously applied. However, acetylation of most sites on upstream promoter elements follows the circadian rhythm. Conclusion Our results

  2. Prediction of nucleosome DNA formation potential and nucleosome positioning using increment of diversity combined with quadratic discriminant analysis.

    Science.gov (United States)

    Zhao, Xiujuan; Pei, Zhiyong; Liu, Jia; Qin, Sheng; Cai, Lu

    2010-11-01

    In this work, a novel method was developed to distinguish nucleosome DNA and linker DNA based on increment of diversity combined with quadratic discriminant analysis (IDQD), using k-mer frequency of nucleotides in genome. When used to predict DNA potential for forming nucleosomes, the model achieved a high accuracy of 94.94%, 77.60%, and 86.81%, respectively, for Saccharomyces cerevisiae, Homo sapiens, and Drosophila melanogaster. The area under the receiver operator characteristics curve of our classifier was 0.982 for S. cerevisiae. Our results indicate that DNA sequence preference is critical for nucleosome formation potential and is likely conserved across eukaryotes. The model successfully identified nucleosome-enriched or nucleosome-depleted regions in S. cerevisiae genome, suggesting nucleosome positioning depends on DNA sequence preference. Thus, IDQD classifier is useful for predicting nucleosome positioning.

  3. Incorporating nucleosomes into thermodynamic models of transcription regulation.

    Science.gov (United States)

    Raveh-Sadka, Tali; Levo, Michal; Segal, Eran

    2009-08-01

    Transcriptional control is central to many cellular processes, and, consequently, much effort has been devoted to understanding its underlying mechanisms. The organization of nucleosomes along promoter regions is important for this process, since most transcription factors cannot bind nucleosomal sequences and thus compete with nucleosomes for DNA access. This competition is governed by the relative concentrations of nucleosomes and transcription factors and by their respective sequence binding preferences. However, despite its importance, a mechanistic understanding of the quantitative effects that the competition between nucleosomes and factors has on transcription is still missing. Here we use a thermodynamic framework based on fundamental principles of statistical mechanics to explore theoretically the effect that different nucleosome organizations along promoters have on the activation dynamics of promoters in response to varying concentrations of the regulating factors. We show that even simple landscapes of nucleosome organization reproduce experimental results regarding the effect of nucleosomes as general repressors and as generators of obligate binding cooperativity between factors. Our modeling framework also allows us to characterize the effects that various sequence elements of promoters have on the induction threshold and on the shape of the promoter activation curves. Finally, we show that using only sequence preferences for nucleosomes and transcription factors, our model can also predict expression behavior of real promoter sequences, thereby underscoring the importance of the interplay between nucleosomes and factors in determining expression kinetics.

  4. Asymmetric nucleosomes flank promoters in the budding yeast genome.

    Science.gov (United States)

    Ramachandran, Srinivas; Zentner, Gabriel E; Henikoff, Steven

    2015-03-01

    Nucleosomes in active chromatin are dynamic, but whether they have distinct structural conformations is unknown. To identify nucleosomes with alternative structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that 5% of budding yeast (Saccharomyces cerevisiae) nucleosome positions have asymmetric histone-DNA interactions. These asymmetric interactions are enriched at nucleosome positions that flank promoters. Micrococcal nuclease (MNase) sequence-based profiles of asymmetric nucleosome positions revealed a corresponding asymmetry in MNase protection near the dyad axis, suggesting that the loss of DNA contacts around H4S47 is accompanied by protection of the DNA from MNase. Chromatin immunoprecipitation mapping of selected nucleosome remodelers indicated that asymmetric nucleosomes are bound by the RSC chromatin remodeling complex, which is required for maintaining nucleosomes at asymmetric positions. These results imply that the asymmetric nucleosome-RSC complex is a metastable intermediate representing partial unwrapping and protection of nucleosomal DNA on one side of the dyad axis during chromatin remodeling.

  5. Nucleosome positioning and composition modulate in silico chromatin flexibility

    Science.gov (United States)

    Clauvelin, N.; Lo, P.; Kulaeva, O. I.; Nizovtseva, E. V.; Diaz-Montes, J.; Zola, J.; Parashar, M.; Studitsky, V. M.; Olson, W. K.

    2015-02-01

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes—the familiar assemblies of ˜150 DNA base pairs and eight histone proteins—found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the ‘local’ inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome

  6. The energetic implications of curtailing versus storing wind- and solar-generated electricity

    Science.gov (United States)

    Barnhart, C. J.; Dale, M.; Brandt, A. R.; Benson, S. M.

    2013-12-01

    Rapid deployment of power generation technologies harnessing wind and solar resources continues to reduce the carbon intensity of the power grid. But as these technologies comprise a larger fraction of power supply, their variable, weather-dependent nature poses challenges to power grid operation. Today, during times of power oversupply or unfavorable market conditions, power grid operators curtail these resources. Rates of curtailment are expected to increase with increased renewable electricity production. That is unless technologies are implemented that can provide grid flexibility to balance power supply with power demand. Curtailment is an obvious forfeiture of energy and it decreases the profitability of electricity from curtailed generators. What are less obvious are the energetic costs for technologies that provide grid flexibility. We present a theoretical framework to calculate how storage affects the energy return on energy investment (EROI) ratios of wind and solar resources. Our methods identify conditions under which it is more energetically favorable to store energy than it is to simply curtail electricity production. Electrochemically based storage technologies result in much smaller EROI ratios than large-scale geologically based storage technologies like compressed air energy storage (CAES) and pumped hydroelectric storage (PHS). All storage technologies paired with solar photovoltaic (PV) generation yield EROI ratios that are greater than curtailment. Due to their low energy stored on electrical energy invested (ESOIe) ratios, conventional battery technologies reduce the EROI ratios of wind generation below curtailment EROI ratios. To yield a greater net energy return than curtailment, battery storage technologies paired with wind generation need an ESOIe>80. We identify improvements in cycle life as the most feasible way to increase battery ESOIe. Depending upon the battery's embodied energy requirement, an increase of cycle life to 10

  7. Conserved substitution patterns around nucleosome footprints in eukaryotes and Archaea derive from frequent nucleosome repositioning through evolution.

    Directory of Open Access Journals (Sweden)

    Tobias Warnecke

    Full Text Available Nucleosomes, the basic repeat units of eukaryotic chromatin, have been suggested to influence the evolution of eukaryotic genomes, both by altering the propensity of DNA to mutate and by selection acting to maintain or exclude nucleosomes in particular locations. Contrary to the popular idea that nucleosomes are unique to eukaryotes, histone proteins have also been discovered in some archaeal genomes. Archaeal nucleosomes, however, are quite unlike their eukaryotic counterparts in many respects, including their assembly into tetramers (rather than octamers from histone proteins that lack N- and C-terminal tails. Here, we show that despite these fundamental differences the association between nucleosome footprints and sequence evolution is strikingly conserved between humans and the model archaeon Haloferax volcanii. In light of this finding we examine whether selection or mutation can explain concordant substitution patterns in the two kingdoms. Unexpectedly, we find that neither the mutation nor the selection model are sufficient to explain the observed association between nucleosomes and sequence divergence. Instead, we demonstrate that nucleosome-associated substitution patterns are more consistent with a third model where sequence divergence results in frequent repositioning of nucleosomes during evolution. Indeed, we show that nucleosome repositioning is both necessary and largely sufficient to explain the association between current nucleosome positions and biased substitution patterns. This finding highlights the importance of considering the direction of causality between genetic and epigenetic change.

  8. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun.

    Directory of Open Access Journals (Sweden)

    Catherine A Hazzalin

    2005-12-01

    Full Text Available A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4-methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9-methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9-methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.

  9. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4-methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9-methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9-methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.

  10. High nucleosome occupancy is encoded at human regulatory sequences.

    Directory of Open Access Journals (Sweden)

    Desiree Tillo

    Full Text Available Active eukaryotic regulatory sites are characterized by open chromatin, and yeast promoters and transcription factor binding sites (TFBSs typically have low intrinsic nucleosome occupancy. Here, we show that in contrast to yeast, DNA at human promoters, enhancers, and TFBSs generally encodes high intrinsic nucleosome occupancy. In most cases we examined, these elements also have high experimentally measured nucleosome occupancy in vivo. These regions typically have high G+C content, which correlates positively with intrinsic nucleosome occupancy, and are depleted for nucleosome-excluding poly-A sequences. We propose that high nucleosome preference is directly encoded at regulatory sequences in the human genome to restrict access to regulatory information that will ultimately be utilized in only a subset of differentiated cells.

  11. Universal full-length nucleosome mapping sequence probe.

    Science.gov (United States)

    Tripathi, Vijay; Salih, Bilal; Trifonov, Edward N

    2015-01-01

    For the computational sequence-directed mapping of the nucleosomes, the knowledge of the nucleosome positioning motifs - 10-11 base long sequences - and respective matrices of bendability, is not sufficient, since there is no justified way to fuse these motifs in one continuous nucleosome DNA sequence. Discovery of the strong nucleosome (SN) DNA sequences, with visible sequence periodicity allows derivation of the full-length nucleosome DNA bendability pattern as matrix or consensus sequence. The SN sequences of three species (A. thaliana, C. elegans, and H. sapiens) are aligned (512 sequences for each species), and long (115 dinucleotides) matrices of bendability derived for the species. The matrices have strong common property - alternation of runs of purine-purine (RR) and pyrimidine-pyrimidine (YY) dinucleotides, with average period 10.4 bases. On this basis the universal [R,Y] consensus of the nucleosome DNA sequence is derived, with exactly defined positions of respective penta- and hexamers RRRRR, RRRRRR, YYYYY, and YYYYYY.

  12. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function.

    Science.gov (United States)

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-04-28

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo.

  13. Histone acetylation: from code to web and router via intrinsically disordered regions.

    Science.gov (United States)

    Horikoshi, Masami

    2013-01-01

    Structural changes of chromatin, which consists of nucleosomes and nucleosome-associated factors, lead to functional changes that are important determinants of eukaryotic gene regulation. These structural changes are regulated by modifications of histones and DNA, both of which are components of nucleosomes, as well as by replacement of histone variants and the actions of noncoding RNAs. In studies of chromatin modifications, a great deal of attention has been paid to histone acetylation. Progress in understanding this subject has been extensive, including i) elucidation of the relationship of histone acetylation and gene activity; ii) the first isolation of a histonemodifying enzyme; iii) the first identification of a factor that recognizes a modified site; iv) elucidation of the mechanism by which histone modification leads to structural changes in nucleosomes; and v) elucidation of the mechanism of border formation between euchromatin and heterochromatin. Histone acetylation is considered to be fundamental in several fields, including studies of a) the role of chromatin and epigenetics in higher-order biochemical systems such as transcription, DNA replication, and repair; b) biological phenomena such as cell proliferation and differentiation; and c) cancer and aging, potentially leading to clinical applications. In this review, I will discuss the histone code hypothesis, at one time believed to represent a unified theory regarding the functions of histone modification. In addition, I will describe the "modification web theory, " by which the problems in the histone code hypothesis can be overcome, as well as the "signal router theory, " which explains the mechanisms of formation, development, and evolution of the modification web from a structural viewpoint. Lastly, I will illustrate how these novel theories partially explain the robustness of biological systems against various perturbations, and elucidate the strategy that a cell employs to avoid fatal

  14. Controls of nucleosome positioning in the human genome.

    Directory of Open Access Journals (Sweden)

    Daniel J Gaffney

    Full Text Available Nucleosomes are important for gene regulation because their arrangement on the genome can control which proteins bind to DNA. Currently, few human nucleosomes are thought to be consistently positioned across cells; however, this has been difficult to assess due to the limited resolution of existing data. We performed paired-end sequencing of micrococcal nuclease-digested chromatin (MNase-seq from seven lymphoblastoid cell lines and mapped over 3.6 billion MNase-seq fragments to the human genome to create the highest-resolution map of nucleosome occupancy to date in a human cell type. In contrast to previous results, we find that most nucleosomes have more consistent positioning than expected by chance and a substantial fraction (8.7% of nucleosomes have moderate to strong positioning. In aggregate, nucleosome sequences have 10 bp periodic patterns in dinucleotide frequency and DNase I sensitivity; and, across cells, nucleosomes frequently have translational offsets that are multiples of 10 bp. We estimate that almost half of the genome contains regularly spaced arrays of nucleosomes, which are enriched in active chromatin domains. Single nucleotide polymorphisms that reduce DNase I sensitivity can disrupt the phasing of nucleosome arrays, which indicates that they often result from positioning against a barrier formed by other proteins. However, nucleosome arrays can also be created by DNA sequence alone. The most striking example is an array of over 400 nucleosomes on chromosome 12 that is created by tandem repetition of sequences with strong positioning properties. In summary, a large fraction of nucleosomes are consistently positioned--in some regions because they adopt favored sequence positions, and in other regions because they are forced into specific arrangements by chromatin remodeling or DNA binding proteins.

  15. Prediction of nucleosome positioning based on transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Xianfu Yi

    Full Text Available BACKGROUND: The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin. The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is of great importance for the study of genomic control mechanisms. Transcription factors (TFs have been suggested to play a role in nucleosome positioning in vivo. PRINCIPAL FINDINGS: Here, the minimum redundancy maximum relevance (mRMR feature selection algorithm, the nearest neighbor algorithm (NNA, and the incremental feature selection (IFS method were used to identify the most important TFs that either favor or inhibit nucleosome positioning by analyzing the numbers of transcription factor binding sites (TFBSs in 53,021 nucleosomal DNA sequences and 50,299 linker DNA sequences. A total of nine important families of TFs were extracted from 35 families, and the overall prediction accuracy was 87.4% as evaluated by the jackknife cross-validation test. CONCLUSIONS: Our results are consistent with the notion that TFs are more likely to bind linker DNA sequences than the sequences in the nucleosomes. In addition, our results imply that there may be some TFs that are important for nucleosome positioning but that play an insignificant role in discriminating nucleosome-forming DNA sequences from nucleosome-inhibiting DNA sequences. The hypothesis that TFs play a role in nucleosome positioning is, thus, confirmed by the results of this study.

  16. Predicting nucleosome positioning using a duration Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Widom Jonathan

    2010-06-01

    Full Text Available Abstract Background The nucleosome is the fundamental packing unit of DNAs in eukaryotic cells. Its detailed positioning on the genome is closely related to chromosome functions. Increasing evidence has shown that genomic DNA sequence itself is highly predictive of nucleosome positioning genome-wide. Therefore a fast software tool for predicting nucleosome positioning can help understanding how a genome's nucleosome organization may facilitate genome function. Results We present a duration Hidden Markov model for nucleosome positioning prediction by explicitly modeling the linker DNA length. The nucleosome and linker models trained from yeast data are re-scaled when making predictions for other species to adjust for differences in base composition. A software tool named NuPoP is developed in three formats for free download. Conclusions Simulation studies show that modeling the linker length distribution and utilizing a base composition re-scaling method both improve the prediction of nucleosome positioning regarding sensitivity and false discovery rate. NuPoP provides a user-friendly software tool for predicting the nucleosome occupancy and the most probable nucleosome positioning map for genomic sequences of any size. When compared with two existing methods, NuPoP shows improved performance in sensitivity.

  17. Assembly of Drosophila centromeric nucleosomes requires CID dimerization.

    Science.gov (United States)

    Zhang, Weiguo; Colmenares, Serafin U; Karpen, Gary H

    2012-01-27

    Centromeres are essential chromosomal regions required for kinetochore assembly and chromosome segregation. The composition and organization of centromeric nucleosomes containing the essential histone H3 variant CENP-A (CID in Drosophila) is a fundamental, unresolved issue. Using immunoprecipitation of CID mononucleosomes and cysteine crosslinking, we demonstrate that centromeric nucleosomes contain CID dimers in vivo. Furthermore, CID dimerization and centromeric targeting require a residue implicated in formation of the four-helix bundle, which mediates intranucleosomal H3 dimerization and nucleosome integrity. Taken together, our findings suggest that CID nucleosomes are octameric in vivo and that CID dimerization is essential for correct centromere assembly.

  18. A positioned +1 nucleosome enhances promoter-proximal pausing.

    Science.gov (United States)

    Jimeno-González, Silvia; Ceballos-Chávez, María; Reyes, José C

    2015-03-31

    Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin distribution in transcription is not fully understood. Here we show in vivo that the +1 nucleosome plays a role in modulating RNA polymerase II (RNAPII) promoter-proximal pausing. When a +1 nucleosome is strongly positioned, elongating RNAPII has a tendency to stall at the promoter-proximal region, recruits more negative elongation factor (NELF) and produces less mRNA. The nucleosome-induced pause favors pre-mRNA quality control by promoting the addition of the cap to the nascent RNA. Moreover, the uncapped RNAs produced in the absence of a positioned nucleosome are degraded by the 5'-3' exonuclease XRN2. Interestingly, reducing the levels of the chromatin remodeler ISWI factor SNF2H decreases +1 nucleosome positioning and increases RNAPII pause release. This work demonstrates a function for +1 nucleosome in regulation of transcription elongation, pre-mRNA processing and gene expression.

  19. The effect of DNA supercoiling on nucleosome structure and stability.

    Science.gov (United States)

    Elbel, Tabea; Langowski, Jörg

    2015-02-18

    Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.

  20. Nucleosome conformational flexibility in experiments with single chromatin fibers

    Directory of Open Access Journals (Sweden)

    Sivolob A. V.

    2010-09-01

    Full Text Available Studies on the chromatin nucleosome organization play an ever increasing role in our comprehension of mechanisms of the gene activity regulation. This minireview describes the results on the nucleosome conformational flexibility, which were obtained using magnetic tweezers to apply torsion to oligonucleosome fibers reconstituted on single DNA molecules. Such an approach revealed a new structural form of the nucleosome, the reversome, in which DNA is wrapped in a right-handed superhelix around a distorted histone octamer. Molecular mechanisms of the nucleosome structural flexibility and its biological relevance are discussed.

  1. Nucleosome DNA sequence structure of isochores

    Directory of Open Access Journals (Sweden)

    Trifonov Edward N

    2011-04-01

    Full Text Available Abstract Background Significant differences in G+C content between different isochore types suggest that the nucleosome positioning patterns in DNA of the isochores should be different as well. Results Extraction of the patterns from the isochore DNA sequences by Shannon N-gram extension reveals that while the general motif YRRRRRYYYYYR is characteristic for all isochore types, the dominant positioning patterns of the isochores vary between TAAAAATTTTTA and CGGGGGCCCCCG due to the large differences in G+C composition. This is observed in human, mouse and chicken isochores, demonstrating that the variations of the positioning patterns are largely G+C dependent rather than species-specific. The species-specificity of nucleosome positioning patterns is revealed by dinucleotide periodicity analyses in isochore sequences. While human sequences are showing CG periodicity, chicken isochores display AG (CT periodicity. Mouse isochores show very weak CG periodicity only. Conclusions Nucleosome positioning pattern as revealed by Shannon N-gram extension is strongly dependent on G+C content and different in different isochores. Species-specificity of the pattern is subtle. It is reflected in the choice of preferentially periodical dinucleotides.

  2. A Strategy of Minimising Wind Power Curtailment by Considering Operation Capacity Credit

    DEFF Research Database (Denmark)

    Liu, Zhou; Su, Chi; Fang, Jiakun

    2015-01-01

    An optimal wind power curtailment strategy considering operation capacity credit is proposed in this paper to minimize the uncertain wind power curtailment and minimize the system operation cost. The relevant definitions in capacity credit assessment are applied in the power system operation...... situation. Based on operation capacity credit prediction, the optimal operation control strategy is defined and implemented for hourly system operation and control. Multi-agent system based control structure is adopted to coordinate the diverse system components to work together and realize the system wide...... targets of the proposed strategy. The simulation results demonstrate the effectiveness of the proposed strategy....

  3. Reducing Wind Curtailment through Transmission Expansion in a Wind Vision Future

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The Department of Energy's 2015 Wind Vision study, which analyzed an ambitious scenario where wind power served 35% of U.S. electricity consumption in 2050, showed the potential for wind energy to provide substantial health, environmental, and economic benefits. Using a commercial unit commitment and economic dispatch model, we build on this research by assessing the hourly operational feasibility of a similar high wind future in the Western United States. Our detailed simulations found no hours of unmet load or reserve violations with more than 35% potential wind (and 12% potential solar) available on the system, which highlights the technical possibility of integrating large amounts of wind energy. However, absent significant changes to the western grid, we find that substantial wind curtailment could be an issue, as it could degrade the potential for wind power to reduce fuel costs and lowering the emission benefits. To assess the value of transmission to mitigate wind curtailment, we model a suite of transmission expansion scenarios. We find that wind curtailment could be reduced by approximately half under a scenario where new transmission is based only on proposed projects. This avoided wind curtailment could lower annual production costs and reduce carbon dioxide emissions substantially. Greater transmission expansion was found to yield further benefits, although the marginal benefits of these new lines were found to decline. Overall, these results suggest that power systems operation can be realized with more than 35% wind penetration, but that transmission expansion is likely to play a vital role.

  4. Commission staff reports: impact of 1978--1979 winter curtailment for twenty-nine pipeline companies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-18

    Results of the Federal Energy Regulatory Commission (Commission) staff's survey are reported on short-term natural gas curtailment impacts as projected for the forthcoming winter heating season; November 1978, through March 1979, by interstate pipelines and their customers. Data are tabulated on estimated and actual gas supplies available, emergency gas transactions, weather, and potential availability of emergency gas. (JRD)

  5. Aristotelian-Inspired Model for Curtailing Academic Dishonesty in the United States

    Science.gov (United States)

    Sanders, Maria A.

    2012-01-01

    This dissertation explores the growing epidemic of academic dishonesty in the United States in order to propose an Aristotelian-inspired model for developing moral character to curtail this epidemic. The task is laid out in four parts. Chapter one responds to the problem of "akrasia," adopting a modified version of Devin Henry's…

  6. Aristotelian-Inspired Model for Curtailing Academic Dishonesty in the United States

    Science.gov (United States)

    Sanders, Maria A.

    2012-01-01

    This dissertation explores the growing epidemic of academic dishonesty in the United States in order to propose an Aristotelian-inspired model for developing moral character to curtail this epidemic. The task is laid out in four parts. Chapter one responds to the problem of "akrasia," adopting a modified version of Devin Henry's…

  7. Optimizing the assessment of suicidal behavior: the application of curtailment techniques.

    NARCIS (Netherlands)

    Beurs, D.P. de; Fokkema, M.; O'Connor, R.C.

    2016-01-01

    Background Given their length, commonly used scales to assess suicide risk, such as the Beck Scale for Suicide Ideation (SSI) are of limited use as screening tools. In the current study we tested whether deterministic and stochastic curtailment can be applied to shorten the 19-item SSI, without

  8. 41 CFR 101-39.105-1 - Transfers from discontinued or curtailed fleet management systems.

    Science.gov (United States)

    2010-07-01

    ... discontinued or curtailed fleet management systems. 101-39.105-1 Section 101-39.105-1 Public Contracts and... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105-1 Transfers...

  9. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.

    Science.gov (United States)

    Ng, Marlee K; Cheung, Peter

    2016-02-01

    It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past two decades. In this review, we provide a perspective on some key events and advances in our understanding of histone modifications. We also highlight reagents and tools from past to present that facilitated progress in this research field. Using histone H3 phosphorylation as an underlying thread, we review the rationale that led to the proposal of the histone code hypothesis, as well as examples that illustrate the concepts of combinatorial histone modifications and cross-talk pathways. We further highlight the importance of investigating these mechanisms in the context of nucleosomes rather than just at the histone level and present current and developing approaches for such studies. Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.

  10. Genome wide nucleosome mapping for HSV-1 shows nucleosomes are deposited at preferred positions during lytic infection.

    Science.gov (United States)

    Oh, Jaewook; Sanders, Iryna F; Chen, Eric Z; Li, Hongzhe; Tobias, John W; Isett, R Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A; Fraser, Nigel W

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200 bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6 hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152 kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes.

  11. Choreography for nucleosomes: the conformational freedom of the nucleosomal filament and its limitations.

    Science.gov (United States)

    Engelhardt, Mogens

    2007-01-01

    Eukaryotic DNA is organized into nucleosomes by coiling around core particles of histones, forming a nucleosomal filament. The significance for the conformation of the filament of the DNA entry/exit angle (alpha) at the nucleosome, the angle of rotation (beta) of nucleosomes around their interconnecting DNA (linker DNA) and the length of the linker DNA, has been studied by means of wire models with straight linkers. It is shown that variations in alpha and beta endow the filament with an outstanding conformational freedom when alpha is increased beyond 60-90 degrees, owing to the ability of the filament to change between forward right-handed and backward left-handed coiling. A wealth of different helical and looped conformations are formed in response to repeated beta sequences, and helical conformations are shown to be able to contract to a high density and to associate pairwise into different types of double fibers. Filaments with random beta sequences are characterized by relatively stable loop clusters connected by segments of higher flexibility. Displacement of core particles along the DNA in such fibers, combined with limited twisting of the linkers, can generate the beta sequence necessary for compaction into a regular helix, thus providing a model for heterochromatinization.

  12. The split personality of CENP-A nucleosomes.

    Science.gov (United States)

    Westhorpe, Frederick G; Straight, Aaron F

    2012-07-20

    The composition and structure of centromeric nucleosomes, which contain the histone H3 variant CENP-A, is intensely debated. Two independent studies in this issue, in yeast and human cells, now suggest that CENP-A nucleosomes adopt different structures depending on the stage of the cell cycle.

  13. Training-free atomistic prediction of nucleosome occupancy.

    Science.gov (United States)

    Minary, Peter; Levitt, Michael

    2014-04-29

    Nucleosomes alter gene expression by preventing transcription factors from occupying binding sites along DNA. DNA methylation can affect nucleosome positioning and so alter gene expression epigenetically (without changing DNA sequence). Conventional methods to predict nucleosome occupancy are trained on observed DNA sequence patterns or known DNA oligonucleotide structures. They are statistical and lack the physics needed to predict subtle epigenetic changes due to DNA methylation. The training-free method presented here uses physical principles and state-of-the-art all-atom force fields to predict both nucleosome occupancy along genomic sequences as well as binding to known positioning sequences. Our method calculates the energy of both nucleosomal and linear DNA of the given sequence. Based on the DNA deformation energy, we accurately predict the in vitro occupancy profile observed experimentally for a 20,000-bp genomic region as well as the experimental locations of nucleosomes along 13 well-established positioning sequence elements. DNA with all C bases methylated at the 5 position shows less variation of nucleosome binding: Strong binding is weakened and weak binding is strengthened compared with normal DNA. Methylation also alters the preference of nucleosomes for some positioning sequences but not others.

  14. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells.

    Directory of Open Access Journals (Sweden)

    Yamini Dalal

    2007-08-01

    Full Text Available Centromeres, the specialized chromatin structures that are responsible for equal segregation of chromosomes at mitosis, are epigenetically maintained by a centromere-specific histone H3 variant (CenH3. However, the mechanistic basis for centromere maintenance is unknown. We investigated biochemical properties of CenH3 nucleosomes from Drosophila melanogaster cells. Cross-linking of CenH3 nucleosomes identifies heterotypic tetramers containing one copy of CenH3, H2A, H2B, and H4 each. Interphase CenH3 particles display a stable association of approximately 120 DNA base pairs. Purified centromeric nucleosomal arrays have typical "beads-on-a-string" appearance by electron microscopy but appear to resist condensation under physiological conditions. Atomic force microscopy reveals that native CenH3-containing nucleosomes are only half as high as canonical octameric nucleosomes are, confirming that the tetrameric structure detected by cross-linking comprises the entire interphase nucleosome particle. This demonstration of stable half-nucleosomes in vivo provides a possible basis for the instability of centromeric nucleosomes that are deposited in euchromatic regions, which might help maintain centromere identity.

  15. Final report on the safety assessment of acetyl triethyl citrate, acetyl tributyl citrate, acetyl trihexyl citrate, and acetyl trioctyl citrate.

    Science.gov (United States)

    Johnson, Wilbur

    2002-01-01

    Acetyl Triethyl Citrate, Acetyl Tributyl Citrate, Acetyl Trihexyl Citrate, and Acetyl Trioctyl Citrate all function as plasticizers in cosmetics. Additionally, the Trihexyl and Trioctyl forms are described as skin-conditioning agents-emollients, although there are currently no reported uses of Acetyl Trihexyl Citrate or Acetyl Trioctyl Citrate. Acetyl Triethyl Citrate and Acetyl Tributyl Citrate are used in nail products at concentrations up to 7%. Recognizing that there are no reported uses of Acetyl Trihexyl or Trioctyl Citrate, if they were to be used in the future, their concentration of use is expected to be no higher than that reported for Acetyl Triethyl and Tributyl Citrate. These ingredients were sufficiently similar in structure that safety test data on one were considered applicable to all. Approximately 99% of orally administered Acetyl Tributyl Citrate is excreted-intermediate metabolites include acetyl citrate, monobutyl citrate, acetyl monobutyl citrate, dibutyl citrate, and acetyl dibutyl citrate. In acute, short-term, subchronic, and chronic feeding studies, these ingredients were relatively nontoxic. Differences from controls were either not statistically significant or not related to any organ toxicity. Ocular exposures produced moderate reactions that cleared by 48 hours after instillation. Dermal application was not toxic in rabbits. In a guinea pig maximization test, Acetyl Triethyl Citrate was a sensitizer whereas Acetyl Tributyl Citrate was not. Limited clinical testing of Acetyl Triethyl Citrate and Acetyl Tributyl Citrate was negative for both skin irritation and sensitization. These clinical data were considered more relevant than the guinea pig maximization data, suggesting to the Cosmetic Ingredient Review Expert Panel that none of these ingredients would be a sensitizer. Physiologic effects noted with intravenous delivery of Acetyl Triethyl Citrate or Acetyl Tributyl Citrate include dose-related decreases in blood pressure and

  16. Touch, act and go: landing and operating on nucleosomes.

    Science.gov (United States)

    Speranzini, Valentina; Pilotto, Simona; Sixma, Titia K; Mattevi, Andrea

    2016-02-15

    Chromatin-associated enzymes are responsible for the installation, removal and reading of precise post-translation modifications on DNA and histone proteins. They are specifically recruited to the target gene by associated factors, and as a result of their activity, they contribute in modulating cell identity and differentiation. Structural and biophysical approaches are broadening our knowledge on these processes, demonstrating that DNA, histone tails and histone surfaces can each function as distinct yet functionally interconnected anchoring points promoting nucleosome binding and modification. The mechanisms underlying nucleosome recognition have been described for many histone modifiers and related readers. Here, we review the recent literature on the structural organization of these nucleosome-associated proteins, the binding properties that drive nucleosome modification and the methodological advances in their analysis. The overarching conclusion is that besides acting on the same substrate (the nucleosome), each system functions through characteristic modes of action, which bring about specific biological functions in gene expression regulation.

  17. Structural insight into the sequence dependence of nucleosome positioning.

    Science.gov (United States)

    Wu, Bin; Mohideen, Kareem; Vasudevan, Dileep; Davey, Curt A

    2010-03-14

    Nucleosome positioning displays sequence dependency and contributes to genomic regulation in a site-specific manner. We solved the structures of nucleosome core particle composed of strong positioning TTTAA elements flanking the nucleosome center. The positioning strength of the super flexible TA dinucleotide is consistent with its observed central location within minor groove inward regions, where it can contribute maximally to energetically challenging minor groove bending, kinking and compression. The marked preference for TTTAA and positioning power of the site 1.5 double helix turns from the nucleosome center relates to a unique histone protein motif at this location, which enforces a sustained, extremely narrow minor groove via a hydrophobic "sugar clamp." Our analysis sheds light on the basis of nucleosome positioning and indicates that the histone octamer has evolved not to fully minimize sequence discrimination in DNA binding.

  18. Z curve theory-based analysis of the dynamic nature of nucleosome positioning in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wu, Xueting; Liu, Hui; Liu, Hongbo; Su, Jianzhong; Lv, Jie; Cui, Ying; Wang, Fang; Zhang, Yan

    2013-11-01

    Nucleosome is the elementary structural unit of eukaryotic chromatin. Instability of nucleosome positioning plays critical roles in chromatin remodeling in differentiation and disease. In this study, we investigated nucleosome dynamics in the Saccharomyces cerevisiae genome using a geometric model based on Z curve theory. We identified 52,941 stable nucleosomes and 7607 dynamic nucleosomes, compiling them into a genome-wide nucleosome dynamic positioning map and constructing a user-friendly visualization platform (http://bioinfo.hrbmu.edu.cn/nucleosome). Our approach achieved a sensitivity of 90.31% and a specificity of 87.76% for S. cerevisiae. Analysis revealed transcription factor binding sites (TFBSs) were enriched in linkers. And among the sparse nucleosomes around TFBSs, dynamic nucleosomes were slightly preferred. Gene Ontology (GO) enrichment analysis indicated that stable and dynamic nucleosomes were enriched on genes involved in different biological processes and functions. This study provides an approach for comprehending chromatin remodeling and transcriptional regulation of genes.

  19. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo.

    Science.gov (United States)

    Zhang, Yong; Moqtaderi, Zarmik; Rattner, Barbara P; Euskirchen, Ghia; Snyder, Michael; Kadonaga, James T; Liu, X Shirley; Struhl, Kevin

    2009-08-01

    We assess the role of intrinsic histone-DNA interactions by mapping nucleosomes assembled in vitro on genomic DNA. Nucleosomes strongly prefer yeast DNA over Escherichia coli DNA, indicating that the yeast genome evolved to favor nucleosome formation. Many yeast promoter and terminator regions intrinsically disfavor nucleosome formation, and nucleosomes assembled in vitro show strong rotational positioning. Nucleosome arrays generated by the ACF assembly factor have fewer nucleosome-free regions, reduced rotational positioning and less translational positioning than obtained by intrinsic histone-DNA interactions. Notably, nucleosomes assembled in vitro have only a limited preference for specific translational positions and do not show the pattern observed in vivo. Our results argue against a genomic code for nucleosome positioning, and they suggest that the nucleosomal pattern in coding regions arises primarily from statistical positioning from a barrier near the promoter that involves some aspect of transcriptional initiation by RNA polymerase II.

  20. Nucleosome Stability Distinguishes Two Different Promoter Types at All Protein-Coding Genes in Yeast.

    Science.gov (United States)

    Kubik, Slawomir; Bruzzone, Maria Jessica; Jacquet, Philippe; Falcone, Jean-Luc; Rougemont, Jacques; Shore, David

    2015-11-01

    Previous studies indicate that eukaryotic promoters display a stereotypical chromatin landscape characterized by a well-positioned +1 nucleosome near the transcription start site and an upstream -1 nucleosome that together demarcate a nucleosome-free (or -depleted) region. Here we present evidence that there are two distinct types of promoters distinguished by the resistance of the -1 nucleosome to micrococcal nuclease digestion. These different architectures are characterized by two sequence motifs that are broadly deployed at one set of promoters where a nuclease-sensitive ("fragile") nucleosome forms, but concentrated in a narrower, nucleosome-free region at all other promoters. The RSC nucleosome remodeler acts through the motifs to establish stable +1 and -1 nucleosome positions, while binding of a small set of general regulatory (pioneer) factors at fragile nucleosome promoters plays a key role in their destabilization. We propose that the fragile nucleosome promoter architecture is adapted for regulation of highly expressed, growth-related genes.

  1. A chemical approach to mapping nucleosomes at base pair resolution in yeast.

    Science.gov (United States)

    Brogaard, Kristin R; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan

    2012-01-01

    Most eukaryotic DNA exists in DNA-protein complexes known as nucleosomes. The exact locations of nucleosomes along the genome play a critical role in chromosome functions and gene regulation. However, the current methods for nucleosome mapping do not provide the necessary accuracy to identify the precise nucleosome locations. Here we describe a new experimental approach that directly maps nucleosome center locations in vivo genome-wide at single base pair resolution.

  2. Sequence structure of Lowary/Widom clones forming strong nucleosomes.

    Science.gov (United States)

    Trifonov, Edward N

    2016-01-01

    Lowary and Widom selected from random sequences those which form exceptionally stable nucleosomes, including clone 601, the current champion of strong nucleosome (SN) sequences. This unique sequence database (LW sequences) carries sequence elements which confer stability on the nucleosomes formed on the sequences, and, thus, may serve as source of information on the structure of "ideal" or close to ideal nucleosome DNA sequence. An important clue is also provided by crystallographic study of Vasudevan and coauthors on clone 601 nucleosomes. It demonstrated that YR·YR dinucleotide stacks (primarily TA·TA) follow one another at distances 10 or 11 bases or multiples thereof, such that they all are located on the interface between DNA and histone octamer. Combining this important information with alignment of the YR-containing 10-mers and 11-mers from LW sequences, the bendability matrices of the stable nucleosome DNA are derived. The matrices suggest that the periodically repeated TA (YR), RR, and YY dinucleotides are the main sequence features of the SNs. This consensus coincides with the one for recently discovered SNs with visibly periodic DNA sequences. Thus, the experimentally observed stable LW nucleosomes and SNs derived computationally appear to represent the same entity - exceptionally stable SNs.

  3. Dynamics of Nucleosome Positioning Maturation following Genomic Replication

    Directory of Open Access Journals (Sweden)

    Pauline Vasseur

    2016-09-01

    Full Text Available Chromatin is thought to carry epigenetic information from one generation to the next, although it is unclear how such information survives the disruptions of nucleosomal architecture occurring during genomic replication. Here, we measure a key aspect of chromatin structure dynamics during replication—how rapidly nucleosome positions are established on the newly replicated daughter genomes. By isolating newly synthesized DNA marked with 5-ethynyl-2′-deoxyuridine (EdU, we characterize nucleosome positions on both daughter genomes of S. cerevisiae during chromatin maturation. We find that nucleosomes rapidly adopt their mid-log positions at highly transcribed genes, which is consistent with a role for transcription in positioning nucleosomes in vivo. Additionally, experiments in hir1Δ mutants reveal a role for HIR in nucleosome spacing. We also characterized nucleosome positions on the leading and lagging strands, uncovering differences in chromatin maturation dynamics at hundreds of genes. Our data define the maturation dynamics of newly replicated chromatin and support a role for transcription in sculpting the chromatin template.

  4. Curtailment of soil vapor extraction systems at McClellan Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, T.E. [BDM Federal, McClellan AFB, CA (United States); Mook, P.H. Jr.; Wong, K.B. [SM-ALC/EMR, McClellan AFB, CA (United States)

    1997-12-31

    McClellan Air Force Base (AFB), located near Sacramento, California, is one of the Strategic Environmental Research and Development Program`s National Environmental Technology Test Sites. McClellan AFB has implemented soil vapor extraction (SVE) as an Engineering Evaluation/Cost Analysis (EE/CA) non-time-critical remedial action for volatile organic compounds in soil. Operation and maintenance costs for SVE systems are increasingly becoming a major component of the environmental clean-up budget. In an effort to reduce costs, while assuring the protection of public health and the environment, a risk-based strategy has been developed for the curtailment and eventual shut-down of SVE systems at McClellan AFB. This paper presents an overview of the SVE EE/CA process and a detailed description of the development and implementation of the curtailment strategy. Included in the discussion are details of the public and regulatory involvement in the process.

  5. Strategies implemented by the textile industry in response to natural-gas curtailments

    Energy Technology Data Exchange (ETDEWEB)

    Schreibeis, R.L.

    1980-01-01

    An examination is made of specific activities undertaken by textile firms in North and South Carolina and Georgia to insulate themselves against production losses resulting from natural gas curtailments. Results of the research effort focusing on investigating patterns or trends of precautionary activities undertaken by the textile industry in response to fuel interruptions are presented. Chapter II delineates the scope of the project, research design, and nature of the textile industry. One hundred candidate firms for detailed study were identified and 34 discussed their alternate fuel strategies. Information obtained was analyzed by means of two statistical analysis techniques. Methods employed and results are described in Chapter III. Overall results are presented in Chapter IV. Variations in the strategies implemented by various concerns were accounted for in terms of geographic location, plant size, plant type, and the duration and extent of curtailment impacts. Ranges of expenditures for short- and long-term strategies are identified.

  6. DPNuc: Identifying Nucleosome Positions Based on the Dirichlet Process Mixture Model.

    Science.gov (United States)

    Chen, Huidong; Guan, Jihong; Zhou, Shuigeng

    2015-01-01

    Nucleosomes and the free linker DNA between them assemble the chromatin. Nucleosome positioning plays an important role in gene transcription regulation, DNA replication and repair, alternative splicing, and so on. With the rapid development of ChIP-seq, it is possible to computationally detect the positions of nucleosomes on chromosomes. However, existing methods cannot provide accurate and detailed information about the detected nucleosomes, especially for the nucleosomes with complex configurations where overlaps and noise exist. Meanwhile, they usually require some prior knowledge of nucleosomes as input, such as the size or the number of the unknown nucleosomes, which may significantly influence the detection results. In this paper, we propose a novel approach DPNuc for identifying nucleosome positions based on the Dirichlet process mixture model. In our method, Markov chain Monte Carlo (MCMC) simulations are employed to determine the mixture model with no need of prior knowledge about nucleosomes. Compared with three existing methods, our approach can provide more detailed information of the detected nucleosomes and can more reasonably reveal the real configurations of the chromosomes; especially, our approach performs better in the complex overlapping situations. By mapping the detected nucleosomes to a synthetic benchmark nucleosome map and two existing benchmark nucleosome maps, it is shown that our approach achieves a better performance in identifying nucleosome positions and gets a higher F-score. Finally, we show that our approach can more reliably detect the size distribution of nucleosomes.

  7. Roles of histones and nucleosomes in gene transcription

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This article reviews the latest research developments in the field of eukaryotic gene regulation by the structural alterations of chromatin and nucleosomes. The following issues are briefly addressed: (ⅰ) nucleosome and histone modifications by both the ATP-dependent remodel- ing com-plexes and the histone acetyltransferases and their roles in gene activation; (ⅱ) competitive binding of histones and transcription factors on gene promoters, and transcription repression by nucleosomes; and (ⅲ) influences of linker histone H1 on gene regulation. Meanwhile, the significance and impact of these new research progresses, as well as issues worthwhile for further study are commented.

  8. Twist Neutrality and the Diameter of the Nucleosome Core Particle

    DEFF Research Database (Denmark)

    Bohr, Jakob; Olsen, Kasper

    2012-01-01

    The diameter of the nucleosome core particle is the same for all the eukaryotes. Here we discuss the possibility that this selectiveness is consistent with a propensity for twist neutrality, in particular, for the double helical DNA to stay rotationally neutral when strained. Reorganization of DNA...... cannot be done without some level of temporal tensile stress, and as a consequence chiral molecules, such as helices, will twist under strain. The requirement that the nucleosome, constituting the nucleosome core particle and linker DNA, has a vanishing strain-twist coupling leads to a requirement...

  9. Curtailment in a Highly Renewable Power System and Its Effect on Capacity Factors

    Directory of Open Access Journals (Sweden)

    Alexander Kies

    2016-06-01

    Full Text Available The capacity factor of a power plant is the ratio of generation over its potential generation. It is an important measure to describe wind and solar resources. However, the fluctuating nature of renewable power generation makes it difficult to integrate all generation at times. Whenever generation exceeds the load, curtailment or storage of energy is required. With increasing renewable shares in the power system, the level of curtailment will further increase. In this work, the influence of the curtailment on the capacity factors for a highly renewable German power system is studied. An effective capacity factor is introduced, and the implications for the distribution of renewable power plants are discussed. Three years of highly-resolved weather data were used to model wind and solar power generation. Together with historical load data and a transmission model, a possible future German power system was simulated. It is shown that effective capacity factors for unlimited transmission are strongly reduced by up to 60% (wind and 70% (photovoltaics and therefore of limited value in a highly renewable power system. Furthermore, the results demonstrate that wind power benefits more strongly from a reinforced transmission grid than photovoltaics (PV does.

  10. Triple helix DNA alters nucleosomal histone-DNA interactions and acts as a nucleosome barrier.

    OpenAIRE

    Westin, L; Blomquist, P; Milligan, J F; Wrange, O

    1995-01-01

    Oligonucleotides which form triple helical complexes on double-stranded DNA have been previously reported to selectively inhibit transcription both in vitro and in vivo by physically blocking RNA polymerase or transcription factor access to the DNA template. Here we show that a 16mer oligonucleotide, which forms triple helix DNA by binding to a 16 bp homopurine segment, alters the formation of histone-DNA contacts during in vitro nucleosome reconstitution. This effect was DNA sequence-specifi...

  11. Local Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Saera Hihara

    2012-12-01

    Full Text Available Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy, single-nucleosome imaging, and Monte Carlo computer simulations, we demonstrate local chromatin dynamics in living mammalian cells. We show that similar to interphase chromatin, dense mitotic chromosomes also have considerable chromatin accessibility. For both interphase and mitotic chromatin, we observed local fluctuation of individual nucleosomes (∼50 nm movement/30 ms, which is caused by confined Brownian motion. Inhibition of these local dynamics by crosslinking impaired accessibility in the dense chromatin regions. Our findings show that local nucleosome dynamics drive chromatin accessibility. We propose that this local nucleosome fluctuation is the basis for scanning genome information.

  12. DNA Shape Dominates Sequence Affinity in Nucleosome Formation

    Science.gov (United States)

    Freeman, Gordon S.; Lequieu, Joshua P.; Hinckley, Daniel M.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2014-10-01

    Nucleosomes provide the basic unit of compaction in eukaryotic genomes, and the mechanisms that dictate their position at specific locations along a DNA sequence are of central importance to genetics. In this Letter, we employ molecular models of DNA and proteins to elucidate various aspects of nucleosome positioning. In particular, we show how DNA's histone affinity is encoded in its sequence-dependent shape, including subtle deviations from the ideal straight B-DNA form and local variations of minor groove width. By relying on high-precision simulations of the free energy of nucleosome complexes, we also demonstrate that, depending on DNA's intrinsic curvature, histone binding can be dominated by bending interactions or electrostatic interactions. More generally, the results presented here explain how sequence, manifested as the shape of the DNA molecule, dominates molecular recognition in the problem of nucleosome positioning.

  13. Histones and nucleosomes in Archaea and Eukarya: a comparative analysis.

    Science.gov (United States)

    Pereira, S L; Reeve, J N

    1998-08-01

    Archaeal histones from mesophilic, thermophilic, and hyperthermophilic members of the Euryarchaeota have primary sequences, the histone fold, tertiary structures, and dimer formation in common with the eukaryal nucleosome core histones H2A, H2B, H3, and H4. Archaeal histones form nucleoprotein complexes in vitro and in vivo, designated archaeal nucleosomes, that contain histone tetramers and protect approximately 60 base pairs of DNA from nuclease digestion. Based on the sequence and structural homologies and experimental data reviewed here, archaeal nucleosomes appear similar, and may be homologous in evolutionary terms and function, to the structure at the center of the eukaryal nucleosome formed by the histone (H3 + H4)2 tetramer.

  14. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility.

    Science.gov (United States)

    Ngo, Thuy T M; Zhang, Qiucen; Zhou, Ruobo; Yodh, Jaya G; Ha, Taekjip

    2015-03-12

    Dynamics of the nucleosome and exposure of nucleosomal DNA play key roles in many nuclear processes, but local dynamics of the nucleosome and its modulation by DNA sequence are poorly understood. Using single-molecule assays, we observed that the nucleosome can unwrap asymmetrically and directionally under force. The relative DNA flexibility of the inner quarters of nucleosomal DNA controls the unwrapping direction such that the nucleosome unwraps from the stiffer side. If the DNA flexibility is similar on two sides, it stochastically unwraps from either side. The two ends of the nucleosome are orchestrated such that the opening of one end helps to stabilize the other end, providing a mechanism to amplify even small differences in flexibility to a large asymmetry in nucleosome stability. Our discovery of DNA flexibility as a critical factor for nucleosome dynamics and mechanical stability suggests a novel mechanism of gene regulation by DNA sequence and modifications.

  15. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Hongde; Wang, Pingyan; Liu, Lingjie; Min, Zhu; Luo, Kun; Wan, Yakun

    2015-10-26

    Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (-1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and -1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics.

  16. DNA damage may drive nucleosomal reorganization to facilitate damage detection

    Science.gov (United States)

    LeGresley, Sarah E.; Wilt, Jamie; Antonik, Matthew

    2014-03-01

    One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.

  17. Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters

    Science.gov (United States)

    Helbo, Alexandra Søgaard; Lay, Fides D.; Jones, Peter A.; Liang, Gangning; Grønbæk, Kirsten

    2017-02-01

    Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high-resolution analysis to show substantial differences in chromatin structure of pol II and pol III promoters, and between subtypes of pol III genes. Notably, the nucleosome depleted region at the transcription start site of pol III genes extends past the termination sequences, resulting in nucleosome free gene bodies. The +1 nucleosome is located further downstream than at pol II genes and furthermore displays weak positioning. The variable position of the +1 location is seen not only within individual cell populations and between cell types, but also between different pol III promoter subtypes, suggesting that the +1 nucleosome may be involved in the transcriptional regulation of pol III genes. We find that expression and DNA methylation patterns correlate with distinct accessibility patterns, where DNA methylation associates with the silencing and inaccessibility at promoters. Taken together, this study provides the first high-resolution map of nucleosome positioning and occupancy at human pol III promoters at specific loci and genome wide.

  18. Binding of NF-κB to nucleosomes: effect of translational positioning, nucleosome remodeling and linker histone H1.

    Directory of Open Access Journals (Sweden)

    Imtiaz Nisar Lone

    Full Text Available NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A-H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes.

  19. Multiple distinct stimuli increase measured nucleosome occupancy around human promoters.

    Directory of Open Access Journals (Sweden)

    Chuong D Pham

    Full Text Available Nucleosomes can block access to transcription factors. Thus the precise localization of nucleosomes relative to transcription start sites and other factor binding sites is expected to be a critical component of transcriptional regulation. Recently developed microarray approaches have allowed the rapid mapping of nucleosome positions over hundreds of kilobases (kb of human genomic DNA, although these approaches have not yet been widely used to measure chromatin changes associated with changes in transcription. Here, we use custom tiling microarrays to reveal changes in nucleosome positions and abundance that occur when hormone-bound glucocorticoid receptor (GR binds to sites near target gene promoters in human osteosarcoma cells. The most striking change is an increase in measured nucleosome occupancy at sites spanning ∼1 kb upstream and downstream of transcription start sites, which occurs one hour after addition of hormone, but is lost at 4 hours. Unexpectedly, this increase was seen both on GR-regulated and GR-non-regulated genes. In addition, the human SWI/SNF chromatin remodeling factor (a GR co-activator was found to be important for increased occupancy upon hormone treatment and also for low nucleosome occupancy without hormone. Most surprisingly, similar increases in nucleosome occupancy were also seen on both regulated and non-regulated promoters during differentiation of human myeloid leukemia cells and upon activation of human CD4+ T-cells. These results indicate that dramatic changes in chromatin structure over ∼2 kb of human promoters may occur genomewide and in response to a variety of stimuli, and suggest novel models for transcriptional regulation.

  20. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes.

    Science.gov (United States)

    Wippo, Christian J; Israel, Lars; Watanabe, Shinya; Hochheimer, Andreas; Peterson, Craig L; Korber, Philipp

    2011-04-01

    Nucleosomes impede access to DNA. Therefore, nucleosome positioning is fundamental to genome regulation. Nevertheless, the molecular nucleosome positioning mechanisms are poorly understood. This is partly because in vitro reconstitution of in vivo-like nucleosome positions from purified components is mostly lacking, barring biochemical studies. Using a yeast extract in vitro reconstitution system that generates in vivo-like nucleosome patterns at S. cerevisiae loci, we find that the RSC chromatin remodelling enzyme is necessary for nucleosome positioning. This was previously suggested by genome-wide in vivo studies and is confirmed here in vivo for individual loci. Beyond the limitations of conditional mutants, we show biochemically that RSC functions directly, can be sufficient, but mostly relies on other factors to properly position nucleosomes. Strikingly, RSC could not be replaced by either the closely related SWI/SNF or the Isw2 remodelling enzyme. Thus, we pinpoint that nucleosome positioning specifically depends on the unique properties of the RSC complex.

  1. Nucleosome Assembly Dynamics Involve Spontaneous Fluctuations in the Handedness of Tetrasomes

    NARCIS (Netherlands)

    Vlijm, R.; Lee, M.; Lipfert, J.; Lusser, A.; Dekker, C.; Dekker, N.H.

    2015-01-01

    DNA wrapping around histone octamers generates nucleosomes, the basic compaction unit of eukaryotic chromatin. Nucleosome stability is carefully tuned to maintain DNA accessibility in transcription, replication, and repair. Using freely orbiting magnetic tweezers, which measure the twist and length

  2. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo.

    Science.gov (United States)

    Ricci, Maria Aurelia; Manzo, Carlo; García-Parajo, María Filomena; Lakadamyali, Melike; Cosma, Maria Pia

    2015-03-12

    Nucleosomes help structure chromosomes by compacting DNA into fibers. To gain insight into how nucleosomes are arranged in vivo, we combined quantitative super-resolution nanoscopy with computer simulations to visualize and count nucleosomes along the chromatin fiber in single nuclei. Nucleosomes assembled in heterogeneous groups of varying sizes, here termed "clutches," and these were interspersed with nucleosome-depleted regions. The median number of nucleosomes inside clutches and their compaction defined as nucleosome density were cell-type-specific. Ground-state pluripotent stem cells had, on average, less dense clutches containing fewer nucleosomes and clutch size strongly correlated with the pluripotency potential of induced pluripotent stem cells. RNA polymerase II preferentially associated with the smallest clutches while linker histone H1 and heterochromatin were enriched in the largest ones. Our results reveal how the chromatin fiber is formed at nanoscale level and link chromatin fiber architecture to stem cell state.

  3. Acetylation of histones in neocortex and hippocampus of rats exposed to different modes of hypobaric hypoxia: Implications for brain hypoxic injury and tolerance.

    Science.gov (United States)

    Samoilov, Mikhail; Churilova, Anna; Gluschenko, Tatjana; Vetrovoy, Oleg; Dyuzhikova, Natalia; Rybnikova, Elena

    2016-03-01

    Acetylation of nucleosome histones results in relaxation of DNA and its availability for the transcriptional regulators, and is generally associated with the enhancement of gene expression. Although it is well known that activation of a variety of pro-adaptive genes represents a key event in the development of brain hypoxic/ischemic tolerance, the role of epigenetic mechanisms, in particular histone acetylation, in this process is still unexplored. The aim of the present study was to investigate changes in acetylation of histones in vulnerable brain neurons using original well-standardized model of hypobaric hypoxia and preconditioning-induced tolerance of the brain. Using quantitative immunohistochemistry and Western blot, effects of severe injurious hypobaric hypoxia (SH, 180mm Hg, 3h) and neuroprotective preconditioning mode (three episodes of 360mm Hg for 2h spaced at 24h) on the levels of the acetylated proteins and acetylated H3 Lys24 (H3K24ac) in the neocortex and hippocampus of rats were studied. SH caused global repression of the acetylation processes in the neocortex (layers II-III, V) and hippocampus (CA1, CA3) by 3-24h, and this effect was prevented by the preconditioning. Moreover, hypoxic preconditioning remarkably increased the acetylation of H3K24 in response to SH in the brain areas examined. The preconditioning hypoxia without subsequent SH also stimulated acetylation processes in the neocortex and hippocampus. The moderately enhanced expression of the acetylated proteins in the preconditioned rats was maintained for 24h, whereas acetylation of H3K24 was intense but transient, peaked at 3h. The novel data obtained in the present study indicate that large activation of the acetylation processes, in particular acetylation of histones might be essential for the development of brain hypoxic tolerance.

  4. Roadmap of retail electricity market reform in China: assisting in mitigating wind energy curtailment

    Science.gov (United States)

    Yu, Dezhao; Qiu, Huadong; Yuan, Xiang; Li, Yuan; Shao, Changzheng; Lin, You; Ding, Yi

    2017-01-01

    Among the renewable energies, wind energy has gained the rapidest development in China. Moreover wind power generation has been penetrated into power system in a large scale. However, the high level wind curtailment also indicates a low efficiency of wind energy utilization over the last decade in China. One of the primary constraints on the utilization of wind energy is the lack of an electricity market, in which renewable energies can compete equally with traditional fossil fuel generation. Thus the new round electric power industry reform is essential in China. The reform involves implementing new pricing mechanism, introducing retail-side competition, promoting the consumption of renewable energy. The new round reform can be a promising solution for promoting the development and consumption of wind energy generation in China. Based on proposed reform policies of electric power industry, this paper suggests a roadmap for retail electricity market reform of China, which consists of three stages. Barriers to the efficient utilization of wind energy are also analysed. Finally, this paper introduces several efficient measures for mitigating wind curtailment in each stage of reform.

  5. Reduced physical activity in adults at risk for type 2 diabetes who curtail their sleep.

    Science.gov (United States)

    Booth, John N; Bromley, Lindsay E; Darukhanavala, Amy P; Whitmore, Harry R; Imperial, Jacqueline G; Penev, Pamen D

    2012-02-01

    Adults with parental history of type 2 diabetes have high metabolic morbidity, which is exacerbated by physical inactivity. Self-reported sleep diabetes, which may be mediated in part by sleep-loss-related reduction in physical activity. We examined the relationship between habitual sleep curtailment and physical activity in adults with parental history of type 2 diabetes. Forty-eight young urban adults with parental history of type 2 diabetes (27 F/21 M; mean (s.d.) age 26 (4) years; BMI 23.8 (2.5) kg/m(2)) each completed 13 (2) days of sleep and physical activity monitoring by wrist actigraphy and waist accelerometry while following their usual lifestyle at home. Laboratory polysomnography was used to screen for sleep disorders. The primary outcome of the study was the comparison of total daily activity counts between participants with habitual sleep diabetes who habitually curtail their sleep have less daily physical activity and more sedentary living, which may enhance their metabolic risk.

  6. Regulatory analysis for review and establishment of natural gas curtailment priorities

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    Technical appendices in Volume 4 provide data and detailed explanations for each of the seven components into which policy evaluation has been divided: (1) delineation of alternatives and then simulation of shortages under each alternative in each prototype company, (2) supplier decisions and costs, including allocation rules, (3) user fuel substitution costs, (4) calculation of user shortage costs, supplier operating cost, and non-user pollution cost, (5) institutional factors affecting implementation, (6) annual demand and supply trends, and (7) national projections for economic and environmental summaries. In essence, there is increasing detail and more intricate discussion from Volume 1 to Volumes 2 and 3 and then to the Technical Appendices in Volume 4. Volume 4 should be used to gain understanding of the many different curtailment plans across the nation and to better appreciate the types and levels of costs that occur to both users and suppliers. The diagrams and discussions in Volume 4 will help the reader interpret the important concepts in designing and evaluating curtailment alternatives. The scenarios on demand and supply in Volume 4 can provide background for other studies.

  7. Two-Stage Coordinated Operational Strategy for Distributed Energy Resources Considering Wind Power Curtailment Penalty Cost

    Directory of Open Access Journals (Sweden)

    Jing Qiu

    2017-07-01

    Full Text Available The concept of virtual power plant (VPP has been proposed to facilitate the integration of distributed renewable energy. VPP behaves similar to a single entity that aggregates a collection of distributed energy resources (DERs such as distributed generators, storage devices, flexible loads, etc., so that the aggregated power outputs can be flexibly dispatched and traded in electricity markets. This paper presents an optimal scheduling model for VPP participating in day-ahead (DA and real-time (RT markets. In the DA market, VPP aims to maximize the expected profit and reduce the risk in relation to uncertainties. The risk is measured by a risk factor based on the mean-variance Markowitz theory. In the RT market, VPP aims to minimize the imbalance cost and wind power curtailment by adjusting the scheduling of DERs in its portfolio. In case studies, the benefits (e.g., surplus profit and reduced wind power curtailment of aggregated VPP operation are assessed. Moreover, we have investigated how these benefits are affected by different risk-aversion levels and uncertainty levels. According to the simulation results, the aggregated VPP scheduling approach can effectively help the integration of wind power, mitigate the impact of uncertainties, and reduce the cost of risk-aversion.

  8. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Weinert, Brian Tate; Iesmantavicius, Vytautas; Moustafa, Tarek

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation...... acetylation stoichiometry and found that the vast majority of mitochondrial and cytoplasmic acetylation had a very low stoichiometry. However, mitochondrial acetylation occurred at a significantly higher basal level than cytoplasmic acetylation, consistent with the distinct acetylation dynamics and higher...... acetyl-CoA concentration in mitochondria. High stoichiometry acetylation occurred mostly on histones, proteins present in histone acetyltransferase and deacetylase complexes, and on transcription factors. These data show that a majority of acetylation occurs at very low levels in exponentially growing...

  9. Statistical mechanics of chromatin: Inferring free energies of nucleosome formation from high-throughput data sets

    Science.gov (United States)

    Morozov, Alexandre

    2009-03-01

    Formation of nucleosome core particles is a first step towards packaging genomic DNA into chromosomes in living cells. Nucleosomes are formed by wrapping 147 base pairs of DNA around a spool of eight histone proteins. It is reasonable to assume that formation of single nucleosomes in vitro is determined by DNA sequence alone: it costs less elastic energy to wrap a flexible DNA polymer around the histone octamer, and more if the polymer is rigid. However, it is unclear to which extent this effect is important in living cells. Cells have evolved chromatin remodeling enzymes that expend ATP to actively reposition nucleosomes. In addition, nucleosome positioning on long DNA sequences is affected by steric exclusion - many nucleosomes have to form simultaneously without overlap. Currently available bioinformatics methods for predicting nucleosome positions are trained on in vivo data sets and are thus unable to distinguish between extrinsic and intrinsic nucleosome positioning signals. In order to see the relative importance of such signals for nucleosome positioning in vivo, we have developed a model based on a large collection of DNA sequences from nucleosomes reconstituted in vitro by salt dialysis. We have used these data to infer the free energy of nucleosome formation at each position along the genome. The method uses an exact result from the statistical mechanics of classical 1D fluids to infer the free energy landscape from nucleosome occupancy. We will discuss the degree to which in vitro nucleosome occupancy profiles are predictive of in vivo nucleosome positions, and will estimate how many nucleosomes are sequence-specific and how many are positioned purely by steric exclusion. Our approach to nucleosome energetics should be applicable across multiple organisms and genomic regions.

  10. Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning.

    Science.gov (United States)

    Moyle-Heyrman, Georgette; Zaichuk, Tetiana; Xi, Liqun; Zhang, Quanwei; Uhlenbeck, Olke C; Holmgren, Robert; Widom, Jonathan; Wang, Ji-Ping

    2013-12-10

    Using a recently developed chemical approach, we have generated a genome-wide map of nucleosomes in vivo in Schizosaccharomyces pombe (S. pombe) at base pair resolution. The shorter linker length previously identified in S. pombe is due to a preponderance of nucleosomes separated by ∼4/5 bp, placing nucleosomes on opposite faces of the DNA. The periodic dinucleotide feature thought to position nucleosomes is equally strong in exons as in introns, demonstrating that nucleosome positioning information can be superimposed on coding information. Unlike the case in Saccharomyces cerevisiae, A/T-rich sequences are enriched in S. pombe nucleosomes, particularly at ±20 bp around the dyad. This difference in nucleosome binding preference gives rise to a major distinction downstream of the transcription start site, where nucleosome phasing is highly predictable by A/T frequency in S. pombe but not in S. cerevisiae, suggesting that the genomes and DNA binding preferences of nucleosomes have coevolved in different species. The poly (dA-dT) tracts affect but do not deplete nucleosomes in S. pombe, and they prefer special rotational positions within the nucleosome, with longer tracts enriched in the 10- to 30-bp region from the dyad. S. pombe does not have a well-defined nucleosome-depleted region immediately upstream of most transcription start sites; instead, the -1 nucleosome is positioned with the expected spacing relative to the +1 nucleosome, and its occupancy is negatively correlated with gene expression. Although there is generally very good agreement between nucleosome maps generated by chemical cleavage and micrococcal nuclease digestion, the chemical map shows consistently higher nucleosome occupancy on DNA with high A/T content.

  11. Structural Mechanisms of Nucleosome Recognition by Linker Histones.

    Science.gov (United States)

    Zhou, Bing-Rui; Jiang, Jiansheng; Feng, Hanqiao; Ghirlando, Rodolfo; Xiao, T Sam; Bai, Yawen

    2015-08-20

    Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.

    Science.gov (United States)

    Weinert, Brian T; Iesmantavicius, Vytautas; Moustafa, Tarek; Schölz, Christian; Wagner, Sebastian A; Magnes, Christoph; Zechner, Rudolf; Choudhary, Chunaram

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation accumulated in growth-arrested cells in a manner that depended on acetyl-CoA generation in distinct subcellular compartments. Mitochondrial acetylation levels correlated with acetyl-CoA concentration in vivo and acetyl-CoA acetylated lysine residues nonenzymatically in vitro. We developed a method to estimate acetylation stoichiometry and found that the vast majority of mitochondrial and cytoplasmic acetylation had a very low stoichiometry. However, mitochondrial acetylation occurred at a significantly higher basal level than cytoplasmic acetylation, consistent with the distinct acetylation dynamics and higher acetyl-CoA concentration in mitochondria. High stoichiometry acetylation occurred mostly on histones, proteins present in histone acetyltransferase and deacetylase complexes, and on transcription factors. These data show that a majority of acetylation occurs at very low levels in exponentially growing yeast and is uniformly affected by exposure to acetyl-CoA.

  13. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals.

    Directory of Open Access Journals (Sweden)

    Yair Field

    2008-11-01

    Full Text Available The detailed positions of nucleosomes profoundly impact gene regulation and are partly encoded by the genomic DNA sequence. However, less is known about the functional consequences of this encoding. Here, we address this question using a genome-wide map of approximately 380,000 yeast nucleosomes that we sequenced in their entirety. Utilizing the high resolution of our map, we refine our understanding of how nucleosome organizations are encoded by the DNA sequence and demonstrate that the genomic sequence is highly predictive of the in vivo nucleosome organization, even across new nucleosome-bound sequences that we isolated from fly and human. We find that Poly(dA:dT tracts are an important component of these nucleosome positioning signals and that their nucleosome-disfavoring action results in large nucleosome depletion over them and over their flanking regions and enhances the accessibility of transcription factors to their cognate sites. Our results suggest that the yeast genome may utilize these nucleosome positioning signals to regulate gene expression with different transcriptional noise and activation kinetics and DNA replication with different origin efficiency. These distinct functions may be achieved by encoding both relatively closed (nucleosome-covered chromatin organizations over some factor binding sites, where factors must compete with nucleosomes for DNA access, and relatively open (nucleosome-depleted organizations over other factor sites, where factors bind without competition.

  14. Reactivity in ELISA with DNA-loaded nucleosomes in patients with proliferative lupus nephritis

    NARCIS (Netherlands)

    Dieker, J.W.; Schlumberger, W.; McHugh, N.; Hamann, P.; Vlag, J. van der; Berden, J.H.M.

    2015-01-01

    Autoantibodies against nucleosomes are considered a hallmark of systemic lupus erythematosus (SLE). We compared in patients with proliferative lupus nephritis the diagnostic usefulness of a dsDNA-loaded nucleosome ELISA (anti-dsDNA-NcX) with ELISAs in which dsDNA or nucleosomes alone were coated. Fi

  15. Reactivity in ELISA with DNA-loaded nucleosomes in patients with proliferative lupus nephritis

    NARCIS (Netherlands)

    Dieker, J.W.; Schlumberger, W.; McHugh, N.; Hamann, P.; Vlag, J. van der; Berden, J.H.M.

    2015-01-01

    Autoantibodies against nucleosomes are considered a hallmark of systemic lupus erythematosus (SLE). We compared in patients with proliferative lupus nephritis the diagnostic usefulness of a dsDNA-loaded nucleosome ELISA (anti-dsDNA-NcX) with ELISAs in which dsDNA or nucleosomes alone were coated.

  16. Specificity of monoclonal anti-nucleosome auto-antibodies derived from lupus mice

    NARCIS (Netherlands)

    Kramers, K; Stemmer, C; Monestier, M; vanBruggen, MCJ; RijkeSchilder, TPM; Hylkema, MN; Smeenk, RJT; Muller, S; Berden, JHM

    1996-01-01

    Recently, anti-nucleosome antibodies, which do not bind to DNA or to individual histones, have been identified in longitudinal studies in lupus mice. These anti-nucleosome antibodies occur early in spontaneous SLE and are formed prior to other anti-nuclear specificities. However, nucleosomal epitope

  17. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster.

    Science.gov (United States)

    Chereji, Răzvan V; Kan, Tsung-Wai; Grudniewska, Magda K; Romashchenko, Alexander V; Berezikov, Eugene; Zhimulev, Igor F; Guryev, Victor; Morozov, Alexandre V; Moshkin, Yuri M

    2016-02-18

    Nucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNase-sensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/T-rich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10°C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to 'phasing' off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequence-dependent models.

  18. A Novel Wavelet-Based Approach for Predicting Nucleosome Positions Using DNA Structural Information.

    Science.gov (United States)

    Gan, Yanglan; Zou, Guobing; Guan, Jihong; Xu, Guangwei

    2014-01-01

    Nucleosomes are basic elements of chromatin structure. The positioning of nucleosomes along a genome is very important to dictate eukaryotic DNA compaction and access. Current computational methods have focused on the analysis of nucleosome occupancy and the positioning of well-positioned nucleosomes. However, fuzzy nucleosomes require more complex configurations and are more difficult to predict their positions. We analyzed the positioning of well-positioned and fuzzy nucleosomes from a novel structural perspective, and proposed WaveNuc, a computational approach for inferring their positions based on continuous wavelet transformation. The comparative analysis demonstrates that these two kinds of nucleosomes exhibit different propeller twist structural characteristics. Well-positioned nucleosomes tend to locate at sharp peaks of the propeller twist profile, whereas fuzzy nucleosomes correspond to broader peaks. The sharpness of these peaks shows that the propeller twist profile may contain nucleosome positioning information. Exploiting this knowledge, we applied WaveNuc to detect the two different kinds of peaks of the propeller twist profile along the genome. We compared the performance of our method with existing methods on real data sets. The results show that the proposed method can accurately resolve complex configurations of fuzzy nucleosomes, which leads to better performance of nucleosome positioning prediction on the whole genome.

  19. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter

    Energy Technology Data Exchange (ETDEWEB)

    Astrand, Carolina, E-mail: ca340@cam.ac.uk [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Belikov, Sergey, E-mail: Sergey.Belikov@ki.se [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Wrange, Orjan, E-mail: Orjan.Wrange@ki.se [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden)

    2009-09-10

    Transcription from the mouse mammary tumor virus (MMTV) promoter is induced by the glucocorticoid receptor (GR). This switch was reconstituted in Xenopus oocytes. Previously, we showed that Nuclear Factor 1 (NF1) and Octamer Transcription Factor 1 (Oct1) bind constitutively to the MMTV promoter and thereby induce translational nucleosome positioning representing an intermediary, i.e. preset, state of nucleosome organization. Here we further characterize this NF1 and Oct1 induced preset chromatin in relation to the inactive and the hormone-activated state. The preset chromatin exhibits increased histone acetylation but does not cause dissociation of histone H1 as oppose to the hormone-activated state. Furthermore, upon hormone induction the preset MMTV chromatin displays an enhanced and prolonged GR binding capacity and transcription during an intrinsic and time-dependent silencing of the injected template. The silencing process correlates with a reduced histone acetylation. However, a histone deacetylase inhibitor, trichostatin A (TSA), does not counteract silencing in spite of its distinct stimulation of GR-DNA binding. The latter indicates the importance of histone acetylation to maintain DNA access for inducible factor binding. We discuss how constitutively bound factors such as NF1 and Oct1 may participate in the maintenance of tissue specificity of hormone responsive genes.

  20. Rapid Histone-Catalyzed DNA Lesion Excision and Accompanying Protein Modification in Nucleosomes and Nucleosome Core Particles.

    Science.gov (United States)

    Weng, Liwei; Greenberg, Marc M

    2015-09-01

    C5'-Hydrogen atoms are frequently abstracted during DNA oxidation. The oxidized abasic lesion 5'-(2-phosphoryl-1,4-dioxobutane) (DOB) is an electrophilic product of the C5'-radical. DOB is a potent irreversible inhibitor of DNA polymerase β, and forms interstrand cross-links in free DNA. We examined the reactivity of DOB within nucleosomes and nucleosome core particles (NCPs), the monomeric component of chromatin. Depending upon the position at which DOB is generated within a NCP, it is excised from nucleosomal DNA at a rate 275-1500-fold faster than that in free DNA. The half-life of DOB (7.0-16.8 min) in NCPs is shorter than any other abasic lesion. DOB's lifetime in NCPs is also significantly shorter than the estimated lifetime of an abasic site within a cell, suggesting that the observed chemistry would occur intracellularly. Histones also catalyze DOB excision when the lesion is present in the DNA linker region of a nucleosome. Schiff-base formation between DOB and histone proteins is detected in nucleosomes and NCPs, resulting in pyrrolone formation at the lysine residues. The lysines modified by DOB are often post-translationally modified. Consequently, the histone modifications described herein could affect the regulation of gene expression and may provide a chemical basis for the cytotoxicity of the DNA damaging agents that produce this lesion.

  1. SHORT COMMUNICATION ACETYLATION AND OXYGENATION ...

    African Journals Online (AJOL)

    a

    mild conditions and in processes that are environmentally benign. ... All the products were characterized by a comparison of their spectral and .... In conclusion, an eco-friendly, clean, and cheap heterogeneous catalytic acetylation and.

  2. Naturally occuring nucleosome positioning signals in human exons and introns

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Chauvin, Yves;

    1996-01-01

    alignments of internal exon and intron sequences corresponds to a periodic "in phase" bending potential towards the major groove of the DNA. The nucleosome positioning data show that the consensus triplets (and their complements) have a preference for locations on a bent double helix where the major groove...... of roughly ten nucleotides. The periodic pattern is also present in intron sequences, although the strength per nucleotide is weaker. Using two independent profile methods based on triplet bendability parameters from DNase I experiments and nucleosome positioning data, we show that the pattern in multiple...... faces inward and is compressed. The in-phase triplets are located adjacent to GCC/GGC triplets known to have the strongest bias in their positioning on the nucleosome. Analysis of mRNA sequences encoding proteins with known tertiary structure exclude the possibility that the pattern is a consequence...

  3. Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes.

    Science.gov (United States)

    Govind, Chhabi K; Qiu, Hongfang; Ginsburg, Daniel S; Ruan, Chun; Hofmeyer, Kimberly; Hu, Cuihua; Swaminathan, Venkatesh; Workman, Jerry L; Li, Bing; Hinnebusch, Alan G

    2010-07-30

    Methylation of histone H3 by Set1 and Set2 is required for deacetylation of nucleosomes in coding regions by histone deacetylase complexes (HDACs) Set3C and Rpd3C(S), respectively. We report that Set3C and Rpd3C(S) are cotranscriptionally recruited in the absence of Set1 and Set2, but in a manner stimulated by Pol II CTD kinase Cdk7/Kin28. Consistently, Rpd3C(S) and Set3C interact with Ser5-phosphorylated Pol II and histones in extracts, but only the histone interactions require H3 methylation. Moreover, reconstituted Rpd3C(S) binds specifically to Ser5-phosphorylated CTD peptides in vitro. Hence, whereas interaction with methylated H3 residues is required for Rpd3C(S) and Set3C deacetylation activities, their cotranscriptional recruitment is stimulated by the phosphorylated CTD. We further demonstrate that Rpd3, Hos2, and Hda1 have overlapping functions in deacetylating histones and suppressing cotranscriptional histone eviction. A strong correlation between increased acetylation and lower histone occupancy in HDA mutants implies that histone acetylation is important for nucleosome eviction. Copyright 2010 Elsevier Inc. All rights reserved.

  4. NAP1-Assisted Nucleosome Assembly on DNA Measured in Real Time by Single-Molecule Magnetic Tweezers

    NARCIS (Netherlands)

    Vlijm, R.; Smitshuijzen, J.S.J.; Lusser, A.; Dekker, C.

    2012-01-01

    While many proteins are involved in the assembly and (re)positioning of nucleosomes, the dynamics of protein-assisted nucleosome formation are not well understood. We study NAP1 (nucleosome assembly protein 1) assisted nucleosome formation at the single-molecule level using magnetic tweezers. This m

  5. NAP1-Assisted Nucleosome Assembly on DNA Measured in Real Time by Single-Molecule Magnetic Tweezers

    NARCIS (Netherlands)

    Vlijm, R.; Smitshuijzen, J.S.J.; Lusser, A.; Dekker, C.

    2012-01-01

    While many proteins are involved in the assembly and (re)positioning of nucleosomes, the dynamics of protein-assisted nucleosome formation are not well understood. We study NAP1 (nucleosome assembly protein 1) assisted nucleosome formation at the single-molecule level using magnetic tweezers. This

  6. How can economic schemes curtail the increasing sex ratio at birth in China?

    Directory of Open Access Journals (Sweden)

    Shripad Tuljapurkar

    2008-10-01

    Full Text Available Fertility decline, driven by the one-child policy, and son preference have contributed to an alarming difference in the number of live male and female births in China. We present a quantitative model where people choose to sex-select because they perceive that married sons are more valuable than married daughters. Due to the predominant patrilocal kinship system in China, daughters-in-law provide valuable emotional and financial support, enhancing the perceived present value of married sons. We argue that inter-generational transfer data will help ascertain the extent to which economic schemes (such as pension plans for families with no sons can curtail the increasing sex ratio at birth.

  7. Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment.

    Science.gov (United States)

    Pagán, Antonio J; Yang, Chao-Tsung; Cameron, James; Swaim, Laura E; Ellett, Felix; Lieschke, Graham J; Ramakrishnan, Lalita

    2015-07-08

    The mycobacterial ESX-1 virulence locus accelerates macrophage recruitment to the forming tuberculous granuloma. Newly recruited macrophages phagocytose previously infected apoptotic macrophages to become new bacterial growth niches. Granuloma macrophages can then necrose, releasing mycobacteria into the extracellular milieu, which potentiates their growth even further. Using zebrafish with genetic or pharmacologically induced macrophage deficiencies, we find that global macrophage deficits increase susceptibility to mycobacterial infection by accelerating granuloma necrosis. This is because reduction in the macrophage supply below a critical threshold decreases granuloma macrophage replenishment to the point where apoptotic infected macrophages, failing to get engulfed, necrose. Reducing macrophage demand by removing bacterial ESX-1 offsets the susceptibility of macrophage deficits. Conversely, increasing macrophage supply in wild-type fish by overexpressing myeloid growth factors induces resistance by curtailing necrosis. These findings may explain the susceptibility of humans with mononuclear cytopenias to mycobacterial infections and highlight the therapeutic potential of myeloid growth factors in tuberculosis.

  8. Use of a geomembrane steel sheet pile verticle barrier to curtail organic seepage

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmetti, J.L.; Butler, P.B. [DuPont Environmental Remediation Services, Wilmington, DE (United States)

    1997-12-31

    At a Superfund site in Delaware, contaminated groundwater, seeping out of a riverbank, produced a visible sheen on the river. As part of an emergency response action, a geomembrane steel sheet pile vertical barrier system was installed to contain the sheen and contaminated soil and sediments. The response action presented an engineering challenge due to the close proximity manufacturing facilities, steep riverbank slopes, tidal fluctuations, high velocity river flow, and underground and overhead interferences. A unique vertical containment barrier was developed to stabilize the riverbank slope, curtail sheens on the river, and prevent groundwater mounding behind the vertical barrier. In addition, the cost-effective vertical barrier enables natural chemical and biological processes to contain the organic seepage without requiring a groundwater extraction system.

  9. A Model for Optimizing the Combination of Solar Electricity Generation, Supply Curtailment, Transmission and Storage

    Science.gov (United States)

    Perez, Marc J. R.

    With extraordinary recent growth of the solar photovoltaic industry, it is paramount to address the biggest barrier to its high-penetration across global electrical grids: the inherent variability of the solar resource. This resource variability arises from largely unpredictable meteorological phenomena and from the predictable rotation of the earth around the sun and about its own axis. To achieve very high photovoltaic penetration, the imbalance between the variable supply of sunlight and demand must be alleviated. The research detailed herein consists of the development of a computational model which seeks to optimize the combination of 3 supply-side solutions to solar variability that minimizes the aggregate cost of electricity generated therefrom: Storage (where excess solar generation is stored when it exceeds demand for utilization when it does not meet demand), interconnection (where solar generation is spread across a large geographic area and electrically interconnected to smooth overall regional output) and smart curtailment (where solar capacity is oversized and excess generation is curtailed at key times to minimize the need for storage.). This model leverages a database created in the context of this doctoral work of satellite-derived photovoltaic output spanning 10 years at a daily interval for 64,000 unique geographic points across the globe. Underpinning the model's design and results, the database was used to further the understanding of solar resource variability at timescales greater than 1-day. It is shown that--as at shorter timescales--cloud/weather-induced solar variability decreases with geographic extent and that the geographic extent at which variability is mitigated increases with timescale and is modulated by the prevailing speed of clouds/weather systems. Unpredictable solar variability up to the timescale of 30 days is shown to be mitigated across a geographic extent of only 1500km if that geographic extent is oriented in a north

  10. MILP Approach for Bilevel Transmission and Reactive Power Planning Considering Wind Curtailment

    DEFF Research Database (Denmark)

    Ugranli, Faruk; Karatepe, Engin; Nielsen, Arne Hejde

    2017-01-01

    In this study, two important planning problems in power systems that are transmission expansion and reactive power are formulated as a mixed-integer linear programming taking into account the bilevel structure due to the consideration of market clearing under several load-wind scenarios....... The objective of the proposed method is to minimize the installation cost of transmission lines, reactive power sources, and the annual operation costs of conventional generators corresponding to the curtailed wind energy while maintaining the reliable system operation. Lower level problems of the bilevel...... structure are designated for the market clearing which is formulated by using the linearized optimal power flow equations. In order to obtain mixed-integer linear programming formulation, the so-called lower level problems are represented by using primal-dual formulation. By using the proposed method, power...

  11. A map of nucleosome positions in yeast at base-pair resolution.

    Science.gov (United States)

    Brogaard, Kristin; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan

    2012-06-28

    The exact positions of nucleosomes along genomic DNA can influence many aspects of chromosome function. However, existing methods for mapping nucleosomes do not provide the necessary single-base-pair accuracy to determine these positions. Here we develop and apply a new approach for direct mapping of nucleosome centres on the basis of chemical modification of engineered histones. The resulting map locates nucleosome positions genome-wide in unprecedented detail and accuracy. It shows new aspects of the in vivo nucleosome organization that are linked to transcription factor binding, RNA polymerase pausing and the higher-order structure of the chromatin fibre.

  12. Water-Related Power Plant Curtailments: An Overview of Incidents and Contributing Factors

    Energy Technology Data Exchange (ETDEWEB)

    McCall, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    Water temperatures and water availability can affect the reliable operations of power plants in the United States. Data on water-related impacts on the energy sector are not consolidated and are reported by multiple agencies. This study provides an overview of historical incidents where water resources have affected power plant operations, discusses the various data sources providing information, and creates a publicly available and open access database that contains consolidated information about water-related power plant curtailment and shut down incidents. Power plants can be affected by water resources if incoming water temperatures are too high, water discharge temperatures are too high, or if there is not enough water available to operate. Changes in climate have the potential to exacerbate uncertainty over water resource availability and temperature. Power plant impacts from water resources include curtailment of generation, plant shut downs, and requests for regulatory variances. In addition, many power plants have developed adaptation approaches to reducing the potential risks of water-related issues by investing in new technologies or developing and implementing plans to undertake during droughts or heatwaves. This study identifies 42 incidents of water-related power plant issues from 2000-2015, drawing from a variety of different datasets. These incidents occur throughout the U.S. and affect coal and nuclear plants that use once-through, recirculating, and pond cooling systems. In addition, water temperature violations reported to the Environmental Protection Agency are also considered, with 35 temperature violations noted from 2012-2015. In addition to providing some background information on incidents, this effort has also created an open access database on the Open Energy Information platform that contains information about water-related power plant issues that can be updated by users.

  13. Experimental Investigation of the Effect of Curtailed Reinforcement on the Shear Failure of RC Members Without Stirrups

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Gustenhoff Hansen, Søren

    2017-01-01

    capacity. This influence is not even mentioned in Eurocode 2. This paper presents a large experimental programme dedicated to study the influence of curtailed reinforcement on the shear capacity. The programme includes 30 simple three-point bending tests of beams governed by shear failure. The main...... parameters varied in the tests are the relative amount and the length of the curtailed reinforcement. The tested shear capacities show that the shear capacity was not affected. During tests, Digital Image Correlation was used to measure the crack propagation. From these measurements, it appeared...

  14. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions.

    Science.gov (United States)

    Shaytan, Alexey K; Armeev, Grigoriy A; Goncearenco, Alexander; Zhurkin, Victor B; Landsman, David; Panchenko, Anna R

    2016-01-16

    An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies.

  15. The dynamics of individual nucleosomes controls the chromatin condensation pathway: direct AFM visualization of variant chromatin

    CERN Document Server

    Montel, Fabien; Castelnovo, Martin; Bednar, Jan; Dimitrov, Stefan; Angelov, Dimitar; Faivre-Moskalenko, Cendrine

    2009-01-01

    Chromatin organization and dynamics is studied in this work at scales ranging from single nucleosome to nucleosomal array by using a unique combination of biochemical assays, single molecule imaging technique and numerical modeling. We demonstrate that a subtle modification in the nucleosome structure induced by the histone variant H2A.Bbd drastically modifies the higher order organization of the nucleosomal arrays. Importantly, as directly visualized by AFM, conventional H2A nucleosomal arrays exhibit specific local organization, in contrast to H2A.Bbd arrays, which show ?beads on a string? structure. The combination of systematic image analysis and theoretical modeling allows a quantitative description relating the observed gross structural changes of the arrays to their local organization. Our results strongly suggest that higher-order organization of H1-free nucleosomal arrays is mainly determined by the fluctuation properties of individual nucleosomes. Moreover, numerical simulations suggest the existenc...

  16. Large-scale ATP-independent nucleosome unfolding by a histone chaperone.

    Science.gov (United States)

    Valieva, Maria E; Armeev, Grigoriy A; Kudryashova, Kseniya S; Gerasimova, Nadezhda S; Shaytan, Alexey K; Kulaeva, Olga I; McCullough, Laura L; Formosa, Tim; Georgiev, Pavel G; Kirpichnikov, Mikhail P; Studitsky, Vasily M; Feofanov, Alexey V

    2016-12-01

    DNA accessibility to regulatory proteins is substantially influenced by nucleosome structure and dynamics. The facilitates chromatin transcription (FACT) complex increases the accessibility of nucleosomal DNA, but the mechanism and extent of its nucleosome reorganization activity are unknown. Here we determined the effects of FACT from the yeast Saccharomyces cerevisiae on single nucleosomes by using single-particle Förster resonance energy transfer (spFRET) microscopy. FACT binding results in dramatic ATP-independent, symmetrical and reversible DNA uncoiling that affects at least 70% of the DNA within a nucleosome, occurs without apparent loss of histones and proceeds via an 'all-or-none' mechanism. A mutated version of FACT is defective in uncoiling, and a histone mutation that suppresses phenotypes caused by this FACT mutation in vivo restores the uncoiling activity in vitro. Thus, FACT-dependent nucleosome unfolding modulates the accessibility of nucleosomal DNA, and this activity is an important function of FACT in vivo.

  17. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy

    Directory of Open Access Journals (Sweden)

    Daniel Sultanov

    2017-01-01

    Full Text Available DNA accessibility to various protein complexes is essential for various processes in the cell and is affected by nucleosome structure and dynamics. Protein factor PARP-1 (poly(ADP-ribose polymerase 1 increases the accessibility of DNA in chromatin to repair proteins and transcriptional machinery, but the mechanism and extent of this chromatin reorganization are unknown. Here we report on the effects of PARP-1 on single nucleosomes revealed by spFRET (single-particle Förster Resonance Energy Transfer microscopy. PARP-1 binding to a double-strand break in the vicinity of a nucleosome results in a significant increase of the distance between the adjacent gyres of nucleosomal DNA. This partial uncoiling of the entire nucleosomal DNA occurs without apparent loss of histones and is reversed after poly(ADP-ribosylation of PARP-1. Thus PARP-1-nucleosome interactions result in reversible, partial uncoiling of the entire nucleosomal DNA.

  18. Nucleosome Presence at AML-1 Binding Sites Inversely Correlates with Ly49 Expression: Revelations from an Informatics Analysis of Nucleosomes and Immune Cell Transcription Factors.

    Science.gov (United States)

    Wight, Andrew; Yang, Doo; Ioshikhes, Ilya; Makrigiannis, Andrew P

    2016-04-01

    Beyond its role in genomic organization and compaction, the nucleosome is believed to participate in the regulation of gene transcription. Here, we report a computational method to evaluate the nucleosome sensitivity for a transcription factor over a given stretch of the genome. Sensitive factors are predicted to be those with binding sites preferentially contained within nucleosome boundaries and lacking 10 bp periodicity. Based on these criteria, the Acute Myeloid Leukemia-1a (AML-1a) transcription factor, a regulator of immune gene expression, was identified as potentially sensitive to nucleosomal regulation within the mouse Ly49 gene family. This result was confirmed in RMA, a cell line with natural expression of Ly49, using MNase-Seq to generate a nucleosome map of chromosome 6, where the Ly49 gene family is located. Analysis of this map revealed a specific depletion of nucleosomes at AML-1a binding sites in the expressed Ly49A when compared to the other, silent Ly49 genes. Our data suggest that nucleosome-based regulation contributes to the expression of Ly49 genes, and we propose that this method of predicting nucleosome sensitivity could aid in dissecting the regulatory role of nucleosomes in general.

  19. Genetic modifiers of chromatin acetylation antagonize the reprogramming of epi-polymorphisms.

    Science.gov (United States)

    Abraham, Anne-Laure; Nagarajan, Muniyandi; Veyrieras, Jean-Baptiste; Bottin, Hélène; Steinmetz, Lars M; Yvert, Gaël

    2012-09-01

    Natural populations are known to differ not only in DNA but also in their chromatin-associated epigenetic marks. When such inter-individual epigenomic differences (or "epi-polymorphisms") are observed, their stability is usually not known: they may or may not be reprogrammed over time or upon environmental changes. In addition, their origin may be purely epigenetic, or they may result from regulatory variation encoded in the DNA. Studying epi-polymorphisms requires, therefore, an assessment of their nature and stability. Here we estimate the stability of yeast epi-polymorphisms of chromatin acetylation, and we provide a genome-by-epigenome map of their genetic control. A transient epi-drug treatment was able to reprogram acetylation variation at more than one thousand nucleosomes, whereas a similar amount of variation persisted, distinguishing "labile" from "persistent" epi-polymorphisms. Hundreds of genetic loci underlied acetylation variation at 2,418 nucleosomes either locally (in cis) or distantly (in trans), and this genetic control overlapped only partially with the genetic control of gene expression. Trans-acting regulators were not necessarily associated with genes coding for chromatin modifying enzymes. Strikingly, "labile" and "persistent" epi-polymorphisms were associated with poor and strong genetic control, respectively, showing that genetic modifiers contribute to persistence. These results estimate the amount of natural epigenomic variation that can be lost after transient environmental exposures, and they reveal the complex genetic architecture of the DNA-encoded determinism of chromatin epi-polymorphisms. Our observations provide a basis for the development of population epigenetics.

  20. Genetic modifiers of chromatin acetylation antagonize the reprogramming of epi-polymorphisms.

    Directory of Open Access Journals (Sweden)

    Anne-Laure Abraham

    2012-09-01

    Full Text Available Natural populations are known to differ not only in DNA but also in their chromatin-associated epigenetic marks. When such inter-individual epigenomic differences (or "epi-polymorphisms" are observed, their stability is usually not known: they may or may not be reprogrammed over time or upon environmental changes. In addition, their origin may be purely epigenetic, or they may result from regulatory variation encoded in the DNA. Studying epi-polymorphisms requires, therefore, an assessment of their nature and stability. Here we estimate the stability of yeast epi-polymorphisms of chromatin acetylation, and we provide a genome-by-epigenome map of their genetic control. A transient epi-drug treatment was able to reprogram acetylation variation at more than one thousand nucleosomes, whereas a similar amount of variation persisted, distinguishing "labile" from "persistent" epi-polymorphisms. Hundreds of genetic loci underlied acetylation variation at 2,418 nucleosomes either locally (in cis or distantly (in trans, and this genetic control overlapped only partially with the genetic control of gene expression. Trans-acting regulators were not necessarily associated with genes coding for chromatin modifying enzymes. Strikingly, "labile" and "persistent" epi-polymorphisms were associated with poor and strong genetic control, respectively, showing that genetic modifiers contribute to persistence. These results estimate the amount of natural epigenomic variation that can be lost after transient environmental exposures, and they reveal the complex genetic architecture of the DNA-encoded determinism of chromatin epi-polymorphisms. Our observations provide a basis for the development of population epigenetics.

  1. Genetic identification of a network of factors that functionally interact with the nucleosome remodeling ATPase ISWI.

    Directory of Open Access Journals (Sweden)

    Giosalba Burgio

    2008-06-01

    Full Text Available Nucleosome remodeling and covalent modifications of histones play fundamental roles in chromatin structure and function. However, much remains to be learned about how the action of ATP-dependent chromatin remodeling factors and histone-modifying enzymes is coordinated to modulate chromatin organization and transcription. The evolutionarily conserved ATP-dependent chromatin-remodeling factor ISWI plays essential roles in chromosome organization, DNA replication, and transcription regulation. To gain insight into regulation and mechanism of action of ISWI, we conducted an unbiased genetic screen to identify factors with which it interacts in vivo. We found that ISWI interacts with a network of factors that escaped detection in previous biochemical analyses, including the Sin3A gene. The Sin3A protein and the histone deacetylase Rpd3 are part of a conserved histone deacetylase complex involved in transcriptional repression. ISWI and the Sin3A/Rpd3 complex co-localize at specific chromosome domains. Loss of ISWI activity causes a reduction in the binding of the Sin3A/Rpd3 complex to chromatin. Biochemical analysis showed that the ISWI physically interacts with the histone deacetylase activity of the Sin3A/Rpd3 complex. Consistent with these findings, the acetylation of histone H4 is altered when ISWI activity is perturbed in vivo. These findings suggest that ISWI associates with the Sin3A/Rpd3 complex to support its function in vivo.

  2. The Role of FACT in Making and Breaking Nucleosomes

    Science.gov (United States)

    Formosa, Tim

    2011-01-01

    FACT is a roughly 180 kDa heterodimeric protein complex important for managing the properties of chromatin in eukaryotic cells. Chromatin is a repressive barrier that plays an important role in protecting genomic DNA and regulating access to it. This barrier must be temporarily removed during transcription, replication, and repair, but it also must be rapidly restored to the original state afterwards. Further, the properties of chromatin are dynamic and must be adjusted as conditions dictate. FACT was identified as a factor that destabilizes nucleosomes in vitro, but it has now also been implicated as a central factor in the deposition of histones to form nucleosomes, as an exchange factor that swaps the histones within existing nucleosomes for variant forms, and as a tether that prevents histones from being displaced by the passage of RNA polymerases during transcription. FACT therefore plays central roles in building, maintaining, adjusting, and overcoming the chromatin barrier. This review summarizes recent results that have begun to reveal how FACT can promote what appear to be contradictory goals, using a simple set of binding activities to both enhance and diminish the stability of nucleosomes. PMID:21807128

  3. BRCA 1-Mediated Histone Monoubiquitylation: Effect on Nucleosome Dynamics

    Science.gov (United States)

    2008-02-01

    nucleosome positioning sequence from sea urchin 5s rRNA gene; perform and analyze the ubiquitylation reaction (month 4). Done Task 2: Use single...sea urchin 5S rDNA, and oligonucleosomes were reconstituted on the same sequence repeated in tandem (208-12) (Simpson et al., 1985). Isolation of

  4. Effect of the Spiroiminodihydantoin Lesion on Nucleosome Stability and Positioning.

    Science.gov (United States)

    Norabuena, Erika M; Barnes Williams, Sara; Klureza, Margaret A; Goehring, Liana J; Gruessner, Brian; Radhakrishnan, Mala L; Jamieson, Elizabeth R; Núñez, Megan E

    2016-04-26

    DNA is constantly under attack by oxidants, generating a variety of potentially mutagenic covalently modified species, including oxidized guanine base products. One such product is spiroiminodihydantoin (Sp), a chiral, propeller-shaped lesion that strongly destabilizes the DNA helix in its vicinity. Despite its unusual shape and thermodynamic effect on double-stranded DNA structure, DNA duplexes containing the Sp lesion form stable nucleosomes upon being incubated with histone octamers. Indeed, among six different combinations of lesion location and stereochemistry, only two duplexes display a diminished ability to form nucleosomes, and these only by ∼25%; the other four are statistically indistinguishable from the control. Nonetheless, kinetic factors also play a role: when the histone proteins have less time during assembly of the core particle to sample both lesion-containing and normal DNA strands, they are more likely to bind the Sp lesion DNA than during slower assembly processes that better approximate thermodynamic equilibrium. Using DNase I footprinting and molecular modeling, we discovered that the Sp lesion causes only a small perturbation (±1-2 bp) on the translational position of the DNA within the nucleosome. Each diastereomeric pair of lesions has the same effect on nucleosome positioning, but lesions placed at different locations behave differently, illustrating that the location of the lesion and not its shape serves as the primary determinant of the most stable DNA orientation.

  5. Dynamics of nucleosome assembly and effects of DNA methylation.

    Science.gov (United States)

    Lee, Ju Yeon; Lee, Jaehyoun; Yue, Hongjun; Lee, Tae-Hee

    2015-02-13

    The nucleosome is the fundamental packing unit of the eukaryotic genome, and CpG methylation is an epigenetic modification associated with gene repression and silencing. We investigated nucleosome assembly mediated by histone chaperone Nap1 and the effects of CpG methylation based on three-color single molecule FRET measurements, which enabled direct monitoring of histone binding in the context of DNA wrapping. According to our observation, (H3-H4)2 tetramer incorporation must precede H2A-H2B dimer binding, which is independent of DNA termini wrapping. Upon CpG methylation, (H3-H4)2 tetramer incorporation and DNA termini wrapping are facilitated, whereas proper incorporation of H2A-H2B dimers is inhibited. We suggest that these changes are due to rigidified DNA and increased random binding of histones to DNA. According to the results, CpG methylation expedites nucleosome assembly in the presence of abundant DNA and histones, which may help facilitate gene packaging in chromatin. The results also indicate that the slowest steps in nucleosome assembly are DNA termini wrapping and tetramer positioning, both of which are affected heavily by changes in the physical properties of DNA.

  6. Enhancement of the nucleosomal pattern in sequences of lower complexity

    DEFF Research Database (Denmark)

    Bolshoy, Alexander; Shapiro, Kevin; Trifonov, Edward N.;

    1997-01-01

    in those of higher linguistic complexity. The nucleosome DNA positioning pattern is one of the weakest (highly degenerate) sequence patterns. It has been extracted recently by specially designed multiple alignment procedures. We applied the most sensitive of these procedures to nearly equal subsets...

  7. Comparative analysis of methods for genome-wide nucleosome cartography.

    Science.gov (United States)

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain

    NARCIS (Netherlands)

    van Nuland, R.; van Schaik, F.M.; Simonis, M.; van Heesch, S.; Cuppen, E.; Boelens, R.; Timmers, H.M.; van Ingen, H.

    2013-01-01

    BACKGROUND: Recognition of histone modifications by specialized protein domains is a key step in the regulation of DNA-mediated processes like gene transcription. The structural basis of these interactions is usually studied using histone peptide models, neglecting the nucleosomal context. Here, we

  9. Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain

    NARCIS (Netherlands)

    van Nuland, R.; van Schaik, F.M.A.; Simonis, M.J.|info:eu-repo/dai/nl/364275197; Cuppen, E.P.J.G.|info:eu-repo/dai/nl/183050487; Boelens, R.|info:eu-repo/dai/nl/070151407; Timmers, H.T.M.; van Ingen, H.|info:eu-repo/dai/nl/297054651

    2013-01-01

    Background: Recognition of histone modifications by specialized protein domains is a key step in the regulation of DNA-mediated processes like gene transcription. The structural basis of these interactions is usually studied using histone peptide models, neglecting the nucleosomal context. Here, we

  10. Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain

    NARCIS (Netherlands)

    van Nuland, R.; van Schaik, F.M.; Simonis, M.; van Heesch, S.; Cuppen, E.; Boelens, R.; Timmers, H.M.; van Ingen, H.

    2013-01-01

    BACKGROUND: Recognition of histone modifications by specialized protein domains is a key step in the regulation of DNA-mediated processes like gene transcription. The structural basis of these interactions is usually studied using histone peptide models, neglecting the nucleosomal context. Here, we

  11. Structure and nucleosome interaction of the yeast NuA4 and Piccolo-NuA4 histone acetyltransferase complexes.

    Science.gov (United States)

    Chittuluru, Johnathan R; Chaban, Yuriy; Monnet-Saksouk, Julie; Carrozza, Michael J; Sapountzi, Vasileia; Selleck, William; Huang, Jiehuan; Utley, Rhea T; Cramet, Myriam; Allard, Stephane; Cai, Gang; Workman, Jerry L; Fried, Michael G; Tan, Song; Côté, Jacques; Asturias, Francisco J

    2011-10-09

    We have used EM and biochemistry to characterize the structure of NuA4, an essential yeast histone acetyltransferase (HAT) complex conserved throughout eukaryotes, and we have determined the interaction of NuA4 with the nucleosome core particle (NCP). The ATM-related Tra1 subunit, which is shared with the SAGA coactivator complex, forms a large domain joined to a second region that accommodates the catalytic subcomplex Piccolo and other NuA4 subunits. EM analysis of a NuA4-NCP complex shows the NCP bound at the periphery of NuA4. EM characterization of Piccolo and Piccolo-NCP provided further information about subunit organization and confirmed that histone acetylation requires minimal contact with the NCP. A small conserved region at the N terminus of Piccolo subunit enhancer of Polycomb-like 1 (Epl1) is essential for NCP interaction, whereas the subunit yeast homolog of mammalian Ing1 2 (Yng2) apparently positions Piccolo for efficient acetylation of histone H4 or histone H2A tails. Taken together, these results provide an understanding of the NuA4 subunit organization and the NuA4-NCP interactions.

  12. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.

    Science.gov (United States)

    Schep, Alicia N; Buenrostro, Jason D; Denny, Sarah K; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J

    2015-11-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal "fingerprint" as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding.

  13. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression

    Institute of Scientific and Technical Information of China (English)

    William M Scovell

    2016-01-01

    High mobility group protein 1(HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome(N) in a nonenzymatic,adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor(ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes(N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed(1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and(2) knock down of HMGB1 expression by siR NA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome.

  14. An in vitro-identified high-affinity nucleosome-positioning signal is capable of transiently positioning a nucleosome in vivo

    Directory of Open Access Journals (Sweden)

    Gracey Lia E

    2010-07-01

    Full Text Available Abstract Background The physiological function of eukaryotic DNA occurs in the context of nucleosomal arrays that can expose or obscure defined segments of the genome. Certain DNA sequences are capable of strongly positioning a nucleosome in vitro, suggesting the possibility that favorable intrinsic signals might reproducibly structure chromatin segments. As high-throughput sequencing analyses of nucleosome coverage in vitro and in vivo have become possible, a vigorous debate has arisen over the degree to which intrinsic DNA:nucleosome affinities orchestrate the in vivo positions of nucleosomes, thereby controlling physical accessibility of specific sequences in DNA. Results We describe here the in vivo consequences of placing a synthetic high-affinity nucleosome-positioning signal, the 601 sequence, into a DNA plasmid vector in mice. Strikingly, the 601 sequence was sufficient to position nucleosomes during an early phase after introduction of the DNA into the mice (when the plasmid vector transgene was active. This positioning capability was transient, with a loss of strong positioning at a later time point when the transgenes had become silent. Conclusions These results demonstrate an ability of DNA sequences selected solely for nucleosome affinity to organize chromatin in vivo, and the ability of other mechanisms to overcome these interactions in a dynamic nuclear environment.

  15. Modelling the impact of vaccination on curtailing Haemophilus influenzae serotype 'a'.

    Science.gov (United States)

    Konini, Angjelina; Moghadas, Seyed M

    2015-12-21

    Haemophilus influenzae serotype a (Hia) is a human-restricted bacterial pathogen transmitted via direct contacts with an infectious individual. Currently, there is no vaccine available for prevention of Hia, and the disease is treated with antibiotics upon diagnosis. With ongoing efforts for the development of an anti-Hia protein-polysaccharide conjugated vaccine, we sought to investigate the effect of vaccination on curtailing Hia infection. We present the first stochastic model of Hia transmission and control dynamics, and parameterize it using available estimates in the literature. Since both naturally acquired and vaccine-induced immunity wane with time, model simulations show three important results. First, vaccination of only newborns cannot eliminate the pathogen from the population, even when a booster program is implemented with a high coverage. Second, achieving and maintaining a sufficiently high level of herd immunity for pathogen elimination requires vaccination of susceptible individuals in addition to a high vaccination coverage of newborns. Third, for a low vaccination rate of susceptible individuals, a high coverage of booster dose may be needed to raise the level of herd immunity for Hia eradication. Our findings highlight the importance of vaccination and timely boosting of the individual׳s immunity within the expected duration of vaccine-induced protection against Hia. When an anti-Hia vaccine becomes available, enhanced surveillance of Hia incidence and herd immunity could help determine vaccination rates and timelines for booster doses necessary to eliminate Hia from affected populations.

  16. Demand response modeling considering Interruptible/Curtailable loads and capacity market programs

    Energy Technology Data Exchange (ETDEWEB)

    Aalami, H.A.; Moghaddam, M. Parsa; Yousefi, G.R. [Department of Electrical Engineering, Tarbiat Modares University (TMU), Tehran (Iran)

    2010-01-15

    Recently, a massive focus has been made on demand response (DR) programs, aimed to electricity price reduction, transmission lines congestion resolving, security enhancement and improvement of market liquidity. Basically, demand response programs are divided into two main categories namely, incentive-based programs and time-based programs. The focus of this paper is on Interruptible/Curtailable service (I/C) and capacity market programs (CAP), which are incentive-based demand response programs including penalties for customers in case of no responding to load reduction. First, by using the concept of price elasticity of demand and customer benefit function, economic model of above mentioned programs is developed. The proposed model helps the independent system operator (ISO) to identify and employ relevant DR program which both improves the characteristics of the load curve and also be welcome by customers. To evaluate the performance of the model, simulation study has been conducted using the load curve of the peak day of the Iranian power system grid in 2007. In the numerical study section, the impact of these programs on load shape and load level, and benefit of customers as well as reduction of energy consumption are shown. In addition, by using strategy success indices the results of simulation studies for different scenarios are analyzed and investigated for determination of the scenarios priority. (author)

  17. Hairpin Ribozyme Genes Curtail Alcohol Drinking: from Rational Design to in vivo Effects in the Rat.

    Science.gov (United States)

    Sapag, Amalia; Irrazábal, Thergiory; Lobos-González, Lorena; Muñoz-Brauning, Carlos R; Quintanilla, María Elena; Tampier, Lutske

    2016-07-12

    Ribozyme genes were designed to reduce voluntary alcohol drinking in a rat model of alcohol dependence. Acetaldehyde generated from alcohol in the liver is metabolized by the mitochondrial aldehyde dehydrogenase (ALDH2) such that diminishing ALDH2 activity leads to the aversive effects of blood acetaldehyde upon alcohol intake. A stepwise approach was followed to design genes encoding ribozymes targeted to the rat ALDH2 mRNA. In vitro studies of accessibility to oligonucleotides identified suitable target sites in the mRNA, one of which fulfilled hammerhead and hairpin ribozyme requirements (CGGUC). Ribozyme genes delivered in plasmid constructs were tested in rat cells in culture. While the hairpin ribozyme reduced ALDH2 activity 56% by cleavage and blockade (P < 0.0001), the hammerhead ribozyme elicited minor effects by blockade. The hairpin ribozyme was tested in vivo by adenoviral gene delivery to UChB alcohol drinker rats. Ethanol intake was curtailed 47% for 34 days (P < 0.0001), while blood acetaldehyde more than doubled upon ethanol administration and ALDH2 activity dropped 25% in liver homogenates, not affecting other ALDH isoforms. Thus, hairpin ribozymes targeted to 16 nt in the ALDH2 mRNA provide durable and specific effects in vivo, representing an improvement on previous work and encouraging development of gene therapy for alcoholism.

  18. Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106

    Energy Technology Data Exchange (ETDEWEB)

    Su, Dan; Hu, Qi; Li, Qing; Thompson, James R; Cui, Gaofeng; Fazly, Ahmed; Davies, Brian A; Botuyan, Maria Victoria; Zhang, Zhiguo; Mer, Georges [Mayo

    2013-04-08

    Dynamic variations in the structure of chromatin influence virtually all DNA-related processes in eukaryotes and are controlled in part by post-translational modifications of histones. One such modification, the acetylation of lysine 56 (H3K56ac) in the amino-terminal α-helix (αN) of histone H3, has been implicated in the regulation of nucleosome assembly during DNA replication and repair, and nucleosome disassembly during gene transcription. In Saccharomyces cerevisiae, the histone chaperone Rtt106 contributes to the deposition of newly synthesized H3K56ac-carrying H3-H4 complex on replicating DNA, but it is unclear how Rtt106 binds H3-H4 and specifically recognizes H3K56ac as there is no apparent acetylated lysine reader domain in Rtt106. Here, we show that two domains of Rtt106 are involved in a combinatorial recognition of H3-H4. An N-terminal domain homodimerizes and interacts with H3-H4 independently of acetylation while a double pleckstrin-homology (PH) domain binds the K56-containing region of H3. Affinity is markedly enhanced upon acetylation of K56, an effect that is probably due to increased conformational entropy of the αN helix of H3. Our data support a mode of interaction where the N-terminal homodimeric domain of Rtt106 intercalates between the two H3-H4 components of the (H3-H4)2 tetramer while two double PH domains in the Rtt106 dimer interact with each of the two H3K56ac sites in (H3-H4)2. We show that the Rtt106-(H3-H4)2 interaction is important for gene silencing and the DNA damage response.

  19. Lupus nephritis: the central role of nucleosomes revealed.

    Science.gov (United States)

    Mortensen, Elin S; Fenton, Kristin A; Rekvig, Ole P

    2008-02-01

    Systemic lupus erythematosus (SLE) is an autoimmune syndrome characterized by autoantibodies to nuclear constituents. Some of these antibodies are diagnostically important, whereas others act as disease-modifying factors. One clinically important factor is autoantibodies against dsDNA and nucleosomes, which have overlapping diagnostic and nephritogenic impact in SLE. Although a scientific focus for 5 decades, the molecular and cellular origin of these antibodies, and why they are associated with lupus nephritis, is still not fully understood. A consensus has, however, evolved that antibodies to dsDNA and nucleosomes are central pathogenic factors in the development of lupus nephritis. In contrast, no agreement has been reached as to which glomerular structures are bound by nephritogenic anti-nucleosome antibodies in vivo. Mutually contradictory paradigms and models have evolved simply because we still lack precise and conclusive data to provide definitive insight into how autoantibodies induce lupus nephritis and which specificity is critical in the nephritic process(es). In this review, data demonstrating the central role of nucleosomes in inducing and binding potentially nephritogenic antibodies to DNA and nucleosomes are presented and discussed. These autoimmune-inducing processes are discussed in the context of Matzinger's danger model (Matzinger P: Friendly and dangerous signals: is the tissue in control? Nat Immunol 2007, 8:11-13; Matzinger P: The danger model: a renewed sense of self. Science 2002, 296:301-305; Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol 1994, 12:991-1045) and Medzhitov's and Janeway's (Medzhitov R, Janeway CA Jr: Decoding the patterns of self and nonself by the innate immune system. Science 2002, 296:298-300; Medzhitov R, Janeway CA Jr: How does the immune system distinguish self from nonself? Semin Immunol 2000, 12:185-188; Janeway CA Jr, Medzhitov R: Innate immune recognition. Annu Rev Immunol 2002, 20

  20. MOF Acetylates the Histone Demethylase LSD1 to Suppress Epithelial-to-Mesenchymal Transition.

    Science.gov (United States)

    Luo, Huacheng; Shenoy, Anitha K; Li, Xuehui; Jin, Yue; Jin, Lihua; Cai, Qingsong; Tang, Ming; Liu, Yang; Chen, Hao; Reisman, David; Wu, Lizi; Seto, Edward; Qiu, Yi; Dou, Yali; Casero, Robert A; Lu, Jianrong

    2016-06-21

    The histone demethylase LSD1 facilitates epithelial-to-mesenchymal transition (EMT) and tumor progression by repressing epithelial marker expression. However, little is known about how its function may be modulated. Here, we report that LSD1 is acetylated in epithelial but not mesenchymal cells. Acetylation of LSD1 reduces its association with nucleosomes, thus increasing histone H3K4 methylation at its target genes and activating transcription. The MOF acetyltransferase interacts with LSD1 and is responsible for its acetylation. MOF is preferentially expressed in epithelial cells and is downregulated by EMT-inducing signals. Expression of exogenous MOF impedes LSD1 binding to epithelial gene promoters and histone demethylation, thereby suppressing EMT and tumor invasion. Conversely, MOF depletion enhances EMT and tumor metastasis. In human cancer, high MOF expression correlates with epithelial markers and a favorable prognosis. These findings provide insight into the regulation of LSD1 and EMT and identify MOF as a critical suppressor of EMT and tumor progression.

  1. MOF Acetylates the Histone Demethylase LSD1 to Suppress Epithelial-to-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Huacheng Luo

    2016-06-01

    Full Text Available The histone demethylase LSD1 facilitates epithelial-to-mesenchymal transition (EMT and tumor progression by repressing epithelial marker expression. However, little is known about how its function may be modulated. Here, we report that LSD1 is acetylated in epithelial but not mesenchymal cells. Acetylation of LSD1 reduces its association with nucleosomes, thus increasing histone H3K4 methylation at its target genes and activating transcription. The MOF acetyltransferase interacts with LSD1 and is responsible for its acetylation. MOF is preferentially expressed in epithelial cells and is downregulated by EMT-inducing signals. Expression of exogenous MOF impedes LSD1 binding to epithelial gene promoters and histone demethylation, thereby suppressing EMT and tumor invasion. Conversely, MOF depletion enhances EMT and tumor metastasis. In human cancer, high MOF expression correlates with epithelial markers and a favorable prognosis. These findings provide insight into the regulation of LSD1 and EMT and identify MOF as a critical suppressor of EMT and tumor progression.

  2. Structural Analysis of the Key Intermediate Formed during Transcription through a Nucleosome.

    Science.gov (United States)

    Chang, H-W; Shaytan, A K; Hsieh, F-K; Kulaeva, O I; Kirpichnikov, M P; Studitsky, V M

    2013-01-01

    Transcription through chromatin by different RNA polymerases produces different biological outcomes and is accompanied by either nucleosome survival at the original location (Pol II-type mechanism) or backward nucleosome translocation along DNA (Pol III-type mechanism). It has been proposed that differences in the structure of the key intermediates formed during transcription dictate the fate of the nucleosomes. To evaluate this possibility, structure of the key intermediate formed during transcription by Pol III-type mechanism was studied by DNase I footprinting and molecular modeling. The Pol III-type mechanism is characterized by less efficient formation of the key intermediate required for nucleosome survival (Ø-loop, Pol II-type mechanism), most likely due to steric interference between the RNA polymerase and DNA in the Ø-loop. The data suggest that the lower efficiency of Ø-loop formation induces formation of a lower nucleosomal barrier and nucleosome translocation during transcription by Pol III-type mechanism.

  3. Linker histones: novel insights into structure-specific recognition of the nucleosome.

    Science.gov (United States)

    Cutter, Amber R; Hayes, Jeffrey J

    2017-04-01

    Linker histones (H1s) are a primary component of metazoan chromatin, fulfilling numerous functions, both in vitro and in vivo, including stabilizing the wrapping of DNA around the nucleosome, promoting folding and assembly of higher order chromatin structures, influencing nucleosome spacing on DNA, and regulating specific gene expression. However, many molecular details of how H1 binds to nucleosomes and recognizes unique structural features on the nucleosome surface remain undefined. Numerous, confounding studies are complicated not only by experimental limitations, but the use of different linker histone isoforms and nucleosome constructions. This review summarizes the decades of research that has resulted in several models of H1 association with nucleosomes, with a focus on recent advances that suggest multiple modes of H1 interaction in chromatin, while highlighting the remaining questions.

  4. Structure of RCC1 chromatin factor bound to the nucleosome core particle

    Energy Technology Data Exchange (ETDEWEB)

    Makde, Ravindra D.; England, Joseph R.; Yennawar, Hemant P.; Tan, Song (Penn)

    2010-11-11

    The small GTPase Ran enzyme regulates critical eukaryotic cellular functions including nuclear transport and mitosis through the creation of a RanGTP gradient around the chromosomes. This concentration gradient is created by the chromatin-bound RCC1 (regulator of chromosome condensation) protein, which recruits Ran to nucleosomes and activates Ran's nucleotide exchange activity. Although RCC1 has been shown to bind directly with the nucleosome, the molecular details of this interaction were not known. Here we determine the crystal structure of a complex of Drosophila RCC1 and the nucleosome core particle at 2.9 {angstrom} resolution, providing an atomic view of how a chromatin protein interacts with the histone and DNA components of the nucleosome. Our structure also suggests that the Widom 601 DNA positioning sequence present in the nucleosomes forms a 145-base-pair nucleosome core particle, not the expected canonical 147-base-pair particle.

  5. Crystal structure of the nucleosome containing ultraviolet light-induced cyclobutane pyrimidine dimer.

    Science.gov (United States)

    Horikoshi, Naoki; Tachiwana, Hiroaki; Kagawa, Wataru; Osakabe, Akihisa; Matsumoto, Syota; Iwai, Shigenori; Sugasawa, Kaoru; Kurumizaka, Hitoshi

    2016-02-26

    The cyclobutane pyrimidine dimer (CPD) is induced in genomic DNA by ultraviolet (UV) light. In mammals, this photolesion is primarily induced within nucleosomal DNA, and repaired exclusively by the nucleotide excision repair (NER) pathway. However, the mechanism by which the CPD is accommodated within the nucleosome has remained unknown. We now report the crystal structure of a nucleosome containing CPDs. In the nucleosome, the CPD induces only limited local backbone distortion, and the affected bases are accommodated within the duplex. Interestingly, one of the affected thymine bases is located within 3.0 Å from the undamaged complementary adenine base, suggesting the formation of complementary hydrogen bonds in the nucleosome. We also found that UV-DDB, which binds the CPD at the initial stage of the NER pathway, also efficiently binds to the nucleosomal CPD. These results provide important structural and biochemical information for understanding how the CPD is accommodated and recognized in chromatin.

  6. Regulation of V(D)J recombination by nucleosome positioning at recombination signal sequences.

    Science.gov (United States)

    Baumann, Matthias; Mamais, Adamantios; McBlane, Fraser; Xiao, Hua; Boyes, Joan

    2003-10-01

    A key component in the regulation of V(D)J recombination is control of the accessibility of RAG proteins to recombination signal sequences (RSS). Nucleosomes are known to inhibit this accessibility. We show here that the signal sequence itself represses accessibility by causing nucleosome positioning over the RSS. This positioning is mediated, in vitro and in vivo, by the conserved nonamer of the RSS. Consistent with this strong positioning, nucleosomes at RSSs are resistant to remodelling by nucleosome sliding. In vivo we find that consensus RSSs are preferentially protected, whereas those that lack a consensus nonamer, including some cryptic RSSs, fail to position nucleosomes. Decreased protection of these non-consensus RSSs correlates with their increased use in recombination assays. We therefore suggest that nucleosome positioning by RSSs provides a previously unanticipated level of protection and regulation of V(D)J recombination.

  7. Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E. coli

    DEFF Research Database (Denmark)

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A

    2013-01-01

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells...... acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low...

  8. Regulation of V(D)J recombination by nucleosome positioning at recombination signal sequences

    OpenAIRE

    Baumann, Matthias; Mamais, Adamantios; McBlane, Fraser; Xiao, Hua; Boyes, Joan

    2003-01-01

    A key component in the regulation of V(D)J recombination is control of the accessibility of RAG proteins to recombination signal sequences (RSS). Nucleosomes are known to inhibit this accessibility. We show here that the signal sequence itself represses accessibility by causing nucleosome positioning over the RSS. This positioning is mediated, in vitro and in vivo, by the conserved nonamer of the RSS. Consistent with this strong positioning, nucleosomes at RSSs are resistant to remodelling by...

  9. An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions.

    Science.gov (United States)

    Fan, Yanping; Korolev, Nikolay; Lyubartsev, Alexander P; Nordenskiöld, Lars

    2013-01-01

    In the eukaryotic cell nucleus, DNA exists as chromatin, a compact but dynamic complex with histone proteins. The first level of DNA organization is the linear array of nucleosome core particles (NCPs). The NCP is a well-defined complex of 147 bp DNA with an octamer of histones. Interactions between NCPs are of paramount importance for higher levels of chromatin compaction. The polyelectrolyte nature of the NCP implies that nucleosome-nucleosome interactions must exhibit a great influence from both the ionic environment as well as the positively charged and highly flexible N-terminal histone tails, protruding out from the NCP. The large size of the system precludes a modelling analysis of chromatin at an all-atom level and calls for coarse-grained approximations. Here, a model of the NCP that include the globular histone core and the flexible histone tails described by one particle per each amino acid and taking into account their net charge is proposed. DNA wrapped around the histone core was approximated at the level of two base pairs represented by one bead (bases and sugar) plus four beads of charged phosphate groups. Computer simulations, using a Langevin thermostat, in a dielectric continuum with explicit monovalent (K(+)), divalent (Mg(2+)) or trivalent (Co(NH(3))(6) (3+)) cations were performed for systems with one or ten NCPs. Increase of the counterion charge results in a switch from repulsive NCP-NCP interaction in the presence of K(+), to partial aggregation with Mg(2+) and to strong mutual attraction of all 10 NCPs in the presence of CoHex(3+). The new model reproduced experimental results and the structure of the NCP-NCP contacts is in agreement with available data. Cation screening, ion-ion correlations and tail bridging contribute to the NCP-NCP attraction and the new NCP model accounts for these interactions.

  10. An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions.

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    Full Text Available In the eukaryotic cell nucleus, DNA exists as chromatin, a compact but dynamic complex with histone proteins. The first level of DNA organization is the linear array of nucleosome core particles (NCPs. The NCP is a well-defined complex of 147 bp DNA with an octamer of histones. Interactions between NCPs are of paramount importance for higher levels of chromatin compaction. The polyelectrolyte nature of the NCP implies that nucleosome-nucleosome interactions must exhibit a great influence from both the ionic environment as well as the positively charged and highly flexible N-terminal histone tails, protruding out from the NCP. The large size of the system precludes a modelling analysis of chromatin at an all-atom level and calls for coarse-grained approximations. Here, a model of the NCP that include the globular histone core and the flexible histone tails described by one particle per each amino acid and taking into account their net charge is proposed. DNA wrapped around the histone core was approximated at the level of two base pairs represented by one bead (bases and sugar plus four beads of charged phosphate groups. Computer simulations, using a Langevin thermostat, in a dielectric continuum with explicit monovalent (K(+, divalent (Mg(2+ or trivalent (Co(NH(3(6 (3+ cations were performed for systems with one or ten NCPs. Increase of the counterion charge results in a switch from repulsive NCP-NCP interaction in the presence of K(+, to partial aggregation with Mg(2+ and to strong mutual attraction of all 10 NCPs in the presence of CoHex(3+. The new model reproduced experimental results and the structure of the NCP-NCP contacts is in agreement with available data. Cation screening, ion-ion correlations and tail bridging contribute to the NCP-NCP attraction and the new NCP model accounts for these interactions.

  11. Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene

    Science.gov (United States)

    Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.

    1994-07-01

    The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.

  12. Analysis of nucleosome positioning determined by DNA helix curvature in the human genome

    Directory of Open Access Journals (Sweden)

    Yu Shuangxin

    2011-01-01

    Full Text Available Abstract Background Nucleosome positioning has an important role in gene regulation. However, dynamic positioning in vivo casts doubt on the reliability of predictions based on DNA sequence characteristics. What role does sequence-dependent positioning play? In this paper, using a curvature profile model, nucleosomes are predicted in the human genome and patterns of nucleosomes near some key sites are investigated. Results Curvature profiling revealed that in the vicinity of a transcription start site, there is also a nucleosome-free region. Near transcription factor binding sites, curvature profiling showed a trough, indicating nucleosome depletion. The trough of the curvature profile corresponds well to the high binding scores of transcription factors. Moreover, our analysis suggests that nucleosome positioning has a selective protection role. Target sites of miRNAs are occupied by nucleosomes, while single nucleotide polymorphism sites are depleted of nucleosomes. Conclusions The results indicate that DNA sequences play an important role in nucleosome positioning, and the positioning is important not only in gene regulation, but also in genetic variation and miRNA functions.

  13. Stabilization of Nucleosomes by Histone Tails and by FACT Revealed by spFRET Microscopy.

    Science.gov (United States)

    Valieva, Maria E; Gerasimova, Nadezhda S; Kudryashova, Kseniya S; Kozlova, Anastasia L; Kirpichnikov, Mikhail P; Hu, Qi; Botuyan, Maria Victoria; Mer, Georges; Feofanov, Alexey V; Studitsky, Vasily M

    2017-01-06

    A correct chromatin structure is important for cell viability and is tightly regulated by numerous factors. Human protein complex FACT (facilitates chromatin transcription) is an essential factor involved in chromatin transcription and cancer development. Here FACT-dependent changes in the structure of single nucleosomes were studied with single-particle Förster resonance energy transfer (spFRET) microscopy using nucleosomes labeled with a donor-acceptor pair of fluorophores, which were attached to the adjacent gyres of DNA near the contact between H2A-H2B dimers. Human FACT and its version without the C-terminal domain (CTD) and the high mobility group (HMG) domain of the structure-specific recognition protein 1 (SSRP1) subunit did not change the structure of the nucleosomes, while FACT without the acidic C-terminal domains of the suppressor of Ty 16 (Spt16) and the SSRP1 subunits caused nucleosome aggregation. Proteolytic removal of histone tails significantly disturbed the nucleosome structure, inducing partial unwrapping of nucleosomal DNA. Human FACT reduced DNA unwrapping and stabilized the structure of tailless nucleosomes. CTD and/or HMG domains of SSRP1 are required for this FACT activity. In contrast, previously it has been shown that yeast FACT unfolds (reorganizes) nucleosomes using the CTD domain of SSRP1-like Pol I-binding protein 3 subunit (Pob3). Thus, yeast and human FACT complexes likely utilize the same domains for nucleosome reorganization and stabilization, respectively, and these processes are mechanistically similar.

  14. Stabilization of Nucleosomes by Histone Tails and by FACT Revealed by spFRET Microscopy

    Directory of Open Access Journals (Sweden)

    Maria E. Valieva

    2017-01-01

    Full Text Available A correct chromatin structure is important for cell viability and is tightly regulated by numerous factors. Human protein complex FACT (facilitates chromatin transcription is an essential factor involved in chromatin transcription and cancer development. Here FACT-dependent changes in the structure of single nucleosomes were studied with single-particle Förster resonance energy transfer (spFRET microscopy using nucleosomes labeled with a donor-acceptor pair of fluorophores, which were attached to the adjacent gyres of DNA near the contact between H2A-H2B dimers. Human FACT and its version without the C-terminal domain (CTD and the high mobility group (HMG domain of the structure-specific recognition protein 1 (SSRP1 subunit did not change the structure of the nucleosomes, while FACT without the acidic C-terminal domains of the suppressor of Ty 16 (Spt16 and the SSRP1 subunits caused nucleosome aggregation. Proteolytic removal of histone tails significantly disturbed the nucleosome structure, inducing partial unwrapping of nucleosomal DNA. Human FACT reduced DNA unwrapping and stabilized the structure of tailless nucleosomes. CTD and/or HMG domains of SSRP1 are required for this FACT activity. In contrast, previously it has been shown that yeast FACT unfolds (reorganizes nucleosomes using the CTD domain of SSRP1-like Pol I-binding protein 3 subunit (Pob3. Thus, yeast and human FACT complexes likely utilize the same domains for nucleosome reorganization and stabilization, respectively, and these processes are mechanistically similar.

  15. The role of histone H4 biotinylation in the structure of nucleosomes.

    Directory of Open Access Journals (Sweden)

    Nina A Filenko

    Full Text Available BACKGROUND: Post-translational modifications of histones play important roles in regulating nucleosome structure and gene transcription. It has been shown that biotinylation of histone H4 at lysine-12 in histone H4 (K12Bio-H4 is associated with repression of a number of genes. We hypothesized that biotinylation modifies the physical structure of nucleosomes, and that biotin-induced conformational changes contribute to gene silencing associated with histone biotinylation. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis we used atomic force microscopy to directly analyze structures of nucleosomes formed with biotin-modified and non-modified H4. The analysis of the AFM images revealed a 13% increase in the length of DNA wrapped around the histone core in nucleosomes with biotinylated H4. This statistically significant (p<0.001 difference between native and biotinylated nucleosomes corresponds to adding approximately 20 bp to the classical 147 bp length of nucleosomal DNA. CONCLUSIONS/SIGNIFICANCE: The increase in nucleosomal DNA length is predicted to stabilize the association of DNA with histones and therefore to prevent nucleosomes from unwrapping. This provides a mechanistic explanation for the gene silencing associated with K12Bio-H4. The proposed single-molecule AFM approach will be instrumental for studying the effects of various epigenetic modifications of nucleosomes, in addition to biotinylation.

  16. Crystal structures of heterotypic nucleosomes containing histones H2A.Z and H2A.

    Science.gov (United States)

    Horikoshi, Naoki; Arimura, Yasuhiro; Taguchi, Hiroyuki; Kurumizaka, Hitoshi

    2016-06-01

    H2A.Z is incorporated into nucleosomes located around transcription start sites and functions as an epigenetic regulator for the transcription of certain genes. During transcriptional regulation, the heterotypic H2A.Z/H2A nucleosome containing one each of H2A.Z and H2A is formed. However, previous homotypic H2A.Z nucleosome structures suggested that the L1 loop region of H2A.Z would sterically clash with the corresponding region of canonical H2A in the heterotypic nucleosome. To resolve this issue, we determined the crystal structures of heterotypic H2A.Z/H2A nucleosomes. In the H2A.Z/H2A nucleosome structure, the H2A.Z L1 loop structure was drastically altered without any structural changes of the canonical H2A L1 loop, thus avoiding the steric clash. Unexpectedly, the heterotypic H2A.Z/H2A nucleosome is more stable than the homotypic H2A.Z nucleosome. These data suggested that the flexible character of the H2A.Z L1 loop plays an essential role in forming the stable heterotypic H2A.Z/H2A nucleosome.

  17. Structure of human nucleosome containing the testis-specific histone variant TSH2B

    Energy Technology Data Exchange (ETDEWEB)

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi, E-mail: kurumizaka@waseda.jp [Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480 (Japan)

    2014-03-25

    The crystal structure of human nucleosome containing the testis-specific TSH2B variant has been determined. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, and induces a local structural difference between TSH2B and H2B in nucleosomes. The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  18. The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences.

    Science.gov (United States)

    Kensche, Philip Reiner; Hoeijmakers, Wieteke Anna Maria; Toenhake, Christa Geeke; Bras, Maaike; Chappell, Lia; Berriman, Matthew; Bártfai, Richárd

    2016-03-18

    In eukaryotes, the chromatin architecture has a pivotal role in regulating all DNA-associated processes and it is central to the control of gene expression. For Plasmodium falciparum, a causative agent of human malaria, the nucleosome positioning profile of regulatory regions deserves particular attention because of their extreme AT-content. With the aid of a highly controlled MNase-seq procedure we reveal how positioning of nucleosomes provides a structural and regulatory framework to the transcriptional unit by demarcating landmark sites (transcription/translation start and end sites). In addition, our analysis provides strong indications for the function of positioned nucleosomes in splice site recognition. Transcription start sites (TSSs) are bordered by a small nucleosome-depleted region, but lack the stereotypic downstream nucleosome arrays, highlighting a key difference in chromatin organization compared to model organisms. Furthermore, we observe transcription-coupled eviction of nucleosomes on strong TSSs during intraerythrocytic development and demonstrate that nucleosome positioning and dynamics can be predictive for the functionality of regulatory DNA elements. Collectively, the strong nucleosome positioning over splice sites and surrounding putative transcription factor binding sites highlights the regulatory capacity of the nucleosome landscape in this deadly human pathogen.

  19. DNA-guided establishment of nucleosome patterns within coding regions of a eukaryotic genome.

    Science.gov (United States)

    Beh, Leslie Y; Müller, Manuel M; Muir, Tom W; Kaplan, Noam; Landweber, Laura F

    2015-11-01

    A conserved hallmark of eukaryotic chromatin architecture is the distinctive array of well-positioned nucleosomes downstream from transcription start sites (TSS). Recent studies indicate that trans-acting factors establish this stereotypical array. Here, we present the first genome-wide in vitro and in vivo nucleosome maps for the ciliate Tetrahymena thermophila. In contrast with previous studies in yeast, we find that the stereotypical nucleosome array is preserved in the in vitro reconstituted map, which is governed only by the DNA sequence preferences of nucleosomes. Remarkably, this average in vitro pattern arises from the presence of subsets of nucleosomes, rather than the whole array, in individual Tetrahymena genes. Variation in GC content contributes to the positioning of these sequence-directed nucleosomes and affects codon usage and amino acid composition in genes. Given that the AT-rich Tetrahymena genome is intrinsically unfavorable for nucleosome formation, we propose that these "seed" nucleosomes--together with trans-acting factors--may facilitate the establishment of nucleosome arrays within genes in vivo, while minimizing changes to the underlying coding sequences.

  20. Cracking the chromatin code: Precise rule of nucleosome positioning

    Science.gov (United States)

    Trifonov, Edward N.

    2011-03-01

    Various aspects of packaging DNA in eukaryotic cells are outlined in physical rather than biological terms. The informational and physical nature of packaging instructions encoded in DNA sequences is discussed with the emphasis on signal processing difficulties - very low signal-to-noise ratio and high degeneracy of the nucleosome positioning signal. As the author has been contributing to the field from its very onset in 1980, the review is mostly focused at the works of the author and his colleagues. The leading concept of the overview is the role of deformational properties of DNA in the nucleosome positioning. The target of the studies is to derive the DNA bendability matrix describing where along the DNA various dinucleotide elements should be positioned, to facilitate its bending in the nucleosome. Three different approaches are described leading to derivation of the DNA deformability sequence pattern, which is a simplified linear presentation of the bendability matrix. All three approaches converge to the same unique sequence motif CGRAAATTTYCG or, in binary form, YRRRRRYYYYYR, both representing the chromatin code.

  1. Assessing the efficacy of melatonin to curtail benzodiazepine/Z drug abuse.

    Science.gov (United States)

    Cardinali, Daniel P; Golombek, Diego A; Rosenstein, Ruth E; Brusco, Luis I; Vigo, Daniel E

    2016-07-01

    The abuse of benzodiazepine (BZP) and Z drugs has become, due to the tolerance and dependence they produce, a serious public health problem. Thirty years ago, we demonstrated in experimental animals the interaction of melatonin with central BZD receptors, and in 1997 we published the first series of elderly patients who reduced BZP consumption after melatonin treatment. Almost every single neuron in the hypothalamic suprachiasmatic nuclei (SCN), the central pacemaker of the circadian system, contains γ-aminobutyric acid (GABA) and many results in animals point out to a melatonin interaction with GABA-containing neurons. In addition, central-type BZD antagonism, that obliterates GABAA receptor function, blunted most behavioral effects of melatonin including sleep. Melatonin is involved in the regulation of human sleep. This is supported by the temporal relationship between the rise of plasma melatonin levels and sleep propensity as well as by the sleep-promoting effects of exogenously administered melatonin. Both meta-analyses and consensus agreements give support to the therapeutic use of melatonin in sleep disorders. This action is attributed to MT1 and MT2 melatoninergic receptors localized in the SCN, as well as in other brain areas. This review discusses available data on the efficacy of melatonin to curtail chronic BZD/Z drug use in insomnia patients. A major advantage is that melatonin has a very safe profile, it is usually remarkably well tolerated and, in some studies, it has been administered to patients at very large doses and for long periods of time, without any potentiality of abuse. Further studies on this application of melatonin are warranted.

  2. Changes in Insulin Secretion and Action in Adults With Familial Risk for Type 2 Diabetes Who Curtail Their Sleep

    OpenAIRE

    Darukhanavala, Amy; Booth, John N.; Bromley, Lindsay; Whitmore, Harry; Imperial, Jacqueline; Penev, Plamen D.

    2011-01-01

    OBJECTIVE Experimental sleep deprivation is accompanied by changes in glucose regulation. However, the effects of chronic sleep insufficiency on insulin secretion and action in populations at high risk for type 2 diabetes are not known. This study examined the relationship between objectively documented habitual sleep curtailment and measures of insulin sensitivity, insulin secretion, and oral glucose tolerance in free-living adults with parental history of type 2 diabetes. RESEARCH DESIGN AN...

  3. Swelling of acetylated wood in organic liquids

    CERN Document Server

    Obataya, E; Obataya, Eiichi; Gril, Joseph

    2005-01-01

    To investigate the affinity of acetylated wood for organic liquids, Yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and/or very slowly. On the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. Consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. The effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.

  4. Flow properties of acetylated chickpea protein dispersions.

    Science.gov (United States)

    Liu, Li H; Hung, Tran V

    2010-06-01

    Chickpea protein concentrate was acetylated with acetic anhydride at 5 levels. Acetylated chickpea protein (ACP) dispersions at 3 levels (6%, 45%, and 49%) were chosen for this flow property study. Effects of protein concentration, temperature, concentrations of salt addition and particularly, degree of acetylation on these properties were examined. Compared with native chickpea proteins, the ACP dispersions exhibited a strong shear thinning behavior. Within measured temperature range (15 to 55 degrees C), the apparent viscosities of native chickpea protein dispersions were temperature independent; those of ACP dispersions were thermally affected. The flow index (n), consistency coefficient (m), apparent yield stress, and apparent viscosities of ACP dispersions increased progressively up to 45% acetylation but decreased at 49% acetylation level. Conformational studies by gel filtration suggested that chickpea proteins were associated or polymerized at up to 45% acetylation but the associated subunits gradually dissociated to smaller units at higher levels (49%) of acetylation.

  5. Nucleosome positioning and kinetics near transcription-start-site barriers are controlled by interplay between active remodeling and DNA sequence.

    Science.gov (United States)

    Parmar, Jyotsana J; Marko, John F; Padinhateeri, Ranjith

    2014-01-01

    We investigate how DNA sequence, ATP-dependent chromatin remodeling and nucleosome-depleted 'barriers' co-operate to determine the kinetics of nucleosome organization, in a stochastic model of nucleosome positioning and dynamics. We find that 'statistical' positioning of nucleosomes against 'barriers', hypothesized to control chromatin structure near transcription start sites, requires active remodeling and therefore cannot be described using equilibrium statistical mechanics. We show that, unlike steady-state occupancy, DNA site exposure kinetics near a barrier is dominated by DNA sequence rather than by proximity to the barrier itself. The timescale for formation of positioning patterns near barriers is proportional to the timescale for active nucleosome eviction. We also show that there are strong gene-to-gene variations in nucleosome positioning near barriers, which are eliminated by averaging over many genes. Our results suggest that measurement of nucleosome kinetics can reveal information about sequence-dependent regulation that is not apparent in steady-state nucleosome occupancy.

  6. Distinct features of the histone core structure in nucleosomes containing the histone H2A.B variant

    National Research Council Canada - National Science Library

    Sugiyama, Masaaki; Arimura, Yasuhiro; Shirayama, Kazuyoshi; Fujita, Risa; Oba, Yojiro; Sato, Nobuhiro; Inoue, Rintaro; Oda, Takashi; Sato, Mamoru; Heenan, Richard K; Kurumizaka, Hitoshi

    2014-01-01

    .... Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent...

  7. Determinants of nucleosome positioning and their influence on plant gene expression.

    Science.gov (United States)

    Liu, Ming-Jung; Seddon, Alexander E; Tsai, Zing Tsung-Yeh; Major, Ian T; Floer, Monique; Howe, Gregg A; Shiu, Shin-Han

    2015-08-01

    Nucleosome positioning influences the access of transcription factors (TFs) to their binding sites and gene expression. Studies in plant, animal, and fungal models demonstrate similar nucleosome positioning patterns along genes and correlations between occupancy and expression. However, the relationships among nucleosome positioning, cis-regulatory element accessibility, and gene expression in plants remain undefined. Here we showed that plant nucleosome depletion occurs on specific 6-mer motifs and this sequence-specific nucleosome depletion is predictive of expression levels. Nucleosome-depleted regions in Arabidopsis thaliana tend to have higher G/C content, unlike yeast, and are centered on specific G/C-rich 6-mers, suggesting that intrinsic sequence properties, such as G/C content, cannot fully explain plant nucleosome positioning. These 6-mer motif sites showed higher DNase I hypersensitivity and are flanked by strongly phased nucleosomes, consistent with known TF binding sites. Intriguingly, this 6-mer-specific nucleosome depletion pattern occurs not only in promoter but also in genic regions and is significantly correlated with higher gene expression level, a phenomenon also found in rice but not in yeast. Among the 6-mer motifs enriched in genes responsive to treatment with the defense hormone jasmonate, there are no significant changes in nucleosome occupancy, suggesting that these sites are potentially preconditioned to enable rapid response without changing chromatin state significantly. Our study provides a global assessment of the joint contribution of nucleosome occupancy and motif sequences that are likely cis-elements to the control of gene expression in plants. Our findings pave the way for further understanding the impact of chromatin state on plant transcriptional regulatory circuits.

  8. Stable complex formation of CENP-B with the CENP-A nucleosome.

    Science.gov (United States)

    Fujita, Risa; Otake, Koichiro; Arimura, Yasuhiro; Horikoshi, Naoki; Miya, Yuta; Shiga, Tatsuya; Osakabe, Akihisa; Tachiwana, Hiroaki; Ohzeki, Jun-ichirou; Larionov, Vladimir; Masumoto, Hiroshi; Kurumizaka, Hitoshi

    2015-05-26

    CENP-A and CENP-B are major components of centromeric chromatin. CENP-A is the histone H3 variant, which forms the centromere-specific nucleosome. CENP-B specifically binds to the CENP-B box DNA sequence on the centromere-specific repetitive DNA. In the present study, we found that the CENP-A nucleosome more stably retains human CENP-B than the H3.1 nucleosome in vitro. Specifically, CENP-B forms a stable complex with the CENP-A nucleosome, when the CENP-B box sequence is located at the proximal edge of the nucleosome. Surprisingly, the CENP-B binding was weaker when the CENP-B box sequence was located in the distal linker region of the nucleosome. This difference in CENP-B binding, depending on the CENP-B box location, was not observed with the H3.1 nucleosome. Consistently, we found that the DNA-binding domain of CENP-B specifically interacted with the CENP-A-H4 complex, but not with the H3.1-H4 complex, in vitro. These results suggested that CENP-B forms a more stable complex with the CENP-A nucleosome through specific interactions with CENP-A, if the CENP-B box is located proximal to the CENP-A nucleosome. Our in vivo assay also revealed that CENP-B binding in the vicinity of the CENP-A nucleosome substantially stabilizes the CENP-A nucleosome on alphoid DNA in human cells.

  9. Reactivity in ELISA with DNA-loaded nucleosomes in patients with proliferative lupus nephritis.

    Science.gov (United States)

    Dieker, Jürgen; Schlumberger, Wolfgang; McHugh, Neil; Hamann, Philip; van der Vlag, Johan; Berden, Jo H

    2015-11-01

    Autoantibodies against nucleosomes are considered a hallmark of systemic lupus erythematosus (SLE). We compared in patients with proliferative lupus nephritis the diagnostic usefulness of a dsDNA-loaded nucleosome ELISA (anti-dsDNA-NcX) with ELISAs in which dsDNA or nucleosomes alone were coated. First, we analysed whether DNA loading on nucleosomes led to masking of epitopes by using defined monoclonal anti-DNA, anti-histone and nucleosome-specific autoantibodies to evaluate the accessibility of nucleosomal epitopes in the anti-dsDNA-NcX ELISA. Second, autoantibody levels were measured in these 3 ELISAs in 100 patients with proliferative lupus nephritis (LN) before immunosuppressive treatment and in 128 non-SLE disease controls. In patients with LN inter-assay comparisons and associations with clinical and serological parameters were analysed. The panel of monoclonal antibodies revealed that all epitopes were equally accessible in the anti-dsDNA-NcX ELISA as in the two other ELISAs. Patients with proliferative lupus nephritis were positive with dsDNA-loaded nucleosomes in 86%, with DNA in 66% and with nucleosomes in 85%. In the non-lupus disease control group these frequencies were 1.6% (2 out of 128) for both the anti-dsDNA-NcX and the anti-dsDNA ELISA and 0% in the anti-nucleosome ELISA. The levels in the anti-dsDNA-NcX ELISA were high in a group of patients with LN that showed absent reactivity in the anti-DNA or low levels in the anti-nucleosome ELISA. Anti-dsDNA-NcX positivity was associated with higher SLEDAI scores within this group. Within nucleosome-based ELISAs, we propose the anti-dsDNA-NcX ELISA as the preferred test system.

  10. The Limitations of Reductive Wealth Redistribution Strategies for Curtailing Inequality in the Era of Global Capitalism

    Directory of Open Access Journals (Sweden)

    Matthew PFLAUM

    2015-09-01

    Full Text Available  Abstract. Poverty and inequality are in all likelihood the most pernicious problems in contemporary life. They contribute greatly to a wide and diverse range of suffering, injustice, and social ills. They have existed since the incipient forms of society emerged, and have plagued nearly every society. They have provoked criticism and resistance across millennia and geographic regions, and were inciting factors for many revolutions and social movements. There is evidence that inequality is rising globally, with economic growth and global capitalism as the primary culprits. Marx’s theory of infinite accumulation and Ricardo’s scarcity principle relate inherent structural qualities of wealth in capitalism to inequality and divergence in income and wealth. Abundant evidence shows that inequality will continue to increase unless there are political and economic measures to oppose it, and that inequality has increased since industrialization. The aims of these strategies is to promote income convergence, usually via reforms to taxes, redistribution, or minimum wage. Two of the most prominent proposals to curtail inequality are Piketty’s global tax rate and Standing’s basic income. However, neither sufficiently accounts for structural limitations in capitalism, such as those described by Marx and Ricardo, as well as Piketty’s study of greater growth rate of capital over income (r>g and free market ideology. They fundamentally rely upon reductive redistribution and particularly money and income, which do not necessarily contribute to parity in wealth. In structural Marxism, inequality is created and perpetuated by the structural base and super-structure, and both must be somehow reformed or altered to achieve lasting and significant equality. In this paper, I approach inequality with this in mind, and propose a form of paternalism as a means of ensuring wealth redistribution achieves lasting equality.. Keywords. Inequality, Income

  11. Modulations of DNA Contacts by Linker Histones and Post-translational Modifications Determine the Mobility and Modifiability of Nucleosomal H3 Tails.

    Science.gov (United States)

    Stützer, Alexandra; Liokatis, Stamatios; Kiesel, Anja; Schwarzer, Dirk; Sprangers, Remco; Söding, Johannes; Selenko, Philipp; Fischle, Wolfgang

    2016-01-21

    Post-translational histone modifications and linker histone incorporation regulate chromatin structure and genome activity. How these systems interface on a molecular level is unclear. Using biochemistry and NMR spectroscopy, we deduced mechanistic insights into the modification behavior of N-terminal histone H3 tails in different nucleosomal contexts. We find that linker histones generally inhibit modifications of different H3 sites and reduce H3 tail dynamics in nucleosomes. These effects are caused by modulations of electrostatic interactions of H3 tails with linker DNA and largely depend on the C-terminal domains of linker histones. In agreement, linker histone occupancy and H3 tail modifications segregate on a genome-wide level. Charge-modulating modifications such as phosphorylation and acetylation weaken transient H3 tail-linker DNA interactions, increase H3 tail dynamics, and, concomitantly, enhance general modifiability. We propose that alterations of H3 tail-linker DNA interactions by linker histones and charge-modulating modifications execute basal control mechanisms of chromatin function. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa

    NARCIS (Netherlands)

    Erkek, S.; Hisano, M.; Liang, C.Y.; Gill, M.; Murr, R.; Dieker, J.W.C.; Schubeler, D.; Vlag, J. van der; Stadler, M.B.; Peters, A.H.

    2013-01-01

    In mammalian spermatozoa, most but not all of the genome is densely packaged by protamines. Here we reveal the molecular logic underlying the retention of nucleosomes in mouse spermatozoa, which contain only 1% residual histones. We observe high enrichment throughout the genome of nucleosomes at CpG

  13. Differential Nucleosome Occupancies across Oct4-Sox2 Binding Sites in Murine Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Amy Sebeson

    Full Text Available The binding sequence for any transcription factor can be found millions of times within a genome, yet only a small fraction of these sequences encode functional transcription factor binding sites. One of the reasons for this dichotomy is that many other factors, such as nucleosomes, compete for binding. To study how the competition between nucleosomes and transcription factors helps determine a functional transcription factor site from a predicted transcription factor site, we compared experimentally-generated in vitro nucleosome occupancy with in vivo nucleosome occupancy and transcription factor binding in murine embryonic stem cells. Using a solution hybridization enrichment technique, we generated a high-resolution nucleosome map from targeted regions of the genome containing predicted sites and functional sites of Oct4/Sox2 regulation. We found that at Pax6 and Nes, which are bivalently poised in stem cells, functional Oct4 and Sox2 sites show high amounts of in vivo nucleosome displacement compared to in vitro. Oct4 and Sox2, which are active, show no significant displacement of in vivo nucleosomes at functional sites, similar to nonfunctional Oct4/Sox2 binding. This study highlights a complex interplay between Oct4 and Sox2 transcription factors and nucleosomes among different target genes, which may result in distinct patterns of stem cell gene regulation.

  14. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.

    Science.gov (United States)

    Cole, Hope A; Cui, Feng; Ocampo, Josefina; Burke, Tara L; Nikitina, Tatiana; Nagarajavel, V; Kotomura, Naoe; Zhurkin, Victor B; Clark, David J

    2016-01-29

    Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these 'proto-chromatosomes' are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.

  15. The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome

    Science.gov (United States)

    Crickard, John B.; Lee, Jaehyoun; Lee, Tae-Hee

    2017-01-01

    Abstract RNA polymerase II (RNAPII) passes through the nucleosome in a coordinated manner, generating several intermediate nucleosomal states as it breaks and then reforms histone–DNA contacts ahead of and behind it, respectively. Several studies have defined transcription-induced nucleosome intermediates using only RNA Polymerase. However, RNAPII is decorated with elongation factors as it transcribes the genome. One such factor, Spt4/5, becomes an integral component of the elongation complex, making direct contact with the ‘jaws’ of RNAPII and nucleic acids in the transcription scaffold. We have characterized the effect of incorporating Spt4/5 into the elongation complex on transcription through the 601R nucleosome. Spt4/5 suppressed RNAPII pausing at the major H3/H4-induced arrest point, resulting in downstream re-positioning of RNAPII further into the nucleosome. Using a novel single molecule FRET system, we found that Spt4/5 affected the kinetics of DNA re-wrapping and stabilized a nucleosomal intermediate with partially unwrapped DNA behind RNAPII. Comparison of nucleosomes of different sequence polarities suggest that the strength of the DNA–histone interactions behind RNAPII specifies the Spt4/5 requirement. We propose that Spt4/5 may be important to coordinate the mechanical movement of RNAPII through the nucleosome with co-transcriptional chromatin modifications during transcription, which is affected by the strength of histone–DNA interactions. PMID:28379497

  16. Effects of Alu elements on global nucleosome positioning in the human genome

    Directory of Open Access Journals (Sweden)

    Yamashita Riu

    2010-05-01

    Full Text Available Abstract Background Understanding the genome sequence-specific positioning of nucleosomes is essential to understand various cellular processes, such as transcriptional regulation and replication. As a typical example, the 10-bp periodicity of AA/TT and GC dinucleotides has been reported in several species, but it is still unclear whether this feature can be observed in the whole genomes of all eukaryotes. Results With Fourier analysis, we found that this is not the case: 84-bp and 167-bp periodicities are prevalent in primates. The 167-bp periodicity is intriguing because it is almost equal to the sum of the lengths of a nucleosomal unit and its linker region. After masking Alu elements, these periodicities were greatly diminished. Next, using two independent large-scale sets of nucleosome mapping data, we analyzed the distribution of nucleosomes in the vicinity of Alu elements and showed that (1 there are one or two fixed slot(s for nucleosome positioning within the Alu element and (2 the positioning of neighboring nucleosomes seems to be in phase, more or less, with the presence of Alu elements. Furthermore, (3 these effects of Alu elements on nucleosome positioning are consistent with inactivation of promoter activity in Alu elements. Conclusions Our discoveries suggest that the principle governing nucleosome positioning differs greatly across species and that the Alu family is an important factor in primate genomes.

  17. The Arabidopsis Adh gene exhibits diverse nucleosome arrangements within a small DNase I-sensitive domain.

    Science.gov (United States)

    Vega-Palas, M A; Ferl, R J

    1995-01-01

    The alcohol dehydrogenase (Adh) gene from Arabidopsis shows enhanced sensitivity to DNase I in cells that express the gene. This generalized sensitivity to DNase I is demarcated by position -500 on the 5' side and the end of the mRNA on the 3' side. Thus, the gene defined as the promoter and mRNA coding region corresponds very closely in size with the gene defined as a nuclease-sensitive domain. This is a remarkably close correspondence between a sensitive domain and a eukaryotic transcriptional unit, because previously reported DNase I-sensitive domains include large regions of DNA that are not transcribed. Nucleosomes are present in the coding region of the Adh gene when it is expressed, indicating that the transcriptional elongation process causes nucleosome disruption rather than release of nucleosomes from the coding region. In addition, the regulatory region contains a loosely positioned nucleosome that is separated from adjacent nucleosomes by internucleosomic DNA segments longer than the average linker DNA in bulk chromatin. This specific array of nucleosomes coexists with bound transcription factors that could contribute to the organization of the nucleosome arrangement. These results enhance our understanding of the complex interactions among DNA, nucleosomes, and transcription factors during gene expression in plants. PMID:8535143

  18. Strategies for crystallizing a chromatin protein in complex with the nucleosome core particle.

    Science.gov (United States)

    Makde, Ravindra D; Tan, Song

    2013-11-15

    The molecular details of how chromatin factors and enzymes interact with the nucleosome are critical to understanding fundamental genetic processes including cell division and gene regulation. A structural understanding of such processes has been hindered by the difficulty in producing diffraction-quality crystals of chromatin proteins in complex with the nucleosome. We describe here the steps used to grow crystals of the 300-kDa RCC1 chromatin factor/nucleosome core particle complex that diffract to 2.9-Å resolution. These steps include both pre- and postcrystallization strategies potentially useful to other complexes. We screened multiple variant RCC1/nucleosome core particle complexes assembled using different RCC1 homologs and deletion variants, and nucleosomes containing nucleosomal DNA with different sequences and lengths, as well as histone deletion variants. We found that using RCC1 from different species produced different crystal forms of the RCC1/nucleosome complex consistent with key crystal packing interactions mediated by RCC1. Optimization of postcrystallization soaks to dehydrate the crystals dramatically improved the diffraction quality of the RCC1/nucleosome crystal from 5.0- to 2.9-Å resolution. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

    Science.gov (United States)

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Bou Dargham, Daria; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B Franklin; Gérard, Matthieu

    2016-02-01

    ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.

  20. Nanopores suggest a negligible influence of CpG methylation on nucleosome packaging and stability.

    Science.gov (United States)

    Langecker, Martin; Ivankin, Andrey; Carson, Spencer; Kinney, Shannon R M; Simmel, Friedrich C; Wanunu, Meni

    2015-01-14

    Nucleosomes are the fundamental repeating units of chromatin, and dynamic regulation of their positioning along DNA governs gene accessibility in eukaryotes. Although epigenetic factors have been shown to influence nucleosome structure and dynamics, the impact of DNA methylation on nucleosome packaging remains controversial. Further, all measurements to date have been carried out under zero-force conditions. In this paper, we present the first automated force measurements that probe the impact of CpG DNA methylation on nucleosome stability. In solid-state nanopore force spectroscopy, a nucleosomal DNA tail is captured into a pore and pulled on with a time-varying electrophoretic force until unraveling is detected. This is automatically repeated for hundreds of nucleosomes, yielding statistics of nucleosome lifetime vs electrophoretic force. The force geometry, which is similar to displacement forces exerted by DNA polymerases and helicases, reveals that nucleosome stability is sensitive to DNA sequence yet insensitive to CpG methylation. Our label-free method provides high-throughput data that favorably compares with other force spectroscopy experiments and is suitable for studying a variety of DNA-protein complexes.

  1. The impact of the HIRA histone chaperone upon global nucleosome architecture.

    Science.gov (United States)

    Gal, Csenge; Moore, Karen M; Paszkiewicz, Konrad; Kent, Nicholas A; Whitehall, Simon K

    2015-01-01

    HIRA is an evolutionarily conserved histone chaperone that mediates replication-independent nucleosome assembly and is important for a variety of processes such as cell cycle progression, development, and senescence. Here we have used a chromatin sequencing approach to determine the genome-wide contribution of HIRA to nucleosome organization in Schizosaccharomyces pombe. Cells lacking HIRA experience a global reduction in nucleosome occupancy at gene sequences, consistent with the proposed role for HIRA in chromatin reassembly behind elongating RNA polymerase II. In addition, we find that at its target promoters, HIRA commonly maintains the full occupancy of the -1 nucleosome. HIRA does not affect global chromatin structure at replication origins or in rDNA repeats but is required for nucleosome occupancy in silent regions of the genome. Nucleosome organization associated with the heterochromatic (dg-dh) repeats located at the centromere is perturbed by loss of HIRA function and furthermore HIRA is required for normal nucleosome occupancy at Tf2 LTR retrotransposons. Overall, our data indicate that HIRA plays an important role in maintaining nucleosome architecture at both euchromatic and heterochromatic loci.

  2. Multivalent Interactions by the Set8 Histone Methyltransferase With Its Nucleosome Substrate.

    Science.gov (United States)

    Girish, Taverekere S; McGinty, Robert K; Tan, Song

    2016-04-24

    Set8 is the only mammalian monomethyltransferase responsible for H4K20me1, a methyl mark critical for genomic integrity of eukaryotic cells. We present here a structural model for how Set8 uses multivalent interactions to bind and methylate the nucleosome based on crystallographic and solution studies of the Set8/nucleosome complex. Our studies indicate that Set8 employs its i-SET and c-SET domains to engage nucleosomal DNA 1 to 1.5 turns from the nucleosomal dyad and in doing so, it positions the SET domain for catalysis with H4 Lys20. Surprisingly, we find that a basic N-terminal extension to the SET domain plays an even more prominent role in nucleosome binding, possibly by making an arginine anchor interaction with the nucleosome H2A/H2B acidic patch. We further show that proliferating cell nuclear antigen and the nucleosome compete for binding to Set8 through this basic extension, suggesting a mechanism for how nucleosome binding protects Set8 from proliferating cell nuclear antigen-dependent degradation during the cell cycle.

  3. Differential Nucleosome Occupancies across Oct4-Sox2 Binding Sites in Murine Embryonic Stem Cells.

    Science.gov (United States)

    Sebeson, Amy; Xi, Liqun; Zhang, Quanwei; Sigmund, Audrey; Wang, Ji-Ping; Widom, Jonathan; Wang, Xiaozhong

    2015-01-01

    The binding sequence for any transcription factor can be found millions of times within a genome, yet only a small fraction of these sequences encode functional transcription factor binding sites. One of the reasons for this dichotomy is that many other factors, such as nucleosomes, compete for binding. To study how the competition between nucleosomes and transcription factors helps determine a functional transcription factor site from a predicted transcription factor site, we compared experimentally-generated in vitro nucleosome occupancy with in vivo nucleosome occupancy and transcription factor binding in murine embryonic stem cells. Using a solution hybridization enrichment technique, we generated a high-resolution nucleosome map from targeted regions of the genome containing predicted sites and functional sites of Oct4/Sox2 regulation. We found that at Pax6 and Nes, which are bivalently poised in stem cells, functional Oct4 and Sox2 sites show high amounts of in vivo nucleosome displacement compared to in vitro. Oct4 and Sox2, which are active, show no significant displacement of in vivo nucleosomes at functional sites, similar to nonfunctional Oct4/Sox2 binding. This study highlights a complex interplay between Oct4 and Sox2 transcription factors and nucleosomes among different target genes, which may result in distinct patterns of stem cell gene regulation.

  4. Asymmetric breathing motions of nucleosomal DNA and the role of histone tails

    Science.gov (United States)

    Chakraborty, Kaushik; Loverde, Sharon M.

    2017-08-01

    The most important packing unit of DNA in the eukaryotic cell is the nucleosome. It undergoes large-scale structural re-arrangements during different cell cycles. For example, the disassembly of the nucleosome is one of the key steps for DNA replication, whereas reassembly occurs after replication. Thus, conformational dynamics of the nucleosome is crucial for different DNA metabolic processes. We perform three different sets of atomistic molecular dynamics simulations of the nucleosome core particle at varying degrees of salt conditions for a total of 0.7 μs simulation time. We find that the conformational dynamics of the nucleosomal DNA tails are oppositely correlated from each other during the initial breathing motions. Furthermore, the strength of the interaction of the nucleosomal DNA tail with the neighboring H2A histone tail modulates the conformational state of the nucleosomal DNA tail. With increasing salt concentration, the degree of asymmetry in the conformation of the nucleosomal DNA tails decreases as both tails tend to unwrap. This direct correlation between the asymmetric breathing motions of the DNA tails and the H2A histone tails, and its decrease at higher salt concentrations, may play a significant role in the molecular pathway of unwrapping.

  5. Dynamic Nucleosome Movement Provides Structural Information of Topological Chromatin Domains in Living Human Cells

    Science.gov (United States)

    Shinkai, Soya; Nozaki, Tadasu; Maeshima, Kazuhiro

    2016-01-01

    The mammalian genome is organized into submegabase-sized chromatin domains (CDs) including topologically associating domains, which have been identified using chromosome conformation capture-based methods. Single-nucleosome imaging in living mammalian cells has revealed subdiffusively dynamic nucleosome movement. It is unclear how single nucleosomes within CDs fluctuate and how the CD structure reflects the nucleosome movement. Here, we present a polymer model wherein CDs are characterized by fractal dimensions and the nucleosome fibers fluctuate in a viscoelastic medium with memory. We analytically show that the mean-squared displacement (MSD) of nucleosome fluctuations within CDs is subdiffusive. The diffusion coefficient and the subdiffusive exponent depend on the structural information of CDs. This analytical result enabled us to extract information from the single-nucleosome imaging data for HeLa cells. Our observation that the MSD is lower at the nuclear periphery region than the interior region indicates that CDs in the heterochromatin-rich nuclear periphery region are more compact than those in the euchromatin-rich interior region with respect to the fractal dimensions as well as the size. Finally, we evaluated that the average size of CDs is in the range of 100–500 nm and that the relaxation time of nucleosome movement within CDs is a few seconds. Our results provide physical and dynamic insights into the genome architecture in living cells. PMID:27764097

  6. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

    Science.gov (United States)

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Dargham, Daria Bou; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P.; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B. Franklin; Gérard, Matthieu

    2015-01-01

    Summary ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers1–3 target specific nucleosomes to regulate transcription is unclear. Here, we present genome-wide remodeller-nucleosome interaction profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank MNase-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites (TSSs) are nevertheless chromatinized with non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and modifications (H3K4me3 and H3K27ac). RNA polymerase (pol) II therefore navigates hundreds of bp of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers play either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs. PMID:26814966

  7. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions.

    Science.gov (United States)

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas; Zechner, Rudolf; Choudhary, Chunaram

    2015-11-03

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues.

  8. Occurrence of naturally acetylated lignin units.

    Science.gov (United States)

    Del Río, José C; Marques, Gisela; Rencoret, Jorge; Martínez, Angel T; Gutiérrez, Ana

    2007-07-11

    This work examines the occurrence of native acetylated lignin in a large set of vascular plants, including both angiosperms and gymnosperms, by a modification of the so-called Derivatization Followed by Reductive Cleavage (DFRC) method. Acetylated lignin units were found in the milled wood lignins of all angiosperms selected for this study, including mono- and eudicotyledons, but were absent in the gymnosperms analyzed. In some plants (e.g., abaca, sisal, kenaf, or hornbeam), lignin acetylation occurred at a very high extent, exceeding 45% of the uncondensed (alkyl-aryl ether linked) syringyl lignin units. Acetylation was observed exclusively at the gamma-carbon of the lignin side chain and predominantly on syringyl units, although a predominance of acetylated guaiacyl over syringyl units was observed in some plants. In all cases, acetylation appears to occur at the monomer stage, and sinapyl and coniferyl acetates seem to behave as real lignin monomers participating in lignification.

  9. Stimulation of the Drosophila immune system alters genome-wide nucleosome occupancy

    Directory of Open Access Journals (Sweden)

    Yingxue Ren

    2015-03-01

    Full Text Available In eukaryotes, nucleosomes participate in all DNA-templated events by regulating access to the underlying DNA sequence. However, nucleosome dynamics during a genome response have not been well characterized [1,2]. We stimulated Drosophila S2 cells with heat-killed Gram-negative bacteria Salmonella typhimurium, and mapped genome-wide nucleosome occupancy at high temporal resolution by MNase-seq using Illumina HiSeq 2500. We show widespread nucleosome occupancy change in S2 cells during the immune response, with the significant nucleosomal loss occurring at 4 h after stimulation. Data have been deposited to the Gene Expression Omnibus (GEO database repository with the dataset identifier GSE64507.

  10. RSC remodeling of oligo-nucleosomes: an atomic force microscopy study

    CERN Document Server

    Montel, Fabien; Menoni, Hervé; Angelov, Dimitar; Dimitrov, Stéfan; Faivre-Moskalenko, Cendrine

    2010-01-01

    RSC is an essential chromatin remodeling factor that is required for the control of several processes including transcription, repair and replication. The ability of RSC to relocate centrally positioned mononucleosomes at the end of nucleosomal DNA is firmly established, but the data on RSC action on oligo-nucleosomal templates remains still scarce. By using Atomic Force Microscopy (AFM) imaging, we have quantitatively studied the RSC- induced mobilization of positioned di- and trinucleosomes as well as the directionality of mobilization on mononucleosomal template labeled at one end with streptavidin. AFM imaging showed only a limited set of distinct configurational states for the remodeling products. No stepwise or preferred directionality of the nucleosome motion was observed. Analysis of the corresponding reaction pathways allows deciphering the mechanistic features of RSC-induced nucleosome relocation. The final outcome of RSC remodeling of oligosome templates is the packing of the nucleosomes at the edg...

  11. Electrostatic effect of H1-histone protein binding on nucleosome repeat length

    Science.gov (United States)

    Cherstvy, Andrey G.; Teif, Vladimir B.

    2014-08-01

    Within a simple biophysical model we describe the effect of electrostatic binding of H1 histone proteins on the nucleosome repeat length in chromatin. The length of wrapped DNA optimizes its binding energy to the histone core and the elastic energy penalty of DNA wrapping. The magnitude of the effect predicted from our model is in agreement with the systematic experimental data on the linear variation of nucleosome repeat lengths with H1/nucleosome ratio (Woodcock C L et al 2006 Chromos. Res. 14 17-25). We compare our model to the data for different cell types and organisms, with a widely varying ratio of bound H1 histones per nucleosome. We underline the importance of this non-specific histone-DNA charge-balance mechanism in regulating the positioning of nucleosomes and the degree of compaction of chromatin fibers in eukaryotic cells.

  12. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere.

    Science.gov (United States)

    Falk, Samantha J; Guo, Lucie Y; Sekulic, Nikolina; Smoak, Evan M; Mani, Tomoyasu; Logsdon, Glennis A; Gupta, Kushol; Jansen, Lars E T; Van Duyne, Gregory D; Vinogradov, Sergei A; Lampson, Michael A; Black, Ben E

    2015-05-01

    Inheritance of each chromosome depends upon its centromere. A histone H3 variant, centromere protein A (CENP-A), is essential for epigenetically marking centromere location. We find that CENP-A is quantitatively retained at the centromere upon which it is initially assembled. CENP-C binds to CENP-A nucleosomes and is a prime candidate to stabilize centromeric chromatin. Using purified components, we find that CENP-C reshapes the octameric histone core of CENP-A nucleosomes, rigidifies both surface and internal nucleosome structure, and modulates terminal DNA to match the loose wrap that is found on native CENP-A nucleosomes at functional human centromeres. Thus, CENP-C affects nucleosome shape and dynamics in a manner analogous to allosteric regulation of enzymes. CENP-C depletion leads to rapid removal of CENP-A from centromeres, indicating their collaboration in maintaining centromere identity.

  13. Nucleosome loss facilitates the chemotactic response of macrophages.

    Science.gov (United States)

    De Toma, I; Rossetti, G; Zambrano, S; Bianchi, M E; Agresti, A

    2014-11-01

    High mobility group box 1 (HMGB1) is a small nuclear protein with two functions. In the nucleus, it helps to wrap DNA around nucleosomes. When secreted, it recruits inflammatory cells and induces cytokine production. Before HMGB1 is secreted from inflammatory cells, it relocates to the cytoplasm, which partially or totally depletes cell nuclei of HMGB1. We previously showed that cells lacking HMGB1 contain 20% fewer nucleosomes and 30% more RNA transcripts levels genome-wide. We hypothesized that the depletion of nuclear HMGB1 plays a role in inflammation that can enhance or complement the role of extracellular HMGB1. We analysed the transcriptional profile of wild-type and Hmgb1-/- mouse embryonic fibroblasts (MEFs) as a proxy for cells that have lost HMGB1 from their nuclei. We explored the transcriptome of wild-type and Hmgb1-/- macrophages differentiated in the presence of granulocyte-macrophage colony-stimulating factor, before and after exposure to LPS/IFN-γ. In the same cells, histones and nuclear HMGB1 were quantified. We found that Hmgb1-/- MEFs show a transcriptional profile associated with stress and inflammation responses. Moreover, wild-type macrophages that have secreted HMGB1 because of LPS/IFN-γ exposure rapidly reduce their histone content as much as cells that genetically lack HMGB1. Importantly, unstimulated Hmgb1-/- macrophages activate transcriptional pathways associated with cell migration and chemotaxis. We suggest that nucleosome loss is an early event that facilitates transcriptional responses of macrophages to inflammation, particularly chemotaxis. HMGB1's dual roles in the nucleus and in the extracellular space appear to be complementary. © 2014 The Association for the Publication of the Journal of Internal Medicine.

  14. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions

    DEFF Research Database (Denmark)

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas

    2015-01-01

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates...... or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue...... of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation...

  15. Acetylation of woody lignocellulose: significance and regulation

    Directory of Open Access Journals (Sweden)

    Prashant Mohan-Anupama Pawar

    2013-05-01

    Full Text Available Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides, is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose towards improved saccharification. In this review we: 1 summarize literature on lignocellulose acetylation in different tree species, 2 present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, 3 describe plant proteins involved in lignocellulose O-acetylation, 4 give examples of microbial enzymes capable to de-acetylate lignocellulose, and 5 discuss prospects for exploiting these enzymes in planta to modify xylan acetylation.

  16. Acetylation of Chinese bamboo flour and thermoplasticity

    Institute of Scientific and Technical Information of China (English)

    LI Xue-fang; CHEN Qin-hui; LIN Jin-huo; ZHUO Dong-xian; WU Xiu-ling

    2008-01-01

    Chinese bamboo flour was chemically modified by acetylation with acetic anhydride by using trichloroacetic acid as an activation agent and the optimized condition for acetylation of bamboo flour was determined as the trichloroacetic acid amount 6.0 g per 1.5-g bamboo flour, ultrasosonication duration 40 min and the reaction time 1 h at 65℃. The composition, microstructure and thermal behavior of acetylated bamboo flour were preliminarily characterized by FT-IR, DSC and SEM etc. The acetylated bamboo flour can be molded into sheets at 130℃ and 10 MPa, indicating the modified bamboo flour possesses thermalplastic performance.

  17. Acetylation regulates Jun protein turnover in Drosophila.

    Science.gov (United States)

    Zhang, Daoyong; Suganuma, Tamaki; Workman, Jerry L

    2013-11-01

    C-Jun is a major transcription factor belonging to the activating protein 1 (AP-1) family. Phosphorylation has been shown to be critical for c-Jun activation and stability. Here, we report that Jra, the Drosophila Jun protein, is acetylated in vivo. We demonstrate that the acetylation of Jra leads to its rapid degradation in response to osmotic stress. Intriguingly, we also found that Jra phosphorylation antagonized its acetylation, indicating the opposite roles of acetylation and phosphorylation in Jra degradation process under osmotic stress. Our results provide new insights into how c-Jun proteins are precisely regulated by the interplay of different posttranslational modifications.

  18. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription.

    Science.gov (United States)

    van Bakel, Harm; Tsui, Kyle; Gebbia, Marinella; Mnaimneh, Sanie; Hughes, Timothy R; Nislow, Corey

    2013-05-01

    Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies.

  19. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription.

    Directory of Open Access Journals (Sweden)

    Harm van Bakel

    2013-05-01

    Full Text Available Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies.

  20. New insights into two distinct nucleosome distributions: comparison of cross-platform positioning datasets in the yeast genome

    Directory of Open Access Journals (Sweden)

    Deng Yangyang

    2010-01-01

    Full Text Available Abstract Background Recently, a number of high-resolution genome-wide maps of nucleosome locations in S. cerevisiae have been derived experimentally. However, nucleosome positions are determined in vivo by the combined effects of numerous factors. Consequently, nucleosomes are not simple static units, which may explain the discrepancies in reported nucleosome positions as measured by different experiments. In order to more accurately depict the genome-wide nucleosome distribution, we integrated multiple nucleosomal positioning datasets using a multi-angle analysis strategy. Results To evaluate the contribution of chromatin structure to transcription, we used the vast amount of available nucleosome analyzed data. Analysis of this data allowed for the comprehensive identification of the connections between promoter nucleosome positioning patterns and various transcription-dependent properties. Further, we characterised the function of nucleosome destabilisation in the context of transcription regulation. Our results indicate that genes with similar nucleosome occupancy patterns share general transcription attributes. We identified the local regulatory correlation (LRC regions for two distinct types of nucleosomes and we assessed their regulatory properties. We also estimated the nucleosome reproducibility and measurement accuracy for high-confidence transcripts. We found that by maintaining a distance of ~13 bp between the upstream border of the +1 nucleosome and the transcription start sites (TSSs, the stable +1 nucleosome may form a barrier against the accessibility of the TSS and shape an optimum chromatin conformation for gene regulation. An in-depth analysis of nucleosome positioning in normally growing and heat shock cells suggested that the extent and patterns of nucleosome sliding are associated with gene activation. Conclusions Our results, which combine different types of data, suggest that cross-platform information, including

  1. The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation.

    Science.gov (United States)

    Iwafuchi-Doi, Makiko; Donahue, Greg; Kakumanu, Akshay; Watts, Jason A; Mahony, Shaun; Pugh, B Franklin; Lee, Dolim; Kaestner, Klaus H; Zaret, Kenneth S

    2016-04-01

    Nuclear DNA wraps around core histones to form nucleosomes, which restricts the binding of transcription factors to gene regulatory sequences. Pioneer transcription factors can bind DNA sites on nucleosomes and initiate gene regulatory events, often leading to the local opening of chromatin. However, the nucleosomal configuration of open chromatin and the basis for its regulation is unclear. We combined low and high levels of micrococcal nuclease (MNase) digestion along with core histone mapping to assess the nucleosomal configuration at enhancers and promoters in mouse liver. We find that MNase-accessible nucleosomes, bound by transcription factors, are retained more at liver-specific enhancers than at promoters and ubiquitous enhancers. The pioneer factor FoxA displaces linker histone H1, thereby keeping enhancer nucleosomes accessible in chromatin and allowing other liver-specific transcription factors to bind and stimulate transcription. Thus, nucleosomes are not exclusively repressive to gene regulation when they are retained with, and exposed by, pioneer factors.

  2. CENP-C directs a structural transition of CENP-A nucleosomes mainly through sliding of DNA gyres.

    Science.gov (United States)

    Falk, Samantha J; Lee, Jaehyoun; Sekulic, Nikolina; Sennett, Michael A; Lee, Tae-Hee; Black, Ben E

    2016-03-01

    The histone H3 variant CENP-A is incorporated into nucleosomes that mark centromere location. We have recently reported that CENP-A nucleosomes, compared with their H3 counterparts, confer an altered nucleosome shape. Here, using a single-molecule fluorescence resonance energy transfer (FRET) approach with recombinant human histones and centromere DNA, we found that the nucleosome shape change directed by CENP-A is dominated by lateral passing of two DNA gyres (gyre sliding). A nonhistone centromere protein, CENP-C, binds and reshapes the nucleosome, sliding the DNA gyres back to positions similar to those in canonical nucleosomes containing conventional histone H3. The model that we generated to explain the CENP-A-nucleosome transition provides an example of a shape change imposed by external binding proteins and has notable implications for understanding of the epigenetic basis of the faithful inheritance of centromere location on chromosomes.

  3. Investigation of acetyl migrations in furanosides

    Directory of Open Access Journals (Sweden)

    Migaud ME

    2006-07-01

    Full Text Available Abstract Standard reaction conditions for the desilylation of acetylated furanoside (riboside, arabinoside and xyloside derivatives facilitate acyl migration. Conditions which favour intramolecular and intermolecular mechanisms have been identified with intermolecular transesterifications taking place under mild basic conditions when intramolecular orthoester formations are disfavoured. In acetyl ribosides, acyl migration could be prevented when desilylation was catalysed by cerium ammonium nitrate.

  4. Analysis of acetylated wood by electron microscopy

    NARCIS (Netherlands)

    Sander, C.; Beckers, E.P.J.; Militz, H.; Veenendaal, van W.

    2003-01-01

    The properties of acetylated solid wood were investigated earlier, in particular the anti-shrink efficiency and the resistance against decay. This study focuses on the possible changes and damage to the wood structure due to an acetylation process leading to weight per cent gains of up to 20%. Elect

  5. The Acetylation of Starch by Reactive Extrusion

    NARCIS (Netherlands)

    Graaf, Robbert A. de; Broekroelofs, Annet; Janssen, Léon P.B.M.

    1998-01-01

    Potato starch has been acetylated in a counter rotating twin screw extruder using vinylacetate and sodium hydroxide. The desired starch acetylation reaction is accompanied by an undesired parallel base catalysed hydrolysis reaction of vinylacetate and a consecutive hydrolysis reaction of the acetyla

  6. RSC remodeling of oligo-nucleosomes: an atomic force microscopy study.

    Science.gov (United States)

    Montel, Fabien; Castelnovo, Martin; Menoni, Hervé; Angelov, Dimitar; Dimitrov, Stefan; Faivre-Moskalenko, Cendrine

    2011-04-01

    The 'remodels structure of chromatin' (RSC) complex is an essential chromatin remodeling factor that is required for the control of several processes including transcription, repair and replication. The ability of RSC to relocate centrally positioned mononucleosomes at the end of nucleosomal DNA is firmly established, but the data on RSC action on oligo-nucleosomal templates remains still scarce. By using atomic force microscopy (AFM) imaging, we have quantitatively studied the RSC-induced mobilization of positioned di- and trinucleosomes as well as the directionality of mobilization on mononucleosomal template labeled at one end with streptavidin. AFM imaging showed only a limited set of distinct configurational states for the remodeling products. No stepwise or preferred directionality of the nucleosome motion was observed. Analysis of the corresponding reaction pathways allows deciphering the mechanistic features of RSC-induced nucleosome relocation. The final outcome of RSC remodeling of oligosome templates is the packing of the nucleosomes at the edge of the template, providing large stretches of DNA depleted of nucleosomes. This feature of RSC may be used by the cell to overcome the barrier imposed by the presence of nucleosomes.

  7. The FACT histone chaperone guides histone H4 into its nucleosomal conformation in Saccharomyces cerevisiae.

    Science.gov (United States)

    McCullough, Laura; Poe, Bryan; Connell, Zaily; Xin, Hua; Formosa, Tim

    2013-09-01

    The pob3-Q308K mutation alters the small subunit of the Saccharomyces cerevisiae histone/nucleosome chaperone Facilitates Chromatin Transactions (FACT), causing defects in both transcription and DNA replication. We describe histone mutations that suppress some of these defects, providing new insight into the mechanism of FACT activity in vivo. FACT is primarily known for its ability to promote reorganization of nucleosomes into a more open form, but neither the pob3-Q308K mutation nor the compensating histone mutations affect this activity. Instead, purified mutant FACT complexes fail to release from nucleosomes efficiently, and the histone mutations correct this flaw. We confirm that pob3-T252E also suppresses pob3-Q308K and show that combining two suppressor mutations can be detrimental, further demonstrating the importance of balance between association and dissociation for efficient FACT:nucleosome interactions. To explain our results, we propose that histone H4 can adopt multiple conformations, most of which are incompatible with nucleosome assembly. FACT guides H4 to adopt appropriate conformations, and this activity can be enhanced or diminished by mutations in Pob3 or histones. FACT can therefore destabilize nucleosomes by favoring the reorganized state, but it can also promote assembly by tethering histones and DNA together and maintaining them in conformations that promote canonical nucleosome formation.

  8. Investigation of the interaction between berberine and nucleosomes in solution: Spectroscopic and equilibrium dialysis approach

    Science.gov (United States)

    Rabbani-Chadegani, Azra; Mollaei, Hossein; Sargolzaei, Javad

    2017-02-01

    Berberine is a natural plant alkaloid with high pharmacological potential. Although its interaction with free DNA has been the subject of several reports, to date there is no work concerning the effect of berberine on nucleoprotein structure of DNA, the nucleosomes. The present study focuses on the binding affinity of berberine to nucleosomes and histone H1 employing various spectroscopic techniques, fluorescence, circular dichroism, thermal denaturation as well as equilibrium dialysis. The results showed that the binding of berberine to nucleosomes is positive cooperative with Ka = 5.57 × 103 M- 1. Berberine quenched with the chromophores of protein moiety of nucleosomes and reduced fluorescence emission intensity at 335 nm with Ksv value of 0.135. Binding of berberine to nucleosomes decreased the absorbance at 210 and 260 nm, produced hypochromicity in thermal denaturation profiles and its affinity to nucleoprotein structure of nucleosomes was much higher than to free DNA. Berberine also exhibited high affinity to histone H1 in solution and the binding was positive cooperative with. Ka = 3.61 × 103 M- 1. Moreover berberine decreased fluorescence emission intensity of H1 by quenching with tyrosine residue in its globular core domain. The circular dichroism profiles demonstrated that the binding of drug induced secondary structural changes in both DNA stacking and histone H1. It is concluded that berberine is genotoxic drug, interacts with nucleosomes and in this process histone H1 is involved to exert its anticancer activity.

  9. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression

    Science.gov (United States)

    Kharerin, Hungyo; Bhat, Paike J.; Marko, John F.; Padinhateeri, Ranjith

    2016-02-01

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA.

  10. Evaluation of the protective capabilities of nucleosome STRs obtained by large-scale sequencing.

    Science.gov (United States)

    Dong, Chunnan; Yang, Yadong; Yan, Jiangwei; Fu, Lihong; Zhang, Xiaojing; Cong, Bin; Li, Shujin

    2015-07-01

    Partial DNA profiles are often obtained from degraded forensic samples and are hard to analyze and interpret. With in-depth studies on degraded DNA, an increasing number of forensic scientists have focused on the intrinsic structural properties of DNA. In theory, nucleosomes offer protection to the bound DNA by limiting access to enzymes. In our study, we performed large-scale DNA sequencing on nucleosome core DNA of human leucocytes. Five nucleosome short tandem repeats (STRs) were selected (including three forensic common STRs (i.e. TPOX, TH01, and D10S1248) and two unpublished STRs (i.e. AC012568.7 and AC007160.3)). We performed a population genetic investigation and forensic genetic statistical analysis of these two unpublished loci on 108 healthy unrelated individuals of the HeBei Han population in China. We estimated the protective capabilities of five selected nucleosome loci and MiniFiler™ loci with artificial degraded DNA and case samples. We also analyzed differences between sequencing results and software predicted results. Our findings showed that nucleosome STRs were more likely to be detected than MiniFiler™ loci. They were well protected from degradation by nucleosomes and could be candidates for further nucleosome multiplex construction, which would increase the chances of obtaining a better balanced profile with fewer allelic drop-outs.

  11. Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo.

    Science.gov (United States)

    Hughes, Amanda L; Rando, Oliver J

    2015-07-14

    Packaging of genomic DNA into nucleosomes is nearly universally conserved in eukaryotes, and many features of the nucleosome landscape are quite conserved. Nonetheless, quantitative aspects of nucleosome packaging differ between species because, for example, the average length of linker DNA between nucleosomes can differ significantly even between closely related species. We recently showed that the difference in nucleosome spacing between two Hemiascomycete species-Saccharomyces cerevisiae and Kluyveromyces lactis-is established by trans-acting factors rather than being encoded in cis in the DNA sequence. Here, we generated several S. cerevisiae strains in which endogenous copies of candidate nucleosome spacing factors are deleted and replaced with the orthologous factors from K. lactis. We find no change in nucleosome spacing in such strains in which H1 or Isw1 complexes are swapped. In contrast, the K. lactis gene encoding the ATP-dependent remodeler Chd1 was found to direct longer internucleosomal spacing in S. cerevisiae, establishing that this remodeler is partially responsible for the relatively long internucleosomal spacing observed in K. lactis. By analyzing several chimeric proteins, we find that sequence differences that contribute to the spacing activity of this remodeler are dispersed throughout the coding sequence, but that the strongest spacing effect is linked to the understudied N-terminal end of Chd1. Taken together, our data find a role for sequence evolution of a chromatin remodeler in establishing quantitative aspects of the chromatin landscape in a species-specific manner.

  12. FSAP-mediated nucleosome release from late apoptotic cells is inhibited by autoantibodies present in SLE.

    Science.gov (United States)

    Marsman, Gerben; Stephan, Femke; de Leeuw, Karina; Bulder, Ingrid; Ruinard, Jessica T; de Jong, Jan; Westra, Johanna; Bultink, Irene E M; Voskuyl, Alexandre E; Aarden, Lucien A; Luken, Brenda M; Kallenberg, Cees G M; Zeerleder, Sacha

    2016-03-01

    Inefficient clearance of apoptotic cells and the subsequent exposure of the immune system to nuclear contents are crucially involved in the pathogenesis of systemic lupus erythematosus (SLE). Factor VII-activating protease (FSAP) is activated in serum upon contact with dead cells, and releases nucleosomes from late apoptotic cells into the extracellular environment. We investigated whether FSAP-mediated nucleosome release from late apoptotic cells is affected in SLE patients. Nucleosome release in sera of 27 SLE patients and 30 healthy controls was investigated by incubating late apoptotic Jurkat cells with serum and analyzing the remaining DNA content by flow cytometry. We found that nucleosome release in sera of SLE patients with high disease activity was significantly decreased when compared with that in SLE sera obtained during low disease activity or from healthy individuals. Upon removal of IgG/IgM antibodies from SLE sera, nucleosome release was restored. Similarly, monoclonal antinuclear antibodies inhibited nucleosome release in healthy donor serum or by plasma-purified FSAP. This inhibition was lost when Fab fragments were used, suggesting that antigen cross-linking is involved. In conclusion, FSAP-mediated nucleosome release from late apoptotic cells is greatly impaired in SLE patient sera, possibly hampering the clearance of these cells and thereby propagating inflammation.

  13. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome.

    Science.gov (United States)

    Winogradoff, David; Zhao, Haiqing; Dalal, Yamini; Papoian, Garegin A

    2015-11-25

    The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A' dimerization interface results in a weaker four helix bundle, and an extrusion of 10-30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo.

  14. Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers.

    Directory of Open Access Journals (Sweden)

    Evgeniy A Ozonov

    Full Text Available Because DNA packaging in nucleosomes modulates its accessibility to transcription factors (TFs, unraveling the causal determinants of nucleosome positioning is of great importance to understanding gene regulation. Although there is evidence that intrinsic sequence specificity contributes to nucleosome positioning, the extent to which other factors contribute to nucleosome positioning is currently highly debated. Here we obtained both in vivo and in vitro reference maps of positions that are either consistently covered or free of nucleosomes across multiple experimental data-sets in Saccharomyces cerevisiae. We then systematically quantified the contribution of TF binding to nucleosome positioning using a rigorous statistical mechanics model in which TFs compete with nucleosomes for binding DNA. Our results reconcile previous seemingly conflicting results on the determinants of nucleosome positioning and provide a quantitative explanation for the difference between in vivo and in vitro positioning. On a genome-wide scale, nucleosome positioning is dominated by the phasing of nucleosome arrays over gene bodies, and their positioning is mainly determined by the intrinsic sequence preferences of nucleosomes. In contrast, larger nucleosome free regions in promoters, which likely have a much more significant impact on gene expression, are determined mainly by TF binding. Interestingly, of the 158 yeast TFs included in our modeling, we find that only 10-20 significantly contribute to inducing nucleosome-free regions, and these TFs are highly enriched for having direct interactions with chromatin remodelers. Together our results imply that nucleosome free regions in yeast promoters results from the binding of a specific class of TFs that recruit chromatin remodelers.

  15. Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers.

    Science.gov (United States)

    Ozonov, Evgeniy A; van Nimwegen, Erik

    2013-01-01

    Because DNA packaging in nucleosomes modulates its accessibility to transcription factors (TFs), unraveling the causal determinants of nucleosome positioning is of great importance to understanding gene regulation. Although there is evidence that intrinsic sequence specificity contributes to nucleosome positioning, the extent to which other factors contribute to nucleosome positioning is currently highly debated. Here we obtained both in vivo and in vitro reference maps of positions that are either consistently covered or free of nucleosomes across multiple experimental data-sets in Saccharomyces cerevisiae. We then systematically quantified the contribution of TF binding to nucleosome positioning using a rigorous statistical mechanics model in which TFs compete with nucleosomes for binding DNA. Our results reconcile previous seemingly conflicting results on the determinants of nucleosome positioning and provide a quantitative explanation for the difference between in vivo and in vitro positioning. On a genome-wide scale, nucleosome positioning is dominated by the phasing of nucleosome arrays over gene bodies, and their positioning is mainly determined by the intrinsic sequence preferences of nucleosomes. In contrast, larger nucleosome free regions in promoters, which likely have a much more significant impact on gene expression, are determined mainly by TF binding. Interestingly, of the 158 yeast TFs included in our modeling, we find that only 10-20 significantly contribute to inducing nucleosome-free regions, and these TFs are highly enriched for having direct interactions with chromatin remodelers. Together our results imply that nucleosome free regions in yeast promoters results from the binding of a specific class of TFs that recruit chromatin remodelers.

  16. SPOTing Acetyl-Lysine Dependent Interactions

    Directory of Open Access Journals (Sweden)

    Sarah Picaud

    2015-08-01

    Full Text Available Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  17. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  18. The impact of the nucleosome code on protein-coding sequence evolution in yeast.

    Directory of Open Access Journals (Sweden)

    Tobias Warnecke

    2008-11-01

    Full Text Available Coding sequence evolution was once thought to be the result of selection on optimal protein function alone. Selection can, however, also act at the RNA level, for example, to facilitate rapid translation or ensure correct splicing. Here, we ask whether the way DNA works also imposes constraints on coding sequence evolution. We identify nucleosome positioning as a likely candidate to set up such a DNA-level selective regime and use high-resolution microarray data in yeast to compare the evolution of coding sequence bound to or free from nucleosomes. Controlling for gene expression and intra-gene location, we find a nucleosome-free "linker" sequence to evolve on average 5-6% slower at synonymous sites. A reduced rate of evolution in linker is especially evident at the 5' end of genes, where the effect extends to non-synonymous substitution rates. This is consistent with regular nucleosome architecture in this region being important in the context of gene expression control. As predicted, codons likely to generate a sequence unfavourable to nucleosome formation are enriched in linker sequence. Amino acid content is likewise skewed as a function of nucleosome occupancy. We conclude that selection operating on DNA to maintain correct positioning of nucleosomes impacts codon choice, amino acid choice, and synonymous and non-synonymous rates of evolution in coding sequence. The results support the exclusion model for nucleosome positioning and provide an alternative interpretation for runs of rare codons. As the intimate association of histones and DNA is a universal characteristic of genic sequence in eukaryotes, selection on coding sequence composition imposed by nucleosome positioning should be phylogenetically widespread.

  19. Selective removal of promoter nucleosomes by the RSC chromatin-remodeling complex.

    Science.gov (United States)

    Lorch, Yahli; Griesenbeck, Joachim; Boeger, Hinrich; Maier-Davis, Barbara; Kornberg, Roger D

    2011-08-01

    Purified chromatin rings, excised from the PHO5 locus of Saccharomyces cerevisiae in transcriptionally repressed and activated states, were remodeled with RSC and ATP. Nucleosomes were translocated, and those originating on the promoter of repressed rings were removed, whereas those originating on the open reading frame (ORF) were retained. Treatment of the repressed rings with histone deacetylase diminished the removal of promoter nucleosomes. These findings point to a principle of promoter chromatin remodeling for transcription, namely that promoter specificity resides primarily in the nucleosomes rather than in the remodeling complex that acts upon them.

  20. DNA stretching in the nucleosome facilitates alkylation by an intercalating antitumour agent.

    Science.gov (United States)

    Davey, Gabriela E; Wu, Bin; Dong, Yuancai; Surana, Uttam; Davey, Curt A

    2010-04-01

    DNA stretching in the nucleosome core can cause dramatic structural distortions, which may influence compaction and factor recognition in chromatin. We find that the base pair unstacking arising from stretching-induced extreme minor groove kinking near the nucleosome centre creates a hot spot for intercalation and alkylation by a novel anticancer compound. This may have far reaching implications for how chromatin structure can influence binding of intercalator species and indicates potential for the development of site selective DNA-binding agents that target unique conformational features of the nucleosome.

  1. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed Missael Vargas;

    2014-01-01

    data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery...... of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues...

  2. Acetylation modulates the STAT signaling code.

    Science.gov (United States)

    Wieczorek, Martin; Ginter, Torsten; Brand, Peter; Heinzel, Thorsten; Krämer, Oliver H

    2012-12-01

    A fascinating question of modern biology is how a limited number of signaling pathways generate biological diversity and crosstalk phenomena in vivo. Well-defined posttranslational modification patterns dictate the functions and interactions of proteins. The signal transducers and activators of transcription (STATs) are physiologically important cytokine-induced transcription factors. They are targeted by a multitude of posttranslational modifications that control and modulate signaling responses and gene expression. Beyond phosphorylation of serine and tyrosine residues, lysine acetylation has recently emerged as a critical modification regulating STAT functions. Interestingly, acetylation can determine STAT signaling codes by various molecular mechanisms, including the modulation of other posttranslational modifications. Here, we provide an overview on the acetylation of STATs and how this protein modification shapes cellular cytokine responses. We summarize recent advances in understanding the impact of STAT acetylation on cell growth, apoptosis, innate immunity, inflammation, and tumorigenesis. Furthermore, we discuss how STAT acetylation can be targeted by small molecules and we consider the possibility that additional molecules controlling STAT signaling are regulated by acetylation. Our review also summarizes evolutionary aspects and we show similarities between the acetylation-dependent control of STATs and other important molecules. We propose the concept that, similar to the 'histone code', distinct posttranslational modifications and their crosstalk orchestrate the functions and interactions of STAT proteins.

  3. The supercoiling state of DNA determines the handedness of both H3 and CENP-A nucleosomes.

    Science.gov (United States)

    Vlijm, R; Kim, S H; De Zwart, P L; Dalal, Y; Dekker, C

    2017-02-02

    Nucleosomes form the unit structure of the genome in eukaryotes, thereby constituting a fundamental tenet of chromatin biology. In canonical nucleosomes, DNA wraps around the histone octamer in a left-handed toroidal ramp. Here, in single-molecule magnetic tweezers studies of chaperone-assisted nucleosome assembly, we show that the handedness of the DNA wrapping around the nucleosome core is intrinsically ambidextrous, and depends on the pre-assembly supercoiling state of the DNA, i.e., it is not uniquely determined by the octameric histone core. Nucleosomes assembled onto negatively supercoiled DNA are found to exhibit a left-handed conformation, whereas assembly onto positively supercoiled DNA results in right-handed nucleosomes. This intrinsic flexibility to adopt both chiralities is observed both for canonical H3 nucleosomes, and for centromere-specific variant CENP-A nucleosomes. These data support recent advances suggesting an intrinsic adaptability of the nucleosome, and provide insights into how nucleosomes might rapidly re-assemble after cellular processes that generate positive supercoiling in vivo.

  4. Histone chaperones: assisting histone traffic and nucleosome dynamics.

    Science.gov (United States)

    Gurard-Levin, Zachary A; Quivy, Jean-Pierre; Almouzni, Geneviève

    2014-01-01

    The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.

  5. Nucleosome structure of the yeast CHA1 promoter

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    1998-01-01

    conditions. Five yeast TBP mutants defective in different steps in activated transcription abolished CHA1 expression, but failed to affect induction-dependent chromatin rearrangement of the promoter region. Progressive truncations of the RNA polymerase II C-terminal domain caused a progressive reduction......The Saccharomyces cerevisiae CHA1 gene encodes the catabolic L-serine (L-threonine) dehydratase. We have previously shown that the transcriptional activator protein Cha4p mediates serine/threonine induction of CHA1 expression. We used accessibility to micrococcal nuclease and DNase I to determine...... the in vivo chromatin structure of the CHA1 chromosomal locus, both in the non-induced state and upon induction. Upon activation, a precisely positioned nucleosome (nuc-1) occluding the TATA box and the transcription start site is removed. A strain devoid of Cha4p showed no chromatin alteration under inducing...

  6. Understanding the connection between epigenetic DNA methylation and nucleosome positioning from computer simulations.

    Directory of Open Access Journals (Sweden)

    Guillem Portella

    Full Text Available Cytosine methylation is one of the most important epigenetic marks that regulate the process of gene expression. Here, we have examined the effect of epigenetic DNA methylation on nucleosomal stability using molecular dynamics simulations and elastic deformation models. We found that methylation of CpG steps destabilizes nucleosomes, especially when these are placed in sites where the DNA minor groove faces the histone core. The larger stiffness of methylated CpG steps is a crucial factor behind the decrease in nucleosome stability. Methylation changes the positioning and phasing of the nucleosomal DNA, altering the accessibility of DNA to regulatory proteins, and accordingly gene functionality. Our theoretical calculations highlight a simple physical-based explanation on the foundations of epigenetic signaling.

  7. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding.

    Science.gov (United States)

    Floer, Monique; Wang, Xin; Prabhu, Vidya; Berrozpe, Georgina; Narayan, Santosh; Spagna, Dan; Alvarez, David; Kendall, Jude; Krasnitz, Alexander; Stepansky, Asya; Hicks, James; Bryant, Gene O; Ptashne, Mark

    2010-04-30

    How is chromatin architecture established and what role does it play in transcription? We show that the yeast regulatory locus UASg bears, in addition to binding sites for the activator Gal4, sites bound by the RSC complex. RSC positions a nucleosome, evidently partially unwound, in a structure that facilitates Gal4 binding to its sites. The complex comprises a barrier that imposes characteristic features of chromatin architecture. In the absence of RSC, ordinary nucleosomes encroach over the UASg and compete with Gal4 for binding. Taken with our previous work, the results show that both prior to and following induction, specific DNA-binding proteins are the predominant determinants of chromatin architecture at the GAL1/10 genes. RSC/nucleosome complexes are also found scattered around the yeast genome. Higher eukaryotic RSC lacks the specific DNA-binding determinants found on yeast RSC, and evidently Gal4 works in those organisms despite whatever obstacle broadly positioned nucleosomes present.

  8. AFM Imaging of SWI/SNF action: mapping the nucleosome remodeling and sliding

    CERN Document Server

    Montel, Fabien; Saint-Jean, Philippe; Castelnovo, Martin; Moskalenko-Faivre, Cendrine

    2007-01-01

    We propose a combined experimental (Atomic Force Microscopy) and theoretical study of the structural and dynamical properties of nucleosomes. In contrast to biochemical approaches, this method allows to determine simultaneously the DNA complexed length distribution and nucleosome position in various contexts. First, we show that differences in the nucleo-proteic structure observed between conventional H2A and H2A.Bbd variant nucleosomes induce quantitative changes in the in the length distribution of DNA complexed with histones. Then, the sliding action of remodeling complex SWI/SNF is characterized through the evolution of the nucleosome position and wrapped DNA length mapping. Using a linear energetic model for the distribution of DNA complexed length, we extract the net wrapping energy of DNA onto the histone octamer, and compare it to previous studies.

  9. Core Histone Tail Domains Mediate Oligonucleosome Folding and Nucleosomal DNA Organization through Distinct Molecular Mechanisms

    National Research Council Canada - National Science Library

    Terace M. Fletcher; Jeffrey C. Hansen

    1995-01-01

    .... wrapping of DNA around the histone octamer. Mg ions can substitute for the tail domains to yield a trypsinized oligonucleosome structure that is indistinguishable from that of an intact nucleosomal array in low salt...

  10. Influence of DNA methylation on positioning and DNA flexibility of nucleosomes with pericentric satellite DNA.

    Science.gov (United States)

    Osakabe, Akihisa; Adachi, Fumiya; Arimura, Yasuhiro; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Kurumizaka, Hitoshi

    2015-10-01

    DNA methylation occurs on CpG sites and is important to form pericentric heterochromatin domains. The satellite 2 sequence, containing seven CpG sites, is located in the pericentric region of human chromosome 1 and is highly methylated in normal cells. In contrast, the satellite 2 region is reportedly hypomethylated in cancer cells, suggesting that the methylation status may affect the chromatin structure around the pericentric regions in tumours. In this study, we mapped the nucleosome positioning on the satellite 2 sequence in vitro and found that DNA methylation modestly affects the distribution of the nucleosome positioning. The micrococcal nuclease assay revealed that the DNA end flexibility of the nucleosomes changes, depending on the DNA methylation status. However, the structures and thermal stabilities of the nucleosomes are unaffected by DNA methylation. These findings provide new information to understand how DNA methylation functions in regulating pericentric heterochromatin formation and maintenance in normal and malignant cells.

  11. Genome-wide nucleosome occupancy and DNA methylation profiling of four human cell lines

    Directory of Open Access Journals (Sweden)

    Aaron L. Statham

    2015-03-01

    Full Text Available DNA methylation and nucleosome positioning are two key mechanisms that contribute to the epigenetic control of gene expression. During carcinogenesis, the expression of many genes is altered alongside extensive changes in the epigenome, with repressed genes often being associated with local DNA hypermethylation and gain of nucleosomes at their promoters. However the spectrum of alterations that occur at distal regulatory regions has not been extensively studied. To address this we used Nucleosome Occupancy and Methylation sequencing (NOMe-seq to compare the genome-wide DNA methylation and nucleosome occupancy profiles between normal and cancer cell line models of the breast and prostate. Here we describe the bioinformatic pipeline and methods that we developed for the processing and analysis of the NOMe-seq data published by (Taberlay et al., 2014 [1] and deposited in the Gene Expression Omnibus with accession GSE57498.

  12. The CENP-A nucleosome: a battle between Dr Jekyll and Mr Hyde.

    Science.gov (United States)

    Bui, Minh; Walkiewicz, Marcin P; Dimitriadis, Emilios K; Dalal, Yamini

    2013-01-01

    The structure of the centromere-specific histone centromeric protein A (CENP-A) nucleosome has been a hot topic of debate for the past five years. Structures proposed include octamers, hexamers, homotypic and heterotypic tetramers. This controversy has led to the proposal that CENP-A nucleosomes undergo cell-cycle dependent transitions between the multiple states previously documented to exist in vivo and in vitro. In recent work from our laboratory, we sought to test this hypothesis. We discovered that CENP-A nucleosomes undergo unique oscillations in human cells, a finding mirrored in a parallel study performed in budding yeast. This review provides additional insights into the potential mechanisms for the interconversion of CENP-A nucleosomal species, and speculates on a biological role for oscillations in vivo.

  13. Marked differences in the ability of distinct protamines to disassemble nucleosomal core particles in vitro.

    Science.gov (United States)

    Oliva, R; Mezquita, C

    1986-10-21

    In accordance with the results of classical experiments performed in vitro with calf thymus chromatin and the fish protamine salmine, we have observed that this highly basic, small molecular weight protamine cannot cause major displacement of histones from nucleosomal core particles at concentrations several times higher than physiological (arginine/nucleotide ratios 1-8) and that hyperacetylation of histones facilitates nucleosome disassembly. However, the avian protamine galline, with molecular weight and number of arginine residues almost twice those of common fish protamines, is able to displace the nucleosomal core histones from DNA in vitro at concentrations (arginine/nucleotide ratios 0.6-1.2) within the physiological range (0.8). Our results suggest that the binding of the avian protamine galline to chromatin could be directly involved in the rapid disassembly of nucleosomes that takes place during the nucleohistone nucleoprotamine transition in chicken spermiogenesis.

  14. nuMap:A Web Platform for Accurate Prediction of Nucleosome Positioning

    Institute of Scientific and Technical Information of China (English)

    Bader A Alharbi; Thamir H Alshammari; Nathan L Felton; Victor B Zhurkin; Feng Cui

    2014-01-01

    Nucleosome positioning is critical for gene expression and of major biological interest. The high cost of experimentally mapping nucleosomal arrangement signifies the need for computational approaches to predict nucleosome positions at high resolution. Here, we present a web-based application to fulfill this need by implementing two models, YR and W/S schemes, for the translational and rotational positioning of nucleosomes, respectively. Our methods are based on sequence-dependent anisotropic bending that dictates how DNA is wrapped around a histone octamer. This application allows users to specify a number of options such as schemes and param-eters for threading calculation and provides multiple layout formats. The nuMap is implemented in Java/Perl/MySQL and is freely available for public use at http://numap.rit.edu. The user manual, implementation notes, description of the methodology and examples are available at the site.

  15. Reassembly of nucleosomes at the MLH1 promoter initiates resilencing following decitabine exposure.

    Directory of Open Access Journals (Sweden)

    Luke B Hesson

    Full Text Available Hypomethylating agents reactivate tumor suppressor genes that are epigenetically silenced in cancer. Inevitably these genes are resilenced, leading to drug resistance. Using the MLH1 tumor suppressor gene as a model, we showed that decitabine-induced re-expression was dependent upon demethylation and eviction of promoter nucleosomes. Following decitabine withdrawal, MLH1 was rapidly resilenced despite persistent promoter demethylation. Single molecule analysis at multiple time points showed that gene resilencing was initiated by nucleosome reassembly on demethylated DNA and only then was followed by remethylation and stable silencing. Taken together, these data establish the importance of nucleosome positioning in mediating resilencing of drug-induced gene reactivation and suggest a role for therapeutic targeting of nucleosome assembly as a mechanism to overcome drug resistance.

  16. Serum nucleosomes during neoadjuvant chemotherapy in patients with cervical cancer. Predictive and prognostic significance

    Directory of Open Access Journals (Sweden)

    Cetina Lucely

    2005-06-01

    Full Text Available Abstract Background It has been shown that free DNA circulates in serum plasma of patients with cancer and that at least part is present in the form of oligo- and monucleosomes, a marker of cell death. Preliminary data has shown a good correlation between decrease of nucleosomes with response and prognosis. Here, we performed pre- and post-chemotherapy determinations of serum nucleosomes with an enzyme-linked immunosorbent assay (ELISA method in a group of patients with cervical cancer receiving neoadjuvant chemotherapy. Methods From December 2000 to June 2001, 41 patients with cervical cancer staged as FIGO stages IB2-IIIB received three 21-day courses of carboplatin and paclitaxel, both administered at day 1; then, patients underwent radical hysterectomy. Nucleosomes were measured the day before (baseline, at day seven of the first course and day seven of the third course of chemotherapy. Values of nucleosomes were analyzed with regard to pathologic response and to time to progression-free and overall survival. Results All patients completed chemotherapy, were evaluable for pathologic response, and had nucleosome levels determined. At a mean follow-up of 23 months (range, 7–26 months, projected progression time and overall survival were 80.3 and 80.4%, respectively. Mean differential values of nucleosomes were lower in the third course as compared with the first course (p >0.001. The decrease in the third course correlated with pathologic response (p = 0.041. Survival analysis showed a statistically significant, better progression-free and survival time in patients who showed lower levels at the third course (p = 0.0243 and p = 0.0260, respectively. Cox regression analysis demonstrated that nucleosome increase in the third course increased risk of death to 6.86 (95% confidence interval [CI 95%], 0.84–56.0. Conclusion Serum nucleosomes may have a predictive role for response and prognostic significance in patients with cervical cancer

  17. A role for FACT in repopulation of nucleosomes at inducible genes.

    Science.gov (United States)

    Voth, Warren P; Takahata, Shinya; Nishikawa, Joy L; Metcalfe, Benjamin M; Näär, Anders M; Stillman, David J

    2014-01-01

    Xenobiotic drugs induce Pleiotropic Drug Resistance (PDR) genes via the orthologous Pdr1/Pdr3 transcription activators. We previously identified the Mediator transcription co-activator complex as a key target of Pdr1 orthologs and demonstrated that Pdr1 interacts directly with the Gal11/Med15 subunit of the Mediator complex. Based on an interaction between Pdr1 and the FACT complex, we show that strains with spt16 or pob3 mutations are sensitive to xenobiotic drugs and display diminished PDR gene induction. Although FACT acts during the activation of some genes by assisting in the nucleosomes eviction at promoters, PDR promoters already contain nucleosome-depleted regions (NDRs) before induction. To determine the function of FACT at PDR genes, we examined the kinetics of RNA accumulation and changes in nucleosome occupancy following exposure to a xenobiotic drug in wild type and FACT mutant yeast strains. In the presence of normal FACT, PDR genes are transcribed within 5 minutes of xenobiotic stimulation and transcription returns to basal levels by 30-40 min. Nucleosomes are constitutively depleted in the promoter regions, are lost from the open reading frames during transcription, and the ORFs are wholly repopulated with nucleosomes as transcription ceases. While FACT mutations cause minor delays in activation of PDR genes, much more pronounced and significant defects in nucleosome repopulation in the ORFs are observed in FACT mutants upon transcription termination. FACT therefore has a major role in nucleosome redeposition following cessation of transcription at the PDR genes, the opposite of its better-known function in nucleosome disassembly.

  18. A role for FACT in repopulation of nucleosomes at inducible genes.

    Directory of Open Access Journals (Sweden)

    Warren P Voth

    Full Text Available Xenobiotic drugs induce Pleiotropic Drug Resistance (PDR genes via the orthologous Pdr1/Pdr3 transcription activators. We previously identified the Mediator transcription co-activator complex as a key target of Pdr1 orthologs and demonstrated that Pdr1 interacts directly with the Gal11/Med15 subunit of the Mediator complex. Based on an interaction between Pdr1 and the FACT complex, we show that strains with spt16 or pob3 mutations are sensitive to xenobiotic drugs and display diminished PDR gene induction. Although FACT acts during the activation of some genes by assisting in the nucleosomes eviction at promoters, PDR promoters already contain nucleosome-depleted regions (NDRs before induction. To determine the function of FACT at PDR genes, we examined the kinetics of RNA accumulation and changes in nucleosome occupancy following exposure to a xenobiotic drug in wild type and FACT mutant yeast strains. In the presence of normal FACT, PDR genes are transcribed within 5 minutes of xenobiotic stimulation and transcription returns to basal levels by 30-40 min. Nucleosomes are constitutively depleted in the promoter regions, are lost from the open reading frames during transcription, and the ORFs are wholly repopulated with nucleosomes as transcription ceases. While FACT mutations cause minor delays in activation of PDR genes, much more pronounced and significant defects in nucleosome repopulation in the ORFs are observed in FACT mutants upon transcription termination. FACT therefore has a major role in nucleosome redeposition following cessation of transcription at the PDR genes, the opposite of its better-known function in nucleosome disassembly.

  19. Efficient acetylation of primary amines and amino acids in environmentally benign brine solution using acetyl chloride

    Indian Academy of Sciences (India)

    Kaushik Basu; Suchandra Chakraborty; Achintya Kumar Sarkar; Chandan Saha

    2013-05-01

    Acetyl chloride is one of the most commonly available and cheap acylating agent but its high reactivity and concomitant instability in water precludes its use to carry out acetylation in aqueous medium. The present methodology illustrates the efficient acetylation of primary amines and amino acids in brine solution by means of acetyl chloride under weakly basic condition in the presence of sodium acetate and/or triethyl amine followed by trituration with aqueous saturated bicarbonate solution. This effort represents the first efficient use of this most reactive but cheap acetylating agent to acetylate amines in excellent yields in aqueous medium. This is a potentially useful green chemical transformation where reaction takes place in environment-friendly brine solution leading to easy work-up and isolation of the amide derivatives. Mechanistic rationale of this methodology is also important.

  20. Health Outcomes of Information System Use Lifestyles among Adolescents: Videogame Addiction, Sleep Curtailment and Cardio-Metabolic Deficiencies.

    Directory of Open Access Journals (Sweden)

    Ofir Turel

    Full Text Available Obesity is a rising problem among adolescents in modern societies; it results in long-term cardio-metabolic problems. Possible overlooked drivers of obesity and its consequent cardio-metabolic deficits include videogame addiction and the resulting curtailed sleep; both are growing problems among adolescents. The objective of this study is to examine possible associations among these concepts in adolescents, as a means to point to plausible interventions.Data were collected from 94 adolescents who play videogames and are enrolled in outpatient clinics, using surveys, wearable sleep monitors (FitBit, physical exams, and blood tests at three points in time. These data were subjected to structural equation modeling (SEM analyses and bootstrapping-based mediation testing procedures.Videogame addiction among adolescents was negatively associated with sleep duration (β = -0.24. Sleep duration was negatively associated with obesity (β = -0.30, which in turn was associated with elevated blood pressure (β = 0.26, low high-density lipoprotein cholesterol (β = -0.18, high triglycerides (β = 0.61, and high insulin resistance (β = 0.39. The model explained 36.2% of the variation in sleep duration, 32.7% of the variation in obesity, and between 12.8% and 28.1% of the variation in cardio-metabolic indicators. Post-hoc analyses indicated that curtailed sleep is a possible full mediator of the association between videogame addiction, abdominal obesity and the associated cardio-metabolic deficits.The findings point to possible information systems use lifestyle-health links, which behooves researchers and practitioners to pay closer attention to possible adverse health outcomes of technology-related addictions. Interventions that target problematic video-gaming and sleep should be devised as a possible means for improving adolescents' long-term cardio-metabolic health.

  1. Histone acetylation, acetyltransferases, and ataxia--alteration of histone acetylation and chromatin dynamics is implicated in the pathogenesis of polyglutamine-expansion disorders.

    Science.gov (United States)

    McCullough, Shaun D; Grant, Patrick A

    2010-01-01

    Eukaryotic chromosomal DNA is packaged into nucleosomes to form a dynamic structure known as chromatin. The compaction of DNA within chromatin poses a unique hindrance with regards to the accessibility of the DNA to enzymes involved in replication, transcriptional regulation, and repair. The physical structure and physiological activity of chromatin are regulated through a diverse set of posttranslational modifications, histone exchange, and structural remodeling. Of the covalent chromatin modifications, the acetylation of lysine residues within histone proteins by acetyltransferase enzymes, such as GCN5, is one of the most prevalent and important steps in the regulation of chromatin function. Alteration of histone acetyltransferase activity can easily result in the dysregulation of gene transcription and ultimately the onset of a disease state. Many transcription factors contain polyglutamine regions within their primary sequence. Mutations resulting in the elongation of these polyglutamine tracts are associated with a disease family known as the polyglutamine expansion disorders. Spinocerebellar ataxia type 7 (SCA7) is one of the nine diseases that are grouped in this family and is caused by polyglutamine expansion of the ataxin-7 protein, which is a component of the GCN5-containing human SAGA histone acetyltransferase complex. Mutation of ataxin-7 in this manner has been shown to disrupt the structural integrity of the SAGA complex and result in aberrant chromatin acetylation patterns at the promoters of genes involved in the normal function of tissues that are affected by the disease. The specific aspects of molecular pathology are not currently understood; however, studies carried out in laboratory systems ranging from the budding yeast Saccharomyces cerevisiae to transgenic mouse models and cultured human cells are poised to allow for the elucidation of disease mechanisms and subsequent therapeutic approaches.

  2. RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast.

    Science.gov (United States)

    Ganguli, Dwaipayan; Chereji, Răzvan V; Iben, James R; Cole, Hope A; Clark, David J

    2014-10-01

    RSC and SWI/SNF are related ATP-dependent chromatin remodeling machines that move nucleosomes, regulating access to DNA. We addressed their roles in nucleosome phasing relative to transcription start sites in yeast. SWI/SNF has no effect on phasing at the global level. In contrast, RSC depletion results in global nucleosome repositioning: Both upstream and downstream nucleosomal arrays shift toward the nucleosome-depleted region (NDR), with no change in spacing, resulting in a narrower and partly filled NDR. The global picture of RSC-depleted chromatin represents the average of a range of chromatin structures, with most genes showing a shift of the +1 or the -1 nucleosome into the NDR. Using RSC ChIP data reported by others, we show that RSC occupancy is highest on the coding regions of heavily transcribed genes, though not at their NDRs. We propose that RSC has a role in restoring chromatin structure after transcription. Analysis of gene pairs in different orientations demonstrates that phasing patterns reflect competition between phasing signals emanating from neighboring NDRs. These signals may be in phase, resulting in constructive interference and a regular array, or out of phase, resulting in destructive interference and fuzzy positioning. We propose a modified barrier model, in which a stable complex located at the NDR acts as a bidirectional phasing barrier. In RSC-depleted cells, this barrier has a smaller footprint, resulting in narrower NDRs. Thus, RSC plays a critical role in organizing yeast chromatin.

  3. Apoptotic lymphocytes of H. sapiens lose nucleosomes in GC-rich promoters.

    Science.gov (United States)

    Hosid, Sergey; Ioshikhes, Ilya

    2014-07-01

    We analyzed two sets of human CD4+ nucleosomal DNA directly sequenced by Illumina (Solexa) high throughput sequencing method. The first set has ∼40 M sequences and was produced from the normal CD4+ T lymphocytes by micrococcal nuclease. The second set has ∼44 M sequences and was obtained from peripheral blood lymphocytes by apoptotic nucleases. The different nucleosome sets showed similar dinucleotide positioning AA/TT, GG/CC, and RR/YY (R is purine, Y--pyrimidine) patterns with periods of 10-10.4 bp. Peaks of GG/CC and AA/TT patterns were shifted by 5 bp from each other. Two types of promoters in H. sapiens: AT and GC-rich were identified. AT-rich promoters in apoptotic cell had +1 nucleosome shifts 50-60 bp downstream from those in normal lymphocytes. GC-rich promoters in apoptotic cells lost 80% of nucleosomes around transcription start sites as well as in total DNA. Nucleosome positioning was predicted by combination of {AA, TT}, {GG, CC}, {WW, SS} and {RR, YY} patterns. In our study we found that the combinations of {AA, TT} and {GG, CC} provide the best results and successfully mapped 33% of nucleosomes 147 bp long with precision ±15 bp (only 31/147 or 21% is expected).

  4. A 1-dimensional statistical mechanics model for nucleosome positioning on genomic DNA

    CERN Document Server

    Tesoro, S; Morozov, A N; Sulaiman, N; Marenduzzo, D

    2015-01-01

    The first level of folding of DNA in eukaryotes is provided by the so called '10nm chromatin fibre', where DNA wraps around histone proteins (approx. 10 nm in size) to form nucleosomes, which go on to create a zig zagging 'bead on a string' structure. In this work we present a one dimensional statistical mechanics model to study nucleosome positioning within one such 10 nm fibre. We consider both the case of homogeneous DNA, where the problem can be mapped to a Tonks gas, and that of genomic sheep DNA, where our modelling is informed by high-resolution nucleosome positioning data. First, we consider the simple, analytically solvable, case where nucleosomes are assumed to be point like. Then, we perform numerical simulations to gauge the effect of their finite size on the nucleosomal distribution probabilities. Finally, we compare nucleosome distributions and simulated nuclease digestion patterns for the two cases (homogeneous and sheep DNA), thereby providing testable predictions of the effect of sequence on ...

  5. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    Directory of Open Access Journals (Sweden)

    Amber N Brown

    Full Text Available Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.

  6. Histone Chaperone FACT Coordinates Nucleosome Interaction through Multiple Synergistic Binding Events*

    Science.gov (United States)

    Winkler, Duane D.; Muthurajan, Uma M.; Hieb, Aaron R.; Luger, Karolin

    2011-01-01

    In eukaryotic cells, DNA maintenance requires ordered disassembly and re-assembly of chromatin templates. These processes are highly regulated and require extrinsic factors such as chromatin remodelers and histone chaperones. The histone chaperone FACT (facilitates chromatin transcription) is a large heterodimeric complex with roles in transcription, replication, and repair. FACT promotes and subsequently restricts access to DNA as a result of dynamic nucleosome reorganization. However, until now, there lacked a truly quantitative assessment of the critical contacts mediating FACT function. Here, we demonstrate that FACT binds histones, DNA, and intact nucleosomes at nanomolar concentrations. We also determine roles for the histone tails in free histone and nucleosome binding by FACT. Furthermore, we propose that the conserved acidic C-terminal domain of the FACT subunit Spt16 actively displaces nucleosomal DNA to provide access to the histone octamer. Experiments with tri-nucleosome arrays indicate a possible mode for FACT binding within chromatin. Together, the data reveal that specific FACT subunits synchronize interactions with various target sites on individual nucleosomes to generate a high affinity binding event and promote reorganization. PMID:21969370

  7. Histone chaperone FACT coordinates nucleosome interaction through multiple synergistic binding events.

    Science.gov (United States)

    Winkler, Duane D; Muthurajan, Uma M; Hieb, Aaron R; Luger, Karolin

    2011-12-02

    In eukaryotic cells, DNA maintenance requires ordered disassembly and re-assembly of chromatin templates. These processes are highly regulated and require extrinsic factors such as chromatin remodelers and histone chaperones. The histone chaperone FACT (facilitates chromatin transcription) is a large heterodimeric complex with roles in transcription, replication, and repair. FACT promotes and subsequently restricts access to DNA as a result of dynamic nucleosome reorganization. However, until now, there lacked a truly quantitative assessment of the critical contacts mediating FACT function. Here, we demonstrate that FACT binds histones, DNA, and intact nucleosomes at nanomolar concentrations. We also determine roles for the histone tails in free histone and nucleosome binding by FACT. Furthermore, we propose that the conserved acidic C-terminal domain of the FACT subunit Spt16 actively displaces nucleosomal DNA to provide access to the histone octamer. Experiments with tri-nucleosome arrays indicate a possible mode for FACT binding within chromatin. Together, the data reveal that specific FACT subunits synchronize interactions with various target sites on individual nucleosomes to generate a high affinity binding event and promote reorganization.

  8. Nucleosome occupancy as a novel chromatin parameter for replication origin functions

    Science.gov (United States)

    Rodriguez, Jairo; Lee, Laura; Lynch, Bryony; Tsukiyama, Toshio

    2017-01-01

    Eukaryotic DNA replication initiates from multiple discrete sites in the genome, termed origins of replication (origins). Prior to S phase, multiple origins are poised to initiate replication by recruitment of the pre-replicative complex (pre-RC). For proper replication to occur, origin activation must be tightly regulated. At the population level, each origin has a distinct firing time and frequency of activation within S phase. Many studies have shown that chromatin can strongly influence initiation of DNA replication. However, the chromatin parameters that affect properties of origins have not been thoroughly established. We found that nucleosome occupancy in G1 varies greatly around origins across the S. cerevisiae genome, and nucleosome occupancy around origins significantly correlates with the activation time and efficiency of origins, as well as pre-RC formation. We further demonstrate that nucleosome occupancy around origins in G1 is established during transition from G2/M to G1 in a pre-RC-dependent manner. Importantly, the diminished cell-cycle changes in nucleosome occupancy around origins in the orc1-161 mutant are associated with an abnormal global origin usage profile, suggesting that proper establishment of nucleosome occupancy around origins is a critical step for regulation of global origin activities. Our work thus establishes nucleosome occupancy as a novel and key chromatin parameter for proper origin regulation. PMID:27895110

  9. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    Science.gov (United States)

    Brown, Amber N; Vied, Cynthia; Dennis, Jonathan H; Bhide, Pradeep G

    2015-01-01

    Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.

  10. Single-Molecule Studies of the Linker Histone H1 Binding to DNA and the Nucleosome.

    Science.gov (United States)

    Yue, Hongjun; Fang, He; Wei, Sijie; Hayes, Jeffrey J; Lee, Tae-Hee

    2016-04-12

    Linker histone H1 regulates chromatin structure and gene expression. Investigating the dynamics and stoichiometry of binding of H1 to DNA and the nucleosome is crucial to elucidating its functions. Because of the abundant positive charges and the strong self-affinity of H1, quantitative in vitro studies of its binding to DNA and the nucleosome have generated results that vary widely and, therefore, should be interpreted in a system specific manner. We sought to overcome this limitation by developing a specially passivated microscope slide surface to monitor binding of H1 to DNA and the nucleosome at a single-molecule level. According to our measurements, the stoichiometry of binding of H1 to DNA and the nucleosome is very heterogeneous with a wide distribution whose averages are in reasonable agreement with previously published values. Our study also revealed that H1 does not dissociate from DNA or the nucleosome on a time scale of tens of minutes. We found that histone chaperone Nap1 readily dissociates H1 from DNA and superstoichiometrically bound H1 from the nucleosome, supporting a hypothesis whereby histone chaperones contribute to the regulation of the H1 profile in chromatin.

  11. GAA triplet-repeats cause nucleosome depletion in the human genome.

    Science.gov (United States)

    Zhao, Hongyu; Xing, Yongqiang; Liu, Guoqing; Chen, Ping; Zhao, Xiujuan; Li, Guohong; Cai, Lu

    2015-08-01

    Although there have been many investigations into how trinucleotide repeats affect nucleosome formation and local chromatin structure, the nucleosome positioning of GAA triplet-repeats in the human genome has remained elusive. In this work, the nucleosome occupancy around GAA triplet-repeats across the human genome was computed statistically. The results showed a nucleosome-depleted region in the vicinity of GAA triplet-repeats in activated and resting CD4(+) T cells. Furthermore, the A-tract was frequently adjacent to the upstream region of GAA triplet-repeats and could enhance the depletion surrounding GAA triplet-repeats. In vitro chromatin reconstitution assays with GAA-containing plasmids also demonstrated that the inserted GAA triplet-repeats destabilized the ability of recombinant plasmids to assemble nucleosomes. Our results suggested that GAA triplet-repeats have lower affinity to histones and can change local nucleosome positioning. These findings may be helpful for understanding the mechanism of Friedreich's ataxia, which is associated with GAA triplet-repeats at the chromatin level.

  12. Relationship between nucleosome positioning and progesterone-induced alternative splicing in breast cancer cells.

    Science.gov (United States)

    Iannone, Camilla; Pohl, Andy; Papasaikas, Panagiotis; Soronellas, Daniel; Vicent, Guillermo P; Beato, Miguel; ValcáRcel, Juan

    2015-03-01

    Splicing of mRNA precursors can occur cotranscriptionally and it has been proposed that chromatin structure influences splice site recognition and regulation. Here we have systematically explored potential links between nucleosome positioning and alternative splicing regulation upon progesterone stimulation of breast cancer cells. We confirm preferential nucleosome positioning in exons and report four distinct profiles of nucleosome density around alternatively spliced exons, with RNA polymerase II accumulation closely following nucleosome positioning. Hormone stimulation induces switches between profile classes, correlating with a subset of alternative splicing changes. Hormone-induced exon inclusion often correlates with higher nucleosome occupancy at the exon or the preceding intronic region and with higher RNA polymerase II accumulation. In contrast, exons skipped upon hormone stimulation display low nucleosome densities even before hormone treatment, suggesting that chromatin structure primes alternative splicing regulation. Skipped exons frequently harbor binding sites for hnRNP AB, a hormone-induced splicing regulator whose knock down prevents some hormone-induced skipping events. Collectively, our results argue that a variety of chromatin architecture mechanisms can influence alternative splicing decisions.

  13. AFM studies in diverse ionic environments of nucleosomes reconstituted on the 601 positioning sequence.

    Science.gov (United States)

    Nazarov, Igor; Chekliarova, Iana; Rychkov, Georgy; Ilatovskiy, Andrey V; Crane-Robinson, Colyn; Tomilin, Alexey

    2016-02-01

    Atomic force microscopy (AFM) was used to study mononucleosomes reconstituted from a DNA duplex of 353 bp containing the strong 601 octamer positioning sequence, together with recombinant human core histone octamers. Three parameters were measured: 1) the length of DNA wrapped around the core histones; 2) the number of superhelical turns, calculated from the total angle through which the DNA is bent, and 3) the volume of the DNA-histone core. This approach allowed us to define in detail the structural diversity of nucleosomes caused by disassembly of the octasome to form subnucleosomal structures containing hexasomes, tetrasomes and disomes. At low ionic strength (TE buffer) and in the presence of physiological concentrations of monovalent cations, the majority of the particles were subnucleosomal, but physiological concentrations of bivalent cations resulted in about half of the nucleosomes being canonical octasomes in which the exiting DNA duplexes cross orthogonally. The dominance of this last species explains why bivalent but not monovalent cations can induce the initial step towards compaction and convergence of neighboring nucleosomes in nucleosomal arrays to form the chromatin fiber in the absence of linker histone. The observed nucleosome structural diversity may reflect the functional plasticity of nucleosomes under physiological conditions.

  14. Theoretical estimates of exposure timescales of protein binding sites on DNA regulated by nucleosome kinetics.

    Science.gov (United States)

    Parmar, Jyotsana J; Das, Dibyendu; Padinhateeri, Ranjith

    2016-02-29

    It is being increasingly realized that nucleosome organization on DNA crucially regulates DNA-protein interactions and the resulting gene expression. While the spatial character of the nucleosome positioning on DNA has been experimentally and theoretically studied extensively, the temporal character is poorly understood. Accounting for ATPase activity and DNA-sequence effects on nucleosome kinetics, we develop a theoretical method to estimate the time of continuous exposure of binding sites of non-histone proteins (e.g. transcription factors and TATA binding proteins) along any genome. Applying the method to Saccharomyces cerevisiae, we show that the exposure timescales are determined by cooperative dynamics of multiple nucleosomes, and their behavior is often different from expectations based on static nucleosome occupancy. Examining exposure times in the promoters of GAL1 and PHO5, we show that our theoretical predictions are consistent with known experiments. We apply our method genome-wide and discover huge gene-to-gene variability of mean exposure times of TATA boxes and patches adjacent to TSS (+1 nucleosome region); the resulting timescale distributions have non-exponential tails.

  15. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer.

    Science.gov (United States)

    Gong, Fade; Chiu, Li-Ya; Miller, Kyle M

    2016-09-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.

  16. Histones and nucleosomes in Cancer sperm (Decapod: Crustacea) previously described as lacking basic DNA-associated proteins: a new model of sperm chromatin.

    Science.gov (United States)

    Kurtz, Kathryn; Martínez-Soler, Fina; Ausió, Juan; Chiva, Manel

    2008-10-01

    To date several studies have been carried out which indicate that DNA of crustacean sperm is neither bound nor organized by basic proteins and, contrary to the rest of spermatozoa, do not contain highly packaged chromatin. Since this is the only known case of this type among metazoan cells, we have re-examined the composition, and partially the structure, of the mature sperm chromatin of Cancer pagurus, which has previously been described as lacking basic DNA-associated proteins. The results we present here show that: (a) sperm DNA of C. pagurus is bound by histones forming nucleosomes of 170 base pairs, (b) the ratio [histones/DNA] in sperm of two Cancer species is 0.5 and 0.6 (w/w). This ratio is quite lower than the proportion [proteins/DNA] that we found in other sperm nuclei with histones or protamines, whose value is from 1.0 to 1.2 (w/w), (c) histone H4 is highly acetylated in mature sperm chromatin of C. pagurus. Other histones (H3 and H2B) are also acetylated, though the level is much lower than that of histone H4. The low ratio of histones to DNA, along with the high level of acetylation of these proteins, explains the non-compact, decondensed state of the peculiar chromatin in the sperm studied here. In the final section we offer an explanation for the necessity of such decondensed chromatin during gamete fertilization of this species. (c) 2008 Wiley-Liss, Inc.

  17. Intracellular Acetyl Unit Transport in Fungal Carbon Metabolism

    NARCIS (Netherlands)

    Strijbis, K.; Distel, B.

    2010-01-01

    Acetyl coenzyme A (acetyl-CoA) is a central metabolite in carbon and energy metabolism. Because of its amphiphilic nature and bulkiness, acetyl-CoA cannot readily traverse biological membranes. In fungi, two systems for acetyl unit transport have been identified: a shuttle dependent on the carrier c

  18. p53 Acetylation: Regulation and Consequences

    Directory of Open Access Journals (Sweden)

    Sara M. Reed

    2014-12-01

    Full Text Available Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  19. p53 Acetylation: Regulation and Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Sara M. [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Quelle, Dawn E., E-mail: dawn-quelle@uiowa.edu [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States)

    2014-12-23

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  20. Biological activity of acetylated phenolic compounds.

    Science.gov (United States)

    Fragopoulou, Elizabeth; Nomikos, Tzortzis; Karantonis, Haralabos C; Apostolakis, Constantinos; Pliakis, Emmanuel; Samiotaki, Martina; Panayotou, George; Antonopoulou, Smaragdi

    2007-01-10

    In recent years an effort has been made to isolate and identify biologically active compounds that are included in the Mediterranean diet. The existence of naturally occurring acetylated phenolics, as well as studies with synthetic ones, provide evidence that acetyl groups could be correlated with their biological activity. Platelet activating factor (PAF) is implicated in atherosclerosis, whereas its inhibitors seem to play a protective role against cardiovascular disease. The aim of this study was to examine the biological activity of resveratrol and tyrosol and their acetylated derivatives as inhibitors of PAF-induced washed rabbit platelet aggregation. Acetylation of resveratrol and tyrosol was performed, and separation was achieved by HPLC. Acetylated derivatives were identified by negative mass spectrometry. The data showed that tyrosol and its monoacetylated derivatives act as PAF inhibitors, whereas diacetylated derivatives induce platelet aggregation. Resveratrol and its mono- and triacetylated derivatives exert similar inhibitory activity, whereas the diacetylated ones are more potent inhibitors. In conclusion, acetylated phenolics exert the same or even higher antithrombotic activity compared to the biological activity of the initial one.

  1. Increased Nucleosomes and Neutrophil Activation Link to Disease Progression in Patients with Scrub Typhus but Not Murine Typhus in Laos.

    Science.gov (United States)

    Paris, Daniel H; Stephan, Femke; Bulder, Ingrid; Wouters, Diana; van der Poll, Tom; Newton, Paul N; Day, Nicholas P J; Zeerleder, Sacha

    2015-01-01

    Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil activation, as evidenced by neutrophil-elastase (ELA) complexes, in sympatric Lao patients with scrub typhus and murine typhus. In acute scrub typhus elevated nucleosome levels correlated with lower GCS scores, raised respiratory rate, jaundice and impaired liver function, whereas neutrophil activation correlated with fibrinolysis and high IL-8 plasma levels, a recently identified predictor of severe disease and mortality. Nucleosome and ELA complex levels were associated with a 4.8-fold and 4-fold increased risk of developing severe scrub typhus, beyond cut off values of 1,040 U/ml for nucleosomes and 275 U/ml for ELA complexes respectively. In murine typhus, nucleosome levels associated with pro-inflammatory cytokines and the duration of illness, while ELA complexes correlated strongly with inflammation markers, jaundice and increased respiratory rates. This study found strong correlations between circulating nucleosomes and neutrophil activation in patients with scrub typhus, but not murine typhus, providing indirect evidence that nucleosomes could originate from neutrophil extracellular trap (NET) degradation. High circulating plasma nucleosomes and ELA complexes represent independent risk factors for developing severe complications in scrub typhus. As nucleosomes and histones exposed on NETs are highly cytotoxic to endothelial cells and are strongly pro-coagulant, neutrophil-derived nucleosomes could contribute to vascular damage, the pro-coagulant state and exacerbation of disease in scrub typhus, thus indicating a detrimental role of neutrophil activation. The data suggest that increased neutrophil activation relates to disease progression and severe complications, and

  2. Pasting properties and (chemical) fine structure of acetylated yellow pea starch is affected by acetylation reagent type and granule size

    NARCIS (Netherlands)

    Huang, J.; Schols, H.A.; Jin, Z.; Sulmann, E.; Voragen, A.G.J.

    2007-01-01

    Yellow pea starch was fractionated into small and large size granule fractions and then modified with acetic anhydride and vinyl acetate (acetylation after sieving) or first acetylated in the same way and then fractionated into small and large size fractions (acetylation before sieving). Acetylation

  3. Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence.

    Directory of Open Access Journals (Sweden)

    Joke J F A van Vugt

    Full Text Available BACKGROUND: Chromosome structure, DNA metabolic processes and cell type identity can all be affected by changing the positions of nucleosomes along chromosomal DNA, a reaction that is catalysed by SNF2-type ATP-driven chromatin remodelers. Recently it was suggested that in vivo, more than 50% of the nucleosome positions can be predicted simply by DNA sequence, especially within promoter regions. This seemingly contrasts with remodeler induced nucleosome mobility. The ability of remodeling enzymes to mobilise nucleosomes over short DNA distances is well documented. However, the nucleosome translocation processivity along DNA remains elusive. Furthermore, it is unknown what determines the initial direction of movement and how new nucleosome positions are adopted. METHODOLOGY/PRINCIPAL FINDINGS: We have used AFM imaging and high resolution PAGE of mononucleosomes on 600 and 2500 bp DNA molecules to analyze ATP-dependent nucleosome repositioning by native and recombinant SNF2-type enzymes. We report that the underlying DNA sequence can control the initial direction of translocation, translocation distance, as well as the new positions adopted by nucleosomes upon enzymatic mobilization. Within a strong nucleosomal positioning sequence both recombinant Drosophila Mi-2 (CHD-type and native RSC from yeast (SWI/SNF-type repositioned the nucleosome at 10 bp intervals, which are intrinsic to the positioning sequence. Furthermore, RSC-catalyzed nucleosome translocation was noticeably more efficient when beyond the influence of this sequence. Interestingly, under limiting ATP conditions RSC preferred to position the nucleosome with 20 bp intervals within the positioning sequence, suggesting that native RSC preferentially translocates nucleosomes with 15 to 25 bp DNA steps. CONCLUSIONS/SIGNIFICANCE: Nucleosome repositioning thus appears to be influenced by both remodeler intrinsic and DNA sequence specific properties that interplay to define ATPase

  4. Increasing Nucleosome Occupancy Is Correlated with an Increasing Mutation Rate so Long as DNA Repair Machinery Is Intact.

    Science.gov (United States)

    Yazdi, Puya G; Pedersen, Brian A; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E; Wang, Ping H

    2015-01-01

    Deciphering the multitude of epigenomic and genomic factors that influence the mutation rate is an area of great interest in modern biology. Recently, chromatin has been shown to play a part in this process. To elucidate this relationship further, we integrated our own ultra-deep sequenced human nucleosomal DNA data set with a host of published human genomic and cancer genomic data sets. Our results revealed, that differences in nucleosome occupancy are associated with changes in base-specific mutation rates. Increasing nucleosome occupancy is associated with an increasing transition to transversion ratio and an increased germline mutation rate within the human genome. Additionally, cancer single nucleotide variants and microindels are enriched within nucleosomes and both the coding and non-coding cancer mutation rate increases with increasing nucleosome occupancy. There is an enrichment of cancer indels at the theoretical start (74 bp) and end (115 bp) of linker DNA between two nucleosomes. We then hypothesized that increasing nucleosome occupancy decreases access to DNA by DNA repair machinery and could account for the increasing mutation rate. Such a relationship should not exist in DNA repair knockouts, and we thus repeated our analysis in DNA repair machinery knockouts to test our hypothesis. Indeed, our results revealed no correlation between increasing nucleosome occupancy and increasing mutation rate in DNA repair knockouts. Our findings emphasize the linkage of the genome and epigenome through the nucleosome whose properties can affect genome evolution and genetic aberrations such as cancer.

  5. Genome-Wide Nucleosome Occupancy and Positioning and Their Impact on Gene Expression and Evolution in Plants.

    Science.gov (United States)

    Zhang, Tao; Zhang, Wenli; Jiang, Jiming

    2015-08-01

    The fundamental unit of chromatin is the nucleosome that consists of a protein octamer composed of the four core histones (Hs; H3, H4, H2A, and H2B) wrapped by 147 bp of DNA. Nucleosome occupancy and positioning have proven to be dynamic and have a critical impact on expression, regulation, and evolution of eukaryotic genes. We developed nucleosome occupancy and positioning data sets using leaf tissue of rice (Oryza sativa) and both leaf and flower tissues of Arabidopsis (Arabidopsis thaliana). We show that model plant and animal species share the fundamental characteristics associated with nucleosome dynamics. Only 12% and 16% of the Arabidopsis and rice genomes, respectively, were occupied by well-positioned nucleosomes. The cores of positioned nucleosomes were enriched with G/C dinucleotides and showed a lower C→T mutation rate than the linker sequences. We discovered that nucleosomes associated with heterochromatic regions were more spaced with longer linkers than those in euchromatic regions in both plant species. Surprisingly, different nucleosome densities were found to be associated with chromatin in leaf and flower tissues in Arabidopsis. We show that deep MNase-seq data sets can be used to map nucleosome occupancy of specific genomic loci and reveal gene expression patterns correlated with chromatin dynamics in plant genomes.

  6. Mutation bias, rather than binding preference, underlies the nucleosome-associated G+C% variation in eukaryotes.

    Science.gov (United States)

    Xing, Ke; He, Xionglei

    2015-03-18

    The effects of genetic content on epigenetic status have been extensively studied, but how epigenetic status affects genetic content is not well understood. As a key epigenetic factor the nucleosome structure is highly correlated with local G+C% in eukaryotic genomes. The prevailing explanation to the pattern is that nucleosome occupancy favors higher G+C% sequences more than lower G+C% sequences. However, recent observation of a biased mutation spectrum caused by nucleosome occupancy suggests that the higher G+C% of nucleosomal DNA might be the evolutionary consequence of nucleosome occupancy. To distinguish the two explanations, we examined data from an in vitro nucleosome reconstitution experiment in which histones are incubated with yeast Saccharomyces cerevisiae and Escherichia coli genomic DNA, the former has been shaped by nucleosome structure while the latter has not. There is a strong positive correlation between nucleosome density and G+C% for the yeast DNA, an observation consistent with in vivo data, and such a pattern nearly vanishes for E. coli genomic DNA, suggesting that biased mutation, rather than biased occupancy, explains the most nucleosome-associated G+C% variation in eukaryotic genomes.

  7. Increasing Nucleosome Occupancy Is Correlated with an Increasing Mutation Rate so Long as DNA Repair Machinery Is Intact.

    Directory of Open Access Journals (Sweden)

    Puya G Yazdi

    Full Text Available Deciphering the multitude of epigenomic and genomic factors that influence the mutation rate is an area of great interest in modern biology. Recently, chromatin has been shown to play a part in this process. To elucidate this relationship further, we integrated our own ultra-deep sequenced human nucleosomal DNA data set with a host of published human genomic and cancer genomic data sets. Our results revealed, that differences in nucleosome occupancy are associated with changes in base-specific mutation rates. Increasing nucleosome occupancy is associated with an increasing transition to transversion ratio and an increased germline mutation rate within the human genome. Additionally, cancer single nucleotide variants and microindels are enriched within nucleosomes and both the coding and non-coding cancer mutation rate increases with increasing nucleosome occupancy. There is an enrichment of cancer indels at the theoretical start (74 bp and end (115 bp of linker DNA between two nucleosomes. We then hypothesized that increasing nucleosome occupancy decreases access to DNA by DNA repair machinery and could account for the increasing mutation rate. Such a relationship should not exist in DNA repair knockouts, and we thus repeated our analysis in DNA repair machinery knockouts to test our hypothesis. Indeed, our results revealed no correlation between increasing nucleosome occupancy and increasing mutation rate in DNA repair knockouts. Our findings emphasize the linkage of the genome and epigenome through the nucleosome whose properties can affect genome evolution and genetic aberrations such as cancer.

  8. Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells.

    Science.gov (United States)

    Shukla, Shatrunajay; Sharma, Ankita; Pandey, Vivek Kumar; Raisuddin, Sheikh; Kakkar, Poonam

    2016-01-15

    Post-translational modifications i.e. phosphorylation and acetylation are pivotal requirements for proper functioning of eukaryotic proteins. The current study aimed to decode the impact of acetylation/deacetylation of non-histone targets i.e. FoxO1/3a and p53 of sirtuins (NAD(+) dependent enzymes with lysine deacetylase activity) in berberine treated human hepatoma cells. Berberine (100 μM) inhibited sirtuins significantly (Pberberine potentiated sirtuins inhibition and increased the expression of FoxO1/3a and phosphorylation of p53 tumor suppressor protein. As sirtuins deacetylate non-histone targets including FoxO1/3a and p53, berberine increased the acetylation load of FoxO1/3a and p53 proteins. Acetylated FoxO and p53 proteins transcriptionally activate BH3-only proteins Bim and PUMA (3.89 and 3.87 fold respectively, Pberberine and nicotinamide was curtailed up to 28.3% (Pberberine (25 μM), reversed sirtuins expression comparable to control and significantly restored the cell viability (Pberberine mediated sirtuins inhibition resulting into FoxO1/3a and p53 acetylation followed by BH3-only protein Bim/PUMA activation may in part be responsible for mitochondria-mediated apoptosis.

  9. Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus.

    Science.gov (United States)

    Lee, Dong-Woo; Kim, Dooil; Lee, Yong-Jik; Kim, Jung-Ae; Choi, Ji Young; Kang, Sunghyun; Pan, Jae-Gu

    2013-08-01

    Recent analysis of prokaryotic N(ε)-lysine-acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the N(ε)-lysine-acetylated proteome of gram-positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl-lysine-specific antibodies followed by LC-MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism.

  10. Coordinated Action of Nap1 and RSC in Disassembly of Tandem Nucleosomes.

    Science.gov (United States)

    Prasad, Rashmi; D'Arcy, Sheena; Hada, Arjan; Luger, Karolin; Bartholomew, Blaine

    2016-09-01

    The SWI/SNF and RSC family of ATP-dependent chromatin remodelers disassembles nucleosomes by moving nucleosomes into the vicinity of adjoining nucleosomes. We found that the histone chaperone Nap1 efficiently promotes disassembly of adjacent nucleosomes with which RSC collides and not the disassembly of nucleosomes mobilized by RSC. Nap1 is specific to RSC, as it does not target SWI/SNF, its paralog in Saccharomyces cerevisiae Extensive mutational analysis of Nap1 has revealed that Nap1 affinity for histones H2A-H2B and H3-H4 and its ability to displace histones from DNA are required for Nap1 to enhance RSC-mediated disassembly. Other histone chaperones, such as Vps75, that also bind histones are not able to enhance RSC-mediated disassembly. Our study suggests a mechanism by which Nap1 is recruited to actively transcribed regions and assists in the passage of the transcription complex through chromatin, and it provides a novel mechanism for the coordinated action of RSC and Nap1.

  11. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome.

    Science.gov (United States)

    McGinty, Robert K; Henrici, Ryan C; Tan, Song

    2014-10-30

    The Polycomb group of epigenetic enzymes represses expression of developmentally regulated genes in many eukaryotes. This group includes the Polycomb repressive complex 1 (PRC1), which ubiquitylates nucleosomal histone H2A Lys 119 using its E3 ubiquitin ligase subunits, Ring1B and Bmi1, together with an E2 ubiquitin-conjugating enzyme, UbcH5c. However, the molecular mechanism of nucleosome substrate recognition by PRC1 or other chromatin enzymes is unclear. Here we present the crystal structure of the human Ring1B-Bmi1-UbcH5c E3-E2 complex (the PRC1 ubiquitylation module) bound to its nucleosome core particle substrate. The structure shows how a chromatin enzyme achieves substrate specificity by interacting with several nucleosome surfaces spatially distinct from the site of catalysis. Our structure further reveals an unexpected role for the ubiquitin E2 enzyme in substrate recognition, and provides insight into how the related histone H2A E3 ligase, BRCA1, interacts with and ubiquitylates the nucleosome.

  12. A one-dimensional statistical mechanics model for nucleosome positioning on genomic DNA.

    Science.gov (United States)

    Tesoro, S; Ali, I; Morozov, A N; Sulaiman, N; Marenduzzo, D

    2016-02-12

    The first level of folding of DNA in eukaryotes is provided by the so-called '10 nm chromatin fibre', where DNA wraps around histone proteins (∼10 nm in size) to form nucleosomes, which go on to create a zig-zagging bead-on-a-string structure. In this work we present a one-dimensional statistical mechanics model to study nucleosome positioning within one such 10 nm fibre. We focus on the case of genomic sheep DNA, and we start from effective potentials valid at infinite dilution and determined from high-resolution in vitro salt dialysis experiments. We study positioning within a polynucleosome chain, and compare the results for genomic DNA to that obtained in the simplest case of homogeneous DNA, where the problem can be mapped to a Tonks gas. First, we consider the simple, analytically solvable, case where nucleosomes are assumed to be point-like. Then, we perform numerical simulations to gauge the effect of their finite size on the nucleosomal distribution probabilities. Finally we compare nucleosome distributions and simulated nuclease digestion patterns for the two cases (homogeneous and sheep DNA), thereby providing testable predictions of the effect of sequence on experimentally observable quantities in experiments on polynucleosome chromatin fibres reconstituted in vitro.

  13. Nucleosome Positions and Differential Methylation Status of Various Regions within MLH1 CpG Island

    Institute of Scientific and Technical Information of China (English)

    BAI Hua; ZHOU Jing; DENG Da-jun

    2008-01-01

    Objective:To determine the relationship between nucleosome positions and formation of differential methylation of the reported region A,B,C,and D within the MLH1 CpG island. Methods:Methylation of the MLH1 promoter was analyzed by combined of bisulfite restriction assay.Chromatin of RKO and MGC803 cells were extracted and digested by Mnase.Mononucleosomal DNA fragment was isolated and used as templates for detection of nucleosomal distribution by a battery of quantitative PCRs covering the full MLH1 promoter region. Results:The MLH1 was methylated in RKO and unmethylated in MGC803.At the region B,where methylation of CpG sites did not correlated with transcription of this gene well,qPCR product of the M-3(-599nt~-475nt)fragment was amplified in both RKO and MGC803 cells.However,at the region C and D within the core promoter,where methylation of CpG sites correlated with loss of MLH1 transcription well,the M-7(-257nt~-153nt)and M-8(-189nt~-71nt)fragments were amplified remarkably only in RKO cells. Conclusion:Nucleosome may be the basic unit for both CpG methylation and methylation-related regulation of gene transcription.Methylation status of CpG sites within the same nucleosome may be homogeneous;between different nucleosomes,homogeneous or heterogeneous.

  14. Nucleosome assembly dynamics involve spontaneous fluctuations in the handedness of tetrasomes.

    Science.gov (United States)

    Vlijm, Rifka; Lee, Mina; Lipfert, Jan; Lusser, Alexandra; Dekker, Cees; Dekker, Nynke H

    2015-01-13

    DNA wrapping around histone octamers generates nucleosomes, the basic compaction unit of eukaryotic chromatin. Nucleosome stability is carefully tuned to maintain DNA accessibility in transcription, replication, and repair. Using freely orbiting magnetic tweezers, which measure the twist and length of single DNA molecules, we monitor the real-time loading of tetramers or complete histone octamers onto DNA by Nucleosome Assembly Protein-1 (NAP1). Remarkably, we find that tetrasomes exhibit spontaneous flipping between a preferentially occupied left-handed state (ΔLk = -0.73) and a right-handed state (ΔLk = +1.0), separated by a free energy difference of 2.3 kBT (1.5 kcal/mol). This flipping occurs without concomitant changes in DNA end-to-end length. The application of weak positive torque converts left-handed tetrasomes into right-handed tetrasomes, whereas nucleosomes display more gradual conformational changes. Our findings reveal unexpected dynamical rearrangements of the nucleosomal structure, suggesting that chromatin can serve as a "twist reservoir," offering a mechanistic explanation for the regulation of DNA supercoiling in chromatin.

  15. Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation.

    Science.gov (United States)

    Sun, Yujia; Nien, Chung-Yi; Chen, Kai; Liu, Hsiao-Yun; Johnston, Jeff; Zeitlinger, Julia; Rushlow, Christine

    2015-11-01

    The Drosophila genome activator Vielfaltig (Vfl), also known as Zelda (Zld), is thought to prime enhancers for activation by patterning transcription factors (TFs). Such priming is accompanied by increased chromatin accessibility, but the mechanisms by which this occurs are poorly understood. Here, we analyze the effect of Zld on genome-wide nucleosome occupancy and binding of the patterning TF Dorsal (Dl). Our results show that early enhancers are characterized by an intrinsically high nucleosome barrier. Zld tackles this nucleosome barrier through local depletion of nucleosomes with the effect being dependent on the number and position of Zld motifs. Without Zld, Dl binding decreases at enhancers and redistributes to open regions devoid of enhancer activity. We propose that Zld primes enhancers by lowering the high nucleosome barrier just enough to assist TFs in accessing their binding motifs and promoting spatially controlled enhancer activation if the right patterning TFs are present. We envision that genome activators in general will utilize this mechanism to activate the zygotic genome in a robust and precise manner.

  16. Abo1, a conserved bromodomain AAA-ATPase, maintains global nucleosome occupancy and organisation.

    Science.gov (United States)

    Gal, Csenge; Murton, Heather E; Subramanian, Lakxmi; Whale, Alex J; Moore, Karen M; Paszkiewicz, Konrad; Codlin, Sandra; Bähler, Jürg; Creamer, Kevin M; Partridge, Janet F; Allshire, Robin C; Kent, Nicholas A; Whitehall, Simon K

    2016-01-01

    Maintenance of the correct level and organisation of nucleosomes is crucial for genome function. Here, we uncover a role for a conserved bromodomain AAA-ATPase, Abo1, in the maintenance of nucleosome architecture in fission yeast. Cells lacking abo1(+) experience both a reduction and mis-positioning of nucleosomes at transcribed sequences in addition to increased intragenic transcription, phenotypes that are hallmarks of defective chromatin re-establishment behind RNA polymerase II. Abo1 is recruited to gene sequences and associates with histone H3 and the histone chaperone FACT. Furthermore, the distribution of Abo1 on chromatin is disturbed by impaired FACT function. The role of Abo1 extends to some promoters and also to silent heterochromatin. Abo1 is recruited to pericentromeric heterochromatin independently of the HP1 ortholog, Swi6, where it enforces proper nucleosome occupancy. Consequently, loss of Abo1 alleviates silencing and causes elevated chromosome mis-segregation. We suggest that Abo1 provides a histone chaperone function that maintains nucleosome architecture genome-wide.

  17. Computer modeling reveals that modifications of the histone tail charges define salt-dependent interaction of the nucleosome core particles.

    Science.gov (United States)

    Yang, Ye; Lyubartsev, Alexander P; Korolev, Nikolay; Nordenskiöld, Lars

    2009-03-18

    Coarse-grained Langevin molecular dynamics computer simulations were conducted for systems that mimic solutions of nucleosome core particles (NCPs). The NCP was modeled as a negatively charged spherical particle representing the complex of DNA and the globular part of the histones combined with attached strings of connected charged beads modeling the histone tails. The size, charge, and distribution of the tails relative to the core were built to match real NCPs. Three models of NCPs were constructed to represent different extents of covalent modification on the histone tails: (nonmodified) recombinant (rNCP), acetylated (aNCP), and acetylated and phosphorylated (paNCP). The simulation cell contained 10 NCPs in a dielectric continuum with explicit mobile counterions and added salt. The NCP-NCP interaction is decisively dependent on the modification state of the histone tails and on salt conditions. Increasing the monovalent salt concentration (KCl) from salt-free to physiological concentration leads to NCP aggregation in solution for rNCP, whereas NCP associates are observed only occasionally in the system of aNCPs. In the presence of divalent salt (Mg(2+)), rNCPs form dense stable aggregates, whereas aNCPs form aggregates less frequently. Aggregates are formed via histone-tail bridging and accumulation of counterions in the regions of NCP-NCP contacts. The paNCPs do not show NCP-NCP interaction upon addition of KCl or in the presence of Mg(2+). Simulations for systems with a gradual substitution of K(+) for Mg(2+), to mimic the Mg(2+) titration of an NCP solution, were performed. The rNCP system showed stronger aggregation that occurred at lower concentrations of added Mg(2+), compared to the aNCP system. Additional molecular dynamics simulations performed with a single NCP in the simulation cell showed that detachment of the tails from the NCP core was modest under a wide range of salt concentrations. This implies that salt-induced tail dissociation of the

  18. The MOF chromobarrel domain controls genome-wide H4K16 acetylation and spreading of the MSL complex.

    Science.gov (United States)

    Conrad, Thomas; Cavalli, Florence M G; Holz, Herbert; Hallacli, Erinc; Kind, Jop; Ilik, Ibrahim; Vaquerizas, Juan M; Luscombe, Nicholas M; Akhtar, Asifa

    2012-03-13

    The histone H4 lysine 16 (H4K16)-specific acetyltransferase MOF is part of two distinct complexes involved in X chromosome dosage compensation and autosomal transcription regulation. Here we show that the MOF chromobarrel domain is essential for H4K16 acetylation throughout the Drosophila genome and is required for spreading of the male-specific lethal (MSL) complex on the X chromosome. The MOF chromobarrel domain directly interacts with nucleic acids and potentiates MOF's enzymatic activity after chromatin binding, making it a unique example of a chromo-like domain directly controlling acetylation activity in vivo. We also show that the Drosophila-specific N terminus of MOF has evolved to perform sex-specific functions. It modulates nucleosome binding and HAT activity and controls MSL complex assembly, thus regulating MOF function in dosage compensation. We propose that MOF has been especially tailored to achieve tight regulation of its enzymatic activity and enable its dual role on X and autosomes.

  19. Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin.

    NARCIS (Netherlands)

    Heijden, G.W. van der; Derijck, A.H.A.; Ramos, L.; Giele, M.M.; Vlag, J. van der; Boer, P. de

    2006-01-01

    Rapidly after gamete fusion, the sperm nucleus loses its specific chromatin conformation and the DNA is repopulated with maternally derived nucleosomes. We evaluated the nature of paternally derived nucleosomes and the dynamics of sperm chromatin remodeling in the zygote directly after gamete fusion

  20. Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast

    Directory of Open Access Journals (Sweden)

    Soler-López Montserrat

    2011-10-01

    Full Text Available Abstract Background In eukaryotic organisms, DNA is packaged into chromatin structure, where most of DNA is wrapped into nucleosomes. DNA compaction and nucleosome positioning have clear functional implications, since they modulate the accessibility of genomic regions to regulatory proteins. Despite the intensive research effort focused in this area, the rules defining nucleosome positioning and the location of DNA regulatory regions still remain elusive. Results Naked (histone-free and nucleosomal DNA from yeast were digested by microccocal nuclease (MNase and sequenced genome-wide. MNase cutting preferences were determined for both naked and nucleosomal DNAs. Integration of their sequencing profiles with DNA conformational descriptors derived from atomistic molecular dynamic simulations enabled us to extract the physical properties of DNA on a genomic scale and to correlate them with chromatin structure and gene regulation. The local structure of DNA around regulatory regions was found to be unusually flexible and to display a unique pattern of nucleosome positioning. Ab initio physical descriptors derived from molecular dynamics were used to develop a computational method that accurately predicts nucleosome enriched and depleted regions. Conclusions Our experimental and computational analyses jointly demonstrate a clear correlation between sequence-dependent physical properties of naked DNA and regulatory signals in the chromatin structure. These results demonstrate that nucleosome positioning around TSS (Transcription Start Site and TTS (Transcription Termination Site (at least in yeast is strongly dependent on DNA physical properties, which can define a basal regulatory mechanism of gene expression.

  1. Promoter-proximal transcription factor binding is transcriptionally active when coupled with nucleosome repositioning in immediate vicinity

    Science.gov (United States)

    Yadav, Vinod Kumar; Thakur, Ram Krishna; Eckloff, Bruce; Baral, Aradhita; Singh, Ankita; Halder, Rashi; Kumar, Akinchan; Alam, Mohammad Parwez; Kundu, Tapas K.; Pandita, Raj; Pandita, Tej K.; Wieben, Eric D.; Chowdhury, Shantanu

    2014-01-01

    Previous studies have analyzed patterns of transcription, transcription factor (TF) binding or mapped nucleosome occupancy across the genome. These suggest that the three aspects are genetically connected but the cause and effect relationships are still unknown. For example, physiologic TF binding studies involve many TFs, consequently, it is difficult to assign nucleosome reorganization to the binding site occupancy of any particular TF. Therefore, several aspects remain unclear: does TF binding influence nucleosome (re)organizations locally or impact the chromatin landscape at a more global level; are all or only a fraction of TF binding a result of reorganization in nucleosome occupancy and do all TF binding and associated changes in nucleosome occupancy result in altered gene expression? With these in mind, following characterization of two states (before and after induction of a single TF of choice) we determined: (i) genomic binding sites of the TF, (ii) promoter nucleosome occupancy and (iii) transcriptome profiles. Results demonstrated that promoter-proximal TF binding influenced expression of the target gene when it was coupled to nucleosome repositioning at or close to its binding site in most cases. In contrast, only in few cases change in target gene expression was found when TF binding occurred without local nucleosome reorganization. PMID:25081206

  2. Nucleosome-induced neutrophil activation occurs independently of TLR9 and endosomal acidification: implications for systemic lupus erythematosus.

    NARCIS (Netherlands)

    Lindau, D.S.U.; Ronnefarth, V.; Erbacher, A.; Rammensee, H.G.; Decker, P. de

    2011-01-01

    The nucleosome is a major autoantigen known to activate PMN in systemic lupus erythematosus (SLE). TLR9 recognizes bacterial and even mammalian DNA under certain circumstances. Nevertheless, the role of TLR9 in SLE development is still unclear. Since nucleosomes are composed of DNA, we investigated

  3. The nucleosome-remodeling ATPase ISWI is regulated by poly-ADP-ribosylation.

    Directory of Open Access Journals (Sweden)

    Anna Sala

    2008-10-01

    Full Text Available ATP-dependent nucleosome-remodeling enzymes and covalent modifiers of chromatin set the functional state of chromatin. However, how these enzymatic activities are coordinated in the nucleus is largely unknown. We found that the evolutionary conserved nucleosome-remodeling ATPase ISWI and the poly-ADP-ribose polymerase PARP genetically interact. We present evidence showing that ISWI is target of poly-ADP-ribosylation. Poly-ADP-ribosylation counteracts ISWI function in vitro and in vivo. Our work suggests that ISWI is a physiological target of PARP and that poly-ADP-ribosylation can be a new, important post-translational modification regulating the activity of ATP-dependent nucleosome remodelers.

  4. Structural Basis of Silencing: Sir3 BAH Domain in Complex with a Nucleosome at 3.0 Å Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Armache, Karim-Jean; Garlick, Joseph D.; Canzio, Daniele; Narlikar, Geeta J.; Kingston, Robert E. (UCSF); (Mass. Gen. Hosp.)

    2011-11-30

    Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.

  5. Ultraviolet damage and nucleosome folding of the 5S ribosomal RNA gene.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X (Washington State University); Mann, David B.(ASSOC WESTERN UNIVERSITY); Suquet, C (Washington State University); Springer, David L.(BATTELLE (PACIFIC NW LAB)); Smerdon, Michael J.(VISITORS)

    2000-01-25

    The Xenopus borealis somatic 5S ribosomal RNA gene was used as a model system to determine the mutual effects of nucleosome folding and formation of ultraviolet (UV) photoproducts (primarily cis-syn cyclobutane pyrimidine dimers, or CPDs) in chromatin. We analyzed the preferred rotational and translational settings of 5S rDNA on the histone octamer surface after induction of up to 0.8 CPD/nucleosome core (2.5 kJ/m(2) UV dose). DNase I and hydroxyl radical footprints indicate that UV damage at these levels does not affect the average rotational setting of the 5S rDNA molecules. Moreover, a combination of nuclease trimming and restriction enzyme digestion indicates the preferred translational positions of the histone octamer are not affected by this level of UV damage. We also did not observe differences in the UV damage patterns of irradiated 5S rDNA before or after nucleosome formation, indicating there is little difference in the inhibition of nucleosome folding by specific CPD sites in the 5S rRNA gene. Conversely, nucleosome folding significantly restricts CPD formation at all sites in the three helical turns of the nontranscribed strand located in the dyad axis region of the nucleosome, where DNA is bound exclusively by the histone H3-H4 tetramer. Finally, modulation of the CPD distribution in a 14 nt long pyrimidine tract correlates with its rotational setting on the histone surface, when the strong sequence bias for CPD formation in this tract is minimized by normalization. These results help establish the mutual roles of histone binding and UV photoproducts on their formation in chromatin.

  6. Unchanged acetylation of isoniazid by alcohol intake

    DEFF Research Database (Denmark)

    Wilcke, J T R; Døssing, M; Angelo, H R

    2004-01-01

    SETTING: In 10 healthy subjects, the influence of acute alcohol intake on the pharmacokinetics of isoniazid (INH) was studied. OBJECTIVE: To test the hypothesis that alcohol increases the conversion of INH by acetylation into its metabolite acetylisoniazid. DESIGN: In a crossover design, an oral...

  7. Acetylated flavonol triglycosides from Ammi majus L.

    Science.gov (United States)

    Singab, A N

    1998-12-01

    Two new acetylated flavonol triglycosides: kaempferol and isorhamnetin 3-O-[2"-(4"'-acetylrhamnosyl)-6"-glucosyl] glucosides, were isolated and identified from the aerial parts of Ammi majus L. In addition, three known flavonol glycosides namely; isorhamnetin-3-O-rutinoside, kaempferol-3-O-glucoside and isorhamnetin-3-O-glucoside were detected.

  8. Access to the Genome: A Study of Transcription Factor Binding Within Nucleosomes

    Science.gov (United States)

    Brehove, Matthew

    All the DNA in a cell's nucleus is packaged into a material called chromatin consisting of DNA and DNA-associated proteins. The basic unit of chromatin is the nucleosome which consists of 147 bases of DNA wrapped around a protein core composed of two copies each of histones H2A, H2B, H3, and H4. DNA wrapped into a nucleosome is inaccessible to most DNA processing machinery. This machinery needs access to the DNA to perform processes such as transcription, replication, and repair. The cell uses many mechanisms to modulate this protection including nucleosome unwrapping, sliding, remodeling, disassembly, and chemical modification. This work used transcription factors along with fluorescent methods to probe the accessibility of DNA near the ends of the nucleosome. The DNA in this entry-exit region can spontaneously unwrap to provide transient access to DNA binding factors such as transcription factors. We studied the effect of histone post-translational modifications on the accessibility of DNA in the entry-exit region. We found that the phosphorylation at H3Y41ph increased DNA accessibility in vitro by 3-fold, which is similar in size to the effect of a previously studied modification H3K56ac. Since both of these modifications are associated with active genes and could occur together, we studied nucleosomes with both modifications and they showed a 17+/-5-fold increase in accessibility. This indicates that the cell could use multiple modifications in the entry-exit region to adjust the accessibility of nucleosomal DNA by over an order of magnitude. We also studied the effects of the removal of one H2A/H2B dimer. These partially formed nucleosomes, called hexasomes, are a component of chromatin that has been largely unstudied. Our results have shown that hexasomes have DNA accessibility similar to that of fully-formed nucleosomes on the side with the remaining H2A/H2B dimer. However, on the side without the dimer, our results showed the DNA remains permanently

  9. ATP-Dependent Chromatin Remodeling Factors and Their Roles in Affecting Nucleosome Fiber Composition

    Directory of Open Access Journals (Sweden)

    Alexandra Lusser

    2011-10-01

    Full Text Available ATP-dependent chromatin remodeling factors of the SNF2 family are key components of the cellular machineries that shape and regulate chromatin structure and function. Members of this group of proteins have broad and heterogeneous functions ranging from controlling gene activity, facilitating DNA damage repair, promoting homologous recombination to maintaining genomic stability. Several chromatin remodeling factors are critical components of nucleosome assembly processes, and recent reports have identified specific functions of distinct chromatin remodeling factors in the assembly of variant histones into chromatin. In this review we will discuss the specific roles of ATP-dependent chromatin remodeling factors in determining nucleosome composition and, thus, chromatin fiber properties.

  10. Modeling DNA-Bending in the Nucleosome: Role of AA Periodicity

    OpenAIRE

    Prytkova, Tatiana; Zhu, Xiao; Widom, Jonathan; Schatz, George C.

    2011-01-01

    This paper uses atomistic molecular mechanics within the framework of the Jumna model to study the bending properties of DNA segments, with emphasis on understanding the role of the 10 bp periodicity associated with AA repeats that has been found to dominate in nucleosomal DNA. The calculations impose a bending potential on 18 bp segments that is consistent with nucleosome structures (i.e., radius of curvature of 4.1 nm), and then determine the energies of the minimum energy structures for di...

  11. Alterations in sleep architecture in response to experimental sleep curtailment are associated with signs of positive energy balance.

    Science.gov (United States)

    Shechter, Ari; O'Keeffe, Majella; Roberts, Amy L; Zammit, Gary K; RoyChoudhury, Arindam; St-Onge, Marie-Pierre

    2012-11-01

    Sleep reduction is associated with increased energy intake and weight gain, though few studies have explored the relationship between sleep architecture and energy balance measures in the context of experimental sleep restriction. Fourteen males and 13 females (body mass index: 22-26 kg/m(2)) participated in a crossover sleep curtailment study. Participants were studied under two sleep conditions: short (4 h/night; 0100-0500 h) and habitual (9 h/night; 2200-0700 h), for 5 nights each. Sleep was polysomnographically recorded nightly. Outcome measures included resting metabolic rate (RMR), feelings of appetite-satiety, and ad libitum food intake. Short sleep resulted in reductions in stage 2 sleep and rapid eye movement (REM) sleep duration (P sleep and REM sleep and increased slow wave sleep (SWS) percentage (P sleep duration and RMR (P = 0.051). Inverse associations were observed between REM sleep duration and hunger (P = 0.031) and between stage 2 sleep duration and appetite for sweet (P = 0.015) and salty (P = 0.046) foods. Stage 2 sleep percentage was inversely related to energy consumed (P = 0.024). Stage 2 sleep (P = 0.005), SWS (P = 0.008), and REM sleep (P = 0.048) percentages were inversely related to fat intake, and SWS (P = 0.040) and REM sleep (P = 0.050) were inversely related to carbohydrate intake. This study demonstrates that changes in sleep architecture are associated with markers of positive energy balance and indicate a means by which exposure to short sleep duration and/or an altered sleep architecture profile may lead to excess weight gain over time.

  12. Simulation of Hawaiian Electric Companies Feeder Operations with Advanced Inverters and Analysis of Annual Photovoltaic Energy Curtailment

    Energy Technology Data Exchange (ETDEWEB)

    Giraldez Miner, Julieta I [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gotseff, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hoke, Anderson F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ueda, Reid [Hawaiian Electric Company; Shindo, Jon [Hawaiian Electric Company; Asano, Marc [Hawaiian Electric Company; Ifuku, Earle [Hawaiian Electric Company

    2017-07-26

    The Hawaiian Electric Companies achieved a consolidated Renewable Portfolio Standard (RPS) of approximately 26% at the end of 2016. This significant RPS performance was achieved using various renewable energy sources - biomass, geothermal, solar photovoltaic (PV) systems, hydro, wind, and biofuels - and customer-sited, grid-connected technologies (primarily private rooftop solar PV systems). The Hawaiian Electric Companies are preparing grid-modernization plans for the island grids. The plans outline specific near-term actions to accelerate the achievement of Hawai'i's 100% RPS by 2045. A key element of the Companies' grid-modernization strategy is to utilize new technologies - including storage and PV systems with grid-supportive inverters - that will help to more than triple the amount of private rooftop solar PV systems. The Hawaiian Electric Companies collaborated with the Smart Inverter Technical Working Group Hawai'i (SITWG) to partner with the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to research the implementation of advanced inverter grid support functions (GSF). Together with the technical guidance from the Companies's planning engineers and stakeholder input from the SITWG members, NREL proposed a scope of work that explored different modes of voltage-regulation GSF to better understand the trade-offs of the grid benefits and curtailment impacts from the activation of selected advanced inverter grid support functions. The simulation results presented in this report examine the effectiveness in regulating voltage as well as the impact to the utility and the customers of various inverter-based grid support functions on two Hawaiian Electric distribution substations.

  13. Two New Acetyl Cimicifugosides from the Rhizomes of Cimicifuga Racemosa

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Two new acetyl cimicifugosides were isolated from the rhizomes of Cimicifuga racemosa. Their structures were elucidated as 2'-O-acetyl cimicifugoside H-1 1 and 3'-O-acetyl cimicifugoside H-1 2 by the spectroscopic evidence and chemical methods.

  14. MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain

    Science.gov (United States)

    Thambirajah, Anita A.; Ng, Marlee K.; Frehlick, Lindsay J.; Li, Andra; Serpa, Jason J.; Petrotchenko, Evgeniy V.; Silva-Moreno, Begonia; Missiaen, Kristal K.; Borchers, Christoph H.; Adam Hall, J.; Mackie, Ryan; Lutz, Frank; Gowen, Brent E.; Hendzel, Michael; Georgel, Philippe T.; Ausió, Juan

    2012-01-01

    Methyl-CpG-binding protein 2 (MeCP2) is a chromatin-binding protein that mediates transcriptional regulation, and is highly abundant in brain. The nature of its binding to reconstituted templates has been well characterized in vitro. However, its interactions with native chromatin are less understood. Here we show that MeCP2 displays a distinct distribution within fractionated chromatin from various tissues and cell types. Artificially induced global changes in DNA methylation by 3-aminobenzamide or 5-aza-2′-deoxycytidine, do not significantly affect the distribution or amount of MeCP2 in HeLa S3 or 3T3 cells. Most MeCP2 in brain is chromatin-bound and localized within highly nuclease-accessible regions. We also show that, while in most tissues and cell lines, MeCP2 forms stable complexes with nucleosome, in brain, a fraction of it is loosely bound to chromatin, likely to nucleosome-depleted regions. Finally, we provide evidence for novel associations of MeCP2 with mononucleosomes containing histone H2A.X, H3K9me2 and H3K27me3 in different chromatin fractions from brain cortex and in vitro. We postulate that the functional compartmentalization and tissue-specific distribution of MeCP2 within different chromatin types may be directed by its association with nucleosomes containing specific histone variants, and post-translational modifications. PMID:22144686

  15. The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling.

    Science.gov (United States)

    Shukla, Manu Shubhdarshan; Syed, Sajad Hussain; Goutte-Gattat, Damien; Richard, John Lalith Charles; Montel, Fabien; Hamiche, Ali; Travers, Andrew; Faivre-Moskalenko, Cendrine; Bednar, Jan; Hayes, Jeffrey J; Angelov, Dimitar; Dimitrov, Stefan

    2011-04-01

    Histone variants within the H2A family show high divergences in their C-terminal regions. In this work, we have studied how these divergences and in particular, how a part of the H2A COOH-terminus, the docking domain, is implicated in both structural and functional properties of the nucleosome. Using biochemical methods in combination with Atomic Force Microscopy and Electron Cryo-Microscopy, we show that the H2A-docking domain is a key structural feature within the nucleosome. Deletion of this domain or replacement with the incomplete docking domain from the variant H2A.Bbd results in significant structural alterations in the nucleosome, including an increase in overall accessibility to nucleases, un-wrapping of ∼10 bp of DNA from each end of the nucleosome and associated changes in the entry/exit angle of DNA ends. These structural alterations are associated with a reduced ability of the chromatin remodeler RSC to both remodel and mobilize the nucleosomes. Linker histone H1 binding is also abrogated in nucleosomes containing the incomplete docking domain of H2A.Bbd. Our data illustrate the unique role of the H2A-docking domain in coordinating the structural-functional aspects of the nucleosome properties. Moreover, our data suggest that incorporation of a 'defective' docking domain may be a primary structural role of H2A.Bbd in chromatin.

  16. The human IL-2 gene promoter can assemble a positioned nucleosome that becomes remodeled upon T cell activation.

    Science.gov (United States)

    Attema, Joanne L; Reeves, Raymond; Murray, Vincent; Levichkin, Ilya; Temple, Mark D; Tremethick, David J; Shannon, M Frances

    2002-09-01

    Controlled production of the cytokine IL-2 plays a key role in the mammalian immune system. Expression from the gene is tightly regulated with no detectable expression in resting T cells and a strong induction following T cell activation. The IL-2 proximal promoter (+1 to -300) contains many well-defined transcriptional activation elements that respond to T cell stimulation. To determine the role of chromatin structure in the regulation of interleukin-2 gene transcription, nucleosome assembly across the IL-2 promoter region was examined using in vitro chromatin reconstitution assays. The IL-2 promoter assembles a nucleosome that is both translationally and rotationally positioned, spanning some of the major functional control elements. The binding of transcription factors to these elements, with the exception of the architectural protein HMGA1, was occluded by the presence of the nucleosome. Analysis of the chromatin architecture of the IL-2 gene in Jurkat T cells provided evidence for the presence of a similarly positioned nucleosome in vivo. The region encompassed by this nucleosome becomes remodeled following activation of Jurkat T cells. These observations suggest that the presence of a positioned nucleosome across the IL-2 proximal promoter may play an important role in maintaining an inactive gene in resting T cells and that remodeling of this nucleosome is important for gene activation.

  17. Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A.

    Science.gov (United States)

    Lo, Stanley M; McElroy, Kyle A; Francis, Nicole J

    2012-01-01

    Chromatin architecture is regulated through both enzymatic and non-enzymatic activities. For example, the Polycomb Group (PcG) proteins maintain developmental gene silencing using an array of chromatin-based mechanisms. The essential Drosophila PcG protein, Posterior Sex Combs (PSC), compacts chromatin and inhibits chromatin remodeling and transcription through a non-enzymatic mechanism involving nucleosome bridging. Nucleosome bridging is achieved through a combination of nucleosome binding and self-interaction. Precisely how PSC interacts with chromatin to bridge nucleosomes is not known and is the subject of this work. We determine the stoichiometry of PSC-chromatin interactions in compact chromatin (in which nucleosomes are bridged) using Scanning Transmission Electron Microscopy (STEM). We find that full compaction occurs with one PSC per nucleosome. In addition to compacting chromatin, we show that PSC oligomerizes nucleosome arrays. PSC-mediated oligomerization of chromatin occurs at similar stoichiometry as compaction suggesting it may also involve nucleosome bridging. Interactions between the tail of histone H4 and the acidic patch of histone H2A are important for chromatin folding and oligomerization, and several chromatin proteins bind the histone H2A acidic patch. However, mutation of the acidic patch of histone H2A does not affect PSC's ability to inhibit chromatin remodeling or bridge nucleosomes. In fact, PSC does not require nucleosomes for bridging activity but can bridge naked DNA segments. PSC clusters nucleosomes on sparsely assembled templates, suggesting it interacts preferentially with nucleosomes over bare DNA. This may be due to the ability of PSC to bind free histones. Our data are consistent with a model in which each PSC binds a nucleosome and at least one other PSC to directly bridge nucleosomes and compact chromatin, but also suggest that naked DNA can be included in compacted structures. We discuss how our data highlight the diversity

  18. Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A.

    Directory of Open Access Journals (Sweden)

    Stanley M Lo

    Full Text Available Chromatin architecture is regulated through both enzymatic and non-enzymatic activities. For example, the Polycomb Group (PcG proteins maintain developmental gene silencing using an array of chromatin-based mechanisms. The essential Drosophila PcG protein, Posterior Sex Combs (PSC, compacts chromatin and inhibits chromatin remodeling and transcription through a non-enzymatic mechanism involving nucleosome bridging. Nucleosome bridging is achieved through a combination of nucleosome binding and self-interaction. Precisely how PSC interacts with chromatin to bridge nucleosomes is not known and is the subject of this work. We determine the stoichiometry of PSC-chromatin interactions in compact chromatin (in which nucleosomes are bridged using Scanning Transmission Electron Microscopy (STEM. We find that full compaction occurs with one PSC per nucleosome. In addition to compacting chromatin, we show that PSC oligomerizes nucleosome arrays. PSC-mediated oligomerization of chromatin occurs at similar stoichiometry as compaction suggesting it may also involve nucleosome bridging. Interactions between the tail of histone H4 and the acidic patch of histone H2A are important for chromatin folding and oligomerization, and several chromatin proteins bind the histone H2A acidic patch. However, mutation of the acidic patch of histone H2A does not affect PSC's ability to inhibit chromatin remodeling or bridge nucleosomes. In fact, PSC does not require nucleosomes for bridging activity but can bridge naked DNA segments. PSC clusters nucleosomes on sparsely assembled templates, suggesting it interacts preferentially with nucleosomes over bare DNA. This may be due to the ability of PSC to bind free histones. Our data are consistent with a model in which each PSC binds a nucleosome and at least one other PSC to directly bridge nucleosomes and compact chromatin, but also suggest that naked DNA can be included in compacted structures. We discuss how our data

  19. Regulation of Nucleosome Architecture and Factor Binding Revealed by Nuclease Footprinting of the ESC Genome.

    Science.gov (United States)

    Hainer, Sarah J; Fazzio, Thomas G

    2015-10-06

    Functional interactions between gene regulatory factors and chromatin architecture have been difficult to directly assess. Here, we use micrococcal nuclease (MNase) footprinting to probe the functions of two chromatin-remodeling complexes. By simultaneously quantifying alterations in small MNase footprints over the binding sites of 30 regulatory factors in mouse embryonic stem cells (ESCs), we provide evidence that esBAF and Mbd3/NuRD modulate the binding of several regulatory proteins. In addition, we find that nucleosome occupancy is reduced at specific loci in favor of subnucleosomes upon depletion of esBAF, including sites of histone H2A.Z localization. Consistent with these data, we demonstrate that esBAF is required for normal H2A.Z localization in ESCs, suggesting esBAF either stabilizes H2A.Z-containing nucleosomes or promotes subnucleosome to nucleosome conversion by facilitating H2A.Z deposition. Therefore, integrative examination of MNase footprints reveals insights into nucleosome dynamics and functional interactions between chromatin structure and key gene-regulatory factors.

  20. Regulation of Nucleosome Architecture and Factor Binding Revealed by Nuclease Footprinting of the ESC Genome

    Directory of Open Access Journals (Sweden)

    Sarah J. Hainer

    2015-10-01

    Full Text Available Functional interactions between gene regulatory factors and chromatin architecture have been difficult to directly assess. Here, we use micrococcal nuclease (MNase footprinting to probe the functions of two chromatin-remodeling complexes. By simultaneously quantifying alterations in small MNase footprints over the binding sites of 30 regulatory factors in mouse embryonic stem cells (ESCs, we provide evidence that esBAF and Mbd3/NuRD modulate the binding of several regulatory proteins. In addition, we find that nucleosome occupancy is reduced at specific loci in favor of subnucleosomes upon depletion of esBAF, including sites of histone H2A.Z localization. Consistent with these data, we demonstrate that esBAF is required for normal H2A.Z localization in ESCs, suggesting esBAF either stabilizes H2A.Z-containing nucleosomes or promotes subnucleosome to nucleosome conversion by facilitating H2A.Z deposition. Therefore, integrative examination of MNase footprints reveals insights into nucleosome dynamics and functional interactions between chromatin structure and key gene-regulatory factors.

  1. Structure-based identification of new high-affinity nucleosome binding sequences.

    Science.gov (United States)

    Battistini, Federica; Hunter, Christopher A; Moore, Irene K; Widom, Jonathan

    2012-06-29

    The substrate for the proteins that express genetic information in the cell is not naked DNA but an assembly of nucleosomes, where the DNA is wrapped around histone proteins. The organization of these nucleosomes on genomic DNA is influenced by the DNA sequence. Here, we present a structure-based computational approach that translates sequence information into the energy required to bend DNA into a nucleosome-bound conformation. The calculations establish the relationship between DNA sequence and histone octamer binding affinity. In silico selection using this model identified several new DNA sequences, which were experimentally found to have histone octamer affinities comparable to the highest-affinity sequences known. The results provide insights into the molecular mechanism through which DNA sequence information encodes its organization. A quantitative appreciation of the thermodynamics of nucleosome positioning and rearrangement will be one of the key factors in understanding the regulation of transcription and in the design of new promoter architectures for the purposes of tuning gene expression dynamics.

  2. Pre-mRNA splicing is a determinant of nucleosome organization.

    Directory of Open Access Journals (Sweden)

    Hadas Keren-Shaul

    Full Text Available Chromatin organization affects alternative splicing and previous studies have shown that exons have increased nucleosome occupancy compared with their flanking introns. To determine whether alternative splicing affects chromatin organization we developed a system in which the alternative splicing pattern switched from inclusion to skipping as a function of time. Changes in nucleosome occupancy were correlated with the change in the splicing pattern. Surprisingly, strengthening of the 5' splice site or strengthening the base pairing of U1 snRNA with an internal exon abrogated the skipping of the internal exons and also affected chromatin organization. Over-expression of splicing regulatory proteins also affected the splicing pattern and changed nucleosome occupancy. A specific splicing inhibitor was used to show that splicing impacts nucleosome organization endogenously. The effect of splicing on the chromatin required a functional U1 snRNA base pairing with the 5' splice site, but U1 pairing was not essential for U1 snRNA enhancement of transcription. Overall, these results suggest that splicing can affect chromatin organization.

  3. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Steven C. [George Washington Univ., Washington, DC (United States)

    2016-01-31

    We set out to determine quantitative information regarding the dynamic conformation of nucleosome arrays in solution using experimental SAXS. Toward this end, we developed a CG simulation algorithm for dsDNA which rapidly generates ensembles of structures through Metropolis MC sampling of a Markov chain.

  4. Stereochemical control of nucleosome targeting by platinum-intercalator antitumor agents.

    Science.gov (United States)

    Chua, Eugene Y D; Davey, Gabriela E; Chin, Chee Fei; Dröge, Peter; Ang, Wee Han; Davey, Curt A

    2015-06-23

    Platinum-based anticancer drugs act therapeutically by forming DNA adducts, but suffer from severe toxicity and resistance problems, which have not been overcome in spite of decades of research. And yet defined chromatin targets have generally not been considered in the drug development process. Here we designed novel platinum-intercalator species to target a highly deformed DNA site near the nucleosome center. Between two seemingly similar structural isomers, we find a striking difference in DNA site selectivity in vitro, which comes about from stereochemical constraints that limit the reactivity of the trans isomer to special DNA sequence elements while still allowing the cis isomer to efficiently form adducts at internal sites in the nucleosome core. This gives the potential for controlling nucleosome site targeting in vivo, which would engender sensitivity to epigenetic distinctions and in particular cell type/status-dependent differences in nucleosome positioning. Moreover, while both compounds yield very similar DNA-adduct structures and display antitumor cell activity rivalling that of cisplatin, the cis isomer, relative to the trans, has a much more rapid cytotoxic effect and distinct impact on cell function. The novel stereochemical principles for controlling DNA site selectivity we discovered could aid in the design of improved site discriminating agents. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Changes in nucleosome position at transcriptional start sites of specific genes in Zea mays mediator of paramutation1 mutants.

    Science.gov (United States)

    Labonne, Jonathan D J; Dorweiler, Jane E; McGinnis, Karen M

    2013-04-01

    Nucleosomes facilitate compaction of DNA within the confines of the eukaryotic nucleus. This packaging of DNA and histone proteins must accommodate cellular processes, such as transcription and DNA replication. The repositioning of nucleosomes to facilitate cellular processes is likely regulated by several factors. In Zea mays, Mediator of paramutation1 (MOP1) has been demonstrated to be an epigenetic regulator of gene expression. Based on sequence orthology and mutant phenotypes, MOP1 is likely to function in an RNA-dependent pathway to mediate changes to chromatin. High-resolution microarrays were used to assay the distribution of nucleosomes across the transcription start sites (TSSs) of ~400 maize genes in wild type and mutant mop1-1 tissues. Analysis of nucleosome distribution in leaf, immature tassel and ear shoot tissues resulted in the identification of three genes showing consistent differences in nucleosome positioning and occupancy between wild type and mutant mop1-1. These specific changes in nucleosome distribution were located upstream as well as downstream of the TSS. No direct relationship between the specific changes in nucleosome distribution and transcription were observed through quantitative expression analysis in these tissues. In silico prediction suggests that nucleosome positioning is not dictated by intrinsic DNA sequence signals in the TSSs of two of the identified genes, suggesting a role for chromatin remodeling proteins in MOP1-mediated pathways. These results also indicate that MOP1 contributions to nucleosome position may be either separate from changes in gene expression, or cooperative with development and other levels of regulation in coordinating gene expression.

  6. p53 Acetylation: Regulation and Consequences

    OpenAIRE

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo ev...

  7. Human tNASP promotes in vitro nucleosome assembly with histone H3.3.

    Science.gov (United States)

    Kato, Daiki; Osakabe, Akihisa; Tachiwana, Hiroaki; Tanaka, Hiroki; Kurumizaka, Hitoshi

    2015-02-10

    Nuclear autoantigenic sperm proteins (NASPs) are members of the acidic histone chaperones, which promote nucleosome assembly. In humans, two splicing variants proposed for the somatic and testicular isoforms, sNASP and tNASP, respectively, have been found, and the shorter form, sNASP, reportedly promotes nucleosome assembly with the histone H3 isoforms, H3.1, H3.2, and H3.3. However, the biochemical properties of the longer form, tNASP, have not been reported. tNASP is considered to exist specifically in the testis. Our present results revealed that the tNASP protein is ubiquitously produced in various human tissues, in addition to testis. Unexpectedly, we found that the nucleosome assembly activity of purified tNASP was extremely low with the canonical histone H3.1 or H3.2, but was substantially detected with the replacement histone H3.3 variant. A mutational analysis revealed that the H3.3 Ile89 residue, corresponding to the H3.1 Val89 residue, is responsible for the tNASP-mediated nucleosome assembly with H3.3. A histone deposition assay showed that the H3.3-H4 complex is more efficiently deposited onto DNA by tNASP than the H3.1-H4 complex. These results provide evidence that tNASP is ubiquitously produced in various types of human tissues and promotes in vitro nucleosome assembly with H3 variant specificity.

  8. Fragrance material review on acetyl carene.

    Science.gov (United States)

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl carene when used as a fragrance ingredient is presented. Acetyl carene is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl carene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013A Toxicologic and dermatologic assessment of alkyl cyclic ketones when used as fragrance ingredients. (submitted for publication).) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013. Published by Elsevier Ltd.

  9. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Manzi, A.E.; Sjoberg, E.R.; Diaz, S.; Varki, A.

    1990-08-05

    We and others previously described the melanoma-associated oncofetal glycosphingolipid antigen 9-O-acetyl-GD3, a disialoganglioside O-acetylated at the 9-position of the outer sialic acid residue. We have now developed methods to examine the biosynthesis and turnover of disialogangliosides in cultured melanoma cells and in Golgi-enriched vesicles from these cells. O-Acetylation was selectively expressed on di- and trisialogangliosides, but not on monosialogangliosides, nor on glycoprotein-bound sialic acids. Double-labeling of cells with (3H)acetate and (14C)glucosamine introduced easily detectable labels into each of the components of the ganglioside molecules. Pulse-chase studies of such doubly labeled molecules indicated that the O-acetyl groups turn over faster than the parent molecule. When Golgi-enriched vesicles from these cells were incubated with (acetyl-3H)acetyl-coenzyme A, the major labeled products were disialogangliosides. (Acetyl-3H)O-acetyl groups were found at both the 7- and the 9-positions, indicating that both 7-O-acetyl GD3 and 9-O-acetyl GD3 were synthesized by the action of O-acetyltransferase(s) on endogenous GD3. Analysis of the metabolically labeled molecules confirmed the existence of both 7- and 9-O-acetylated GD3 in the intact cells. Surprisingly, the major 3H-labeled product of the in vitro labeling reaction was not O-acetyl-GD3, but GD3, with the label exclusively in the sialic acid residues. Fragmentation of the labeled sialic acids by enzymatic and chemical methods showed that the 3H-label was exclusively in (3H)N-acetyl groups. Analyses of the double-labeled sialic acids from intact cells also showed that the 3H-label from (3H)acetate was exclusively in the form of (3H)N-acetyl groups, whereas the 14C-label was at the 4-position.

  10. An ensemble of B-DNA dinucleotide geometries lead to characteristic nucleosomal DNA structure and provide plasticity required for gene expression

    Directory of Open Access Journals (Sweden)

    Bansal Manju

    2011-01-01

    Full Text Available Abstract Background A nucleosome is the fundamental repeating unit of the eukaryotic chromosome. It has been shown that the positioning of a majority of nucleosomes is primarily controlled by factors other than the intrinsic preference of the DNA sequence. One of the key questions in this context is the role, if any, that can be played by the variability of nucleosomal DNA structure. Results In this study, we have addressed this question by analysing the variability at the dinucleotide and trinucleotide as well as longer length scales in a dataset of nucleosome X-ray crystal structures. We observe that the nucleosome structure displays remarkable local level structural versatility within the B-DNA family. The nucleosomal DNA also incorporates a large number of kinks. Conclusions Based on our results, we propose that the local and global level versatility of B-DNA structure may be a significant factor modulating the formation of nucleosomes in the vicinity of high-plasticity genes, and in varying the probability of binding by regulatory proteins. Hence, these factors should be incorporated in the prediction algorithms and there may not be a unique 'template' for predicting putative nucleosome sequences. In addition, the multimodal distribution of dinucleotide parameters for some steps and the presence of a large number of kinks in the nucleosomal DNA structure indicate that the linear elastic model, used by several algorithms to predict the energetic cost of nucleosome formation, may lead to incorrect results.

  11. O-acetylation of Plant Cell Wall Polysaccharides

    Directory of Open Access Journals (Sweden)

    Sascha eGille

    2012-01-01

    Full Text Available Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA and the trichome birefringence-like (TBL proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation.From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of e.g. lignocellulosic based biofuel production.

  12. Global analysis of lysine acetylation suggests the involvement of protein acetylation in diverse biological processes in rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Babi Ramesh Reddy Nallamilli

    Full Text Available Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa. We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions.

  13. The structural basis of modified nucleosome recognition by 53BP1.

    Science.gov (United States)

    Wilson, Marcus D; Benlekbir, Samir; Fradet-Turcotte, Amélie; Sherker, Alana; Julien, Jean-Philippe; McEwan, Andrea; Noordermeer, Sylvie M; Sicheri, Frank; Rubinstein, John L; Durocher, Daniel

    2016-08-01

    DNA double-strand breaks (DSBs) elicit a histone modification cascade that controls DNA repair. This pathway involves the sequential ubiquitination of histones H1 and H2A by the E3 ubiquitin ligases RNF8 and RNF168, respectively. RNF168 ubiquitinates H2A on lysine 13 and lysine 15 (refs 7, 8) (yielding H2AK13ub and H2AK15ub, respectively), an event that triggers the recruitment of 53BP1 (also known as TP53BP1) to chromatin flanking DSBs. 53BP1 binds specifically to H2AK15ub-containing nucleosomes through a peptide segment termed the ubiquitination-dependent recruitment motif (UDR), which requires the simultaneous engagement of histone H4 lysine 20 dimethylation (H4K20me2) by its tandem Tudor domain. How 53BP1 interacts with these two histone marks in the nucleosomal context, how it recognizes ubiquitin, and how it discriminates between H2AK13ub and H2AK15ub is unknown. Here we present the electron cryomicroscopy (cryo-EM) structure of a dimerized human 53BP1 fragment bound to a H4K20me2-containing and H2AK15ub-containing nucleosome core particle (NCP-ubme) at 4.5 Å resolution. The structure reveals that H4K20me2 and H2AK15ub recognition involves intimate contacts with multiple nucleosomal elements including the acidic patch. Ubiquitin recognition by 53BP1 is unusual and involves the sandwiching of the UDR segment between ubiquitin and the NCP surface. The selectivity for H2AK15ub is imparted by two arginine fingers in the H2A amino-terminal tail, which straddle the nucleosomal DNA and serve to position ubiquitin over the NCP-bound UDR segment. The structure of the complex between NCP-ubme and 53BP1 reveals the basis of 53BP1 recruitment to DSB sites and illuminates how combinations of histone marks and nucleosomal elements cooperate to produce highly specific chromatin responses, such as those elicited following chromosome breaks.

  14. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.

    Science.gov (United States)

    Bednar, Jan; Garcia-Saez, Isabel; Boopathi, Ramachandran; Cutter, Amber R; Papai, Gabor; Reymer, Anna; Syed, Sajad H; Lone, Imtiaz Nisar; Tonchev, Ognyan; Crucifix, Corinne; Menoni, Hervé; Papin, Christophe; Skoufias, Dimitrios A; Kurumizaka, Hitoshi; Lavery, Richard; Hamiche, Ali; Hayes, Jeffrey J; Schultz, Patrick; Angelov, Dimitar; Petosa, Carlo; Dimitrov, Stefan

    2017-05-04

    Linker histones associate with nucleosomes to promote the formation of higher-order chromatin structure, but the underlying molecular details are unclear. We investigated the structure of a 197 bp nucleosome bearing symmetric 25 bp linker DNA arms in complex with vertebrate linker histone H1. We determined electron cryo-microscopy (cryo-EM) and crystal structures of unbound and H1-bound nucleosomes and validated these structures by site-directed protein cross-linking and hydroxyl radical footprinting experiments. Histone H1 shifts the conformational landscape of the nucleosome by drawing the two linkers together and reducing their flexibility. The H1 C-terminal domain (CTD) localizes primarily to a single linker, while the H1 globular domain contacts the nucleosome dyad and both linkers, associating more closely with the CTD-distal linker. These findings reveal that H1 imparts a strong degree of asymmetry to the nucleosome, which is likely to influence the assembly and architecture of higher-order structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers.

    Science.gov (United States)

    Shaytan, Alexey K; Landsman, David; Panchenko, Anna R

    2015-06-01

    Nucleosome variability is essential for their functions in compacting the chromatin structure and regulation of transcription, replication and cell reprogramming. The DNA molecule in nucleosomes is wrapped around an octamer composed of four types of core histones (H3, H4, H2A, H2B). Nucleosomes represent dynamic entities and may change their conformation, stability and binding properties by employing different sets of histone variants or by becoming post-translationally modified. There are many variants of histones H2A and H2B. Specific H2A and H2B variants may preferentially associate with each other resulting in different combinations of variants and leading to the increased combinatorial complexity of nucleosomes. In addition, the H2A-H2B dimer can be recognized and substituted by chaperones/remodelers as a distinct unit, can assemble independently and is stable during nucleosome unwinding. In this review we discuss how sequence and structural variations in H2A-H2B dimers may provide necessary complexity and confer the nucleosome functional variability.

  16. Fragrance material review on acetyl cedrene.

    Science.gov (United States)

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl cedrene when used as a fragrance ingredient is presented. Acetyl cedrene is a member of the fragrance structural group Alkyl Cyclic Ketones. The generic formula for this group can be represented as (R1)(R2)CO. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl cedrene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013. Published by Elsevier Ltd.

  17. A cell-free fluorometric high-throughput screen for inhibitors of Rtt109-catalyzed histone acetylation.

    Directory of Open Access Journals (Sweden)

    Jayme L Dahlin

    Full Text Available The lysine acetyltransferase (KAT Rtt109 forms a complex with Vps75 and catalyzes the acetylation of histone H3 lysine 56 (H3K56ac in the Asf1-H3-H4 complex. Rtt109 and H3K56ac are vital for replication-coupled nucleosome assembly and genotoxic resistance in yeast and pathogenic fungal species such as Candida albicans. Remarkably, sequence homologs of Rtt109 are absent in humans. Therefore, inhibitors of Rtt109 are hypothesized as potential and minimally toxic antifungal agents. Herein, we report the development and optimization of a cell-free fluorometric high-throughput screen (HTS for small-molecule inhibitors of Rtt109-catalyzed histone acetylation. The KAT component of the assay consists of the yeast Rtt109-Vps75 complex, while the histone substrate complex consists of full-length Drosophila histone H3-H4 bound to yeast Asf1. Duplicated assay runs of the LOPAC demonstrated day-to-day and plate-to-plate reproducibility. Approximately 225,000 compounds were assayed in a 384-well plate format with an average Z' factor of 0.71. Based on a 3σ cut-off criterion, 1,587 actives (0.7% were identified in the primary screen. The assay method is capable of identifying previously reported KAT inhibitors such as garcinol. We also observed several prominent active classes of pan-assay interference compounds such as Mannich bases, catechols and p-hydroxyarylsulfonamides. The majority of the primary active compounds showed assay signal interference, though most assay artifacts can be efficiently removed by a series of straightforward counter-screens and orthogonal assays. Post-HTS triage demonstrated a comparatively small number of confirmed actives with IC50 values in the low micromolar range. This assay, which utilizes five label-free proteins involved in H3K56 acetylation in vivo, can in principle identify compounds that inhibit Rtt109-catalyzed H3K56 acetylation via different mechanisms. Compounds discovered via this assay or adaptations thereof could

  18. Obesity, cancer, and acetyl-CoA metabolism

    OpenAIRE

    Lee, Joyce V.; Shah, Supriya A.; Wellen, Kathryn E.

    2013-01-01

    As rates of obesity soar in the Unites States and around the world, cancer attributed to obesity has emerged as major threat to public health. The link between obesity and cancer can be attributed in part to the state of chronic inflammation that develops in obesity. Acetyl-CoA production and protein acetylation patterns are highly sensitive to metabolic state and are significantly altered in obesity. In this article, we explore the potential role of nutrient-sensitive lysine acetylation in r...

  19. Predominance of N-acetyl transferase 2 slow acetylator alleles in ...

    African Journals Online (AJOL)

    Student

    acetylator phenotype were the most predominant NAT2 allelic type and individuals with the phenotype were more likely to ... influence individual variation in cancer susceptibility, responses to ... development of bladder (Hein, 2002) and colon cancers ... temperature ≥ 37.5°C) or having a history of fever in the preceding.

  20. Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides.

    Science.gov (United States)

    Guan, Kun-Liang; Yu, Wei; Lin, Yan; Xiong, Yue; Zhao, Shimin

    2010-09-01

    Lysine acetylation has emerged as one of the major post-translational modifications, as indicated by its roles in chromatin remodeling, activation of transcription factors and, most recently, regulation of metabolic enzymes. Identification of acetylation sites in a protein is the first essential step for functional characterization of acetylation in physiological regulation. However, the study of the acetylome is hindered by the lack of suitable physical and biochemical properties of the acetyl group and existence of high-abundance acetylated histones in the cell, and needs a robust method to overcome these problems. Here we present protocols for (i) using chemically acetylated ovalbumin and synthetic acetylated peptide to generate a pan-acetyllysine antibody and a site-specific antibody to Lys288-acetylated argininosuccinate lyase, respectively; (ii) using subcellular fractionation to reduce highly abundant acetylated histones; and (iii) using acetyllysine antibody affinity purification and mass spectrometry to characterize acetylome of human liver tissue. The entire characterization procedure takes ∼2-3 d to complete.

  1. Acetylation of Stat1 modulates NF-κB activity

    Science.gov (United States)

    Krämer, Oliver H.; Baus, Daniela; Knauer, Shirley K.; Stein, Stefan; Jäger, Elke; Stauber, Roland H.; Grez, Manuel; Pfitzner, Edith; Heinzel, Thorsten

    2006-01-01

    Acetylation of signaling molecules can lead to apoptosis or differentiation of carcinoma cells. The molecular mechanisms underlying these processes and the biological role of enzymes mediating the transfer or removal of an acetyl-group are currently under intense investigation. Our study shows that Stat1 is an acetylated protein. Stat1 acetylation depends on the balance between Stat1-associated histone deacetylases (HDACs) and histone acetyltransferases (HATs) such as CBP. Remarkably both inhibitors of HDACs and the cytokine interferon α alter this equilibrium and induce Stat1 acetylation. The analysis of Stat1 mutants reveals Lys 410 and Lys 413 as acetylation sites. Experiments with Stat1 mutants mimicking either constitutively acetylated or nonacetylated states show that only acetylated Stat1 is able to interact with NF-κB p65. As a consequence, p65 DNA binding, nuclear localization, and expression of anti-apoptotic NF-κB target genes decrease. These findings show how the acetylation of Stat1 regulates NF-κB activity and thus ultimately apoptosis. PMID:16481475

  2. Solvent-Free Synthesis of Some1-Acetyl Pyrazoles

    Energy Technology Data Exchange (ETDEWEB)

    Thirunarayanan, Ganesamoorthy [Annamalai Univ., Tamil Nadu (India); Sekar, Krishnamoorthy Guna [National College, Tiruchirappalli (India)

    2013-10-15

    Some N-acetyl pyrazoles including 1-(3-(3,4-dichlorophenyl)-5-(substituted phenyl)-4,5-dihydro-{sup 1}H-pyrazole-1-yl) ethanones have been synthesised by solvent free cyclization cum acetylation of chalcones like substituted styryl 3,4-dichlorophenyl ketones using hydrazine hydrate and acetic anhydride in presence of catalytic amount of fly-ash: H{sub 2}SO{sub 4} catalyst. The yield of these N-acetyl pyrazole derivatives are more than 75%. The synthesised N-acetyl pyrazoline derivatives were characterized by their physical constants and spectral data.

  3. Nucleosome-specific, time-dependent changes in histone modifications during activation of the early growth response 1 (Egr1) gene.

    Science.gov (United States)

    Riffo-Campos, Ángela L; Castillo, Josefa; Tur, Gema; González-Figueroa, Paula; Georgieva, Elena I; Rodríguez, José L; López-Rodas, Gerardo; Rodrigo, M Isabel; Franco, Luis

    2015-01-01

    Histone post-translational modifications and nucleosome remodeling are coordinate events involved in eukaryotic transcriptional regulation. There are relatively few data on the time course with which these events occur in individual nucleosomes. As a contribution to fill this gap, we first describe the nature and time course of structural changes in the nucleosomes -2, -1, and +1 of the murine Egr1 gene upon induction. To initiate the transient activation of the gene, we used the stimulation of MLP29 cells with phorbol esters and the in vivo activation after partial hepatectomy. In both models, nucleosomes -1 and +1 are partially evicted, whereas nucleosomes +1 and -2 slide downstream during transcription. The sliding of the latter nucleosome allows the EGR1 protein to bind its site, resulting in the repression of the gene. To decide whether EGR1 is involved in the sliding of nucleosome -2, Egr1 was knocked down. In the absence of detectable EGR1, the nucleosome still slides and remains downstream longer than in control cells, suggesting that the product of the gene may be rather involved in the returning of the nucleosome to the basal position. Moreover, the presence of eight epigenetic histone marks has been determined at a mononucleosomal level in that chromatin region. H3S10phK14ac, H3K4me3, H3K9me3, and H3K27me3 are characteristic of nucleosome +1, and H3K9ac and H4K16ac are mainly found in nucleosome -1, and H3K27ac predominates in nucleosomes -2 and -1. The temporal changes in these marks suggest distinct functions for some of them, although changes in H3K4me3 may result from histone turnover.

  4. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle.

    Science.gov (United States)

    Hergeth, Sonja P; Schneider, Robert

    2015-11-01

    The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications. © 2015 The Authors.

  5. Correlated and Decorrelated Positional and Orientational Order in the Nucleosomal Core Particle Mesophases

    OpenAIRE

    Lorman, V.; Podgornik, R.; Žekš, B.

    2004-01-01

    We investigate the orientational order of transverse polarization vectors of long columns of nucleosomal core particles and their coupling to positional order in high density mesophases discovered recently. Inhomogeneous polar ordering of these columns precipitates crystalization of the 2D sections with different orientations of the transverse polarization vector on each column in the unit cell. We propose possible scenarios for going from the 2D hexagonal phase into distorted lamellar and re...

  6. Structure, localization and histone binding properties of nuclear-associated nucleosome assembly protein from Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Maier Alexander G

    2010-04-01

    Full Text Available Abstract Background Nucleosome assembly proteins (NAPs are histone chaperones that are crucial for the shuttling and incorporation of histones into nucleosomes. NAPs participate in the assembly and disassembly of nucleosomes thus contributing to chromatin structure organization. The human malaria parasite Plasmodium falciparum contains two nucleosome assembly proteins termed PfNapL and PfNapS. Methods Three-dimensional crystal structure of PfNapS has been determined and analysed. Gene knockout and localization studies were also performed on PfNapS using transfection studies. Fluorescence spectroscopy was performed to identify histone-binding sites on PfNapS. Extensive sequence and structural comparisons were done with the crystal structures available for NAP/SET family of proteins. Results Crystal structure of PfNapS shares structural similarity with previous structures from NAP/SET family. Failed attempts to knock-out the gene for PfNapS from malaria parasite suggest essentiality in the parasite. GFP-fused PfNapS fusion protein targeting indicates cellular localization of PfNapS in the parasite nucleus. Fluorescence spectroscopy data suggest that PfNapS interacts with core histones (tetramer, octamer, H3, H4, H2A and H2B at a different site from its interaction with linker histone H1. This analysis illustrates two regions on the PfNapS dimer as the possible sites for histone recognition. Conclusions This work presents a thorough analysis of the structural, functional and regulatory attributes of PfNapS from P. falciparum with respect to previously studied histone chaperones.

  7. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis

    DEFF Research Database (Denmark)

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double...... differentiation of cell types with secondary cell walls......., triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development...

  8. N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes.

    Science.gov (United States)

    Prokesch, A; Pelzmann, H J; Pessentheiner, A R; Huber, K; Madreiter-Sokolowski, C T; Drougard, A; Schittmayer, M; Kolb, D; Magnes, C; Trausinger, G; Graier, W F; Birner-Gruenberger, R; Pospisilik, J A; Bogner-Strauss, J G

    2016-04-05

    Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production. Prior to this work, the presence of NAA has not been described in adipocytes. Here, we show that accumulation of NAA decreases the brown adipocyte phenotype. We increased intracellular NAA concentrations in brown adipocytes via media supplementation or knock-down of aspartoacylase and measured reduced lipolysis, thermogenic gene expression, and oxygen consumption. Combinations of approaches to increase intracellular NAA levels showed additive effects on lipolysis and gene repression, nearly abolishing the expression of Ucp1, Cidea, Prdm16, and Ppara. Transcriptome analyses of aspartoacylase knock-down cells indicate deficiencies in acetyl-CoA and lipid metabolism. Concordantly, cytoplasmic acetyl-CoA levels and global histone H3 acetylation were decreased. Further, activating histone marks (H3K27ac and H3K9ac) in promoters/enhancers of brown marker genes showed reduced acetylation status. Taken together, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. Thereby, we mechanistically connect the NAA pathway to the epigenomic regulation of gene expression, modulating the phenotype of brown adipocytes.

  9. The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching.

    Science.gov (United States)

    Yang, Li; Vaitheesvaran, Bhavapriya; Hartil, Kirsten; Robinson, Alan J; Hoopmann, Michael R; Eng, Jimmy K; Kurland, Irwin J; Bruce, James E

    2011-09-02

    The elucidation of extra-nuclear lysine acetylation has been of growing interest, as the cosubstrate for acetylation, acetyl CoA, is at a key metabolic intersection. Our hypothesis was that mitochondrial and cytoplasmic protein acetylation may be part of a fasted/re-fed feedback control system for the regulation of the metabolic network in fuel switching, where acetyl CoA would be provided by fatty acid oxidation, or glycolysis, respectively. To test this, we characterized the mitochondrial and cytoplasmic acetylome in various organs that have a high metabolic rate relative to their mass, and/or switch fuels, under fasted and re-fed conditions (brain, kidney, liver, skeletal muscle, heart muscle, white and brown adipose tissues). Using immunoprecipitation, coupled with LC-MS/MS label free quantification, we show there is a dramatic variation in global quantitative profiles of acetylated proteins from different organs. In total, 733 acetylated peptides from 337 proteins were identified and quantified, out of which 31 acetylated peptides from the metabolic proteins that may play organ-specific roles were analyzed in detail. Results suggest that fasted/re-fed acetylation changes coordinated by organ-specific (de)acetylases in insulin-sensitive versus -insensitive organs may underlie fuel use and switching. Characterization of the tissue-specific acetylome should increase understanding of metabolic conditions wherein normal fuel switching is disrupted, such as in Type II diabetes.

  10. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    Science.gov (United States)

    Howell, Steven C.

    Chromatin conformation and dynamics remains unsolved despite the critical role of the chromatin in fundamental genetic functions such as transcription, replication, and repair. At the molecular level, chromatin can be viewed as a linear array of nucleosomes, each consisting of 147 base pairs (bp) of double-stranded DNA (dsDNA) wrapped around a protein core and connected by 10 to 90 bp of linker dsDNA. Using small-angle X-ray scattering (SAXS), we investigated how the conformations of model nucleosome arrays in solution are modulated by ionic condition as well as the effect of linker histone proteins. To facilitate ensemble modeling of these SAXS measurements, we developed a simulation method that treats coarse-grained DNA as a Markov chain, then explores possible DNA conformations using Metropolis Monte Carlo (MC) sampling. This algorithm extends the functionality of SASSIE, a program used to model intrinsically disordered biological molecules, adding to the previous methods for simulating protein, carbohydrates, and single-stranded DNA. Our SAXS measurements of various nucleosome arrays together with the MC generated models provide valuable solution structure information identifying specific differences from the structure of crystallized arrays.

  11. CHD4 Is a Peripheral Component of the Nucleosome Remodeling and Deacetylase Complex.

    Science.gov (United States)

    Low, Jason K K; Webb, Sarah R; Silva, Ana P G; Saathoff, Hinnerk; Ryan, Daniel P; Torrado, Mario; Brofelth, Mattias; Parker, Benjamin L; Shepherd, Nicholas E; Mackay, Joel P

    2016-07-22

    Chromatin remodeling enzymes act to dynamically regulate gene accessibility. In many cases, these enzymes function as large multicomponent complexes that in general comprise a central ATP-dependent Snf2 family helicase that is decorated with a variable number of regulatory subunits. The nucleosome remodeling and deacetylase (NuRD) complex, which is essential for normal development in higher organisms, is one such macromolecular machine. The NuRD complex comprises ∼10 subunits, including the histone deacetylases 1 and 2 (HDAC1 and HDAC2), and is defined by the presence of a CHD family remodeling enzyme, most commonly CHD4 (chromodomain helicase DNA-binding protein 4). The existing paradigm holds that CHD4 acts as the central hub upon which the complex is built. We show here that this paradigm does not, in fact, hold and that CHD4 is a peripheral component of the NuRD complex. A complex lacking CHD4 that has HDAC activity can exist as a stable species. The addition of recombinant CHD4 to this nucleosome deacetylase complex reconstitutes a NuRD complex with nucleosome remodeling activity. These data contribute to our understanding of the architecture of the NuRD complex.

  12. Arabidopsis meiotic crossover hotspots overlap with H2A.Z nucleosomes at gene promoters

    Science.gov (United States)

    Choi, Kyuha; Zhao, Xiaohui; Kelly, Krystyna A.; Venn, Oliver; Higgins, James D.; Yelina, Nataliya E.; Hardcastle, Thomas J.; Ziolkowski, Piotr A.; Copenhaver, Gregory P.; Franklin, F. Chris H.; McVean, Gil; Henderson, Ian R.

    2013-01-01

    PRDM9 directs human meiotic crossover hotspots to intergenic sequence motifs, whereas budding yeast hotspots overlap low nucleosome density regions in gene promoters. To investigate hotspots in plants, which lack PRDM9, we used coalescent analysis of Arabidopsis genetic variation. Crossovers increase towards gene promoters and terminators, and hotspots are associated with active chromatin modifications, including H2A.Z, histone H3K4me3, low nucleosome density and low DNA methylation. Hotspot-enriched A-rich and CTT-repeat DNA motifs occur upstream and downstream of transcriptional start respectively. Crossovers are asymmetric around promoters and highest over CTT-motifs and H2A.Z-nucleosomes. Pollen-typing, segregation and cytogenetic analysis show decreased crossovers in the arp6 H2A.Z deposition mutant, at multiple scales. During meiosis H2A.Z and DMC1/RAD51 recombinases form overlapping chromosomal foci. As arp6 reduces DMC1/RAD51 foci, H2A.Z may promote formation or processing of meiotic DNA double-strand breaks. We propose that gene chromatin ancestrally designates hotspots within eukaryotes and PRDM9 is a derived state within vertebrates. PMID:24056716

  13. Nucleosome Density ChIP-Seq Identifies Distinct Chromatin Modification Signatures Associated with MNase Accessibility.

    Science.gov (United States)

    Lorzadeh, Alireza; Bilenky, Misha; Hammond, Colin; Knapp, David J H F; Li, Luolan; Miller, Paul H; Carles, Annaick; Heravi-Moussavi, Alireza; Gakkhar, Sitanshu; Moksa, Michelle; Eaves, Connie J; Hirst, Martin

    2016-11-15

    Nucleosome position, density, and post-translational modification are widely accepted components of mechanisms regulating DNA transcription but still incompletely understood. We present a modified native ChIP-seq method combined with an analytical framework that allows MNase accessibility to be integrated with histone modification profiles. Application of this methodology to the primitive (CD34+) subset of normal human cord blood cells enabled genomic regions enriched in one versus two nucleosomes marked by histone 3 lysine 4 trimethylation (H3K4me3) and/or histone 3 lysine 27 trimethylation (H3K27me3) to be associated with their transcriptional and DNA methylation states. From this analysis, we defined four classes of promoter-specific profiles and demonstrated that a majority of bivalent marked promoters are heterogeneously marked at a single-cell level in this primitive cell type. Interestingly, extension of this approach to human embryonic stem cells revealed an altered relationship between chromatin modification state and nucleosome content at promoters, suggesting developmental stage-specific organization of histone methylation states.

  14. Studies of torsional properties of DNA and nucleosomes using angular optical trapping

    Science.gov (United States)

    Sheinin, Maxim Y.

    DNA in vivo is subjected to torsional stress due to the action of molecular motors and other DNA-binding proteins. Several decades of research have uncovered the fascinating diversity of DNA transformations under torsion and the important role they play in the regulation of vital cellular processes such as transcription and replication. Recent studies have also suggested that torsion can influence the structure and stability of nucleosomes---basic building blocks of the eukaryotic genome. However, our understanding of the impact of torsion is far from being complete due to significant experimental challenges. In this work we have used a powerful single-molecule experimental technique, angular optical trapping, to address several long-standing issues in the field of DNA and nucleosome mechanics. First, we utilized the high resolution and direct torque measuring capability of the angular optical trapping to precisely measure DNA twist-stretch coupling. Second, we characterized DNA melting under tension and torsion. We found that torsionally underwound DNA forms a left-handed structure, significantly more flexible compared to the regular B-DNA. Finally, we performed the first comprehensive investigation of the single nucleosome behavior under torque and force. Importantly, we discovered that positive torque causes significant dimer loss, which can have implications for transcription through chromatin.

  15. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription.

    Science.gov (United States)

    Knight, Britta; Kubik, Slawomir; Ghosh, Bhaswar; Bruzzone, Maria Jessica; Geertz, Marcel; Martin, Victoria; Dénervaud, Nicolas; Jacquet, Philippe; Ozkan, Burak; Rougemont, Jacques; Maerkl, Sebastian J; Naef, Félix; Shore, David

    2014-08-01

    In yeast, ribosome production is controlled transcriptionally by tight coregulation of the 138 ribosomal protein genes (RPGs). RPG promoters display limited sequence homology, and the molecular basis for their coregulation remains largely unknown. Here we identify two prevalent RPG promoter types, both characterized by upstream binding of the general transcription factor (TF) Rap1 followed by the RPG-specific Fhl1/Ifh1 pair, with one type also binding the HMG-B protein Hmo1. We show that the regulatory properties of the two promoter types are remarkably similar, suggesting that they are determined to a large extent by Rap1 and the Fhl1/Ifh1 pair. Rapid depletion experiments allowed us to define a hierarchy of TF binding in which Rap1 acts as a pioneer factor required for binding of all other TFs. We also uncovered unexpected features underlying recruitment of Fhl1, whose forkhead DNA-binding domain is not required for binding at most promoters, and Hmo1, whose binding is supported by repeated motifs. Finally, we describe unusually micrococcal nuclease (MNase)-sensitive nucleosomes at all RPG promoters, located between the canonical +1 and -1 nucleosomes, which coincide with sites of Fhl1/Ifh1 and Hmo1 binding. We speculate that these "fragile" nucleosomes play an important role in regulating RPG transcriptional output.

  16. Whole genome nucleosome sequencing identifies novel types of forensic markers in degraded DNA samples

    Science.gov (United States)

    Dong, Chun-nan; Yang, Ya-dong; Li, Shu-jin; Yang, Ya-ran; Zhang, Xiao-jing; Fang, Xiang-dong; Yan, Jiang-wei; Cong, Bin

    2016-01-01

    In the case of mass disasters, missing persons and forensic caseworks, highly degraded biological samples are often encountered. It can be a challenge to analyze and interpret the DNA profiles from these samples. Here we provide a new strategy to solve the problem by taking advantage of the intrinsic structural properties of DNA. We have assessed the in vivo positions of more than 35 million putative nucleosome cores in human leukocytes using high-throughput whole genome sequencing, and identified 2,462 single nucleotide variations (SNVs), 128 insertion-deletion polymorphisms (indels). After comparing the sequence reads with 44 STR loci commonly used in forensics, five STRs (TH01, TPOX, D18S51, DYS391, and D10S1248)were matched. We compared these “nucleosome protected STRs” (NPSTRs) with five other non-NPSTRs using mini-STR primer design, real-time PCR, and capillary gel electrophoresis on artificially degraded DNA. Moreover, genotyping performance of the five NPSTRs and five non-NPSTRs was also tested with real casework samples. All results show that loci located in nucleosomes are more likely to be successfully genotyped in degraded samples. In conclusion, after further strict validation, these markers could be incorporated into future forensic and paleontology identification kits, resulting in higher discriminatory power for certain degraded sample types. PMID:27189082

  17. A Meier-Gorlin syndrome mutation impairs the ORC1-nucleosome association.

    Science.gov (United States)

    Zhang, Wei; Sankaran, Saumya; Gozani, Or; Song, Jikui

    2015-05-15

    Recent studies have identified several genetic mutations within the BAH domain of human Origin Recognition Complex subunit 1 (hORC1BAH), including the R105Q mutation, implicated in Meier-Gorlin Syndrome (MGS). However, the pathological role of the hORC1 R105Q mutation remains unclear. In this study, we have investigated the interactions of the hORC1BAH domain with histone H4K20me2, DNA, and the nucleosome core particle labeled with H4Kc20me2, a chemical analog of H4K20me2. Our study revealed a nucleosomal DNA binding site for hORC1BAH. The R105Q mutation reduces the hORC1BAH-DNA binding affinity, leading to impaired hORC1BAH-nucleosome interaction, which likely influences DNA replication initiation and MGS pathogenesis. This study provides an etiologic link between the hORC1 R105Q mutation and MGS.

  18. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information.

    Science.gov (United States)

    Corpet, Armelle; Almouzni, Geneviève

    2009-01-01

    Understanding the basic mechanisms underlying chromatin dynamics during DNA replication in eukaryotic cells is of fundamental importance. Beyond DNA compaction, chromatin organization represents a means to regulate genome function. Thus, the inheritance and maintenance of the DNA sequence, along with its organization into chromatin, is central for eukaryotic life. To orchestrate DNA replication in the context of chromatin is a challenge, both in terms of accessibility to the compact structures and maintenance of chromatin organization. To meet the challenge of maintenance, cells have evolved efficient nucleosome dynamics involving assembly pathways and chromatin maturation mechanisms that restore chromatin organization in the wake of DNA replication. In this review, we describe our current knowledge concerning how these pathways operate at the nucleosomal level and highlight the key players, such as histone chaperones, chromatin remodelers or modifiers, involved in the process of chromatin duplication. Major advances have been made recently concerning de novo nucleosome assembly and our understanding of its coordination with recycling of parental histones is progressing. Insights into the transmission of chromatin-based information during replication have important implications in the field of epigenetics to fully comprehend how the epigenetic landscape might, or at times might not, be stably maintained in the face of dramatic changes in chromatin structure.

  19. Influence of Rotational Nucleosome Positioning on Transcription Start Site Selection in Animal Promoters

    Science.gov (United States)

    Ambrosini, Giovanna; Bucher, Philipp

    2016-01-01

    The recruitment of RNA-Pol-II to the transcription start site (TSS) is an important step in gene regulation in all organisms. Core promoter elements (CPE) are conserved sequence motifs that guide Pol-II to the TSS by interacting with specific transcription factors (TFs). However, only a minority of animal promoters contains CPEs. It is still unknown how Pol-II selects the TSS in their absence. Here we present a comparative analysis of promoters’ sequence composition and chromatin architecture in five eukaryotic model organisms, which shows the presence of common and unique DNA-encoded features used to organize chromatin. Analysis of Pol-II initiation patterns uncovers that, in the absence of certain CPEs, there is a strong correlation between the spread of initiation and the intensity of the 10 bp periodic signal in the nearest downstream nucleosome. Moreover, promoters’ primary and secondary initiation sites show a characteristic 10 bp periodicity in the absence of CPEs. We also show that DNA natural variants in the region immediately downstream the TSS are able to affect both the nucleosome-DNA affinity and Pol-II initiation pattern. These findings support the notion that, in addition to CPEs mediated selection, sequence–induced nucleosome positioning could be a common and conserved mechanism of TSS selection in animals. PMID:27716823

  20. Promiscuous presentation and recognition of nucleosomal autoepitopes in lupus: role of autoimmune T cell receptor alpha chain.

    Science.gov (United States)

    Shi, Y; Kaliyaperumal, A; Lu, L; Southwood, S; Sette, A; Michaels, M A; Datta, S K

    1998-02-01

    T cells specific for nucleosomal autoepitopes are selectively expanded in lupus mice and these Th cells drive autoimmune B cells to produce pathogenic antinuclear antibodies. We transfected the TCR-alpha and -beta chain genes of a representative, pathogenic autoantibody-inducing Th clone specific for the nucleosomal core histone peptide H471-94 into TCR-negative recipient cells. Although the autoimmune TCRs were originally derived from SNF1 (I-Ad/q) mice, the transfectants could recognize the nucleosomal autoepitope presented by APC-bearing I-A molecules of all haplotypes tested, as well as human DR molecules. Competition assays indicated that the autoepitopes bound to the MHC class II groove. Most remarkably, MHC-unrestricted recognition of the nucleosomal peptide epitope was conferred by the lupus TCR-alpha chain even when it paired with a TCR-beta chain of irrelevant specificity. Several other disease-relevant Th clones and splenic T cells of lupus mice had similar properties. The TCR-alpha chains of these murine lupus Th clones shared related motifs and charged residues in their CDRs, and similar motifs were apparent even in TCR-alpha chains of human lupus Th clones. The lupus TCR-alpha chains probably contact the nucleosomal peptide complexed with MHC with relatively high affinity/avidity to sustain TCR signaling, because CD4 coreceptor was not required for promiscuous recognition. Indeed, pathogenic autoantibody-inducing, CD4-negative, TCR-alphabeta+ Th cells are expanded in systemic lupus erythematosus. These results have implications regarding thymic selection and peripheral expansion of nucleosome-specific T cells in lupus. They also suggest that universally tolerogenic epitopes could be designed for therapy of lupus patients with diverse HLA alleles. We propose to designate nucleosomes and other antigens bearing universal epitopes "Pantigens" (for promiscuous antigens).

  1. Nucleosomes and C1q bound to glomerular endothelial cells serve as targets for autoantibodies and determine complement activation.

    Science.gov (United States)

    O'Flynn, Joseph; Flierman, Roelof; van der Pol, Pieter; Rops, Angelique; Satchell, Simon C; Mathieson, Peter W; van Kooten, Cees; van der Vlag, Johan; Berden, Jo H; Daha, Mohamed R

    2011-10-01

    Various studies indicate a role for both anti-nucleosome and anti-C1q autoantibodies in glomerulonephritis in patients with systemic lupus erythematosus. However, a causal relationship between these autoantibodies and the development of lupus nephritis has not been fully established. Since injury of the endothelium is a major target in lupus nephritis we assessed the interaction of C1q and nucleosomes with glomerular endothelial cells in vitro in the presence or absence of autoantibodies against these antigens. We demonstrate a direct and dose-dependent binding of both nucleosomes and C1q to immortalized human glomerular endothelial cells (GEnC) in vitro, which in part is mediated by cell surface heparan sulfate. We demonstrate that nucleosomes and C1q serve as targets for monoclonal and polyclonal antibodies as well as for anti-nuclear autoantibodies from patients with systemic lupus erythematosus. An additive effect of anti-C1q autoantibodies on anti-nucleosome mediated complement activation was observed. Furthermore, we showed that the activation of complement on glomerular endothelial cells is mediated by the classical pathway since the deposition of C3 on GEnC is abrogated by MgEGTA and does not occur in C1q-depleted serum. Taken together, our studies demonstrate a direct binding of both nucleosomes and C1q to glomerular endothelial cells in vitro. The subsequent binding of autoantibodies against nucleosomes in patients with systemic lupus erythematosus is potentially pathogenic and autoantibodies against C1q seem to have an additional effect. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Global analysis of lysine acetylation in strawberry leaves

    Directory of Open Access Journals (Sweden)

    Xianping eFang

    2015-09-01

    Full Text Available Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants.

  3. Regulation of autophagy by cytosolic acetyl-coenzyme A

    DEFF Research Database (Denmark)

    Mariño, Guillermo; Pietrocola, Federico; Eisenberg, Tobias

    2014-01-01

    Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic...

  4. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Science.gov (United States)

    2010-04-01

    ... that are intended for use solely under medical supervision to meet nutritional requirements in specific medical conditions and these foods comply with the requirements of part 105 of this chapter, the food... Special Dietary and Nutritional Additives § 172.372 N-Acetyl-L-methionine. The food additive N-acetyl-L...

  5. The kinetics of the acetylation of gelatinised potato starch

    NARCIS (Netherlands)

    de Graaf, R.A.; Broekroelofs, G.A.; Janssen, L.P.B.M.; Beenackers, A.A C M

    1995-01-01

    The reaction rates, in the base-catalysed acetylation of gelatinised aqueous starch (4 wt%), by vinylacetate (ViAc), were investigated in a semibatch reactor at temperatures ranging from 20 to 50 degrees C. The desired starch acetylation reaction is accompanied by an undesired parallel base-catalyse

  6. Inhibition of N-terminal lysines acetylation and transcription factor assembly by epirubicin induced deranged cell homeostasis.

    Directory of Open Access Journals (Sweden)

    Shahper N Khan

    Full Text Available Epirubicin (EPI, an anthracycline antitumour antibiotic, is a known intercalating and DNA damaging agent. Here, we study the molecular interaction of EPI with histones and other cellular targets. EPI binding with histone core protein was predicted with spectroscopic and computational techniques. The molecular distance r, between donor (histone H3 and acceptor (EPI was estimated using Förster's theory of non-radiation energy transfer and the detailed binding phenomenon is expounded. Interestingly, the concentration dependent reduction in the acetylated states of histone H3 K9/K14 was observed suggesting more repressed chromatin state on EPI treatment. Its binding site near N-terminal lysines is further characterized by thermodynamic determinants and molecular docking studies. Specific DNA binding and inhibition of transcription factor (Tf-DNA complex formation implicates EPI induced transcriptional inhibition. EPI also showed significant cell cycle arrest in drug treated cells. Chromatin fragmentation and loss of membrane integrity in EPI treated cells is suggestive of their commitment to cell death. This study provides an analysis of nucleosome dynamics during EPI treatment and provides a novel insight into its action.

  7. The biology of lysine acetylation integrates transcriptional programming and metabolism

    Directory of Open Access Journals (Sweden)

    Mujtaba Shiraz

    2011-03-01

    Full Text Available Abstract The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT, there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.

  8. Relevance of circulating nucleosomes and oncological biomarkers for predicting response to transarterial chemoembolization therapy in liver cancer patients

    Directory of Open Access Journals (Sweden)

    Durner Jürgen

    2011-05-01

    Full Text Available Abstract Background Transarterial chemoembolization (TACE therapy is an effective locoregional treatment in hepatocellular cancer (HCC patients. For early modification of therapy, markers predicting therapy response are urgently required. Methods Here, sera of 50 prospectively and consecutively included HCC patients undergoing 71 TACE therapies were taken before and 3 h, 6 h and 24 h after TACE application to analyze concentrations of circulating nucleosomes, cytokeratin-19 fragments (CYFRA 21-1, alpha fetoprotein (AFP, C-reactive protein (CRP and several liver biomarkers, and to compare these with radiological response to therapy. Results While nucleosomes, CYFRA 21-1, CRP and some liver biomarkers increased already 24 h after TACE, percental changes of nucleosome concentrations before and 24 h after TACE and pre- and posttherapeutic values of AFP, gamma-glutamyl-transferase (GGT and alkaline phosphatase (AP significantly indicated the later therapy response (39 progression versus 32 no progression. In multivariate analysis, nucleosomes (24 h, AP (24 h and TACE number were independent predictive markers. The risk score of this combination model achieved an AUC of 81.8% in receiver operating characteristic (ROC curves and a sensitivity for prediction of non-response to therapy of 41% at 97% specificity, and of 72% at 78% specificity. Conclusion Circulating nucleosomes and liver markers are valuable tools for early estimation of the efficacy of TACE therapy in HCC patients.

  9. A basic domain in the histone H2B N-terminal tail is important for nucleosome assembly by FACT.

    Science.gov (United States)

    Mao, Peng; Kyriss, McKenna N M; Hodges, Amelia J; Duan, Mingrui; Morris, Robert T; Lavine, Mark D; Topping, Traci B; Gloss, Lisa M; Wyrick, John J

    2016-11-02

    Nucleosome assembly in vivo requires assembly factors, such as histone chaperones, to bind to histones and mediate their deposition onto DNA. In yeast, the essential histone chaperone FACT (FAcilitates Chromatin Transcription) functions in nucleosome assembly and H2A-H2B deposition during transcription elongation and DNA replication. Recent studies have identified candidate histone residues that mediate FACT binding to histones, but it is not known which histone residues are important for FACT to deposit histones onto DNA during nucleosome assembly. In this study, we report that the histone H2B repression (HBR) domain within the H2B N-terminal tail is important for histone deposition by FACT. Deletion of the HBR domain causes significant defects in histone occupancy in the yeast genome, particularly at HBR-repressed genes, and a pronounced increase in H2A-H2B dimers that remain bound to FACT in vivo Moreover, the HBR domain is required for purified FACT to efficiently assemble recombinant nucleosomes in vitro We propose that the interaction between the highly basic HBR domain and DNA plays an important role in stabilizing the nascent nucleosome during the process of histone H2A-H2B deposition by FACT. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. CpG dinucleotide positioning patterns determine the binding affinity of methyl-binding domain to nucleosomes.

    Science.gov (United States)

    Mendonca, Agnes; Sanchez, Oscar F; Liu, Wenjie; Li, Zhe; Yuan, Chongli

    2017-06-01

    The methyl-binding domain of MBD1 is a common methyl CpG binding motif and has been linked to transcriptional repression. Understanding the dynamics of MBD1 binding to nucleosomal DNA is crucial, but the molecular interactions between MBD1 and chromatin remain elusive. In this study, we found the binding of MBD1 to nucleosomes demonstrates sequence preferences depending on the position of the methyl groups on the nucleosome. Specifically, binding was favored at (me)CpG sites in the dyad proximal region and facing towards the histone octamers. At locations where the (me)CpG sites face away from the histone octamer, the binding affinity was significantly lower. Interestingly, the binding of ΔMBD1 at methylated CpG sites facing away from histone octamers induces conformational changes of nucleosomes, resulting in a more "open" conformation. The biological implication of DNA methylation is thus likely to be synergistically regulated via DNA sequences contents and their nucleosome-positioning patterns based on our in vitro findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hinge and chromoshadow of HP1α participate in recognition of K9 methylated histone H3 in nucleosomes.

    Science.gov (United States)

    Mishima, Yuichi; Watanabe, Makoto; Kawakami, Toru; Jayasinghe, Chanika D; Otani, Junji; Kikugawa, Yusuke; Shirakawa, Masahiro; Kimura, Hiroshi; Nishimura, Osamu; Aimoto, Saburo; Tajima, Shoji; Suetake, Isao

    2013-01-09

    The majority of the genome in eukaryotes is packaged into transcriptionally inactive chromatin. Heterochromatin protein 1 (HP1) is a major player in the establishment and maintenance of heterochromatin. HP1 specifically recognizes a methylated lysine residue at position 9 in histone H3 through its N-terminal chromo domain (CD). To elucidate the binding properties of HP1α to nucleosomes in vitro, we reconstituted nucleosomes containing histone H3 trimethylated at lysine 9. HP1α exhibited high-affinity binding to nucleosomes containing methylated histone H3 in a nucleosome core-number-dependent manner. The hinge region (HR) connecting the CD and C-terminal chromoshadow domain (CSD), and the CSD contributed to the selective binding of HP1α to histone H3 with trimethylated lysine 9 through weak DNA binding and by suppressing the DNA binding, respectively. We propose that not only the specific recognition of lysine 9 methylation of histone H3 by the CD but also the HR and the CSD cooperatively contribute to the selective binding of HP1α to histone H3 lysine 9 methylated nucleosomes.

  12. Topological diversity of chromatin fibers: Interplay between nucleosome repeat length, DNA linking number and the level of transcription

    Directory of Open Access Journals (Sweden)

    Davood Norouzi

    2015-11-01

    Full Text Available The spatial organization of nucleosomes in 30-nm fibers remains unknown in detail. To tackle this problem, we analyzed all stereochemically possible configurations of two-start chromatin fibers with DNA linkers L = 10-70 bp (nucleosome repeat length NRL = 157-217 bp. In our model, the energy of a fiber is a sum of the elastic energy of the linker DNA, steric repulsion, electrostatics, and the H4 tail-acidic patch interaction between two stacked nucleosomes. We found two families of energetically feasible conformations of the fibers—one observed earlier, and the other novel. The fibers from the two families are characterized by different DNA linking numbers—that is, they are topologically different. Remarkably, the optimal geometry of a fiber and its topology depend on the linker length: the fibers with linkers L = 10n and 10n + 5 bp have DNA linking numbers per nucleosome DLk >>-1.5 and -1.0, respectively. In other words, the level of DNA supercoiling is directly related to the length of the inter-nucleosome linker in the chromatin fiber (and therefore, to NRL. We hypothesize that this topological polymorphism of chromatin fibers may play a role in the process of transcription, which is known to generate different levels of DNA supercoiling upstream and downstream from RNA polymerase. A genome-wide analysis of the NRL distribution in active and silent yeast genes yielded results consistent with this assumption.

  13. Cell-free DNA Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin.

    Science.gov (United States)

    Snyder, Matthew W; Kircher, Martin; Hill, Andrew J; Daza, Riza M; Shendure, Jay

    2016-01-14

    Nucleosome positioning varies between cell types. By deep sequencing cell-free DNA (cfDNA), isolated from circulating blood plasma, we generated maps of genome-wide in vivo nucleosome occupancy and found that short cfDNA fragments harbor footprints of transcription factors. The cfDNA nucleosome occupancies correlate well with the nuclear architecture, gene structure, and expression observed in cells, suggesting that they could inform the cell type of origin. Nucleosome spacing inferred from cfDNA in healthy individuals correlates most strongly with epigenetic features of lymphoid and myeloid cells, consistent with hematopoietic cell death as the normal source of cfDNA. We build on this observation to show how nucleosome footprints can be used to infer cell types contributing to cfDNA in pathological states such as cancer. Since this strategy does not rely on genetic differences to distinguish between contributing tissues, it may enable the noninvasive monitoring of a much broader set of clinical conditions than currently possible.

  14. Determination of the distributions of degrees of acetylation of chitosan.

    Science.gov (United States)

    Thevarajah, Joel Jerushan; Van Leeuwen, Matthew Paul; Cottet, Herve; Castignolles, Patrice; Gaborieau, Marianne

    2017-02-01

    Chitosan is often characterized by its average degree of acetylation. To increase chitosan's use in various industries, a more thorough characterization is necessary as the acetylation of chitosan affects properties such as dissolution and mechanical properties of chitosan films. Despite the poor solubility of chitosan, free solution capillary electrophoresis (CE) allows a robust separation of chitosan by the degree of acetylation. The distribution of degrees of acetylation of various chitosan samples was characterized through their distributions of electrophoretic mobilities. These distributions can be obtained easily and with high precision. The heterogeneity of the chitosan chains in terms of acetylation was characterized through the dispersity of the electrophoretic mobility distributions obtained. The relationship between the number-average degree of acetylation obtained by solid-state NMR spectroscopy and the weight-average electrophoretic mobilities was established. The distribution of degrees of acetylation was determined using capillary electrophoresis in the critical conditions (CE-CC). Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Chitosan Molecular Structure as a Function of N-Acetylation

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  16. Histone Acetylation Inhibitors Promote Axon Growth in Adult DRG neurons

    Science.gov (United States)

    Lin, Shen; Nazif, Kutaiba; Smith, Alexander; Baas, Peter W; Smith, George M

    2015-01-01

    Intrinsic mechanisms that guide damaged axons to regenerate following spinal cord injury remain poorly understood. Manipulation of posttranslational modifications of key proteins in mature neurons could re-invigorate growth machinery after injury. One such modification is acetylation, a reversible process controlled by two enzyme families acting in opposition, the Histone Deacetylases (HDACs) and the Histone Acetyl Transferases (HATs). While acetylated histones in the nucleus is associated with upregulation of growth promoting genes, de-acetylated tubulin in the axoplasm is associated with more labile microtubules, conducive to axon growth. In this study we investigated the effects of HAT inhibitors and HDAC inhibitors on cultured adult dorsal root ganglia (DRG) neurons. We found that inhibition of HATs, using Anacardic Acid or CPTH2, improved axon outgrowth, while inhibition of HDACs using TSA or Tubacin, inhibited axon growth. Furthermore, Anacardic Acid increased the number of axons able to cross an inhibitory chondroitin sulfate proteoglycan (CSPG) border. Histone acetylation, but not tubulin acetylation levels, was affected by HAT inhibitors, whereas tubulin acetylation levels were increased in the presence of HDAC inhibitor Tubacin. Although microtubule stabilizing drug taxol did not have an effect on the lengths of DRG axons, nocodazole decreased axon lengths. While the mechanistic basis will require future studies, our data show that inhibitors of HAT can augment axon growth in adult DRG neurons, with the potential of aiding axon growth over inhibitory substrates produced by the glial scar. PMID:25702820

  17. The disequilibrium of nucleosomes distribution along chromosomes plays a functional and evolutionarily role in regulating gene expression.

    Directory of Open Access Journals (Sweden)

    Peng Cui

    Full Text Available To further understand the relationship between nucleosome-space occupancy (NO and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues--cerebrum, testis, and ESCs--and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK genes and tissue-specific (TS genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types.

  18. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Nicola Wiechens

    2016-03-01

    Full Text Available Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.

  19. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors.

    Science.gov (United States)

    Wiechens, Nicola; Singh, Vijender; Gkikopoulos, Triantaffyllos; Schofield, Pieta; Rocha, Sonia; Owen-Hughes, Tom

    2016-03-01

    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.

  20. The disequilibrium of nucleosomes distribution along chromosomes plays a functional and evolutionarily role in regulating gene expression

    KAUST Repository

    Cui, Peng

    2011-08-19

    To further understand the relationship between nucleosome-space occupancy (NO) and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3)-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues-cerebrum, testis, and ESCs-and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK) genes and tissue-specific (TS) genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types. © 2011 Cui et al.

  1. The Metabolic Impact on Histone Acetylation and Transcription in Ageing.

    Science.gov (United States)

    Peleg, Shahaf; Feller, Christian; Ladurner, Andreas G; Imhof, Axel

    2016-08-01

    Loss of cellular homeostasis during aging results in altered tissue functions and leads to a general decline in fitness and, ultimately, death. As animals age, the control of gene expression, which is orchestrated by multiple epigenetic factors, degenerates. In parallel, metabolic activity and mitochondrial protein acetylation levels also change. These two hallmarks of aging are effectively linked through the accumulating evidence that histone acetylation patterns are susceptible to alterations in key metabolites such as acetyl-CoA and NAD(+), allowing chromatin to function as a sensor of cellular metabolism. In this review we discuss experimental data supporting these connections and provide a context for the possible medical and physiological relevance.

  2. Acetylation of pea isolate in a torus microreactor.

    Science.gov (United States)

    Legrand, J; Guéguen, J; Berot, S; Popineau, Y; Nouri, L

    1997-02-20

    Acetylation, which acts on the amino groups of proteins, allows to increase the solubility and the emulsifying properties of pea isolate. Acetylation by acetic anhydride was carried out in a torus microreactor in semibatch and continuous conditions. The mixing characteristics, obtained by a residence time distribution (RTD) method, are the same in batch and continuous processes. The maximum acetylation degree reached by the torus reactor is higher than with the stirred reactor. Torus reactors are more efficient than stirred ones as shown by a conversion efficiency, defined by the quantity of modified lysine groups by consumed acetic anhydride. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 409-414, 1997.

  3. Synthetic biology for engineering acetyl coenzyme a metabolism in yeast

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting...... chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl...

  4. Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions.

    Science.gov (United States)

    Cetin, Nihat Sami; Tingaut, Philippe; Ozmen, Nilgül; Henry, Nathan; Harper, David; Dadmun, Mark; Sèbe, Gilles

    2009-10-08

    A novel and straightforward method for the surface acetylation of cellulose nanowhiskers by transesterification of vinyl acetate is proposed. The reaction of vinyl acetate with the hydroxyl groups of cellulose nanowhiskers obtained from cotton linters was examined with potassium carbonate as catalyst. Results indicate that during the first stage of the reaction, only the surface of the nanowhiskers was modified, while their dimensions and crystallinity remained unchanged. With increasing reaction time, diffusion mechanisms controlled the rate, leading to nanowhiskers with higher levels of acetylation, smaller dimensions, and lower crystallinity. In THF, a solvent of low polarity, the suspensions from modified nanowhiskers showed improved stability with increased acetylation.

  5. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I

    DEFF Research Database (Denmark)

    Frahm, Jennifer L; Li, Lei O; Grevengoed, Trisha J

    2011-01-01

    Long chain acyl-CoA synthetase 1 (ACSL1) contributes 50 to 90% of total ACSL activity in liver, adipose tissue, and heart and appears to direct the use of long chain fatty acids for energy. Although the functional importance of ACSL1 is becoming clear, little is understood about its post...... and acetylated amino acids by mass spectrometry. We then compared these results to the post-translational modifications observed in vivo in liver and brown adipose tissue after mice were fasted or exposed to a cold environment. We identified universal N-terminal acetylation, 15 acetylated lysines, and 25...

  6. A single air dive induces apoptotic gene regulation but no increase in nucleosomes.

    Science.gov (United States)

    Eichhorn, Lars; Nietzel, Christian; Schröder, Stefan; Siekmann, Ullrich; Koch, Andreas; Weber, Stefan

    2016-01-01

    Oxidative stress caused by elevated partial pressure of oxygen during diving is a major contributor of inflammation and apoptosis. The underlying molecular mechanisms are poorly understood. The aim of the study was to describe apoptotic gene regulation induced by a single air dive. 19 healthy volunteers were exposed to a 30-minute dive at 2.8 atmospheres (ATA) absolute in a pressure chamber in ambient air. Blood samples were obtained before, directly after and 24 hours after exposure. Gene expressions of Bcl-2, Bcl-xL and Bax were analyzed in mononuclear cell extracts by real-time polymerase chain reaction (PCR). Circulating nucleosomes were measured in serum before exposure and 24 hours afterward. The pro-apoptotic Bax expression was not significantly increased (p=0.74) directly after the dive but was induced (2.22 ± 0.85-fold) after 24 hours (p ≤ 0.01). Bcl-2 expression was not changed significantly directly after (p = 0.11) but was 1.88 ± 1.08-fold higher after 24 hours (p ≤ 0.01). Bcl-xL expression was not elevated significantly (p = 0.54) but was 2.04 ± 1.02-fold higher after 24 hours (p ≤ 0.01). The level of nucleosomes did not change after 24 hours compared to baseline. A single air dive at 2.8 ATA for 30 minutes causes an upregulation of pro- and anti-apoptotic genes but did not elevate circulating nucleosomes. In a single air dive the upregulation of anti-apoptotic Bcl-2 family members may counteract the pro-apoptotic potential of Bax.

  7. The role of histone tails in the nucleosome: a computational study.

    Science.gov (United States)

    Erler, Jochen; Zhang, Ruihan; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C; Langowski, Jörg

    2014-12-16

    Histone tails play an important role in gene transcription and expression. We present here a systematic computational study of the role of histone tails in the nucleosome, using replica exchange molecular dynamics simulations with an implicit solvent model and different well-established force fields. We performed simulations for all four histone tails, H4, H3, H2A, and H2B, isolated and with inclusion of the nucleosome. The results confirm predictions of previous theoretical studies for the secondary structure of the isolated tails but show a strong dependence on the force field used. In the presence of the entire nucleosome for all force fields, the secondary structure of the histone tails is destabilized. Specific contacts are found between charged lysine and arginine residues and DNA phosphate groups and other binding sites in the minor and major DNA grooves. Using cluster analysis, we found a single dominant configuration of binding to DNA for the H4 and H2A histone tails, whereas H3 and H2B show multiple binding configurations with an equal probability. The leading stabilizing contribution for those binding configurations is the attractive interaction between the positively charged lysine and arginine residues and the negatively charged phosphate groups, and thus the resulting charge neutralization. Finally, we present results of molecular dynamics simulations in explicit solvent to confirm our conclusions. Results from both implicit and explicit solvent models show that large portions of the histone tails are not bound to DNA, supporting the complex role of these tails in gene transcription and expression and making them possible candidates for binding sites of transcription factors, enzymes, and other proteins.

  8. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects.

    Directory of Open Access Journals (Sweden)

    Erica M Hildebrand

    2016-03-01

    Full Text Available The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4 is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4 for degradation. To identify additional mechanisms that prevent CENP-A(Cse4 misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4 in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4 is enriched at promoters that contain histone H2A.Z(Htz1 nucleosomes, but that H2A.Z(Htz1 is not required for CENP-A(Cse4 mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1 from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4. Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4. The down-regulated genes are enriched for CENP-A(Cse4 mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation.

  9. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects.

    Science.gov (United States)

    Hildebrand, Erica M; Biggins, Sue

    2016-03-01

    The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4) is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4) for degradation. To identify additional mechanisms that prevent CENP-A(Cse4) misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4) in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4) is enriched at promoters that contain histone H2A.Z(Htz1) nucleosomes, but that H2A.Z(Htz1) is not required for CENP-A(Cse4) mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1) from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4). Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4). The down-regulated genes are enriched for CENP-A(Cse4) mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation.

  10. Roles of histone chaperone CIA/Asf1 in nascent DNA elongation during nucleosome replication.

    Science.gov (United States)

    Ishikawa, Katsuyuki; Ohsumi, Tatsuya; Tada, Shusuke; Natsume, Ryo; Kundu, Lena Rani; Nozaki, Naohito; Senda, Toshiya; Enomoto, Takemi; Horikoshi, Masami; Seki, Masayuki

    2011-10-01

    The nucleosome, which is composed of DNA wrapped around a histone octamer, is a fundamental unit of chromatin and is duplicated during the eukaryotic DNA replication process. The evolutionarily conserved histone chaperone cell cycle gene 1 (CCG1) interacting factor A/anti-silencing function 1 (CIA/Asf1) is involved in histone transfer and nucleosome reassembly during DNA replication. CIA/Asf1 has been reported to split the histone (H3-H4)(2) tetramer into histone H3-H4 dimer(s) in vitro, raising a possibility that, in DNA replication, CIA/Asf1 is involved in nucleosome disassembly and the promotion of semi-conservative histone H3-H4 dimer deposition onto each daughter strand in vivo. Despite numerous studies on the functional roles of CIA/Asf1, its mechanistic role(s) remains elusive because of lack of biochemical analyses. The biochemical studies described here show that a V94R CIA/Asf1 mutant, which lacks histone (H3-H4)(2) tetramer splitting activity, does not form efficiently a quaternary complex with histones H3-H4 and the minichromosome maintenance 2 (Mcm2) subunit of the Mcm2-7 replicative DNA helicase. Interestingly, the mutant enhances nascent DNA strand synthesis in a cell-free chromosomal DNA replication system using Xenopus egg extracts. These results suggest that CIA/Asf1 in the CIA/Asf1-H3-H4-Mcm2 complex, which is considered to be an intermediate in histone transfer during DNA replication, negatively regulates the progression of the replication fork.

  11. A core viral protein binds host nucleosomes to sequester immune danger signals.

    Science.gov (United States)

    Avgousti, Daphne C; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C; Blumenthal, Daniel; Paris, Andrew J; Reyes, Emigdio D; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H; Worthen, G Scott; Black, Ben E; Garcia, Benjamin A; Weitzman, Matthew D

    2016-07-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling.

  12. Fast, Accurate and Automatic Ancient Nucleosome and Methylation Maps with epiPALEOMIX.

    Science.gov (United States)

    Hanghøj, Kristian; Seguin-Orlando, Andaine; Schubert, Mikkel; Madsen, Tobias; Pedersen, Jakob Skou; Willerslev, Eske; Orlando, Ludovic

    2016-12-01

    The first epigenomes from archaic hominins (AH) and ancient anatomically modern humans (AMH) have recently been characterized, based, however, on a limited number of samples. The extent to which ancient genome-wide epigenetic landscapes can be reconstructed thus remains contentious. Here, we present epiPALEOMIX, an open-source and user-friendly pipeline that exploits post-mortem DNA degradation patterns to reconstruct ancient methylomes and nucleosome maps from shotgun and/or capture-enrichment data. Applying epiPALEOMIX to the sequence data underlying 35 ancient genomes including AMH, AH, equids and aurochs, we investigate the temporal, geographical and preservation range of ancient epigenetic signatures. We first assess the quality of inferred ancient epigenetic signatures within well-characterized genomic regions. We find that tissue-specific methylation signatures can be obtained across a wider range of DNA preparation types than previously thought, including when no particular experimental procedures have been used to remove deaminated cytosines prior to sequencing. We identify a large subset of samples for which DNA associated with nucleosomes is protected from post-mortem degradation, and nucleosome positioning patterns can be reconstructed. Finally, we describe parameters and conditions such as DNA damage levels and sequencing depth that limit the preservation of epigenetic signatures in ancient samples. When such conditions are met, we propose that epigenetic profiles of CTCF binding regions can be used to help data authentication. Our work, including epiPALEOMIX, opens for further investigations of ancient epigenomes through time especially aimed at tracking possible epigenetic changes during major evolutionary, environmental, socioeconomic, and cultural shifts.

  13. Modeling DNA-bending in the nucleosome: role of AA periodicity.

    Science.gov (United States)

    Prytkova, Tatiana R; Zhu, Xiao; Widom, Jonathan; Schatz, George C

    2011-07-07

    This paper uses atomistic molecular mechanics within the framework of the JUMNA model to study the bending properties of DNA segments, with emphasis on understanding the role of the 10 bp periodicity associated with AA repeats that has been found to dominate in nucleosomal DNA. The calculations impose a bending potential on 18 bp segments that is consistent with nucleosome structures (i.e., radius of curvature of 4.1 nm), and then determine the energies of the minimum energy structures for different values of the rotational register (a measure of the direction of bending of the DNA) subject to forces derived from the Amber force field (parm99bsc0). The results show that sequences that contain the 10 bp repeats but are otherwise random have a narrow distribution of rotational register values that minimize the energy such that it is possible to combine several minimized structures to give the 147 bp nearly planar loop structure of the nucleosome. The rotational register values that lead to minimum bending energy with 10 bp AA repeats have a narrower minor groove, which points toward the histone interior at the positions of the AA repeats, which is a result that matches the experiments. The calculations also show that these sequences have a relatively flat potential energy landscape for bending to a 4.1 nm radius of curvature. Random sequences that do not have the 10 bp AA repeats have less stable bent structures, and a flat rotational register distribution, such that low energy nearly planar loops are less likely.

  14. Inferring coarse-grain histone-DNA interaction potentials from high-resolution structures of the nucleosome

    Science.gov (United States)

    Meyer, Sam; Everaers, Ralf

    2015-02-01

    The histone-DNA interaction in the nucleosome is a fundamental mechanism of genomic compaction and regulation, which remains largely unknown despite increasing structural knowledge of the complex. In this paper, we propose a framework for the extraction of a nanoscale histone-DNA force-field from a collection of high-resolution structures, which may be adapted to a larger class of protein-DNA complexes. We applied the procedure to a large crystallographic database extended by snapshots from molecular dynamics simulations. The comparison of the structural models first shows that, at histone-DNA contact sites, the DNA base-pairs are shifted outwards locally, consistent with locally repulsive forces exerted by the histones. The second step shows that the various force profiles of the structures under analysis derive locally from a unique, sequence-independent, quadratic repulsive force-field, while the sequence preferences are entirely due to internal DNA mechanics. We have thus obtained the first knowledge-derived nanoscale interaction potential for histone-DNA in the nucleosome. The conformations obtained by relaxation of nucleosomal DNA with high-affinity sequences in this potential accurately reproduce the experimental values of binding preferences. Finally we address the more generic binding mechanisms relevant to the 80% genomic sequences incorporated in nucleosomes, by computing the conformation of nucleosomal DNA with sequence-averaged properties. This conformation differs from those found in crystals, and the analysis suggests that repulsive histone forces are related to local stretch tension in nucleosomal DNA, mostly between adjacent contact points. This tension could play a role in the stability of the complex.

  15. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens.

    Directory of Open Access Journals (Sweden)

    Sheila M Reynolds

    Full Text Available DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the

  16. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens.

    Science.gov (United States)

    Reynolds, Sheila M; Bilmes, Jeff A; Noble, William Stafford

    2010-07-08

    DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the

  17. Measuring dynamic changes in histone modifications and nucleosome density during activated transcription in budding yeast.

    Science.gov (United States)

    Govind, Chhabi K; Ginsburg, Daniel; Hinnebusch, Alan G

    2012-01-01

    Chromatin immunoprecipitation is widely utilized to determine the in vivo binding of factors that regulate transcription. This procedure entails formaldehyde-mediated cross-linking of proteins and isolation of soluble chromatin followed by shearing. The fragmented chromatin is subjected to immunoprecipitation using antibodies against the protein of interest and the associated DNA is identified using quantitative PCR. Since histones are posttranslationally modified during transcription, this technique can be effectively used to determine the changes in histone modifications that occur during transcription. In this paper, we describe a detailed methodology to determine changes in histone modifications in budding yeast that takes into account reductions in nucleosome.

  18. Towards a functional understanding of protein N-terminal acetylation.

    Directory of Open Access Journals (Sweden)

    Thomas Arnesen

    2011-05-01

    Full Text Available Protein N-terminal acetylation is a major modification of eukaryotic proteins. Its functional implications include regulation of protein-protein interactions and targeting to membranes, as demonstrated by studies of a handful of proteins. Fifty years after its discovery, a potential general function of the N-terminal acetyl group carried by thousands of unique proteins remains enigmatic. However, recent functional data suggest roles for N-terminal acetylation as a degradation signal and as a determining factor for preventing protein targeting to the secretory pathway, thus highlighting N-terminal acetylation as a major determinant for the life and death of proteins. These contributions represent new and intriguing hypotheses that will guide the research in the years to come.

  19. Decay threshold of acetylated rattan (Calamus manan) against soft rot

    Institute of Scientific and Technical Information of China (English)

    Norul Hisham Hamid; Mike Hale

    2013-01-01

    We investigated the resistance of acetylated rattan against soft rot and other soil inhabiting micro-organisms in comparison with wood of beech and Scots pine.Calamus manan of 10 and 13 years old under rubber tree canopy was acetylated to different levels by reaction times (0.25 to 30 hours) and was tested for soft rot decay for 32 weeks.Acetylated rattan at decay protection thresholds of 15.4% and 16.2% weight gain (WG) were fully protected,as shown by both weight loss and strength loss criteria.The static bending properties of untreated rattan decayed by soft rot were significantly lower than for acetylated rattan.

  20. Two Arabidopsis proteins synthesize acetylated xylan in vitro

    National Research Council Canada - National Science Library

    Urbanowicz, Breeanna R; Peña, Maria J; Moniz, Heather A; Moremen, Kelley W; York, William S

    2014-01-01

    .... Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis; however, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified...

  1. Acetylation of Cavin-1 Promotes Lipolysis in White Adipose Tissue.

    Science.gov (United States)

    Zhou, Shui-Rong; Guo, Liang; Wang, Xu; Liu, Yang; Peng, Wan-Qiu; Liu, Yuan; Wei, Xiang-Bo; Dou, Xin; Ding, Meng; Lei, Qun-Ying; Qian, Shu-Wen; Li, Xi; Tang, Qi-Qun

    2017-08-15

    White adipose tissue (WAT) serves as a reversible energy storage depot in the form of lipids in response to nutritional status. Cavin-1, an essential component in the biogenesis of caveolae, is a positive regulator of lipolysis in adipocytes. However, molecular mechanisms of cavin-1 in the modulation of lipolysis remain poorly understood. Here, we showed that cavin-1 was acetylated at lysines 291, 293, and 298 (3K), which were under nutritional regulation in WAT. We further identified GCN5 as the acetyltransferase and Sirt1 as the deacetylase of cavin-1. Acetylation-mimetic 3Q mutants of cavin-1 augmented fat mobilization in 3T3-L1 adipocytes and zebrafish. Mechanistically, acetylated cavin-1 preferentially interacted with hormone-sensitive lipase and recruited it to the caveolae, thereby promoting lipolysis. Our findings shed light on the essential role of cavin-1 in regulating lipolysis in an acetylation-dependent manner in WAT. Copyright © 2017 American Society for Microbiology.

  2. Mechanistic insights into the regulation of metabolic enzymes by acetylation

    Science.gov (United States)

    2012-01-01

    The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates. PMID:22826120

  3. Oil spill sorption using raw and acetylated sugarcane bagasse

    Institute of Scientific and Technical Information of China (English)

    Reza Behnood; Bagher Anvaripour; Nematollah Jaafarzadeh; Masoome Farasati

    2016-01-01

    In the recent decades oil spills in the aquatic environments are one of the major sources of environmental pollutions, which are steadily growing with the increase in oil consumption. Adsorption is a rapid and cost effective processto minimize the environmental impacts of oil spills andcleanup these pollutants. In this work, the crude oil sorption capacity was examined with raw sugarcane bagasse and acetylated sugarcane bagasse. Results show that the acetylated bagasse was significantly more oleophilic than the raw bagasse and acetylation reaction can increase bagasse oil sorption ability by about 90%. The maximum sorption capacities of acetylated bagasse were obtained about 11.3 g and 9.1 g in dry system (crude oil sorption) and oil layer sorption, respectively. The physicochemical characteristics of the sorbents such as composition, water solubility, moisture content and density were measured according to ASTM standard methods. Also Fourier transform infrared spectroscopy (FTIR) of raw and acetylated bagasse was performed to investigate the effect of acetylation on sugarcane bagasse structure.

  4. Acetyl radical generation in cigarette smoke: Quantification and simulations

    Science.gov (United States)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  5. An acetylation switch controls TDP-43 function and aggregation propensity

    Science.gov (United States)

    Cohen, Todd J.; Hwang, Andrew W.; Restrepo, Clark R.; Yuan, Chao-Xing; Trojanowski, John Q.; Lee, Virginia M.Y.

    2015-01-01

    TDP-43 pathology is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). Although a critical role for TDP-43 as an RNA-binding protein has emerged, the regulation of TDP-43 function is poorly understood. Here we identify lysine acetylation as a novel post-translational modification controlling TDP-43 function and aggregation. We provide evidence that TDP-43 acetylation impairs RNA-binding and promotes accumulation of insoluble, hyper-phosphorylated TDP-43 species that largely resemble pathological inclusions in ALS and FTLD-TDP. Moreover, biochemical and cell-based assays identify oxidative stress as a signaling cue that promotes acetylated TDP-43 aggregates that are readily engaged by the cellular defense machinery. Importantly, acetylated TDP-43 lesions are found in ALS patient spinal cord, indicating that aberrant TDP-43 acetylation and loss of RNA binding are linked to TDP-43 proteinopathy. Thus, modulating TDP-43 acetylation represents a plausible strategy to fine-tune TDP-43 activity, which could provide new therapeutic avenues for TDP-43 proteinopathies. PMID:25556531

  6. Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability

    Science.gov (United States)

    Ngo, Thuy T. M.; Yoo, Jejoong; Dai, Qing; Zhang, Qiucen; He, Chuan; Aksimentiev, Aleksei; Ha, Taekjip

    2016-02-01

    Cytosine can undergo modifications, forming 5-methylcytosine (5-mC) and its oxidized products 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). Despite their importance as epigenetic markers and as central players in cellular processes, it is not well understood how these modifications influence physical properties of DNA and chromatin. Here we report a comprehensive survey of the effect of cytosine modifications on DNA flexibility. We find that even a single copy of 5-fC increases DNA flexibility markedly. 5-mC reduces and 5-hmC enhances flexibility, and 5-caC does not have a measurable effect. Molecular dynamics simulations show that these modifications promote or dampen structural fluctuations, likely through competing effects of base polarity and steric hindrance, without changing the average structure. The increase in DNA flexibility increases the mechanical stability of the nucleosome and vice versa, suggesting a gene regulation mechanism where cytosine modifications change the accessibility of nucleosomal DNA through their effects on DNA flexibility.

  7. Minichromosome replication in vitro: inhibition of re-replication by replicatively assembled nucleosomes.

    Science.gov (United States)

    Krude, T; Knippers, R

    1994-08-19

    Single-stranded circular DNA, containing the SV40 origin sequence, was used as a template for complementary DNA strand synthesis in cytosolic extracts from HeLa cells. In the presence of the replication-dependent chromatin assembly factor CAF-1, defined numbers of nucleosomes were assembled during complementary DNA strand synthesis. These minichromosomes were then induced to semiconservatively replicate by the addition of the SV40 initiator protein T antigen (re-replication). The results indicate that re-replication of minichromosomes appears to be inhibited by two independent mechanisms. One acts at the initiation of minichromosome re-replication, and the other affects replicative chain elongation. To directly demonstrate the inhibitory effect of replicatively assembled nucleosomes, two types of minichromosomes were prepared: (i) post-replicative minichromosomes were assembled in a reaction coupled to replication as above; (ii) pre-replicative minichromosomes were assembled independently of replication on double-stranded DNA. Both types of minichromosomes were used as templates for DNA replication under identical conditions. Replicative fork movement was found to be impeded only on post-replicative minichromosome templates. In contrast, pre-replicative minichromosomes allowed one unconstrained replication cycle, but re-replication was inhibited due to a block in fork movement. Thus, replicatively assembled chromatin may have a profound influence on the re-replication of DNA.

  8. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling

    Science.gov (United States)

    Brzezinka, Krzysztof; Altmann, Simone; Czesnick, Hjördis; Nicolas, Philippe; Gorka, Michal; Benke, Eileen; Kabelitz, Tina; Jähne, Felix; Graf, Alexander; Kappel, Christian; Bäurle, Isabel

    2016-01-01

    Plants as sessile organisms can adapt to environmental stress to mitigate its adverse effects. As part of such adaptation they maintain an active memory of heat stress for several days that promotes a more efficient response to recurring stress. We show that this heat stress memory requires the activity of the FORGETTER1 (FGT1) locus, with fgt1 mutants displaying reduced maintenance of heat-induced gene expression. FGT1 encodes the Arabidopsis thaliana orthologue of Strawberry notch (Sno), and the protein globally associates with the promoter regions of actively expressed genes in a heat-dependent fashion. FGT1 interacts with chromatin remodelers of the SWI/SNF and ISWI families, which also display reduced heat stress memory. Genomic targets of the BRM remodeler overlap significantly with FGT1 targets. Accordingly, nucleosome dynamics at loci with altered maintenance of heat-induced expression are affected in fgt1. Together, our results suggest that by modulating nucleosome occupancy, FGT1 mediates stress-induced chromatin memory. DOI: http://dx.doi.org/10.7554/eLife.17061.001 PMID:27680998

  9. ATP-independent cooperative binding of yeast Isw1a to bare and nucleosomal DNA.

    Directory of Open Access Journals (Sweden)

    Anne De Cian

    Full Text Available Among chromatin remodeling factors, the ISWI family displays a nucleosome-enhanced ATPase activity coupled to DNA translocation. While these enzymes are known to bind to DNA, their activity has not been fully characterized. Here we use TEM imaging and single molecule manipulation to investigate the interaction between DNA and yeast Isw1a. We show that Isw1a displays a highly cooperative ATP-independent binding to and bridging between DNA segments. Under appropriate tension, rare single nucleation events can sometimes be observed and loop DNA with a regular step. These nucleation events are often followed by binding of successive complexes bridging between nearby DNA segments in a zipper-like fashion, as confirmed by TEM observations. On nucleosomal substrates, we show that the specific ATP-dependent remodeling activity occurs in the context of cooperative Isw1a complexes bridging extranucleosomal DNA. Our results are interpreted in the context of the recently published partial structure of Isw1a and support its acting as a "protein ruler" (with possibly more than one tick.

  10. From chemical embryology to nucleosome patterning - an interview with Roumen G. Tsanev.

    Science.gov (United States)

    Tsanev, Roumen G

    2009-01-01

    Roumen Tsanev was a prominent Bulgarian scientist whose pioneering ideas about the role for chromatin in cell differentiation and development led him to propose the first hypothesis for epigenetic information based on a histone code. To test experimentally his ideas, Dr.Tsanev explored nucleosome structure and heterogeneity and generated seminal data on nucleosome segregation in replicating chromatin. Roumen Tsanev made significant contributions to the understanding of chromatin changes that underlie zygotic gene activation. He identified sperm specific chromatin components tightly bound to DNA and demonstrated that the histone complement of the male pronucleus appears before the onset of DNA synthesis in the mouse zygote. In this interview, Roumen Tsanev talks about his passion for science and literature, reminisces about surmounting the harsh realities in post-war communist Bulgaria through creativity and determination, and explains what led him to propose that histones were carriers of epigenetic information. Dr. Tsanev discusses mathematical models of gene regulation and recalls computer simulations that reveal the non-linearity of genetic networks. He explains how this non-linearity could affect cell proliferation, differentiation, development and evolution.

  11. Arginine-phosphate salt bridges between histones and DNA: Intermolecular actuators that control nucleosome architecture

    Science.gov (United States)

    Yusufaly, Tahir I.; Li, Yun; Singh, Gautam; Olson, Wilma K.

    2014-10-01

    Structural bioinformatics and van der Waals density functional theory are combined to investigate the mechanochemical impact of a major class of histone-DNA interactions, namely, the formation of salt bridges between arginine residues in histones and phosphate groups on the DNA backbone. Principal component analysis reveals that the configurational fluctuations of the sugar-phosphate backbone display sequence-specific directionality and variability, and clustering of nucleosome crystal structures identifies two major salt-bridge configurations: a monodentate form in which the arginine end-group guanidinium only forms one hydrogen bond with the phosphate, and a bidentate form in which it forms two. Density functional theory calculations highlight that the combination of sequence, denticity, and salt-bridge positioning enables the histones to apply a tunable mechanochemical stress to the DNA via precise and specific activation of backbone deformations. The results suggest that selection for specific placements of van der Waals contacts, with high-precision control of the spatial distribution of intermolecular forces, may serve as an underlying evolutionary design principle for the structure and function of nucleosomes, a conjecture that is corroborated by previous experimental studies.

  12. Nucleosomes and C1q bound to glomerular endothelial cells serve as targets for autoantibodies and determine complement activation

    NARCIS (Netherlands)

    O'Flynn, J.; Flierman, R.; Pol, P. van der; Meulemans-Rops, L.W.M.; Satchell, S.C.; Mathieson, P.W.; Kooten, C. van; Vlag, J. van der; Berden, J.H.M.; Daha, M.R.

    2011-01-01

    Various studies indicate a role for both anti-nucleosome and anti-C1q autoantibodies in glomerulonephritis in patients with systemic lupus erythematosus. However, a causal relationship between these autoantibodies and the development of lupus nephritis has not been fully established. Since injury of

  13. Chromatin and Nucleosome Organizations and DNA Replication of Nucleus Reassembled in vitro Using Purified Exogenous DNA and Xenopus Egg Extracts

    Institute of Scientific and Technical Information of China (English)

    张传茂; 张博; 翟中和

    1994-01-01

    It has been demonstrated in the last ten years that the nuclear reassembly may occur in the cell-free systems from frog egg extracts added with exogenous naked DNA. However, there remains an open question : is the cell-free reassembled nucleus structurally similar to the nucleus in the intact cell ? That is, does the cell-free reassembled nucleus contain nucleosomes and chromatin? For this issue, we have designed experiments for identifying the internal structures of the cell-free reassembled nucleus. These experiments show that the nucleus reassembled in vitro also contains chromatin which is composed of typical 10 nm nucleosome fibers of "beads-on-a-string", 30 nm filaments and the next higher-order structures. The digestion experiment with the enzyme micrococcal nuclease has demonstrated that the DNA in the nucleosome of the reconstituted chromatin is about 200 base pairs (bp) in length, of which 165 bp may be in the nucleosome particle, and 35 bp may be in the linker between two particles. Prolongin

  14. [THE MODEL OF NUCLEOSOME STRUCTURE BASED ON THE LOCAL ROTATION OF THE NUCLEOHISTONE CHAIN, WHICH INDUCES ITS FOLDING].

    Science.gov (United States)

    Priyatkina, T N

    2015-01-01

    An alternative model to the "double turn of DNA on the histone core" approach is forwarded based on the biochemical, cytological, and crystallographic data on the structural organization of the chromatin units--nucleosomes. The model assumes that the initial structure is a linear nucleohistone cord with a repeating symmetrical histone sequence. The compact (core) particle (a minimal nucleosome) is forming upon a stepwise rotation of DNA (kinks) at the centre and at two symmetrical sites into each repeating fragment stemming from the electrostatic binding of the lysine ε-NH2-groups with the followed one by one phosphates of the sugar-phosphate chain. As a result, we have a rhomboid structure composed of two counter-symmetrical DNA folds stabilized by histone-histone interactions. Based on disposable data, the histone sequence along nucleosome DNA is deduced. The following characteristics of the sequence are considered: continuity, non-overlapping, versatility, and dyadic symmetry in dispose of two every kind histone molecules and the sequence on the whole. The model is in agreement with a topology of nucleosome DNA, as well as the pattern of DNA-histone and histone-histone interactions in chromatin.

  15. Multiple aspects of atp-dependent nucleosome translocation by rsc and mi-2 are directed by the underlying DNA sequence

    NARCIS (Netherlands)

    Vugt, J. van; Jager, M. de; Murawska, M.; Brehm, A.; Noort, J. van; Logie, C.

    2009-01-01

    Background Chromosome structure, DNA metabolic processes and cell type identity can all be affected by changing the positions of nucleosomes along chromosomal DNA, a reaction that is catalysed by SNF2-type ATP-driven chromatin remodelers. Recently it was suggested that in vivo, more than 50% of the

  16. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription

    Science.gov (United States)

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C.

    2016-09-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA.

  17. Modification of oil palm wood using acetylation and impregnation process

    Science.gov (United States)

    Subagiyo, Lambang; Rosamah, Enih; Hesim

    2017-03-01

    The purpose of this study is chemical modification by process of acetylation and impregnation of oil palm wood to improve the dimensional stability. Acetylation process aimed at substituting the hydroxyl groups in a timber with an acetyl group. By increasing the acetyl groups in wood is expected to reduce the ability of wood to absorb water vapor which lead to the dimensions of the wood becomes more stable. Studies conducted on oil palm wood (Elaeis guineensis Jacq) by acetylation and impregnation method. The results showed that acetylated and impregnated wood oil palm (E. guineensis Jacq) were changed in their physical properties. Impregnation with coal ashfly provide the greatest response to changes in weight (in wet conditions) and after conditioning (dry) with the average percentage of weight gain of 198.16% and 66.41% respectively. Changes in volume indicates an increase of volume in the wet condition (imbibition) with the coal ashfly treatment gave highest value of 23.04 %, whereas after conditioning (dry) the highest value obtained in the treatment of gum rosin:ethanol with a volume increase of 13:44%. The highest changes of the density with the coal ashfly impregnation in wet condition (imbibition) in value of 142.32% and after conditioning (dry) of 57.87%. The result of reduction in water absorption (RWA) test showed that in the palm oil wood samples most stable by using of gum rosin : ethanol of 0.97%, whereas the increase in oil palm wood dimensional stability (ASE) is the best of 59.42% after acetylation with Acetic Anhydride: Xylene.

  18. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter.

    Science.gov (United States)

    Han, Han; Cortez, Connie C; Yang, Xiaojing; Nichols, Peter W; Jones, Peter A; Liang, Gangning

    2011-11-15

    Despite the fact that 45% of all human gene promoters do not contain CpG islands, the role of DNA methylation in control of non-CpG island promoters is controversial and its relevance in normal and pathological processes is poorly understood. Among the few studies which investigate the correlation between DNA methylation and expression of genes with non-CpG island promoters, the majority do not support the view that DNA methylation directly leads to transcription silencing of these genes. Our reporter assays and gene reactivation by 5-aza-2'-deoxycytidine, a DNA demethylating agent, show that DNA methylation occurring at CpG poor LAMB3 promoter and RUNX3 promoter 1(RUNX3 P1) can directly lead to transcriptional silencing in cells competent to express these genes in vitro. Using Nucleosome Occupancy Methylome- Sequencing, NOMe-Seq, a single-molecule, high-resolution nucleosome positioning assay, we demonstrate that active, but not inactive, non-CpG island promoters display a nucleosome-depleted region (NDR) immediately upstream of the transcription start site (TSS). Furthermore, using NOMe-Seq and clonal analysis, we show that in RUNX3 expressing 623 melanoma cells, RUNX3 P1 has two distinct chromatin configurations: one is unmethylated with an NDR upstream of the TSS; another is methylated and nucleosome occupied, indicating that RUNX3 P1 is monoallelically methylated. Together, these results demonstrate that the epigenetic signatures comprising DNA methylation, histone marks and nucleosome occupancy of non-CpG island promoters are almost identical to CpG island promoters, suggesting that aberrant methylation patterns of non-CpG island promoters may also contribute to tumorigenesis and should therefore be included in analyses of cancer epigenetics.

  19. Regulation of the nucleosome repeat length in vivo by the DNA sequence, protein concentrations and long-range interactions.

    Directory of Open Access Journals (Sweden)

    Daria A Beshnova

    2014-07-01

    Full Text Available The nucleosome repeat length (NRL is an integral chromatin property important for its biological functions. Recent experiments revealed several conflicting trends of the NRL dependence on the concentrations of histones and other architectural chromatin proteins, both in vitro and in vivo, but a systematic theoretical description of NRL as a function of DNA sequence and epigenetic determinants is currently lacking. To address this problem, we have performed an integrative biophysical and bioinformatics analysis in species ranging from yeast to frog to mouse where NRL was studied as a function of various parameters. We show that in simple eukaryotes such as yeast, a lower limit for the NRL value exists, determined by internucleosome interactions and remodeler action. For higher eukaryotes, also the upper limit exists since NRL is an increasing but saturating function of the linker histone concentration. Counterintuitively, smaller H1 variants or non-histone architectural proteins can initiate larger effects on the NRL due to entropic reasons. Furthermore, we demonstrate that different regimes of the NRL dependence on histone concentrations exist depending on whether DNA sequence-specific effects dominate over boundary effects or vice versa. We consider several classes of genomic regions with apparently different regimes of the NRL variation. As one extreme, our analysis reveals that the period of oscillations of the nucleosome density around bound RNA polymerase coincides with the period of oscillations of positioning sites of the corresponding DNA sequence. At another extreme, we show that although mouse major satellite repeats intrinsically encode well-defined nucleosome preferences, they have no unique nucleosome arrangement and can undergo a switch between two distinct types of nucleosome positioning.