WorldWideScience

Sample records for acetylacetone

  1. Acetone and the precursor ligand acetylacetone : distinctly different electron beam induced decomposition?

    NARCIS (Netherlands)

    Warneke, Jonas; Van Dorp, Willem F.; Rudolf, Petra; Stano, Michal; Papp, Peter; Matejcik, Stefan; Borrmann, Tobias; Swiderek, Petra

    2015-01-01

    In focused electron beam induced deposition (FEBID) acetylacetone plays a role as a ligand in metal acetylacetonate complexes. As part of a larger effort to understand the chemical processes in FEBID, the electron-induced reactions of acetylacetone were studied both in condensed layers and in the ga

  2. The Electrochemical Synthesis of Transition-Metal Acetylacetonates

    Science.gov (United States)

    Long, S. R.; Browning, S. R.; Lagowski, J. J.

    2008-01-01

    The electrochemical synthesis of transition-metal acetylacetonates described here can form the basis of assisting in the transformation of an entry-level laboratory course into a research-like environment where all members of a class are working on the same problem, but where each member has a personal responsibility for the synthesis and…

  3. Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries

    Science.gov (United States)

    Sleightholme, Alice E. S.; Shinkle, Aaron A.; Liu, Qinghua; Li, Yongdan; Monroe, Charles W.; Thompson, Levi T.

    A single-metal redox flow battery employing manganese(III) acetylacetonate in tetraethylammonium tetrafluoroborate and acetonitrile has been investigated. Cyclic voltammetry was used to evaluate electrode kinetics and reaction thermodynamics. The Mn II/Mn III and Mn III/Mn IV redox couples appeared to be quasi-reversible. A cell potential of 1.1 V was measured for the one-electron disproportionation of the neutral Mn III complex. The diffusion coefficient for manganese acetylacetonate in the supporting electrolyte solution was estimated to be in the range of 3-5 × 10 -6 cm 2 s -1 at room temperature. The charge-discharge characteristics of this system were evaluated in an H-type glass cell. Coulombic efficiencies increased with cycling suggesting an irreversible side reaction. Energy efficiencies for this unoptimized system were ∼21%, likely due to the high cell-component overpotentials.

  4. Infrared and Near-Infrared Spectroscopy of Acetylacetone and Hexafluoroacetylacetone.

    Science.gov (United States)

    Howard, Daryl L; Kjaergaard, Henrik G; Huang, Jing; Meuwly, Markus

    2015-07-23

    The infrared and near-infrared spectra of acetylacetone, acetylacetone-d8, and hexafluoroacetylacetone are characterized from experiment and computations at different levels. In the fundamental region, the intramolecular hydrogen bonded OH-stretching transition is clearly observed as a very broad band with substantial structure and located at significantly lower frequency compared to common OH-stretching frequencies. There is no clear evidence for OH-stretching overtone transitions in the near-infrared region, which is dominated by the CH-stretching overtones of the methine and methyl CH bonds. From molecular dynamics (MD) simulations, with a potential energy surface previously validated for tunneling splittings, the infrared spectra are determined and used in assigning the experimentally measured ones. It is found that the simulated spectrum in the region associated with the proton transfer mode is exquisitely sensitive to the height of the barrier for proton transfer. Comparison of the experimental and the MD simulated spectra establishes that the barrier height is around 2.5 kcal/mol, which favorably compares with 3.2 kcal/mol obtained from high-level electronic structure calculations.

  5. Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries

    Science.gov (United States)

    Shinkle, Aaron A.; Pomaville, Timothy J.; Sleightholme, Alice E. S.; Thompson, Levi T.; Monroe, Charles W.

    2014-02-01

    Properties of supporting electrolytes and solvents were examined for use with vanadium acetylacetonate - a member of the class of metal(β-diketonate) active species - in non-aqueous redox flow batteries. Twenty supporting-electrolyte/solvent combinations were screened for ionic conductivity and supporting-electrolyte solubility. Hexane, tetrahydrofuran, and dimethylcarbonate solvents did not meet minimal conductivity and solubility criteria for any of the electrolytes used, which included tetraethylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, and (1-butyl, 3-methyl)imidazolium bis(trifluoromethanesulfonyl)imide. Ionic conductivities and solubilities for solutions of these electrolytes passed screening criteria in acetonitrile and dimethylformamide solvents, in which maximum supporting-electrolyte and active-species solubilities were determined. Active-species electrochemistry was found to be reversible in several solvent/support systems; for some systems the voltammetric signatures of unwanted side reactions were suppressed. Correlations between supporting-solution properties and performance metrics suggest that an optimal solvent for a vanadium acetylacetonate RFB should have a low solvent molar volume for active-species solubility, and a high Hansen polarity for conductivity.

  6. Reactions cyclopentadienylvanadium compounds with trifluoroacetic acid and acetylacetone

    International Nuclear Information System (INIS)

    Studied is the interaction of vanadocene (1) and vanadium cyclopentadienylcarboxylates Cp2 VOCOCF3 (2), CpV(OCOCF3)2 (3), CpV(OCOCH3)2 (4) and CpV(OCOC6H5)2 (5) with acidic reagents: trifluoroacetic acid (6) and acetylacetone (7). In interaction of (1) with (6), depending on the ratio of components, the Cp2V structure is either retained (1:1 ratio, reaction products (2) and H2) or one Cp ring is removed (ratio > 1:2) with formation of cyclopentadiene, hydrogen and (3). Interaction of (7) with (1) leads to complete rupture of V-Cp bonds and formation of V(C5H7O2)3 (8). (7) replaces Cp and acyloxy groups from all studied cyclopentadienylcarboxylate derivatives of vanadium (2, 3, 4, 5) with formation of 8, cyclopentadiene and the corresponding carboxylic acids

  7. UV Spectral Analysis of the Chemical Modification and Photolysis of Acetylacetone Modified Alumina Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    Chengbin JING; Xiujian ZHAO; Haizheng TAO; Xina WANG; Aiyun LIU

    2004-01-01

    Acetylacetone was firstly introduced into the aqueous media with the presence of aluminum sec-butoxide and peptizator. It was confirmed that the UV (ultraviolet) absorption band of acetylacetone underwent 14 nm of red-shift due to the formation of the six-membered ring of the complex between alumina and acetylacetone in the aqueous solution. It was also found that the chemical modification can be dissociated by the UV irradiation with a wavelength shorter than 286 nm as a result of the excitation of π-π* transition in the complex.

  8. An application of the coincidence Doppler spectroscopy for substances of chemical interest: phthalocyanine and acetylacetonate complexes

    CERN Document Server

    Ito, Y

    2000-01-01

    Coincidence Doppler spectroscopy, which is particularly powerful when one is concerned with high momentum components of positron annihilation gamma-rays, has been applied to two different kinds of organo-metallic ligands: metal phthalocyanines and metal acetylacetonates. The energy (momentum) profiles of the annihilation gamma-rays were the same for metal phthalocyanines indicating that positron and/or positronium are not interacting with the metal ions. However, the profiles for the metal acetylacetonates evidently showed a dependence on the kind of metal ions. Discussion is made on the features of positron interaction which are different for phthalocyanines and acetylacetonates.

  9. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    Science.gov (United States)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  10. Lanthanide Complexes with Acetylacetonate and 5,10,15,20-Tetra[para-(4-chlorobenzoyloxy)phenyl]porphyrin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ The lanthanide complexes of acetylacetonate and 5,10,15,20-tetra[para-(chlorobenzoyloxy)phenyl]porphyrin having a general formula Ln[(cbop)4p]acac(where Ln=Tb,Ho,Er,Tm;cbop=(4-chlorobenzoyloxy)phenyl;Hacac=acetylacetone;p=porphyrin) were prepared and characterized.The structure of the complexs was proposed.

  11. Halomethyl-cobalt(bis-acetylacetonate) for the controlled synthesis of functional polymers.

    Science.gov (United States)

    Demarteau, Jérémy; Kermagoret, Anthony; German, Ian; Cordella, Daniela; Robeyns, Koen; De Winter, Julien; Gerbaux, Pascal; Jérôme, Christine; Debuigne, Antoine; Detrembleur, Christophe

    2015-10-01

    Novel organocobalt complexes featuring weak C-CoL2 bonds (L = acetylacetonate) are prepared and used as sources of halomethyl radicals. They permit the precision synthesis of α-halide functionalized and telechelic polymers in organic media or in water. Substitution of halide by azide allows derivatization of polymers using the CuAAC click reaction. PMID:26273709

  12. Preparation of ferric acetylacetonate, bonzonate and caprate labelled with Fe-55 and tests of application to liquid scintillation measurements

    International Nuclear Information System (INIS)

    The methods of preparation of ferric acetylacetonate, benzoate and caprate labelled with 55Fe are described. The quenching effect, the spectral baehaviour and the count rate stability are studied by liquid scintillation measurements in toluene, INSTAGEL and HISAFE II, for two different values of the sample concentration. The ferric acetylaceton-ate is stable for all the three scintillators but shows a strong quench, while the ferric benzoate and caprate are stable only for INSTAGEL and HISAFE II showing no significant quench at the concentrat-ions of interest in habitual measurements. (Author)

  13. Preparation and Biodistribution Studies of a Radiogallium-Acetylacetonate Bis (Thiosemicarbazone) Complex in Tumor-Bearing Rodents

    OpenAIRE

    Jalilian, Amir Reza; Yousefnia, Hassan; SHAFAII, KAMALEDDIN; Novinrouz, Aytak; Rajamand, Amir Abbas

    2012-01-01

    Various radiometal complexes have been developed for tumor imaging, especially Ga-68 tracer. In the present study, the development of a radiogallium bis-thiosemicarbazone complex has been reported. [67Ga] acetylacetonate bis(thiosemicarbazone) complex ([67Ga] AATS) was prepared starting [67Ga]Gallium acetate and freshly prepared acetylacetonate bis (thiosemicarbazone) (AATS) in 30 min at 90°C. The partition co-efficient and the stability of the tracer were determined in final solution (25°C) ...

  14. STUDIES ON THE INITIATION MECHANISM OF CERIC ION AND ACETYLACETONE REDOX SYSTEM IN VINYL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; GUO Xinqiu; ZHANG Dong; FENG Xinde

    1991-01-01

    The initiation mechanism of acrylamide (AAM)polymerization using ceric ion/acetylacetone system as an initiator has been studied. The redox polymerization was revealed by the low value of overall activation energy ofAAm polymerization. The structure of free radicals formed from above-mentioned initiation sytem were detected by radical trapping and ESR spectra techniques and the end groups of polymers obtained were determined by FT-IR spectra analysis method. Based on these results the initiation mechanism is proposed.

  15. Metal Acetylacetonates as General Precursors for the Synthesis of Early Transition Metal Oxide Nanomaterials

    Directory of Open Access Journals (Sweden)

    Amanda L. Willis

    2007-01-01

    Full Text Available A versatile, convenient, and nontoxic solvothermal method for the synthesis of nanocrystalline iron, chromium, and manganese oxides is described. This method employs the reactions of metal acetylacetonate precursors and oxygen-containing solvents in a reaction to prepare metal oxide nanoparticles. Characterization of these nanocrystalline materials was carried out employing transmission electron microscopy (TEM, high-resolution TEM (HRTEM, X-ray diffraction (XRD, and elemental analysis.

  16. Double deuterated acetylacetone in neon matrices: infrared spectroscopy, photoreactivity and the tunneling process.

    Science.gov (United States)

    Gutiérrez-Quintanilla, Alejandro; Chevalier, Michèle; Crépin, Claudine

    2016-07-27

    The effect of deuteration of acetylacetone (C5O2H8) is explored by means of IR spectroscopy of its single and double deuterated isotopologues trapped in neon matrices. The whole vibrational spectra of chelated enols are very sensitive to the H-D exchange of the hydrogen atom involved in the internal hydrogen bond. UV excitation of double deuterated acetylacetone isolated in neon matrices induces the formation of four open enol isomers which can be divided into two groups of two conformers, depending on their formation kinetics. Within each group, one conformer is more stable than the other: slow conformer interconversion due to a tunneling process is observed in the dark at low temperature. Moreover, IR laser irradiation at the OD stretching overtone frequency is used to induce interconversion either from the most stable to the less stable conformer or the opposite, depending on the excitation wavelength. The interconversion process is of great help to assign conformers which are definitively identified by comparison between experimental and calculated IR spectra. Kinetic constants of the tunneling process at play are theoretically estimated and agree perfectly with experiments, including previous experiments with the totally hydrogenated acetylacetone [Lozada García et al., Phys. Chem. Chem. Phys., 2012, 14, 3450].

  17. Performance and Characterization for Blend Membrane of PES with Manganese(III Acetylacetonate as Metalorganic Nanoparticles

    Directory of Open Access Journals (Sweden)

    H. Abdallah

    2015-01-01

    Full Text Available This study describes the preparation, characterization, and evaluation of performance of blend Polyethersulfone (PES with manganese(III acetylacetonate Mn(acac3 to produce reverse osmosis blend membrane. The manganese(III acetylacetonate nanoparticles were prepared by a simple and environmentally benign route based on hydrolysis of KMnO4 followed by reaction with acetylacetone in rapid stirring rate. The prepared nanoparticle powder was dissolved in polymer solution mixture to produce RO PES/Mn(acac3 blend membrane, without any treatment of Polyethersulfone membrane surface. The membrane morphology, mechanical properties, and performance were presented. The scanning electron microscopy (SEM images have displayed a typical asymmetric membrane structure with a dense top layer due to the migration of Mn(acac3 nanoparticles to membrane surface during the phase inversion process. Contact angle measurements have indicated that the hydrophilicity of the membrane was improved by adding Mn(acac3. AFM images have proved excellent pores size distribution of blend membrane and lower surface roughness compared with bare PES. The desalination test was applied to blend membrane, where the blend membrane provided good performance; particularly, permeate flux was 24.2 Kg/m2·h and salt rejection was 99.5%.

  18. Double deuterated acetylacetone in neon matrices: infrared spectroscopy, photoreactivity and the tunneling process.

    Science.gov (United States)

    Gutiérrez-Quintanilla, Alejandro; Chevalier, Michèle; Crépin, Claudine

    2016-07-27

    The effect of deuteration of acetylacetone (C5O2H8) is explored by means of IR spectroscopy of its single and double deuterated isotopologues trapped in neon matrices. The whole vibrational spectra of chelated enols are very sensitive to the H-D exchange of the hydrogen atom involved in the internal hydrogen bond. UV excitation of double deuterated acetylacetone isolated in neon matrices induces the formation of four open enol isomers which can be divided into two groups of two conformers, depending on their formation kinetics. Within each group, one conformer is more stable than the other: slow conformer interconversion due to a tunneling process is observed in the dark at low temperature. Moreover, IR laser irradiation at the OD stretching overtone frequency is used to induce interconversion either from the most stable to the less stable conformer or the opposite, depending on the excitation wavelength. The interconversion process is of great help to assign conformers which are definitively identified by comparison between experimental and calculated IR spectra. Kinetic constants of the tunneling process at play are theoretically estimated and agree perfectly with experiments, including previous experiments with the totally hydrogenated acetylacetone [Lozada García et al., Phys. Chem. Chem. Phys., 2012, 14, 3450]. PMID:27412624

  19. The development of radiogallium-acetylacetonate bis(thiosemicarbazone) complex for tumour imaging

    International Nuclear Information System (INIS)

    Background: Various radiometal complexes have been developed for tumour imaging, especially Ga-68 tracer. In this work, the development of a radiogallium bis(thiosemicarbazone) complex has been reported. Material and method: [67Ga]acetylacetonate bis(thio-semicarbazone) complex ([67Ga]AATS) was prepared starting with [67Ga]Gallium acetate and freshly prepared acetylacetonate bis(thiosemicarbazone) (AATS) for 30 min at 90oC. The partition co-efficient and stability of the tracer was determined in final solution (25oC) and the presence of human serum (37oC) for up to 24 hours. The biodistribution of the labelled compound in wild-type and fibrosarcoma-bearing rodents were determined for up to 72 hours. Results: The radiolabelled Ga complex was prepared to a high radiochemical purity (> 97%, HPLC) followed by initial biodistribution data with the significant tumour accumulation of the tracer at two hours, which is far higher than free Ga-67 cation, while the compound wash-out is significantly faster. Conclusion: The above-mentioned pharmacokinetic properties suggest an interesting radiogallium complex prepared by the PET Ga radioisotope, 68Ga, in accordance with the physical half life, for use in fibrosarcoma tumours and possibly in other malignancies. (authors)

  20. A New Homogeneous Catalyst for the Dehydrogenation of Dimethylamine Borane Starting with Ruthenium(III Acetylacetonate

    Directory of Open Access Journals (Sweden)

    Ebru Ünel Barın

    2015-06-01

    Full Text Available The catalytic activity of ruthenium(III acetylacetonate was investigated for the first time in the dehydrogenation of dimethylamine borane. During catalytic reaction, a new ruthenium(II species is formed in situ from the reduction of ruthenium(III and characterized using UV-Visible, Fourier transform infrared (FTIR, 1H NMR, and mass spectroscopy. The most likely structure suggested for the ruthenium(II species is mer-[Ru(N2Me43(acacH]. Mercury poisoning experiment indicates that the catalytic dehydrogenation of dimethylamine-borane is homogeneous catalysis. The kinetics of the catalytic dehydrogenation of dimethylamine borane starting with Ru(acac3 were studied depending on the catalyst concentration, substrate concentration and temperature. The hydrogen generation was found to be first-order with respect to catalyst concentration and zero-order regarding the substrate concentration. Evaluation of the kinetic data provides the activation parameters for the dehydrogenation reaction: the activation energy Ea = 85 ± 2 kJ·mol−1, the enthalpy of activation ∆H# = 82 ± 2 kJ·mol−1 and the entropy of activation; ∆S# = −85 ± 5 J·mol−1·K−1. The ruthenium(II catalyst formed from the reduction of ruthenium(III acetylacetonate provides 1700 turnovers over 100 hours in hydrogen generation from the dehydrogenation of dimethylamine borane before deactivation at 60 °C.

  1. Null current hysteresis for acetylacetonate electron extraction layer in perovskite solar cells

    Science.gov (United States)

    Mohd Yusoff, Abd. Rashid Bin; Mat Teridi, Mohd Asri; Jang, Jin

    2016-03-01

    Solution processed zirconium acetylacetonate (Zr(acac)) is successfully employed as an electron extraction layer, replacing conventional titanium oxide, in planar CH3NH3PbI3 perovskite solar cells. The as-prepared Zr(acac) film possesses high transparency, high conductivity, a smooth morphology, high wettability, compatibility with PbI2 DMF solution, and an energy level matching that of CH3NH3PbI3 perovskite material. An average power conversion efficiency of about 11.93%, along with a high fill factor of 74.36%, an open circuit voltage of 1.03 V, and a short-circuit current density of 15.58 mA cm-2 is achieved. The overall performance of the devices is slight better than that of cells using ruthenium acetylacetonate (Ru(acac)). The differences between solar cells with different electron extraction layers in charge recombination, charge transport and transfer and lifetime are further explored and it is demonstrate that Zr(acac) is a more effective and promising electron extraction layer. This work provides a simple, and cost effective route for the preparation of an effective hole extraction layer.

  2. Structure of neodymium tris-acetylacetonate with dimethylsulfoxide [NdA3Dmso(H2O)]·Dmso

    International Nuclear Information System (INIS)

    Crystal structure of adduct of neodymium tris-acetylacetonate with dimethylsulfoxide was investigated. The adduct [NdA3Dmso(H2O)]. Dmso is crystallized in monclinic syngony. One of two Dmso molecules and water molecule enter the inner coordination sphere of the complex

  3. AROMATIC AND HETEROCYCLIC NITRILES AND THEIR POLYMERS ⅩⅤⅢ. THE POLYMERIZATION KINETICS OF BENZONITRILE CATALYZED BY METAL ACETYLACETONATE

    Institute of Scientific and Technical Information of China (English)

    QIN Wei; HUANG Zhitang

    1993-01-01

    The bulk polymerization of benzonitrile catalyzed by Co (Ⅱ), Co (Ⅲ) and Fe(Ⅲ)acetylacetonate was studied. The results of kinetics study show that the rate of polymerization was proportional to first power of the concentration of catalyst and second power of the concentration of monomer.

  4. AROMATIC AND HETEROCYCLIC NITRILES AND THEIR POLYMERS XIX: THE POLYMERIZATION OF SUBSTITUTED BENZONITRILES CATALYZED BY COBALTIC ACETYLACETONATE

    Institute of Scientific and Technical Information of China (English)

    QIN Wei; HUANG Zhitang

    1996-01-01

    The polymerization kinetics of 4,4'-biphenyldicarbonitrile and other substituted benzonitriles catalyzed by cobaltic acetylacetonate was studied. The structure of polymer of different substituted benzonitrile was also determined. It is found that the rate of polymerization and the structure of polymer is greatly affected by the substituent of benzonitriles.

  5. Binary Diffusion Coefficients of Platinum(II) Acetylacetonate in Supercritical Carbon Dioxide.

    Science.gov (United States)

    Kong, Chang Yi; Siratori, Tomoya; Wang, Guosheng; Sako, Takeshi; Funazukuri, Toshitaka

    2013-11-14

    Binary diffusion coefficients (D12) and retention factors (k) of platinum(II) acetylacetonate at infinitesimal concentration in supercritical (sc) carbon dioxide (CO2) were measured by the chromatographic impulse response method with a poly(ethylene glycol) coated capillary column at temperatures from (308.15 to 343.15) K and pressures from (8.5 to 40.0) MPa, and D12 in liquid ethanol at temperatures from (298.15 to 333.15) K and atmospheric pressure by the Taylor dispersion method. As has been seen for our previously reported data on other metal complexes measured in sc CO2 and organic solvents, the D12 data in sc CO2 and liquid ethanol were represented by a function of temperature and solvent viscosity. The D12 values for metal complexes were not related to the solute molecular weights. The k values in sc CO2 were expressed by a function of temperature and CO2 density.

  6. Vanadium oxide thin films and fibers obtained by acetylacetonate sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Berezina, O.; Kirienko, D. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Pergament, A., E-mail: aperg@psu.karelia.ru [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Stefanovich, G.; Velichko, A. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Zlomanov, V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation)

    2015-01-01

    Vanadium oxide films and fibers have been fabricated by the acetylacetonate sol–gel method followed by annealing in wet nitrogen. The samples are characterized by X-ray diffraction and electrical conductivity measurements. The effects of a sol aging, the precursor decomposition and the gas atmosphere composition on the annealing process, structure and properties of the films are discussed. The two-stage temperature regime of annealing of amorphous films in wet nitrogen for formation of the well crystallized VO{sub 2} phase is chosen: 1) 25–550 °C and 2) 550–600 °C. The obtained films demonstrate the metal–insulator transition and electrical switching. Also, the effect of the polyvinylpyrrolidone additive concentration and electrospinning parameters on qualitative (absence of defects and gel drops) and quantitative (length and diameter) characteristics of vanadium oxide fibers is studied. - Highlights: • Vanadium oxide thin films and fibers are synthesized by sol–gel method. • The effect of annealing, atmosphere, time and electrospinning parameters is studied. • Produced VO{sub 2} structures exhibit metal–insulator transition and electrical switching.

  7. Highly selective and sensitive monohydrogen phosphate membrane sensor based on molybdenum acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Department of Chemisrtry, Tehran University, Tehran (Iran, Islamic Republic of)]. E-mail: Ganjali@khayam.ut.ac.ir; Norouzi, Parviz [Center of Excellence in Electrochemistry, Department of Chemisrtry, Tehran University, Tehran (Iran, Islamic Republic of); Ghomi, Mahnaz [Department of Chemistry, Azad University, North of branch, Tehran (Iran, Islamic Republic of); Salavati-Niasari, Masoud [Department of Chemistry, Kashan University, Kashan (Iran, Islamic Republic of)

    2006-05-17

    In this work, a highly selective and sensitive monohydrogen phosphate membrane sensor based on a molybdenum bis(2-hydroxyanil) acetylacetonate complex (MAA) is reported. The sensor shows a linear dynamic range between 1.0 x 10{sup -1} and 1.0 x 10{sup -7} M, with a nice Nernstian behavior (-29.5 {+-} 0.3 mV decade{sup -1}) in pH of 8.2. The detection limit of the electrode is 6.0 x 10{sup -8} M ({approx}6 ppb). The best performance was obtained with a membrane composition of 32% poly(vinyl chloride), 58% benzyl acetate, 2% hexadecyltrimethylammonium bromide and 8% MAA. The sensor possesses the advantages of short response time, low detection limit and especially, very good selectivity towards a large number of organic and inorganic anions including salicylate, citrate, tartarate, acetate, oxalate, fluoride, chloride, bromide, iodide, sulfite, sulfate, nitrate, nitrite, cyanide, thiocyanate, perchlorate, metavanadate, and bicarbonate ions. The electrode can be used for at least 10 weeks without any considerable divergence in its slope and detection limit. It was used as an indicator electrode in potentiometric titration of monohydrogenphosphate ion with barium chloride. The proposed sensor was successfully applied to direct determination of monohydrogenphosphate in two fertilizer samples (NPK)

  8. L-Lactide Ring-Opening Polymerization with Tris(acetylacetonate)Titanium(IV) for Renewable Material.

    Science.gov (United States)

    Kim, Da Hee; Yoo, Ji Yun; Ko, Young Soo

    2016-05-01

    A new Ti-type of catalyst for L-lactide polymerization was synthesized by reaction of titanium(IV) isopropoxide (TTIP) with acetylacetone (AA). Moreover, PLA was prepared by the bulk ring-opening polymerization using synthesized Ti catalyst. Polymerization behaviors were examined depending on monomer/catalyst molar ratio, polymerization temperature and time. The structure of synthesized catalysts was verified with FT-IR and 1H NMR and the properties of poly(L-lactide) (PLLA) were examined by GPC, DSC and FT-IR. There existed about 30 minutes of induction time at the monomer/catalyst molar ratio of 300. The molecular weight (MW) increased as monomer/catalyst molar ratio increased. The MW increased almost linearly as polymerization progressed. Increasing polymerization temperature increased the molecular weight of PLLA as well as monomer/catalyst molar ratio. The melting point (T(m)) of polymers was in the range of 142 to 167 degrees C. Lower T(m) was expected to be resulted from relatively lower molecular weight. PMID:27483787

  9. Synthesis and spectroscopic studies of some chromium and molybdenum derivatives of bis-(acetylacetone)ethylenediimine ligand

    Science.gov (United States)

    Ramadan, Ramadan M.; Abdel-Rahman, Laila H.; Ismael, Mohamed; Youssef, Teraze A.; Ali, Saadia A.

    2013-10-01

    Interaction of [Cr(CO)6] with bis-(acetylacetone)ethylenediimine Schiff base, H2acacen, under reduced pressure resulted in the formation of [Cr(CO)3(H2acacen)] derivative. The Schiff base acted as a tridentate and coordinated the metal through the nitrogen of the azomethine groups and one hydroxyl group. Reaction of [Mo(CO)6] with H2acacen under sunlight irradiation in presence of air gave the oxo derivative [Mo2O6(H2acacen)2]. The ligand acted as a bidentate and coordinated the metal through the two imine groups. In presence of 2,2'-bipyridine (bpy), the reaction of [Mo(CO)6] with H2acacen gave [Mo2O6(bpy)(H2acacec)]. The structures of the reported complexes were proposed on the basis of spectroscopic studies. The proposed structures were also verified by theoretical calculations based on accurate DFT approximations. Moreover, the relative reactivity was estimated using chemical descriptors analysis.

  10. Spectral studies on the interaction of acetylacetone with aluminum-containing MCM-41 mesoporous materials

    International Nuclear Information System (INIS)

    Diffuse reflectance spectroscopy (DRS) was used to study the interaction of acetylacetone (acac) with the mesoporous aluminum-containing MCM-41 materials. A room temperature synthesis method was used for preparation of purely siliceous MCM-41 and for aluminum-containing MCM-41 materials. Samples with Si/Al ratios of 50, 20, 10 and 5 were synthesized. The synthesized mesoporous materials possess highly ordered structure and high surface area as evidenced from X-ray diffraction and nitrogen physisorption measurements, respectively. The treatment of the as-synthesized aluminum-containing MCM-41 samples with acac shows a distinct band at ∼290 nm. This band is assigned to six coordinated aluminum atoms in the structure which is produced by diffusion of acac molecules through surfactant micelles and their interaction with aluminum atoms. The 290-nm band disappears upon several successive washing of the sample with ethanol. The treatment of the calcined aluminum-containing MCM-41 sample with acac produces the same 290-nm band where its intensity increases with the aluminum content of the sample. The intensity of this band is reduced upon successive ethanol washing, but remains nearly constant after three times washing. This irremovable aluminum species can be assigned to framework aluminum. The measured acidity for our aluminum-containing MCM-41 samples correlates linearly with the intensity of 290-nm band for the ethanol treated samples. This supports the idea that the Bronsted acidity in aluminum-modified MCM-41 samples is a function of the amount of tetrahedral framework aluminum in the structure

  11. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride

    OpenAIRE

    Rajesh Biswal; Arturo Maldonado; Jaime Vega-Pérez; Dwight Roberto Acosta; María De La Luz Olvera

    2014-01-01

    The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In) thin films, with electrical resistivity as low as 3.42 × 10−3 Ω·cm and high optical transmittance, in the visible range, of 50%–70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate tempe...

  12. Host--guest complexation. 15. Macrocyclic acetylacetone ligands for metal cations

    International Nuclear Information System (INIS)

    Five macrocycles containing 1,5-disubstituted acetylacetone units (AcAc) have been synthesized. Their abilities to complex metal cations in water--dioxane have been compared to those of noncyclic model compounds. The AcAc units were bound together through bridges composed of the following groups: oxa (O), ethylene (E), and 1,3-disubstituted benzene (B). Cycles O(AcAcOEOE)(EOEOE)O(7), (OEOAcAcOE)2 (8), and (OEOAcAcOE)3 (9) were prepared by hydrolysis of rings closed by the reactions of CH2[HOCH2C(SCH2)2CH2]2 (2) and appropriate polyethylene glycol ditosylates. Ligand systems O(EAcAcE)2O (12) and B(CH2AcAcCH2)2B (14) were synthesized in Ca2+ or Mg2+ templated, two-step sequences involving reactions of HAcAcH dianions with either diethylene glycol ditosylate of m-xylyl dibromide, respectively. The preparation of (CH2IsCH2O)3 (17) is also described, in which Is is the 3,5-disubstituted isoxazole unit. Also described are the preparations of O(EAcAcH)2 (11), B(CH2AcAcH)2 (13), and P(CH2AcAcH)2 (15), in which P is 2,6-disubstituted pyridine. The logarithms of the formation constants (log K/sup f//sub av/) of the salts of (OEOAcAcOE)2 with 11 divalent metal cations and of (OEOAcAcOE)3 with 3 trivalent cations were 1.8 to 6.3 units higher valued than for CH3OAcAcOCH3. The log K/sup f//sub av/values for salt formation of O(EAcAcE)2O and B(CH2AcAcCH2)2B with 10 divalent cations were compared with those of O(EAcAcH)2 and B(CH2AcAcH)2, respectively, and with HAcAcH itself. Without exception, O(EAcAcE)2O > O(EAcAcH)2 > HAcAcH in values of log k/sup f//sub av/, the maximum difference being 4.3 for Ca2+

  13. Preparation and Biodistribution Studies of a Radiogallium-Acetylacetonate Bis (Thiosemicarbazone) Complex in Tumor-Bearing Rodents

    Science.gov (United States)

    Jalilian, Amir Reza; Yousefnia, Hassan; Shafaii, Kamaleddin; Novinrouz, Aytak; Rajamand, Amir Abbas

    2012-01-01

    Various radiometal complexes have been developed for tumor imaging, especially Ga-68 tracer. In the present study, the development of a radiogallium bis-thiosemicarbazone complex has been reported. [67Ga] acetylacetonate bis(thiosemicarbazone) complex ([67Ga] AATS) was prepared starting [67Ga]Gallium acetate and freshly prepared acetylacetonate bis (thiosemicarbazone) (AATS) in 30 min at 90°C. The partition co-efficient and the stability of the tracer were determined in final solution (25°C) and the presence of human serum (37°C) up to 24 h. The biodistribution of the labeled compound in wild-type and fibrosarcoma-bearing rodents were determined up to 72 h. The radiolabled Ga complex was prepared in high radiochemical purity (> 97%, HPLC) followed by initial biodistribution data with the significant tumor accumulation of the tracer in 2 h which is far higher than free Ga-67 cation while the compound wash-out is significantly faster. Above-mentioned pharmacokinetic properties suggest an interesting radiogallium complex while prepared by the PET Ga radioisotope, 68Ga, in accordance with the physical half life, for use in fibrosarcoma tumors, and possibly other malignancies. PMID:24250475

  14. Effect of magnesium acetylacetonate on the signal of organic forms of vanadium in graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Kowalewska, Zofia; Welz, Bernhard; Castilho, Ivan N B; Carasek, Eduardo

    2013-01-15

    The aim of this work was to investigate the influence of magnesium acetylacetonate (MgA) on the signal of organic forms of vanadium in xylene solution by graphite furnace atomic absorption spectrometry. MgA alone or mixed with palladium acetylacetonate (PdA) was considered as a chemical modifier. It has been found that MgA does not improve, but decreases significantly the integrated absorbance of V in the form of alkyl-aryl sulfonates, acetylacetonates, porphyrins and in lubricating oils, while its effect is negligible in the case of "dark products" from petroleum distillation, i.e., heavy oil fractions and residues. The decrease is also observed in the presence of Pd. The MgA (or MgA+PdA) effect on the integrated absorbance of V has been studied using the following variants: different ways of modifier application, various pyrolysis temperature, additional application of air ashing, preliminary pretreatment with iodine and methyltrioctylammonium chloride, application of various graphite furnace heating systems (longitudinal or transverse) and various optical and background correction systems (medium-resolution line source spectrometer with deuterium background correction or high-resolution continuum source spectrometer). The experiments indicate formation of more refractory compounds as a possible reason for the decrease of the integrated absorbance for some forms of V in the presence of MgA. The application of MgA as a chemical modifier in V determination is not recommended. Results of this work have general importance as, apart from the intentional use of MgA as a modifier, organic Mg compounds, present in petroleum products for other reason (e.g. as an additive), can influence the signal of V compounds and hence the accuracy in V determination. Generally, petroleum products with known amount of V are recommended as standards; however, lubricating oils can be inadequate for "dark products" from petroleum distillation. In the case of unknown samples it is

  15. Heat capacity and thermodynamic functions of ruthenium tris-acetylacetonate from 0 K up to the melting point

    Energy Technology Data Exchange (ETDEWEB)

    Kuzin, Timofei M., E-mail: kuzin@niic.nsc.ru; Bespyatov, Michael A.; Naumov, Victor N.; Musikhin, Anatoly E.; Gelfond, Nikolay V.

    2015-02-20

    Highlights: • The heat capacity for Ru(AA){sub 3} for the entire range of solid phase existence. • Density of phonon states calculated from the low-temperature heat capacity • Thermodynamic functions in the range (0–505) K. - Abstract: In the present work, the vibrational spectrum of the ruthenium tris-acetylacetonate crystal, Ru(C{sub 5}H{sub 7}O{sub 2}){sub 3}, was reconstructed and its heat capacity was calculated for the entire range of solid phase existence (5–505 K) based on the experimental data on heat capacity obtained by adiabatic method within the range of 6–310 K. The C{sub p}−C{sub v} difference was estimated at the temperatures above 310 K. Based on the heat capacity obtained from the vibrational spectrum, integral thermodynamic functions (entropy, internal energy, and Helmholtz energy) were calculated up to the melting point.

  16. Effect of chelating agent acetylacetone on corrosion protection properties of silane-zirconium sol-gel coatings

    Science.gov (United States)

    Yu, Mei; Liang, Min; Liu, Jianhua; Li, Songmei; Xue, Bing; Zhao, Hao

    2016-02-01

    The hybrid sol-gel coatings on AA2024-T3 were prepared with a silane coupling agent 3-glycidoxypropyltrimethoxysilane (GPTMS) and a metal alkoxide tetra-n-propoxyzirconium (TPOZ) as precursors. The effect of acetylacetone (AcAc) as a chelating agent on the corrosion protection properties of sol-gel coatings were evaluated and the optimal AcAc/TPOZ molar ratio was obtained. The sol-gel coatings were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The corrosion protection properties of the coatings were evaluated by means of potentiodynamic polarization study (PDS) and electrochemical impedance spectroscopy (EIS). It is demonstrated that AcAc avoids fast hydrolysis of TPOZ and benefits to form stable sols. The coating with AcAc/TPOZ molar ratio of 3 shows the best corrosion protection performance in 0.05 M NaCl solution.

  17. Transport of Indium, Gallium and Thallium Metal Ions Through Chromatographic Fiber Supported Solid Membrane in Acetylacetone Containing Mixed Solvents

    Institute of Scientific and Technical Information of China (English)

    Abaji Gaikwad

    2011-01-01

    The transport of metal ions of indium, gallium and thallium from source solution to receiving phase through the chromatographic fiber supported solid membrane in the acetylacetone (HAA) containing mixed solvent system has been explored. The fibers supported solid membranes were prepared with chemical synthesis from cellulose fibers and citric acid with the carboxylic acid ion exchange groups introduced. The experimental variables, such as concentration of metal ions (10^-2 to 10^-4 mol.L^-1) in the source solution, mixed solvent composition [for exampl, e, acetylacetone, (2,4-pentanedione), (HAA) 20% (by volume), 1,4-dioxane 10% to 60% and HC1 0.25 to 2 mol.L^-1] in the receiving phase and stirring speed (50-130 r.min ) of the bulk source and receiving phase, were explored. The efficiency of mixed solvents for the transport of metal ions from the source to receiving phase through the fiber supported solid membrane was evaluated. The combined ion exchange solvent extraction (CIESE) was observed effective for the selective transport of thallium, indium and gallium metal ions through fiber supported solid membrane in mixed solvents. The oxonium salt formation in the receiving phase enhances thallium, indium and gallium metal ion transport through solid membrane phase. The selective transport of thallium metal ions from source phase was observed from indium and gallium metal ions in the presence of hydrochloric acid in organic solvents in receiving phase. The separation of thallium metal ions from the binary mixtures of Be(II), Ti(IV), AI(III) Ca(II), Mg(II), K (I), La(III) and Y(III) was carried out in the mixed solvent system using cellulose fiber supported solid membrane.

  18. Calculating the thermodynamic characteristics of hydrophobic hydration of chromium(III) and cobalt(III) tris-acetylacetonates in water and regularities of their solvation in aqueous alcoholic solvents

    Science.gov (United States)

    Vologdin, N. V.; Fabinskii, P. V.; Fedorov, V. A.

    2016-06-01

    Based on the scaled-particle theory, the Gibbs energy of the formation of cavities in the structure of water and some alcohols are calculated for the processes of dissolution of cobalt(III) and chromium(III) tris-acetylacetonates. The contribution from the hydrophobic hydration of the tris-acetylacetonate molecules in water is calculated. The location of the inversion area is clarified for a number of aqueous alcoholic solvents, and the effect the solvent's macrophysical parameters have on the patterns of tris-acetylacetonate solvation is analyzed.

  19. The chemistry and mechanism of thermal degradation reactions of lanthanum(III) and praseodymium(III) complexes of acetylacetone-bis(thiosemicarbazones)

    International Nuclear Information System (INIS)

    The reactions of acetylacetone with 4-phenyl, 4-(2-chlorophenyl), 4-(4-nitrophenyl) and 4-(2-methylphenyl) thiosemicarbazide yields acetylacetone-bis(thiosemicarbazone) ligands (H2L). Lanthanum(III) and praseodymium(III) complexes with these ligands of the type (Ln(L)Cl(H2O)) have been prepared. The thermal behaviour of these compounds in non-isothermal conditions was investigated using TG, DTG and DSC techniques. The intermediates obtained at the end of various thermal decomposition steps were identified from elemental analyses and infrared spectral studies. The graphical method of Coats and Redfern was employed to evaluate the kinetic parameters such as apparent activation energy and order of reaction. The heats of reaction for the different decomposition steps were calculated from DSC curves. (author)

  20. Synthesis, structure, theoretical studies and luminescent properties of a ternary erbium(III) complex with acetylacetone and bathophenanthroline ligands

    International Nuclear Information System (INIS)

    A novel erbium(III) complex with acetylacetone (Hacac) and bathophenanthroline (4,7-diphenyl-1,10-phenanthroline, bath) ligands, formulated as [Er(acac)3(bath)], has been characterized by elemental analysis, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, absorption and emission spectroscopies. In the theoretical part of this study, semi-empirical quantum chemistry methods using AM1, PM3, PM6 and PM7 models have been employed to predict the structure of the complex, calculate the geometric and crystallographic parameters, and make comparisons with spectroscopic data using INDO/S-CI calculations. Real-time time-dependent density-functional theory (TDDFT) has also been used to calculate the optical absorption spectrum of the complex in the gas phase. - Highlights: • Synthesis and structure of a new erbium(III) β-diketonate complex. • TDDFT used for the first time to calculate the optical absorption spectrum. • Complex show strong near-infrared luminescence at 1.53 µm due to antenna effect

  1. Phosphorescence quantum yield determination with time-gated fluorimeter and Tb(III)-acetylacetonate as luminescence reference

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany)

    2013-03-29

    Highlights: ► Procedure for absolute phosphorescence quantum yield measurement is described. ► Experimental setup for absolute luminescence quantum yield standard calibration. ► Tb(acac){sub 3} proposed as phosphorescence quantum yield reference standard. ► Luminescence quantum yield of Tb(acac){sub 3} in cyclohexane measured. ► Luminescence lifetime of Tb(acac){sub 3} in cyclohexane measured. - Abstract: Phosphorescence quantum yield measurements of fluorescent and phosphorescent samples require the use of time-gated fluorimeters in order to discriminate against the fluorescence contribution. As reference standard a non-fluorescent luminescent compound is needed for absolute phosphorescence quantum yield determination. For this purpose the luminescence behavior of the rare earth chelate terbium(III)-acetylacetonate (Tb(acac){sub 3}) was studied (determination of luminescence quantum yield and luminescence lifetime). The luminescence quantum yield of Tb(acac){sub 3} was determined by using an external light source and operating the fluorimeter in chemo/bioluminescence mode with a fluorescent dye (rhodamine 6G in methanol) as reference standard. A procedure is developed for absolute luminescence (phosphorescence) quantum yield determination of samples under investigation with a time-gated fluorimeter using a non-fluorescent luminescent compound of known luminescence quantum yield and luminescence lifetime.

  2. Synthesis, structure, theoretical studies and luminescent properties of a ternary erbium(III) complex with acetylacetone and bathophenanthroline ligands

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Ramos, Pablo [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Silva, Pedro S. Pereira, E-mail: psidonio@pollux.fis.uc.pt [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Chamorro-Posada, Pedro [Higher Technical School of Telecommunications Engineering, Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén 15, 47011 Valladolid (Spain); Silva, Manuela Ramos [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Milne, Bruce F. [Centre for Computational Physics, Department of Physics, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Donostia International Physics Centre, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Nogueira, Fernando [Centre for Computational Physics, Department of Physics, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Martín-Gil, Jesús [Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain)

    2015-06-15

    A novel erbium(III) complex with acetylacetone (Hacac) and bathophenanthroline (4,7-diphenyl-1,10-phenanthroline, bath) ligands, formulated as [Er(acac){sub 3}(bath)], has been characterized by elemental analysis, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, absorption and emission spectroscopies. In the theoretical part of this study, semi-empirical quantum chemistry methods using AM1, PM3, PM6 and PM7 models have been employed to predict the structure of the complex, calculate the geometric and crystallographic parameters, and make comparisons with spectroscopic data using INDO/S-CI calculations. Real-time time-dependent density-functional theory (TDDFT) has also been used to calculate the optical absorption spectrum of the complex in the gas phase. - Highlights: • Synthesis and structure of a new erbium(III) β-diketonate complex. • TDDFT used for the first time to calculate the optical absorption spectrum. • Complex show strong near-infrared luminescence at 1.53 µm due to antenna effect.

  3. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride

    Directory of Open Access Journals (Sweden)

    Rajesh Biswal

    2014-07-01

    Full Text Available The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In thin films, with electrical resistivity as low as 3.42 × 10−3 Ω·cm and high optical transmittance, in the visible range, of 50%–70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002 to (101 planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered.

  4. Acetylacetonate anchors for robust functionalization of TiO2 nanoparticles with Mn(II)-terpyridine complexes.

    Science.gov (United States)

    McNamara, William R; Snoeberger, Robert C; Li, Gonghu; Schleicher, James M; Cady, Clyde W; Poyatos, Macarena; Schmuttenmaer, Charles A; Crabtree, Robert H; Brudvig, Gary W; Batista, Victor S

    2008-10-29

    A novel class of derivatized acetylacetonate (acac) linkers for robust functionalization of TiO2 nanoparticles (NPs) under aqueous and oxidative conditions is reported. The resulting surface adsorbate anchors are particularly relevant to engineering photocatalytic and photovoltaic devices since they can be applied to attach a broad range of photosensitizers and photocatalytic complexes and are not affected by humidity. Acac is easily modified by CuI-mediated coupling reactions to provide a variety of scaffolds, including substituted terpy complexes (terpy = 2,2':6,2''-terpyridine), assembled with ligands coordinated to transition-metal ions. Since Mn-terpy complexes are known to be effective catalysts for oxidation chemistry, functionalization with Mn(II) is examined. This permits visible-light sensitization of TiO2 nanoparticles due to interfacial electron transfer, as evidenced by UV-vis spectroscopy of colloidal thin films and aqueous suspensions. The underlying ultrafast interfacial electron injection is complete on a subpicosecond time scale, as monitored by optical pump-terahertz probe transient measurements and computer simulations. Time-resolved measurements of the Mn(II) EPR signal at 6 K show that interfacial electron injection induces Mn(II) --> Mn(III) photooxidation, with a half-time for regeneration of the Mn(II) complex of ca. 23 s.

  5. Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic Catalyst Iron(III Acetylacetonate

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-01-01

    Full Text Available Atom Transfer Radical Polymerization (ATRP is an important polymerization process in polymer synthesis. However, a typical ATRP system has some drawbacks. For example, it needs a large amount of transition metal catalyst, and it is difficult or expensive to remove the metal catalyst residue in products. In order to reduce the amount of catalyst and considering good biocompatibility and low toxicity of the iron catalyst, in this work, we developed a homogeneous polymerization system of initiators for continuous activator regeneration ATRP (ICAR ATRP with just a ppm level of iron catalyst. Herein, we used oil-soluble iron (III acetylacetonate (Fe(acac3 as the organometallic catalyst, 1,1′-azobis (cyclohexanecarbonitrile (ACHN with longer half-life period as the thermal initiator, ethyl 2-bromophenylacetate (EBPA as the initiator, triphenylphosphine (PPh3 as the ligand, toluene as the solvent and methyl methacrylate (MMA as the model monomer. The factors related with the polymerization system, such as concentration of Fe(acac3 and ACHN and polymerization kinetics, were investigated in detail at 90 °C. It was found that a polymer with an acceptable molecular weight distribution (Mw/Mn = 1.43 at 45.9% of monomer conversion could be obtained even with 1 ppm of Fe(acac3, making it needless to remove the residual metal in the resultant polymers, which makes such an ICAR ATRP process much more industrially attractive. The “living” features of this polymerization system were further confirmed by chain-extension experiment.

  6. Plasma assisted metal-organic chemical vapor deposition of hard chromium nitride thin film coatings using chromium(III) acetylacetonate as the precursor

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Arup; Kuppusami, P.; Lawrence, Falix; Raghunathan, V.S.; Antony Premkumar, P.; Nagaraja, K.S

    2004-06-15

    A new technique has been developed for depositing hard nanocrystalline chromium nitride (CrN) thin films on metallic and ceramic substrates using plasma assisted metal-organic chemical vapor deposition (PAMOCVD) technique. In this low temperature and environment-friendly process, a volatile mixture of chromium(III) acetylacetonate and either ammonium iodide or ammonium bifluoride were used as precursors. Nitrogen and hydrogen have been used as the gas precursors. By optimizing the processing conditions, a maximum deposition rate of {approx}0.9 {mu}m/h was obtained. A comprehensive characterization of the CrN films was carried out using X-ray diffraction (XRD), microhardness, and microscopy. The microstructure of the CrN films deposited on well-polished stainless steel (SS) showed globular particles, while a relatively smooth surface morphology was observed for coatings deposited on polished yittria-stabilized zirconia (YSZ)

  7. Growth behavior and properties of atomic layer deposited tin oxide on silicon from novel tin(II)acetylacetonate precursor and ozone

    International Nuclear Information System (INIS)

    In this work, a novel liquid tin(II) precursor, tin(II)acetylacetonate [Sn(acac)2], was used to deposit tin oxide films on Si(100) substrate, using a custom-built hot wall atomic layer deposition (ALD) reactor. Three different oxidizers, water, oxygen, and ozone, were tried. Resulting growth rates were studied as a function of precursor dosage, oxidizer dosage, reactor temperature, and number of ALD cycles. The film growth rate was found to be 0.1 ± 0.01 nm/cycle within the wide ALD temperature window of 175–300 °C using ozone; no film growth was observed with water or oxygen. Characterization methods were used to study the composition, interface quality, crystallinity, microstructure, refractive index, surface morphology, and resistivity of the resulting films. X-ray photoelectron spectra showed the formation of a clean SnOx–Si interface. The resistivity of the SnOx films was calculated to be 0.3 Ω cm. Results of this work demonstrate the possibility of introducing Sn(acac)2 as tin precursor to deposit conducting ALD SnOx thin films on a silicon surface, with clean interface and no formation of undesired SiO2 or other interfacial reaction products, for transparent conducting oxide applications

  8. Optimization of the Energy Level Alignment between the Photoactive Layer and the Cathode Contact Utilizing Solution-Processed Hafnium Acetylacetonate as Buffer Layer for Efficient Polymer Solar Cells.

    Science.gov (United States)

    Yu, Lu; Li, Qiuxiang; Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Wang, Fuzhi; Zhang, Bing; Dai, Songyuan; Lin, Jun; Tan, Zhan'ao

    2016-01-13

    The insertion of an appropriate interfacial buffer layer between the photoactive layer and the contact electrodes makes a great impact on the performance of polymer solar cells (PSCs). Ideal interfacial buffer layers could minimize the interfacial traps and the interfacial barriers caused by the incompatibility between the photoactive layer and the electrodes. In this work, we utilized solution-processed hafnium(IV) acetylacetonate (Hf(acac)4) as an effective cathode buffer layer (CBL) in PSCs to optimize the energy level alignment between the photoactive layer and the cathode contact, with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) all simultaneously improved with Hf(acac)4 CBL, leading to enhanced power conversion efficiencies (PCEs). Ultraviolet photoemission spectroscopy (UPS) and scanning Kelvin probe microscopy (SKPM) were performed to confirm that the interfacial dipoles were formed with the same orientation direction as the built-in potential between the photoactive layer and Hf(acac)4 CBL, benefiting the exciton separation and electron transport/extraction. In addition, the optical characteristics and surface morphology of the Hf(acac)4 CBL were also investigated.

  9. Surface chemistry of copper metal and copper oxide atomic layer deposition from copper(ii) acetylacetonate: a combined first-principles and reactive molecular dynamics study.

    Science.gov (United States)

    Hu, Xiao; Schuster, Jörg; Schulz, Stefan E; Gessner, Thomas

    2015-10-28

    Atomistic mechanisms for the atomic layer deposition using the Cu(acac)2 (acac = acetylacetonate) precursor are studied using first-principles calculations and reactive molecular dynamics simulations. The results show that Cu(acac)2 chemisorbs on the hollow site of the Cu(110) surface and decomposes easily into a Cu atom and the acac-ligands. A sequential dissociation and reduction of the Cu precursor [Cu(acac)2 → Cu(acac) → Cu] are observed. Further decomposition of the acac-ligand is unfavorable on the Cu surface. Thus additional adsorption of the precursors may be blocked by adsorbed ligands. Molecular hydrogen is found to be nonreactive towards Cu(acac)2 on Cu(110), whereas individual H atoms easily lead to bond breaking in the Cu precursor upon impact, and thus release the surface ligands into the gas-phase. On the other hand, water reacts with Cu(acac)2 on a Cu2O substrate through a ligand-exchange reaction, which produces gaseous H(acac) and surface OH species. Combustion reactions with the main by-products CO2 and H2O are observed during the reaction between Cu(acac)2 and ozone on the CuO surface. The reactivity of different co-reactants toward Cu(acac)2 follows the order H > O3 > H2O. PMID:26399423

  10. Determination of formaldehyde in vegetables by acetylacetone spectrophotometry%测定蔬菜中的甲醛的乙酰丙酮分光光度法

    Institute of Scientific and Technical Information of China (English)

    张以春

    2012-01-01

    目的 优化测定蔬菜中甲醛含量的实验条件.方法 采用浸泡法对蔬菜样品中的甲醛进行提取,利用甲醛与乙酰丙酮及氨反应生成黄色化合物通过分光光度法检测甲醛浓度.结果 方法线性范围为0.2~3.2 mg/L,线性方程为y =0.011x+0.018,相关系数为0.999 8,对4种蔬菜样品进行6次平行测定,RSD为2.37%~ 8.22%,对豇豆测定回收率为90% ~ 96%.结论 该法快速、准确、重现性好,适用于蔬菜样品中的甲醛检测.%[ Objective ] To optimize experimental conditions for the analysis of the formaldehyde content in the vegetables. [ Methods ] Formaldehyde was extracted by soaking the vegetable samples. The yellow compound which was generated by formaldehyde and acetylacetone with ammonia was detected by spectrophotometry. [ Results] The linear range was 0. 2-3. 2 mg/L. The linear equation was y = 0. 011 x + 0. 018 , and the correlation coefficient was 0. 999 8. Four kinds of vegetable samples were determined for 6 times. The RSD was 2. 37%-78. 22% . The recovery of cowpea was 90%-96%. [Conclusion]This method is rapid, accurate, reproducible, and suitable for detection of formaldehyde in vegetable samples.

  11. Synthesis, characterisation and electrochemical behaviour of Cu(II), Co(II), Ni(II) and Zn(II) complexes derived from acetylacetone and p-anisidine and their antimicrobial activity

    Indian Academy of Sciences (India)

    N Raman; V Muthuraj; S Ravichandran; A Kulandaisamy

    2003-06-01

    Neutral tetradentate N2O2 type complexes of Cu(II), Ni(II), Co(II) and Zn(II) have been synthesised using the Schiff base formed by the condensation of acetylacetone and p-anisidine. Microanalysis, molar conductance, magnetic susceptibility, IR, UV-Vis, 1H NMR, CV and EPR studies have been carried out to determine the structure of the complexes. From the data, it is found that all the complexes possess square-planar geometry. The EPR spectrum of the copper complex in DMSO at 300 K and 77 K was recorded and its salient features are reported. All the title complexes were screened for antimicrobial activity by the well diffusion technique using DMSO as solvent. The minimum inhibitory concentration (MIC) values were calculated at 37°C for a period of 24 h. It has been found that all the complexes are antimicrobially active and show higher activity than the free ligand.

  12. Efeito da concentração do catalisador acetilacetonato férrico na cura de poliuretano à base de polibutadieno líquido hidroxilado (PBLH) e diisocianato de isoforona (IPDI) Effect of ferric acetylacetonate catalyst concentration on the cure of polyurethane based on hydroxy terminated polybutadiene and isophorone diisocyanate

    OpenAIRE

    Willian César Paterlini; Edson Cocchieri Botelho; Luís Cláudio Rezende; Vera Lucia Lourenço; Mirabel Cerqueira Rezende

    2002-01-01

    The reaction between hydroxy-terminated polybutadiene and isophorone diisocyanate constitutes the base of the curing process of the most composite solid propellant used in the propulsion of solid rocket propellant. In this work, differential scanning calorimetry and viscosity measurements were used to evaluate the effect of the ferric acetylacetonate catalyst concentration on the reaction between HTBR and IPDI. These analyses show one exotherm, which shifts to lower temperatures as the cataly...

  13. Radiation induced synthesis of In{sub 2}O{sub 3} nanoparticles - Part II: Synthesis of In{sub 2}O{sub 3} nanoparticles by thermal decomposition of un-irradiated and γ-irradiated indium acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Al-Resheedi, Ajayb Saud; Alhokbany, Norah Saad [Department of Chemistry, College of Science, King Saud University, KSU, (Saudi Arabia); Mahfouz, Refaat Mohammed, E-mail: rmhfouz@science.au.edu.eg [Chemistry Department, Faculty of Science, Assiut University, AUN, (Egypt)

    2015-09-15

    Pure cubic phase, In{sub 2}O{sub 3} nanoparticles with porous structure were synthesized by solid state thermal oxidation of un-irradiated and γ-irradiated indium acetyl acetonate in presence and absence of sodium dodecyl sulphate as surfactant. The as- synthesized In{sub 2}O{sub 3} nanoparticles were characterized by X-ray diffraction (XRD), fourier transformation infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transition electron microscopy (TEM) and thermogravimetry (TG). The shapes and morphologies of as- synthesized In{sub 2}O{sub 3} nanoparticles were highly affected by γ-irradiation of indium acetyl acetonate precursor and by addition of sodium dodecyl sulphate as surfactant. Calcination of un-irradiated indium acetyl acetonate precursor to 4 hours of 600 °C leads to the formation of spherical- shaped accumulative and merged In{sub 2}O{sub 3} nanoparticles with porous structure, whereas irregular porous architectures composed of pure In{sub 2}O{sub 3} nanoparticles were obtained by using γ-irradiated indium acetylacetonate precursor. The as- prepared In{sub 2}O{sub 3} nano products exhibit photoluminescence emission (PL) property and display thermal stability in a wide range of temperature (25-800 °C) which suggest possible applications in nanoscale optoelectronic devices. (author)

  14. Transition metal complexes with thiosemicarbazide-based ligands. Part 51. Square-planar nickel(II complex with acetylacetone bis(S-n-propylisothiosemicarbazone (L. Crystal and molecular structure of [Ni(L-H]NCS and two isomorphic complexes [Ni(L-H]I·EtOH and [Ni(L-H]I·iPrOH

    Directory of Open Access Journals (Sweden)

    VUKADIN M. LEOVAC

    2006-06-01

    Full Text Available The template reaction of a warm methanolic solution of Ni(OAc2·4H2O, S-n-propylisothiosemicarbazide hydroiodide and acetylacetone yielded the needle- like, brown, diamagnetic complex [Ni(L–H]I·MeOH, and in the presence of an excess of NH 4NCS, brown, prismatic crystals of the complex [Ni(L–H]NCS (1, both compounds involving the monoanionic form of the ligand, acetylacetone bis(S-n-propylisothiosemicarbazone, L. Slow recrystallization fromMeOH, EtOH, iPrOH and Me2CO gave the corresponding monosolvent complexes [Ni(L–H]I·solvent, of which only those involving EtOH and iPrOH were suitable for structural analysis. The crystallographic parameters of [Ni(L–H]I·EtOH (2 and [Ni(L–H]I·iPrOH (3 are very similar to each other, showing their structures are isomorphic. The crystal structures of the title compounds consist of the independent ions: NCS-, or I-, and the chemically identical cation [Ni(L–H]+, where L–H is the monoanion resulting from deprotonation of the acetylacetone moiety, a tetradentate N4 ligand forming a square-planar coordination around a Ni(II ion. It was found that the isothiosemicarbazide fragment of the ligand has an imido form. The complex cations of the compounds [Ni(L–H]NCS and [Ni(L–H]I·EtOH exhibit significant difference only in the conformation of their propyl groups.

  15. Efeito da concentração do catalisador acetilacetonato férrico na cura de poliuretano à base de polibutadieno líquido hidroxilado (PBLH e diisocianato de isoforona (IPDI Effect of ferric acetylacetonate catalyst concentration on the cure of polyurethane based on hydroxy terminated polybutadiene and isophorone diisocyanate

    Directory of Open Access Journals (Sweden)

    Willian César Paterlini

    2002-05-01

    Full Text Available The reaction between hydroxy-terminated polybutadiene and isophorone diisocyanate constitutes the base of the curing process of the most composite solid propellant used in the propulsion of solid rocket propellant. In this work, differential scanning calorimetry and viscosity measurements were used to evaluate the effect of the ferric acetylacetonate catalyst concentration on the reaction between HTBR and IPDI. These analyses show one exotherm, which shifts to lower temperatures as the catalyst concentration increases. The viscosity analyses show that the increase of temperature causes, at first, a reduction in the mixture viscosity, reaching a minimum range called gelification region (increasing the crosslinking density.

  16. The sensitized reaction of non-ionic surfactant to acetylacetone spectrophotometry in the determination of trace formaldehyde in marine products%非离子表面活性剂OP增敏乙酰丙酮光度法测定海产品中的痕量甲醛

    Institute of Scientific and Technical Information of China (English)

    任淑华; 郭振良

    2013-01-01

    目的:建立快速、准确、灵敏测定海产品中甲醛的新方法.方法:在沸水浴中,痕量甲醛与乙酰丙酮能发生微弱的显色反应.实验发现,非离子表面活性剂OP对上述反应有较强的增敏作用,由此建立了一种测定痕量甲醛的新方法.结果:在测定条件下,溶液的最大吸收波长在412 nm,方法的检出限为0.11 μg/ml,相关系数为0.9993,九次空白实验的标准偏差为S=0.00365,相对标准偏差为RSD为0.376%,回收率在100% ~ 105%.结论:方法简单快速、选择性好,用于测定海产品中的甲醛时,测得结果与非增敏乙酰丙酮光度法及HPLC法的结果一致.%Objective: To develop a simple, exact and sensitive method for determination of trace formaldehyde in marine products. Methods: In boiling water bath, acetylacetone and formaldehyde could have a feeble colour reaction. The experiment was found that non - ionic surfactant OP could sensitize the colour reaction. Results: The maximum absorption wavelength was 412 nm. The detection limit was 0. 11 μg/ml. The correlation coefficient was 0.9993. The standard deviation and the relative standard deviation for nine blank were 0.00365 and 0.376%. The recoveries were in the range of 100% to 105% . Conclusion: The results obtained in the application of this method to the analysis of marine products were in consistency with those obtained by the acetylacetone spectrophotometry and the HPLC method.

  17. Synthesis and characterization of tetraphenylporphyrinate of dysprosium route dysprosium acetylacetonate

    International Nuclear Information System (INIS)

    Dysprosium bis (tetraphenylporphyrinate) and bis (dysprosium) Tris (tetraphenylporphyrinate) were synthesized from dysprosium tetraphenylporphyrinate prepared in situ, and characterized by IR, UV-vis, TGA, DTA, EPR and magnetic susceptibility measurements. The double decker compound was obtained by direct oxidation of the HDy(TPP)2 intermediate. The existence of the radical anion, (TPP)- , in the double decker product was conformed by EPR spectrometry. Dysprosium monoporphyrinate was isolated and characterized by the same techniques. (Author)

  18. Metal-Acetylacetonate Synthesis Experiments: Which Is Greener?

    Science.gov (United States)

    Ribeiro, M. Gabriela T. C.; Machado, Adlio A. S. C.

    2011-01-01

    A procedure for teaching green chemistry through laboratory experiments is presented in which students are challenged to use the 12 principles of green chemistry to review and modify synthesis protocols to improve greenness. A global metric, green star, is used in parallel with green chemistry mass metrics to evaluate the improvement in greenness.…

  19. Influence of Acetylacetone on Photocatalytic Properties of TiO2 Thin Films Deposited on PMMA Substrates%乙酰丙酮对PMMA负载锐钛矿型TiO2薄膜及其光催化性能影响

    Institute of Scientific and Technical Information of China (English)

    张志清; 黄剑锋; 曹丽云; 吴建鹏

    2011-01-01

    The nanociystalline TiO2 solution was prepared using a microwave hydrotheimal process to treat precursor liquid which was obtained by control the hydrolysis of titanium-n-butoxide in the presence of excessive water and acetylacetone (AcAcH). Then nanociystalline TiO2 thin films were deposited on polymethylmethacrylate (PMMA) substrates by dip-coating process from TiO2 colloidal solution. The phase composition of TiO2 nanoparticles, morphologies and optical properties of TiO2 thin films deposited on PMMA substrates were characterized by X-ray diffraction (XRD), fourier transform infrared spectrometer (FTTR), transmission electron microscope (TEM), atomic force microscopy (AFM) and UV-vis spectroscopy. Meanwhile photocatalytic properties of TiO2 films were investigated by degradation of Rhodamine B ( RhB) under ultraviolet radiation. Trie results indicate that anatase TiO2 colloidal solution modified by AcAcH is disperse, uniform, deposit-free and the deposited TiO2 thin films are transparent, homogeneous and compact, and show high efficiency of photocatalysis. Rhodamine B has been degradated over 90% at 180 min%以钛酸丁酯作为钛源,水为溶剂,乙酰丙酮(AcAcH)为表面修饰剂,采用微波水热辅助溶胶-凝胶法制备了纳米晶二氧化钛水溶液,利用提拉镀膜法在聚合物聚甲基丙烯酸甲酯(PMMA)基板上沉积得到了透明TiO2纳米晶薄膜.通过X射线衍射(XRD)、红外光谱(FTIR)、透射电子显微镜(TEM)、原子力显微镜(AFM)和紫外-可见光吸收光谱(UV-Vis)等对TiO2纳米颗粒和薄膜的晶相组成、表面形貌及光学性能进行表征.同时通过紫外光光催化降解罗丹明B研究了TiO2薄膜的光催化性能.结果表明:通过引入乙酰丙酮,可以得到高度分散、晶相为锐钛矿型的TiO2水溶胶,在PMMA基板上沉积得到的薄膜表面平整、致密,具有良好的透光率,经过180 min紫外光照射,对罗丹明B的降解率达到90%以上.

  20. Study on Dihydrated Praseodymium Acetylacetonate by Photoacoustic Spectra with Broad Wavelength Range

    Institute of Scientific and Technical Information of China (English)

    于锡娟; 伍荣护; 宋慧宇; 苏庆德

    2003-01-01

    The UV-Vis, NIR and MIR photoacoustic spectra of Pr(aa)3*2H2O were measured and most f-f transition peaks of Pr3+ are detected. The peak split and peak shift are studied also. The covalency parameter is calculated and it turns out that the covalent bonds between Pr(Ⅲ) ions and ligands exist. The results conclude that photoacoustic spectroscopy offers a unique and complementary method in analysis of solid rare earth complexes. Compared with conventional FT-IR transmission and absorption approaches, PAS has the advantages of fast, nondestructive analysis and high resolution.

  1. Electron beam irradiation of dimethyl-(acetylacetonate) gold(III) adsorbed onto solid substrates

    NARCIS (Netherlands)

    Wnuk, J.D.; Gorham, J.M.; Rosenberg, S.G.; Van Dorp, W.F.; Madey, T.E.; Hagen, C.W.; Fairbrother, D.H.

    2010-01-01

    Electron beam induced deposition of organometallic precursors has emerged as an effective and versatile method for creating two-dimensional and three-dimensional metal-containing nanostructures. However, to improve the properties and optimize the chemical composition of nanostructures deposited in t

  2. Corrigendum to "Electronic structure and photoelectron spectra of nickel (II) acetylacetonate and its thio- and amino-substituted analogues" [J. Mol. Struct. 1099 (2015) 579-587

    Science.gov (United States)

    Vovna, Vitaliy I.; Korochentsev, Vladimir V.; Komissarov, Alexander A.; L'vov, Igor B.; Myshakina, Nataliya S.

    2016-01-01

    The authors regret to inform that it was given erroneous spelling of Vitaliy I. Vovna author name in the published version of the article. It was written "Vitaliy V. Vovna" instead of "Vitaliy I. Vovna".

  3. Single-molecule magnetism in three related {Co(III)2Dy(III)2}-acetylacetonate complexes with multiple relaxation mechanisms.

    Science.gov (United States)

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2013-06-17

    Three new heterometallic complexes with formulas of [Dy(III)2Co(III)2(OMe)2(teaH)2(acac)4(NO3)2] (1), [Dy(III)2Co(III)2(OH)2(teaH)2(acac)4(NO3)2]·4H2O (2), and [Dy(III)2Co(III)2(OMe)2(mdea)2(acac)4(NO3)2] (3) were characterized by single-crystal X-ray diffraction and by dc and ac magnetic susceptibility measurements. All three complexes have an identical "butterfly"-type metallic core that consists of two Dy(III) ions occupying the "body" position and two diamagnetic low-spin Co(III) ions occupying the outer "wing-tips". Each complex displays single-molecule magnet (SMM) behavior in zero applied magnetic field, with thermally activated anisotropy barriers of 27, 28, and 38 K above 7.5 K for 1-3, respectively, as well as observing a temperature-independent mechanism of relaxation below 5 K for 1 and 2 and at 3 K for 3, indicating fast quantum tunneling of magnetization (QTM). A second, faster thermally activated relaxation mechanism may also be active under a zero applied dc field as derived from the Cole-Cole data. Interestingly, these complexes demonstrate further relaxation modes that are strongly dependent upon the application of a static dc magnetic field. Dilution experiments that were performed on 1, in the {Y(III)2Co(III)2} diamagnetic analog, show that the slow magnetic relaxation is of a single-ion origin, but it was found that the neighboring ion also plays an important role in the overall relaxation dynamics.

  4. Metal-assisted in situ formation of a tridentate acetylacetone ligand for complexation of fac-Re(CO)3+ for radiopharmaceutical applications.

    Science.gov (United States)

    Benny, Paul D; Fugate, Glenn A; Barden, Adam O; Morley, Jennifer E; Silva-Lopez, Elsa; Twamley, Brendan

    2008-04-01

    Reaction of [NEt4]2[ReBr3(CO)3] with 2,4-pentanedione (acac) yields a complex of the type fac-Re(acac)(OH2)(CO)3 (1) under aqueous conditions. 1 was further reacted with a monodentate ligand (pyridine) to yield a fac-Re(acac)(pyridine)(CO)3 complex (2). Complex 1 was found to react with primary amines to generate a Schiff base (imine) in aqueous solutions. When a mixed-nitrogen donor bidentate ligand, 2-(2-aminoethyl)pyridine, that has different coordination affinities for fac-Re(acac)(OH2)(CO)3 was utilized, a unique tridentate ligand was formed in situ utilizing a metal-assisted Schiff base formation to yield a complex fac-Re(CO)3(3[(2-phenylethyl)imino]-2-pentanone) (3). Tridentate ligand formation was found to occur only with the Re-coordinated acac ligand. Reactions of acac with fac-Re(CO)3Br(2-(2-aminoethyl)pyridine) (4) or a mixture of [NEt4]2[ReBr3(CO)3], acac, and 2-(2-aminoethyl)pyridine did not yield the formation of complex 3 in water. PMID:18298058

  5. Preparation and characterization of technetium complexes with Schiff base and phosphine coordination. 1. complexes of technetium-99g and -99m with substituted acac2en and trialkyl phosphines (where acac2en N,N'-ethylenebis[acetylacetone iminato])

    International Nuclear Information System (INIS)

    A series of 23 technetium(III) complexes of the type [TcL(PR3)2]+, where L represents a tetradentate Schiff base ligand in the equatorial plane and PR3 represents the axial phosphine ligands, are reported. Full ligand syntheses and characterizations are included. The technetium complexes were prepared with 99mTc to study the organ distribution in guinea pigs at 5 and 60 min postinjection. Four prototypical complexes of the series were also prepared with either 99gTc or 99gTc/99mTc (designated as carrier-added) to allow macroscopic characterization. Equivalence of the 99gTc and 99mTc complexes was demonstrated by dual detection high performance liquid chromatography (HPLC) techniques. The development of a one-step preparation from the standard two-step method is discussed for some complexes. Biodistribution data are related to structure and lipophilicity. None of the complexes in the series exhibited a tendency for in vivo reduction. Myocardial uptake was favorable for a number of complexes. The optimal agent from this series for further imaging development was chosen based on myocardial uptake, rapid blood and liver clearance, and ability to be formulated as a one-step kit

  6. An investigation of tautomeric equilibria by means of mass spectrometry

    DEFF Research Database (Denmark)

    Zamir, Lolita; Jensen, Bror Skytte; Larsen, Elfinn

    1969-01-01

    Changes in the mass spectra with inlet temperature were used in this work to demonstrate the dependence of keto-enol tautomerism of acetylacetone, 3-methyl acetylacetone and 3-allyl acetylacetone on temperature. The largest dependence of temperature were shown by the ion [M 42]+. arising from a M...

  7. Ultrasound-assisted dealumination of zeolite Y

    Indian Academy of Sciences (India)

    M Hosseini; M A Zanjanchi; B Ghalami-Choobar; H Golmojdeh

    2015-01-01

    We demonstrate a new procedure for dealumination of zeolite Y. The method employs a 28 KHz ultrasound bath and an ethanolic acetylacetone solution. Acetylacetone was used as chelating agent and ultrasound irradiation was used as extraction intensifier. Four types of samples, as-synthesized, ammoniumexchanged, acidic and neutralized zeolite were used for dealumination. Parts of the framework aluminumatoms are removed from their sites in the structure of zeolite Y upon the use of either acetylacetone on its own or simultaneous use of acetylacetone and ultrasound waves. Higher dealumination was observed for those samples subjected to both ultrasound irradiation and acetylacetone extraction.

  8. Asymmetric Synthesis of ( - ) -(2R, 3R, 6S ) -Irnigaine

    Institute of Scientific and Technical Information of China (English)

    MA, Nan; MA, Da-Wei

    2003-01-01

    Asymmetric synthesis of irnigaine was achieved starting from an enantiopure β-amino ester 5 using the condensation of amino alcohol 2 with acetylacetone and the subsequent intramolecular cyclization as the key steps.

  9. Селективное определение оксида свинца(II) во фториде свинца(II)

    OpenAIRE

    Гайдук, О. В.

    2014-01-01

    The possibility of use of acetylacetone to selective separation the lead(II) oxide from lead(II) fluoride was investigated. Were рroposed to use mixture of acetone, acetylacetone and Triton X-100 for dissolving PbO. Were chosen the optimum concentration of the reactants and selective dissolution conditions allowing quantitatively retrieve lead(II) oxide at minimum solubility of lead(II) fluoride. A complexonometric techniques for determining 0.3-3% PbO in the mixture ...

  10. Structure of alumina supported vanadia catalysts for oxidative dehydrogenation of propane prepared by flame spray pyrolysis

    DEFF Research Database (Denmark)

    Høj, Martin; Jensen, Anker Degn; Grunwaldt, Jan-Dierk

    2013-01-01

    A series of five vanadia on alumina catalysts for oxidative dehydrogenation of propane to propene were synthesized by flame spray pyrolysis (FSP) using vanadium(III)acetylacetonate and aluminium(III)acetylacetonate dissolved in toluene as precursors. The vanadium loading was 2, 3, 5, 7.5 and 10wt...... X-ray absorption near edge structure (XANES) spectroscopy showed that the vanadia can be reduced when operating at low oxygen concentrations. The catalyst performance was determined in fixed bed reactors with an inlet gas composition of C3H8/O2/N2=5/25/70. The main products were propene, CO and CO2...

  11. Hydrothermal Synthesis of Indium Tin Oxide Nanoparticles without Chlorine Contamination

    International Nuclear Information System (INIS)

    Indium tin oxide (In2Sn1-xO5-y) nanoparticles were synthesized by hydrothermal method from stable indium tin acetylacetone complexes and post annealing at 600 .deg. C. The absence of chlorine ions shortened the synthesis process, decreased the particle agglomeration and improved the particle purity. The introduced complexing ligand acetylacetone decreased the obtained nanoparticle size. The improved powder properties accelerated the sintering of the In2Sn1-xO5-y nanoparticles and reached a relative density of 96.4% when pressureless sintered at 1400 .deg. C

  12. Synthesis and Photoluminescence of a New Red Phosphorescent Iridium(III) Quinoxaline Complex

    Institute of Scientific and Technical Information of China (English)

    Guo Lin ZHANG; Ze Hua LIU; Hai Qing GUO

    2004-01-01

    A new cyclometalated iridium(III) complex with the formula [Ir(DPQ)2(acac)] (DPQ= 2,3-diphenylquinoxaline; acac=acetylacetone) was prepared. The structure of the complex was confirmed by Elemental Analysis (EA), 1H NMR, and mass spectroscopy (MS). The UV-vis absorption and photoluminescent properties of the complex were investigated.

  13. Coordination Complexes as Catalysts: The Oxidation of Anthracene by Hydrogen Peroxide in the Presence of VO(acac)[subscript 2

    Science.gov (United States)

    Charleton, Kimberly D. M.; Prokopchuk, Ernest M.

    2011-01-01

    A laboratory experiment aimed at students who are studying coordination chemistry of transition-metal complexes is described. A simple vanadyl acetylacetonate complex can be used as a catalyst in the hydrogen peroxide oxidation of anthracene to produce anthraquinone. The reaction can be performed under a variety of reaction conditions, ideally by…

  14. Syntheses and Properties of Lanthanide Hydroxy-meso-tetra(p-chlorophenyl)porphyrin Complexes

    Institute of Scientific and Technical Information of China (English)

    YU Miao; YU Lian-xiang; JIAN Wen-ping; YANG Wen-sheng; LIU Guo-fa

    2004-01-01

    @@ Introduction The syntheses and characterization of porphyrins and metalloporphyrins have been studied extensively[1]. Hemoglobin, myoglobin or cytochrome P450, has been applied as a model compound[2]. Wong C. P. et al.[3] synthesized the first lanthanide porphyrin, acetylacetonate tetraphenylporphyrin europium, in 1974.

  15. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig;

    2003-01-01

    The flame combustion synthesis of Cu/ZnO/Al2O3 catalysts for the synthesis of methanol from CO, CO2 and H2 is investigated. The oxides are generated in a premixed flame from the acetyl-acetonate vapours of Cu, Zn and Al mixed with the fuel and air prior to combustion. The flame-generated powder...

  16. Quenching of the triplet state of benzophenone by lanthanide 1,3-diketonate chelates in solutions

    International Nuclear Information System (INIS)

    The phosphorescence of benzophenone in benzene and acetonitrile was quenched by several lanthanide (Sm, Eu, Gd, Tb and Dy) acetylacetonate chelates. The results of Stern-Volmer analysis including the quenching of benzophenone triplet and sensitization of lanthanide emission indicate that the quenching process occurs by the energy transfer mechanism via the excited triplet state of the ligand. (Author)

  17. Cytocompatibility of aliphatic polyesters - in vitro study on fibroblasts and macrophages

    NARCIS (Netherlands)

    Pamula, E.; Dobrzynski, P.; Szot, B.; Kretek, M.; Krawciow, M.; Plytycz, B.; Chadzinska, M.K.

    2008-01-01

    A resorbable copolymer of glycolide and L-lactide (PGLA), a terpolymer of glycolide, L-lactide, and epsilon-caprolactone (PGLCL), and a copolymer of glycolide and E-caprolactone (PGCL) were synthesized by ring opening polymerization Using Zirconium acetylacetonate (Zr(acac)(4)) as an initiator. The

  18. A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer

    NARCIS (Netherlands)

    Bruyn, P. de; Moet, D.J.D.; Blom, P.W.M.

    2010-01-01

    Inverted polymer:fullerene solar cells with ZnO and MoO3 transport layers are demonstrated. ZnO films are prepared through spin casting of a zinc acetylacetonate hydrate solution, followed by low temperature annealing under ambient conditions. The performance of solar cells with an inverted structur

  19. A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer

    NARCIS (Netherlands)

    de Bruyn, P.; Moet, D. J. D.; Blom, P. W. M.

    2010-01-01

    Inverted polymer: fullerene solar cells with ZnO and MoO(3) transport layers are demonstrated. ZnO films are prepared through spin casting of a zinc acetylacetonate hydrate solution, followed by low temperature annealing under ambient conditions. The performance of solar cells with an inverted struc

  20. Bis(acetylacetonato-κ2O,O′(pyridine-κN(thiocyanato-κNmanganese(III: a redetermination using data from a single crystal

    Directory of Open Access Journals (Sweden)

    Christian Näther

    2013-12-01

    Full Text Available In the crystal structure of the title compound, [Mn(C5H7O22(NCS(C5H5N], the Mn3+ cation is coordinated by two acetylacetonate anions, one terminal thiocyanate anion and one pyridine ligand within a slightly distorted octahedron. The asymmetric unit consists of half a complex molecule with the Mn3+ cation, the thiocyanate anion and the pyridine ligand located on a mirror plane. The acetylacetonate anion is in a general position. The title compound was previously described [Stults et al. (1975. Inorg. Chem. 14, 722–730] but could only be obtained as a powder. Suitable crystals have now been obtained for a high-precision single-crystal structure determination.

  1. Synthesis and magnetic properties of self-assembled FeRh nanoparticles

    Science.gov (United States)

    Jia, Z.; Harrell, J. W.; Misra, R. D. K.

    2008-07-01

    We report here the synthesis and magnetization behavior of tunable FeRh magnetic nanoparticles with both controllable composition and size. FexRh1-x (x=0.35,0.44,0.51) nanoparticles of 4-20nm size range were fabricated using a polyol coreduction process. The stoichiometry of FexRh1-x nanoparticles was altered by tuning the molar ratio of rhodium acetylacetonate and iron acetylacetonate. The particle size was tunable via control of surfactant concentration. Magnetic measurements were made for films of the particles cast onto silicon wafers. The coercivity of Fe51Rh49 nanoparticles was ˜250Oe at room temperature after annealing at 700°C for 2h, indicating CsCl-type phase transition. The temperature dependent magnetization measurement of annealed Fe51Rh49 confirmed the antiferromagnetic-ferromagnetic transition and was supported by x-ray diffraction measurements.

  2. Chemical modification of chitosan in the absence of solvent for diclofenac sodium removal: pH and kinetics studies

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Kerlaine Alexandre Araujo; Osorio, Luizangela Reis; Silva, Marcos Pereira; Silva Filho, Edson Cavalcanti da, E-mail: edsonfilho@ufpi.edu.br [Universidade Federal do Piaui (UFPI/CCN), Teresina, PI (Brazil). Centro de Ciencias da Natureza. Lab. Interdisciplinar de Materiais Avancados; Sousa, Kaline Soares [Universidade Federal da Paraiba (UFPB/CCEN), Joao Pessoa, PB (Brazil). Centro de Ciencias Exatas e da Natureza. Dept. de Quimica

    2014-08-15

    Chitosan was modified with acetylacetone and ethylenediamine in the absence of solvent. The new biopolymer obtained from the modification was characterized by elemental analysis and NMR 13C and applied in the removal of diclofenac sodium aqueous solution varying the pH and time. Through elemental analysis was possible to verify a decreasing in C/N relation after reaction with acetylacetone and an increasing after modification with ethylenediamine. From NMR analysis was verified the appearance of peaks around 160-210 ppm in both materials due to free carbonyl groups in the first step of the modification, besides the formation of imine bonds. The adsorption tests showed that the highest value occurred at pH 4 and from the results of the kinetic study was found that maximum adsorption occurred within 45 minutes and experimental data adjusted better to linear adjustment, following pseudo second-order model. The results show a material efficient in the removal of emerging pollutants. (author)

  3. Synthesis of Pt{sub 3}Sn alloy nanoparticles and their catalysis for electro-oxidation of CO and methanol.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Li, D.; Stamenkovic, V. R.; Soled, S.; Henao, J. D.; Sun, S. (Materials Science Division); (Brown Univ.); (Exxon Mobil Res. Eng. Co.)

    2011-11-04

    Monodisperse Pt{sub 3}Sn alloy nanoparticles (NPs) were synthesized by a controlled coreduction of Pt(II) acetylacetonate and Sn(II) acetylacetonate at 180-280 C in 1-octadecene. In the synthesis, oleylamine was used as a reducing agent, and oleylamine/oleic acid served as surfactants. The sizes of the Pt{sub 3}Sn NPs were tuned from 4 to 7 nm by controlling the metal salt injection temperatures from 180 to 240 C. These monodisperse Pt3Sn NPs were highly active for CO and methanol oxidation in 0.1 M HClO{sub 4} solutions, and their activity and stability could be further improved by a postsynthesis thermal treatment at 400 C in Ar + 5% H{sub 2} for 1 h. They are promising as a practical catalyst for CO and methanol oxidation reactions in polymer electrolyte membrane fuel cell conditions.

  4. Effects of chromium and cobalt compounds on burning rate of ammonium nitrate/hydroxyl-terminated polybutadiene composite propellants. Shosan ammonium/HTPB kei composite suishin'yaku no nensho sokudo ni oyobosu chromium to cobalt kagobutsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hagihara, Y.; Ichikawa, T.; Shinpo, H.; Suzuki, M. (The National Defense Academy, Yokosuka (Japan))

    1991-12-31

    Study was made on the effects of chromium and cobalt compounds on burning rate of AN/HTPB composite propellants by using 14 types of chromium and cobalt compounds as catalysts and it was clear that burning rate of composite propellants increases with all catalysts and increase in burning rate by ammonium dichromate and chromium (III) acetylacetone is significantly large. Pressure exponent for cobalt(II) oxide and cobalt(II) benzoate has decreased but it has increased with other catalysts. Pressure exponent has significantly increased in the case of cobalt 2-ethylhexanoate and cobalt(II) acetylacetone. Effect of compounds on slurry viscosity also has shown the decrease in the viscosity except chromium(III) oxide and cobalt(II,III) oxide, and in the case of cobalt 2-ethylhexanoate the viscosity is significantly low. Drophammer sensitivity of AN is not affected with the added compounds. 4 refs., 3 figs., 4 tabs.

  5. One-step growth of gold nanorods using a {beta}-diketone reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Tollan, Christopher M., E-mail: ctollan@cidetec.e [CIDETEC-Centre for Electrochemical Technologies, Parque Tecnologico de San Sebastian, New Materials Department (Spain); Echeberria, Jon [CEIT, Centro de Investigaciones Tecnicas de Guipuzcoa (Spain); Marcilla, Rebeca; Pomposo, Jose A.; Mecerreyes, David, E-mail: dmecerreyes@cidetec.e [CIDETEC-Centre for Electrochemical Technologies, Parque Tecnologico de San Sebastian, New Materials Department (Spain)

    2009-07-15

    The synthesis and characterisation of gold nanorods have been carried out by reduction of the gold salt HAuCl{sub 4}. This has been done using a single reducing agent, acetylacetone, rather than the two reducing agents, sodium borohydride and ascorbic acid, normally required by standard wet chemistry methods of gold nanorod formation. Using this novel method, the nanorods were synthesised at several different pH values which were found to greatly affect both the rate at which the nanorods form and their physical dimensions. The concentrations of acetylacetone and silver nitrate used relative to the gold salt were found to alter the aspect ratio of the nanorods formed. Rods with an average length of 42 nm and an aspect ratio of 4.6 can be easily and reproducibly formed at pH 10 using this method. Nanorods formed under optimum conditions were investigated using TEM.

  6. VO(acac)2 catalyzed condensation of o-phenylenediamine with aromatic carboxylic acids/aldehydes under microwave radiation affording benzimidazoles

    Institute of Scientific and Technical Information of China (English)

    Madhudeepa Dey; Krishnajyoti Deb; Siddhartha Sankar Dhar

    2011-01-01

    Vanadyl acetylacetonate, VO(acac)2, has been found to be very effective catalyst for synthesis of a variety of benzimidazoles under solvent-free condition. The methodology involves the exposure of a mixture of o-phenylenediamine and a selected aromatic carboxylic acid/aldehyde to microwave radiation without the use of any solvent or supporting agents. The benzimidazoles were obtained in quick time with high yields.

  7. Synthesis of Polyfunctionalized 4H-Pyrans

    Directory of Open Access Journals (Sweden)

    Manisha Bihani

    2013-01-01

    Full Text Available Amberlyst A21 catalyzed one-pot three-component coupling of aldehyde and malononitrile with active methylene compounds such as acetylacetone and ethyl acetoacetate for the synthesis of pharmaceutically important polyfunctionalized 4H-pyrans has been reported. Simple experimental procedure, no chromatographic purification, no hazardous organic solvents, easy recovery and reusability of the catalyst, and room temperature reaction conditions are some of the highlights of this protocol for the synthesis of pharmaceutically relevant focused libraries.

  8. sup(1)H, sup(13)C and sup(17)O NMR studies of cumene hydroperoxide coordination to Cr(AA)sub(3)

    International Nuclear Information System (INIS)

    The mechanism of the catalytic decomposition of hydroperoxides by tris-chelates of transition metals was studied by means of NMR. It was established that the outer sphere coordination of cumene hydroperoxide to tris-acetylacetonate of Cr(III) (Cr(AA)sub(3)) is due to both the formation of hydrogen bonds between hydroxyl proton and chelate oxygen atoms and the π-π-interactions between the aromatic ring and chelate π-system. (author)

  9. Mesoporous TiO2 Yolk-Shell Microspheres for Dye-sensitized Solar Cells with a High Efficiency Exceeding 11%

    Science.gov (United States)

    Li, Zhao-Qian; Chen, Wang-Chao; Guo, Fu-Ling; Mo, Li-E.; Hu, Lin-Hua; Dai, Song-Yuan

    2015-09-01

    Yolk-shell TiO2 microspheres were synthesized via a one-pot template-free solvothermal method building on the aldol condensation reaction of acetylacetone. This unique structure shows superior light scattering ability resulting in power conversion efficiency as high as 11%. This work provided a new synthesis system for TiO2 microspheres from solid to hollow and a novel material platform for high performance solar cells.

  10. Reaction of cycloheptatriene derivatives with 1,3-diketones in the presence of Mn(OAc)3

    OpenAIRE

    SÜDEMEN, Mahir Burak; ZENGİN, Mustafa; and, Hayriye GENÇ

    2011-01-01

    The reactions of some 1,3-dicarbonyl compounds with cycloheptatriene derivatives in the presence of Mn(OAc)3 were examined. Cycloheptatriene forms mainly [2+3] and [6+3] dihydrofuran addition products derived from cycloheptatriene. However, the reaction of acetylacetone with cycloheptatriene substituted with an electron withdrawing group exclusively gave products derived from the norcaradiene structure. The formation mechanism of the products as well as the role of the substituent a...

  11. Structural study of Ni- or Mg-based complexes incorporated within UiO-66-NH2 framework and their impact on hydrogen sorption properties

    International Nuclear Information System (INIS)

    Nickel and magnesium acetylacetonate molecular complexes were post-synthetically incorporated into microporous zirconium-based MOF (UiO-66-NH2) in order to introduce active open-metal sites for hydrogen sorption. Elemental analysis, nitrogen physisorption and DFT calculations revealed that 5 molecules of Ni(acac)2 or 2 molecules of Mg(acac)2 were incorporated into one unit cell of UiO-66-NH2. 1H–13C CPMAS and 1H MAS NMR spectroscopy showed that, although embedded within the pores, both Ni- and Mg-complexes interacted with the UiO-66-NH2 framework only through weak van der Waals bonds. Inclusion of metal complexes led to the decrease of hydrogen sorption capacities in Ni-modified as well as in Mg-modified samples in comparison with the parent UiO-66-NH2. The isosteric hydrogen adsorption enthalpy slightly increased in the case of Ni-modified material, but not in the case of Mg-modified analogue. - Graphical abstract: A post-synthesis impregnation of Mg- and Ni-acetylacetonate complexes performed on zirconium-based MOF UiO-66-NH2 does influence the hydrogen sorption performance with respect to the parent matrix. The structural study revealed that Mg- and Ni-acetylacetonate molecules interact with zirconium-terephthalate framework only by weak interactions and they are not covalently bonded to aminoterephthalate ligand. Still, they remain confined into the pores even after hydrogen sorption experiments. - Highlights: • Mg- and Ni-acetylacetonate molecules embedded in the pores of UiO-66-NH2 by PSM. • Molecules of complexes interact with framework only by van der Waals interactions. • Type/structure of deposited metal-complex impact hydrogen enthalpy of adsorption

  12. Copper(II) complex of 3-cinnamalideneacetylacetone: Synthesis and characterisation

    Indian Academy of Sciences (India)

    A Veeraraj; P Sami; N Raman

    2000-10-01

    A bidentate ligand derived from cinnamaldehyde and acetylacetone and its copper(II) complex have been synthesized and characterized by elemental analysis, UV-Vis, IR, ESR and magnetic susceptibility measurements. Magnetic susceptibility measurements, ESR and electronic spectral data indicate the presence of six coordinated Cu(II) ion. The ligand and complex are tested for antibacterial activity against Pseudomonas aeroginosa. They are found to show the antibacterial activity

  13. Synthesis, characterization, and reactivity of pentamethylcyclopentadienyl complexes of divalent cobalt and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.E.

    1993-10-01

    The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C{sub 5}-symmetrical cyclopentadienyl rings.

  14. Structural study of Ni- or Mg-based complexes incorporated within UiO-66-NH{sub 2} framework and their impact on hydrogen sorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Žunkovič, E.; Mazaj, M. [Laboratory for Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Mali, G. [Laboratory for Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST Centre of Excellence, Dunajska 156, 1000 Ljubljana (Slovenia); Rangus, M. [Laboratory for Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Devic, T.; Serre, C. [Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 78035 Versailles (France); Logar, N. Zabukovec, E-mail: natasa.zabukovec@ki.si [Laboratory for Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); CO-NOT Centre of Excellence, Hajdrihova 19, 1000 Ljubljana (Slovenia); University of Nova Gorica, Vipavska 13, 5000 Nova Gorica (Slovenia)

    2015-05-15

    Nickel and magnesium acetylacetonate molecular complexes were post-synthetically incorporated into microporous zirconium-based MOF (UiO-66-NH{sub 2}) in order to introduce active open-metal sites for hydrogen sorption. Elemental analysis, nitrogen physisorption and DFT calculations revealed that 5 molecules of Ni(acac){sub 2} or 2 molecules of Mg(acac){sub 2} were incorporated into one unit cell of UiO-66-NH{sub 2}. {sup 1}H–{sup 13}C CPMAS and {sup 1}H MAS NMR spectroscopy showed that, although embedded within the pores, both Ni- and Mg-complexes interacted with the UiO-66-NH{sub 2} framework only through weak van der Waals bonds. Inclusion of metal complexes led to the decrease of hydrogen sorption capacities in Ni-modified as well as in Mg-modified samples in comparison with the parent UiO-66-NH{sub 2}. The isosteric hydrogen adsorption enthalpy slightly increased in the case of Ni-modified material, but not in the case of Mg-modified analogue. - Graphical abstract: A post-synthesis impregnation of Mg- and Ni-acetylacetonate complexes performed on zirconium-based MOF UiO-66-NH{sub 2} does influence the hydrogen sorption performance with respect to the parent matrix. The structural study revealed that Mg- and Ni-acetylacetonate molecules interact with zirconium-terephthalate framework only by weak interactions and they are not covalently bonded to aminoterephthalate ligand. Still, they remain confined into the pores even after hydrogen sorption experiments. - Highlights: • Mg- and Ni-acetylacetonate molecules embedded in the pores of UiO-66-NH{sub 2} by PSM. • Molecules of complexes interact with framework only by van der Waals interactions. • Type/structure of deposited metal-complex impact hydrogen enthalpy of adsorption.

  15. Studies of solution deposited cerium oxide thin films on textured Ni-alloy substrates for YBCO superconductor

    International Nuclear Information System (INIS)

    Cerium oxide (CeO2) buffer layers play an important role for the development of YBa2Cu3O7-x (YBCO) based superconducting tapes using the rolling assisted biaxially textured substrates (RABiTS) approach. The chemical solution deposition (CSD) approach has been used to grow epitaxial CeO2 films on textured Ni-3 at.% W alloy substrates with various starting precursors of ceria. Precursors such as cerium acetate, cerium acetylacetonate, cerium 2-ethylhexanoate, cerium nitrate, and cerium trifluoroacetate were prepared in suitable solvents. The optimum growth conditions for these cerium precursors were Ar-4% H2 gas processing atmosphere, solution concentration levels of 0.2-0.5 M, a dwell time of 15 min, and a process temperature range of 1050-1150 deg. C. X-ray diffraction, AFM, SEM, and optical microscopy were used to characterize the CeO2 films. Highly textured CeO2 layers were obtained on Ni-W substrates with both cerium acetate and cerium acetylacetonate as starting precursors. YBCO films with a J c of 1.5 MA/cm2 were obtained on cerium acetylacetonate-based CeO2 films with sputtered YSZ and CeO2 cap layers

  16. ET-AAS determination of aluminium in dialysis concentrates after continuous flow solvent extraction.

    Science.gov (United States)

    Komárek, J; Cervenka, R; Růzicka, T; Kubán, V

    2007-11-01

    Conditions of a continuous flow extraction (CFE) of aluminium acetylacetonate in acetylacetone and aluminium 8-hydroxyquinolinate into methylisobutylketone (lengths of reaction and extraction coils, flow rates of aqueous and organic phases and their flow rate ratio, pH of aqueous phase, lengths of coils for transport of aqueous and organic phases and effect of salts) were studied. The analytical signal of the aluminium chelates present in the organic phase was measured at 309.3 nm using atomic absorption spectrometry with electrothermal atomization (ET-AAS) at the flow rate ratio F aq/F org=3 for aqueous and organic phases. The five points calibration curves were linear (R2 0.9973 and 0.9987) up to 21 microgl(-1) Al with the limits of detection of 0.3 microgl(-1) and the recovery 100+/-2% and precision of 3% at 2-10-fold dilution of the dialysis concentrates. The acetylacetonate method was applied to the determination of aluminium in real dialysis concentrates. Aluminium in concentrations 5-6 microgl(-1) (R.S.D.s 5-10% in real samples) were found and the results were in the very good agreement with those obtained by an ET-AAS using preconcentration of Al(III) on a Spheron-Salicyl chelating sorbent (absolute and relative differences were under 0.4 microgl(-1) and 8.2%, respectively). PMID:17897803

  17. Synthesis of oxide and spinel nanocrystals for use in solid state lighting

    Science.gov (United States)

    Foley, Megan Elizabeth

    In this dissertation, microwave chemistry is employed to synthesize a variety of different crystalline nanoparticles (NPs). This introduction will describe the structures, properties and applications of the NPs studied within the dissertation, with a main focus being on ligand sensitization for the goal of enhanced luminescence. The use of metal acetylacetonate complexes to make Europium (III) doped Ytrrium (Y2O3) NPs is explored, where the acetylacetonate acts both as a source of oxygen for the synthesis of Y2O3, as well as an organic chromophore acting as an "antenna" for the absorption of light and subsequent excitation transfer to the incorporated Europium (III) (Chapter 2). Other host materials are investigated by method of metal acetylacetonate decomposition to synthesize a variety of different nanospinels, having the general formula AB2X4, with sulfide variants made by decomposition of diethyldithiocarbamate, (Chapter 3). The antenna ligand thenoyltrifluoroacetone (tta), which is known to undergo a Dexter energy transfer (DET) mechanism to efficiently sensitize Europium (III) emission, is used to determine the distance of energy transfer in Europium (III) doped nanospinels by passivating the surface of the nanospinel with a tta (Chapter 4). A variety of ligands are explored in order to optimize the sensitization efficiency in relation to the difference in energy between the singlet and triplet levels of the ligands versus the 5D0 and 5D4 energy levels of Europium (III) and Terbium (III) respectively (Chapter 5).

  18. Study of the Gelling Process for the Preparation of Tin Oxide Materials Based on Tin Tetrabutoxide%Sn(OBun)4为前驱体制备SnO2材料中的溶胶-凝胶过程

    Institute of Scientific and Technical Information of China (English)

    黄瑞安; 侯立松; 赵启涛; 任叔华

    2005-01-01

    The gelling process in the preparation of tin oxide materials based on tin tetrabutoxide is studied. Sn(OBun)4 modified by two moles of acetylacetone (AcAc) has a stable six-member ring structure and is less susceptive to water. In a system with a lower molar ratio of acetylacetone to Sn(OBun)4 ([AcAc]/[Sn(OBun)4]<2.0) or a larger portion of water ([H2O]/[Sn(OBun)4]>2.5), colloidal suspension or white precipitation will take place. A system with molar ratios of both acetylacetone to Sn(OBun)4 and water to Sn(OBun)4 at 2.0 is transparent and olivaceous sol. As catalysts, hydrofluoric,hydrochloric, hydrobromic and acetic acids, and ammonia all accelerate the hydrolysis and condensation of Sn(OBun)4 during the sol-gel process. Light scattering measurement indicates that cluster size distribution in the sol system undergoes gradual broadening during the sol-gel transition.

  19. Characterization of microstructure and catalytic of cerium oxide obtained by colloidal solution

    International Nuclear Information System (INIS)

    This study investigated to obtain particles of cerium oxide, for use as catalysts for the combustion of methane using the technique of through polymeric colloidal solution. Obtaining the colloidal system is based on hydrolysis of salts such as cerium acetylacetonate, cerium nitrate in the presence of additives such as polyvinylbutyral (PVB), polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA), at concentrations of 5, 10 and 15% in aqueous or alcoholic medium. These solutions containing ions of interest were subjected to a heat treatment at 650° C for 30 minutes, with heating rate of 2 ° C/ min. After heat treatment, the fibers were characterized according to their morphology, surface area, crystallinity, weight loss and catalytic activity. Samples obtained from cerium acetylacetonate were more reactive than the cerium nitrate to the combustion of methane, as showed greater conversions and higher temperatures reached during the process, which is of utmost importance since the combustion catalytic methane is used for generating thermal energy. After the reaction with methane, the samples underwent significant change in surface area, probably due to the intensity of combustion reactions of the nitrate and the generation of heat involved in this reaction, which gave rise to coarse particles. During the combustion process using the obtained from particles of cerium acetylacetonate, there was the release of large quantities of nitrogen compared to the results of assays with the particles obtained with cerium nitrate. (author)

  20. Characterization of microstructure and catalytic of cerium oxide obtained by colloidal solution; Caracterizacao da microestrutura e da atividade catalitica de oxido de cerio obtido por solucao coloidal

    Energy Technology Data Exchange (ETDEWEB)

    Senisse, C.A.L.; Bergmann, C.P.; Alves, A.K., E-mail: carolinasenisse@hotmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alege, RS (Brazil). Lab. de Materiais Ceramicos

    2012-07-01

    This study investigated to obtain particles of cerium oxide, for use as catalysts for the combustion of methane using the technique of through polymeric colloidal solution. Obtaining the colloidal system is based on hydrolysis of salts such as cerium acetylacetonate, cerium nitrate in the presence of additives such as polyvinylbutyral (PVB), polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA), at concentrations of 5, 10 and 15% in aqueous or alcoholic medium. These solutions containing ions of interest were subjected to a heat treatment at 650° C for 30 minutes, with heating rate of 2 ° C/ min. After heat treatment, the fibers were characterized according to their morphology, surface area, crystallinity, weight loss and catalytic activity. Samples obtained from cerium acetylacetonate were more reactive than the cerium nitrate to the combustion of methane, as showed greater conversions and higher temperatures reached during the process, which is of utmost importance since the combustion catalytic methane is used for generating thermal energy. After the reaction with methane, the samples underwent significant change in surface area, probably due to the intensity of combustion reactions of the nitrate and the generation of heat involved in this reaction, which gave rise to coarse particles. During the combustion process using the obtained from particles of cerium acetylacetonate, there was the release of large quantities of nitrogen compared to the results of assays with the particles obtained with cerium nitrate. (author)

  1. Synthesis and characterization of potential iron–platinum drugs and supplements by laser liquid photolysis

    Directory of Open Access Journals (Sweden)

    Forbes A

    2012-06-01

    Full Text Available Steven S Nkosi,1,2 Bonex W Mwakikunga,4 Elias Sideras-Haddad,2 Andrew Forbes1,31CSIR National Laser Centre, Pretoria, South Africa; 2DST/NRF Centre for Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Johannesburg, 3School of Physics, University of KwaZulu-Natal, Durban, South Africa; 4DST/CSIR National Centre for Nano-Structured Materials, Pretoria, South AfricaAbstract: Highly crystalline nanospherical iron–platinum systems were produced by 248 nm laser irradiation of a liquid precursor at different laser fluences, ranging from 100–375 mJ/cm2. The influence of laser intensity on particle size, iron composition, and structure was systematically investigated. Different nanostructures of iron–platinum alloy and chemically disordered iron–platinum L10 phase were obtained without annealing. The prepared precursor solution underwent deep photolysis to polycrystalline iron–platinum nanoalloys through Fe(III acetylacetonate and Pt(II acetylacetonate. Fe(II and Pt(I acetylacetone decomposed into Fe0 and Pt0 nanoparticles. We found that the (001 diffraction peak shifted linearly to a lower angle, with the last peak shifting in opposition to the others. This caused the face-centered cubic L10 structure to change its composition according to laser fluence. The nanostructures were shown to contain iron and platinum only by energy-dispersive spectroscopy at several spots. The response of these iron–platinum nanoparticles to infrared depends on their stoichiometric composition, which is controlled by laser fluence.Keywords: nanostructures, iron, platinum, nanoparticles, laser liquid photolysis, composition

  2. Study on Progress in Synthesis of Natural Product Curcumin%天然产物姜黄素合成工艺研究

    Institute of Scientific and Technical Information of China (English)

    邹春阳; 王凤秋; 田家明

    2011-01-01

    Curcumin was prepared by a modified method in this paper. Meanwhile, the optimum condition was also established. The mixture of acetylacetone and boric anhydride in ethyl acetate was stirred under reflux temperature for 30 minutes and gived a boron complex of acetylacetone. N - Butylamine was added dropwise to a solution of vanillin, tributyl borate and boron complex of acetylacetone in DMF (N, N -dimethylformamide) at 80X1. After stirred for 3 hours, crude curcumin was obtained by use 5% acetic acid to destroy the boron complex of curcumin. It was furtherly purified by re-crystallization from chloroform methanol. The overyield reaches 70% under the condition of inventory rating reaching one hundred grams - level. This method provides a reference for the large scale preparation of curcumin.%采用了一种改良的合成方法制备姜黄素,并确定了最优工艺条件.即:先将乙酰丙酮与硼酸酐于乙酸乙酯内回流反应30min,制得乙酰丙酮的硼络合物;然后在DMF(N,N-二甲基甲酰胺)中,将香兰素、三丁基硼酸酯及新制的乙酰丙酮的硼络合物于80℃,以正丁胺为催化剂反应3h;最后向其中加入5%的醋酸破坏络合物得到姜黄素粗品,以氯仿-甲醇重结晶得到姜黄素纯品.在投料量为百克级情况下,总收率达到了70%.这也为大量制备提供参考.

  3. Microspheres with an ultra high holmium content for brachytherapy of malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Lira, Raphael A.; Myamoto, Douglas M.; Souza, Jaime R.; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Radiofarmacia; Martinelli, Jose R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencias e Tecnologia de Materiais

    2011-07-01

    The overall objective of this work is to develop biodegradable microspheres intended for internal radiation therapy which provides an improved treatment for hepatic carcinomas. The most studied brachytherapy system employing microspheres made of holmium-biopolymer system is composed by poly(L-lactic acid) (PLLA) and holmium acetylacetonate (HoAcAc). The importance of the holmium high content in the microspheres can be interpreted as follow from a therapeutic standpoint, to achieve an effective use of microspheres loaded with HoAcAc, a high content of holmium is required to yield enough radioactivity with a relatively low amount of microspheres.The usual amounts of holmium that are incorporated in the microspheres composed by poly(L-lactic acid) and HoAcAc are 17.0 {+-} 0.5% (w/w) of holmium, which corresponds to a loading of about 50% of HoAcAc. Different approaches have been investigated to increase that value. One updated approach towards this direction is the production of microspheres with ultrahigh holmium as matrix using HoAcAc crystals as the sole starting material without the use of biopolymer. Likewise, in the search of microspheres with increased holmium content , it has been demonstrated that by changing the HoAcAc crystal structure by its recrystallization from crystal phase to the amorphous there is lost of acetylacetonate and water molecules causing the increasing of the holmium content. Microspheres were prepared by solvent evaporation, using holmium acetylacetonate (HoAcAc) crystals as the sole ingredient. Microspheres were characterized by using light and scanning electron microscopy, infrared and Raman spectroscopy, differential scanning calorimetry, X-rays diffraction, and confocal laser scanning microscopy. (author)

  4. A dual chelating sol–gel synthesis of BaTiO{sub 3} nanoparticles with effective photocatalytic activity for removing humic acid from water

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peigong [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Fan, Caimei, E-mail: fancm@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Yawen; Ding, Guangyue; Yuan, Peihong [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2013-02-15

    Graphical abstract: The cubic phase BaTiO{sub 3} nanoparticles can be obtained at 600 °C and changed into tetragonal phase at 900 °C by a dual chelating sol–gel method, and the photocatalytic activities of the photocatalysts calcined at different temperatures were investigated by the removal of humic acid (HA) from water under UV light irradiation. Highlights: ► The humic acid in water was firstly degradated by BaTiO{sub 3} photocatalyst. ► The cubic BaTiO{sub 3} was obtained and changed into tetragonal phase at lower temperature. ► The chelating agents had an important influence on the phase formation of BaTiO{sub 3}. ► The tetragonal phase BaTiO{sub 3} calcined at 900 °C exhibited higher photocatalytic activity under UV irradiation. -- Abstract: In this paper, a dual chelating sol–gel method was used to synthesize BaTiO{sub 3} nanoparticles by using acetylacetone and citric acid as chelating agents. The samples calcined at different temperatures were analyzed by thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscope (SEM) and UV–vis diffuse reflectance spectra (UV–vis). The results indicated that cubic phase BaTiO{sub 3} nanoparticles about 19.6 nm can be obtained at 600 °C and changed into tetragonal phase at 900 °C about 97.1 nm. All the BaTiO{sub 3} nanoparticles showed effective photocatalytic activities on the removal of humic acid (HA) under UV light irradiation. A comparison of single (acetylacetone or citric acid) and dual chelating (acetylacetone and citric acid) synthetic processes was also studied and the results demonstrated that the dual chelating agents indeed reduced phase transformation temperature from cubic to tetragonal BaTiO{sub 3}.

  5. Fabrication of iron-platinum ferromagnetic nanoparticles

    Science.gov (United States)

    Elkins, Kevin Eugene

    Fabrication of chemically disordered FePt particles ranging from 2--9 nm with a precision of 1 nm has been achieved through modification of key process variables including surfactant concentration, heating rates and the type of iron precursor. In addition, the shape evolution of the FePt nanoparticles during particle growth can be manipulated to give cubic or rod geometries through changes to the surfactant injection sequence and solvent system. The primary method for synthesis of the disordered FePt nanoparticles is the polyol reduction reported by Fievet et al., which has been modified and used extensively for synthesis of differing nanoparticle systems. Our procedures use platinum acetylacetonate, iron pentacarbonyl or ferric acetylacetonate as precursors for the FePt alloy, oleic acid and oleyl amine for the surfactants, 1,2-hexadecanediol to assist with the reduction of the precursors and either dioctyl ether or phenyl ether for the solvent system. For iron pentacarbonyl based reactions, adjustment of heating rates to reflux temperatures from 1--15°C per minute allows control of FePt particle diameters from 3--8 nm. Substitution of iron pentacarbonyl with ferric acetylacetonate as the iron source results in 2 nm particles. A high platinum to surfactant ratio of 10 to 1 will yield 9 nm FePt particles when iron pentacarbonyl is used as the precursor. For use of these particles in advanced applications, the synthesized particles must be transformed to the L1o phase through annealing at temperatures above 500°C. Inhibition of particle sintering can be avoided through dispersion in a NaCl matrix at a weight ratio of 400 to 1 salt to fcc FePt particles. Production of L1o FePt nanoparticles with high magnetic anisotropy with this process has been successful, allowing the original size and size distribution of the particles.

  6. Structure and vibrational assignment of the enol form of 1,1,1-trifluoro-2,4-pentanedione

    Science.gov (United States)

    Zahedi-Tabrizi, Mansoureh; Tayyari, Fariba; Moosavi-Tekyeh, Zainab; Jalali, Alireza; Tayyari, Sayyed Faramarz

    2006-10-01

    Molecular structure of 1,1,1-trifluoro-pentane-2,4-dione, known as trifluoro-acetylacetone (TFAA), has been investigated by means of Density Functional Theory (DFT) calculations and the results were compared with those of acetylacetone (AA) and hexafluoro-acetylacetone (HFAA). The harmonic vibrational frequencies of both stable cis-enol forms were calculated at B3LYP level of theory using 6-31G** and 6-311++G** basis sets. We also calculated the anharmonic frequencies at B3LYP/6-31G** level of theory for both stable cis-enol isomers. The calculated frequencies, Raman and IR intensities, and depolarization ratios were compared with the experimental results. The energy difference between the two stable cis-enol forms, calculated at B3LYP/6-311++G**, is only 5.89 kJ/mol. The observed vibrational frequencies and Raman and IR intensities are in excellent agreement with the corresponding values calculated for the most stable conformation, 2TFAA. According to the theoretical calculations, the hydrogen bond strength for the most stable conformer is 57 kJ/mol, about 9.5 kJ/mol less than that of AA and about 14.5 kJ/mol more than that of HFAA. These hydrogen bond strengths are consistent with the frequency shifts for OH/OD stretching and OH/OD out-of-plane bending modes upon substitution of CH 3 groups with CF 3 groups. By comparing the vibrational spectra of both theoretical and experimental data, it was concluded that 2TFAA is the dominant isomer.

  7. Perspectives of applications of alkoxide sol-gel process in heterogeneous catalysis

    International Nuclear Information System (INIS)

    Basic principles, specific features, advantages and drawbacks of alkoxide technology application for the preparation of oxide heterogeneous catalysts and carriers (RuO, V2O5, ZrO2, B2O3) have been considered. Application of acetylacetonates E(acac)n is considered alongside with mixed alkoxyacetylacetonates E(OR)x(acac)n-1. The lack of extensive commercial production of Al and Zr alkoxides in Russia rather than their high cost, is a real obstacle for alkoxide technology introduction. 293 refs., 2 figs., 2 tabs

  8. Preparation and Characterization of TiO2/CdS Layers as Potential Photoelectrocatalytic Materials

    OpenAIRE

    Teofil-Danut Silipas; Ioan Bratu; Simina-Virginia Dreve; Ramona-Crina Suciu; Marcela-Corina Rosu; Emil Indrea

    2011-01-01

    The TiO2/CdS semiconductor composites were prepared on
    indium tin oxide (ITO) substrates in di®erent mass proportions via wet-chemical techniques using bi-distilled water, acetyl-acetone, poly-propylene-glycol and Triton X-100 as additives. The composite layers were annealed in normal conditions at the temperature of 450±C, 120 min. with a rate of temperature increasing of 5±C/min. The structural and optical properties of all the TiO2/CdS ayers were ch...

  9. Facile synthesis of deuterated and [14C]labeled analogues of vanillin and curcumin for use as mechanistic and analytical tools

    OpenAIRE

    Gordon, Odaine N.; Graham, Leigh A.; Schneider, Claus

    2013-01-01

    Curcumin is a dietary diphenol with antioxidant, antinflammatory and antitumor activity. We describe facile procedures for the synthesis of [14C2]curcumin (4 mCi/mmol), [d6]curcumin, [d3]curcumin, [13C5]curcumin, and [d6]bicyclopentadione, the major oxidative metabolite of curcumin. We also describe synthesis of the labeled building blocks [14C]vanillin, [d3]vanillin, and [13C5]acetylacetone. The overall molar yields of the labeled products were 52% ([14C]) and 47% ([d3]) for vanillin and 25%...

  10. Multiferroic PbFe12O19 Ceramics

    OpenAIRE

    Tan, Guo-Long; Wang, Min

    2011-01-01

    PbFe12O19 (PFO) powders in hexagonal structure have been synthesized by sol-gel process using lead acetate, glycerin and ferric acetylacetonate as the precursor. PbFe12O19 ceramics were obtained by sintering the PbFe12O19 powders at 1000\\degree C for 1 hour. Distorted flaky hexahedron grains are frequently observed in the SEM images of sintered PbFe12O19 ceramics. Large spontaneous polarization was observed in PbFe12O19 ceramic at room temperature, exhibiting a clear ferroelectric hysteresis ...

  11. 1. Mono([8]annulene)Uranium(4) half-sandwich complexes, 2. Novel syntheses of symmetrically substituted cyclooctatetetraenes

    Energy Technology Data Exchange (ETDEWEB)

    Boussie, T.R.

    1991-10-01

    A reproducible, high-yield synthesis of mono([8]annulene)uranium(4)dichloride (1) is reported, along with the X-ray crystal structural of the bis(pyridine) adduct. Metathesis reactions of the half-sandwich complex 1 with a variety of simple alkyl and alkoxy reagents failed to generate any isolable mono-ring complexes. Reactions of 1 with polydentate, delocalized anions did produce stable derivatives, including mono([8]annulene)uranium(4)bis(acetylacetonate) (4). An X-ray crystal structure of 4 is reported.

  12. 1. Mono((8)annulene)Uranium(4) half-sandwich complexes, 2. Novel syntheses of symmetrically substituted cyclooctatetetraenes

    Energy Technology Data Exchange (ETDEWEB)

    Boussie, T.R.

    1991-10-01

    A reproducible, high-yield synthesis of mono((8)annulene)uranium(4)dichloride (1) is reported, along with the X-ray crystal structural of the bis(pyridine) adduct. Metathesis reactions of the half-sandwich complex 1 with a variety of simple alkyl and alkoxy reagents failed to generate any isolable mono-ring complexes. Reactions of 1 with polydentate, delocalized anions did produce stable derivatives, including mono((8)annulene)uranium(4)bis(acetylacetonate) (4). An X-ray crystal structure of 4 is reported.

  13. Bis(acetylacetonato-κ2O,O′(2-amino-1-methyl-1H-benzimidazole-κN3oxidovanadium(IV

    Directory of Open Access Journals (Sweden)

    Zukhra Ch. Kadirova

    2009-07-01

    Full Text Available The title mixed-ligand oxidovanadium(IV compound, [VO(C5H7O22(C8H9N3], contains a VIV atom in a distorted octahedral coordination, which is typical for such complexes. The vanadyl group and the N-heterocyclic ligand are cis to each other. The coordination bond is located at the endocyclic N atom of the benzimidazole ligand. Intramolecular hydrogen bonds between the exo-NH2 group H atoms and acetylacetonate O atoms stabilize the crystal structure.

  14. Synthesis of novel pyrazolylquinoxalines

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Sik [Catholoic University of Taegu-Hyosung, Gyongsan (Korea, Republic of); Kwag, Sam Tag [Pukyong National Univ., Pusan (Korea, Republic of)

    2000-06-01

    The reaction of 6-chloro-2-hydrazinoquinoxaline 4-oxide (10) with acetylacetone or dibenzoylmethane gave 6-chloro-2-(3,5-disubstituted pyrazol-1-yl)quinoxaline 4-oxide (11) through the intramolecular cyclization. The chlorination of compound 11 with phosphoryl chloride afforded 3,6-dichloro-2-(3,5-disubstituted pyrazol-l-yl)quinoxalines (12), whose reaction with hydrazine hydrate provided 6-chloro-3-hydrazino-2-(3,4-disubstituted pyrazol-l-yl)quinoxalines (13). The reaction of compound 13 with substituted benzaldehydes, benzenesulfonyl chloride, substituted benzoyl chlorides or acyl chlorides gave novel pyrazolylquinoxalines.

  15. Studying dispersions of ferroelectric nanopowders in dioctyl phthalate as dielectric media for capacitive electronic components

    Science.gov (United States)

    Gorokhovskii, A. V.; Gorshkov, N. V.; Burmistrov, I. N.; Goffman, V. G.; Tret'yachenko, E. V.; Sevryugin, A. V.; Fedorov, F. S.; Kovyneva, N. N.

    2016-06-01

    The electrical properties of dispersions of a powdered ferroelectric nanocomposite based on ilmenite (FeTiO3) and hollandite (K1.46Ti7.2Fe0.8O16) in dioctyl phthalate have been studied by impedance spectroscopy techniques in a frequency range of 10-1-106 Hz. The influence of stabilizing additives of cationic and anionic surfactants and iron acetylacetonate on the permittivity, conductivity, and dielectric losses was determined for dispersions containing 40 mass % of the solid composite. The influence of composition on the mechanisms of relaxation processes in the system is discussed.

  16. Enhancement of Nitrite Reduction Kinetics on Electrospun Pd-Carbon Nanomaterial Catalysts for Water Purification.

    Science.gov (United States)

    Ye, Tao; Durkin, David P; Hu, Maocong; Wang, Xianqin; Banek, Nathan A; Wagner, Michael J; Shuai, Danmeng

    2016-07-20

    We report a facile synthesis method for carbon nanofiber (CNF) supported Pd catalysts via one-pot electrospinning and their application for nitrite hydrogenation. A mixture of Pd acetylacetonate (Pd(acac)2), polyacrylonitrile (PAN), and nonfunctionalized multiwalled carbon nanotubes (MWCNTs) was electrospun and thermally treated to produce Pd/CNF-MWCNT catalysts. The addition of MWCNTs with a mass loading of 1.0-2.5 wt % (to PAN) significantly improved nitrite reduction activity compared to the catalyst without MWCNT addition. The results of CO chemisorption confirmed that the addition of MWCNTs increased Pd exposure on CNFs and hence improved catalytic activity.

  17. Enhancement of Nitrite Reduction Kinetics on Electrospun Pd-Carbon Nanomaterial Catalysts for Water Purification.

    Science.gov (United States)

    Ye, Tao; Durkin, David P; Hu, Maocong; Wang, Xianqin; Banek, Nathan A; Wagner, Michael J; Shuai, Danmeng

    2016-07-20

    We report a facile synthesis method for carbon nanofiber (CNF) supported Pd catalysts via one-pot electrospinning and their application for nitrite hydrogenation. A mixture of Pd acetylacetonate (Pd(acac)2), polyacrylonitrile (PAN), and nonfunctionalized multiwalled carbon nanotubes (MWCNTs) was electrospun and thermally treated to produce Pd/CNF-MWCNT catalysts. The addition of MWCNTs with a mass loading of 1.0-2.5 wt % (to PAN) significantly improved nitrite reduction activity compared to the catalyst without MWCNT addition. The results of CO chemisorption confirmed that the addition of MWCNTs increased Pd exposure on CNFs and hence improved catalytic activity. PMID:27387354

  18. Fluorine doped vanadium dioxide thin films for smart windows

    Energy Technology Data Exchange (ETDEWEB)

    Kiri, Pragna [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Warwick, Michael E.A. [UCL Energy Institute, Central House, 14 Upper Woburn Place, London, WC1H 0HY (United Kingdom); Ridley, Ian [Bartlett School of Graduate Studies, University College London, Wates House, 22 Gordon Street, WC1H 0QB, London (United Kingdom); Binions, Russell, E-mail: r.binions@ucl.ac.uk [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London, WC1H 0AJ (United Kingdom)

    2011-12-01

    Thermochromic fluorine doped thin films of vanadium dioxide were deposited from the aerosol assisted chemical vapour deposition reaction of vanadyl acetylacetonate, ethanol and trifluoroacetic acid on glass substrates. The films were characterised with scanning electron microscopy, variable temperature Raman spectroscopy and variable temperature UV/Vis spectroscopy. The incorporation of fluorine in the films led to an increase in the visible transmittance of the films whilst retaining the thermochromic properties. This approach shows promise for improving the aesthetic properties of vanadium dioxide thin films.

  19. Effect of O{sub 2} flow rate on the thermochromic performance of VO{sub 2} coatings grown by atmospheric pressure CVD

    Energy Technology Data Exchange (ETDEWEB)

    Louloudakis, Dimitris [Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Department of Physics, University of Crete, 711 00 Heraklion, Crete (Greece); Vernardou, Dimitra; Dokianakis, Spyros [Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Spanakis, Emmanouel [Department of Materials Science and Technology, University of Crete, 711 00 Heraklion, Crete (Greece); Panagopoulou, Marianthi; Raptis, Giannis [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 157 80 Athens (Greece); Aperathitis, Elias [Department of Physics, University of Crete, 711 00 Heraklion, Crete (Greece); Kiriakidis, George [Department of Physics, University of Crete, 711 00 Heraklion, Crete (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas, P.O. Box 1527, 711 10 Heraklion, Crete (Greece); Katsarakis, Nikolaos [Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Department of Electrical Engineering, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas, P.O. Box 1527, 711 10 Heraklion, Crete (Greece); Koudoumas, Emmanouel [Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Department of Electrical Engineering, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece)

    2015-07-15

    This paper reports the atmospheric pressure chemical vapor deposition of vanadium oxide coatings using vanadyl (IV) acetylacetonate at 500 {sup o}C. The as-grown samples for 0.8 L min{sup -1} O{sub 2} flow rate showed an (022)-oriented single vanadium dioxide monoclinic phase of low crystallinity. The narrowest hysteresis width is observed for the particular flow rate indicating a dependency on the shape of the grown crystallites. Regarding the difference in transmittance is determined by the enhanced presence of short- and long-range bond ordering of the samples. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Epoxidation of Alkenes with Molecular Oxygen Catalyzed by Immobilized Co(acac)2 and Co(bpy)2Cl2 Complexes within Nanoreactors of Al-MCM-41

    OpenAIRE

    Farzaneh, F; Jalalian, M; Tayebi, L.

    2012-01-01

    Cobalt complexes with different ligands such as bipyridine, and acetylacetonate were immobilized within nanoreactors of Al-MCM-41, designated as Co(acac)2/Al-MCM-41 and Co(bipy)22+/Al-MCM41. The immobilized complexes were characterized by XRD, N2-adsorption desorption, FT-IR and UV-Vis techniques. It was found that Co(bipy)22+/Al-MCM41 and Co(acac)2/Al-MCM-41 successfully catalyze the oxidation of norbornene, styrene, cis-stilbene, trans-stilbene, and cyclohexene with 68% to 100% conversion a...

  1. Synthesis of novel glucose-based polymers and their applications as chiral stationary phases for high performance liquid chromatography

    Institute of Scientific and Technical Information of China (English)

    Tomoyuki IKAI; Takayuki YAMADA

    2016-01-01

    Two novel polymers containing glucose units as the main-chain that only differ in terms of their regioregularity were synthesized to evaluate their chiral recognition abilities as chiral stationary phases( CSPs) for high performance liquid chromatography( HPLC). The regioregular polymer( poly-5)shows clear resolution ability for the racemate of cobalt(Ⅲ)acetylacetonate( Co( acac)3 ),whereas the corresponding regioirregular polymer(poly-3)does not show any chiral recognition for Co(acac)3. The regioregular polymer main-chain seems to play an important role not only in providing an efficient interaction with the racemate but also in expressing the chiral recognition ability as a CSP for HPLC.

  2. Structural and Luminescence Properties of Lu2O3:Eu3+ F127 Tri-Block Copolymer Modified Thin Films Prepared by Sol-Gel Method

    OpenAIRE

    María Luz Carrera Jota; Dulce Yolotzin Medina Velazquez; Joel Moreno Palmerin; Antonieta García Murillo; Felipe de Jesús Carrillo Romo; Margarita García Hernández; Angel de Jesus Morales Ramírez

    2013-01-01

    Lu2O3:Eu3+ transparent, high density, and optical quality thin films were prepared using the sol-gel dip-coating technique, starting with lutetium and europium nitrates as precursors and followed by hydrolysis in an ethanol-ethylene glycol solution. Acetic acid and acetylacetonate were incorporated in order to adjust pH and as a sol stabilizer. In order to increment the thickness of the films and orient the structure, F127 Pluronic acid was incorporated during the sol formation. Structural, m...

  3. NOVEL SYNTHESIS OF POLYARYLENESULFONIUM CATIONS THROUGH A MULTI-ELECTRON TRANSFER PROCESS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The oxidative polymerization of aryl sulfoxides provides a novel polysulfonium compound, poly(methylsulfonio-1,4-phenylenethio-1,4-phenylene cation) in quantitative yield. The polymerization proceeds efficiently in an acidic solution under atmospheric conditions. Oxygen, chemical and electrochemical oxidations are available. Vanadyl acetylacetonate and cerium ammonium nitrate act as an effective catalyst for the oxygen oxidative polymerization. The polymerization mechanism involves multielectron oxidation of the sulfides followed by successive electrophilic substitution. The resulting polyarylenesulfonium cations are useful as a soluble precursor for the synthesis of high molecular weight (Mw>105) poly(thio arylne)s.

  4. Fabrication of supported Ca-doped lanthanum niobate electrolyte layer and NiO containing anode functional layer by electrophoretic deposition

    DEFF Research Database (Denmark)

    Bozza, Francesco; Bonanos, Nikolaos

    2012-01-01

    The technique of electrophoretic deposition (EPD) has been applied for the preparation of a dense calcium-doped lanthanum niobate electrolyte film. La0.995Ca0.005NbO4 (LCN) powder was suspended in a solution of acetylacetone, iodine and water. The effects of suspension composition and deposition...... conditions were analyzed in order to identify a suitable set of EPD process parameters. The powders were deposited on a composite substrate of LCN, NiO, binder and graphite. A dense 8 μm film of lanthanum niobate supported on a porous substrate was obtained after sintering at 1200 °C. The technique was found...

  5. Metalorganic chemical vapor deposition of highly oriented thin film composites of V2O5 and V6O13: Suppression of the metal–semiconductor transition in V6O13

    OpenAIRE

    Sahana, MB; Shivashankar, SA

    2004-01-01

    Thin films of vanadium oxides were grown on fused quartz by metalorganic chemical vapor deposition using vanadyl acetylacetonate as the precursor. Growth at temperatures \\geq560 °C results in composites of strongly (00l)-oriented $V_{2}O_{5}$ and $V_{6}O_{13}$. The dominant phase of the film changes from $V_{2}O_{5}$ to $V_{6}O_{13}$, and back to $V_{2}O_{5}$, as the growth temperature is raised from 560 to 570 °C, then to 580 °C, as evidenced by x-ray diffraction and Rutherford backscatterin...

  6. Near-Monodisperse Ni-Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H2 Generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yawen; Huang, Wenyu; Habas, Susan E.; Kuhn, John N.; Grass, Michael E.; Yamada, Yusuke; Yang, Peidong; Somorjai, Gabor A.

    2008-07-22

    Near-monodisperse Ni{sub 1-x}Cu{sub x} (x = 0.2-0.8) bimetallic nanocrystals were synthesized by a one-pot thermolysis approach in oleylamine/1-octadecene, using metal acetylacetonates as precursors. The nanocrystals form large-area 2D superlattices, and display a catalytic synergistic effect in the hydrolysis of NaBH{sub 4} to generate H{sub 2} at x = 0.5 in a strongly basic medium. The Ni{sub 0.5}Cu{sub 0.5} nanocrystals show the lowest activation energy, and also exhibit the highest H{sub 2} generation rate at 298 K.

  7. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries.

    Science.gov (United States)

    Hwang, Byunghyun; Park, Min-Sik; Kim, Ketack

    2015-01-01

    Ferrocene and cobaltocene and their derivatives are studied as new redox materials for redox flow cells. Their high reaction rates and moderate solubility are attractive properties for their use as active materials. The cyclability experiments are carried out in a static cell; the results showed that these materials exhibit stable capacity retention and predictable discharge potentials, which agree with the potential values from the cyclic voltammograms. The diffusion coefficients of these materials are 2 to 7 times higher than those of other non-aqueous materials such as vanadium acetylacetonate, iron tris(2,2'-bipyridine) complexes, and an organic benzene derivative. PMID:25428116

  8. Preparation and characterization of perfluorosulfonic resin/titania hybrid transparent films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Preparation and characterization of perfluorosulfonic resin/titania organic-inorganic hybrid films were presented. The transparent hybrid films were prepared by hydrothermal treatment at low temperature of a mixed solution of tetrabutyl titanate and perfluorosulfonic resin with the help of acetylacetone. The characterization was carried out by SEM,XRD,FT-IR,UV-Vis and TGA. The results showed that the perfluorosulfonic resin/titania hybrid transparent films were composed of titania particles dispersed in the perfluorosulfonic resin matrix very well and the titania was of anatase phase. Its diameter de-creased with increasing weight ratio of titania to perfluorosulfonic resin.

  9. Preparation and characterization of perfluorosulfonic resin/titania hybrid transparent films

    Institute of Scientific and Technical Information of China (English)

    LI JianMei; XUE MinZhao; ZHANG YongMing; LIU YanGang

    2007-01-01

    Preparation and characterization of perfluoroaulfonic resin/titaniaorganic-inorganic hybrid films were presented. The transparent hybrid films were prepared by hydrothermal treatment at low temperature of a mixed solution of tetrabutyl titanata and perfluorosulfonic resin with the help of acetylacetone. The charactarization was carried out by SEM, XRD, FT-IR, UV-Vis and TGA. The results showed that the perfiuorosulfonic resin/titania hybrid transparent films were composed of titania particles dispersed in the perfluorosulfonic resin matrix very well and the titania was of anatase phase. Its diameter decreased with increasing weight ratio of titania to perfluorosulfonic resin.

  10. Synthesis and spectroscopic characterization of some lanthanide(III) nitrate complexes of ethyl 2-[2-(1-acetyl-2-oxopropyl)azo]-4,5-dimethyl-3-thiophenecarboxyate

    OpenAIRE

    CHEMPAKAM JANARDHANAN ATHIRA; YESODHARAN SINDHU; MATHUNNI SUSAMMA SUJAMOL; KOCHUKITTAN MOHANAN

    2011-01-01

    Ethyl 2-[2-(1-acetyl-2-oxopropyl)azo]-4,5-dimethyl-3-thiophenecarboxyate was synthesized by coupling diazotized ethyl 2-amino-4,5-dimethylthiophene-3-carboxylate with acetylacetone. Based on various spectral studies and elemental analysis, an intramolecularly hydrogen-bonded azo-enol structural form was assigned for the ligand. This ligand is versatile in forming a series of lanthanide(III) complexes, viz., lanthanum(III), cerium(III), praseodymium(III), neodymium(III), samarium(III) and gado...

  11. Avaliação da "microverdura" de sínteses com a estrela verde

    Directory of Open Access Journals (Sweden)

    Rita C. C. Duarte

    2014-07-01

    Full Text Available This article reports a study to increase the overall greenness of chemical syntheses for first-year university laboratories. The separate evaluation of the micro-greenness of the three stages of synthesis (reaction, isolation and purification using the Green Star (GS was implemented and their respective contribution to overall greenness was investigated for two examples: syntheses of cobalt (III tris(acetylacetonate and potassium nitrilosulfonate. Results showed that the post-reaction (work-up steps are the most problematic for overall greenness. Greenness optimization can be achieved by combining the greenest procedures for each step obtained from different protocols available in the literature.

  12. Determination of the Hydrogenation Degree of Telechelic Polybutadiene by {sup 1}H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lira, C.H.; Nicolini, L.F.; Dolinsky, M.C.B. [Petroflex Industria e Comercio S.A., Duque de Caxias, RJ (Brazil)]. E-mail: clira@petroflex.com.br; Oliveira, C.M.F.; Gomes, A.S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano

    2006-07-01

    The liquid hydroxyl terminated polybutadiene (HTPB) was hydrogenated to improve its thermal and oxidative resistance. Hydrogenation was carried out using cyclohexane as solvent and a soluble catalyst system consisting of diisobutyl aluminum hydride (DIBAL-H) and Co{sup III} acetylacetonate, at a molar ratio of 6:1. Hydrogenation was only possible after esterification of hydroxyl groups due to interactions with the catalyst system. {sup 1}H NMR technique was used to confirm the esterification and hydrogenation of the polymeric material. This method can be also used to determine the degree of hydrogenation in different reaction times. (author)

  13. Syntheses, magnetic and spectral studies on polystyrene supported coordination compounds of bidentate and tetradentate Schiff bases

    Indian Academy of Sciences (India)

    D Kumar; P K Gupta; A Syamal

    2005-05-01

    The reaction of aminomethylated polystyrene (PSCH2-NH2) and 2-hydroxyacetanilide in DMF results in the formation of polystyrene-anchored monobasic bidentate Schiff base, PSCH2-LH (I). On the other hand, the reaction of chloromethylated polystyrene (PSCH2-Cl), 3-formylsalicylic acid, ethylenediamine and acetylacetone in DMF in presence of ethyl acetate (EA) and triethylamine (TEA) produces another polystyrene-anchored dibasic tetradentate Schiff base, PSCH2-L'H2 (II). Both I and II react with a number of di-, tri- and hexavalent metal ions like Co, Ni, Cu, Zn and Cd to form polystyreneanchored coordination compounds, and these have been characterized and discussed.

  14. Binary heterocyclic systems containing the ethylideneamino linkage: synthesis of some new heterocyclic compounds bearing the naphtho-[2,1-b]furan moiety

    Directory of Open Access Journals (Sweden)

    A. H. BEDAIR

    2006-05-01

    Full Text Available Ethylidene hydrazine (4a,b and thiazolidin-4-one (5 derivatives were synthesized by the reaction of ethylidenethiosemicarbazide derivative (3a with a-haloketone/ethyl bromoacetate, respectively. Hetrocyclization of ethylideneacetohydrazide derivative (7 with o-phenolic aldehydes gave the corresponding coumarin derivatives (8,9. The interaction of 7 with acetylacetone afforded the corresponding pyridine derivative (10. Treatment of the arylidene derivative 11b with malononitrile afforded the corresponding pyran derivative (12. The new products 3-12 were subjected to IR, 1H NMR and mass spectra studies.

  15. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries.

    Science.gov (United States)

    Hwang, Byunghyun; Park, Min-Sik; Kim, Ketack

    2015-01-01

    Ferrocene and cobaltocene and their derivatives are studied as new redox materials for redox flow cells. Their high reaction rates and moderate solubility are attractive properties for their use as active materials. The cyclability experiments are carried out in a static cell; the results showed that these materials exhibit stable capacity retention and predictable discharge potentials, which agree with the potential values from the cyclic voltammograms. The diffusion coefficients of these materials are 2 to 7 times higher than those of other non-aqueous materials such as vanadium acetylacetonate, iron tris(2,2'-bipyridine) complexes, and an organic benzene derivative.

  16. Frequency-dependent conductivity in tris(acetylacetonato)manganese(III) thin films on Si(1 0 0) substrates

    International Nuclear Information System (INIS)

    Thin tris(acetylacetonate)manganese(III) films of amorphous structure were prepared by vacuum deposition on glass and Si (1 0 0) substrates. The as-deposited and annealed-in-vacuum films were characterised by X-ray fluorescence, X-ray diffraction and optical absorption spectroscopy. The prepared title-complex amorphous films were investigated as insulators for Al/insulator/Si(P) metal-insulator-semiconductor (MIS) structures, which were characterised by the measurement of their capacitance and AC-conductance as a function of gate voltage. From those measurements, State density D it at insulator/semiconductor interface and the density of the fixed charges in the complex insulator were determined. It was found that D it was in order of 1011 eV-1 cm-2 and the surface charge density in the insulator film was in order of 1011-1012 cm-2.The frequency dependence of the electrical conductivity and dielectric properties of MIS structures were studied at room temperature. The results follow the correlated barrier-hopping (CBH) model, from which the fundamental absorption bandgap, the minimum hopping distance and other parameters of the model were determined. This study shows that the tris(acetylacetonate)manganese(III) films grown on Si(1 0 0) is a promising candidate for high-ε dielectric applications. It displays sufficiently high-ε value in the range 30-40

  17. Optimization of process conditions for the production of TiO2–N film by sol–gel process using response surface methodology

    Indian Academy of Sciences (India)

    Rui Liu; Ching-Shieh Hsieh; Wein-Duo Yang; Hui-Yi Tsai

    2014-10-01

    TiO2–N film has been synthesized successfully through the sol–gel method. It is found that the anatase phase is formed at 400 °C and converted to rutile phase at 600 °C. The response surface methodology (RSM) and Box–Behnken design were employed to optimize the process conditions of sol–gel process. Based on the results in preliminary experiments, we selected molar ratio of surfactant to Ti, molar ratio of acetylacetone to Ti, molar ratio of water to Ti and calcination temperature as the key process factors affecting the roughness of TiO2–N film. The adjusted determination coefficient ($R^{2}_{\\text{Adj}}$) of the regression model was 0.9651, which indicated that the regression model is significant. By analysing the contour plots of response surface as well as solving the regression model, the optimized conditions were obtained as: 0.19 for molar ratio of surfactant to Ti, 2.01 for molar ratio of acetylacetone to Ti, 1.38 for molar ratio of water to Ti and 500 °C for calcination temperature. The predicted roughness of TiO2–N film for the optimized condition was calculated to be 41 nm. Confirmation experiments using the optimized conditions were performed, and a value about 43 nm was obtained. The experimental results are in good agreement with the predicted results.

  18. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes

    Science.gov (United States)

    Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d

  19. Mesoporous Titania Powders: The Role of Precursors, Ligand Addition and Calcination Rate on Their Morphology, Crystalline Structure and Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Elisabetta Masolo

    2014-07-01

    Full Text Available We evaluate the influence of the use of different titania precursors, calcination rate, and ligand addition on the morphology, texture and phase content of synthesized mesoporous titania samples, parameters which, in turn, can play a key role in titania photocatalytic performances. The powders, obtained through the evaporation-induced self-assembly method, are characterized by means of ex situ X-Ray Powder Diffraction (XRPD measurements, N2 physisorption isotherms and transmission electron microscopy. The precursors are selected basing on two different approaches: the acid-base pair, using TiCl4 and Ti(OBu4, and a more classic route with Ti(OiPr4 and HCl. For both precursors, different specimens were prepared by resorting to different calcination rates and with and without the addition of acetylacetone, that creates coordinated species with lower hydrolysis rates, and with different calcination rates. Each sample was employed as photoanode and tested in the water splitting reaction by recording I-V curves and comparing the results with commercial P25 powders. The complex data framework suggests that a narrow pore size distribution, due to the use of acetylacetone, plays a major role in the photoactivity, leading to a current density value higher than that of P25.

  20. Electrophoretic Deposition of SnO2 Nanoparticles and Its LPG Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Göktuğ Günkaya

    2015-01-01

    Full Text Available Homogenized SnO2 nanoparticles (60 nm in acetylacetone mediums, both with and without iodine, were deposited onto platinum coated alumina substrate and interdigital electrodes using the electrophoretic deposition (EPD method for gas sensor applications. Homogeneous and porous film layers were processed and analyzed at various coating times and voltages. The structure of the deposited films was characterized by a scanning electron microscopy (SEM. The gas sensing properties of the SnO2 films were investigated using liquid petroleum gas (LPG for various lower explosive limits (LEL. The results showed that porous, crack-free, and homogeneous SnO2 films were achieved for 5 and 15 sec at 100 and 150 V EPD parameters using an iodine-free acetylacetone based SnO2 suspension. The optimum sintering for the deposited SnO2 nanoparticles was observed at 500°C for 5 min. The results showed that the sensitivity of the films was increased with the operating temperature. The coated films with EPD demonstrated a better sensitivity for the 20 LEL LPG concentrations at a 450°C operating temperature. The maximum sensitivity of the SnO2 sensors at 450°C to 20 LEL LPG was 30.

  1. Synthesis and characterization of polyaluminocarbosilane as SiC ceramic precursor

    Institute of Scientific and Technical Information of China (English)

    余煜玺; 李效东; 曹峰; 冯春祥

    2004-01-01

    Polyaluminocarbosilane (PACS) was synthesized by the reaction of aluminum acetylacetonate(Al(AcAc)3) with polysilacarbosilane (PSCS), which was prepared by thermolysis and condensation of polydimeth-ylsilane (PDMS). The sublimation of Al(AcAc)3 could be avoided by the use of PSCS as reactant. The empiricalformula of PACS was SiC2.01 H7. 66 O0.13 Al0.02, which has the relative molecular mass of 2 265. When the reaction ofPSCS with Al(AcAc)3 proceeds, an enormous decrease in the number of Si-H bonds in PSCS is observed, at thesame time, gas acetylacetonate is a by-product of the reaction based on the ligands of Al(AcAc)3. The reactionmechanism is found to be related to the increase in the molecular mass of PACS by the cross-linking reaction ofSi-H bonds in PSCS with Al(AcAc)3, which leads to the formation of Si-Al bonds.

  2. 黄铁矿和黄铜矿中铁铜钴镍的纸层析及定量测定

    Institute of Scientific and Technical Information of China (English)

    中国科学院贵阳地球化学研究所中心分析室

    1973-01-01

    The method of paper chromatography for the separation and quantitative determination of iron, copper, cobalt and nickel in pyrite and chalcopyrite is described.The three systems of ehromtograpbie solvents for the separation of iron, copper, cobalt and nickel on the 8×25 or 15×26 cm Whatman No. 3, involving acetone-hydrochloric acid-water, butanone-hydrochloric acid-water and acetone-acetylacetone-hydrochloric acid-water have been tested. As a developing system for the separation of this four elements in samples, the mixture of aoetone-acetylacetone-hydroehlorio acid-water is considered to be the best. After developing in a 30×40 cm glass dryer, the paper is dried in air and rendered the zone visible by treatment with 0.1% (W/V) rubeanic acid solution. The R1 values, colour reactions with this spray reagent and the eolour are given. A good paper chromatography of elements has been obtained. The elements are determined by colorimetrie method, with 1-nitroso-2-naphthol for cobalt,1-(2-pyridylozo)-2-naphthol for nickel, oxalic acid bis-cyelohexylidene hydrozide for copper, and sulfosalicylic acid for iron. In addition, iron and copper can also be determined by titration with potassium dichromate solution and iodimetry respectively.

  3. Nano-sized, quaternary titanium(IV) metal-organic frameworks with multidentate ligands

    Science.gov (United States)

    Baranwal, Balram Prasad; Singh, Alok Kumar

    2010-12-01

    Some mononuclear nano-sized, quaternary titanium(IV) complexes having the general formula [Ti(acac)(OOCR) 2(SB)] (where Hacac = acetylacetone, R = C 15H 31 or C 17H 35, HSB = Schiff bases) have been synthesized using different multidentate ligands. These were characterized by elemental analyses, molecular weight determinations and spectral (FTIR, 1H NMR and powder XRD) studies. Conductance measurement indicated their non-conducting nature which may behave like insulators. Structural parameters like the values of limiting indices h, k, l, cell constants a, b, c, angles α, β, γ and particle size are calculated from powder XRD data for complex 1 which indicated nano-sized triclinic system in them. Bidentate chelating nature of acetylacetone, carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Molecular weight determinations confirmed mononuclear nature of the complexes. On the basis of physico-chemical studies, coordination number 8 was assigned for titanium(IV) in the complexes. Transmission electron microscopy (TEM) and the selected area electron diffraction (SAED) studies indicated spherical particles with poor crystallinity.

  4. Synthesis and spectroscopic characterization of some lanthanide(III nitrate complexes of ethyl 2-[2-(1-acetyl-2-oxopropylazo]-4,5-dimethyl-3-thiophenecarboxyate

    Directory of Open Access Journals (Sweden)

    CHEMPAKAM JANARDHANAN ATHIRA

    2011-02-01

    Full Text Available Ethyl 2-[2-(1-acetyl-2-oxopropylazo]-4,5-dimethyl-3-thiophenecarboxyate was synthesized by coupling diazotized ethyl 2-amino-4,5-dimethylthiophene-3-carboxylate with acetylacetone. Based on various spectral studies and elemental analysis, an intramolecularly hydrogen-bonded azo-enol structural form was assigned for the ligand. This ligand is versatile in forming a series of lanthanide(III complexes, viz., lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III and gadolinium(III, which were characterized through various spectral studies, elemental analysis, magnetic susceptibility measurements, molar conductance and thermal analysis. The spectral data revealed that the ligand acted as a neutral tridentate, coordinating to the metal ion through one of the azo nitrogen atoms, the ester carbonyl and the enolic oxygen of the acetylacetone moiety, without deprotonation. Molar conductance values adequately supported their non-electrolytic nature. The ligand and lanthanum(III complex were subjected to X-ray diffraction studies. In addition, the lanthanum(III complex underwent a facile transesterification reaction on refluxing with methanol for a long period. The thermal behaviour of the lanthanum(III complex was also examined

  5. Synthesis, spectroscopic characterization and thermal studies of some lanthanide(Ⅲ) nitrate complexes with a hydrazo derivative of 4-aminoantipyrine

    Institute of Scientific and Technical Information of China (English)

    K. Mohanan; C.J. Athira; Y. Sindhu; M.S. Sujamol

    2009-01-01

    A heterocyclic ligand synthesized by the coupling of diazotized 4-aminoantipyrine with acetylacetone reacted with lanthanide(Ⅲ) nitrate to form complexes of the type [Ln(HAAP)2(NO3)3] where, Ln=La(Ⅲ), Ce(Ⅲ), Pr(Ⅲ), Nd(Ⅲ), Sm(Ⅲ), or Gd(Ⅲ) and HAAP=3-{[2-(N-1-pheny1-2,3-dimethylpyrazol-3-in-5-on-4-yl)]hydrazone}pent-2,3,4-trione. The ligand and metal complexes were characterized on the basis of elemental analysis, molar conductance, magnetic susceptibility measurements, UV-Visible, infrared, far infrared and proton NMR spectral data. The spectral data revealed that the ligand existed in the hydrazo form and coordinated to the metal ion without deproto-nation in a neutral tridentate manner, through carbonyl oxygen of pyrazolone ring, hydrazo nitrogen and carbonyl oxygen of the acetylace-tone moiety. The molar conductance values adequately supported their non-electrolytic nature. The ligand and the praseodymium(Ⅲ) com-plex were subjected to X-ray diffraction studies. Thermal decomposition behavior of the lanthanum(Ⅲ) complex was also examined.moiety.

  6. Influences of alcoholic solvents on spray pyrolysis deposition of TiO2 blocking layer films for solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Influences of alcoholic solvents for titanium diisopropoxide bis(acetylacetonate) (TPA) precursor solutions on the spray pyrolysis deposited TiO2 films and the photovoltaic performance of the solid-state dye-sensitized solar cells (SDSCs) using these TiO2 films as the blocking layers were investigated. Smooth TiO2 films were obtained by spray pyrolysis deposition of a TPA solution in isopropanol (IPA) at a relatively low temperature of 260 °C. On the other hand, when ethanol was used as solvent, the TiO2 films fabricated at the same temperature showed much rougher surfaces with many pinholes. Our results showed that ethanol reacts with TPA to form titanium diethoxide bis(acetylacetonate) (TEA), which requires a higher thermal decomposition temperature than that of TPA. SDSCs with TiO2 blocking layer films fabricated using a TPA solution in IPA showed higher power conversion efficiencies with smaller variations. - Graphical abstract: Alcoholic solvents used for the TiO2 precursor play a critical role in determining the surface morphology of blocking layers and thus the photovoltaic performance of the SDSCs. Highlights: ► Solvent influences morphology of spray pyrolysis deposited TiO2 blocking layer. ► Ethanol reacts with TPA, resulting poor quality of blocking layer. ► Isopropanol is better than ethanol for obtaining smooth blocking layer. ► SDSC with blocking layer made with isopropanol showed better performance.

  7. Effects of Paste Components on the Properties of Porous TiO2 Film for Dye-sensitized Solar Cells%浆料组成对染料敏化多孔TiO2太阳能电池性能的影响

    Institute of Scientific and Technical Information of China (English)

    康姣; 胡志强; 周红茹; 杨冬雪

    2011-01-01

    The TiO2 paste was obtained by ball milling,with varying amounts of PEG400,OP emulsifier and acetylacetone.Then the screen-printed technique was adopted to fabricate porous TiO2 film anode on substrate,and DSSC was assembled by TiO2 film anode.The experimental samples were investigated and measured by means of SEM ,XRD and electrochemical method.The effect of PEG400,OP emulsification,acetylacetone and ball milling time on DSSC properties was discussed by orthogonal experiment.The results indicate that the optimal component are PEG400 of 0.4mL,OP emulsifier of 0.02 mL,acetylacetone of 0.6mL and the ball milling time of 4h.The value of overall energy conversion efficiency η of DSSC of the optimal assembed is 3.44%.%在TiO2粉体中加入不同量的聚乙二醇400、OP乳化剂和乙酰丙酮,经球磨得到TiO2浆料,采用丝网印刷的工艺方法在基底上制备了多孔TiO2薄膜阳极,组装成DSSC.采用SEM、XRD和电化学工作站进行了表征及测试;利用正交实验探讨了浆料中聚乙二醇400、OP乳化剂、乙酰丙酮的量和球磨时间对DSSC光电性能的影响.研究结果表明,浆料的最佳配方是聚乙二醇400为0.4mL、OP乳化剂为0.02mL、乙酰丙酮为0.6mL和球磨时间为4h,由此可使制备的DSSC光电转化效率(η)达到3.44%.

  8. Reversible-Deactivation Radical Polymerization of Methyl Methacrylate Induced by Photochemical Reduction of Various Copper Catalysts

    Directory of Open Access Journals (Sweden)

    Jaroslav Mosnáček

    2014-11-01

    Full Text Available Photochemically mediated reversible-deactivation radical polymerization of methyl methacrylate was successfully performed using 50–400 ppm of various copper compounds such as CuSO4·5H2O, copper acetate, copper triflate and copper acetylacetonate as catalysts. The copper catalysts were reduced in situ by irradiation at wavelengths of 366–546 nm, without using any additional reducing agent. Bromopropionitrile was used as an initiator. The effects of various solvents and the concentration and structure of ligands were investigated. Well-defined polymers were obtained when at least 100 or 200 ppm of any catalyst complexed with excess tris(2-pyridylmethylamine as a ligand was used in dimethyl sulfoxide as a solvent.

  9. Electrochemical and Reaction Bonding Processing of Thick ZrO2/Al2O3 Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    WANG Zhou-cheng; XIAO Ping

    2004-01-01

    A novel technique combining electrophoretic deposition (EPD) and reaction bonding process (RBP) is developed to fabricate thick ZrO2/Al2O3 composite coatings. Mixed organic solvents are used here to make suspension containing yttria stablised zirconia (YSZ) and aluminium (Al). The results show that densely packed green form coatings are deposited using a mixture of ethanol and acetylacetone as suspension medium and ball milling for 48 hours. On subsequent heat treatment, melting and oxidation of aluminium in the green forms promote densification during sintering. By these means,thick, uniform and crack-free ZrO2/Al2O3 composite coatings have been fabricated on metal substrate.

  10. Electrochemical and Reaction Bonding Processing of Thick ZrO2/Al2O3 Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    WANGZhou-cheng; XIAOPing

    2004-01-01

    A novel technique combining electrophoretic deposition (EPD) and reaction bonding process (RBP) is developed to fabricate thick ZrO2/Al2O3 composite coatings. Mixed organic solvents are used here to make suspension containing yttria stablised zirconia (YSZ) and aluminium (Al). The results show that densely packed green form coatings are deposited using a mixture of ethanol and acetylacetone as suspension medium and ball milling for 48 hours. On subsequent heat treatment, melting and oxidation of aluminium in the green forms promote densification during sintering. By these means,thick, uniform and crack-free ZrO2/Al2O3 composite coatings have been fabricated on metal substrate.

  11. 含铍碳化硅陶瓷先驱体聚铍碳硅烷的合成%Synthesis of Precursor of SiC ceramic containing beryllium

    Institute of Scientific and Technical Information of China (English)

    段曦东; 李文芳; 周珊; 杜作娟; 王超英; 黄小忠

    2012-01-01

    Beryllium acetylacetonate [Be(acac)2] was synthesized using beryllium hydroxide, sulfuric acid and acetylacetone as raw material. Beryllium acetylacetonate [Be(acac)2] reacted with polycarbosilane (PCS) with heating,resionoid product was produced. In the reaction, the beryllium acetylacetonate was consumed, the melting point was rised comparing to the onset polycarbosilane. The clement analysis shows there are some beryllium in the product, the gel permeation chromatography GPC ana-lysis shows the molecular of the product rised comparing to the onset polycarbosilane. Fourier transform infrared spectroscopy (FT- IR) analysis shows there are such chemical structures in PBeCS:Si(CH3 )2- CH2 -,-Si(CH3 ) · (H)-CH2-.1H-NMR shows the Si-H bond in the reagent was consumed. The reaction mechanism is inferred on the basis of analysis result, and the Si-H bond played a crucial role in the formation of the product. The experiment and theory analysis shows the product is a kind of polycarbosilane containing beryllium, which can be called polyberylliumocar-bosilane (PBeCS). After treated under 1200℃ the product PBeCS can be converted into the silicon carbide containing Beryllium.%以氢氧化铍、硫酸和乙酰丙酮为原料合成了乙酰丙酮铍(Be(acac)2).用乙酰丙酮铍和聚碳硅烷在加热的条件下反应一定时间,生成了树脂状的产物.反应中乙酰丙酮铍被消耗,生成产物熔点相对起始聚碳硅烷熔点升高.元素分析表明产物中含有铍元素,凝胶渗透色谱分析表明产物分子量相对起始聚碳硅烷向增大的方向发生变化.傅立叶红外光谱分析表明产物中主要存在如下结构:Si(CH3)2—CH2—,—Si(CH3)·(H)—CH2—.核磁共振1H-NMR分析表明反应物中Si—H键被消耗.根据分析结果推测了反应机理,Si—H键的消耗在产物的形成中起了重要作用.实验与理论分析表明先驱体产物是一种含铍聚碳硅烷,可以命名为聚铍碳硅烷(PBeCS).在1200℃的高

  12. Composition distributions in FePt(Au) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, C. [University of Alabama, Department of Metallurgical and Materials Engineering (United States); Nikles, D. E. [University of Alabama, Department of Chemistry (United States); Harrell, J. W. [University of Alabama, Department of Physics and Astronomy (United States); Thompson, G. B., E-mail: gthompson@eng.ua.ed [University of Alabama, Department of Metallurgical and Materials Engineering (United States)

    2010-08-15

    Ternary alloy FePt(Au) nanoparticles were prepared by the co-reduction of platinum(II) acetylacetonate and gold(III) acetate and the thermal decomposition of iron pentacarbonyl in hot phenyl ether in the presence of oleic acid and oleylamine ligands. This gave spherical particles with an average diameter of 4.4 nm with a range of diameters from approximately 1.6-9 nm. The as-synthesized particles had a solid solution, face-centered-cubic structure. Though the average composition of the particles was Fe{sub 44}Pt{sub 45}Au{sub 11}, individual particle analysis by Scanning Transmission Electron Microscopy-X-ray Energy Dispersive Spectroscopy showed a broad distribution in composition. In general, smaller-sized particles tended to have a lower amount of Au as compared to larger-sized particles. As the Au content increased, the ratio of Fe/Pt widened.

  13. Temperature and Exciton Concentration Induced Excimer Emission of 4,4'-Bis(4''-Triphenylsilyl) Phenyl-1,1'-Binaphthalene and Application for Sunlight-Like White Organic Light-Emitting Diodes.

    Science.gov (United States)

    Xu, Tao; Li, Weiling; Gao, Xicun; Sun, Chang; Chen, Guo; Zhang, Xiaowen; Li, Chunya; Zhu, Wenqing; Wei, Bin

    2016-12-01

    This paper demonstrates the influence of temperature, exciton concentration, and electron transportation layers on the excimer emission of a novel deep-blue material: 4,4'-bis(4''-triphenylsilyl) phenyl-1,1'-binaphthalene (SiBN), by studying the photoluminescence and electroluminescence spectra of SiBN-based film. We have further developed sunlight-like and warm-light white organic light-emitting diodes (WOLEDs) with high efficiency and wide-range spectra, using SiBN and bis(2-phenylbenzothiozolato-N,C2')iridium(acetylacetonate) (bt2Ir(acac)) as the blue excimer and yellow materials, respectively. The resulting device exhibited an excellent spectra overlap ratio of 82.9 % with sunlight, while the device peak current efficiency, external quantum efficiency, and power efficiency were 18.5 cd/A, 6.34 %, and 11.68 lm/W, respectively, for sunlight-like WOLEDs. PMID:27562015

  14. Electronic structure of planar-quasicycled organic molecules with intramolecular hydrogen bond

    Directory of Open Access Journals (Sweden)

    ALEXEI N. PANKRATOV

    2007-03-01

    Full Text Available By means of the HF/6-311G(d,p method, the electronic structure of the series of organic molecules, among which are malonaldehyde, acetylacetone, thiomalonaldehyde,’the derivatives of aniline 2-XC6H4NH2, phenol 2-XC6H4OH, benzenethiol 2-XC6H4SH (X = CHO, COOH, COO-, NO, NO2, OH, OCH3, SH, SCH3, F, Cl, Br, 8-hydroxyquinoline, 8-mercaptoquinoline, tropolone, has been studied. The intramolecular hydrogen bond (IHB has been established to lead to a local electron redistribution in quasicycle, and primarily to the electron density transfer between the direct IHB participants – from the hydrogen atom toward the proton-aceptor atom. On forming the IHB of the S–H···O type, the electron density in general decreases on the sulphohydryl hydrogen atom and increases on the sulphur atom.

  15. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  16. Phosphorescent Platinum(II) Complexes with Mesoionic 1H-1,2,3-Triazolylidene Ligands.

    Science.gov (United States)

    Soellner, Johannes; Tenne, Mario; Wagenblast, Gerhard; Strassner, Thomas

    2016-07-11

    The synthesis and characterization of eight unprecedented phosphorescent C^C* cyclometalated mesoionic aryl-1,2,3-triazolylidene platinum(II) complexes with different β-diketonate ligands are reported. All compounds proved to be strongly emissive at room temperature in poly(methyl methacrylate) films with an emitter concentration of 2 wt %. The observed photoluminescence properties were strongly dependent on the substitution on the aryl system and the β-diketonate ligand. Compared to acetylacetonate, the β-diketonates with aromatic substituents (mesityl and duryl) were found to significantly enhance the quantum yield while simultaneously reducing the emission lifetimes. Characterization was carried out by standard techniques, as well as solid-state structure determination, which confirmed the binding mode of the carbene ligand. DFT calculations, carried out to predict the emission wavelength with maximum intensity, were in excellent agreement with the (later) obtained experimental data. PMID:27294887

  17. Thermodynamic study of CVD-ZrO{sub 2} phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atorresh@ipn.m [Research Center for Applied Science and Advanced Technology, Altamira-IPN, Altamira C.P.89600 Tamaulipas (Mexico); Vargas-Garcia, J.R. [Dept of Metallurgical Eng., ESIQIE-IPN, Mexico 07300 D.F. (Mexico); Dominguez-Crespo, M.A. [Research Center for Applied Science and Advanced Technology, Altamira-IPN, Altamira C.P.89600 Tamaulipas (Mexico); Romero-Serrano, J.A. [Dept of Metallurgical Eng., ESIQIE-IPN, Mexico 07300 D.F. (Mexico)

    2009-08-26

    Chemical vapor deposition (CVD) of zirconium oxide (ZrO{sub 2}) from zirconium acetylacetonate Zr(acac){sub 4} has been thermodynamically investigated using the Gibbs' free energy minimization method and the FACTSAGE program. Thermodynamic data Cp{sup o}, DELTAH{sup o} and S{sup o} for Zr(acac){sub 4} have been estimated using the Meghreblian-Crawford-Parr and Benson methods because they are not available in the literature. The effect of deposition parameters, such as temperature and pressure, on the extension of the region where pure ZrO{sub 2} can be deposited was analyzed. The results are presented as calculated CVD stability diagrams. The phase diagrams showed two zones, one of them corresponds to pure monoclinic phase of ZrO{sub 2} and the other one corresponds to a mix of monoclinic phase of ZrO{sub 2} and graphite carbon.

  18. Synthesis and structural characterization of novel flower-like titanium dioxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, Luis [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional CINVESTAV-IPN, SEES, Apartado Postal 14740, Mexico, DF, 07000 (Mexico); Departamento de Fisica y Matematicas, Division de Ciencia, Arte y Tecnologia, Universidad Iberoamericana, Av. Prolongacion Paseo de la Reforma 880, Santa Fe 012100, DF (Mexico); Terrones, Mauricio [Departamento de Fisica y Matematicas, Division de Ciencia, Arte y Tecnologia, Universidad Iberoamericana, Av. Prolongacion Paseo de la Reforma 880, Santa Fe 012100, DF (Mexico) and Advanced Materials Department, IPICYT, Camino a la Presa San Jose 2055, Col. Lomas, 4a. seccion, San Luis Potosi, 78216 (Mexico)]. E-mail: mterrones@ipicyt.edu.mx

    2007-03-01

    Titanium dioxide (TiO{sub 2}-anatase phase) films, consisting of agglomerated flower-like nanoparticles, have been synthesized using an ultrasonic spray pyrolysis method in conjunction with titanium (IV) oxide acetylacetonate (TiO(acac){sub 2}) and methanol at 550 deg. C. These films were subsequently thermally treated in air, at 950 deg. C for 6 h, and the flower-like particles were transformed into smooth surfaces mainly formed by the TiO{sub 2} rutile phase. In this letter, we characterized these structures using scanning electron microscopy, atomic force micrcoscopy, and low-angle X-ray diffraction measurements. It is proposed that these novel flower-like nanostructures, exhibiting a large number of exposed edges, will be important in the development of efficient gas sensor devices.

  19. A new approach to suppress nonlinearity-transparency trade-off through coordination chemistry: syntheses and spectroscopic study on second-order nonlinear optical properties of a series of square-pyramidal zinc(II) complexes

    Science.gov (United States)

    Ren, Peng; Liu, Tao; Qin, Jingui; Chen, Chuangtian

    2003-03-01

    Five new square-pyramidal coordination compounds L · Zn(acac) 2 ( 1- 5) (acac=acetylacetonate; L is a variety of thiosemicarbazones: p-dimethylaminobenzaldehyde thiosemicarbazone ( 1), p-hydroxy- o-methoxybenzaldehyde thiosemicarbazone ( 2), p-methoxybenzaldehyde thiosemicarbazone ( 3), p-hydroxybenzaldehyde thiosemicarbazone ( 4), o-hydroxybenzaldehyde thiosemicarbazone ( 5)) have been synthesized and characterized by 1H NMR, IR, and elemental analysis. All of these compounds exhibit pretty wide transparent ranges in the visible region. Their electronic absorption spectra have been studied experimentally, and theoretically by ZINDO/S calculation. The latter has also been utilized to estimate the extent of intramolecular charge transfer. The MOPAC software package has been used to evaluate their first-order molecular hyperpolarizabilities ( β). All β values of the five coordination compounds are larger than those of the corresponding thiosemicarbazones. And complex 1 shows the largest β0 (39.1×10 -30 esu) in the series.

  20. Schiff bases of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane and its silatranes: Synthesis and characterization

    Indian Academy of Sciences (India)

    Gurjaspreet Singh; Amandeep Saroa; Sadhika Khullar; Sanjay K Mandal

    2015-04-01

    This paper aims at the introduction of azomethine group by the condensation reaction of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane with different compounds containing carbonyl group such as 2’-hydroxyacetophenone, salicylaldehyde, pyrrole-2-carboxaldehyde, acetylacetone and ethyl acetoacetate. Further, transesterification reaction of these Schiff base modified silanes with triethanolamine as a tripodal ligand leads to the synthesis of corresponding silatranes 1–5 bearing Schiff base functionalized long chain in the axial position. All the synthesized compounds are characterized by spectroscopic methods, elemental analysis and mass spectrometry. The authentication of Schiff base modified silatranes is scrutinized by single X-ray crystal structure of silatrane 1. The thermal stability of the five silatranes is studied by thermo-gravimetric analysis (TGA).

  1. Cyanoacetanilides intermediates in heterocyclic synthesis. Part 6: Preparation of some hitherto unknown 2-oxopyridine, bipyridine, isoquinoline and chromeno[3,4-c]pyridine containing sulfonamide moiety

    Directory of Open Access Journals (Sweden)

    Yousry A. Ammar

    2014-11-01

    Full Text Available Treatment of cyanoacetanilide derivative 1 with tetracyanoethylene (2 in dioxane/triethylamine furnished 2-pyridone derivative 6. Aminopyridine 9 was obtained by cyclization of compound 1 with ketene dithioacetal 7/EtONa. Cyclocondensation of 1 with malononitrile and/or acetylacetone (1:1 M ratio gave pyridine derivatives 11 and 13. Ternary condensation of compound 1, aliphatic aldehydes and malononitrile (1:1:1 M ratio yielded the 2-pyridones 20a and b. Bipyridines 22a–c were prepared by refluxing of compound 21 with active methylene reagents. Cyclization of chromene derivatives 24 and 28 with malononitrile produced the novel chromeno[3,4-c]pyridine 26 and pyrano[3′,2′:6,7]chromeno[3,4-c]pyridine 29.

  2. Platinum-Iridium Alloy Films Prepared by MOCVD

    Institute of Scientific and Technical Information of China (English)

    WEI Yan; CHEN Li; CAI Hongzhong; ZHENG Xu; YANG Xiya; HU Changyi

    2012-01-01

    Platinum-Iridium alloy films were prepared by MOCVD on Mo substrate using metal-acetylacetonate precursors.Effects of deposition conditions on composition,microstructure and mechanical properties were determined.In these experimental conditions,the purities of films are high and more than 99.0%.The films are homogeneous and monophase solid solution of Pt and Ir.Weight percentage of platinum are much higher than iridium in the alloy.Lattice constant of the alloy changes with the platinum composition.Iridium composition showing an up-down-up trend at the precursor temperature of 190~230℃ and the deposition temperature at 400~550℃.The hardness of Pt-Ir alloys prepared by MOCVD is three times more than the alloys prepared by casting.

  3. Effect of stabilizer on optical and structural properties of MgO thin films prepared by sol–gel method

    Indian Academy of Sciences (India)

    Z Bazhan; F E Ghodsi; J Mazloom

    2013-10-01

    The effects of monoethanolamine (MEA) and acetylacetone (ACAC) addition as stabilizer on the crystallization behaviour, morphology and optical properties of magnesium oxide were investigated using thermogravimetry (TG/DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Visible, photoluminescence (PL) and Fourier transform infrared (FTIR) spectroscopy. Stabilizer addition reduces transparency of the films. MgO films prepared at 500 °C showed weak orientation of (200). However, the films prepared by addition of stabilizer are amorphous. MgO powders were prepared for exhibiting the structural properties. The patterns of MgO powders showed a preferred orientation of (200). The addition of stabilizer causes a reduction in grain size. SEM micrographs show that a homogenous and crack-free film can be prepared at 500 °C and addition of stabilizer causes an increase in packing density.

  4. Blistering during the atomic layer deposition of iridium

    Energy Technology Data Exchange (ETDEWEB)

    Genevée, Pascal, E-mail: pascal-genevee@chimie-paristech.fr, E-mail: a.szeghalmi@uni-jena.de; Ahiavi, Ernest; Janunts, Norik; Pertsch, Thomas; Kley, Ernst-Bernhard; Szeghalmi, Adriana, E-mail: pascal-genevee@chimie-paristech.fr, E-mail: a.szeghalmi@uni-jena.de [Institut für Angewandte Physik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Oliva, Maria [Fraunhofer IOF, Albert-Einstein-Strasse 7, 07743 Jena (Germany)

    2016-01-15

    The authors report on the formation of blisters during the atomic layer deposition of iridium using iridium acetylacetonate and oxygen precursors. Films deposited on fused silica substrates led to sparsely distributed large blisters while in the case of silicon with native oxide additional small blisters with a high density was observed. It is found that the formation of blisters is favored by a higher deposition temperature and a larger layer thickness. Postdeposition annealing did not have a significant effect on the formation of blisters. Finally, changing purge duration during the film growth allowed us to avoid blistering and evidenced that impurities released from the film in gas phase were responsible for the formation of blisters.

  5. Preparation of Pt Nanocatalyst on Carbon Materials via a Reduction Reaction of a Pt Precursor in a Drying Process.

    Science.gov (United States)

    Lee, Jae-Young; Lee, Woo-Kum; Rim, Hyung-Ryul; Joung, Gyu-Bum; Weidner, John W; Lee, Hong-Ki

    2016-06-01

    Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time. PMID:27427723

  6. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  7. Silica sulfuric acid: a reusable solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Sudipta Pathak

    2013-11-01

    Full Text Available A convenient and efficient methodology for the synthesis of densely substituted pyrrole-fused isocoumarins, which employs solid-supported silica sulfuric acid (SSA as catalyst, has been developed. When the mixture of ninhydrin adducts of acetylacetone/ethyl acetoacetate and primary amines was heated on the solid surface of SSA under solvent-free conditions, the pyrrole-fused isocoumarins were formed in good yields. This synthetic method has several advantages such as the employment of solvent-free reaction conditions without the use of any toxic reagents and metal catalysts, the ease of product isolation, the use of a recyclable catalyst, the low cost, the easy availability of the starting materials, and the excellent yields of products.

  8. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles

    Science.gov (United States)

    Phumying, Santi; Labuayai, Sarawuth; Thomas, Chunpen; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan; Maensiri, Santi

    2013-06-01

    Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ˜6-30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.

  9. Theoretical study, and infrared and Raman spectra of copper(II) chelated complex with dibenzoylmethane

    DEFF Research Database (Denmark)

    Nekoei, A.-R.; Vakili, M.; Hakimi-Tabar, M.;

    2014-01-01

    There are some discrepancies in both the vibrational assignments and in the metal-ligand (M-L) bond strengths predicted in the previous studies on the copper (II) chelated complex of dibenzoylmethane, Cu(dbm)2. Also, there is a lack of theoretical structure, Raman spectrum and full vibrational...... assignment for Cu(dbm)2 in the literatures. Density functional theory (DFT) at the B3LYP level and also MP2 calculations using different basis sets, besides Natural Bond Orbital (NBO) and Atoms-in-Molecules (AIM) analyses, have been employed to investigate the effect of methyl substitution with the phenyl...... group on the stabilities of bis(acetylacetonate) copper (II), Cu(acac)2, and Cu(dbm)2 complexes and the electron delocalization in their chelated rings. Measured solid phase infrared and Raman bands for Cu(dbm)2 complex have been interpreted in terms of the calculated vibrational modes and detailed...

  10. Catalytic performance for CO{sub 2} conversion to methanol of gallium-promoted copper-based catalysts. Influence of metallic precursors

    Energy Technology Data Exchange (ETDEWEB)

    Toyir, Jamil; Ramirez de la Piscina, Pilar; Homs, Narcis [Departament de Quimica Inorganica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Fierro, Jose Luis G. [Instituto de Catalisis y Petroleoquimica, C.S.I.C., Cantoblanco, 28049 Madrid (Spain)

    2001-11-28

    This study reports new gallium-promoted copper-based catalysts prepared by co-impregnation of methoxide-acetylacetonate (acac) precursors from methanolic solutions onto silica and zinc oxide supports. Catalyst performance in the CO{sub 2} hydrogenation to methanol was investigated at 2MPa and temperatures between 523 and 543K. A high activity and selectivity for ZnO-supported catalysts was found, which also showed a high stability in terms of both activity and selectivity. The maximum value for the activity was 378gMeOH/kgcath at 543K, with a selectivity of 88% towards methanol production. The high performance of these materials in the CO{sub 2} hydrogenation is related to the presence of Ga{sub 2}O{sub 3} promoter and highly dispersed Cu{sup +} species on the surface, determined by XPS and Auger on used catalysts.

  11. Prospects for Thermal Atomic Layer Etching Using Sequential, Self-Limiting Fluorination and Ligand-Exchange Reactions.

    Science.gov (United States)

    George, Steven M; Lee, Younghee

    2016-05-24

    Thermal atomic layer etching (ALE) of Al2O3 and HfO2 using sequential, self-limiting fluorination and ligand-exchange reactions was recently demonstrated using HF and tin acetylacetonate (Sn(acac)2) as the reactants. This new thermal pathway for ALE represents the reverse of atomic layer deposition (ALD) and should lead to isotropic etching. Atomic layer deposition and ALE can together define the atomic layer growth and removal steps required for advanced semiconductor fabrication. The thermal ALE of many materials should be possible using fluorination and ligand-exchange reactions. The chemical details of ligand-exchange can lead to selective ALE between various materials. Thermal ALE could produce conformal etching in high-aspect-ratio structures. Thermal ALE could also yield ultrasmooth thin films based on deposit/etch-back methods. Enhancement of ALE rates and possible anisotropic ALE could be achieved using radicals or ions together with thermal ALE. PMID:27216115

  12. Synthesis and functionalization of biocompatible Tb:CePO{sub 4} nanophosphors with spindle-like shape

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Liviano, Sonia; Aparicio, Francisco J.; Becerro, Ana I. [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain); Garcia-Sevillano, Jorge; Cantelar, Eugenio [C-04. Universidad Autonoma de Madrid, Dpto. Fisica de Materiales (Spain); Rivera, Sara; Hernandez, Yulan; Fuente, Jesus M. de la [Universidad de Zaragoza, Instituto de Nanociencia de Aragon (Spain); Ocana, Manuel, E-mail: mjurado@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain)

    2013-02-15

    Monoclinic Tb:CePO{sub 4} nanophosphors with a spindle-like morphology and tailored size (in the nanometer and micrometer range) have been prepared through a very simple procedure, which consists of aging, at low temperature (120 Degree-Sign C), ethylene glycol solutions containing only cerium and terbium acetylacetonates and phosphoric acid, not requiring the addition of surfactants or capping agents. The influence of the heating mode (conventional convection oven or microwave oven) and the Tb doping level on the luminescent, structural and morphological features of the precipitated nanoparticles have also been analyzed. This study showed that microwave-assisted heating resulted in an important beneficial effect on the luminescent properties of these nanophosphors. Finally, a procedure for the functionalization of the Tb:CePO{sub 4} nanoparticles with aspartic-dextran is also reported. The functionalized nanospindles presented negligible toxicity for Verocells, which along with theirs excellent luminescent properties, make them suitable for biomedical applications.

  13. Characterization of La0.995Ca0.005NbO4/Ni anode functional layer by electrophoretic deposition in a La0.995Ca0.005NbO4 electrolyte based PCFC

    DEFF Research Database (Denmark)

    Bozza, Francesco; Schafbauer, W.; Meulenberg, W.A.;

    2012-01-01

    and water. Selectivity in the composition of the deposited layer was analyzed as a function of the suspension compositions and deposition conditions. A quasi-symmetrical cell was produced by depositing La0.995Ca0.005NbO4 electrolyte layer on the anode layer by EPD, and by applying a porous La0.995Ca0......The Electrophoretic Deposition (EPD) technique has been applied to the preparation of a porous La0.995Ca0.005NbO4/Ni composite anode layer, deposited on a porous pre-sintered La0.995Ca0.005NbO4/Ni support. Powders of La0.995Ca0.005NbO4 and NiO were suspended in a solution of acetylacetone, iodine...

  14. Luminescent properties of compounds of europium(III) with quinaldic acid and β-diketones

    Science.gov (United States)

    Kalinovskaya, I. V.; Mirochnik, A. G.

    2015-12-01

    We have obtained luminescent complex compounds of europium(III) with quinaldic acid and β- diketones of composition Eu(Quin)2β-dic • H;2O, where Quin is the anion of quinaldic acid, and β-dic is the anion of acetylacetone (acac), benzoylacetone (bzac), or dibenzoylmethane (dbm). The spectral properties of the obtained compounds have been examined. The joint presence of quinaldic acid and β-diketone in the coordination sphere of europium(III) leads to a broadening of the absorption spectral range of the investigated complex compounds. We have found that the "anomalous" Stark structure of luminescence spectra and the luminescence quenching of complexes at 300 K are determined by the occurrence of a high-lying ligand-europium(III) charge-transfer state.

  15. Speciation of titanium in solvent refined coal using SESC - INAA

    International Nuclear Information System (INIS)

    The preasphaltenes (Pa) separated from solvent refined coal (SRC-I) were fractionated by sequential elution solvent chromatography (SESC) on silica column into 10 fractions. Titanium was determined by instrumental neutron activation analysis (INAA), and was found to be concentrated in fractions 7-10. The preasphaltenes form stable complexes with bis (cyclopentadienyl) titanium(IV) dichloride (BTD), cyclopentadienyl titanium(IV) trichloride (CTT) and titanium(IV) oxide bis (acetylacetone) (TOBA). Preasphaltene titanium complexes (Pa-BTD, Pa-CTT, and Pa-TOBA) were fractionated using the SESC scheme, and the concentration of titanium in each fraction was determined. The mechanism for the reaction between titanium complexes (BTD, CTT or TOBA) and Pa was studied, and the existence of titanium phenoxide type complexes in SRC-I was proposed

  16. (Acetylacetonato-κ2O,O′(phthalocyaninato-κ4N(phenanthroline-κ2N,N′erbium(III

    Directory of Open Access Journals (Sweden)

    Hong-Feng Li

    2012-03-01

    Full Text Available The title complex, [Er(C32H16N8(C5H7O2(C12H8N2], possesses a mirror plane and the asymmetric unit is half of the molecule. The ErIII cation, lying on the mirror plane, is eight-coordinated by two O atoms from acetylacetone, two N (Nphen atoms from 1,10-phenanthroline and four isoindole N (Niso atoms from the phthalocyanine ligand in an antiprismatic geometry. The Er—N distances are in the range 2.376 (5–2.529 (4 Å and the Er—O distance is 2.272 (3 Å. Notably, the Er—Niso bonds are shorter than the Er—Nphen bonds, but longer than the Er—O bonds.

  17. Efficient solution route to transparent ZnO semiconductor films using colloidal nanocrystals

    Directory of Open Access Journals (Sweden)

    Satoshi Suehiro

    2016-09-01

    Full Text Available ZnO nanocrystals (NCs were synthesized by heating Zn (II acetylacetonate in oleic acid/oleylamine in the presence of 1,2-hexadecanediol at 220 °C. Transmission electron microscopy (TEM and dynamic light scattering (DLS measurements revealed the formation of monodispersed ZnO NCs of ca. 7 nm. ZnO NC assembled films were fabricated on a glass substrate by deposition with the colloidal ZnO NCs dispersed in toluene. The film composed of the NCs showed good optical transparency in the visible to near-infrared region. A device coupling the ZnO NC film with a p-type Cu2ZnSnS4 (CZTS NC film exhibited an obvious diode-like current–voltage behavior. The results suggest that the transparent ZnO film has a potentiality to be used for an n-type window layer in some optoelectronic applications.

  18. Controlled Synthesis and Characterization of Monodisperse Fe3O4 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    SHI,Rongrong; GAO,Guanhua; YI,Ran; ZHOU,Kechao; QIU,Guanzhou; LIU,Xiaohe

    2009-01-01

    Monodisperse Fe3O4 nanoparticles were successfully synthesized through the thermal decomposition of iron acetylacetonate in octadecene solvent in the presence of oleic acid and oleylamine.The influences of experimental parameters,such as reacting temperature,amounts and kinds of surfactants,solvents,oleic acid and oleylamine,on the size and shape of monodisperse Fe3O4 nanoparticles were discussed.The phase structures,morphology,and size of the as-prepared products were investigated in detail by X-ray diffraction (XRD),transmission electron microscopy (TEM),selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM).Magnetic property was measured using a vibrating sample magnetometer (VSM) at room temperature,which revealed that Fe3O4 nanoparticles were of ferromagnetism with a saturation magnetization (Ms) of 74.0 emu/g and coercivity (Hc) of 72.6 Oe.

  19. Solution processed nickel oxide anodes for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, Bestoon; Griffin, Jonathan; Alsulami, Abdullah S.; Lidzey, David G.; Buckley, Alastair R., E-mail: alastair.buckley@sheffield.ac.uk [Department of Physics and Astronomy, Hicks Building, Hounsfield Road, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2014-02-10

    Nickel oxide thin films have been prepared from a nickel acetylacetonate (Ni(acac)) precursor for use in bulk heterojunction organic photovoltaic devices. The conversion of Ni(acac) to NiO{sub x} has been investigated. Oxygen plasma treatment of the NiO layer after annealing at 400 °C affords solar cell efficiencies of 5.2%. Photoelectron spectroscopy shows that high temperature annealing converts the Ni(acac) to a reduced form of nickel oxide. Additional oxygen plasma treatment further oxidizes the surface layers and deepens the NiO work function from 4.7 eV for the annealed film, to 5.0 eV allowing for efficient hole extraction at the organic interface.

  20. Azo coupling of 4-nitrophenyldiazonium chloride with aliphatic nucleophiles: an integrated organic synthesis and X-ray crystallography experiment; Acoplamento de cloreto de 4-nitrofenildiazonio com nucleofilos alifaticos: experimento integrado de sintese organica e cristalografia de raios X

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Silvio; Marques, Monique F.; Rocha, Valeria, E-mail: silviodc@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Instituto de Quimica; Lariucci, Carlito; Vencato, Ivo [Universidade Federal de Goiania (UFG), GO (Brazil). Instituto de Fisica

    2013-11-01

    This article describes an undergraduate experiment for the synthesis of p-nitrophenyldiazonium chloride and its coupling with acetylacetone and two enaminones, 4-phenylamino-pent-3-en-2-one and 4-amino-pent-3-en-2-one, in an adaptation of a previously reported synthetic protocol. The azo dyes 4-(E)-phenylamino-3-[(E)-2-(4-nitrophenylazo)]-3-penten-2-one and 4-(E)-amino-3-[(E)-2-(4-nitrophenylazo)]-3-penten-2-one were obtained, and the solid state structure of this latter azo compound was characterized by single crystal X-ray diffraction studies. This two-week integrated laboratory approach involves simple synthetic experiments and microwave chemistry in the organic laboratory plus crystallography analysis, suitable for novice students on undergraduate experimental chemistry courses. (author)

  1. Epoxidação do óleo de soja com o sistema catalítico [MoO2(acac2]/TBHP EM [bmim][PF6

    Directory of Open Access Journals (Sweden)

    Maritana Farias

    2012-01-01

    Full Text Available Epoxidation of soybean oil was investigated using 1-n-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6] ionic liquid as biphasic medium with molybdenum(VI acetylacetonate complex and tert-butyl hydroperoxide TBHP as oxidizing agent. Reaction conditions were molar ratio TBHP:number of double bonds of oil:catalyst of 100:100:1, reaction temperature of 60 ºC and reaction time between 2 and 24 h. The proposed system showed catalytic activity for epoxidation reactions under tested conditions. Reuse of ionic liquid/catalyst system for epoxidation reactions was also investigated. Evaluation of epoxidation observed in this catalytic system was done by quantitative ¹H NMR data.

  2. Synthesis and characterization of spherical calcia stabilized zirconia nano-powders obtained by spray pyrolysis

    International Nuclear Information System (INIS)

    Fine, spherical Ca0.15Zr0.85O1.85 nano-powders were prepared by spray pyrolysis, starting from a mixed aqueous and ethylic solution of zirconium acetylacetonate and calcium acetate. The influence of solution concentration, furnace temperature, mass flow of carrier gas and voltage of precipitator on microstructure, average particles size and recovery percentage were evaluated. The powders were synthesized without sintering, and for adequate preparation conditions, were mostly spherical, solid and narrowly size distributed. Average particle size ranges between 40 and 350 nm. Transmission electron micrographs showed that crystalline calcia stabilized zirconia particles were constituted by small crystallites, their size varying between 2 and 40 nm. X-ray diffraction analysis shows that powders obtained at low temperature were amorphous; for higher temperatures (∼800 deg. C), it is found the presence of the tetragonal and cubic phases

  3. Preparation and characterization of electroluminescent devices based on complexes of {beta}-diketonates of Tb{sup 3+}, Eu{sup 3+}, Gd{sup 3+} ions with macrocyclic ligands and UO{sub 2}{sup 2+} films; Preparacao e caracterizacao de dispositivos eletroluminescentes de complexos de {beta}-dicetonados de ions Tb{sup 3+}, Eu{sup 3+}, Gd{sup 3+} com ligantes macrociclicos e filmes de UO{sub 2}{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Gibelli, Edison Bessa

    2010-07-01

    Complexes containing Rare Earth ions are of great interest in the manufacture of electro luminescent devices as organic light emitting devices (OLED). These devices, using rare earth trivalent ions (TR{sup 3+}) as emitting centers, show high luminescence with extremely fine spectral bands due to the structure of their energy levels, long life time and high quantum efficiency. This work reports the preparation of Rare Earth {beta}-diketonate complexes (Tb{sup 3+}, Eu{sup 3+} and Gd{sup 3+}) and (tta - thenoyltrifluoroacetonate and acac - acetylacetonate) containing a ligand macrocyclic crown ether (DB18C6 - dibenzo18coroa6) and polymer films of UO{sub 2}{sup 2+}. The materials were characterized by complexometric titration with EDTA, CH elemental analysis, near infrared absorption spectroscopy, thermal analysis, X-ray diffraction (powder method) and luminescence spectroscopy. For manufacturing the OLED it was used the technique of deposition of thin films by physical vapor (PVD, Physical Vapor Deposition). (author)

  4. Polyesters from 1,4 cyclohexanediol: kinetics aspects in protic and non protic catalysis

    International Nuclear Information System (INIS)

    Continuing with the kinetic studies in polycondensation, it has been choosen the 1,4 cyclohexane diol as a monomer to polyesterify with acid and succinic anhydride, using p.toluen sulphonic acid as protic external catalyst and cooper (II) acetylacetonate as non protic catalyst. The reactions were carried out in bulk and the acid number followed for kinetical approaches. The structure of the polyester was characterized by means of IR, NMR and the thermal properties were studied by TGA and DSC. The molecular weight were measured by GPC and end group analysis. The kinetics is accomplish and the properties of the resulting material is compared to those of the polymer prepared from 1,4 cyclohexane dimethanol, in order to explore its probable liquid crystal behaviour

  5. Synthesis of thiophene-linked pyrimidopyrimidines as pharmaceutical leads

    Indian Academy of Sciences (India)

    M B Siddesh; Basavaraj Padmashali; K S Thriveni; C Sandeep

    2014-05-01

    Thiophene-substituted chalcones were cyclised with guanidine in the presence of potassium hydroxide to get 4-substituted-6-thiophenopyrimidines 2a-e which were then refluxed with acetylacetone to obtain pyrimidopyrimidines 3a-e. Compounds 2a-e were also refluxed with ethylacetoacetate to afford pyirmidopyirimidines 4a-e which on refluxing with POCl3 in presence of DMF produced compounds 5a-e. Nucleophilic substitution reactions on 5a-e were carried out with aniline to obtain 6a-e. The structures of the newly synthesised compounds have been confirmed by elemental analysis and spectral studies. Some selected compounds have been screened for antibacterial and analgesic activities.

  6. CuIn(S,Se){sub 2}thin film solar cells from nanocrystal inks: Effect of nanocrystal precursors

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Grayson M.; Guo Qijie [School of Chemical Engineering and The Energy Center, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907 (United States); Agrawal, Rakesh, E-mail: agrawalr@purdue.edu [School of Chemical Engineering and The Energy Center, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907 (United States); Hillhouse, Hugh W., E-mail: h2@uw.edu [School of Chemical Engineering and The Energy Center, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907 (United States); Department of Chemical Engineering, University of Washington, Seattle WA 98105 (United States)

    2011-10-31

    CuIn(S,Se){sub 2} thin film solar cells are fabricated by selenizing CuInS{sub 2} nanocrystals synthesized using a variety of copper and indium precursors. Specifically, copper and indium acetates, acetylacetonates, iodides, chlorides and nitrates are investigated to determine the effect of precursors on electronic properties and device performance. Nanocrystal synthesis with each of these precursors can be optimized to yield similar nanocrystal composition, size and structure. In addition, dense chalcopyrite CuIn(S,Se){sub 2} thin films with micron sized grains at the surface are formed upon selenization regardless of precursor type. Surprisingly, solar cells fabricated from each nanocrystal ink have roughly the same carrier concentrations of 10{sup 16} to 10{sup 17} cm{sup -3} in the absorber layer and achieve active area efficiencies of approximately 5%.

  7. Solvothermal synthesis and characterization of acicular -Fe2O3 nanoparticles

    Indian Academy of Sciences (India)

    S Basavaraja; D S Balaji; Mahesh D Bedre; D Raghunandan; P M Prithviraj Swamy; A Venkataraman

    2011-12-01

    Nanometer-sized -Fe2O3 particles have been prepared by a simple solvothermal method using ferric acetylacetonate as a precursor. The products were characterized by X-ray diffraction (XRD), energy dispersive X-ray microanalysis (EDAX), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transition electron microscopy (TEM), infrared spectroscopy (IR) and thermal analysis (TG–DTA). XRD indicates that the product is single-phase -Fe2O3 with rhombohedral structure. Bundles of acicular shaped nanoparticles are seen in TEM images with an aspect ratio ∼ 12; typically 8–12 nm wide and over 150 nm long. The -Fe2O3 nanoparticles posses a high thermal stability, as observed on thermal analysis traces.

  8. Acoplamento de cloreto de 4-nitrofenildiazônio com nucleófilos alifáticos: experimento integrado de síntese orgânica e cristalografia de raios X

    Directory of Open Access Journals (Sweden)

    Silvio Cunha

    2013-01-01

    Full Text Available This article describes an undergraduate experiment for the synthesis of p-nitrophenyldiazonium chloride and its coupling with acetylacetone and two enaminones, 4-phenylamino-pent-3-en-2-one and 4-amino-pent-3-en-2-one, in an adaptation of a previously reported synthetic protocol. The azo dyes 4-(E-phenylamino-3-[(E-2-(4-nitrophenylazo]-3-penten-2-one and 4-(E-amino-3-[(E-2-(4-nitrophenylazo]-3-penten-2-one were obtained, and the solid state structure of this latter azo compound was characterized by single crystal X-ray diffraction studies. This two-week integrated laboratory approach involves simple synthetic experiments and microwave chemistry in the organic laboratory plus crystallography analysis, suitable for novice students on undergraduate experimental chemistry courses.

  9. PVP-Stabilized Palladium Nanoparticles in Silica as Effective Catalysts for Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Caroline Pires Ruas

    2013-01-01

    Full Text Available Palladium nanoparticles stabilized by poly (N-vinyl-2-pyrrolidone (PVP can be synthesized by corresponding Pd(acac2 (acac = acetylacetonate as precursor in methanol at 80°C for 2 h followed by reduction with NaBH4 and immobilized onto SiO2 prepared by sol-gel process under acidic conditions (HF or HCl. The PVP/Pd molar ratio is set to 6. The effect of the sol-gel catalyst on the silica morphology and texture and on Pd(0 content was investigated. The catalysts prepared (ca. 2% Pd(0/SiO2/HF and ca. 0,3% Pd(0/SiO2/HCl were characterized by TEM, FAAS, and SEM-EDS. Palladium nanoparticles supported in silica with a size 6.6 ± 1.4 nm were obtained. The catalytic activity was tested in hydrogenation of alkenes.

  10. Thermodynamic study of CVD-ZrO2 phase diagrams

    International Nuclear Information System (INIS)

    Chemical vapor deposition (CVD) of zirconium oxide (ZrO2) from zirconium acetylacetonate Zr(acac)4 has been thermodynamically investigated using the Gibbs' free energy minimization method and the FACTSAGE program. Thermodynamic data Cpo, ΔHo and So for Zr(acac)4 have been estimated using the Meghreblian-Crawford-Parr and Benson methods because they are not available in the literature. The effect of deposition parameters, such as temperature and pressure, on the extension of the region where pure ZrO2 can be deposited was analyzed. The results are presented as calculated CVD stability diagrams. The phase diagrams showed two zones, one of them corresponds to pure monoclinic phase of ZrO2 and the other one corresponds to a mix of monoclinic phase of ZrO2 and graphite carbon.

  11. Epoxidation of soybean oil with [MoO{sub 2}(acac){sub 2}]/TBHP Catalytic system in [bmim][PF{sub 6}]; Epoxidacao do oleo de soja com o sistema catalitico [MoO{sub 2}(acac){sub 2}]/TBHP em [bmim][PF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Maritana [Instituto Federal de Educacao, Ciencia e Tecnologia Sul-rio-grandense, Pelotas, RS (Brazil); Martinelli, Marcia, E-mail: maritana@pelotas.ifsul.edu.br [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst. de Quimica. Dept. de Quimica Inorganica

    2012-07-01

    Epoxidation of soybean oil was investigated using 1-n-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF{sub 6}] ionic liquid as biphasic medium with molybdenum(VI) acetylacetonate complex and tert-butyl hydroperoxide TBHP as oxidizing agent. Reaction conditions were molar ratio TBHP:number of double bonds of oil:catalyst of 100:100:1, reaction temperature of 60 deg C and reaction time between 2 and 24 h. The proposed system showed catalytic activity for epoxidation reactions under tested conditions. Reuse of ionic liquid/catalyst system for epoxidation reactions was also investigated. Evaluation of epoxidation observed in this catalytic system was done by quantitative {sup 1}H NMR data. (author)

  12. Issues Affecting the Synthetic Scalability of Ternary Metal Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lauren Morrow

    2015-01-01

    Full Text Available Ternary Mn-Zn ferrite (MnxZn1-xFe2O4 nanoparticles (NPs have been prepared by the thermal decomposition of an oleate complex, sodium dodecylbenzenesulfonate (SDBS mediated hydrazine decomposition of the chloride salts, and triethylene glycol (TREG mediated thermal decomposition of the metal acetylacetonates. Only the first method was found to facilitate the synthesis of uniform, isolable NPs with the correct Mn : Zn ratio (0.7 : 0.3 as characterized by small angle X-ray scattering (SAXS, transmission electron microscopy (TEM, and inductively coupled plasma-optical emission spectroscopy (ICP-OES. Scaling allowed for retention of the composition and size; however, attempts to prepare Zn-rich ferrites did not result in NP formation. Thermogravimetric analysis (TGA indicated that the incomplete decomposition of the metal-oleate complexes prior to NP nucleation for Zn-rich compositions is the cause.

  13. A selective nanocatalyst for an efficient Ugi reaction: Magnetically recoverable Cu(acac)2/NH2-T/SiO2@Fe3O4 nanoparticles

    Indian Academy of Sciences (India)

    Monireh Ghavami; Maryam Koohi; Mohammad Zaman Kassaee

    2013-11-01

    A novel, magnetically recoverable nanocatalyst is fabricated through simple immobilization of copper(II) acetylacetonate on the surface of amine-terminated silica-coated Fe3O4 nanoparticles: Cu(acac)2/NH2-T/SiO2@Fe3O4NPs. Unambiguous bonding of Cu to the terminal amine is indicated by Xray photoelectron spectroscopy (XPS). Further characterizations are carried out by different techniques. Selectivity of this catalyst is demonstrated through one-pot synthesis of fourteen α-aminoacyl amides using Ugi four-component reaction of cyclohexyl isocyanide, acetic acid, amines and various aldehydes. Interestingly, all aromatic aldehydes react with short reaction times and high yields, but heteroaromatic aldehydes do not yield any product. Catalyst efficiency remains unaltered through three consecutive experiments.

  14. N-[3-(2,6-Dimethylanilino-1-methylbut-2-enylidene]-2,6-dimethylanilinium chlorideThis paper is dedicated to Professor Dr Dr mult. h.c. Herbert W. Roesky.

    Directory of Open Access Journals (Sweden)

    Víctor M. Jiménez-Pérez

    2009-07-01

    Full Text Available The title salt, C21H27N2+·Cl− resulted from the condensation between 2,6-dimethylaniline and acetylacetone in acidified ethanol. The bulky cation is stabilized in a β-iminoenamine tautomeric form, and presents a W-shaped conformation. The benzene rings are arranged almost parallel, with a dihedral angle of 6.58 (4° between the mean planes. Both N—H groups in the cation form strong hydrogen bonds with two symmetry-related chloride anions. The resulting supramolecular structure is a one dimensional polymer running along [001], alternating cations and anions. The π–π interaction observed in the molecule, characterized by a centroid–centroid separation of 4.298 (4 Å, is thus extended to the chains, with separations of 5.222 (4 Å between benzene rings of neighbouring cations in the crystal.

  15. One-Pot Synthesis of Disperse Dyes Under Microwave Irradiation: Dyebath Reuse in Dyeing of Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Huda M. Mahmoud

    2012-04-01

    Full Text Available A series of 4-hydroxyphenylazopyrazolopyrimidine disperse dyes were prepared via one-pot reactions of p-hydroxyphenylhydrazone, hydrazine hydrate, and acetylacetone or enaminones using microwave irradiation as an energy source. Structural assignments of the dyes were confirmed by X-ray crystallographic structure determination. Instead of discharging the dyebath after each dyeing cycle, the residual dyebath was spectrophotometrically analyzed and then pH readjusted for a repeat dyeing with longer time. Fastness of the dyed samples was measured after each recycle. Most of the dyed fabrics tested displayed good light fastness and excellent fastness to washing and perspiration. Finally, the biological activity of the synthesized dyes against Gram positive bacteria, Gram negative bacteria and yeast were evaluated.

  16. Synthesis, properties and colour assessment of some new 5-(3- and 4-substituted phenylazo-4,6-dimethyl-3-cyano-2-pyridones

    Directory of Open Access Journals (Sweden)

    DUSAN MIJIN

    2006-05-01

    Full Text Available A series of 5-(3- and 4-substituted phenylazo-4,6-dimethyl-3-cyano-2-pyridones were synthesized, starting from acetylacetone and arenediazonium salt, followed by condensation with cyanoacetamide using a modified literature procedure. The experimental investigation included modification of the synthetic procedure in terms of solvent, temperature, isolation techniques as well as purification and identification of the products. The azo dyes were characterized by melting point, IR, UV/Vis, 1H NMR and MS data. HPLC analyses were also performed. The 2-hydroxypyridine/ 2-pyridone tautomeric equilibration was found to depend on the polarity of the applied solvents. A colour assessment of the solid dyes and dyed polyester fabrics was also performed and the correlation between the colour and the structure of the dyes is discussed.

  17. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob, E-mail: sy96.lee@samsung.com [Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, Gyeonggi 443-803 (Korea, Republic of)

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  18. Preparation of Fe3O4Spherical Nanoporous Particles Facilitated by Polyethylene Glycol 4000

    Directory of Open Access Journals (Sweden)

    Wang Li-Li

    2009-01-01

    Full Text Available Abstract Much interest has been attracted to the magnetic materials with porous structure because of their unique properties and potential applications. In this report, Fe3O4nanoporous particles assembled from small Fe3O4nanoparticles have been prepared by thermal decomposition of iron acetylacetonate in the presence of polyethylene glycol 4000. The size of the spherical nanoporous particles is 100–200 nm. Surface area measurement shows that these Fe3O4nanoporous particles have a high surface area of 87.5 m2/g. Magnetization measurement and Mössbauer spectrum indicate that these particles are nearly superparamagnetic at room temperature. It is found that the morphology of the products is greatly influenced by polyethylene glycol concentration and the polymerization degree of polyethylene glycol. Polyethylene glycol molecules are believed to facilitate the formation of the spherical assembly.

  19. Preparation and characterization of poly(glycidyl methacrylate)-grafted magnetic nanoparticles: Effects of the precursor concentration on polyol synthesis of Fe3O4 and [PMDETA]0/[CuBr2]0 ratios on SI-AGET ATRP

    Science.gov (United States)

    Jiang, Liping; Zhou, Xuyang; Wei, Guyun; Lu, Xiaoduo; Wei, Weiping; Qiu, Jianhua

    2015-12-01

    Polymer brushes based on poly(glycidyl methacrylate) (PGMA) have been successfully grafted from the surface of silica coated iron oxide (Fe3O4@SiO2) nanoparticles via surface-initiated activators generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The size of the nanoparticles could be adjusted from 7.3 to 9.6 nm by varying the precursor concentration of iron(III) acetylacetonate. The Fe3O4 nanoparticles possessed a highly crystalline structure, and the saturation magnetization of the as-prepared magnetite was strongly related to the particle size. Furthermore, the grafted PGMA content on the magnetic nanoparticles could be controlled by varying the ligand to transition metal ratio in a N,N,N‧,N″,N″-pentamethyldiethylenetriamine (PMDETA)/CuBr2 catalyst system. The maximum grafted content was 23.1% at a ratio of [PMDETA]0/[CuBr2]0 = 2:1.

  20. Atomic layer deposition of cobalt carbide films and their magnetic properties using propanol as a reducing agent

    Science.gov (United States)

    Sarr, Mouhamadou; Bahlawane, Naoufal; Arl, Didier; Dossot, Manuel; McRae, Edward; Lenoble, Damien

    2016-08-01

    The investigation of highly conformal thin films using Atomic Layer Deposition (ALD) is driven by a variety of applications in modern technologies. In particular, the emergence of 3D memory device architectures requires conformal materials with tuneable magnetic properties. Here, nanocomposites of carbon, cobalt and cobalt carbide are deposited by ALD using cobalt acetylacetonate with propanol as a reducing agent. Films were grown by varying the ALD deposition parameters including deposition temperature and propanol exposure time. The morphology, the chemical composition and the crystalline structure of the cobalt carbide film were investigated. Vibrating Sample Magnetometer (VSM) measurements revealed magnetic hysteresis loops with a coercivity reaching 500 Oe and a maximal saturation magnetization of 0.9 T with a grain size less than 15 nm. Magnetic properties are shown to be tuneable by adjusting the deposition parameters that significantly affect the microstructure and the composition of the deposited films.

  1. Preparation of ZnO-Al2O3 Particles in a Premixed Flame

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig;

    2000-01-01

    Zinc oxide (ZnO) and alumina (Al2O3) particles are synthesized by the combustion of their volatilized acetylacetonate precursors in a premixed air-methane flame reactor. The particles are characterized by XRD, transmission electron microscopy, scanning mobility particle sizing and by measurement...... temperature and a decreasing precursor vapour pressure. The combustion of precursor mixtures leads to composite particles consisting of zinc aluminate ZnAl2O4 intermixed with either ZnO or Al2O3 phases. The zinc aluminate particles are dendritic aggregates, resembling the alumina particles, and are evidently...... synthesized to the full extent allowed by the overall precursor composition. The addition of even small amounts of alumina to ZnO increases the specific surface area of the composites significantly, for e.g. zinc aluminate particles to approximately 150 m2/g. The gas-to-particle conversion is initiated...

  2. Filmes de titânio-silício preparados por "spin" e "dip-coating"

    Directory of Open Access Journals (Sweden)

    Nassar Eduardo J.

    2003-01-01

    Full Text Available The conditions for the preparation of luminescent materials, consisting of Eu3+ ions entrapped in a titanium matrix, in the forma of a thin film, using the sol-gel process, are described. The films were obtained from sols prepared with TEOS and TEOT, in the presence of acetylacetone as the hidrolysis-retarding agent, using the dip-coating and spin-coating techniques. The influence of these techniques on the films based on titanium and silicon are presented. The Eu3+ was used as a luminescent probe. The films have been characterized by luminescence, reflection and transmittance. The thickness of the films could be related to the preparation procedure. Transparent thin films have been prepared by dip-coating technique.

  3. Sol-gel chemistry applied to the synthesis of polymetallic oxides including actinides reactivity and structure from solution to solid state; Synthese par voie douce d'oxydes polymetalliques incluant des actinides: reactivite et structure de la solution au solide

    Energy Technology Data Exchange (ETDEWEB)

    Lemonnier, St

    2006-02-15

    Minor actinides transmutation is studied at present in order to reduce the radiotoxicity of nuclear waste and the assessment of its technical feasibility requires specific designed materials. When considering americium, yttria stabilized zirconia (Am{sup III} YII Zriv)Or{sub x} is among the ceramic phases that one which presents the required physico-chemical properties. An innovative synthesis of this mixed oxide by sol-gel process is reported in this manuscript. The main aim of this work is to adjust the reactivity of the different metallic cations in aqueous media using complexing agent, in order to initiate a favourable interaction for a homogeneous elements repartition in the forming solid phase. The originality of the settled synthesis lies on an in-situ formation of a stable and monodisperse nano-particles dispersion in the presence of acetylacetone. The main reaction mechanisms have been identified: the sol stabilisation results from an original interaction between the three compounds (Zrly, trivalent cations and acetylacetone). The sol corresponds to a structured system at the nanometer scale for which zirconium and trivalent cations are homogeneously dispersed, preliminary to the sol-gel transition. Furthermore, preliminary studies were carried out with a view to developing materials. They have demonstrated that numerous innovative and potential applications can be developed by taking advantage of the direct and controlled formation of the sol and by adapting the sol-gel transition. The most illustrating result is the preparation of a sintered pellet with the composition Am0,13Zro,73Yo,0901,89 using this approach. (author)

  4. Complexing properties of {alpha}-iso-saccharinate: thorium

    Energy Technology Data Exchange (ETDEWEB)

    Allard, S.; Ekberg, C. [Nuclear Chemistry - Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2005-07-01

    Full text of publication follows: In the alkaline conditions of the intended Swedish repository for long-lived, low to intermediate level waste, SFL3-5, cellulose based items will degrade with iso-saccharinate being the dominant end-product. Iso-saccharinate is a strong complexing agent for tetravalent actinides, as well as for trivalent lanthanides, and its complexation properties are of interest for the long-term repository assessment. In the presented study, the complexation of {sup 234}Th-{alpha}-iso-saccharinate is examined using liquid-liquid- extraction and radioanalytical techniques. An organic phase consisting of 0.1 M acetylacetone in toluene was used with a 1.0 M NaClO{sub 4} aqueous phase kept at pH 8 in a thermostated AKUFVE unit. Since the {alpha}-iso-saccharinic system consists of three species - the carboxylic {alpha}-iso-saccharinic acid, {alpha}-iso-saccharinate and {alpha}-D-iso-saccharino-1,4-lactone - care must be taken when choosing the operational pH. Keeping the aqueous phase at pH 8 results in negligible concentrations of all but the {alpha}-iso-saccharinate form while at the same time being an excellent pH for the {sup 234}Th-acetylacetone complexation with very limited hydrolysis effect. The {alpha}- iso-saccharinate concentration was incrementally increased, and samples of equal volumes were taken from the two phases and analyzed in a liquid scintillation detector once the radioactive equilibrium between {sup 234}Th and {sup 234}Pa had been reached. Two complexation constants were used to fit a distribution equation to the experimental data. (authors)

  5. Photocatalytic deposition of Ag nanoparticles on TiO2: Metal precursor effect on the structural and photoactivity properties

    Directory of Open Access Journals (Sweden)

    E. Albiter

    2015-09-01

    Full Text Available A series of 1 wt.% Ag–TiO2 photocatalysts were obtained by photodeposition using different organic (acetylacetonate, Ag-A and inorganic (nitrate, Ag-N, and perchlorate, Ag-C silver precursors in order to determinate the influence of the silver precursor on final properties of the photocatalysts. The resulting photocatalytic materials were characterized by different techniques (UV–Vis DRS, TEM/HRTEM and XPS and their photocatalytic activity was evaluated in the degradation of rhodamine B (used as model pollutant in aqueous solution under simulated solar light. The photocatalytic reduction of Ag species to Ag0 on TiO2 was higher with silver nitrate as precursor compared to acetylacetonate or perchlorate. All the Ag-modified TiO2 photocatalysts exhibited a surface plasmon resonance effect in the visible region (400–530 nm indicating different metal particle sizes depending on the Ag precursor used in their synthesis. A higher photocatalytic activity was obtained with all the Ag/TiO2 samples compared with non-modified TiO2. The descending order of photocatalytic activity was as follows: Ag-A/TiO2 ≈ Ag-N/TiO2 > Ag-C/TiO2 > TiO2-P25. The enhanced photoactivity was attributed to the presence of different amounts Ag0 nanoparticles homogeneously distributed on Ag2O and TiO2, trapping the photogenerated electrons and avoiding charge recombination.

  6. Sol-gel chemistry applied to the synthesis of polymetallic oxides including actinides reactivity and structure from solution to solid state

    International Nuclear Information System (INIS)

    Minor actinides transmutation is studied at present in order to reduce the radiotoxicity of nuclear waste and the assessment of its technical feasibility requires specific designed materials. When considering americium, yttria stabilized zirconia (AmIII YII Zriv)Orx is among the ceramic phases that one which presents the required physico-chemical properties. An innovative synthesis of this mixed oxide by sol-gel process is reported in this manuscript. The main aim of this work is to adjust the reactivity of the different metallic cations in aqueous media using complexing agent, in order to initiate a favourable interaction for a homogeneous elements repartition in the forming solid phase. The originality of the settled synthesis lies on an in-situ formation of a stable and monodisperse nano-particles dispersion in the presence of acetylacetone. The main reaction mechanisms have been identified: the sol stabilisation results from an original interaction between the three compounds (Zrly, trivalent cations and acetylacetone). The sol corresponds to a structured system at the nanometer scale for which zirconium and trivalent cations are homogeneously dispersed, preliminary to the sol-gel transition. Furthermore, preliminary studies were carried out with a view to developing materials. They have demonstrated that numerous innovative and potential applications can be developed by taking advantage of the direct and controlled formation of the sol and by adapting the sol-gel transition. The most illustrating result is the preparation of a sintered pellet with the composition Am0,13Zro,73Yo,0901,89 using this approach. (author)

  7. 基于量子点的正方块状二氧化钛纳米晶的形成分析%Synthesis of titania nanosquare via recrystalization of titanium monoxide nanodots

    Institute of Scientific and Technical Information of China (English)

    丁晓坤

    2012-01-01

    二氧化钛是目前为止较理想的半导体光电材料,多用于光催化及太阳能电池.本文利用水热法合成正方块状锐钛矿结构的纳米二氧化钛单晶颗粒,并利用TEM表征其形成过程.这些纳米颗粒平均尺度为50 nm,暴露出较高比例的(001)高能面.通过实验进一步发现该纳米晶的形成源于液相中均匀分布的一氧化钛量子点,其形成是一个聚集-相变-重结晶的过程,最终在氟离子作用下形成正方块状单晶二氧化钛纳米颗粒.%This paper reported a new synthesis route of anatase nanosquare TiO2 single crystal with exposed (001) facet. The nanocrystals were prepared by solid Titanium Oxy Acetylacetoneate dispersed in mixed solvent of acetylacetone and ethanol, followed by a hydrothermal treatment in NH4F solution with PVP added. After heated at 160℃ in different days, it was found that the nanosquares formed from titanium monoxide nanodots in a process of aggregation, phase transform and recrystallization. The final nanosquare TiO2 was formed under the action of fluorin ions with the size of 30 -50 nm and exposed (001) facet.

  8. Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Graphical abstract: A facile method to produce monodispersed magnetite nanoparticles is based on the solvothermal reaction of iron acetylacetonate (Fe(acac)3) decomposition. The sizes ranged from 7 to 12 nm, which could be controlled by adjusting the volume ratio of oleylamine to n-hexane. Display Omitted Highlights: ► The solvethermal reaction of Fe(acac)3 decomposition was carried out at mild temperature in the presence of oleylamine and n-hexane. ► The size of nanocrystals is controlled by adjusting the volume ratio of oleylamine to n-hexane. ► The low-boiling-point solvent n-hexane offered autogenous pressure parameter after gasified in the reaction temperature. ► The as prepared hydrophobic monodisperse Fe3O4 NPs can be used to prepare the magnetic micelles for future biomedical applications. -- Abstract: A new solvothermal method is proposed for the preparation of Fe3O4 nanoparticles (NPs) from iron acetylacetonate in the presence of oleylamine and n-hexane. The products are characterized by X-ray powder diffraction, infrared (IR) spectroscopy, transmission electron microscopy, thermogravimetry/differential thermogravimetry (TG/DTG) analysis, and vibrating sample magnetometery. The new procedure yields superparamagnetic monodispersed Fe3O4 particles with sizes ranging from 7 nm to 12 nm. The nanocrystal sizes are controlled by adjusting the volume ratio of oleylamine to n-hexane. IR and TG/DTG analyses indicate that the oleylamine molecules, as stabilizers, are adsorbed on the surface of Fe3O4 NPs as bilayer adsorption models. The surface adsorption quantities of oleylamine on 7.5 and 10.4 nm-diameter Fe3O4 NPs are 18% and 11%, respectively. The hydrophobic surface of the obtained nanocrystals is passivated by adsorbed organic solvent molecules. These molecules provide stability against agglomeration, enable solubility in nonpolar solvents, and allow the formation of magnetic polymer micelles.

  9. Highly efficient orange and red organic light-emitting diodes with iridium(III) complexes bearing benzothiazole cyclometallate ligands as emitters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Wang, Qi [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054 (China); Dai, Jun [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Lu, Zhi-yun, E-mail: luzhiyun@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Huang, Yan [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Yu, Jun-sheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054 (China); Luo, Shuai [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Su, Shi-jian, E-mail: mssjsu@scut.edu.cn [State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640 (China)

    2012-12-30

    Two iridium complexes bearing benzothiazole cyclometallate ligands, bis[2-(3 Prime ,5 Prime -di-tert-butylbiphenyl-4-yl)benzothiazolato-N,C{sup 2 Prime }]iridium(III) (acetylacetonate) [(tbpbt){sub 2}Ir(acac)] and bis[2-(9,9-dimethyl-9H-fluoren-2-yl)benzothiazolato-N,C{sup 2 Prime }]iridium(III) (acetylacetonate) [(fbt){sub 2}Ir(acac)], have been evaluated as orange and red electrophosphorescent materials. Both X-ray crystallographic analysis and photophysical results indicate that they possess alleviated self-quenching characteristics due to the existence of steric bulky ligands. As a result, phosphorescent organic light-emitting diodes (PhOLEDs) based on them show high performance even in heavily-doped level ({>=} 15 wt.%). The (tbpbt){sub 2}Ir(acac)-based PhOLED gives efficient orange emission with peak current efficiency of 26.9 cd/A (1280 cd/m{sup 2}) at doping ratio of 15 wt.%, while the 15 wt.% (fbt){sub 2}Ir(acac)-doped device emits efficient red light with Commission Internationale de l'Eclairage coordinates of (0.63, 0.36), and peak current and external quantum efficiency of 28.5 cd/A (1210 cd/m{sup 2}) and 15.6%, respectively. Moreover, all these heavily-doped PhOLEDs exhibit low efficiency roll-off at relatively high current density. - Highlights: Black-Right-Pointing-Pointer Two iridium complexes with bulky ligands are developed as orange/red emitter. Black-Right-Pointing-Pointer Organic light-emitting diodes using these phosphors show low efficiency roll-off. Black-Right-Pointing-Pointer High performance devices could be achieved under high doping ratio of {>=} 15 wt.%. Black-Right-Pointing-Pointer The high device efficiencies arise from the reduced self-quenching of the phosphors.

  10. Pure magnetic hard fct FePt nanoparticles: Chemical synthesis, structural and magnetic properties correlations

    Energy Technology Data Exchange (ETDEWEB)

    Suber, L., E-mail: lorenza.suber@ism.cnr.it [ISM-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM (Italy); Marchegiani, G. [ISM-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM (Italy); Olivetti, E.S.; Celegato, F.; Coïsson, M.; Tiberto, P. [INRIM, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy); Allia, P. [DISAT Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Barrera, G. [Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, 10125 Torino (Italy); Pilloni, L. [UTTMAT-CHI, Via Anguillarese 10, 00123 S. Maria di Galeria, Roma (Italy); Barba, L. [IC-CNR, Area Science Park, SS 14 Km 163.5 Basovizza, 34149 Trieste (Italy); Padella, F. [UTTMAT-CHI, Via Anguillarese 10, 00123 S. Maria di Galeria, Roma (Italy); Cossari, P. [IGAG-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM (Italy); Chiolerio, A. [Istituto Italiano di Tecnologia, Center for Space Human Robotics, Corso Trento 21, 10129 Torino (Italy)

    2014-03-01

    FePt nanoparticles, containing a near-equal atomic percentage of Fe and Pt, with a face centered tetragonal structure (fct), are challenging for potential applications in high performance permanent magnets and high density data storage. In this study, we report on the chemical synthesis, carried out both solvothermally and hydrothermally in autoclave reacting iron (III) acetylacetonate and platinum (II) acetylacetonate with tri- or tetra-ethylene glycol, these employed as solvents, reducers and particle surface protecting agents as well. In both methods, a subsequent thermal treatment at high temperatures is necessary to transform the magnetic soft face centered cubic (fcc) phase to the hard fct one. Organic low-weight molecules, generally used to protect the nanoparticle surface and avoid particle aggregation, are decomposed by the thermal treatment resulting in particle aggregation and coalescence phenomena; on the contrary, in this case, a polymer matrix is formed as particle protecting agent and, by thermally treating the hydrothermally prepared nanoparticles up to 750 °C for 1 h, the pure magnetic hard fct phase is obtained while preserving the nanostructure. A detailed study is carried out on FePt nanoparticle structure (fcc and fct phases) and correlated to the magnetic properties of the system. - Highlights: • fct FePt nanoparticles for hard magnetic nanotechnology applications. • Influence of synthesis parameters on the precursor fcc FePt nanoparticle structure. • Easy hydrothermal method for preparing pure fct FePt nanoparticles. • Monitoring the role of temperature and time on the FePt fcc–fct phase transformation. • Correlation between FePt nanoparticle structural and magnetic properties.

  11. Increasing the energy density of the non-aqueous vanadium redox flow battery with new electrolytes; Neue Elektrolyte zur Steigerung der Energiedichte einer nicht-waessrigen Vanadium-Acetylacetonat-Redox-Flow-Batterie

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Tatjana

    2015-07-01

    Redox flow battery (RFB) is a promising energy storage technology which is similar to a polymer electrolyte membrane fuel cell. Currently, this electrochemical energy conversion device is used as a storage system for renewable energies or as uninterruptable power source. All-Vanadium-RFB (VRFB) and Zinc-Bromine-RFB are most well-known types of the aqueous RFB for these applications. But also the non-aqueous RFB is becoming more and more famous, because non-aqueous electrolytes offer wider operating temperature ranges, wider stable potential windows and a potentially higher energy density. However, current research studies show that the solubility of the most used redox active species is not sufficient. Therefore, present study aims to show concepts in order to solve this problem. Vanadium(III)acetylacetonate (V(acac){sub 3}) is used as active species, supported by tetrabutylammonium hexafluorophosphate. In acetonitrile it shows two quasi-reversible redox couples and a cell potential ∝2.2 V. The maximum solubility is ∝0.6 M. In this work other solvents and solvent mixtures were examined with the objective of increasing the solubility of V(acac){sub 3}. In 1,3-dioxolane the solubility was e.g. 0.8 M, dimethyl sulfoxide showed good battery performance with the highest energy efficiency ∝44 %. Acetylacetone is able to regenerate V(acac){sub 3} from the side product that is formed by reaction with water. The new electrolyte solution consisting of acetonitrile, 1,3-dioxolane and dimethyl sulfoxide nearly doubled the solubility of V(acac){sub 3}. In galvanostatic charge-discharge tests, single cell V(acac){sub 3} RFB exhibited energy efficiency between 25-50 % depending an test conditions. Also, the influence of water and oxygen addition an electrolyte was investigated. Finally, experiments with different ambient temperatures show that V(acac){sub 3} RFB is able to operate at temperatures such as 0 C and -25 C.

  12. Increasing the energy density of the non-aqueous vanadium redox flow battery with new electrolytes

    International Nuclear Information System (INIS)

    Redox flow battery (RFB) is a promising energy storage technology which is similar to a polymer electrolyte membrane fuel cell. Currently, this electrochemical energy conversion device is used as a storage system for renewable energies or as uninterruptable power source. All-Vanadium-RFB (VRFB) and Zinc-Bromine-RFB are most well-known types of the aqueous RFB for these applications. But also the non-aqueous RFB is becoming more and more famous, because non-aqueous electrolytes offer wider operating temperature ranges, wider stable potential windows and a potentially higher energy density. However, current research studies show that the solubility of the most used redox active species is not sufficient. Therefore, present study aims to show concepts in order to solve this problem. Vanadium(III)acetylacetonate (V(acac)3) is used as active species, supported by tetrabutylammonium hexafluorophosphate. In acetonitrile it shows two quasi-reversible redox couples and a cell potential ∝2.2 V. The maximum solubility is ∝0.6 M. In this work other solvents and solvent mixtures were examined with the objective of increasing the solubility of V(acac)3. In 1,3-dioxolane the solubility was e.g. 0.8 M, dimethyl sulfoxide showed good battery performance with the highest energy efficiency ∝44 %. Acetylacetone is able to regenerate V(acac)3 from the side product that is formed by reaction with water. The new electrolyte solution consisting of acetonitrile, 1,3-dioxolane and dimethyl sulfoxide nearly doubled the solubility of V(acac)3. In galvanostatic charge-discharge tests, single cell V(acac)3 RFB exhibited energy efficiency between 25-50 % depending an test conditions. Also, the influence of water and oxygen addition an electrolyte was investigated. Finally, experiments with different ambient temperatures show that V(acac)3 RFB is able to operate at temperatures such as 0 C and -25 C.

  13. Chemical modification of titanium isopropoxide for producing stable dispersion of titania nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Mahata, S. [National Institute of Science and Technology, Berhampur, Orissa (India); Mondal, B., E-mail: bnmondal@rediffmail.com [Centre for Advanced Materials Processing, Central Mechanical Engineering Research Institute, Durgapur 713 209 (India); Mahata, S.S. [National Institute of Science and Technology, Berhampur, Orissa (India); Usha, K. [Bengal College of Engineering and Technology, Durgapur (India); Mandal, N.; Mukherjee, K. [Centre for Advanced Materials Processing, Central Mechanical Engineering Research Institute, Durgapur 713 209 (India)

    2015-02-01

    Stable colloidal TiO{sub 2} nano-particles are synthesized through the controlled hydrolysis of chemically modified titanium (Ti) isopropoxide with acetylacetone and acetic acid whereas ammonium salts of poly(acrylic acid) is used as a dispersing agent. Acetylacetone and acetic acid used as chelating ligand to retard the hydrolysis and condensation rates. The process is found promising for producing homogeneous aqueous phase colloidal dispersion of TiO{sub 2} particles. Fourier transformed infrared and nuclear magnetic resonance spectra reveal the formation of monodentate bridging of ligands with Ti-isopropoxide. UV–Vis spectroscopy confirms the effective adsorption of poly(acrylic acid) within the modified Ti precursor. Zeta potential of modified titanium isopropoxide precursor is measured to understand its stability in different pH. The thermal stability of the precursors modified with different chelating ligands and dispersing agent has been studied using thermo-gravimetric in conjunction to differential thermal analysis (TG-DTA). Phase formation behavior and the morphological features of the synthesized particles are studied using X-ray diffraction and electron microscopy techniques. The sizes of the anatase phase particles are found in the range of 12–20 nm. - Highlights: • Nanosized colloidal TiO{sub 2} is prepared by controlled hydrolysis of Ti-isopropoxide. • Effect of chelating and dispersing agent on stability of colloidal TiO{sub 2} is studied. • Phase, morphology and stability of colloidal TiO{sub 2} are investigated. • The sizes of synthesized TiO{sub 2} particles are found in the range of 12–20 nm. • Suitable chelating and dispersing agent can improve particle loading in sol.

  14. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.

    Science.gov (United States)

    Kwon, Soon Gu; Hyeon, Taeghwan

    2008-12-01

    nanoparticles of copper and nickel using metal(II) acetylacetonates. Ni/Pd core/shell nanoparticles were synthesized by simply heating the reaction mixture composed of acetylacetonates of nickel and palladium. Using alternative chalcogen reagents, we synthesized uniform nanocrystals of various metal chalcogenides. Uniform nanocrystals of PbS, ZnS, CdS, and MnS were obtained by heating reaction mixtures composed of metal chlorides and sulfur dissolved in oleylamine. In the future, a detailed understanding of nanocrystal formation kinetics and synthetic chemistry will lead to the synthesis of uniform nanocrystals with controlled size, shape, and composition. In particular, the synthesis of uniform nanocrystals of doped materials, core/shell materials, and multicomponent materials is still a challenge. We expect that these uniformly sized nanocrystals will find important applications in areas including information technology, biomedicine, and energy/environmental technology. PMID:18681462

  15. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions

    Science.gov (United States)

    Lu, Le T.; Dung, Ngo T.; Tung, Le D.; Thanh, Cao T.; Quy, Ong K.; Chuc, Nguyen V.; Maenosono, Shinya; Thanh, Nguyen T. K.

    2015-11-01

    In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications.In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications. Electronic

  16. Pt-doped In{sub 2}O{sub 3} nanoparticles prepared by flame spray pyrolysis for NO{sub 2} sensing

    Energy Technology Data Exchange (ETDEWEB)

    Inyawilert, K. [Chiang Mai University, Department of Physics and Materials Science, Faculty of Science (Thailand); Channei, D. [Naresuan University, Department of Chemistry, Faculty of Science (Thailand); Tamaekong, N. [Maejo University, Program in Materials Science, Faculty of Science (Thailand); Liewhiran, C. [Chiang Mai University, Department of Physics and Materials Science, Faculty of Science (Thailand); Wisitsoraat, A.; Tuantranont, A. [National Electronics and Computer Technology Center (NECTEC), Nanoelectronics and MEMS Laboratory (Thailand); Phanichphant, S., E-mail: sphanichphant@gmail.com [Chiang Mai University, Faculty of Science, Materials Science Research Center (Thailand)

    2016-02-15

    Undoped In{sub 2}O{sub 3} and 0.25–1.00 wt% M (M=Pt, Nb, and Ru)-doped/loaded In{sub 2}O{sub 3} nanoparticles were successfully synthesized in a single-step flame spray pyrolysis technique using indium nitrate, platinum (II) acetylacetonate, niobium ethoxide, and ruthenium (III) acetylacetonate precursors. The undoped In{sub 2}O{sub 3} and M-doped In{sub 2}O{sub 3} nanoparticles were characterized by Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM & TEM). The BET average diameter of spherical nanoparticles was found to be in the range of 10.2–15.2 nm under 5/5 (precursor/oxygen) flame conditions. All XRD peaks were confirmed to correspond to the cubic structure of In{sub 2}O{sub 3}. TEM images showed that there is no Pt nanoparticle loaded on In{sub 2}O{sub 3} surface, suggesting that Pt should form solid solution with the In{sub 2}O{sub 3} lattice. Gas sensing studies showed that 0.5 wt% Pt doping in In{sub 2}O{sub 3} nanoparticles gave a significant enhancement of NO{sub 2} sensing performances in terms of sensor response and selectivity. 0.5 wt% Pt/In{sub 2}O{sub 3} exhibited a high NO{sub 2} response of ∼1904 to 5 ppm NO{sub 2} at 250 °C and good NO{sub 2} selectivity against NO, H{sub 2}S, H{sub 2}, and C{sub 2}H{sub 5}OH. In contrast, Nb and Ru loading resulted in deteriorated NO{sub 2} response. Therefore, Pt is demonstrated to be an effective additive to enhance NO{sub 2} sensing performances of In{sub 2}O{sub 3}-based sensors.

  17. High energy sodium based room temperature flow batteries

    Science.gov (United States)

    Shamie, Jack

    As novel energy sources such as solar, wind and tidal energies are explored it becomes necessary to build energy storage facilities to load level the intermittent nature of these energy sources. Energy storage is achieved by converting electrical energy into another form of energy. Batteries have many properties that are attractive for energy storage including high energy and power. Among many different types of batteries, redox flow batteries (RFBs) offer many advantages. Unlike conventional batteries, RFBs store energy in a liquid medium rather than solid active materials. This method of storage allows for the separation of energy and power unlike conventional batteries. Additionally flow batteries may have long lifetimes because there is no expansion or contraction of electrodes. A major disadvantage of RFB's is its lower energy density when compared to traditional batteries. In this Thesis, a novel hybrid Na-based redox flow battery (HNFB) is explored, which utilizes a room temperature molten sodium based anode, a sodium ion conducting solid electrolyte and liquid catholytes. The sodium electrode leads to high voltages and energy and allows for the possibility of multi-electron transfer per molecule. Vanadium acetylacetonate (acac) and TEMPO have been investigated for their use as catholytes. In the vanadium system, 2 electrons transfers per vanadium atom were found leading to a doubling of capacity. In addition, degradation of the charged state was found to be reversible within the voltage range of the cell. Contamination by water leads to the formation of vanadyl acetylacetonate. Although it is believed that vanadyl complex need to be taken to low voltages to be reduced back to vanadium acac, a new mechanism is shown that begins at higher voltages (2.1V). Vanadyl complexes react with excess ligand and protons to reform the vanadium complex. During this reaction, water is reformed leading to the continuous cycle in which vanadyl is formed and then reduced back

  18. Synthesis, Crystal Structure and Properties of Complex VO(C12H12N2O2)(C13H10NO2)

    Institute of Scientific and Technical Information of China (English)

    MA Dong-sheng; Gao Shan; HUO Li-hua; GAO Jing-sheng

    2004-01-01

    Complex VO(C12H12N2O2)(C13H10NO2)(C12H12N2O2-2=acetylacetone benzoylhydrozanate, C13H10NO_2=N-phenylbenzohydroxamate) was synthesized and characterized by means of elemental analysis, IR and UV spectroscopies, cyclic voltammetry and single crystal X-ray diffraction. The complex crystallized in the monoclinic system with space group P21/n and the crystal cell parameters a=1.3003(1) nm, b=0.88836(6) nm, c=2.0196(2) nm, β=95.065(8)°, V=2.3238(3) nm3, Mr=495.40 and Z=4. The two oxygen and one nitrogen atoms of the tridentate hydrazone ligand coordinate to the vanadium atom, forming an equatorial plane. And the coordinated vanadium atom exhibits a distorted octahedral geometry. The atom in the transposition to the oxo O atom is the carbonyl oxygen atom of the hydroxamate ligand in the complex. The half-wave redox potential of the title complex in the three different solvents positively shifts in the order of CH2Cl2

  19. Secondary brown carbon formation via the dicarbonyl imine pathway: nitrogen heterocycle formation and synergistic effects.

    Science.gov (United States)

    Kampf, C J; Filippi, A; Zuth, C; Hoffmann, T; Opatz, T

    2016-07-21

    Dicarbonyls are known to be important precursors of so-called atmospheric brown carbon, significantly affecting aerosol optical properties and radiative forcing. In this systematic study we report the formation of light-absorbing nitrogen containing compounds from simple 1,2-, 1,3-, 1,4-, and 1,5-dicarbonyl + amine reactions. A combination of spectrophotometric and mass spectrometric techniques was used to characterize reaction products in solutions mimicking atmospheric particulates. Experiments with individual dicarbonyls and dicarbonyl mixtures in ammonium sulfate and glycine solutions demonstrate that nitrogen heterocycles are common structural motifs of brown carbon chromophores formed in such reaction systems. 1,4- and 1,5-dicarbonyl reaction systems, which were used as surrogates for terpene ozonolysis products, showed rapid formation of light-absorbing material and products with absorbance maxima at ∼450 nm. Synergistic effects on absorbance properties were observed in mixed (di-)carbonyl experiments, as indicated by the formation of a strong absorber in ammonium sulfate solutions containing acetaldehyde and acetylacetone. This cross-reaction oligomer shows an absorbance maximum at 385 nm, relevant for the actinic flux region of the atmosphere. This study demonstrates the complexity of secondary brown carbon formation via the imine pathway and highlights that cross-reactions with synergistic effects have to be considered an important pathway for atmospheric BrC formation. PMID:27334793

  20. Synthesis and Characterization of Dinuclear Metal Complexes Stabilized by Tetradentate Schiff Base Ligands

    Directory of Open Access Journals (Sweden)

    Eid A. Abdalrazaq

    2010-01-01

    Full Text Available Problem statement: The synthesis, spectroscopic properties and theoretical calculations of acetylacetonimine and acetylacetanilidimine Schiff-base ligands, L1H and L2H, respectively and their dinuclear complexes of the type [M2LnCl2(H2O2], where n = 1 or 2, M = Co(II, Ni(II, Cu(II, Zn(II and Cd(II are described. Approach: The new tetradentate dianion Schiff base ligand which was used as stabilizers for the complexes were prepared by condensation of hydrazine with acetylacetone or acetylacetanilide. The dinuclear complexes of theses ligands were synthesized by treating an ethanolic solution of the prepared ligand with hydrated metal salts in molar ratio of 1:2 (L:M. Results: The ligand and their dinuclear metal complexes were characterized by CHN elemental analysis, FT-IR, UV-Vis, 1HNMR (for the ligands, conductivity, magnetic susceptibility and theoretical calculation by using MM2 modeling program. Conclusion: The reaction of these ligands in a 1:2 (L:M afford dinuclear M(II metal complexes with tetrahedral arrangement around Co(II, Zn(II and Cd(II and square planar around Ni(II and Cu(II.

  1. Towards Clarifying the Role of O2 during the Phthalocyanine Synthesis.

    Science.gov (United States)

    Wang, Kang; Pan, Houhe; Jiang, Jianzhuang

    2015-12-01

    The role of O2 within the synthesis of phthalocyanines (Pcs) has remained unclear in the past century. Here, we demonstrate that O2 , in cooperation with the solvent n-pentanol, participates in the cyclic tetramerization of phthalonitriles over the half-sandwich complex template [Lu(Pc)(acac)] (acac=acetylacetonate) and terminates the reaction at the stage of uncyclized isoindole oligomeric derivatives rather than the phthalocyanine chromophores, resulting in the isolation of the heteroleptic (phthalocyaninato)(triisoindole-1-one) lutetium double-decker complexes [(Pc)Lu(TIO-I)] (TIO-I=3,4,7,8,11,12-sexi(2,6-diisopropylphenoxy)-15-[4,5-di(2,6-diisopropylphenoxy)-2-cyanobenzimidamido]triisoindole-1-one) and [(Pc)Lu(TIO-II)] (TIO-II=3,4,7,8,11,12-sexi(2,6-dimethylphenoxy)-15-[4,5-di(2,6-dimethylphenoxy)-2-cyanobenzimidamido]triisoindole-1-one) with the help of bulky substituents at the phthalonitrile periphery and an unsubstituted phthalocyanine ligand in the double-decker skeleton. Nevertheless, the cyclic tetramerization of the phthalonitriles was revealed to be sensitive to O2 with the reaction progression also depending on the oxygen concentration/content, leading to the O2 -senstive and -dependent nature for the isolation of phthalocyanine derivatives. PMID:26526528

  2. A novel route to size and shape controlled synthesis of DMSO capped ruthenium dioxide nanoparticles

    International Nuclear Information System (INIS)

    Ruthenium dioxide nanoparticles (RuO2) with an average particle size of 54-95 nm are readily synthesized from RuCl3.xH2O via the formation of ruthenium acetylacetone. The particle size of RuO2 nanoparticle increases with increase in calcination time at 800 deg C. The ruthenium dioxide nanoparticles have also been capped with DMSO to make them soluble in common organic solvents. These synthesized nanocrystallites have been characterized by FTIR, UV-vis, SEM-EDX, 1H NMR, magnetic measurements and XRD techniques. The XRD pattern demonstrates the crystalline nature of these nanoparticles. The downfield shift of vs=o frequency (Δv=74 cm-1 ) in FTIR, as well as SEM-EDX and 1H NMR spectra of the capped RuO2 nanoparticle confirm the capping with DMSO. UV-vis analysis shows that the absorption peak is blue-shifted with decrease of particle size. Magnetic measurements show that these nano oxides have nearly zero magnetic remanence, a linear response of magnetization and finally reach saturation magnetization at low external field in the range 2625-2650 Oe. (author)

  3. Preparation and Characterization of TiO2/CdS Layers as Potential Photoelectrocatalytic Materials

    Directory of Open Access Journals (Sweden)

    Teofil-Danut Silipas

    2011-01-01

    Full Text Available The TiO2/CdS semiconductor composites were prepared on
    indium tin oxide (ITO substrates in di®erent mass proportions via wet-chemical techniques using bi-distilled water, acetyl-acetone, poly-propylene-glycol and Triton X-100 as additives. The composite layers were annealed in normal conditions at the temperature of 450±C, 120 min. with a rate of temperature increasing of 5±C/min. The structural and optical properties of all the TiO2/CdS ayers were characterized by X-ray di®raction, UV-VIS spectroscopy, spectrofluorimetry and FT/IR microscopy. The microstructural properties of the deposited TiO2/CdS layers can be modi¯ed by varying the mass proportions of TiO2:CdS. The good crystallinity level and the high optical adsorption of
    the TiO2/CdS layers make them attractive for photoelectrochemical cell applications.

  4. Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors

    Science.gov (United States)

    Lou, Bih-Show; Veerakumar, Pitchaimani; Chen, Shen-Ming; Veeramani, Vediyappan; Madhu, Rajesh; Liu, Shang-Bin

    2016-01-01

    The synthesis of highly dispersed and stable ruthenium nanoparticles (RuNPs; ca. 2–3 nm) on porous activated carbons derived from Moringa Oleifera fruit shells (MOC) is reported and were exploited for supercapacitor applications. The Ru/MOC composites so fabricated using the biowaste carbon source and ruthenium acetylacetonate as the co-feeding metal precursors were activated at elevated temperatures (600–900 oC) in the presence of ZnCl2 as the pore generating and chemical activating agent. The as-prepared MOC carbonized at 900 oC was found to possess a high specific surface area (2522 m2 g−1) and co-existing micro- and mesoporosities. Upon incorporating RuNPs, the Ru/MOC nanocomposites loaded with modest amount of metallic Ru (1.0–1.5 wt%) exhibit remarkable electrochemical and capacitive properties, achiving a maximum capacitance of 291 F g−1 at a current density of 1 A g−1 in 1.0 M H2SO4 electrolyte. These highly stable and durable Ru/MOC electrodes, which can be facily fabricated by the eco-friendly and cost-effective route, should have great potentials for practical applications in energy storage, biosensing, and catalysis. PMID:26818461

  5. Generation of hydrophilic, bamboo-shaped multiwalled carbon nanotubes by solid-state pyrolysis and its electrochemical studies.

    Science.gov (United States)

    Shanmugam, Sangaraju; Gedanken, Aharon

    2006-02-01

    A simple, efficient, and novel method was developed for the direct preparation of hydrophilic, bamboo-shaped carbon nanotubes by the pyrolysis of ruthenium(III) acetylacetonate in a Swagelock cell is reported. The obtained product exhibits mostly bamboo-shaped, straight, periodic twisted, multiwalled carbon nanotubes possessing diameters of 50-80 nm and lengths of around 10 microm. The pyrolyzed product was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), micro-Raman, and cyclic voltammetric techniques. HRTEM studies showed that the walls of bamboo-shaped carbon nanotubes consisted of oblique grapheme planes with respect to the tube axis. The interlayer spacing between two graphitic layers was found to be 0.342 nm. XPS measurements have suggested that as-prepared carbon nanotubes consist the surface functional groups on the surface of carbon nanotubes. The electrochemical properties of synthesized carbon nanotubes have been evaluated. Thermogravimetric analysis (TGA), IR, and cyclic voltammetric studies showed the presence of oxygen functionalities. Raman studies revealed the presence of disorder in the graphitic carbon and the presence of exposed edge plane defects in the generated carbon nanotubes for influencing the surface behavior and electrochemical properties. The electrochemical behavior of electrodes made of bamboo-shaped carbon nanotubes served for an oxygen reduction reaction. PMID:16471780

  6. Study of immobilized catalysts--1. Magnetic properties and X-ray photoelectron (PHE) spectra of cobalt complexes immobilized on polymeric supports

    Energy Technology Data Exchange (ETDEWEB)

    Ivleva, I.N.; Pomogailo, A.D.; Echmaev, S.B.; Ioffe, M.S.; Golubeva, N.D.; Borodko, Y.G.

    1979-10-01

    Polyethylene (PE) or polypropylene supports modified by organic ligands, including polyacrylic acid, poly-4-vinyl-pyridine (PVP), or polyvinylimidazole, grafted (gr) by the gas-phase radiation polymerization technique were treated by cobalt(II) chloride or acetylacetonate in ethanol at 50/sup 0/C to contain 0.7-2.76% by wt cobalt. X-ray PHE spectra and magnetic moment measurements on all the samples suggested that the immobilization of Co(II) compounds on the modified polymeric surfaces did not change the valent state of Co, which was present as paramagnetic Co(II) complexes with tetrahedral ligand coordination. The catalytic activity of the PE/gr(PVP-CoCl/sub 2/)+Al(C/sub 2/H/sub 5/)/sub 2/Cl Ziegler systems in isoprene polymerization depended on the order of component addition. In the absence of isoprene, Al(C/sub 2/H/sub 5/)/sub 2/Cl reduces Co(II) to the catalytically active diamagnetic Co(I) and the inactive ferromagnetic Co(0) formed at 1:1. Treatment of the PE/gr(PVP-CoCl/sub 2/) system with isoprene before adding Al(C/sub 2/H/sub 5/)/sub 2/Cl produced a much more active catalytic system that contained mainly diamagnetic Co(I). Apparently, isoprene forms an intermediate m-complex with the immobilized PVP-CoCl/sub 2/, which is then reduced to the active Co(I) species.

  7. Structural models of vanadate-dependent haloperoxidases and their reactivity

    Indian Academy of Sciences (India)

    Mannar R Maurya

    2006-11-01

    Vanadium(V) complexes with hydrazone-based ONO and ONN donor ligands that partly model active-site structures of vanadate-dependent haloperoxidases have been reported. On reaction with [VO(acac)2] (Hacac = acetylacetone) under nitrogen, these ligands generally provide oxovanadium(IV) complexes [VO(ONO)X] (X = solvent or nothing) and [VO(acac)(ONN)], respectively. Under aerobic conditions, these oxovanadium(IV) species undergo oxidation to give oxovanadium(V), dioxovanadium (V) or -oxobis{oxovanadium(V)} species depending upon the nature of the ligand. Anionic and neutral dioxovanadium(V) complexes slowly deoxygenate in methanol to give monooxo complexes [VO(OMe)(MeOH)(ONO)]. The anionic complexes [VO2(ONO)]- can also be converted in situ on acidification to oxohydroxo complexes [VO(OH)(HONO)]+ and to peroxo complexes [VO(O2)(ONO)]-, and thus to the species assumed to be intermediates in the haloperoxidases activity of the enzymes. In the presence of catechol (H2cat) and benzohydroxamic acid (H2bha), oxovanadium (IV) complexes, [VO (acac)(ONN)] gave mixed-chelate oxovanadium(V) complexes [VO(cat)(ONN)] and [VO(bha)(ONN)] respectively. These complexes are not very stable in solution and slowly convert to the corresponding dioxo species [VO2(ONN)] as observed by 51V NMR and electronic absorption spectroscopic studies.

  8. Realistic prediction of solid pharmaceutical oxidation products by using a novel forced oxidation system.

    Science.gov (United States)

    Ueyama, Eiji; Tamura, Kousuke; Mizukawa, Kousei; Kano, Kenji

    2014-04-01

    This study investigated a novel solid-state-based forced oxidation system to enable a realistic prediction of pharmaceutical product oxidation, a key consideration in drug development and manufacture. Polysorbate 80 and ferric(III) acetylacetonate were used as an organic hydroperoxide source and a transition metal catalyst, respectively. Homogeneous solutions of target compounds and these reagents were prepared in a mixed organic solvent. The organic solvent was removed rapidly under reduced pressure, and the oxidation of the resulting dried solid was investigated. Analysis of the oxidation products generated in test compounds by this proposed forced oxidation system using HPLC showed a high similarity with those generated during more prolonged naturalistic drug oxidation. The proposed system provided a better predictive performance in prediction of realistic oxidative degradants of the drugs tested than did other established methods. Another advantage of this system was that the generation of undesired products of hydrolysis, solvolysis, and thermolysis was prevented because efficient oxidation was achieved under mild conditions. The results of this study suggest that this system is suitable for a realistic prediction of oxidative degradation of solid pharmaceuticals. PMID:24497072

  9. Aluminium-doped zinc oxide films prepared by an inorganic sol-gel route

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rodrigo F.; Zaniquelli, Maria E.D

    2004-02-02

    Thin films of aluminium-doped zinc oxide have been formed on glass using an inorganic sol-gel route and the dip-coating process. The films were formed by the thermal decomposition of a stable precursor colloidal sol prepared by an ethanolic reflux of Zn(CH{sub 3}COO){sub 2}{center_dot}2H{sub 2}O and Al(NO{sub 3}){sub 3}{center_dot}9H{sub 2}O. Lactic acid was used as hydrolysis catalyst and acetylacetone and diethanolamine were added to improve film homogeneity. Thermal analysis was used to investigate the chemical processes during firing of the sols. Atomic force microscopy data revealed morphological changes in the temperature range 200-500 deg. C. The importance of sample firing after each transfer step was evidenced by the quartz crystal microbalance technique. A red shift of the absorption edge was observed for thicker films and the transmittance of the samples decreased with increasing film thickness.

  10. Characterization of fine grain Ba0.995Y0.005TiO3 ceramics obtained from gel-precursor nanopowder.

    Science.gov (United States)

    Cernea, Marin; Monnereau, Odile; Llewellyn, Philip; Vasile, Eugeniu

    2007-03-01

    Using an acetate-alkoxide sol-gel route in which the precursors are barium acetate, yttrium isopropoxide and titanium diisopropoxide bis-acetylacetonate, we prepared a ferroelectric material with the formula: Ba1-xYxTiO3, x = 0.005. SEM analysis showed a polymeric microstructure of the gel due to the chelated titanium alkoxide precursor used as starting materials. The evolution of the structure and microstructure of the precursor gel heated at temperatures up to 1000 degrees C was studied by various techniques. The powder obtained by heating the gel at 1100 degrees C presented a homogeneous structure consisting of submicronic particles (approximately 200 nm). XRD and SAED analyses revealed that Ba0.995Y0.005TiO3 nanocrystals of about 5-10 nm appeared at 600 degrees C, together with BaCO3. The presence of barium carbonate was identified also by IR spectroscopy and thermal analyses. The ceramics obtained from the as-prepared powder presented good dielectric properties (capacitance = 840 pF/dielectric constant = 3860 and dielectric loss (tandelta) = 0.078 at Curie temperatures of 120-121 degrees C). PMID:17450868

  11. Cu2ZnSnSe4 nanocrystals capped with S2− by ligand exchange: utilizing energy level alignment for efficiently reducing carrier rec ombination

    Science.gov (United States)

    2014-01-01

    In this work, we employed a convenient one-step synthesis method for synthesizing Cu2ZnSnSe4 (CZTSe) nanocrystals (NCs) in an excess selenium environment. This excess selenium situation enhanced the reaction of metal acetylacetonates with selenium, resulting in the burst nucleation of NCs at relatively low temperatures. The phase morphology and surface and optoelectronic properties of NCs before and after ligand exchange were discussed in depth. It was found that pure tetragonal-phase structure CZTSe NCs with approximately 1.7-eV bandgap could be synthesized. The removal of large organic molecules on CZTSe NCs after ligand exchange by S2− decreased the resistivity. The bandgap of the films after ligand exchange by 550°C selenization was also decreased due to better crystallinity. For potential application in CZTSe solar cells, we constructed an energy level diagram to explain the mutual effect between the absorption layer and CdS layer. Using cyclic voltammetry (CV) measurement, we found that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of CZTSe films shifted down after ligand exchange. After energy level alignment at the CdS/CZTSe interface, a type I band alignment structure was more conveniently formed after ligand exchange. This structure acted as the barrier against injection electrons from ZnO to the CZTSe layer, and recombination would subsequently be depressed. PMID:24994951

  12. Cu2ZnSnSe4 nanocrystals capped with S(2-) by ligand exchange: utilizing energy level alignment for efficiently reducing carrier rec ombination.

    Science.gov (United States)

    Wang, Xia; Kou, Dong-Xing; Zhou, Wen-Hui; Zhou, Zheng-Ji; Wu, Si-Xin; Cao, Xuan

    2014-01-01

    In this work, we employed a convenient one-step synthesis method for synthesizing Cu2ZnSnSe4 (CZTSe) nanocrystals (NCs) in an excess selenium environment. This excess selenium situation enhanced the reaction of metal acetylacetonates with selenium, resulting in the burst nucleation of NCs at relatively low temperatures. The phase morphology and surface and optoelectronic properties of NCs before and after ligand exchange were discussed in depth. It was found that pure tetragonal-phase structure CZTSe NCs with approximately 1.7-eV bandgap could be synthesized. The removal of large organic molecules on CZTSe NCs after ligand exchange by S(2-) decreased the resistivity. The bandgap of the films after ligand exchange by 550°C selenization was also decreased due to better crystallinity. For potential application in CZTSe solar cells, we constructed an energy level diagram to explain the mutual effect between the absorption layer and CdS layer. Using cyclic voltammetry (CV) measurement, we found that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of CZTSe films shifted down after ligand exchange. After energy level alignment at the CdS/CZTSe interface, a type I band alignment structure was more conveniently formed after ligand exchange. This structure acted as the barrier against injection electrons from ZnO to the CZTSe layer, and recombination would subsequently be depressed. PMID:24994951

  13. Synthesis and spectral characterization of ternary complexes of oxovanadium(IV) containing some acid hydrazones and 2,2?-bipyridine

    Science.gov (United States)

    Sreeja, P. B.; Kurup, M. R. Prathapachandra

    2005-01-01

    An interesting series of heterocyclic base adducts of oxovanadium(IV) complexes have been synthesized by the reaction of vanadium(IV) oxide acetylacetonate with some hydrazones (H 2L) in the presence of a heterocyclic base 2,2'-bipyridine. The compounds were characterized by analytical and different physico-chemical techniques like IR, electron paramagnetic resonance (EPR) and UV-Vis spectral studies and magnetic studies. The EPR spectra indicate that the free electron is in the d xy orbital. The coordination geometry around oxovanadium(IV) in all complexes is octahedral, with one dibasic tridentate ligand L 2-, and one bidentate heterocyclic base. The IR spectra suggest that coordination takes place through azomethine nitrogen and enolate oxygen from the hydrazide moiety and phenolate oxygen. The pyridyl nitrogens of the hydrazones, H 2L 2 and H 2L 4 are not involved in the coordination. The molar conductivities show that all the complexes are non-electrolytes. All electronic transitions were assigned. All the compounds are paramagnetic. EPR studies of all compounds suggest axial symmetry. The calculated bonding parameters indicate that in-plane σ bonding is more covalent than in-plane π bonding.

  14. Synthesis and spectral characterization of ternary complexes of oxovanadium(IV) containing some acid hydrazones and 2,2'-bipyridine.

    Science.gov (United States)

    Sreeja, P B; Kurup, M R Prathapachandra

    2005-01-01

    An interesting series of heterocyclic base adducts of oxovanadium(IV) complexes have been synthesized by the reaction of vanadium(IV) oxide acetylacetonate with some hydrazones (H(2)L) in the presence of a heterocyclic base 2,2'-bipyridine. The compounds were characterized by analytical and different physico-chemical techniques like IR, electron paramagnetic resonance (EPR) and UV-Vis spectral studies and magnetic studies. The EPR spectra indicate that the free electron is in the d(xy) orbital. The coordination geometry around oxovanadium(IV) in all complexes is octahedral, with one dibasic tridentate ligand L(2-), and one bidentate heterocyclic base. The IR spectra suggest that coordination takes place through azomethine nitrogen and enolate oxygen from the hydrazide moiety and phenolate oxygen. The pyridyl nitrogens of the hydrazones, H(2)L(2) and H(2)L(4) are not involved in the coordination. The molar conductivities show that all the complexes are non-electrolytes. All electronic transitions were assigned. All the compounds are paramagnetic. EPR studies of all compounds suggest axial symmetry. The calculated bonding parameters indicate that in-plane sigma bonding is more covalent than in-plane pi bonding. PMID:15556457

  15. Reactive polymers: part I - Novel polystyrene-anchored copper (II), nickel (II), cobalt (II), iron (III), zinc (II), cadmium (II), molybdenum (VI) and uranium (VI) complexes of the chelating resin containing thiosemicarbazone

    International Nuclear Information System (INIS)

    A new chelating resin containing thiosemicarbazone has been synthesized by the reaction of aldehydopolystyrene and thiosemicarbazide. The polystyrene bound thiosemicarbazone reacts with salicylaldehyde leading to the formation of a new Schiff base chelating resin which reacts with sodium monochloroacetate and gives the polymer bound S-acetatothiosemicarbazone. The new chelating resin forms complexes of the types PS-LCuX·S, PS-LNiX·3S, PS-LHNi(acac)2, PS-LCoX·3S, PS-LFeX2·2S, PS-LZnX·S, PS-LCdX·S, PS-LMoO2(acac) and PS-LUO2X·S (where PS-LH = polymeranchored ligand; S = DMF or CH3OH; X=Cl or CH3COO- and acacH = acetylacetone). The chelating resins and complexes have been characterized by elemental analysis, IR and electronic spectra and magnetic measurements. The Cu(II), Ni(II), Co(II), and Fe(III) complexes are paramagnetic while the Zn(II), Cd(II), Mo(VI) and U(VI) complexes are diamagnetic. The IR data indicate the thioenolization of the ligand in the complexes (except in PS-LHNi(acac)2 where it behaves as a neutral bidentate ligand). (author). 24 refs., 2 tabs

  16. Magnetic properties of self-organized L1{sub 0} FePtAg nanoparticle arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Kang, S.S.; Nikles, D.E.; Harrell, J.W. E-mail: jharrell@bama.ua.edu; Wu, X.W

    2003-10-01

    The magnetic properties of chemically synthesized high anisotropy L1{sub 0} [Fe{sub 49}Pt{sub 51}]{sub 88}Ag{sub 12} nanoparticle arrays have been studied as a function of annealing temperature. Particles were prepared by the simultaneous polyol reduction of platinum acetylacetonate and silver acetate and the thermal decomposition of iron carbonyl, yielding monodispersed particles of diameter {approx}3.5 nm. Addition of Ag lowers the ordering temperature of self-assembled arrays by {approx}150 deg. C. After annealing at T{sub a}=500 deg. C for 30 min in an Ar/H{sub 2} atmosphere, the coercivity was 13,800 Oe. TEM and delta-M measurements indicate weak particle aggregation up to T{sub a}=400 deg. C, with evidence of sintering at higher temperatures. Large ratios of remanent to hysteresis coercivity indicate a large distribution in anisotropy energies. Anomalously large thermal stability constants, KV/k{sub B}T, and switching volumes were measured, even in samples with very little evidence of sintering. Zero field viscosity versus remanence curves show evidence of exchange interactions.

  17. Influence of the utilized precursors on the morphology and properties of YBa{sub 2}Cu{sub 3}O{sub 7−y} superconducting nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Alikhanzadeh-Arani, Sima [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Almasi-Kashi, Mohammad [Department of Physics, University of Kashan, Kashan, 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2013-05-15

    Highlights: ► YBa{sub 2}Cu{sub 3}O{sub 7−x} (Y-123) nanoparticles was synthesized by solid state processing. ► Inorganic precursor was used in the synthesis of YBa{sub 2}Cu{sub 3}O{sub 7−x}. ► The effect of calcinations on morphology and particle size were investigated. -- Abstract: In order to prevent agglomeration of high temperature ceramic material, the solid state processing based on new and appropriate yttrium complex precursors without applying surfactant has been suggested. These have been prepared by a reaction of yttrium acetate with three coordination compositions, acetylacetone, 2-hydroxo-1-naphthaldehyde and salicylaldehyde, for forming yttrium complex types. It was found that the size and morphology of products are clearly dependent on the type of utilized precursor because the organic ligands around yttrium center in these novel precursors act like a protecting agent. Magnetic susceptibility measurements showed that T{sub c} of the superconducting nanoparticles is from 82 K to 88.4 K. The crystalline structures of the nanoparticles remained in orthorhombic symmetry. Characterizations of specimens were performed using scanning electron microscopy and transmission electron microscopy, supported by other techniques including XRD diffraction, energy dispersive X-ray, FT-IR spectrum and magnetic susceptibility measurements.

  18. Spectral, NLO, Fluorescence, and Biological Activity of Knoevenagel Condensate of β-Diketone Ligands and Their Metal(II Complexes

    Directory of Open Access Journals (Sweden)

    S. Sumathi

    2011-01-01

    Full Text Available Transition metal complexes of various acetylacetone-based ligands of the type ML (where M=  Cu(II, Ni(II, Co(II; L=  3-(aryl-pentane-2,4-dione have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, H1NMR, mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are nonelectrolytic in nature. Spectroscopic and other analytical data of the complexes suggest square planar geometry for copper(II, cobalt(II, and nickel(II complexes of 3-(3-phenylallylidenepentane-2,4-dione and octahedral geometry for other metal(II complexes. The redox behaviors of the copper(II complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against bacteria and fungus. The metal(II complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG efficiency of the ligands was found to have considerable effect compared to that of urea and KDP.

  19. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites

    Science.gov (United States)

    Wu, Jili; Shen, Xiaoping; Jiang, Lei; Wang, Kun; Chen, Kangmin

    2010-02-01

    Graphene-based nanocomposites are emerging as a new class of materials that hold promise for many applications. In this paper, we present a general approach for the preparation of sandwich-like graphene/ZnO nanocomposites in ethylene glycol (EG) medium using graphene oxide as a precursor of graphene and zinc acetylacetonate as a single-source precursor of zinc oxide. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and thermogravimetry analysis. It was shown that the as-formed ZnO nanoparticles with a diameter of about 5 nm were densely and uniformly deposited on both surfaces of the graphene sheets to form a sandwich-like composite structure and as a result, the restacking of the as-reduced graphene sheets was effectively prevented. The ZnO-coated graphene nanocomposites can be expected to effectively improve the photocatalysis and sensing properties of ZnO and would be promising for practical applications in future nanotechnology.

  20. Mesoporous activated carbons with metal-oxide particles prepared from Morwell coal; Morwell tan wo genryo to shita kinzoku sankabutsu tanji kasseitan no saiko kozo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, N.; Yamada, Y.; Shiraishi, M. [National Institute for Resources and Environment, Tsukuba (Japan); Kojima, S.; Tamai, H.; Yasuda, H. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1996-10-28

    The metal dependence of mesoporous activated carbons with various metal acetylacetonate (acac) particles prepared from Morwell coal was studied. In experiment, the mixture of Morwell coal and acac metal complexes were dissipated into tetrahydrofuran, and after agitation in Ar atmosphere, the solvent was removed by vacuum distillation. Coal specimens with Fe(acac)3, Ni(acac)2 and Co(acac)2 as acac complexes were activated by exchanging flow gas with water vapor after heat treatment in N2 gas flow at 900{degree}C. The pore sizes of the specimens were obtained from N2 adsorption isotherms by BET method and BJH method. Conditions of pores and metals in the specimens were examined by XRD measurement and TEM observation. The relation between the above conditions and pore characteristics obtained from adsorption experiment was also examined. As a result, the difference in mesopore ratio between the specimens and blank specimens was larger in the order of Fe, Co and Ni, and the effect of added metal complexes was also larger in this order. 3 refs., 3 figs., 3 tabs.

  1. Synthesis of Some Novel Heterocyclic and Schiff Base Derivatives as Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Mohamed E. Azab

    2015-10-01

    Full Text Available Treatment of 2,3-diaryloxirane-2,3-dicarbonitriles 1a–c with different nitrogen nucleophiles, e.g., hydrazine, methyl hydrazine, phenyl hydrazine, hydroxylamine, thiosemicarbazide, and/or 2-amino-5-phenyl-1,3,4-thiadiazole, afforded pyrazole, isoxazole, pyrrolotriazine, imidazolothiadiazole derivatives 2–5, respectively. Reacting pyrazoles 2a–c with aromatic aldehydes and/or methyl glycinate produced Schiff’s bases 7a–d and pyrazolo[3,4-b]-pyrazinone derivative 8, respectively. Treating 7 with ammonium acetate and/or hydrazine hydrate, furnished the imidazolopyrazole and pyrazolotriazine derivatives 9 and 10, respectively. Reaction of 8 with chloroacetic acid and/or diethyl malonate gave tricyclic compound 11 and triketone 12, respectively. On the other hand, compound 1 was reacted with active methylene precursors, e.g., acetylacetone and/or cyclopentanone producing adducts 14a,b which upon fusion with ammonium acetate furnished the 3-pyridone derivatives 15a,b, respectively. Some of newly synthesized compounds were screened for activity against bacterial and fungal strains and most of the newly synthesized compounds showed high antimicrobial activities. The structures of the new compounds were elucidated using IR, 1H-NMR, 13C-NMR and mass spectroscopy.

  2. Zinc oxide films impurified with Ti and prepared by the Sol-gel method; Peliculas de oxido de zinc impurificadas con Ti y preparadas por el metodo Sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S. [ESFM-IPN, 07738 Mexico D.F. (Mexico); Cazares R, J.M.; Maldonado, A. [CINVESTAV-IPN, A.P. 14-740, 07000 Mexico D.F. (Mexico)

    2006-07-01

    Titanium-doped zinc oxide thin films have been prepared on silicon substrate using the Sol-Gel technique. The structural, morphology, electrical and optical properties of such thin films were studied as a function of titanium concentration (0.5, 1 and 1.5 %) and the thin films thickness. Zinc acetate dihydrate and titanium (VI)-oxy acetylacetonate were used as precursor materials, using 2-methoxyethanol and monoethanolamine as via. The X-ray diffraction spectra show polycrystalline films in all the cases. It can see for all the thin films a preferential growth along the (002) planes where the titanium concentration and also the thin films thickness play an important rule. No structural changes are observed at all. The surface morphology studied shows as the grain size decreases when thin thickness is increases. For titanium concentration of 0.5, 1 and 1.5 % values the grains size increase also. The thin films thickness for titanium concentration of 1.5 % was 500 nm (4v), 400 nm (3v), 180 nm (2v) and 130 nm (1v), values obtained from cross-section micrographs. Highly resistive samples are obtained for substrate soda-lime even showing high transmittance. Better physical properties are required for gas sensors or semitransparent electrodes and other possible applications. (Author)

  3. Unconventional Synthesis of γ-Fe2O3: Excellent Low-Concentration Ethanol Sensing Performance

    Science.gov (United States)

    Naskar, Atanu; Narjinary, Mousumi; Kundu, Susmita

    2016-09-01

    This study reports on a simple unconventional procedure for synthesis of γ-Fe2O3 nanopowder and its fabrication as a resistive ethanol sensor. γ-Fe2O3 powder having an average particle size of ˜15 nm was prepared by thermal decomposition of iron(III) acetylacetonate. Platinum incorporation (0.5-1.5 wt.%) was also carried out for enhancing sensing performance. The powders were characterized using an x-ray diffractometer, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area, field area scanning electron microscopy, transmission electron microscopy along with energy dispersion x-ray analyses. Sensor fabricated from pure γ-Fe2O3 exhibited excellent ethanol sensing performance at concentrations down to 1 ppm, having a great demand in medical diagnosis and food-processing industries. The response observed for pure γ-Fe2O3 (˜75% for 1 ppm ethanol) was enhanced ˜10% after 1 wt.% Pt impregnation. Sensors were quite stable and selective towards ethanol vapour detection. A possible mechanism for high sensing performance has been discussed.

  4. Effect of solvent on the extraction of lanthanides with picrolonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.; Saeed, M.M. [Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad (Pakistan). Chemistry Div.; Rehman, H. [Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad (Pakistan). Central Analytical Facility Div.; Anwar, J. [Punjab Univ., Lahore (Pakistan). Inst. of Chemistry

    2010-07-01

    Extraction of Eu(III), Tb(III) and Lu(III), as representatives of lanthanides, has been studied with picrolonic acid [1-p-nitrophenyl-3-methyl-4-nitro-5-pyrazolone (HPA)] as extractant in various solvents such as acetylacetone (ACAC), 1-octanol (ONL), n-hexanol (HNL), 1-butanol (nBNL), 2-butanol (iBNL), cyclohexanone (CHN), n-butyl ether (BE), di(1,2-dichloroethyl)ether (DCEE), diisobutylketone (DIBK), benzene and toluene from aqueous solution of pH 1-2, having ionic strength of 0.01 mol dm{sup -3} (K{sup +}/H{sup +}, Cl{sup -}). The composition of the extracted adduct has been determined as M(PA){sub 3} except in DCEE where it is M(PA){sub 3}.(HPA). Extraction constants (log K{sub ex}) were calculated and on the basis of log K{sub ex}, the role of diluents in the extraction process has been discussed. The solvents with respect to their extractability of the rare earth metal ions can be arranged in the order ACAC > DIBK > BE> DCEE > ONL > HNL > CHN. (orig.)

  5. Synthesis of Three-Dimensional Agaric-like Biomorphic TiO2 by a Facile Method with Coscinodiscus sp.Frustule

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qianqian; CHEN Ran; LI Ling

    2012-01-01

    The paper aims to expand the application of natural marine algae.Marine diatoms,which have intricate frustule structures,can serve as bio-template for preparing three-dimensional materials.A simple and effective approach to synthesize the corrugated agaric-like biomorphic TiO2 templated with frustule of Coscinodiscus sp.is reported.In the sol-gel preparation process,the titania-coating on the frustule is prepared through the deposition and condensation with the aid of acetylacetone (acac) as a controlling agent to make the precursor Ti(BuO)4 hydrolyze slowly.The as-prepared titania-coated frustule and biomorphic TiO2 is characterized by scanning electron microscopy (SEM) attached with energy dispersive X-ray spectrometer (EMAX) and X-ray diffraction (XRD).The microstructure of the corresponding titania nanoparticles appears to be sphere with the diameters distributed around 10-20nm.The templating process is repeated for three cycles.Subsequently,the three-dimensional freestanding corrugated agaric-like biomorphic TiO2 structure is obtained by a selective removal in the NaOH solution.As far as we known,the 3D freestanding corrugated agaric-like biomorphic TiO2 with greatly increased surface area is obtained for the first time.

  6. Complexes of N-hydroxyethyl-N-benzimidazolylmethylethylenediaminediacetic acid with group 12 metals and vanadium-Synthesis, structure and bioactivity of the vanadium complex.

    Science.gov (United States)

    Habala, Ladislav; Bartel, Caroline; Giester, Gerald; Jakupec, Michael A; Keppler, Bernhard K; Rompel, Annette

    2015-06-01

    Four new complexes of group 12 metals [Zn(II), Cd(II) and Hg(II)], along with vanadyl bound to the ligand N-hydroxyethyl-N-benzimidazolylmethylethylenediaminediacetic acid, have been synthesized and characterized. The structure of the complexes with Zn(II), Hg(II) and V(IV) was determined by X-ray structural analysis. In all observed cases, the symmetry of these complexes was found to be distorted octahedral. The inhibition of protein tyrosine phosphatase 1B by the vanadium(IV) complex was demonstrated. The cytotoxicity of the vanadium(IV) complex was tested in vitro against three cancer cell lines, with a comparison of the activity of the free ligand and of vanadyl acetylacetonate and sodium orthovanadate. The IC50 values of the complex were in the range of 9 to 21μM. Remarkably, cytotoxic potency in the multidrug-resistant non-small cell lung cancer cell line A549 was at least as high as in the broadly chemosensitive ovarian teratocarcinoma cell line CH1(PA-1). PMID:25920686

  7. Sol-gel derived titania hybrid thin films with high refractive index

    International Nuclear Information System (INIS)

    Incorporation of metal alkoxides into polymers through sol-gel process is of significant interest for tuning the refractive index of optical materials. In this paper, the organic-inorganic hybrid material with high refractive index (RI) and transparency was studied. Tetrabutoxytitanate (TBOT) and alkoxysilanes including diphenyldimethoxysilane (DPS) and γ-glycidoxypropyl trimethoxysilane (GPTS) were employed as sources of the titania sol and the silica sol, respectively. Two series of titania-based inorganic-organic hybrid materials with and without acetylacetone (AcAc) were prepared using the sol-gel method. Subsequently, crack-free films were fabricated by spin coating. The hybrid films with different Ti content were characterized by various techniques including IR, UV-vis, TG/DSC, SEM and auto-laser ellipsometer. The results indicated that the hybrid films displayed homogeneous morphology and titania was crosslinked with alkoxysilanes. Films without AcAc showed higher optical transparency in the visible region than those containing AcAc. The RI of films without AcAc increased from 1.54 to 1.64 at 633 nm with Ti molar fraction varying from 10 to 70%. Whereas, in the films with AcAc, the refractive indices were higher and unorderly. The study has demonstrated great potential to obtain titania hybrid films with high RI and transparency.

  8. Transient Spectroscopic Characterization of the Genesis of a Ruthenium Complex Catalyst Supported on Zeolite Y

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, Isao; Gates, Bruce C.; (UCD)

    2010-01-12

    A mononuclear ruthenium complex anchored to dealuminated zeolite HY, Ru(acac)(C{sub 2}H{sub 4}){sup 2+} (acac = acetylacetonate, C{sub 5}H{sub 7}O{sup 2}{sup -}), was characterized in flow reactors by transient infrared (IR) spectroscopy and Ru K edge X-ray absorption spectroscopy. The combined results show how the supported complex was converted into a form that catalyzes ethene conversion to butene. The formation of these species resulted from the removal of acac ligands from the ruthenium (as shown by IR and extended X-ray absorption fine structure (EXAFS) spectra) and the simultaneous decrease in the symmetry of the ruthenium complex, with the ruthenium remaining mononuclear and its oxidation state remaining essentially unchanged (as shown by EXAFS and X-ray absorption near-edge structure spectra). The removal of anionic acac ligands from the ruthenium was evidently compensated by the bonding of other anionic ligands, such as hydride from H2 in the feed stream, to form species suggested to be Ru(H)(C{sub 2}H{sub 4}){sub 2}{sup +}, which is coordinatively unsaturated and inferred to react with ethene, leading to the observed formation of butene in a catalytic process.

  9. Sequential spectrofluorimetric determination of free and total glycerol in biodiesel in a multicommuted flow system

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidnei G. [Universidade de Sao Paulo, Instituto de Quimica, Sao Paulo (Brazil); Morales-Rubio, Angel; Guardia, Miguel de la [Universidad de Valencia, Department of Analytical Chemistry, Burjassot, Valencia (Spain); Rocha, Fabio R.P. [Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    2011-07-15

    A new procedure for spectrofluorimetric determination of free and total glycerol in biodiesel samples is presented. It is based on the oxidation of glycerol by periodate, forming formaldehyde, which reacts with acetylacetone, producing the luminescent 3,5-diacetyl-1,4-dihydrolutidine. A flow system with solenoid micro-pumps is proposed for solution handling. Free glycerol was extracted off-line from biodiesel samples with water, and total glycerol was converted to free glycerol by saponification with sodium ethylate under sonication. For free glycerol, a linear response was observed from 5 to 70 mg L{sup -1} with a detection limit of 0.5 mg L{sup -1}, which corresponds to 2 mg kg{sup -1} in biodiesel. The coefficient of variation was 0.9% (20 mg L{sup -1}, n = 10). For total glycerol, samples were diluted on-line, and the linear response range was 25 to 300 mg L{sup -1}. The detection limit was 1.4 mg L{sup -1} (2.8 mg kg{sup -1} in biodiesel) with a coefficient of variation of 1.4% (200 mg L{sup -1}, n = 10). The sampling rate was ca. 35 samples h{sup -1} and the procedure was applied to determination of free and total glycerol in biodiesel samples from soybean, cottonseed, and castor beans. (orig.)

  10. Size and shape effects on magnetic properties of Ni nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Xuemin He; Huigang Shi

    2012-01-01

    Pure Ni nanoparticles ranging in size from 24 to 200nm are prepared via thermal decomposition of nickel acetylacetonate in oleylamine.The as-prepared Ni particles change from spherical to dendritic or starlike with increasing precursor concentration.The particles are stable because the organic coating occurs in situ.Magnetic measurement reveals that all the Ni nanoparticles are ferromagnetic and show ferromagnetic-paramagnetic transitions at their Curie points.The saturation magnetization Ms is sizedependent,with a maximum value of 52.01 and 82.31 emu/g at room temperature and 5 K,respectively.The coercivity decreases at first and then increases with increasing particle size,which is attributed to the competition between size effect and shape anisotropy.The Curie temperature Tc is 593,612,622,626 and 627 K for the 24,50,96,165 and 200 nm Ni nanoparticles,respectively.A theoretical model is proposed to explain the size-dependence of Ni nanoparticle Curie temperature.

  11. Preparation and the optical nonlinearity of surface chemistry improved titania nanoparticles in poly(methyl methacrylate)-titania hybrid thin films

    International Nuclear Information System (INIS)

    With 800-nm, 120-fs laser pulses, optical nonlinearity has been studied in a series of thin films containing poly(methyl methacrylate) (PMMA), filled with surfactant acetylacetone (Acac) capped TiO2 nanoparticles, which were synthesized by a simple in situ sol-gel/polymerization process, assisted by spin coating and multi-step baking. The resulting nanohybrid thin films have highly optical transparency and demonstrate a unique nonlinear optical (NLO) response. The highest nonlinear refractive index (n2) is observed up to 6.55 x 10-2 cm2 GW-1 in the nanohybrid thin film of 60 wt% Ti(OBu)4 in PMMA, with a negligible two-photon absorption (TPA), as confirmed by the Z-scan technique. The titanium precursor loading combined with the nature of the capping molecules are used to influence the ability of nanoparticles to nonlinear optical response. Indeed, the ligands at the nanoparticles' surface can not only control the extent of the interaction between the organic molecules and the embedded nanoparticles but also influence the optical nonlinearities of nanoparticles.

  12. Experimental investigation of some coordination complexes using the sup(151)Eu Moessbauer resonance

    International Nuclear Information System (INIS)

    Several Schiff base complexes containing Eu151 metal ions have been synthesized and their Moessbauer spectra are recorded using the constant acceleration velocity spectrometer. The least-square analysis method for the evaluation of the hyperfine field coupling constants is adopted using the computer dec system-10. From the systematic analysis of the quadrupole coupling constants (q.c.c.) and isomer shifts it has been established that the coordination number of the metal ion of Bis(acetylacetone) benzidine and thiourea complexes is five, that of bis-vanillin benzidine and bis-salicylaldehyde-o-dianisidine is six, and that of bis-vanillin-o-phenylene diamine is seven. It is also found that the q.c.c. being negative in all these complexes decreases monotonically as the coordination number increases. One unusual aspect of this experimental data is that most of the coordination complexes have very low f-factors whereas the Schiff base complexes studied here have a fairly high recoilless fractions. Attempts are in progress to synthesize and study the Fe Schiff base complexes in place of Eu. (auth.)

  13. Single-Site VO x Moieties Generated on Silica by Surface Organometallic Chemistry: A Way To Enhance the Catalytic Activity in the Oxidative Dehydrogenation of Propane

    KAUST Repository

    Barman, Samir

    2016-07-26

    We report here an accurate surface organometallic chemistry (SOMC) approach to propane oxidative dehydrogenation (ODH) using a μ2-oxo-bridged, bimetallic [V2O4(acac)2] (1) (acac = acetylacetonate anion) complex as a precursor. The identity and the nuclearity of the product of grafting and of the subsequent oxidative treatment have been systematically studied by means of FT-IR, Raman, solid-state (SS) NMR, UV-vis DRS, EPR and EXAFS spectroscopies. We show that the grafting of 1 on the silica surface under a rigorous SOMC protocol and the subsequent oxidative thermal treatment lead exclusively to well-defined and isolated monovanadate species. The resulting material has been tested for the oxidative dehydrogenation of propane in a moderate temperature range (400-525 °C) and compared with that of silica-supported vanadium catalysts prepared by the standard impregnation technique. The experimental results show that the catalytic activity in propane ODH is strongly upgraded by the degree of isolation of the VOx species that can be achieved by employing the SOMC protocol. © 2016 American Chemical Society.

  14. Study on the effects of complex ligands in the synthesis of TiO{sub 2} nanorod arrays using the sol-gel template method

    Energy Technology Data Exchange (ETDEWEB)

    Attar, A Sadeghzadeh; Mirdamadi, Sh [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Ghamsari, M Sasani; Hajiesmaeilbaigi, F [Solid State Lasers Research Group, Laser and Optics Research School, Tehran 11365-8486 (Iran, Islamic Republic of); Katagiri, K; Koumoto, K [Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)], E-mail: mirdamadi@iust.ac.ir

    2008-08-07

    This work reports the effects of complex ligands on the synthesis of TiO{sub 2} nanorod arrays prepared by the improved sol-gel template method. In this method, the obtained TiO{sub 2} sols from the sol-gel process were injected by a syringe into the templates and then the samples were immediately immersed into boiling TiO{sub 2}-sol solutions. Densely and directionally aligned anatase nanorods of about 80-130 nm diameter and a length of several micrometres were successfully fabricated using an optimal molar ratio of the TiO{sub 2} sol. The results show that the molar ratio of the TiO{sub 2} sol plays an important role in the morphology and structure of TiO{sub 2} nanorods. The reaction between titanium alkoxide and acetylacetone leads to the formation of complex compounds, which can prevent the precipitation of undesired phases from the highly reactive precursors. These complex ligands can be removed after annealing at various temperatures, which depend on the molar ratio of the TiO{sub 2} sol.

  15. Pt-free carbon-based fuel cell catalyst prepared from spherical polyimide for enhanced oxygen diffusion

    Science.gov (United States)

    Nabae, Yuta; Nagata, Shinsuke; Hayakawa, Teruaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Isoda, Ayano; Matsunaga, Atsushi; Tanaka, Kazuhisa; Aoki, Tsutomu

    2016-03-01

    The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive. The particles were subsequently carbonized by multistep pyrolysis to obtain the NPM catalyst while retaining the small particle size. The catalyst has good performance and promising durability for fuel cell applications. The fuel cell performance under a 0.2 MPa air atmosphere at 80 °C of 1.0 A cm‑2 at 0.46 V is especially remarkable and better than that previously reported.

  16. Chromium and Ruthenium-Doped Zinc Oxide Thin Films for Propane Sensing Applications

    Directory of Open Access Journals (Sweden)

    Maximino Avendaño-Alejo

    2013-03-01

    Full Text Available Chromium and ruthenium-doped zinc oxide (ZnO:Cr and (ZnO:Ru thin solid films were deposited on soda-lime glass substrates by the sol-gel dip-coating method. A 0.6 M solution of zinc acetate dihydrate dissolved in 2-methoxyethanol and monoethanolamine was used as basic solution. Chromium (III acetylacetonate and Ruthenium (III trichloride were used as doping sources. The Ru incorporation and its distribution profile into the films were proved by the SIMS technique. The morphology and structure of the films were studied by SEM microscopy and X-ray diffraction measurements, respectively. The SEM images show porous surfaces covered by small grains with different grain size, depending on the doping element, and the immersions number into the doping solutions. The sensing properties of ZnO:Cr and ZnO:Ru films in a propane (C3H8 atmosphere, as a function of the immersions number in the doping solution, have been studied in the present work. The highest sensitivity values were obtained for films doped from five immersions, 5.8 and 900, for ZnO:Cr and ZnO:Ru films, respectively. In order to evidence the catalytic effect of the chromium (Cr and ruthenium (Ru, the sensing characteristics of undoped ZnO films are reported as well.

  17. Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites

    Energy Technology Data Exchange (ETDEWEB)

    Umalas, Madis [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014, Tartu (Estonia); Hussainova, Irina, E-mail: irina.hussainova@ttu.ee [Department of Materials Engineering, Tallinn University of Technology, Ehitajate 5, 19086, Tallinn (Estonia); ITMO University, Kronverksky 49, St. Petersburg, 197101 (Russian Federation); Reedo, Valter [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Young, Der-Liang [Department of Materials Engineering, Tallinn University of Technology, Ehitajate 5, 19086, Tallinn (Estonia); Cura, Erkin; Hannula, Simo-Pekka [Department of Materials Science and Engineering, Aalto University, School of Chemical Technology, POB 16200, Aalto, 00076 (Finland); Lõhmus, Rünno [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014, Tartu (Estonia); Lõhmus, Ants [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia)

    2015-03-01

    The TiC–ZrC binary compound of nanostructured powders was synthesised by combination of sol–gel and carbothermal reduction. The polymeric precursor of the blend was produced by sol–gel process from titanium tetrabutoxide, zirconium tetrabutoxide and benzene-1.4-diol; then carbothermally reduced to the TiC–ZrC blend at 1600 °C in an inert environment. The chemical reactions occurring in the system were monitored by infrared spectrometry. Stable alkoxide solution was obtained by adding acetylacetone to avoid premature gelation of the metal alkoxide mixture. A solid solution of ZrTiC{sub 2} was produced by spark plasma sintering at temperature of 2000 °C. - Highlights: • A polymeric precursor of TiC–ZrC blend was synthesised by sol–gel process. • The polymeric precursor synthesis was studied by infrared spectroscopy. • TiC–ZrC powder blend was carbothermally reduced from polymeric precursor. • TiC–ZrC powder blend was sintered to ZrTiC{sub 2} solid solution by spark plasma sintering. • Sintered ZrTiC{sub 2} have good mechanical properties.

  18. Enhanced efficiency in mixed host red electrophosphorescence devices

    Energy Technology Data Exchange (ETDEWEB)

    Su Zisheng; Li Wenlian, E-mail: wllioel@yahoo.com.cn; Chu Bei, E-mail: beichu@163.com

    2011-06-01

    Enhanced efficiency of red phosphorescent organic light-emitting devices is observed by using a bis[2-(2'-benzothienyl)pyridinato-N,C{sup 3'}] iridium(acetylacetonato) doped 4,4'-N,N'-dicarbazole-biphenyl (CBP) and 1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBI) mixed host emitting layer. The CBP:TPBI mixed host device shows a maximum external quantum efficiency of 9.1%, which is dramatically improved compared to that of the CBP (6.6%) and TPBI (5.4%) single host devices. Such a mixed host strategy can also be exploited in red phosphor dibenzo[f,h]quinoxaline iridium (acetylacetonate) doped devices. Investigations reveal that the position of charge carrier recombination zone of the mixed host devices predominantly locates in the electron blocking layer/emitting layer interface. The efficiency enhancement is attributed to the optimized hole and electron injection balance and hence increased charge carrier recombination rate in the emitting layer.

  19. Magnetic and rheological properties of monodisperse Fe{sub 3}O{sub 4} nanoparticle/organic hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Koichiro; Sakamoto, Wataru [Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yogo, Toshinobu [Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)], E-mail: yogo@esi.nagoya-u.ac.jp

    2009-03-15

    Fe{sub 3}O{sub 4} nanoparticle/organic hybrids were synthesized via hydrolysis using iron (III) acetylacetonate at {approx}80 deg. C. The synthesis of Fe{sub 3}O{sub 4} was confirmed by X-ray diffraction, selected-area diffraction, and X-ray photoelectron spectroscopy. Fe{sub 3}O{sub 4} nanoparticles in the organic matrix had diameters ranging from 7 to 13 nm depending on the conditions of hydrolysis. The saturation magnetization of the hybrid increased with an increase in the particle size. When the hybrid contained Fe{sub 3}O{sub 4} particles with a size of less than 10 nm, it exhibited superparamagnetic behavior. The blocking temperature of the hybrid containing Fe{sub 3}O{sub 4} particles with a size of 7.3 nm was 200 K, and it increased to 310 K as the particle size increased to 9.1 nm. A hybrid containing Fe{sub 3}O{sub 4} particles of size greater than 10 nm was ferrimagnetic, and underwent Verwey transition at 130 K. Under a magnetic field, a suspension of the hybrid in silicone oil revealed the magnetorheological effect. The yield stress of the fluid was dependent on the saturation magnetization of Fe{sub 3}O{sub 4} nanoparticles in the hybrid, the strength of the magnetic field, and the amount of the hybrid.

  20. Synthesis of transparent BaTiO{sub 3} nanoparticle/polymer composite film using DC field

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Yusuke; Okumura, Yasuko; Oi, Chifumi; Sakamoto, Wataru; Yogo, Toshinobu, E-mail: yogo@esi.nagoya-u.ac.j [Nagoya University, Division of Nanomaterials Scinece, EcoTopia Science Institute (Japan)

    2008-10-15

    Transparent BaTiO{sub 3} nanoparticle/polymer composite films were synthesized from titanium-organic film and barium ion in aqueous solution under direct current (DC) field. Titanium-organic precursor was synthesized from titanium isopropoxide, acetylacetone and methacrylate derivative. The UV treatment was effective to increase the anti-solubility of the titanium-organic film during DC processing. BaTiO{sub 3} nanoparticles were crystallized in the precursor films on stainless substrates without high temperature process, as low as 40{sup o}C. The crystallite size of BaTiO{sub 3} increased with increasing reaction temperature from 40 to 50 {sup o}C at 3.0 V/cm. BaTiO{sub 3} nanoparticles also grew in size with increasing reaction time from 15 min to 45 min at 3.0 V/cm and 50 {sup o}C. Transparent BaTiO{sub 3} nanoparticle/polymer films were synthesized on stainless substrates at 3.0 V/cm and 50{sup o}C for 45 min.

  1. Fabrication of copper nanorods by low-temperature metal organic chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; Frank Leung-Yuk Lam; HU Xijun; YAN Zifeng

    2006-01-01

    Copper nanorods have been synthesized in mesoporous SBA-15 by a low-temperature metal organic chemical vapor deposition (MOCVD)employing copper (Ⅱ) acetylacetonate, Cu(acac)2,and hydrogen as a precursor and reactant gas, respectively. The hydrogen plays an important role in chemical reduction of oganometallic precursor which enhances mass transfer in the interior of the SBA-15 porous substrate. Such copper nanostructures are of great potentials in the semiconductor due to their unusual optical, magnetic and electronic properties.In addition, it has been found that chemically modifying the substrate surface by carbon deposition is crucial to such synthesis of copper nanostructures in the interior of the SBA-15, which is able to change the surface properties of SBA-15 from hydrophilic to hydrophobic to promote the adsorption of organic cupric precursor. It has also been found that the copper nanoparticles deposited on the external surface are almost eliminated and the copper nanorods are more distinct while the product was treated with ammonia. This approach could be achieved under a mild condition: a low temperature (400℃) and vacuum (2 kPa) which is extremely milder than the conventional method. It actually sounds as a foundation which is the first time to synthesize a copper nanorod at a mild condition of a low reaction temperature and pressure.

  2. Role of the coordination center in photocurrent behavior of a tetrathiafulvalene and metal complex dyad.

    Science.gov (United States)

    Sun, Yong-Gang; Ji, Shu-Fang; Huo, Peng; Yin, Jing-Xue; Huang, Yu-De; Zhu, Qin-Yu; Dai, Jie

    2014-03-17

    Small organic molecule-based compounds are considered to be promising materials in photoelectronics and high-performance optoelectronic devices. However, photoelectron conversion research based on functional organic molecule and metal complex dyads is very scarce. We design and prepare a series of compounds containing a tetrathiafulvalene (TTF) moiety substituted with pyridylmethylamide groups of formulas [Ni(acac)2L]·2CH3OH (1), [Cu2I2L2]·THF·2CH3CN (2), and [MnCl2L2]n·2nCH3CH2OH (3) (L = 4,5-bis(3-pyridylmethylamide)-4',5'-bimethylthio-tetrathiafulvalene, acac = acetylacetone) to study the role of the coordination center in photocurrent behavior. Complex 1 is a mononuclear species, and complex 2 is a dimeric species. Complex 3 is a two-dimensional (2-D) coordination polymer. Spectroscopic and electrochemical properties of these complexes indicate that they are electrochemically active materials. The tetrathiafulvalene ligand L is a photoelectron donor in the presence of electron acceptor methylviologen. The effect of metal coordination centers on photocurrent response behavior is examined. The redox-active metal coordination centers should play an important role in improvement of the photocurrent response property. The different morphologies of the electrode films reflect the dimensions in molecular structures of the coordination compounds.

  3. Catalysis effect on curing catalysis of HTPB-IPDI binder system%催化剂对HTPB-IPDI黏合剂体系的固化催化作用研究

    Institute of Scientific and Technical Information of China (English)

    常双君; 杨雪芹; 赵芦奎

    2011-01-01

    In order to reduce the curing temperature of HTPB-IPDI binder system and shorten curing time,the catalysis effects of three kinds of catalysts,ferric-acetylacetonate (Fe( AA)3) ,dibutyltin dilaurate (T-12) and triphenyl bismuth. ( TPB ) on the curing catalysis of HTPB-IPDI binder system are investigated. The experimental results show that the pot life of HTPB-IPDI binder system may reach 6 h as the TPB quality percent is 0. 05%. TPB is an ideal curing catalyst of HTPB-IPDI binder system.%为了降低黏合剂端羟基聚丁二烯( HTPB)和固化剂异佛尔酮二异氰酸酯(IPDI)的固化反应温度,提高生产效率,缩短固化时间,研究了二月桂酸二丁基锡(T-12)、乙酰丙酮铁(Fe(AA)3)和三苯基铋(TPB)3类催化剂对HTPB -IPDI黏合剂体系固化催化作用的影响.实验结果表明,加入TPB质量分数为0.05%时,其适用期可以达到6h,TPB是HTPB -IPDI黏合剂体系比较理想的固化催化剂.

  4. Organ weight changes in mice after long-term inhalation exposure to manganese oxides nanoparticles

    Science.gov (United States)

    Zeman, T.; Buchtová, M.; Dočekal, B.; Míšek, I.; Navrátil, J.; Mikuška, P.; Šerý, O.; Večeřa, Z.

    2015-05-01

    Recently, it has been proven that manganese from inhaled particles of manganese compounds can accumulate in the internal organs of laboratory animals. Nevertheless, there were only a few researches dealing with changes in body morphology induced by inhalation of these particles, even though results of some studies indicate existence of such changes. The aim of our research was to assess the effect of inhaled manganese oxides nanoparticles on weight of internal organs. For this purpose a long-term inhalation experiment on laboratory mice was performed, during which the mice were exposed to MnO.Mn2O3 nanoparticles in concentration 2 × 106 particles/cm3 for 17 weeks, 24 hours a day, 7 days a week. Manganese oxides nanoparticles were synthesized continuously via aerosol route in a hot wall tube flow reactor using thermal decomposition of metal organic precursor manganese(II)acetylacetonate in the flow tube reactor at temperature 750 °C in the presence of 30 vol% of oxygen. It was proven that inhaled nanoparticles can influence the weight of internal organs of mice. Moreover, it was discovered that the resulting change in weight of selected organs is disproportional. The mice from the experimental group had statistically significantly lighter kidneys, liver and spleen and heavier pancreas compared to the mice from the control group.

  5. Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A.; Dunnill, Charles W.; Goodall, Josie; Darr, Jawwad A.; Binions, Russell, E-mail: uccarbi@ucl.ac.uk

    2011-07-01

    Hybrid atmospheric pressure chemical vapour and aerosol assisted deposition via the reaction of vanadium acetylacetonate and a suspension of preformed titanium dioxide or cerium dioxide nanoparticles, led to the production of vanadium dioxide nanocomposite thin films on glass substrates. The preformed nanoparticle oxides used for the aerosol were synthesised using a continuous hydrothermal flow synthesis route involving the rapid reaction of a metal salt solution with a flow of supercritical water in a flow reactor. Multifunctional nanocomposite thin films from the hybrid deposition process were characterised using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The functional properties of the films were evaluated using variable temperature optical measurements to assess thermochromic behaviour and methylene blue photodecolourisation experiments to assess photocatalytic activity. The tests show that the films are multifunctional in that they are thermochromic (having a large change in infra-red reflectivity upon exceeding the thermochromic transition temperature) and have significant photocatalytic activity under irradiation with 254 nm light.

  6. Simultaneous observation of low temperature 4f-4f and 3d-3d emission spectra in a series of Cr(III)(ox)Ln(III) assembly

    CERN Document Server

    Subhan, M A; Suzuki, T; Choi, J H; Kaizaki, S

    2003-01-01

    We report here the low temperature emission spectra in the heterometal dinuclear 3d-4f assembled molecular system [(acac) sub 2 Cr sup I sup I sup I (mu-ox)Ln sup I sup I sup I (HBpz sub 3) sub 2] (Cr(ox)Ln:acac sup - =acetylacetonate, ox sup 2 sup - =oxalate, HBpz sub 3 sup - =hydrotris(pyrazol-1-yl)borate; Ln=La, Nd, Ho, Er , Tm and Yb) in comparison with those of Na[Cr(acac) sub 2 (ox)] and [(HBpz sub 3) sub 2 Ln(mu-ox)Ln(HBpz sub 3) sub 2](Ln=Nd and Er). From 10 to 150 K the Cr(ox)Ln complexes show a broad emission band around 800 nm from the sup 2 E state of Cr(III) moiety. At room temperature no sup 2 E- sup 4 A sub 2 emission was observed in the Cr(ox)Ln except for the La and Lu complexes. On warming from 10 to 300 K rapid quenching of the sup 2 E- sup 4 A sub 2 emission of Cr(III) is suggested to result from the energy transfer from Cr to Ln in the Cr(ox)Ln. The excitation spectra and the life-time were also measured with monitoring the 4f-4f emission peaks of the Cr(ox)Yb complex.

  7. Synthesis of Al2O3 thin films using laser assisted spray pyrolysis (LASP)

    Science.gov (United States)

    Dhonge, Baban P.; Mathews, Tom; Tripura Sundari, S.; Krishnan, R.; Balamurugan, A. K.; Kamruddin, M.; Subbarao, R. V.; Dash, S.; Tyagi, A. K.

    2013-01-01

    The present study reports the development of a laser assisted ultrasonic spray pyrolysis technique and synthesis of dense optical alumina films using the same. In this technique ultrasonically generated aerosols of aluminum acetylacetonate dissolved in ethanol and a laser beam (Nd:YAG, CW, 1064 nm) were fed coaxially and concurrently through a quartz tube on to a hot substrate mounted on an X-Y raster stage. At the laser focused spot the precursor underwent solvent evaporation and solute sublimation followed by precursor vapor decomposition giving rise to oxide coating, the substrate is rastered to get large surface area coating. The surface morphology revealed coalescence of particles with increase in laser power. The observed particle sizes were 17 nm for films synthesized without laser and 18, 21 and 25 nm for films made with laser at 25, 38 and 50 W, respectively. Refractive index of the films synthesized increased from 1.56 to 1.62 as the laser power increased from 0 to 50 W. The stoichiometry of films was studied using XPS and the increase in interfacial layer thickness with laser power was observed from dynamic SIMS depth profiling and ellipsometry.

  8. Facile synthesis of palladium nanoparticles supported on multi-walled carbon nanotube for efficient hydrogenation of biomass-derived levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Kai, E-mail: kyan@lakeheadu.ca; Lafleur, Todd [Lakehead University, Department of Chemistry (Canada); Liao, Jiayou [Tianjin University, School of Chemical Engineering and Technology (China)

    2013-09-15

    Different loading of palladium (Pd) nanoparticles were successfully fabricated on multi-walled carbon nanotubes using Pd acetylacetonate as the precursor via a simple liquid impregnation method. The crystal phase, morphology, textural structure and the chemical state of the resulting Pd nanoparticles (Pd/CNT) catalysts were studied and the characterization results indicated that the uniform dispersion of small Pd nanoparticles with the size range of 1.0-4.5 nm was achieved. The synthesized Pd/CNT catalysts exhibited efficient performance for the catalytic hydrogenation of biomass-derived levulinic acid into biofuel {gamma}-valerolactone. In comparison with the commercial 5 wt% Pd/C and the 5 wt% Pd/CNT catalyst prepared by Pd nitrate precursor, much higher activities were achieved, whereas the biofuel {gamma}-valerolactone was highly produced with 56.3 % yield at 57.6 % conversion of levulinic acid on the 5 wt% Pd/CNT catalyst under mild conditions. The catalyst developed in this work may be a good candidate for the wide applications in the hydrogenation.

  9. Effects of the addition of H{sub 2}O and NH{sub 4}OH in the optical and structural properties of the thin films of Y{sub 2}O{sub 3} deposited by pyrolytic spray; Efectos de la adicion de H{sub 2}O y NH{sub 4}OH en las propiedades opticas y estructurales de las peliculas delgadas de Y{sub 2}O{sub 3} depositadas por rocio pirolitico

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon F, G.; Carvajal V, R.; Aguilar F, M. [CICATA-IPN, Legaria 694, Col. Irrigacion, 11500 Mexico D.F. (Mexico); Falcony, C. [CINVESTAV, A.P. 14-740, 07000 Mexico D.F. (Mexico)] [and others

    2005-07-01

    In this work we studied the optical and structural properties of yttrium oxide thin films deposited by spray pyrolysis. Yttrium acetylacetonate was used as raw material and N, N-DMF was used as solvent. The films were deposited on Si (100) and Si (111) substrates at temperatures of 400, 450, 500 and 550 C. The optical and structural characteristics of the films were dramatically improved when a mist of H{sub 2}O and/or NH{sub 4}0H was simultaneously added during deposition of the films. A refraction index up to 1.88, and deposition rates lower than 10 A/sec were obtained in the films. Infrared spectroscopy measurements indicate that the films resulted free from -OH bonds. X-ray diffraction patterns reveal that the films were polycrystalline. In addition, the relative chemical composition of the films was determined by Energy Dispersive Spectroscopy and the surface morphology was analyzed in the Atomic Force Microscope. (Author)

  10. Structural and Luminescence Properties of Lu2O3:Eu3+ F127 Tri-Block Copolymer Modified Thin Films Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    María Luz Carrera Jota

    2013-02-01

    Full Text Available Lu2O3:Eu3+ transparent, high density, and optical quality thin films were prepared using the sol-gel dip-coating technique, starting with lutetium and europium nitrates as precursors and followed by hydrolysis in an ethanol-ethylene glycol solution. Acetic acid and acetylacetonate were incorporated in order to adjust pH and as a sol stabilizer. In order to increment the thickness of the films and orient the structure, F127 Pluronic acid was incorporated during the sol formation. Structural, morphological, and optical properties of the films were investigated for different F127/Lu molar ratios (0–5 in order to obtain high optical quality films with enhanced thickness compared with the traditional method. X-ray diffraction (XRD shows that the films present a highly oriented cubic structure beyond 1073 K for a 3-layer film, on silica glass substrates. The thickness, density, porosity, and refractive index evolution of the films were investigated by means of m-lines microscopy along with the morphology by scanning electron microscope (SEM and luminescent properties.

  11. Chemical vapor deposition and analysis of thermally insulating ZrO{sub 2} layers on injection molds

    Energy Technology Data Exchange (ETDEWEB)

    Atakan, Burak; Khlopyanova, Victoria; Mausberg, Simon; Kandzia, Adrian; Pflitsch, Christian [Thermodynamik (IVG) and Cenide, Universitaet Duisburg-Essen, Lotharstr. 1, 47057 Duisburg (Germany); Mumme, Frank [Kunststoff-Institut Luedenscheid, Karolinenstrasse 8, 58507 Luedenscheid (Germany)

    2015-07-15

    High quality injection molding requires a precise control of cooling rates. Thermal barrier coating (TBC) of zirconia with a thickness of 20-40 μm on polished stainless steel molds could provide the necessary insulating effect. This paper presents results of zirconia deposition on stainless steel substrates using chemical vapor deposition (CVD) aiming to provide the process parameters for the deposition of uniform zirconia films with such a thickness. The deposition was performed with zirconium (IV) acetylacetonate (Zr(C{sub 5}H{sub 7}O{sub 2}){sub 4}) as precursor and synthetic air as co-reactant, which allows deposition at temperatures below 600 C. The experiments were carried out in a hot-wall reactor at pressures between 7.5 mbar and 500 mbar and in a temperature range from 450 C to 600 C. Important growth parameters were characterized and growth rates between 1 and 2.5 μm/h were achieved. Thick and well adhering zirconia layers of 38 μm could be produced on steel within 40 h. The transient heat transfer rate upon contact with a hot surface was also evaluated experimentally with the thickest coatings. These exhibit a good TBC performance. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. The Structure and Magnetic Properties Metal-carbon Nanocomposites FeCo / C on Based of Polyacrylonitrile

    Directory of Open Access Journals (Sweden)

    L.V. Kozhitov

    2014-07-01

    Full Text Available For the first time in the conditions of the IR pyrolysis precursor based on polyacrylonitrile, cobalt acetate and acetylacetonate iron (ratio of metals in precursors Fe : Co = 3 : 1 metal-carbon nanocomposites have been obtained, which are carbon matrix with graphite-like structure, containing buried her nanoparticles of intermetallids of FeCo. It is shown that the phase formation FeCo occurs in the temperature range of obtaining 500-600 degrees centigrade, at T ≤ 500 degrees centigrade are only two distinct phases metals: HCC-With and BCC Fe. In the structure of nanocomposites obtained at T ≥ 600 degrees centigrade, at the same time there are nanoparticles of intermetallides and FeCo little content phase fсс-Co or solid solution of cobalt. It is determined that the composition of a metal component nanocomposite satisfies the ratio of Fe, Co, originally specified.

  13. Progammed synthesis of magnetic mesoporous silica coated carbon nanotubes for organic pollutant adsorption

    Science.gov (United States)

    Tong, Yue; Zhang, Min; Xia, Peixiong; Wang, Linlin; Zheng, Jing; Li, Weizhen; Xu, Jingli

    2016-05-01

    Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis method and were characterized by TEM, XRD, FTIR, TGA, N2 adsorption-desorption and VSM. The well-designed mesoporous magnetic nanotubes had a large specific area, a highly open mesoporous structure and high magnetization. Firstly, SiO2-coated maghemite/CNTs nanoparticles (CNTs/Fe3O4@SiO2 composites) were synthesized by the combination of high temperature decomposition process and an sol-gel method, in which the iron acetylacetonate as well as TEOS acted as the precursor for maghemite and SiO2, respectively. The CNTs/Fe3O4@SiO2 composites revealed a core-shell structure, Then, CNTs/Fe3O4@mSiO2 was obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for the organic pollutant in the ambient temperature.

  14. Helicenes as All-in-One Organic Materials for Application in OLEDs: Synthesis and Diverse Applications of Carbo- and Aza[5]helical Diamines.

    Science.gov (United States)

    Jhulki, Samik; Mishra, Abhaya Kumar; Chow, Tahsin J; Moorthy, Jarugu Narasimha

    2016-06-27

    A set of eight helical diamines were designed and synthesized to demonstrate their relevance as all-in-one materials for multifarious applications in organic light-emitting diodes (OLEDs), that is, as hole-transporting materials (HTMs), EMs, bifunctional hole transporting + emissive materials, and host materials. Azahelical diamines function very well as HTMs. Indeed, with high Tg values (127-214 °C), they are superior alternatives to popular N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). All the helical diamines exhibit emissive properties when employed in nondoped as well as doped devices, the performance characteristics being superior in the latter. One of the carbohelical diamines (CHTPA) serves the dual function of hole transport as well as emission in simple double-layer devices; the efficiencies observed were better by quite some margin than those of other emissive helicenes reported. The twisting endows helical diamines with significantly high triplet energies such that they also function as host materials for red and green phosphors, that is, [Ir(btp)2 acac] (btp=2-(2'-benzothienyl)pyridine; acac=acetylacetonate) and [Ir(ppy)3 ] (ppy=2-phenylpyridine), respectively. The results of device fabrications demonstrate how helicity/ helical scaffold may be diligently exploited to create molecular systems for maneuvering diverse applications in OLEDs.

  15. New approach towards the polyol route to fabricate MFe2O4 magnetic nanoparticles: The use of MCl2 and Fe(acac)3 as chemical precursors

    Science.gov (United States)

    Solano, Eduardo; Yáñez, Ramón; Ricart, Susagna; Ros, Josep

    2015-05-01

    A new more efficient approach of the polyol route to generate MFe2O4 (M=Mn, Fe, Co, Ni, Cu, Zn) nanoparticles in triethylene glycol (TREG) is presented. The selected thermal procedure is based on the Fe metalorganic precursor (iron(III) acetylacetonate) decomposition in presence of an inorganic transition metal chloride salt (MCl2, M=Mn, Fe, Co, Ni, Cu, Zn) to produce high quality polar dispersible nanoparticles with lower production cost. In addition, the nanoparticles are stabilized by ionic (from the Cl-) and steric (TREG as capping ligand) effects inducing into the nanoparticles an extraordinary stability in different polar solvents. As result of this optimized methodology, the colloidal polar dispersible nanoparticles present a size around 10 nm with an adequate size dispersion demonstrated by analyzing transmission electron microscopy (TEM) images. X-ray powder diffraction (XRPD) results corroborate the absence of secondary phases and the high crystalline degree obtained for the spinel structure, fact proved by using synchrotron X-ray diffraction. The high magnetic performance at low and room temperature of the nanoparticles studied by magnetometry proves the high internal crystal order of the spinel. Parallel to this, the influence of the heating ramp and annealing time in the thermal procedure were also investigated for the CuFe2O4 case, where a relationship between these two parameters and the final size and their associated diameter distribution was found, allowing a possible size control of the final ferrite magnetic nanoparticles synthesized.

  16. TREG coated iron oxide nanoparticles as contrast agent for MRI in-vivo use

    Science.gov (United States)

    Gutierrez-Garcia, Eric; Hidalgo-Tobon, Silvia; Lopez, Ciro; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery; De Celis Alonso, Benito; Dies Suarez, Pilar; Obregon, Manuel; Perez-Pena, Mario; Platas-Neri, Diana; Mendez-Rojas, Miguel

    2014-11-01

    Super-paramagnetic iron oxide nanoparticles (SPIONs) are of interest due to their great potential applications in diverse fields such as biomedicine. In this work we have prepared SPION nanoparticles using the polyol technique and characterized the magnetic properties of them for MRI in-vivo use. Nanoparticle preparation: All reagents were purchased from commercial sources (Sigma-Aldrich, St. Louis, USA) Iron (III) acetylacetonate, [Fe(acac)3], was used as the iron oxide precursor and thermally decomposed at high temperatures in triethyleneglycol (TREG). Nano-sized magnetite particles were prepared by an adaptation of the method proposed by Wei Cai et al[1-3]. A healthy rabbit was scanned on a clinical 1.5 T Philips MR scanner. Images were taken in 2D mode with a mFFE sequence. Relaxation time T2 was obtained from the MR images using a Matlab algorithm where the signal intensity decay was calculated at each image and then adjusted to a mono-exponential curve. Images were obtained before contrast injection, 24 hours and 36 hours following SPIONs administration. Signal decay at different Echo times for the prepared magnetic SPIONs, before and after contrast injection was measured. It was visualized a concentration of the agent contrast in brain and liver and the results were compared with images obtained from histopathology.

  17. Utilization of water/alcohol-soluble polyelectrolyte as an electron injection layer for fabrication of high-efficiency multilayer saturated red-phosphorescence polymer light-emitting diodes by solution processing

    Science.gov (United States)

    Wang, Lei; Liang, Bo; Huang, Fei; Peng, Junbiao; Cao, Yong

    2006-10-01

    Highly efficient multilayer red polymer light-emitting diodes were fabricated by solution process-ing from iridium complex, bis(1-(3-(9,9-dimethyl-fluorene-2-yl)phenyl)isoquinoline-C2,N ') iridium(III)acetylacetonate, doped into polyfluorene as a host and with a water/alcohol-soluble polymer, poly[(9,9-bis(3'-((N ,N-dimethyl)-N-ethylammonium)propyl)-2,7-fluorene)-2,7-(9,9-dioctylfluorene)-4,7-(2,1,3-benzoselenadiazole)]dibromide (PFN) as electron injection layer. The device with the structure ITO /PEDOT-PSS(50nm)/PVK(40nm)/PFO:PBD:Ir(DMFPQ)2acac(2%,75nm)/PFN(20nm)/Ba(4.5nm)/Al(150nm) showed an external quantum efficiency of 18.0% and luminance efficiency of 9.8Cd/A at a current density of 1.1mA/cm2, a peak emission at λmax=636nm, and Commission International de I'Eclairage coordinates of (0.665, 0.319). The efficiency remained as high as QE =11.1%, and LE =6.0cd/A, at a current density of 100mA/cm2, and a luminance of 6140cd/m2.

  18. Characterization of titanium dioxide nanoparticles dispersed in organic ligand solutions by using a diffusion-ordered spectroscopy-based strategy.

    Science.gov (United States)

    Van Lokeren, Luk; Maheut, Géraldine; Ribot, François; Escax, Virginie; Verbruggen, Ingrid; Sanchez, Clément; Martins, José C; Biesemans, Monique; Willem, Rudolph

    2007-01-01

    Diffusion-ordered NMR spectroscopy (DOSY NMR) is presented as a tool for the determination of the diffusion coefficients of organic ligands in suspensions of titanium dioxide nanoparticles. The nanoparticles were prepared by a sol-gel process by hydrolysis and condensation reactions of titanium tetra-n-butoxide in the presence of pentane-2,4-dione (acacH: acetylacetone), as well as para-toluenesulfonic acid (pTsA) and n-butanol (nBuOH). NMR spectroscopic studies were performed in various deuterated solvents, on both dispersed xerosols and diluted sols. The bipolar-pulsed field gradient longitudinal eddy-current delay (LED) pulse sequence was used for data acquisition. The data were processed by inverse Laplace transformation (ILT), by using a maximum entropy algorithm, to afford 2D DOSY spectra. Different diffusion regimes for organic ligands in the bound and unbound states were successfully discriminated, more particularly in [D3]acetonitrile, thus allowing assessment of their interactions with the nanoparticles.

  19. Assembly, characterization, and electrochemical properties of immobilized metal bipyridyl complexes on silicon(111) surfaces.

    Science.gov (United States)

    Lattimer, Judith R C; Blakemore, James D; Sattler, Wesley; Gul, Sheraz; Chatterjee, Ruchira; Yachandra, Vittal K; Yano, Junko; Brunschwig, Bruce S; Lewis, Nathan S; Gray, Harry B

    2014-10-28

    Silicon(111) surfaces have been functionalized with mixed monolayers consisting of submonolayer coverages of immobilized 4-vinyl-2,2'-bipyridyl (1, vbpy) moieties, with the remaining atop sites of the silicon surface passivated by methyl groups. As the immobilized bipyridyl ligands bind transition metal ions, metal complexes can be assembled on the silicon surface. X-ray photoelectron spectroscopy (XPS) demonstrates that bipyridyl complexes of [Cp*Rh], [Cp*Ir], and [Ru(acac)2] were formed on the surface (Cp* is pentamethylcyclopentadienyl, acac is acetylacetonate). For the surface prepared with Ir, X-ray absorption spectroscopy at the Ir LIII edge showed an edge energy as well as post-edge features that were essentially identical with those observed on a powder sample of [Cp*Ir(bpy)Cl]Cl (bpy is 2,2'-bipyridyl). Charge-carrier lifetime measurements confirmed that the silicon surfaces retain their highly favorable photoelectronic properties upon assembly of the metal complexes. Electrochemical data for surfaces prepared on highly doped, n-type Si(111) electrodes showed that the assembled molecular complexes were redox active. However the stability of the molecular complexes on the surfaces was limited to several cycles of voltammetry.

  20. Preparation of magnetic carbon nanotubes with hierarchical copper silicate nanostructure for efficient adsorption and removal of hemoglobin

    Science.gov (United States)

    Zhang, Min; Wang, Yongtao; Zhang, Yanwei; Ding, Lei; Zheng, Jing; Xu, Jingli

    2016-07-01

    The controllable synthesis of materials with the desired structure and dimensionality is of great significance in material science. In this work, the hierarchical CNTs/Fe3O4@copper silicate (CNTs/Fe3O4@CuSilicate) composites were synthesized via a simple chemical conversion route by using CNTs/Fe3O4@SiO2 nanocables as template. Firstly, magnetic CNTs composites (CNTs/Fe3O4) were synthesized by the high temperature decomposition process using the iron acetylacetonate as raw materials. Then a layer of SiO2 can be easily coated on the magnetic CNTs by the stöber method, which were then converted into CNTs/Fe3O4@CuSilicate composites by hydrothermal reaction between the silica shell and copper ions in alkaline solution. The resulting CNTs/Fe3O4@CuSilicate composites hold merits such as magnetic responsivity, good dispersibility, and large specific surface area. Moreover, the CNTs/Fe3O4@copper silicate composites have strong affinity toward bovine hemoglobin (BHb), which were successfully applied to convenient, efficient, and fast removal of abundant proteins (HHb and HSA) in human blood.

  1. Interfacial reactions and microstructure of BaTiO{sub 3} films prepared using fluoride precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Fujihara, Shinobu; Schneller, Theodor; Waser, Rainer

    2004-01-15

    Interfacial reactions of BaF{sub 2} and TiO{sub 2} were investigated in preparing BaTiO{sub 3} thin films using a fluoride precursor method. Trifluoroacetate solutions were prepared from barium acetate, titanium tetraisopropoxide (TTIP), and trifluoroacetic acid (TFA, CF{sub 3}COOH) with additives such as water and acetylacetone. The solutions were deposited on platinized Si wafers by spin-coating, were pyrolysed at 400 deg. C in air and were finally heated typically at 700 deg. C in a water vapor atmosphere. The perovskite BaTiO{sub 3} phase was obtained although a small portion of BaF{sub 2} remained unreacted. Thus, the films were characterized as the mixture of BaTiO{sub 3}, BaF{sub 2}, and amorphous TiO{sub 2}. Influence of the solution chemistry on the phase evolution and microstructure was examined in order to discuss the reaction pathway of the perovskite phase.

  2. Continuous determination of the Zr-Fe-Y Content by EDTA titrimetry%EDTA滴定法连续测定锆-铁-钇含量

    Institute of Scientific and Technical Information of China (English)

    袁履璀; 向斌; 赵娜

    2013-01-01

    In order to accurately measure the content of Zr, Fe and Y in the acidic solution which produced by recycling waste zirconium-yttrium ceramics, the influences of the iron ion masking agent including acetylacetone, triethanolamine, citric acid and the indicator such as arsenazo M hydrate, methyl thymol blue and xylenol orange on the determination results were investigated in this paper. Finally, a satisfactory result has been achieved by EDTA titrimetry when xylenol orange and hydroxylamine hydrochloride acted as the only indicator and reducing agent, respectively. The RSD was smaller than 2% .%探讨了准确测定废旧锆钇陶瓷回收时产生的酸性溶液中锆、铁、钇的含量时,乙酰丙酮、三乙醇胺和柠檬酸等铁离子掩蔽剂,以及偶氮砷Ⅲ、甲基百里酚蓝和二甲酚橙等指示剂对测定结果的影响,确定仅以二甲酚橙为指示剂,盐酸羟胺为还原剂,用EDTA滴定法连续测定了溶液中的锆、铁、钇含量,测定结果的RSD <2%.

  3. Synthesis and Structural Characterization of a Copper Complex with Furaldehyde Salicylylhydrazone

    Institute of Scientific and Technical Information of China (English)

    DU Kang-Kai; LIU Shi-Xiong

    2008-01-01

    The copper complex Cu(C12H9N2O3)2 has been synthesized by the reaction of furaldehyde salicylylhydrazone (Hfs) and copper acetylacetonate and characterized by X-ray crystal diffraction and spectroscopic studies. The crystal crystallizes in space group P21/n with a =5.9765(3), b = 15.7196(9), c = 12.0514(6) A, β= 101.618(3)°,V= 1109.0(1) A3,C24H18CuN4O6,M, = 521.96, Z= 2, Dc = 1.563 g/cm3, μ =1.035 mm-1,F(000) = 534, R = 0.0373 and wR =0.1058 for 2283 observed reflections (Ⅰ 20(Ⅰ)). The copper atom has a square-planar CuN2O2 coordination and should be in an oetahedral coordination if considering Cu-O (phenol) with distances of 2.796(2) A as weak bonds. The neighboring copper complex molecules are linked together by these weak Cu-O (phenol) bonds, resulting in an extended 1D chain. The title com-pound exhibits paramagnetie property and fluorescence behavior at room temperature supported by the EPR and fluorescence spectra.

  4. Carborane tuning on iridium complexes: redox-switchable second-order NLO responses.

    Science.gov (United States)

    Wang, Jiao; Wang, Wen-Yong; Fang, Xin-Yan; Qiu, Yong-Qing

    2015-04-01

    Much effort has been devoted to investigating the molecular geometries, electronic structures, redox properties and nonlinear optical (NLO) properties of Ir complexes involving o-, m- or p-carborane groups by density functional theory (DFT) methods. Switchable second-order NLO properties were induced by redox processes involving these complexes, and it was found that mainly the coordination bonds of Ir complexes changed during the oxidation process. Our calculations revealed that oxidation reactions have a significant influence on the second-order NLO response owing to the change in charge transfer pattern. The β tot values of oxidized species are at least ∼9 times larger for set I and ∼5 times larger for set II than those of the corresponding parent complexes. Introduction of carborane groups into ppy (phenylpyridine) ligands can enhance the second-order NLO response by 1.2- 1.6 times by a metal-to-ligand charge transfer (MLCT) transition between the Ir atom and carborane. The β tot of complex 2 [(ppy)2Ir(phen)](+) (phen = phenanthroline) is 3.3 times larger than that of complex 1 (ppy)2Ir(acce) (acce = acetylacetonate), which is caused by ligand-to-ligand charge transfer (LLCT) between ppy ligands and the ancillary ligand. Therefore, it can be concluded that the second-order NLO response can be effectively enhanced by oxidation reactions. PMID:25791353

  5. Relaxivity enhancement of aquated Tris(β-diketonate)gadolinium(III) chelates by confinement within ultrashort single-walled carbon nanotubes.

    Science.gov (United States)

    Law, Justin J; Guven, Adem; Wilson, Lon J

    2014-01-01

    Ultrashort single-walled carbon nanotubes loaded with gadolinium ions (gadonanotubes) have been previously shown to exhibit extremely high T1 -weighted relaxivities (>100 mm(-1) s(-1) ). To further examine the effect of nanoconfinement on the relaxivity of gadolinium-based contrast agents for magnetic resonance imaging, a series of ultrashort single-walled carbon nanotube (US-tube) materials internally loaded with gadolinium chelates have been prepared and studied. US-tubes were loaded with Gd(acac)3  · 2H2 O, Gd(hfac)3  · 2H2 O, and Gd(thd)3 (acac = acetylacetone, hfac = hexafluoroacetylacetone, thd = tetramethylheptanedione). The longitudinal relaxivities of the prepared materials determined at 25°C in a 1.5 T field were 103 mm(-1) s(-1) for Gd(acac)3  · 2H2 O@US-tubes, 105 mm(-1) s(-1) for Gd(hfac)3  · 2H2 O@US-tubes and 26 mm(-1) s(-1) for Gd(thd)3 @US-tubes. Compared with the relaxivities obtained for the unloaded chelates (<10 mm(-1) s(-1) ) as well as accounting for the T1 reduction observed for the empty US-tubes, the boost in relaxivity for chelate-loaded US-tubes is attributed to confinement within the nanotube and depends on the number of coordinated water molecules.

  6. Synthesis and characterization of Fe0.6Zn0.4Fe2O4 ferrite magnetic nanoclusters using simple thermal decomposition method

    Science.gov (United States)

    Sharifi, Ibrahim; Zamanian, Ali; Behnamghader, Aliasghar

    2016-08-01

    This paper presents experimental results regarding the effect of the quantity of solvent on formation of the Fe-Zn ferrite nanoparticles during thermal decomposition. A ternary system of Fe0.6Zn0.4Fe2O4 has been synthesized by a thermal decomposition method using metal acetylacetonate in high temperature boiling point solvent and oleic acid. The X-ray diffraction study was used to determine phase purity, crystal structure, and average crystallite size of iron-zinc ferrite nanoparticles. The average crystallite size of nanoparticles was increased from 13 nm to 37 nm as a result of reducing the solvent from 30 ml to 10 ml in a synthesis batch. The diameter of particles and morphology of the particles were determined by transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM). Mid and far Fourier transform infrared (FT-IR) measurement confirmed monophasic spinel structure of ferrite. Furthermore, the DC magnetic properties of the samples were studied using the vibrating sample magnetometer (VSM). The largest Fe-Zn ferrite nanoparticles exhibited a relatively high saturation magnetization of 96 emu/g. Moreover, Low-field AC susceptibility measurement indicated blocking temperature of nanoparticles around 170-200 K.

  7. White organic light emitting devices with phosphorescent iridium complex as RGB dopants%以iridium磷光为红绿蓝染料的白光器件研究

    Institute of Scientific and Technical Information of China (English)

    宋瑞丽; 段羽; 陈淑芬; 赵毅; 侯晶莹; 刘式墉

    2008-01-01

    以磷光染料iridium (III) bis [(4,6-di-fluoropheny)-pyridinato-N,C2′] picolinate(Flrpic)掺在4.4′-bis (9-carbazolyl)-2,2′-dimethyl-biphenyl(CDBP)中作为蓝光发光层,tris (2-Phenylpyridine) iridium(Irlppy)3和bis (1-phenyl-isoquinoline) acetylacetonate iridium (III)(Ir(piq)2)(acac)共掺在4,4′-N,N′-dicarbazole-biphenyl(CBP)中作为绿光和红光发光层,制备了高效白光器件.通过控制染料的浓度和发光层的厚度调节颜色,实现白光发射.器件的最大亮度为17 V时37 100 cd/m2,最大效率为5 V时7.37 lm/W.当亮度从1 000 cd/m2 到30 000 cd/m2色坐标由(0.41,0.42) 变到(0.37,0.39).

  8. Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ping; Duan Yu; Xie Wenfa; Zhao Yi; Hou Jingying; Liu Shiyong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhang Liying; Li Bin, E-mail: chenping0329@gmail.co, E-mail: syliu@jlu.edu.c [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)

    2009-03-07

    We demonstrate efficient white organic light-emitting devices (WOLEDs) based on an orange phosphorescent iridium complex bis(2-(2-fluorphenyl)-1,3-benzothiozolato-N, C{sup 2'})iridium(acetylacetonate) in combination with blue phosphorescent dye bis[(4, 6-difluorophenyl)-pyridinato-N,C{sup 2})](picolinato) Ir(III) and red phosphorescent dye bis[1-(phenyl)isoquinoline] iridium (III) acetylanetonate. By introducing a thin layer of 4, 7-diphenyl-1,10-phenanthroline between blue and red emission layers, the diffusion of excitons is confined and white light can be obtained. WOLEDs with the interlayer all have a higher colour rendering index (>82) than the device without it (76). One device has the maximum current efficiency of 17.6 cd A{sup -1} and a maximum luminance of 39 050 cd m{sup -2}. The power efficiency is 8.7 lm W{sup -1} at 100 cd m{sup -2}. Furthermore, the device has good colour stability and the CIE coordinates just change from (0.394, 0.425) to (0.390, 0.426) with the luminance increasing from 630 to 4200 cd m{sup -2}.

  9. [Procedure for determination of individual sensitivity to antitumor drugs].

    Science.gov (United States)

    Abduvaliev, A A; Gil'dieva, M S; Tatarskiĭ, V P

    2006-05-01

    The present paper proposes to employ the cultured tumor cells of the breast and chick fibroblasts after long-term cultivation (for above 24 days) to determine their individual drug sensitivity and, as a criterion of cell damage, to use the percent of destruction of the cell layer formed in the wells 24 hours after drug insertion. It also presents the comparative results of tests of 2 cellular models that have been used to determine the in vitro sensitivity of the cells of breast cancer and chick fibroblasts to melfalan and its complex compound with copper acetylacetonate - MOK*M. At the same time, the cytotoxic activity of MOK*M and melfalan against tumor cells has been not shown to differ greatly (16.02+/-1.85 and 15.71+/-0.65% cell layer destruction, respectively), but the same activity of MOK*M against the model of intact cells (chick fibroblasts) was much less (15.23+/-1.97%) than that of melfalan (95.39+/-1.11%). The test system proposed by the authors is of certain informative value and it may be used for the determination of the individual sensitivity of tumor cells to antitumor drugs.

  10. Direct dry-grinding synthesis of monodisperse lipophilic CuS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yajuan; Scott, Julie; Chen, Yi-Tzai; Guo, Liangran; Zhao, Mingyang; Wang, Xiaodong [Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI 02881 (United States); Lu, Wei, E-mail: weilu@uri.edu [Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI 02881 (United States); School of Pharmacy, Fudan University, Shanghai 201203 (China)

    2015-07-15

    Copper sulfide nanoparticles, effective absorbers of near-infrared light, are recently attracting broad interest as a photothermal coupling agent for cancer therapy. Lipophilic copper sulfide nanoparticles are preferred for high performance biomedical applications due to high tissue affinity. Synthesis of lipophilic copper sulfide nanoparticles requires complicated multi-step processes under severe conditions. Here, we describe a new synthetic process, developed by direct dry-grinding of copper(II) acetylacetonate with sulfur under ambient environment at low temperature. The formed CuS nanoparticles are of uniform size, ∼10 nm in diameter, and are monodispersed in chloroform. Each covellite CuS nanocrystal surface is modified with oleylamine through hydrogen bonding between sulfur atoms and amine groups of oleylamine. The nanoparticles demonstrate near-infrared light absorption for photothermal applications. The synthetic methodology described here is more convenient and less extreme than previous methods, and should thus greatly facilitate the preparation of photothermal lipophilic copper sulfide nanomaterials for cancer therapy. - Highlights: • We make lipophilic CuS nanoparticles by mechanical grinding method in large scale. • The reaction condition is studied to obtain high yield and uniform size. • The synthesis does not need nitrogen protection or high temperature. • Lipophilic CuS nanoparticles show significant near-infrared absorbance.

  11. Electroless plating of ultrathin palladium films: self-initiated deposition and application in microreactor fabrication

    Science.gov (United States)

    Muench, Falk; Oezaslan, Mehtap; Svoboda, Ingrid; Ensinger, Wolfgang

    2015-10-01

    We present new electroless palladium plating reactions, which can be applied to complex-shaped substrates and lead to homogeneous, dense and conformal palladium films consisting of small nanoparticles. Notably, autocatalytic and surface-selective metal deposition could be achieved on a wide range of materials without sensitization and activation pretreatments. This provides a facile and competitive route to directly deposit well-defined palladium nanofilms on e.g. carbon, paper, polymers or glass substrates. The reactions proceed at mild conditions and are based on easily accessible chemicals (reducing agent: hydrazine; metal source: PdCl2; ligands: ethylenediaminetetraacetic acid (EDTA), acetylacetone). Additionally, the water-soluble capping agent 4-dimethylaminopyridine (DMAP) is employed to increase the bath stability, to ensure the formation of small particles and to improve the film conformity. The great potential of the outlined reactions for micro- and nanofabrication is demonstrated by coating an ion-track etched polycarbonate membrane with a uniform Pd film of approximately 20 nm thickness. The as-prepared membrane is then employed as a highly miniaturized flow reactor, using the reduction of 4-nitrophenol with NaBH4 as a model reaction.

  12. Fabrication of LaAlO3 film by sol-gel process with corresponding inorganic

    Institute of Scientific and Technical Information of China (English)

    殷明志; 汪敏强; 姚熹

    2004-01-01

    Well-cubic perovskite lanthanum aluminate (LaAlO3) film on (110) silicon substrate was fabricated by sol-gel method with corresponding inorganic salts. Lanthanum acetate and aluminum acetate glacial acetic acid solutions were prepared via ligand exchange starting from lanthanum nitrate hexahydrate and aluminum nitrate hexahydrate after being refluxed. (CH3CO)2O removed nitrates and the crystallized H2O completely, acetylacetone (AcAc) was partially bidentated with metallic ion of the metallic acetates and formed La(OAc)3(x(AcAc)x, which were hydrolyzed into La(AcAc)3(x(OH)x by adding 10 ml 0.4% methyl cellulose (MCL) solution. The La(AcAc)3(x(OH)x, polymerizing and combining with MCL, formed the LaAlO3 sol precursor with heteropolymeric structure and formed film easily. The epitaxial LaAlO3 film on Si(110) substrate was crystallized after being annealed in thermal annealing furnace for 650(750 (C/30 min. The morphologies and microstructures were characterized. The refractive index of the LAO film was 1.942 to 2.007; the dielectric constant and the dissipation factors were estimated to be 23(26 and 2.1(10(4 ( 2.4(10(4 respectively.

  13. Preparation and properties of YSZ-doped YBCO films grown by the TFA-MOD method

    International Nuclear Information System (INIS)

    YBa2Cu3O7-δ (YBCO) films with Zr doping have been prepared successfully by the trifluoroacetate metal-organic deposition (TFA-MOD) method through dissolving Zr acetylacetonate in the precursor solution. Yttria-stabilized zirconia (YSZ) nanoparticles were detected in the doped YBCO films by x-ray diffraction (XRD) and scanning electron microscopy (SEM). From the analysis of XRD ω and ψ scans, the doped films have better out-of-plane and in-plane textures than those of the un-doped YBCO film. Although the doped YBCO films have a lower critical transition temperature (Tc) than that of un-doped YBCO film, a very significant enhancement of critical current density (Jc) is displayed as compared to the un-doped film at high applied fields. A high Jc near 106 A cm-2 at 1 T and a Jc of 105 A cm-2 at 5 T were observed in 6% doped Zr film, which are 5 times and 25 times the Jc values of the un-doped film in the same applied fields, respectively, indicating an optimal defect density created by 6% Zr doping.

  14. One-step hydrothermal synthesis of highly water-soluble secondary structural Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiwen [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Jiang Wei, E-mail: yangxw0610@yahoo.cn [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Liu Li; Chen Binghua; Wu Shixi; Sun Danping; Li Fengsheng [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2012-07-15

    Magnetite nanoparticles (MNPs) were prepared using the ferric acetylacetonate as the sole iron source in a facile hydrothermal route, while poly(acrylic acid) (PAA) was chosen as the stabilizer via one-step functionalized MNPs for better hydrophilic properties. The orthogonal was used in the paper for the experimental parameters optimization, including the solvent, the reaction time, the amount of stabilizer and the presynthesis. The obtained highly water dispersible MNPs with uniform size from about 50 to about 100 nm was individually composed of many monodisperse magnetite crystallites approximately 6 nm in size. And the MNPs show high magnetic properties, whose magnetite content was up to 76.76% and the saturation magnetization was 39.0 emu/g. Later the formation mechanism of MNPs was also discussed. Thus the MNPs proved to be very promising for biomedical applications. - Highlights: Black-Right-Pointing-Pointer MNPs are prepared in a low-temperature hydrothermal synthesis procedure. Black-Right-Pointing-Pointer Synthesis of MNPs is hybridized with their in situ surface functionalization. Black-Right-Pointing-Pointer Each of the secondary structural MNPs is composed of monodisperse primary particles. Black-Right-Pointing-Pointer The resulting MNPs show good magnetic properties combining that of primary one. Black-Right-Pointing-Pointer The size of MNPs is controllable and the mechanism is elaborated.

  15. Research on Raman-scattering and Fabrication of Multilayer Thin Film with Different Structures and Components Based on Pt/Ti/Si3N4/SiO2/Si Substrate

    Institute of Scientific and Technical Information of China (English)

    Qiu-lin Tan; Wen-dong Zhang; Chen-yang Xue; Jun Liu; Jun-hong Li; Ji-jun Xiong

    2009-01-01

    Using the same conditions and various starting materials, such as lead acetate trihydrate, tetrabulyl titanate, zirconium n-butoxide, and acetylacetone, two kinds of solid precursors, lead zirconate titanate (PZT, Zr/Ti=15/85) and lead titanate (PT), were fabricated. With three different combinations, namely, PZT, PT/PZT-PZT/PT, and PT/PZT/-/PZT/PT, three multilayer thin films were deposited on three Pt-Ti-Si3N4-SiO2-Si substrates by a modified sol-gel process. The fabrication process of the thin films is discussed in detail. We found that there is a large built-in stress in the thin film, which can be diminished by annealing at 600 ℃, when the gel is turned into solid material through drying and sintering. The Raman scattering spectra of the films with different compositions and structures were investigated. With the help of X-ray diffraction (XRD) analyzer and Raman scattering spectra analyzer, it was found that the thin films with the PT/PZT-PZT/PT structure have reasonable crystallinity and less residual stress. XRD testing shows that the diffraction pattern of the multilayer film results from the superimposition of the PZT and PT patterns. This leads to the conclusion that the PT/PZT-PZT/PT multilayer thin film has a promising future in pyroelectric infrared detectors with high performance.

  16. APCVD Transition Metal Oxides – Functional Layers in ''Smart windows''

    International Nuclear Information System (INIS)

    Transition metal oxides (TMO) exhibit electrochromic effect. Under a small voltage they change their optical transmittance from transparent to collored (absorbing) state. The individual material can manifest its electrochromic properties only when it is part of electrochromic (EC) multilayer system. Smart window is controlling the energy of solar flux entering the building or car and makes the interiors comfortable and energy utilization more effective. Recently the efforts of material researchers in this field are directed to price decreasing. APCVD technology is considered as promissing as this process permits flowthrough large-scale production process. The paper presents results on device optimization based on WO3-MoO3 working electrode. Extensive research reveals that WO3-MoO3 structure combines positive features of single oxides: excellent electrochromic performance of WO3 and better kinetic properties of MoO3 deposition. The achieved color efficiency of APCVD WO3-MoO3 films is 200cm2/C and optical modulation of 65-70% are practically favorable electrochromic characteristics. To respond to low cost requirement, the expensive hexacarbonyl can be replaced with acetylacetonate. We have started with this precursor to fabricate mixed WxV1-xO3 films. The films possess excellent surface coverage and high growth-rate. CVD deposition of VO2, a promissing thermochromic thin film material is also presented

  17. Fluorinated alcohols as promoters for the metal-free direct substitution reaction of allylic alcohols with nitrogenated, silylated, and carbon nucleophiles.

    Science.gov (United States)

    Trillo, Paz; Baeza, Alejandro; Nájera, Carmen

    2012-09-01

    The direct allylic substitution reaction using allylic alcohols in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and 2,2,2-trifluoroethanol (TFE) as reaction media is described. The developed procedure is simple, works under mild conditions (rt, 50 and 70 °C), and proves to be very general, since different nitrogenated nucleophiles and carbon nucleophiles can be used achieving high yields, especially when HFIP is employed as solvent and aromatic allylic alcohols are the substrates. Thus, sulfonamides, carbamates, carboxamides, and amines can be successfully employed as nitrogen-based nucleophiles. Likewise, silylated nucleophiles such as trimethylsilylazide, allyltrimethylsilane, trimethylsilane, and trimethylsilylphenylacetylene give the corresponding allylic substitution products in high yields. Good results for the Friedel-Crafts adducts are also achieved with aromatic compounds (phenol, anisole, indole, and anilines) as nucleophiles. Particularly interesting are the results obtained with electron-rich anilines, which can behave as nitrogenated or carbon nucleophiles depending on their electronic properties and the solvent employed. In addition, 1,3-dicarbonyl compounds (acetylacetone and Meldrum's acid) are also successfully employed as soft carbon nucleophiles. Studies for mechanism elucidation are also reported, pointing toward the existence of carbocationic intermediates and two working reaction pathways for the obtention of the allylic substitution product.

  18. Star-like PtCu nanoparticles supported on graphene with superior activity for methanol electro-oxidation

    International Nuclear Information System (INIS)

    The synthesis of stars-like PtCu nanoparticles is reported using copper (II) chloride dihydrate(CuCl2·2H2O) instead of copper(II) acetylacetonate [Cu(acac)2] as Cu precursor for the first time. Transmission electron microscopy (TEM) electron microscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are used to characterize the stars-like PtCu nanoparticles. Both cyclic voltammetry and chronoamperometry results demonstrate that these stars-like PtCu nanoparticles exhibit significantly high catalytic activity toward the methanol oxidation reaction in comparison with the Pt catalyst. Furthermore, the stars-like PtCu nanoparticles supported on graphene (rGO) show about 2.3 times higher durability than the Pt/rGO catalyst in the accelerated ageing test. All results suggest the stars-like PtCu nanoparticles supported on rGO is promising for portable applications in direct methanol fuel cells and any other catalysis fields

  19. Composition-dependent electrocatalytic activity of palladium-iridium binary alloy nanoparticles supported on the multiwalled carbon nanotubes for the electro-oxidation of formic acid.

    Science.gov (United States)

    Bao, Jianming; Dou, Meiling; Liu, Haijing; Wang, Feng; Liu, Jingjun; Li, Zhilin; Ji, Jing

    2015-07-22

    Surface-functionalized multiwalled carbon nanotubes (MWCNTs) supported Pd100-xIrx binary alloy nanoparticles (Pd100-xIrx/MWCNT) with tunable Pd/Ir atomic ratios were synthesized by a thermolytic process at varied ratios of bis(acetylacetonate) palladium(II) and iridium(III) 2,4-pentanedionate precursors and then applied as the electrocatalyst for the formic acid electro-oxidation. The X-ray diffraction pattern (XRD) and transmission electron microscope (TEM) analysis showed that the Pd100-xIrx alloy nanoparticles with the average size of 6.2 nm were uniformly dispersed on the MWCNTs and exhibited a single solid solution phase with a face-centered cubic structure. The electrocatalytic properties were evaluated through the cyclic voltammetry and chronoamperometry tests, and the results indicated that both the activity and stability of Pd100-xIrx/MWCNT were strongly dependent on the Pd/Ir atomic ratios: the best electrocatalytic performance in terms of onset potential, current density, and stability against CO poisoning was obtained for the Pd79Ir21/MWCNT. Moreover, compared with pure Pd nanoparticles supported on MWCNTs (Pd/MWCNT), the Pd79Ir21/MWCNT exhibited enhanced steady-state current density and higher stability, as well as maintained excellent electrocatalytic activity in high concentrated formic acid solution, which was attributed to the bifunctional effect through alloying Pd with transition metal. PMID:26132867

  20. One-step sonochemical syntheses of Ni@Pt core-shell nanoparticles with controlled shape and shell thickness for fuel cell electrocatalyst.

    Science.gov (United States)

    Lee, Eunjik; Jang, Ji-Hoon; Matin, Md Abdul; Kwon, Young-Uk

    2014-01-01

    We demonstrate a facile one-step method to synthesize Ni@Pt core-shell nanoparticles (NPs) with a control over the shape and the Pt-shell thickness of the NPs. By adjusting the relative reactivity of the Pt and Ni reagents in ultrasound-assisted polyol reactions, two Ni@Pt NP samples of the same composition (Ni/Pt=1) and size (3-4 nm) but with different particle shape (octahedral vs. truncated octahedral) and different Pt-shell thicknesses (1-2 vs. 2-3 monolayer) are obtained. The control is achieved by using different Ni reagents, Ni(acac)2 (acac=acetylacetonate) and Ni(hfac)2 (hfac=hexafluoroacetylacetonate). A reaction mechanism that can explain all of the observations is proposed. The Ni@Pt NPs show up to threefold higher mass activity than pure Pt NPs in oxygen reduction reaction. Between the two Ni@Pt NP samples, the one composed of octahedral NPs with the thicker Pt-shell has higher activity than the other. PMID:23769750

  1. Synthesis and characterization of thin films of Pd/TiO{sub 2} with possible applications in photo catalysis; Sintesis y caracterizacion de peliculas delgadas de Pd/TiO{sub 2} con posibles aplicaciones en fotocatalisis

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S. [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos Edif. 9, San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Valenzuela Z, M. A., E-mail: tirado@esfm.ipn.mx [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, U. P. Adolfo Lopez Mateos Edif. 8, San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2015-10-15

    In this paper the synthesis and study of thin films of titanium oxide is reported, as well as those that were surface modified with palladium nanoparticles Pd/TiO{sub 2}. First, the TiO{sub 2} films are grown on substrates of soda-lime glass using chemical sol-gel route and the repeated immersion procedure. The salt precursor titanium oxy-acetylacetonate to 0.2 M, in the solvent 2-methoxyethanol and monoethanolamine was used as stabilizer. The number of used immersions gave an average thickness estimate for these films of 172.8 nm. Second, the series of Pd/TiO{sub 2} films surface modified were obtained from a solution of palladium nitrate dehydrate at low concentration, with the same procedure. The films grown TiO{sub 2} and those surface-modified films were characterized in its structure by X-ray diffraction, morphology by scanning electron microscopy, the topography with atomic force microscopy, optical properties by UV-Vis, among others. Photoluminescence properties and/or possible applications in photo catalysis are reported in this paper. (Author)

  2. Nickel(II) complexes having Imidazol-2-ylidene-N′-phenylurea ligand in the coordination sphere – syntheses and solid state structures

    Indian Academy of Sciences (India)

    Kishor Naktode; Abhinanda Kundu; Sudeshna Saha; Hari Pada Nayek; Tarun K Panda

    2015-08-01

    We report the syntheses and structural studies of two nickel(II) complexes of imidazol-2-ylidene- N'-phenylureate ligand of composition [{ImBu NCON(H)Ph}2 Ni(acac)2] (1) and [(C6H5NH2)2 Ni(acac)2] [ImMes NCON(H)Ph] (2). The nickel complex 1 was readily prepared by the reaction of nickel(II) acetylacetonate [Ni(acac) 2 ] with imidazol-2-ylidene-N'-phenylureate ligand [ImBu NCON(H)Ph] (L1) in THF under reflux condition for 72 h. The nickel complex 2 was obtained by the reaction of [Ni(acac)2], mesityl derivative of imidazol-2-ylidene-N′-phenylureate ligand [ImMes NCON(H)Ph] (L2) in the presence of aniline as base under reflux condition in THF. Both the paramagnetic complexes have been characterized by FT-IR spectroscopy and elemental analyses. Solid-state structures of both the new complexes were established by single crystal X-ray diffraction analysis. In the molecular structures of complexes 1 and 2, each nickel(II) ion is six fold coordinated and form a distorted octahedral geometry. The optical properties of both complexes have been explored. The Hirshfeld surfaces are used to view and analyze the intermolecular contacts in crystalline state for complex 2.

  3. Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications

    Directory of Open Access Journals (Sweden)

    Mikhail S. Kondratenko

    2013-08-01

    Full Text Available Novel composite membranes for high temperature polymer-electrolyte fuel cells (HT-PEFC based on a poly[oxy-3,3-bis(4′-benzimidazol-2″-ylphenylphtalide-5″(6″-diyl] (PBI-O-PhT polymer with small amounts of added Zr were prepared. It was shown in a model reaction between zirconium acetylacetonate (Zr(acac4 and benzimidazole (BI that Zr-atoms are capable to form chemical bonds with BI. Thus, Zr may be used as a crosslinking agent for PBI membranes. The obtained Zr/PBI-O-PhT composite membranes were examined by means of SAXS, thermomechanical analysis (TMA, and were tested in operating fuel cells by means of stationary voltammetry and impedance spectroscopy. The new membranes showed excellent stability in a 2000-hour fuel cell (FC durability test. The modification of the PBI-O-PhT films with Zr facilitated an increase of the phosphoric acid (PA uptake by the membranes, which resulted in an up to 2.5 times increased proton conductivity. The existence of an optimal amount of Zr content in the modified PBI-O-PhT film was shown. Larger amounts of Zr lead to a lower PA doping level and a reduced conductivity due to an excessively high degree of crosslinking.

  4. Series of dinuclear and tetranuclear lanthanide clusters encapsulated by salen-type and β-diketionate ligands: single-molecule magnet and fluorescence properties.

    Science.gov (United States)

    Sun, Wen-Bin; Han, Bing-Lu; Lin, Po-Heng; Li, Hong-Feng; Chen, Peng; Tian, Yong-Mei; Murugesu, Muralee; Yan, Peng-Fei

    2013-10-01

    Three dinuclear [Ln2H2OL(1)2(acac)2]·solvent (1, Ln = Gd, solvent = 2CH2Cl2; 2, Ln = Tb, no solvent; 3, Ln = Er, solvent = (C2H5)2O), and two tetranuclear lanthanide clusters [Ln4(μ3-OH)2L(2)2(acac)6]·2(solvent) (4, Ln = Tb, solvent = CH3OH; 5, Ln = Dy, solvent = CH3CN) were characterized in terms of structure, fluorescence and magnetism. The dinuclear lanthanide complexes were constructed by a rigid salen-type ligand H2L(1) = N,N'-bis(salicylidene)-o-phenylenediamine and β-diketonate (acac = acetylacetonate) ligands, while the tetranuclear clusters were formed from the flexible ligand H2L(2) = N,N'-bis(salicylidene)-1,2-ethanediamine. Crystal structure analysis indicates that the rigid ligand favors the double-decker sandwich structure (Ln2L(1)2), in which the two lanthanide ions have different coordination numbers and geometry, while the more flexible ligand (H2L(2)) leads to planar tetranuclear clusters. The relationship between their respective magnetic anisotropy and ligand-field geometries and their fluorescence properties was investigated. The Dy and Tb-containing clusters exhibit typical visible fluorescence properties, and single-molecule magnet behavior is seen in complex 5. PMID:23887476

  5. Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lima, E. [CONICET and Instituto de Nanociencia y Nanotecnologia and Centro Atomico Bariloche (Argentina); Torres, T. E. [University of Zaragoza, Instituto de Nanociencia de Aragon (INA) and Departamento de Fisica de la Materia Condensada and Laboratorio de Microscopias Avanzadas (LMA) (Spain); Rossi, L. M. [Instituto de Quimica, Universidade de Sao Paulo (Brazil); Rechenberg, H. R. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Berquo, T. S. [Institute of Rock Magnetism, University of Minnesota (United States); Ibarra, A. [University of Zaragoza, INA and LMA (Spain); Marquina, C. [CSIC, Universidad de Zaragoza, Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon (ICMA) (Spain); Ibarra, M. R. [University of Zaragoza, INA and Departamento de Fisica de la Materia Condensada and LMA (Spain); Goya, G. F., E-mail: goya@unizar.es [University of Zaragoza, INA and Departamento de Fisica de la Materia Condensada (Spain)

    2013-05-15

    In this study, magnetic and power absorption properties of a series of iron oxide nanoparticles with average sizes Left-Pointing-Angle-Bracket d Right-Pointing-Angle-Bracket ranging from 3 to 23 nm were reported. The nanoparticles were prepared by thermal decomposition of Iron(III) acetylacetonate in organic media. From the careful characterization of the magnetic and physicochemical properties of these samples, the specific power absorption (SPA) values experimentally found were numerically reproduced, as well as their dependence with particle size, using a simple model of Brownian and Neel relaxation at room temperature. SPA experiments in ac magnetic fields (H{sub 0} = 13 kA/m and f = 250 kHz) indicated that the magnetic and rheological properties played a crucial role determining the heating efficiency at different conditions. A maximum SPA value of 344 W/g was obtained for a sample containing nanoparticles with Left-Pointing-Angle-Bracket d Right-Pointing-Angle-Bracket = 12 nm and dispersion {sigma} = 0.25. The observed SPA dependence with particle diameter and their magnetic parameters indicated that, for the size range and experimental conditions of f and H studied in this study, both Neel and Brown relaxation mechanisms are important to the heat generation observed.

  6. Electric field assisted aerosol assisted chemical vapour deposition of nanostructured metal oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Anupriya J.T.; Bowman, Christopher; Panjwani, Naitik [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ (United Kingdom); Warwick, Michael E.A. [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ (United Kingdom); UCL Energy Institute, Central House, 14 Upper Woburn Place, London WC1H 0HY (United Kingdom); Binions, Russell, E-mail: r.binions@qmul.ac.uk [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ (United Kingdom); School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2013-10-01

    Nanostructured thin films of tungsten, vanadium and titanium oxides were deposited on gas sensor substrates from the electric field assisted chemical vapour deposition reaction of tungsten hexaphenoxide, vanadyl acetylacetonate and titanium tetraisopropoxide respectively. The electric fields were generated by applying a potential difference between the inter-digitated electrodes of the gas sensor substrates during the deposition. The deposited films were characterised using scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The application of an electric field, encouraged the formation of interesting and unusual nanostructured morphologies, with a change in scale length and island packing. It was also noted that crystallographic orientation of the films could be controlled as a function of electric field type and strength. The gas sensor properties of the films were also examined; it was found that a two to three fold enhancement in the gas response could be observed from sensors with enhanced morphologies compared to control sensors grown without application of an electric field. - Highlights: • Electric field assisted chemical vapour deposition method • Ability to create high surface area film architectures • Can produce enhanced sensor response • Good control over film properties.

  7. Characterization of nano porous TiO2 films prepared by sol-gel method

    International Nuclear Information System (INIS)

    Nano-porous TiO2 films as a key component in dye sensitized and extremely thin absorber (ETA) solar cells were prepared by the sol-gel method using spin-coating and spray pyrolysis deposition techniques. The precursor sol contained titanium (IV) iso-prop-oxide, acetylacetone and polyethylene glycol (PEG) in ethanol. Glass and n-type Si (100) were used as substrates. SEM, XRD and FT-IR were used to study the effect of the PEG concentration in the precursor solution as well as different annealing routes on the film composition and structural properties. Crystalline films with anatase structure could be grown by the spray technique at 500 C. Post-annealing at 500 C increases the crystallite size (from 5 to 9 nm) and results in an average pore size around 40 nm. A film thickness of about 2.3 μm is attained using 50 spray pulses. In spin coated films the formation of Ti-O-Ti anatase bonds is observed after annealing at 450 C. Crystalline films can be prepared by annealing at temperatures above 700 C. Surface morphology and pore size of spin coated films are controlled by the amount of PEG in the sol. The film thickness is around 120 nm after three coating cycles. (authors)

  8. Probing keto-enol tautomerism using photoelectron spectroscopy.

    Science.gov (United States)

    Capron, Nathalie; Casier, Bastien; Sisourat, Nicolas; Piancastelli, Maria Novella; Simon, Marc; Carniato, Stéphane

    2015-08-14

    We theoretically investigate the mechanism of tautomerism in the gas-phase acetylacetone molecule. The minimum energy path between the enolone and diketo forms has been computed using the Nudged-Elastic Band (NEB) method within the density-functional theory (DFT) using the projector augmented-wave method and generalized gradient approximation in Perdew-Wang (PW91) parametrization. The lowest transition state as well as several intermediate geometries between the two stable tautomers have been identified. The outer-valence ionization spectra for all determined geometries have been computed using the third-order non-Dyson algebraic diagrammatic construction technique. Furthermore, the oxygen core-shell ionization spectra for these geometries have been obtained using DFT and the Becke three-parameter Lee-Yang-Parr (B3LYP) functional. It is shown that all spectra depend strongly on the geometries demonstrating the possibility of following the proton-transfer dynamics using photoelectron spectroscopy in pump-probe experiments. PMID:26172609

  9. A novel polymeric herbicide based on phenoxyacetic acid derivatives

    Directory of Open Access Journals (Sweden)

    Wimol Klaichim

    2009-01-01

    Full Text Available A novel polymeric herbicide based on phenoxyacetic acid derivatives was prepared by the reaction of epoxidised liquid natural rubber (ELNR with 2,4-dichlorophenoxyacetic acid (2,4-D or 2-methyl-4-chlorophenoxyacetic acid(MCPA. The liquid natural rubber (LNR was firstly obtained from the degradation of natural rubber latex with tert-butyl hydroperoxide and cobalt acetylacetonate at 65oC for 72 hrs. The epoxidised liquid natural rubber was prepared from thereaction of LNR with formic acid and hydrogen peroxide at 50oC for 6 hrs. The reaction of epoxidised liquid natural rubber with 2,4-D or MCPA using triethylamine as a catalyst in toluene was performed at 70, 80, and 90oC for 6, 9, 12, 18, and 24hrs. The polymeric herbicides obtained were characterized and the grafting percentage of 2,4-D or MCPA onto liquid natural rubber were also determined by FT-IR and 1H-NMR spectroscopy. It was found that the grafting percentage increased with increasing amount of reactants, temperature, and reaction time. The release of 2,4-D and MCPA from polymeric herbicides was investigated in pH 6, 7, and 8 buffers at room temperature. The results show that the slowest release of 2,4-D and MCPA was found to be constant at pH 7 for 14 and 10 days, respectively.

  10. /sup 111/In autologous leucocytes in the diagnosis and assessment of inflammatory bowel disease. [Tropolone

    Energy Technology Data Exchange (ETDEWEB)

    Saverymuttu, S.H.; Peters, A.M.; Chadwick, V.S.; Hodgson, H.J.; Lavender, J.P. (Hammersmith Hospital, London (UK))

    1982-01-01

    Indium-111 autologous leukocyte scanning is now established as an effective method of localising sepsis (Ascher and others, 1980). In view of the extensive leucocyte infiltration of the intestinal wall in inflammatory bowel disease, the authors have prospectively studied the use of indium-111 labelled white cells in a variety of inflammatory bowel disorders. Leukocytes were labelled in 68 patients using /sup 111/In acetylacetonate and in 18 patients /sup 111/In tropolone. Crude mixed leukocytes preparations were used in 74 patients and pure neutrophil preparation used in 12 patients. Gamma scans over the abdomen were performed from 40 min later after re-injection of the labelled cells and assessed. /sup 111/In-tropolone labelling appeared to offer the advantage over /sup 111/In-acac labelling in localising inflamed bowel earlier. The technique of /sup 111/In-leukocyte scanning offers several advantages over the alternative technique of imaging diseased bowel using gallium-67 citrate. Indium-111 leukocyte scanning provides a novel approach to the problem of diagnosis and assessment of inflammatory bowel disease. It is non-invasive, requires no bowel preparation and this is safe in the acutely sick patient where conventional radiological imaging methods may be hazardous. /sup 111/In faecal excretion provides an objective assessment of disease activity which should prove useful in evaluating treatment regimes.

  11. Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors

    Science.gov (United States)

    Lou, Bih-Show; Veerakumar, Pitchaimani; Chen, Shen-Ming; Veeramani, Vediyappan; Madhu, Rajesh; Liu, Shang-Bin

    2016-01-01

    The synthesis of highly dispersed and stable ruthenium nanoparticles (RuNPs; ca. 2-3 nm) on porous activated carbons derived from Moringa Oleifera fruit shells (MOC) is reported and were exploited for supercapacitor applications. The Ru/MOC composites so fabricated using the biowaste carbon source and ruthenium acetylacetonate as the co-feeding metal precursors were activated at elevated temperatures (600-900 oC) in the presence of ZnCl2 as the pore generating and chemical activating agent. The as-prepared MOC carbonized at 900 oC was found to possess a high specific surface area (2522 m2 g-1) and co-existing micro- and mesoporosities. Upon incorporating RuNPs, the Ru/MOC nanocomposites loaded with modest amount of metallic Ru (1.0-1.5 wt%) exhibit remarkable electrochemical and capacitive properties, achiving a maximum capacitance of 291 F g-1 at a current density of 1 A g-1 in 1.0 M H2SO4 electrolyte. These highly stable and durable Ru/MOC electrodes, which can be facily fabricated by the eco-friendly and cost-effective route, should have great potentials for practical applications in energy storage, biosensing, and catalysis.

  12. Fabrication and kinetics study of nano-Al/NiO thermite film by electrophoretic deposition.

    Science.gov (United States)

    Zhang, Daixiong; Li, Xueming

    2015-05-21

    Nano-Al/NiO thermites were successfully prepared as film by electrophoretic deposition (EPD). For the key issue of this EPD, a mixture solvent of ethanol-acetylacetone (1:1 in volume) containing 0.00025 M nitric acid was proved to be a suitable dispersion system for EPD. The kinetics of electrophoretic deposition for both nano-Al and nano-NiO were investigated; the linear relation between deposition weight and deposition time in short time and parabolic relation in prolonged time were observed in both EPDs. The critical transition time between linear deposition kinetics and parabolic deposition kinetics for nano-Al and nano-NiO were 20 and 10 min, respectively. The theoretical calculation of the kinetics of electrophoretic deposition revealed that the equivalence ratio of nano-Al/NiO thermites film would be affected by the behavior of electrophoretic deposition for nano-Al and nano-NiO. The equivalence ratio remained steady when the linear deposition kinetics dominated for both nano-Al and nano-NiO. The equivalence ratio would change with deposition time when deposition kinetics for nano-NiO changed into parabolic kinetics dominated after 10 min. Therefore, the rule was suggested to be suitable for other EPD of bicomposites. We also studied thermodynamic properties of electrophoretic nano-Al/NiO thermites film as well as combustion performance. PMID:25950271

  13. Photocatalytic activity enhancement of TiO{sub 2} films by micro and nano-structured surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Bizarro, M., E-mail: monserrat@iim.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, Coyoacan 04510, D.F. (Mexico); Tapia-Rodriguez, M.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, Coyoacan 04510, D.F. (Mexico); Ojeda, M.L. [Departamento de Ciencias Naturales y Exactas, Universidad de Guadalajara, Centro Universitario de los Valles, C.P. 46600 Ameca, Jalisco (Mexico); Alonso, J.C.; Ortiz, A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, Coyoacan 04510, D.F. (Mexico)

    2009-04-01

    Titanium oxide thin films were deposited by spin coating using a precursor solution of titanium oxide (IV) acetylacetonate. To increase the contact surface area of the films, TiO{sub 2} microspheres were added to the surface of the films. These spheres were 2 {mu}m in diameter and formed agglomerates on the surface. They did not spread uniformly across the substrate, creating different roughnesses and morphologies along the surface of films. Photocatalytic properties of the samples were tested by the degradation of a methyl orange solution. The degradation performance was compared between plain films, films with microspheres and films covered with commercial TiO{sub 2} P25 powder. The results indicate that the samples that were surface modified with TiO{sub 2} microspheres present a photodegradation reaction rate 62 times higher than that obtained for plain TiO{sub 2} films. The rate of reaction of the samples covered with P25 was 2 times greater than that obtained for the samples with microspheres, but the adhesion to the film was better in the case of microspheres. Moreover, samples with microspheres could be reused several times maintaining the same structural and photocatalytic properties.

  14. Separations Science Data Base: an abstractor's manual

    International Nuclear Information System (INIS)

    The Separations Science Data Base, designed specifically for the retrieval of information needed in chemical separations problems (i.e., how to perform a given separation under given conditions), is described. The procedure for entering records into the data base is given. The initial entries are concerned primarily with liquid-liquid extraction and liquid-solid ion exchange methods for metal ions and salts; however, the data base is constructed so that almost any separations process can be accommodated. Each record is indexed with information provided under the following fields: author; title; publication source; date of publication; organization performing and/or sponsoring the work; brief abstract of the work; abstract number if the work has been so referenced, and/or abstractor's initials; type of separation system used (e.g., flotation); specific or generic name of the separation agent used (e.g., acetylacetone); list of substances separated (e.g., gold, copper); qualitative description of the supporting medium or matrix containing the substances before separation (e.g., nitrate); type of literature where the article was printed (e.g., book); and type of information that the article contains. Each of these fields may be searched independently of the others (or in combination), and the last six fields contain specific key words that are listed on the input form. Definitions are provided for the 39 information terms

  15. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Selishcheva, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna, E-mail: joanna.kolny@uni-oldenburg.de [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics (Germany)

    2012-02-15

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In{sub 2}O{sub 3} surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV-Vis-absorption spectroscopy are used to characterize the samples.

  16. Analysis and pollution sources speculations of toxic gases in a secondary fiber paper mill.

    Science.gov (United States)

    Tong, Xin; Liu, Zhang; Chen, Xiao Q; Shen, Wen H

    2016-11-01

    This paper quantitatively investigates the compositions of the gaseous pollutants in the ambient air of a secondary fiber paper mill. Total volatile organic compounds (TVOC), formaldehyde (HCHO), sulfur compounds (H2S), and hydrocarbon compounds (CxHy) were analyzed on six sampling sites with photo-ionisation detector, acetylacetone spectrophotometric method, and gas detector. The results revealed that, the high levels of TVOC and CxHy were detected at the wet end of paper machine and the office area, respectively; all the H2S contents on the six sites exceeded the limit (0.06 mg m(-3)) seriously; the HCHO concentrations at other five sites were out of the limit (0.10 mg m(-3)) except for the wastewater treatment plant. Furthermore, the necessary discussions about the possible pollution sources were considered on the process flow, the chemical agents used, and the ambient conditions in the paper mill. For the sake of air pollution control in paper mills, these remarkable results and analysis lay some technical basis in the following researches that should attract more attentions.

  17. Synthesis and preservation of graphene-supported uranium dioxide nanocrystals

    Science.gov (United States)

    Ma, Hanyu; Wang, Haitao; Burns, Peter C.; McNamara, Bruce K.; Buck, Edgar C.; Na, Chongzheng

    2016-07-01

    Graphene-supported uranium dioxide (UO2) nanocrystals are potentially important fuel materials. Here, we investigate the possibility of synthesizing graphene-supported UO2 nanocrystals in polar ethylene glycol compounds by the polyol reduction of uranyl acetylacetone under boiling reflux, thereby enabling the use of an inexpensive graphene precursor graphene oxide into a one-pot process. We show that triethylene glycol is the most suitable solvent with an appropriate reduction potential for producing nanometer-sized UO2 crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-supported UO2 nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO2 nanocrystals synthesized by polyol reduction can be readily stored in alcohols, impeding oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO2 nanocrystals for further investigation and development under ambient conditions.

  18. Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical vapor deposition processes

    Science.gov (United States)

    Weiss, Theodor; Nowak, Martin; Mundloch, Udo; Zielasek, Volkmar; Kohse-Höinghaus, Katharina; Bäumer, Marcus

    2014-10-01

    Optimizing thin film deposition techniques requires contamination-free transfer from the reactor into an ultrahigh vacuum (UHV) chamber for surface science analysis. A very compact, multifunctional Chemical Vapor Deposition (CVD) reactor for direct attachment to any typical UHV system for thin film analysis was designed and built. Besides compactness, fast, easy, and at the same time ultimately clean sample transfer between reactor and UHV was a major goal. It was achieved by a combination of sample manipulation parts, sample heater, and a shutter mechanism designed to fit all into a NW38 Conflat six-ways cross. The present reactor design is versatile to be employed for all commonly employed variants of CVD, including Atomic Layer Deposition. A demonstration of the functionality of the system is provided. First results of the setup (attached to an Omicron Multiprobe x-ray photoelectron spectroscopy system) on the temperature dependence of Pulsed Spray Evaporation-CVD of Ni films from Ni acetylacetonate as the precursor demonstrate the reactor performance and illustrate the importance of clean sample transfer without breaking vacuum in order to obtain unambiguous results on the quality of CVD-grown thin Ni films. The widely applicable design holds promise for future systematic studies of the fundamental processes during chemical vapor deposition or atomic layer deposition.

  19. New Synthetic Method of 1,5-diaryl-1,4-pentadiene-3-one%1,5-二芳基-1,4-戊二烯-3-酮类化合物的新合成方法

    Institute of Scientific and Technical Information of China (English)

    尹彦冰; 许钱; 尹官武; 裴爽

    2013-01-01

    A new synthetic method of 1,5-diaryl-1,4-pentadiene-3-one was developed by using acetylacetone and aromatic aldehydes as substrate , sodium hydroxide as catalyst and ethanol as solvent .The structure of the compounds were characterized by NMR and IR.The results showed that the yield of the product was above 90% when 10% sodi-um hydroxide solution was used as catalyst .Compared with the conventional methods , the new synthetic method has several advantages, such as the simple raw materials, the mild reaction conditions, and the high yield of production .%  以乙酰丙酮、芳醛为原料,乙醇为溶剂,氢氧化钠为催化剂的条件下合成了一系列1,5-二芳基-1,4-戊二烯-3-酮类化合物,用核磁、红外等测试手段对化合物进行了表征。结果表明:在10%的氢氧化钠溶液的催化下,产物的产率均在90%以上,与传统的方法相比,该方法具有反应条件温和、操作简单及产率高等优点。

  20. Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical vapor deposition processes

    International Nuclear Information System (INIS)

    Optimizing thin film deposition techniques requires contamination-free transfer from the reactor into an ultrahigh vacuum (UHV) chamber for surface science analysis. A very compact, multifunctional Chemical Vapor Deposition (CVD) reactor for direct attachment to any typical UHV system for thin film analysis was designed and built. Besides compactness, fast, easy, and at the same time ultimately clean sample transfer between reactor and UHV was a major goal. It was achieved by a combination of sample manipulation parts, sample heater, and a shutter mechanism designed to fit all into a NW38 Conflat six-ways cross. The present reactor design is versatile to be employed for all commonly employed variants of CVD, including Atomic Layer Deposition. A demonstration of the functionality of the system is provided. First results of the setup (attached to an Omicron Multiprobe x-ray photoelectron spectroscopy system) on the temperature dependence of Pulsed Spray Evaporation-CVD of Ni films from Ni acetylacetonate as the precursor demonstrate the reactor performance and illustrate the importance of clean sample transfer without breaking vacuum in order to obtain unambiguous results on the quality of CVD-grown thin Ni films. The widely applicable design holds promise for future systematic studies of the fundamental processes during chemical vapor deposition or atomic layer deposition

  1. Photooxidation of Furfural with Phthalocyanine-sensitized TiO2 Particle Under Xenon Lamp

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Copper phthalocyanine was selected as the photosensitizer to sensitize TiO2 in this experiment with furfural as the target pollutant. The composite catalysts (TiO2/CuPC) obtained showed a great activity under a xenon lamp. By experiments, the optimal preparation conditions of the composite catalysts were set as follows: the CuPC loading mass fraction was 1.5% , the mass fraction of acetylacetone was 0. 3% , and the stirring time was 10 h. UV-Vis diffuse reflectance spectra, XRD, and BET were used to characterize the properties of the composite catalysts, which showed that after loading CuPC on TiO2, the composite catalyst retained the same crystal structure as pure TiO2 and the wavelength range of its absorption spectrum was broadened to 600-700 nm while its surface area was smaller than that of the pure TiO2. Under the optimal conditions, 20 mg/L furfural solution was degraded by nearly 90% and TOC by about 70%. When the catalyst was reused 6 times, the activity of the catalyst was still retained by about 75%.

  2. Microspheres of polyester loaded with Holmium-165: effect of gamma irradiation on the polymeric structure

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Mariangela de Burgos M. de; Pires, Geovanna; Lira, Rafael A. de; Geraldes, Adriana N.; Nascimento, Nanci; Melo, Vitor Hugo Soares de, E-mail: mbmazevedo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Kodama, Yasko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia

    2011-07-01

    Biodegradable polymers containing radioactive isotopes have potential applications as delivery vehicles of beta radiation to the cancer tumors by brachytherapy. 166-Ho is an example of such radioisotope emitting high-energy beta particles, and also its gamma rays allow nuclear imaging in everywhere is applied. Among the biodegradable polymers, different types of poly(lactide) have been investigated in our laboratory, and poly(L-lactide) (PLLA) was used as substrate to prepare microparticles loaded with holmium acetylacetonate HoAcAc (PLLA-HoAcAc-MP). The aim of this study was to evaluate the stability of these microparticles to gamma radiation. The PLLA-HoAcAc-MP were irradiated in a nuclear reactor IEA-R1 at IPEN/CNEN-SP, and their stability studied out with gamma radiation of 25, 50 and 100 kGy doses. MP were characterized before and after irradiation by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and con focal laser scanning microscopy (CLSM). Preliminary results showed that gamma radiation did not damage morphologically the prepared PLLA-HoAcAc-MP in the dose range studied, and this procedure may be an important tool for knowing the stabilities of the polymers studied as MP for possible application in brachytherapy. (author)

  3. Metal oxide films on glass and steel substrates

    CERN Document Server

    Sohi, A M

    1987-01-01

    in the pH8 electrolyte supports the view that the rate limiting reduction reaction is possibly oxygen (or water) reduction although some contribution from an organic 'impurity' cannot be ruled out. Coatings of Fe sub 3 O sub 4 on mild steel have been prepared by CVD using pneumatic spraying techniques and the corrosion behaviour of coated electrodes in organic-phosphate electrolyte (pH8) has been examined. A variety of thin (10-1000nm) metal oxide films have been deposited on flat glass substrates by the pyrolysis of an aerosol of metal acetylacetonates in a suitable carrier. The optical characteristics and thickness of the films have been measured and particular interest has centered on the use of a novel pin on disc apparatus to measure the physical durability of such thin films. Characteristic friction/penetration force traces have been established for 1st Series transition metal oxide films and some ranking in terms of 'hardness' established. The use of SnO sub 2 - coated glass for electrodes in a light m...

  4. One-step thermolysis synthesis of two-dimensional ultrafine Fe3O4 particles/carbon nanonetworks for high-performance lithium-ion batteries.

    Science.gov (United States)

    Zhang, Wanqun; Li, Xiaona; Liang, Jianwen; Tang, Kaibin; Zhu, Yongchun; Qian, Yitai

    2016-02-28

    To tackle the issue of inferior cycle stability and rate capability for Fe3O4 anode materials in lithium ion batteries, ultrafine Fe3O4 nanocrystals uniformly encapsulated in two-dimensional (2D) carbon nanonetworks have been fabricated through thermolysis of a simple, low-cost iron(iii) acetylacetonate without any extra processes. Moreover, compared to the reported Fe3O4/carbon composites, the particle size of Fe3O4 is controllable and held down to ∼3 nm. Benefitting from the synergistic effects of the excellent electroconductive carbon nanonetworks and uniform distribution of ultrafine Fe3O4 particles, the prepared 2D Fe3O4/carbon nanonetwork anode exhibits high reversible capacity, excellent rate capability and superior cyclability. A high capacity of 1534 mA h g(-1) is achieved at a 1 C rate and is maintained without decay up to 500 cycles (1 C = 1 A g(-1)). Even at the high current density of 5 C and 10 C, the 2D Fe3O4/carbon nanonetworks maintain a reversible capacity of 845 and 647 mA h g(-1) after 500 discharge/charge cycles, respectively. In comparison with other reported Fe3O4-based anodes, the 2D Fe3O4/carbon nanonetwork electrode is one of the most attractive of those in energy storage applications. PMID:26859122

  5. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    Science.gov (United States)

    Mohan, Arun Ram

    for the deposition of metal and metal oxide functional coatings by MOCVD. Alumina was chosen as a candidate for metal oxide coating because of its thermal and phase stability. Platinum was chosen as a candidate to utilize the oxygen spillover process to maintain a self-cleaning surface by oxidizing the deposits formed during thermal stressing. Two metal organic precursors, aluminum trisecondary butoxide and aluminum acetylacetonate, were used as precursors to coat tubes of varying diameters. The morphology and uniformity of the coatings were characterized by electron microscopy and energy-dispersive x-ray spectroscopy. The coating was characterized by x-ray photoelectron spectroscopy to obtain the surface chemical composition. This is the first study conducted to examine the application of MOCVD to coat internal surfaces of tubes with varying diameters. In the third part of the study, the metal oxide coatings, alumina from aluminum acetylacetonate, alumina from aluminum trisecondary butoxide, zirconia from zirconium acetylacetonate, tantalum oxide from tantalum pentaethoxide and the metal coating, platinum from platinum acetylacetonate were deposited by MOCVD on AISI304. The chemical composition and the surface acidity of the coatings were characterized by x-ray photoelectron spectroscopy. The morphology of the coatings was characterized by electron microscopy. The coated substrates were tested in the presence of heated Jet-A in a flow reactor to evaluate their effectiveness in inhibiting the solid deposit formation. All coatings inhibited the formation of metal sulfides and the carbonaceous solid deposits formed by metal catalysis. The coatings also delayed the accumulation of solid carbonaceous deposits. In particular, it has been confirmed that the surface acidity of the metal oxide coatings affects the formation of carbonaceous deposits. Bimolecular addition reactions promoted by the Bronsted acid sites appear to lead to the formation of carbonaceous solid

  6. Effect of the substrate on the properties of ZnO-MgO thin films grown by atmospheric pressure metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atohuer@hotmail.com [Instituto Politecnico Nacional, Grupo de Ingenieria en Procesamiento de Materiales CICATA-IPN, Unidad Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira. C. P. 89600, Altamira, Tamps (Mexico); Dominguez-Crespo, M.A. [Instituto Politecnico Nacional, Grupo de Ingenieria en Procesamiento de Materiales CICATA-IPN, Unidad Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira. C. P. 89600, Altamira, Tamps (Mexico); Brachetti-Sibaja, S.B. [Alumna del postgrado en Tecnologia Avanzada del CICATA-IPN, Unidad Altamira IPN, km 14.5, Carretera Tampico-Puerto Industrial Altamira. C. P. 89600, Altamira, Tamps (Mexico); Arenas-Alatorre, J. [Instituto de Fisica, UNAM, Apartado Postal 20-364, 01000, D.F. (Mexico); Rodriguez-Pulido, A. [Unidad Profesional Adolfo Lopez Mateos, Luis Enrique Erro s/n, 07738, D. F. (Mexico)

    2011-07-01

    The ZnO-MgO alloys possess attractive properties for possible applications in optoelectronic and display devices; however, the optical properties are strongly dependent on the deposition parameters. In this work, the effect of the glassy and metallic substrates on the structural, morphological and optical properties of ZnO-MgO thin films using atmospheric pressure metal-organic chemical vapor deposition was investigated at relatively low deposition temperature, 500 deg. C. Magnesium and zinc acetylacetonates were used as the metal-organic source. X-ray diffraction experiments provided evidence that the kind of substrates cause a deviation of c-axis lattice constant due to the constitution of a oxide mixture (ZnO and MgO) in combination with different intermetallic compounds(Mg{sub 2}Zn{sub 11} and Mg{sub 4}Zn{sub 7}) in the growth films. The substitutional and interstitial sites of Mg{sup 2+} instead of Zn{sup 2+} ions in the lattice are the most probable mechanism to form intermetallic compounds. The optical parameters as well as thickness of the films were calculated by Spectroscopic Ellipsometry using the classical dispersion model based on the sum of the single and double Lorentz and Drude oscillators in combination with Kato-Adachi equations, as well as X-ray reflectivity.

  7. MOCVD of zirconium oxide thin films: Synthesis and characterization

    International Nuclear Information System (INIS)

    The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO2 thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces.

  8. Preparation and characterization of IrO{sub 2}-YSZ nanocomposite electrodes by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M. [Instituto Politecnico Nacional, Departamento de Metalurgia y Materiales, A.P. 75-874, 07300 Mexico (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Investigacion en Materiales, Circuito Exterior s/n, Ciudad Universitaria, A.P. 70-360, Del. Coyoacan, C.P. 04510 Mexico (Mexico); Vargas-Garcia, J.R. [Instituto Politecnico Nacional, Departamento de Metalurgia y Materiales, A.P. 75-874, 07300 Mexico (Mexico); Dominguez-Crespo, M.A. [Instituto Politecnico Nacional, Grupo de Ingenieria en Procesamiento de Materiales CICATA-IPN, Unidad Altamira. Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600. Altamira, Tamps. (Mexico)

    2007-12-15

    The electrochemical performance of IrO{sub 2}/yttria stabilized zirconia (YSZ) cermet cathodes for solid oxide fuel cells was experimentally evaluated in relation to their microstructure. Noble metal films were prepared by MOCVD using metal-acetylacetonate precursors which were mixed and evaporated together (493 K) to achieve codeposition. The effects of experimental conditions on deposition rates, composition and microstructure were studied, and the optimum conditions were determined. The growth of the films was columnar and layered in structure, with porous morphology. TEM observations revealed that the IrO{sub 2}-YSZ composites are constituted by single-phase particles, between 4 and 10 nm in size, with an excellent composite distribution. The cathode-related polarization resistance, Rp, was measured by impedance spectroscopy and found to be in the range of 21-968 {omega} cm{sup 2} under the experimental conditions (573-873 K). IrO{sub 2}-YSZ electrodes undergo structural and/or morphological changes caused by cathodic polarization and high temperature (873 K). However, this behavior could contribute to the improvement of the electrochemical performance of the electrode. IrO{sub 2}-YSZ films displayed superior electrochemical properties as electrodes to zirconia electrolytes than that exhibited for the Pt-C and conventional Pt paste electrodes. (author)

  9. MOCVD of zirconium oxide thin films: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atohuer@hotmail.com [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Instituto Politecnico Nacional, Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Dominguez-Crespo, M.A.; Ramirez-Meneses, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Instituto Politecnico Nacional, Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Vargas-Garcia, J.R. [ESIQIE, Departamento de Metalurgia y Materiales, Instituto Politecnico Nacional. A.P. 75-876, 07300 Mexico, D.F. (Mexico)

    2009-02-15

    The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO{sub 2} thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces.

  10. Effect of the substrate on the properties of ZnO-MgO thin films grown by atmospheric pressure metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    The ZnO-MgO alloys possess attractive properties for possible applications in optoelectronic and display devices; however, the optical properties are strongly dependent on the deposition parameters. In this work, the effect of the glassy and metallic substrates on the structural, morphological and optical properties of ZnO-MgO thin films using atmospheric pressure metal-organic chemical vapor deposition was investigated at relatively low deposition temperature, 500 deg. C. Magnesium and zinc acetylacetonates were used as the metal-organic source. X-ray diffraction experiments provided evidence that the kind of substrates cause a deviation of c-axis lattice constant due to the constitution of a oxide mixture (ZnO and MgO) in combination with different intermetallic compounds(Mg2Zn11 and Mg4Zn7) in the growth films. The substitutional and interstitial sites of Mg2+ instead of Zn2+ ions in the lattice are the most probable mechanism to form intermetallic compounds. The optical parameters as well as thickness of the films were calculated by Spectroscopic Ellipsometry using the classical dispersion model based on the sum of the single and double Lorentz and Drude oscillators in combination with Kato-Adachi equations, as well as X-ray reflectivity.

  11. Kinetics and mechanism of interaction of some bioactive ligands with cis-diaqua(cis-1,2-diaminocyclohexane)platinum(II) in aqueous medium

    Indian Academy of Sciences (India)

    P Karmakar; S Ray; S Mallick; B K Bera; A Mandal; S Mondal; A K Ghosh

    2013-09-01

    The substitution reaction of cis-[Pt(cis-dach)(H2O)2]2+ (where `dach’ is cis-1,2-diaminocyclohexane) with 2-thiouracil (S, N), 1,2-cyclohexanedionedioxime (N, N) and acetylacetone (O, O) were studied in aqueous solution in 0.10 M NaClO4 under pseudo-first order conditions as a functions of concentration, pH and temperature using UV-Vis spectrophotometry. The substitution reaction proceeds via rapid outer sphere association complex formation, followed by two slow consecutive steps. The first of these involves ligand-assisted deaquation, while second involves chelation as the second aqua ligand is displaced. The association equilibrium constant (KE) for the outer sphere complex formation has been evaluated together with rate constants for the two subsequent steps. The rate constants increase with increasing ligand concentration and the evaluated activation parameters for all reactions suggest an associative substitution mechanism for both the aqua ligand substitution processes. The product of the reaction has been characterized by IR, NMR and ESI-MS spectral analysis; which throws more light on the mechanistic behaviour of platinum(II) antitumour complexes.

  12. Red phosphorescent organic light-emitting diodes (PhOLEDs) based on a heteroleptic cyclometalated Iridium (III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Lepeltier, Marc [Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des Etats-Unis, 78035 Versailles Cedex (France); Dumur, Frédéric, E-mail: frederic.dumur@univ-amu.fr [Aix-Marseille Université, CNRS, ICR, UMR 7273, F-13397 Marseille (France); Wantz, Guillaume, E-mail: guillaume.wantz@ims-bordeaux.fr [University of Bordeaux, IMS, UMR 5218, F-33400 Talence (France); CNRS, IMS, UMR 5218, F-33400 Talence (France); Vila, Neus; Mbomekallé, Israel [Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des Etats-Unis, 78035 Versailles Cedex (France); Bertin, Denis; Gigmes, Didier [Aix-Marseille Université, CNRS, ICR, UMR 7273, F-13397 Marseille (France); Mayer, Cédric R., E-mail: cmayer@lisv.uvsq.fr [Laboratoire d’Ingénierie des Systèmes de Versailles LISV – EA 4048, Université de Versailles Saint Quentin en Yvelines, 10/12 avenue de l’Europe, 78140 Vélizy (France)

    2013-11-15

    Highly efficient red-emitting Phosphorescent Organic Light-Emitting Diodes (PhOLEDs) based on a neutral vacuum-sublimatable heteroleptic iridium (III) complex have been designed and studied. Heteroleptic complex Ir(piq){sub 2}(acac) was prepared in one step with acetylacetone (acac) as the ancillary ligand. Electronic and spectroscopic properties of Ir(piq){sub 2}(acac) were investigated by UV–visible absorption, fluorescence spectroscopy and cyclic voltammetry. Electrophosphorescent devices comprising Ir(piq){sub 2}(acac) as dopant of TCTA exhibited outstanding electroluminescence performance with a current efficiency of 10.0 cd A{sup −1}, a maximum power efficiency of 7.2 lm W{sup −1} and a maximal brightness of 3540 cd m{sup −2} was reached at 8.0 V. CIE coordinates close to the standard red of the national television system committee were obtained (0.67, 0.33). -- Highlights: • A saturated red OLED has been prepared. • High power efficiency and brightness were obtained. • Thickness of the device was determined as a parameter determining the overall performance. • CIE coordinates close to the standard red of the national television system committee were obtained.

  13. Anion exchange membrane prepared from simultaneous polymerization and quaternization of 4-vinyl pyridine for non-aqueous vanadium redox flow battery applications

    Science.gov (United States)

    Maurya, Sandip; Shin, Sung-Hee; Sung, Ki-Won; Moon, Seung-Hyeon

    2014-06-01

    A simple, single step and environmentally friendly process is developed for the synthesis of anion exchange membrane (AEM) by simultaneous polymerization and quaternization, unlike the conventional membrane synthesis which consists of separate polymerization and quaternization step. The membrane synthesis is carried out by dissolving polyvinyl chloride (PVC) in cyclohexanone along with 4-vinyl pyridine (4VP) and 1,4-dibromobutane (DBB) in the presence of thermal initiator benzoyl peroxide, followed by film casting to get thin and flexible AEMs. The membrane properties such as ion exchange capacity, ionic conductivity and swelling behaviour are tuned by varying the degree of crosslinking. These AEMs exhibit low vanadium permeability, while retaining good dimensional and chemical stability in an electrolyte solution, making them appropriate candidates for non-aqueous vanadium acetylacetonate redox flow battery (VRFB) applications. The optimized membrane displays ion exchange capacity and ionic conductivity of 2.0 mequiv g-1 and 0.105 mS cm-1, respectively, whereas the efficiency of 91.7%, 95.7% and 87.7% for coulombic, voltage and energy parameter in non-aqueous VRFB, respectively. This study reveals that the non-aqueous VRFB performance is greatly influenced by membrane properties; therefore the optimal control over the membrane properties is advantageous for the improved performance.

  14. Increasing the energy density of the non-aqueous vanadium redox flow battery with the acetonitrile-1,3-dioxolane-dimethyl sulfoxide solvent mixture

    Science.gov (United States)

    Herr, T.; Fischer, P.; Tübke, J.; Pinkwart, K.; Elsner, P.

    2014-11-01

    Different solvent mixtures were investigated for non-aqueous vanadium acetylacetonate (V(acac)3) redox flow batteries with tetrabutylammonium hexafluorophosphate as the supporting electrolyte. The aim of this study was to increase the energy density of the non-aqueous redox flow battery. A mixture of acetonitrile, dimethyl sulfoxide and 1-3-dioxolane nearly doubles the solubility of the active species. The proposed electrolyte system was characterized by Raman and FT-IR spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge set-up. Spectroscopic methods were applied to understand the interactions between the solvents used and their impact on the solubility. The potential difference between oxidation and reduction of V(acac)3 measured by cyclic voltammetry was about 2.2 V. Impedance spectroscopy showed an electrolyte resistance of about 2400 Ω cm2. Experiments in a charge-discharge test cell achieved coulombic and energy efficiencies of ∼95% and ∼27% respectively. The highest discharge power density was 0.25 mW cm-2.

  15. Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dan; Duan, Yahui; Yang, Yongqiang [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Hu, Nan [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Wang, Xiao [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Sun, Fengbo [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Duan, Yu, E-mail: duanyu@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China)

    2015-10-15

    In this study, a highly efficient fluorescent/phosphorescent white organic light-emitting device (WOLED) was fabricated using exciplex light emission. The hole-transport material 4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), and electron-transport material, 4,7-diphenyl-1,10-phenanthroline (Bphen), were mixed to afford a blue-emitting exciplex. The WOLED was fabricated with a yellow phosphorescent dye, Ir(III) bis(4-phenylthieno [3,2-c] pyridinato-N,C{sup 2'}) acetylacetonate (PO-01), combined with the exciplex. In this structure, the energy can be efficiently transferred from the blend layer to the yellow phosphorescent dye, thus improving the efficiency of the utilization of the triplet exciton. The maximum power efficiency of the WOLED reached a value 9.03 lm/W with an external quantum efficiency of 4.3%. The Commission Internationale de I'Eclairage (CIE) color coordinates (x,y) of the device were from (0.39, 0.45) to (0.27, 0.31), with a voltage range of 4–9 V. - Highlights: • An exciplex/phosphorescence hybrid white OLED was fabricated for the first time with blue/orange complementary emitters. • By using exciplex as the blue emitter, non-radiative triplet-states on the exciplex can be harvested for light-emission by transferring them to low triplet-state phosphors.

  16. Facile synthesis and functionalization of manganese oxide nanoparticles for targeted T1-weighted tumor MR imaging.

    Science.gov (United States)

    Luo, Yu; Yang, Jia; Li, Jingchao; Yu, Zhibo; Zhang, Guixiang; Shi, Xiangyang; Shen, Mingwu

    2015-12-01

    We report the polyethyleneimine (PEI)-enabled synthesis and functionalization of manganese oxide (Mn3O4) nanoparticles (NPs) for targeted tumor magnetic resonance (MR) imaging in vivo. In this work, monodispersed PEI-coated Mn3O4 NPs were formed by decomposition of acetylacetone manganese via a solvothermal approach. The Mn3O4 NPs with PEI coating were sequentially conjugated with fluorescein isothiocyanate, folic acid (FA)-linked polyethylene glycol (PEG), and PEG monomethyl ether. Followed by final acetylation of the remaining PEI surface amines, multifunctional Mn3O4 NPs were formed and well characterized. We show that the formed multifunctional Mn3O4 NPs with a mean diameter of 8.0 nm possess good water-dispersibility, colloidal stability, and cytocompatibility and hemocompatibility in the given concentration range. Flow cytometry and confocal microscopic observation reveal that the multifunctional Mn3O4 NPs are able to target FA receptor-overexpressing cancer cells in vitro. Importantly, the FA-targeted Mn3O4 NPs can be used as a nanoprobe for efficient T1-weighted MR imaging of cancer cells in vitro and the xenografted tumor model in vivo via an active FA-mediated targeting pathway. With the facile PEI-enabled formation and functionalization, the developed PEI-coated Mn3O4 NPs may be modified with other biomolecules for different biomedical imaging applications. PMID:26454057

  17. Production and characterization of 166Ho polylactic acid microspheres.

    Science.gov (United States)

    Yavari, Kamal; Yeganeh, Ehsan; Abolghasemi, Hossein

    2016-01-01

    Microsphere and particle technology with selective transport of radiation represents a new generation of therapeutics. Poly-L-lactic acid (PLLA) microspheres loaded with holmium-166 acetylacetonate ((166)Ho-PLLA-MS) are novel microdevices. In this research, (165)HoAcAc-PLLA microparticles were prepared by the solvent evaporation technique. Microspheres were irradiated at Tehran Research Reactor. The diameter and surface morphologies were characterized by particle sizer and scanning electron microscopy before and after irradiation. The complex stability, radiochemical purity, and in vivo biodistribiotion were checked in the final solution up to 3 days. In this study, (166)Ho-PLLA spherical particles with a smooth surface and diameter of 20-40 µm were obtained, which were stable in vitro and in vivo studies. Neutron irradiation did not damage the particles. The ease with which the PLLA spheres could be made in the optimal size range for later irradiation and their ability to retain the (166)Ho provided good evidence for their potential use in radioembolization.

  18. Metal-organic chemical vapour deposition of lithium manganese oxide thin films via single solid source precursor

    Directory of Open Access Journals (Sweden)

    Oyedotun K.O.

    2015-12-01

    Full Text Available Lithium manganese oxide thin films were deposited on sodalime glass substrates by metal organic chemical vapour deposition (MOCVD technique. The films were prepared by pyrolysis of lithium manganese acetylacetonate precursor at a temperature of 420 °C with a flow rate of 2.5 dm3/min for two-hour deposition period. Rutherford backscattering spectroscopy (RBS, UV-Vis spectrophotometry, X-ray diffraction (XRD spectroscopy, atomic force microscopy (AFM and van der Pauw four point probe method were used for characterizations of the film samples. RBS studies of the films revealed fair thickness of 1112.311 (1015 atoms/cm2 and effective stoichiometric relationship of Li0.47Mn0.27O0.26. The films exhibited relatively high transmission (50 % T in the visible and NIR range, with the bandgap energy of 2.55 eV. Broad and diffused X-ray diffraction patterns obtained showed that the film was amorphous in nature, while microstructural studies indicated dense and uniformly distributed layer across the substrate. Resistivity value of 4.9 Ω·cm was obtained for the thin film. Compared with Mn0.2O0.8 thin film, a significant lattice absorption edge shift was observed in the Li0.47Mn0.27O0.26 film.

  19. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    Science.gov (United States)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-06-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ~ 4.1 Å), and low electrical resistivity (4.2 × 10-4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained "on/off" current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 × 107, 0.43 V/decade, 0.7 V, and 2.1 cm2/V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs.

  20. Determination of acidity constants of enolisable compounds by capillary electrophoresis.

    Science.gov (United States)

    Mofaddel, N; Bar, N; Villemin, D; Desbène, P L

    2004-10-01

    Research on the structure-activity relationships of molecules with acidic carbon atoms led us to undertake a feasibility study on the determination of their acidity constants by capillary electrophoresis (CE). The studied molecules had diverse structures and were tetronic acid, acetylacetone, diethylmalonate, Meldrum's acid, 3-methylrhodanine, nitroacetic acid ethyl ester, pyrimidine-2,4,6-trione, 3-oxo-3-phenylpropionic acid ethyl ester, 1-phenylbutan-1,3-dione, 5,5-dimethylcyclohexan-1,3-dione and homophthalic anhydride. The p Ka range explored by CE was therefore very large (from 3 to 12) and p Ka values near 12 were evaluated by mathematical extrapolations. The analyses were carried out in CZE mode using a fused silica capillary grafted (or not) with hexadimethrine. Owing to the electrophoretic behaviour of these compounds according to the pH, their acidity constants could be evaluated and appeared in perfect agreement with the literature data obtained, a few decades ago, by means of potentiometry, spectrometry or conductimetry. The p Ka of homophthalic anhydride and 3-methylrhodanine were evaluated for the first time.

  1. Rapid synthesis of novel flowerlike K0.46Mn2O4(H2O)1.4 hierarchical architectures and their catalytic degradation of formaldehyde in aqueous solution

    Science.gov (United States)

    Ahmed, Khalid Abdelazez Mohamed; Huang, Kaixun

    2014-04-01

    Novel flower-like birnessite type manganese oxide hierarchical architectures were hydrothermally synthesized from KMnO4 solution using sodium fluorite as a reductant in sulfuric acid medium at low temperature. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and X-ray photoelectron (XPS) spectroscopes confirm that the composition of the as-fabricated product. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), selected area electron diffraction (SA-ED), high resolution transmission electron microscopy (HR-TEM) and N2 adsorption-desorption isotherm reveal that the as-synthesized sample exhibits a microsized flower-like crystal with dense nanoleaves standing on their surfaces, polycrystalline, monoclinic phase structure and high BET surface area. On the basis of time-dependent experimental results, a possible mechanism for the formation of flowerlike structures is speculated. Their capability of catalytic degradation of formaldehyde solution with oxygen air bubbles were studied by using an acetylacetone calorimetric spectra, total organic carbon (TOC) method and turnover number (TON). In addition, the birnessite nanoflower is stable during the reaction and can be used repeatedly.

  2. Sol-gel based sensor for selective formaldehyde determination.

    Science.gov (United States)

    Bunkoed, Opas; Davis, Frank; Kanatharana, Proespichaya; Thavarungkul, Panote; Higson, Séamus P J

    2010-02-01

    We report the development of transparent sol-gels with entrapped sensitive and selective reagents for the detection of formaldehyde. The sampling method is based on the adsorption of formaldehyde from the air and reaction with beta-diketones (for example acetylacetone) in a sol-gel matrix to produce a yellow product, lutidine, which was detected directly. The proposed method does not require preparation of samples prior to analysis and allows both screening by visual detection and quantitative measurement by simple spectrophotometry. The detection limit of 0.03 ppmv formaldehyde is reported which is lower than the maximum exposure concentrations recommended by both the World Health Organisation (WHO) and the Occupational Safety and Health Administration (OSHA). This sampling method was found to give good reproducibility, the relative standard deviation at 0.2 and 1 ppmv being 6.3% and 4.6%, respectively. Other carbonyl compounds i.e. acetaldehyde, benzaldehyde, acetone and butanone do not interfere with this analytical approach. Results are provided for the determination of formaldehyde in indoor air.

  3. Separation and quantitation of methenamine in urine by ion-pair extraction.

    Science.gov (United States)

    Strom, J G; Jun, H W

    1986-04-01

    An ion-pair extraction technique is described for separating methenamine, a urinary tract antibacterial agent, from formaldehyde in human urine samples. Separation conditions are developed from extraction constants for the methenamine-bromocresol green ion-pair. The technique involves adsorption of the ion-pair onto a silica cartridge and elution with methylene chloride:1-pentanol (95:5). Methenamine is freed from the ion-pair by the addition of excess tetrabutylammonium iodide and converted to formaldehyde (determined spectrophotometrically) by reaction with ammonia and acetylacetone. Linear standard plots were obtained from urine containing methenamine which was diluted to 10-160 micrograms/mL. The lower limit of detection was 6 micrograms/mL of methenamine. Absolute recovery from urine was greater than or equal to 94.5%. The precision (CV) of detection of methenamine in the presence of formaldehyde was less than 2%, and less than or equal to 4.5% for the detection of formaldehyde in the presence of methenamine. No interferences were noted. The applicability of the method was demonstrated by analysis of human urine levels of both methenamine and formaldehyde following oral administration of a methenamine salt to a volunteer.

  4. High capacity magnetic mesoporous carbon-cobalt composite adsorbents for removal of methylene green from aqueous solutions.

    Science.gov (United States)

    Dai, Mingzhi; Vogt, Bryan D

    2012-12-01

    Mesoporous carbons containing cobalt nanoparticles are synthesized by tri-or quad-constituent self assembly of Pluronic F127, phenol-formaldehyde oligomer (resol), cobalt acetylacetonate (acac), and optionally tetraethyl orthosilicate (TEOS, optional). Upon pyrolysis in N(2) atmosphere, the resol provides sufficient carbon yield to maintain the ordered structure, while decomposition of the Co(acac) yields cobalt nanoparticles. To provide increased surface area, the dispersed silicate from condensation of TEOS can be etched after carbonization to yield micropores, Without silica templated micropores, the surface area decreases as the cobalt content increases, but there is a concurrent increase in the volume-average pore diameter (BHJ) and a dramatic increase in the adsorption capacity of methylene green with the equilibrium adsorption capacity from 2 to 90 mg/g with increasing Co content. Moreover, the surface area and pore size of mesoporous composites can be dramatically increased by addition of TEOS and subsequent etching. These composites exhibit extremely high adsorption capacity up to 1151 mg/g, which also increases with increases in the Co content. Additionally, the inclusion of cobalt nanoparticles provides magnetic separation from aqueous suspension. The in situ synthesis of the Co nanoparticles yields to a carbon shell that can partially protect the Co from leaching in acidic media; after 96 h in 2 M HCl, the powders remain magnetic.

  5. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries.

    Science.gov (United States)

    Prabu, Moni; Ketpang, Kriangsak; Shanmugam, Sangaraju

    2014-03-21

    A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a remarkable electrocatalytic activity towards oxygen reduction and evolution in an aqueous alkaline medium. The extraordinary bi-functional catalytic activity towards both ORR and OER was observed by the low over potential (0.84 V), which is better than that of noble metal catalysts [Pt/C (1.16 V), Ru/C (1.01 V) and Ir/C (0.92 V)], making them promising cathode materials for metal-air batteries. Furthermore, the rechargeable zinc-air battery with NCO-A1 as a bifunctional electrocatalyst displays high activity and stability during battery discharge, charge, and cycling processes. PMID:24496578

  6. Multi-Directional Growth of Aligned Carbon Nanotubes Over Catalyst Film Prepared by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Zhou Kai

    2010-01-01

    Full Text Available Abstract The structure of vertically aligned carbon nanotubes (CNTs severely depends on the properties of pre-prepared catalyst films. Aiming for the preparation of precisely controlled catalyst film, atomic layer deposition (ALD was employed to deposit uniform Fe2O3 film for the growth of CNT arrays on planar substrate surfaces as well as the curved ones. Iron acetylacetonate and ozone were introduced into the reactor alternately as precursors to realize the formation of catalyst films. By varying the deposition cycles, uniform and smooth Fe2O3 catalyst films with different thicknesses were obtained on Si/SiO2 substrate, which supported the growth of highly oriented few-walled CNT arrays. Utilizing the advantage of ALD process in coating non-planar surfaces, uniform catalyst films can also be successfully deposited onto quartz fibers. Aligned few-walled CNTs can be grafted on the quartz fibers, and they self-organized into a leaf-shaped structure due to the curved surface morphology. The growth of aligned CNTs on non-planar surfaces holds promise in constructing hierarchical CNT architectures in future.

  7. Synthesis of indium oxi-sulfide films by atomic layer deposition: The essential role of plasma enhancement

    Directory of Open Access Journals (Sweden)

    Cathy Bugot

    2013-11-01

    Full Text Available This paper describes the atomic layer deposition of In2(S,O3 films by using In(acac3 (acac = acetylacetonate, H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned.

  8. ZnO THIN FILMS PREPARED BY SPRAY-PYROLYSIS TECHNIQUE FROM ORGANO-METALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    Martin Mikulics

    2012-07-01

    Full Text Available Presented experiments utilize methanolic solution of zinc acetyl-acetonate as a precursor and sapphire (001 as a substrate for deposition of thin films of ZnO. The X-ray diffraction analysis revealed polycrystalline character of prepared films with preferential growth orientation along c-axis. The roughness of prepared films was assessed by AFM microscopy and represented by roughness root mean square (RMS value in range of 1.8 - 433 nm. The surface morphology was mapped by scanning electron microscopy showing periodical structure with several local defects. The optical transmittance spectrum of ZnO films was measured in wavelength range of 200-1000 nm. Prepared films are transparent in visible range with sharp ultra-violet cut-off at approximately 370 nm. Raman spectroscopy confirmed wurtzite structure and the presence of compressive stress within its structure as well as the occurrence of oxygen vacancies. The four-point Van der Pauw method was used to study the transport prosperities. The resistivity of presented ZnO films was found 8 × 10–2 Ω cm with carrier density of 1.3 × 1018 cm–3 and electron mobility of 40 cm2 V–1 s–1.

  9. Sensing Characteristics of Flame-Spray-Made Pt/ZnO Thick Films as H2 Gas Sensor

    Directory of Open Access Journals (Sweden)

    Nittaya Tamaekong

    2009-08-01

    Full Text Available Hydrogen sensing of thick films of nanoparticles of pristine, 0.2, 1.0 and 2.0 atomic percentage of Pt concentration doped ZnO were investigated. ZnO nanoparticles doped with 0.2–2.0 at.% Pt were successfully produced in a single step by flame spray pyrolysis (FSP technique using zinc naphthenate and platinum(II acetylacetonate as precursors dissolved in xylene. The particle properties were analyzed by XRD, BET, SEM and TEM. Under the 5/5 (precursor/oxygen flame condition, ZnO nanoparticles and nanorods were observed. The crystallite sizes of ZnO spheroidal and hexagonal particles were found to be ranging from 5 to 20 nm while ZnO nanorods were seen to be 5–20 nm wide and 20–40 nm long. ZnO nanoparticles paste composed of ethyl cellulose and terpineol as binder and solvent respectively was coated on Al2O3 substrate interdigitated with gold electrodes to form thin films by spin coating technique. The thin film morphology was analyzed by SEM technique. The gas sensing properties toward hydrogen (H2 was found that the 0.2 at.% Pt/ZnO sensing film showed an optimum H2 sensitivity of ~164 at hydrogen concentration in air of 1 volume% at 300 °C and a low hydrogen detection limit of 50 ppm at 300 °C operating temperature.

  10. Ultrafine FePd Nanoalloys Decorated Multiwalled Cabon Nanotubes toward Enhanced Ethanol Oxidation Reaction.

    Science.gov (United States)

    Wang, Yiran; He, Qingliang; Guo, Jiang; Wang, Jinmin; Luo, Zhiping; Shen, Tong D; Ding, Keqiang; Khasanov, Airat; Wei, Suying; Guo, Zhanhu

    2015-11-01

    Ultrafine iron-palladium (FePd) nanoalloys deposited on γ-Fe2O3, FePd-Fe2O3, further anchored on carboxyl multiwalled carbon nanotubes (MWNTs-COOH), FePd-Fe2O3/MWNTs, were successfully synthesized by a facile one-pot solution based method as thermally decomposing palladium acetylacetonate (Pd(acac)2) and iron pentacarbonyl (Fe(CO)5) in a refluxing dimethylformamide solution in the presence of MWNTs-COOH. A 3.65 fold increase of peak current density was observed in cyclic voltammetry (CV) for ethanol oxidation reaction (EOR) compared with that of Pd/MWNTs after normalizing to Pd mass. The greatly enhanced tolerance stability toward poisoning species and largely reduced charge transfer resistance were also obtained in chronoamperometry and electrochemical impedance spectroscopy due to the downward shifted d-band center of FePd alloy, easily formed oxygen containing species on Fe2O3, and the stabilizing role of the MWNTs. PMID:26435327

  11. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    Metalorganic chemical vapor deposition (MOCVD) was used in the present work. Un-doped and Al-doped ZnO films were developed using two reactors: Halogen Lamp Reactor (HLR) (a type of Cold Wall Reactor) and Hot Wall Reactor (HWR), and a comparison was made between them in terms of the film properties. Zinc acetylacetonate was used as precursor for ZnO films while aluminum acetylacetonate was used for doping. The amount of Al doping can be controlled by varying the gas flow rate. Well ordered films with aluminum content between 0 and 8 % were grown on borosilicate glass and silicon. The films obtained are 0.3 to 0.5 {mu}m thick, highly transparent and reproducible. The growth rate of ZnO films deposited using HLR is less than HWR. In HLR, the ZnO films are well oriented along c-axis ((002) plane). ZnO films are commonly oriented along the c-axis due to its low surface free energy. On the other hand, the HWR films are polycrystalline and with Al doping these films aligned along the a-axis ((100) plane) which is less commonly observed. The best films were obtained with the HLR method showing a minimum electrical resistivity of 2.4 m{omega}cm and transmittance of about 80 % in the visible range. The results obtained for Al-doped films using HLR are promising to be used as TCOs. The second material investigated in this work was un-doped and doped titanium dioxide (TiO{sub 2}) films- its preparation and characterization. It is well known that thermographic phosphors can be used as an optical method for the surface temperature measurement. For this application, the temperature-dependent luminescence properties of europium (III)-doped TiO{sub 2} thin films were studied. It was observed that only europium doped anatase films show the phosphorescence. Rutile phase do not show phosphorescence. The films were prepared by the sol-gel method using the dip coating technique. The structures of the films were determined by X-ray diffraction (XRD). The excitation and the emission

  12. Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts

    Science.gov (United States)

    Narayanan, Sekharipuram; Valdez, Thomas; Kumta, Prashant; Kim, Y.

    2005-01-01

    A sol-gel process has been developed as a superior alternative to a prior process for making platinum-ruthenium alloy catalysts for electro-oxidation of methanol in fuel cells. The starting materials in the prior process are chloride salts of platinum and ruthenium. The process involves multiple steps, is time-consuming, and yields a Pt-Ru product that has relatively low specific surface area and contains some chloride residue. Low specific surface area translates to incomplete utilization of the catalytic activity that might otherwise be available, while chloride residue further reduces catalytic activity ("poisons" the catalyst). In contrast, the sol-gel process involves fewer steps and less time, does not leave chloride residue, and yields a product of greater specific area and, hence, greater catalytic activity. In this sol-gel process (see figure), the starting materials are platinum(II) acetylacetonate [Pt(C5H7O2)2, also denoted Pt-acac] and ruthenium(III) acetylacetonate [Ru(C5H7O2)3, also denoted Ru-acac]. First, Pt-acac and Ru-acac are dissolved in acetone at the desired concentrations (typically, 0.00338 moles of each salt per 100 mL of acetone) at a temperature of 50 C. A solution of 25 percent tetramethylammonium hydroxide [(CH3)4NOH, also denoted TMAH] in methanol is added to the Pt-acac/Ruacac/ acetone solution to act as a high-molecular-weight hydrolyzing agent. The addition of the TMAH counteracts the undesired tendency of Pt-acac and Ru-acac to precipitate as separate phases during the subsequent evaporation of the solvent, thereby helping to yield a desired homogeneous amorphous gel. The solution is stirred for 10 minutes, then the solvent is evaporated until the solution becomes viscous, eventually transforming into a gel. The viscous gel is dried in air at a temperature of 170 C for about 10 hours. The dried gel is crushed to make a powder that is the immediate precursor of the final catalytic product. The precursor powder is converted to the

  13. Cathode materials produced by spray flame synthesis for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, NoorAshrina Binti A.

    2013-07-03

    Lithium ion batteries are one of the most enthralling rechargeable energy storage systems for portable application due to their high energy density. Nevertheless, with respect to electromobility innovation towards better electrochemical properties such as higher energy and power density is required. Altering the cathode material used in Li-ion batteries is favorable since the mass- and volume performance is closely related to the cathode electrode mass. Instead of using LiCoO{sub 2} as cathode electrode, LiFePO{sub 4} has gained serious attention as this material owns a high theoretical capacity of 170 mAh g{sup -1}. It is non-toxic, cheap and consists of abundant materials but suffers from low electronic and ionic conductivity. Utilization of nanotechnology methods in combination with composite formation is known to cure this problem effectively. In this work, a new combination of techniques using highly scalable gas-phase synthesis namely spray-flame synthesis and subsequent solid-state reaction has been used to synthesize nanocomposite LiFePO{sub 4}/C. At first this work deals with the formation and characterization of nanosize FePO{sub 4} from a solution of iron(III)acetylacetonate and tributyl phosphate in toluene using spray-flame synthesis. It was shown that a subsequent solid state reaction with Li{sub 2}CO{sub 3} and glucose yielded a LiFePO{sub 4}/C nanocomposite with very promising electrochemical properties. Based on these initial findings the influence of two synthesis parameter - carbon content and annealing temperature - was investigated towards the physicochemical properties of LiFePO{sub 4}/C. It was shown that an annealing temperature of 700 C leads to high purity composite materials consisting of crystalline LiFePO{sub 4} with crystallite sizes well below 100 nm and amorphous carbon consisting of disordered and graphite-like carbon. Variation of glucose amount between 10 and 30 wt% resulted in carbon contents between 2.1 and 7.3 wt%. In parallel

  14. A thermolysis approach to simultaneously achieve crystal phase- and shape-control of ternary M-Fe-O metal oxide nanoparticles

    Science.gov (United States)

    Huang, Chih-Chia; Chang, Chich-Neng; Yeh, Chen-Sheng

    2011-10-01

    Significant studies have achieved beautiful control in particle size, while the shape- and phase-control synthesis of nanoparticles remains an open challenge. In this study, we have developed a generalized methodology to selectively prepare either NaCl-type (reduced form) or spinel-type ferrite (oxidized form) M-Fe-O (M = Mn, Co) crystallites with high reproducibility. A two-step heating process was able to control formation of two types of crystal phase, either a thermodynamic spinel-type under air or a kinetic-control of NaCl-type (rock salt structure) under Ar in a cubic morphology. On the other hand, the three-step heating procedure in air obtained the spinel-type with a thermodynamic equilibrium octahedral shape exclusively. Either using metal acetates (M(ac)2) or metal acetylacetonates (M(acac)2) as the starting precursors (M = Mn, Co) can be introduced to prepare NaCl-type (reduced form) or spinel-type ferrite (oxidized form) crystallites with identical experimental parameters, including precursor concentration, reaction temperature, reaction time, and heating rate. The oleic acid molecule, reaction temperature, and heating rate employed in the synthesis were carefully examined and found acting as determined roles behind the reaction processes. Apart from the previous literature reports as shape-directed and/or stabilizing agents, the oleic acid molecule played an additional phase-tuning role.Significant studies have achieved beautiful control in particle size, while the shape- and phase-control synthesis of nanoparticles remains an open challenge. In this study, we have developed a generalized methodology to selectively prepare either NaCl-type (reduced form) or spinel-type ferrite (oxidized form) M-Fe-O (M = Mn, Co) crystallites with high reproducibility. A two-step heating process was able to control formation of two types of crystal phase, either a thermodynamic spinel-type under air or a kinetic-control of NaCl-type (rock salt structure) under Ar in a

  15. Free radical transfer in polymers

    International Nuclear Information System (INIS)

    For the present study of free-radical transfer in polymers pulse radiolysis and product studies have been carried out in aqueous solutions using thus far only the water-soluble polymers polyacrylic acid, polymethacrylic acid and polyvinyl alcohol. When OH radicals, generated in the radiolysis of N2O-saturated aqueous solutions, react with polymers the lifetime of the polymer radical thus created very much depends on the number of radicals per polymer chain. When there are a large number of radicals per chain their bimolecular decay may be faster than the corresponding (diffusion controlled) decay of monomeric radicals, but when the macromolecule contains only few or even just one radical their lifetime is considerably prolonged. Highly charged polymers such as polyacrylic acid at high pH attain a rod-like conformation which again favors a long lifetime of the radicals. Under such conditions, radical transfer reactions can occur. For example, in polyacrylic acid OH radicals generate two kinds of radicals side by side. The radical in β-position to the carboxylate group converts into the thermodynamically more stable α-radicals by an H-transfer reaction as can be followed by spectrophotometry. Besides radical transfer reactions β-fragmentation reactions occur causing chain scission. Such reactions can be followed in a pulse radiolysis experiment by conductometry, because counter ions are released upon chain scission. Such a process is especially effective in the case of polymethacrylic acid, where it results in a chain depolymerization. An intramolecular H-abstraction is also observed in the γ-radiolysis of polyacrylic acid with the corresponding peroxyl radicals. This causes a chain reaction to occur. The resulting hydroperoxides are unstable and decarboxylate given rise to acetylacetone-like products. In polyvinyl alcohol the peroxyl radicals in α-position to the alcohol function undergo HO2-elimination. This prevents a scission of the polymer chain in the

  16. Synthesis, electrochemical and photophysical properties of heterodinuclear Ru-Mn and Ru-Zn complexes bearing ambident Schiff base ligand.

    Science.gov (United States)

    Guillo, Pascal; Hamelin, Olivier; Loiseau, Frédérique; Pécaut, Jacques; Ménage, Stéphane

    2010-06-28

    While ruthenium tris(diimine) complexes have been extensively studied, this is not the case with ruthenium bis(diimine)X(2) complexes where X represents a pyridinyl-based ligand. The synthesis of a new complex ([2][PF(6)](2)) bearing two ambident Schiff base ligands (HL) constituted by the assembly of phenol and pyridinyl moieties is reported. Thanks to the heteroditopic property of HL, compound [2](2+) was used as an original metalloligand for the coordination of a redox-active (Mn(III)) and redox-inactive (Zn(II)) second metal cation affording three heterodinuclear complexes, namely, [(bpy)(2)Ru(2)Mn(acac)][PF(6)](2) ([3][PF(6)](2); acac = acetylacetonate), [(bpy)(2)Ru(2)Mn(OAc)][PF(6)](2) ([4][PF(6)](2), OAc = acetate), and [(bpy)(2)Ru(2)Zn][PF(6)](2) ([5][PF(6)](2)). The influence of the second metal with regard to the photophysical and electrochemical properties of the ruthenium bis(diimine)X(2) subunit was then investigated. In the case of Ru(II)-Mn(III) heterodinuclear complexes, a partial quenching of the luminescence was observed as a consequence of an efficient electron transfer process from the ruthenium to the manganese. EPR and spectrophotometric analyses of the oxidized species resulting from the one-electron oxidation of compounds [3](2+) and [4](2+) showed the formation of a Mn(IV) species for [3](2+) and an organic free radical for [4](2+). PMID:20485756

  17. New approach towards the polyol route to fabricate MFe{sub 2}O{sub 4} magnetic nanoparticles: The use of MCl{sub 2} and Fe(acac){sub 3} as chemical precursors

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Eduardo, E-mail: eduardo.solano@ugent.be [Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia (Spain); Yáñez, Ramón [Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Ricart, Susagna [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia (Spain); Ros, Josep [Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain)

    2015-05-15

    A new more efficient approach of the polyol route to generate MFe{sub 2}O{sub 4} (M=Mn, Fe, Co, Ni, Cu, Zn) nanoparticles in triethylene glycol (TREG) is presented. The selected thermal procedure is based on the Fe metalorganic precursor (iron(III) acetylacetonate) decomposition in presence of an inorganic transition metal chloride salt (MCl{sub 2}, M=Mn, Fe, Co, Ni, Cu, Zn) to produce high quality polar dispersible nanoparticles with lower production cost. In addition, the nanoparticles are stabilized by ionic (from the Cl{sup −}) and steric (TREG as capping ligand) effects inducing into the nanoparticles an extraordinary stability in different polar solvents. As result of this optimized methodology, the colloidal polar dispersible nanoparticles present a size around 10 nm with an adequate size dispersion demonstrated by analyzing transmission electron microscopy (TEM) images. X-ray powder diffraction (XRPD) results corroborate the absence of secondary phases and the high crystalline degree obtained for the spinel structure, fact proved by using synchrotron X-ray diffraction. The high magnetic performance at low and room temperature of the nanoparticles studied by magnetometry proves the high internal crystal order of the spinel. Parallel to this, the influence of the heating ramp and annealing time in the thermal procedure were also investigated for the CuFe{sub 2}O{sub 4} case, where a relationship between these two parameters and the final size and their associated diameter distribution was found, allowing a possible size control of the final ferrite magnetic nanoparticles synthesized. - Highlights: • An optimized one-pot methodology is presented to produce pure MFe{sub 2}O{sub 4} nanoparticles. • MCl{sub 2} and Fe(acac){sub 3} precursors in TREG are used for a more efficient process. • Polar dispersible nanoparticles are obtained with high physicochemical properties. • The influence of the temperature ramp and rate on the final size is studied.

  18. Synthesis of monodisperse MFe{sub 2}O{sub 4} (M = Fe and Zn) nanoparticles for polydiethylsiloxane-based ferrofluid with a solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631 (China); Zhuang, Lin, E-mail: stszhl@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Zhang, Yong [Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631 (China); Shen, Hui [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2015-09-15

    Highlights: • MFe{sub 2}O{sub 4} nanoparticles were synthesized through a facile solvothermal method. • The relationship between viscosity and temperature of the polydiethylsiloxane-based ferrofluid is discussed. • Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 73.06 emu/g at room temperature. - Abstract: Monodisperse MFe{sub 2}O{sub 4} (M = Fe, Zn) nanoparticles were successfully synthesized for the application of polydiethylsiloxane-based (PDES) ferrofluids (FFs) via a novel solvothermal method, with which 1-octanol and 1-octanamine act as binary solvent, oleic acid (OA) as the surfactant and metal acetylacetonate [M(acac){sub 3}](M = Fe and Zn) as the metal source. X-ray diffractometer confirms that the resultant nanoparticles are pure MFe{sub 2}O{sub 4} with a spinel structure. Infrared spectroscopy indicates that oleic acid is bound to the surface of MFe{sub 2}O{sub 4} through a covalent bond between carboxylate (COO{sup −}) and metal cations. The ratio of 1-octanol and 1-octanamine plays a key role in the formation of the sphere-shaped morphology. Transmission electron microscopy (TEM) images confirm that the Fe{sub 3}O{sub 4} particles are of 4–11 nm with good monodispersity and a narrow size distribution. The saturation magnetization of Fe{sub 3}O{sub 4} nanoparticles with sizes of 7 nm can reach up to 73.06 emu/g. Polydiethylsiloxane-based (PDES) FFs show relatively smaller changes of the viscosity with low temperatures (from −7 to 20 °C) than the polydimethylsiloxane-based (PDMS) FFs. For FFs applications, the relationship between viscosity and temperature is also discussed.

  19. The Effect of Precursor Ligands and Oxidation State in the Synthesis of Bimetallic Nano-Alloys

    KAUST Repository

    LaGrow, Alec P.

    2015-05-12

    The characteristics of bimetallic nanomaterials are dictated by their size, shape and elemental distribution. Solution synthesis is widely utilized to form nanomaterials, such as nanoparticles, with controlled size and shape. However, the effects of variables on the characteristics of bimetallic nanomaterials are not completely understood. In this study, we used a continuous-flow synthetic strategy to explore the effects of the ligands and the oxidation state of a metal precursor in a shape-controlled synthesis on the final shape of the nanomaterials and the elemental distribution within the alloy. We demonstrate that this strategy can tune the size of monodisperse PtM (M=Ni or Cu) alloy nanocrystals ranging from 3 to 16 nm with an octahedral shape using acetylacetonate or halide precursors of Pt(II), Pt(IV) and Ni or Cu (II). The nanoparticles formed from halide precursors showed an enrichment of platinum on their surfaces, and the bromides could oxidatively etch the nanoparticles during synthesis with the O2/Br- pair. The two nanocrystal precursors can be uti-lized independently and can control the size with a trend of Pt(acac)2

  20. Luminescent rare earth vanadate nanoparticles doped with Eu3+ and Bi3 for sensing and imaging applications

    Science.gov (United States)

    Escudero, Alberto; Carrillo-Carrión, Carolina; Zyuzin, Mikhail; Hartmann, Raimo; Ashraf, Sumaira; Parak, Wolfgang J.

    2016-03-01

    Nanoparticles (NPs) are attracting interest in nanomedicine due to their potential medical applications, ranging from optical biolabels and contrast agents for magnetic resonance imaging to carriers for drug and gene delivery for disease therapy.[1] Rare earth (RE) based nanophosphors exhibit important advantages compared with other available luminescent materials, such as quantum dots and nanostructures functionalized with organic dyes, due to their lower toxicities, photostabilities, high thermal and chemical stabilities, high luminescence quantum yields, and sharp emission bands.[2] Yttrium orthovanadate NPs doped with Eu3+ and Bi3+, functionalized with poly acryl acid (PAA), and excitable by near-ultraviolet light have been synthesized by homogeneous precipitation at 120 °C from solutions of rare earth precursors (yttrium acetylacetonate and europium nitrate), bismuth nitrate, sodium orthovanadate, and PAA, in an ethylene glycol/water mixture. Quasispheres with sizes from 93 to 51 nm were obtained. The as synthesized NPs were already functionalized with PAA. The NPs showed the typical red luminescence of Eu3+, which can be excited with near-UV light through an energy transfer from the vanadate anion. The presence of Bi3+ shifts the maximum of the broad excitation band from 280 nm to 342 nm. This excitation path is much more efficient than the direct excitation of the Eu3+ electronic levels, and results in a much higher luminescence. The NPs can be uptaken by HeLa cells, and are eventually located in the lysosomes after being internalized. Finally, the functionalization with PAA provides -COOH anchors for adding functional ligands of biomedical interest that can be used for sensing applications.

  1. Hybrid white organic light-emitting devices based on phosphorescent iridium-benzotriazole orange-red and fluorescent blue emitters

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhen-Yuan, E-mail: xiazhenyuan@hotmail.com [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Su, Jian-Hua [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Chang, Chi-Sheng; Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan 300 (China)

    2013-03-15

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange-red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N{sup 1},C{sup 3}] iridium acetylacetonate, Ir(TBT){sub 2}(acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1 Prime ;4 Prime ,1 Double-Prime ]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT){sub 2}(acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N Prime -(4,4 Prime -(1E,1 Prime E)-2,2 Prime -(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange-red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3} ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: Black-Right-Pointing-Pointer An iridium-based orange-red phosphor Ir(TBT){sub 2}(acac) was applied in hybrid white OLEDs. Black-Right-Pointing-Pointer Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. Black-Right-Pointing-Pointer Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  2. Catalytic nanomedicine technology: copper complexes loaded on titania nanomaterials as cytotoxic agents of cancer cell.

    Science.gov (United States)

    Lopez, Tessy; Ortiz-Islas, Emma; Guevara, Patricia; Gómez, Esteban

    2013-01-01

    The anticancer properties of pure copper (II) acetate and copper (II) acetylacetonate, alone and loaded on functionalized sol-gel titania (TiO(2)), were determined in four different cancer cell lines (C6, RG2, B16, and U373), using increasing concentrations of these compounds. The copper complexes were loaded onto the TiO(2) network during its preparation by the solgel process. Once copper-TiO(2) materials were obtained, these were characterized by several physical-chemical techniques. An in vitro copper complex-release test was developed in an aqueous medium at room temperature and monitored by ultraviolet spectroscopy. The toxic effect of the copper complexes, alone and loaded on TiO(2), was determined using a cell viability 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, when cancer cells were treated with increasing concentrations (15.75-1000 mg/mL) of these. Characterization studies revealed that the addition of copper complexes to the TiO(2) sol-gel network during its preparation, did not generate changes in the molecular structure of the complexes. The surface area, pore volume, and pore diameter were affected by the copper complex additions and by the crystalline phases obtained. The kinetic profiles of both copper complexes released indicated two different stages of release: The first one was governed by first-order kinetics and the second was governed by zero-order kinetics. The cell viability assay revealed a cytotoxic effect of copper complexes, copper-TiO(2), and cisplatin in a dose-dependent response for all the cell lines; however, the copper complexes exhibited a better cytotoxic effect than the cisplatin compound. TiO(2) alone presented a minor cytotoxicity for C6 and B16 cells; however, it did not cause any toxic effect on the RG2 and U373 cells, which indicates its high biocompatibility with these cells. PMID:23413123

  3. A Facile Synthesis of MPd (M=Co, Cu) Nanoparticles and Their Catalysis for Formic Acid Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Vismadeb [Brown University; Chi, Miaofang [ORNL; Mankin, Max [Brown University; Liu, Yi [Brown University; Metin, Onder [Ataturk University; Sun, Daohua [Xiamen University, China; More, Karren Leslie [ORNL; Sun, Shouheng [Brown University

    2012-01-01

    Monodisperse CoPd nanoparticles (NPs) were synthesized and studied for catalytic formic acid (HCOOH) oxidation (FAO). The NPs were prepared by coreduction of Co(acac)2 (acac = acetylacetonate) and PdBr2 at 260 C in oleylamine and trioctylphosphine, and their sizes (5-12 nm) and compositions (Co10Pd90 to Co60Pd40) were controlled by heating ramp rate, metal salt concentration, or metal molar ratios. The 8 nm CoPd NPs were activated for HCOOH oxidation by a simple ethanol wash. In 0.1 M HClO4 and 2 M HCOOH solution, their catalytic activities followed the trend of Co50Pd50 > Co60Pd40 > Co10Pd90 > Pd. The Co50Pd50 NPs had an oxidation peak at 0.4 V with a peak current density of 774 A/gPd. As a comparison, commercial Pd catalysts showed an oxidation peak at 0.75 V with peak current density of only 254 A/gPd. The synthesis procedure could also be extended to prepare CuPd NPs when Co(acac)2 was replaced by Cu(ac)2 (ac = acetate) in an otherwise identical condition. The CuPd NPs were less active catalysts than CoPd or even Pd for FAO in HClO4 solution. The synthesis provides a general approach to Pd-based bimetallic NPs and will enable further investigation of Pd-based alloy NPs for electro-oxidation and other catalytic reactions.

  4. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NOx in exhaled human breath

    International Nuclear Information System (INIS)

    Different analytical devices were tested and evaluated for their suitability of breath gas analysis by examining the physiological parameters and chemical substances in the exhaled breath of ten healthy probands during light cycling in dependence of methanol-rich nutrition. The probands exercised under normal breathing conditions on a bicycle ergometer. Breath air was exhaled into a glass cylinder and collected under steady-state conditions. Non-invasively measured parameters were pulse rate, breath frequency, temperature, relative humidity, NOx, total volatile organic compounds (TVOCPAS), carbon dioxide (CO2), formaldehyde, methanol, acetaldehyde, acetone, isoprene and volatile organic compounds (VOCs). Methanol rich food and beverages strongly influenced the concentration of methanol and other organic substances in human breath. On the other hand, nutrition and smoking had no clear effect on the physical conditions of the probands. The proton transfer reaction mass spectrometry (PTR-MS) method was found to be very suitable for the analysis of breath gas but the m/z 31, if assigned to formaldehyde, is sensitive to interferences. The time vs. concentration curves of nitric oxide showed sudden peaks up to 120 ppb in most of the measurements. In one case a strong interference of the NOx signal was observed. The time resolved analysis of exhaled breath gas is of high capability and significance for different applications if reliable analytical techniques are used. Some compounds like nitric oxide (NO), methanol, different VOCs as well as sum parameters like TVOCPAS are especially suitable as markers. Formaldehyde, which is rapidly metabolized in the human body, could be measured reliably as a trace component by the acetylacetone (acac) method but not by PTR-MS.

  5. 分光光度法测定甲醛甲酚溶液中甲醛的含量%Measurement of Formaldehyde in Formaldehyde and Cresol Solution by Spectrophotometry

    Institute of Scientific and Technical Information of China (English)

    贡雪芃; 黄丽华; 施春阳

    2011-01-01

    目的 建立甲醛甲酚溶液中甲醛的含量测定方法.方法 利用甲醛与乙酰丙酮及铵离子反应,生成黄紫色化合物,采用分光光度法进行测定.结果 确定检测波长为413 nm,甲醛量在4.39~30.73 μg范围内线性关系良好(R2=0.999 9),平均回收率99.4%,RSD=1.4%.结论 该方法准确、精密、稳定,专属性强,具有较好的耐用性,能够很好测定甲醛甲酚溶液中甲醛的含量.%Objective To set up a method for detecting formaldehyde in formaldehyde and cresol solution. Methods Based on a yellow-purple complex with a specific absorption wavelength at 413 nm yielded by reacting with NH+4 and acetylacetone, the formaldehyde in formaldehyde and cresol solution was measured by spectrophotometry. Results There was a good linearization between the absorbency from UV and formaldehyde within 4. 39 ~ 30. 73 μg , FT = 0. 999 9. The average recovery was 99.4% and RSD 1. 4%. Conclusion The method is accurate, simple, rapid, specific and can be used to measure formaldehyde in formaldehyde and cresol solution.

  6. Synthesis and fabrication of Y{sub 2}O{sub 3}:Tb{sup 3+} and Y{sub 2}O{sub 3}:Eu{sup 3+} thin films for electroluminescent applications: Optical and structural characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Alarcón-Flores, G., E-mail: alar_fbeto@yahoo.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, IPN, Legaría 694, Irrigación, C.P. 11500, México D.F. (Mexico); García-Hipólito, M. [Instituto de Investigaciones en Materiales, UNAM, Apdo. Postal 70-360, Delegación Coyoacán, C.P. 04150, México D.F. (Mexico); Aguilar-Frutis, M. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, IPN, Legaría 694, Irrigación, C.P. 11500, México D.F. (Mexico); Carmona-Téllez, S. [Instituto de Física, UNAM, Coyoacán, C.P. 04150, México D.F. (Mexico); Martinez-Martinez, R. [Universidad Tecnológica de la Mixteca, Carretera Acatlima Km 2.5, Huajuapan de León Oaxaca, C.P. 69000, México (Mexico); Campos-Arias, M.P. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, IPN, Legaría 694, Irrigación, C.P. 11500, México D.F. (Mexico); Zaleta-Alejandre, E. [Universidad Autónoma del Estado de Hidalgo-Escuela Superior de Apan, Carretera Apan-Calpulalpan Km. 8, C.P. 43920, Apan, Hidalgo (Mexico); and others

    2015-01-15

    Terbium, europium and yttrium β diketonates have been synthesized from acetylacetone and inorganic metal salts and used as precursors for the deposition of Tb{sup 3+} or Eu{sup 3+} doped Y{sub 2}O{sub 3} polycrystalline films by the ultrasonic spray pyrolysis technique. The films were deposited on c-Si substrates at temperatures in the 400–550 °C range. The optical and structural characterization of these films as a function of substrate temperature and Tb{sup 3+} and Eu{sup 3+} concentration was carried out by means of photoluminescence (PL), cathodoluminescence (CL), infrared (IR), ellipsometry, and UV–visible spectroscopy and atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X ray diffraction (XRD) measurements respectively. The PL intensity from these films was found to depend on deposition temperature. Films deposited above 450 °C exhibited the characteristic PL peaks associated with either Tb{sup 3+} or Eu{sup 3+} intra electronic energy levels transitions. The most intense PL emission was found for dopant concentration of 10 at% for Tb{sup 3+} and at 8 at% for Eu{sup 3+} ions into precursor solution. In both cases concentration quenching of the PL emission was observed for concentrations above these values. The films had a refractive index (1.81), low average surface roughness (∼62 Å) and a UV–Vis. transmission of the order of 90 %T. - Highlights: • Terbium, europium and yttrium β diketonates have been synthesized. • Luminescent thin films of Y{sub 2}O{sub 3}:Tb{sup 3+} and Y{sub 2}O{sub 3}:Eu{sup 3+} were obtained. • Optical and structural characteristics of these thin films are presented. • The films had a refractive index (1.81) and low average surface roughness (∼62 Å)

  7. Separations systems data base: a users' manual. Revision I

    International Nuclear Information System (INIS)

    A separations systems data base (SEPSYS), designed specifically for the retrieval of information needed in chemical separations problems (i.e., how to perform a given separation under given conditions), is described. Included are descriptions of the basic methods of searching and retrieving information from the data base, the procedure for entering records into the data base, a listing of additional references concerning the computer information process, and an example of a typical record. The initial entries are concerned primarily with liquid-liquid extraction and liquid-solid ion exchange methods for metal ions and salts; however, the data base is constructed so that almost any separation process can be accommodated. Each record is indexed with information provided under the following fields: author; title; publication source; data of publication; organization sponsoring the work; brief abstract of the work; abstract number if the work has been so referenced, and/or abstractors initials; type of separation system used (e.g., flotation); specific or generic name of the separation agent used (e.g., acetylacetone); list of substances separated (e.g., gold, copper); qualitative description of the supporting medium or matrix containing the substances before separation (e.g., nitrate); type of literature where the record was printed (e.g., book); and type of information that the article contains. Each of these fields may be searched independently of the others (or in combination), and the last six fields contain specific key words that are listed in the report. Definitions are provided for the 36 information terms

  8. Chemical vapor deposition (CVD) of uranium for alpha spectrometry; Deposicion quimica de vapor (CVD) de uranio para espectrometria alfa

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez V, M. L.; Rios M, C.; Ramirez O, J.; Davila R, J. I.; Mireles G, F., E-mail: luisalawliet@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2015-09-15

    The uranium determination through radiometric techniques as alpha spectrometry requires for its proper analysis, preparation methods of the source to analyze and procedures for the deposit of this on a surface or substrate. Given the characteristics of alpha particles (small penetration distance and great loss of energy during their journey or its interaction with the matter), is important to ensure that the prepared sources are thin, to avoid problems of self-absorption. The routine methods used for this are the cathodic electro deposition and the direct evaporation, among others. In this paper the use of technique of chemical vapor deposition (CVD) for the preparation of uranium sources is investigated; because by this, is possible to obtain thin films (much thinner than those resulting from electro deposition or evaporation) on a substrate and comprises reacting a precursor with a gas, which in turn serves as a carrier of the reaction products to achieve deposition. Preliminary results of the chemical vapor deposition of uranium are presented, synthesizing and using as precursor molecule the uranyl acetylacetonate, using oxygen as carrier gas for the deposition reaction on a glass substrate. The uranium films obtained were found suitable for alpha spectrometry. The variables taken into account were the precursor sublimation temperatures and deposition temperature, the reaction time and the type and flow of carrier gas. Of the investigated conditions, two depositions with encouraging results that can serve as reference for further work to improve the technique presented here were selected. Alpha spectra obtained for these depositions and the characterization of the representative samples by scanning electron microscopy and X-ray diffraction are also presented. (Author)

  9. Obtention of zirconia films stabilized with Yttria via pyrolysis spray: study of the solvent influence; Obtencao de filmes de zirconia estabilizada com itria via spray pirolise: estudo da influencia do solvente

    Energy Technology Data Exchange (ETDEWEB)

    Halmenschlager, Cibele Melo; Vieira, Ramaugusto da Porciuncula; Takimi, Antonio Shigueaki; Bergmann, Carlos Perez; Silva, Aline Lima da; Malfatti, Celia de Fraga [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais (PPGEM). Lab. de Materiais Ceramicos (LACER)]. E-mail: cibelemh@yahoo.com.br

    2008-07-01

    Yttria-stabilized-zirconia (YSZ) has been object of many studies, due to its great chemical stability and excellent ionic conduction in high temperature. This material has been studies with an intention of to be used with electrolyte of oxide solid fuel cells, which work in high temperature. The aim of the present work was to evaluate the influence of the solvent on the elaboration of crystalline films of YSZ via spray pyrolysis. The film was prepared by spray pyrolysis with zirconium acetylacetonate (Zr(C{sub 6}H{sub 7}O{sub 2}){sub 4}) and yttrium chloride (YCl{sub 3}.6H{sub 2}O), dissolved in different solvents: ethanol (C{sub 2}H{sub 6}O), ethanol (C{sub 2}H{sub 6}O) + propyleneglycol (C{sub 3}H{sub 8}O{sub 2}) with volume ratio (1:1) and ethanol (C{sub 2}H{sub 6}O) + diethylene glycol butyl ether (C{sub 8}H{sub 18}O{sub 3}) with volume ratio of 1:1. A disk of steel 316L was used as substrate. The amorphous film was deposited in the substrate heated at 280 deg C {+-} 50 deg C. After deposition from thermal treatment at 700 deg C the amorphous film was changed into Yttria-stabilized-zirconia film. The thermal behavior of the films has been studied by both (DTA/TGA) thermogravimetric and mass spectroscopy analyses. The morphology and crystalline phase of the films was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The YSZ film obtained after heat treatment was dense and crystalline, however, the analyses indicate a significant influence of the solvent and of the substrate temperature during the deposition process on the film morphology.(author)

  10. Epoxidación de aceite de soja refinado mediante oxígeno molecular. Influencia de las variables. Estudio cinético

    Directory of Open Access Journals (Sweden)

    Martínez de la Cuesta, P. J.

    1991-02-01

    Full Text Available The influences of temperature, concentration of catalyst and initial concentration of unsaturation on epoxide formation and esters from oleic and linoleic acids disappearance in liquid phase epoxidation reaction by molecular oxygen of soy-bean oil using molibdenyl-acetylacetonate as catalyst, has been studied. From experimental data obtained by a complex factorial design, an equation for epoxide formation reaction rate as a function of temperature, catalyst concentration and unsaturation initial concentration were deduced. A kinetic model is proposed too and using a calculation program based on 4th Order Runge-Kutta numerical procedure to simulate the reactions that took place, the kinetic coefficients and activation energies that best fitted the calculated data to the experimental data were determined.

    Se ha estudiado la influencia de la temperatura, concentración de catalizador y concentración inicial de insaturación sobre la formación de epóxido y desaparición de los esteres de los ácidos oleico y linoleico, en la reacción de epoxidación en fase líquida de aceite de soja con oxígeno molecular usando acetilacetonato de molibdenilo (AAMo como catalizador. A partir de los datos, obtenidos según un diseño factorial complejo, se ha deducido una ecuación para la velocidad de formación de epóxido en función de las tres variables estudiadas. Se propone también un modelo cinético a partir del cual, y siguiendo el método numérico de Runge-Kutta que simula la reacción que tiene lugar, se determinan los valores de las constantes cinéticas y respectivas energías de activación.

  11. Exploitation of pulsed flows for on-line dispersive liquid-liquid microextraction: Spectrophotometric determination of formaldehyde in milk.

    Science.gov (United States)

    Nascimento, Carina F; Brasil, Marcos A S; Costa, Susana P F; Pinto, Paula C A G; Saraiva, Maria Lúcia M F S; Rocha, Fábio R P

    2015-11-01

    Formaldehyde is often added to foods as a preservative, but it is highly toxic to humans, having been identified as a carcinogenic substance. It has also been used for the adulteration of milk in order to diminish the bacteria count and increase the shelf life of the product. Herein, we present a green dispersive liquid-liquid microextraction procedure in a flow-batch system for the determination of formaldehyde in milk. Pulsed flows were exploited for the first time to improve the dispersion of the extractant in the aqueous phase. The Hantzsch reaction was used for the derivatization of formaldehyde and the product was extracted with the ionic liquid (IL) trihexyltetradecylphosphonium chloride with methanol as the disperser. The flow-batch chamber was made of stainless steel with the facility for resistive heating to speed up the derivatization reaction. Spectrophotometric measurements were directly carried out in the organic phase using an optical fiber spectrophotometer. The limit of detection and coefficient of variation were 100 μg L(-1) and 3.1% (n=10), respectively, with a linear response from 0.5 to 5.0 mg L(-1), described by the equation A=0.088+0.116CF (mg L(-1)) in which A is absorbance and CF is formaldehyde concentration in mg L(-1). The estimated recoveries of formaldehyde from spiked milk samples ranged from 91% to 106% and the slopes of the analytical curves obtained with reference solutions in water or milk were in agreement, thus indicating the absence of matrix effects. Accuracy was demonstrated by the agreement of the results with those achieved by the reference fluorimetric procedure at the 95% confidence level. The proposed procedure allows for 10 extractions per hour, with minimized reagent consumption (120 μL of IL and 3.5 μL acetylacetone) and generation of only 6.7 mL waste per determination, which contribute to the eco-friendliness of the procedure.

  12. Remedial action of matrices contaminated by cobalt with supercritical CO{sub 2}: contribution to the understanding of the complex formation mechanisms and to the diphasic transfers; Rehabilitation de matrices contaminees par du cobalt a l'aide du CO{sub 2} supercritique: contribution a la comprehension des mecanismes de complexation et de transferts diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Gervais, F

    2001-10-15

    The treatment of polluted soils by supercritical CO{sub 2} extraction seems to be an interesting alternative to the existing depollution techniques. The main interest of this process is the low effluents volume generated during the treatment. The extraction of metals or radionuclides by this technique requires their preliminary complexation by complexing or chelating agents. The {beta}-diketones and the dithiocarbamates (fluorinated or not) have been chosen for this study. The first part of this study deals with the study of the phenomena which govern the chemical equilibria in an aqueous phase simulating a soil solution. The complexing tests reveal a very slow cobalt acetylacetonate formation velocity and this complex presents a well-marked absorbent character. On the other hand the formation of the complex between cobalt and dithiocarbamate is instantaneous and the complex formed is very hydrophobic. The mass transfers between an aqueous phase and an extracting phase (hexane and supercritical CO{sub 2}) applied to ligands and preformed complexes are studied too in this work. CO{sub 2} seems to have a superior affinity to those of the hexane for the fluorinated {beta}-diketones, ligand or complex, contrarily to hexane. This tendency is confirmed by in-situ solubility measurements of fluorinated or non fluorinated commercial complexes, by X-ray absorption spectroscopy. Nevertheless, globally, the cobalt-{beta}-diketones complexes are rather absorbent because of their partial hydration. This type of ligand is then not necessarily adapted to cobalt extraction by supercritical CO{sub 2} of an aqueous phase. On the other hand, the dithiocarbamates being hydrophobic, their distribution coefficient is higher than those given by the {beta}-diketonates in hexane or in supercritical CO{sub 2}. The metals extraction of a liquid matrix seems then more promising with this ligands family. (O.M.)

  13. Dysprosium complexes with the tetraphenylporphyrin macrocyclic ligand; Complejos de disprosio con el ligante macrociclico tetrafenilporfirina

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, V.; Padilla, J.; Ramirez, F.M

    1992-04-15

    In this report, the results obtained on the synthesis, characterization and study of the chemical behavior of dysprosium complex with the acetylacetone chelating agent (Hacac) and the tetraphenylporphyrin macrocyclic ligand (H{sub 2}TFP) are given. Based on the literature but according to our necessities and interest, the appropriate methodology settled down from the synthesis of prime matters until the obtaining and characterization of the products. The acetyl acetonate complex was obtained of mono hydrated dysprosium [Dy(acac){sub 3}. H{sub 2}0] and trihydrated [Dy(acac){sub 3} .3 H{sub 2}0], the mono tetra phenyl porphyrinate [Dy(TFP)(acac). 2 ac] the double sandwich of the dysprosium porphyrinate [Dy(TFP){sub 2}] and the triple sandwich of the dysprosium porphyrinate [Dy(TFP){sub 3}. 2 TCB] (TCB = trichlorobenzene). Its were characterized by their melting points, solubility, IR, UV, TGA and DTA both first and besides the techniques already mentioned for NMR'H, RPE and Magnetic susceptibility the three last complexes. From the spectroscopic point of view, IR and RPE its suggested the existence of a complex of inverse mixed valence [Dy(TFP){sup 2-} (TFP) {sup 1-}] for the Dy(TFP){sub 2} as a result of the existence of the free radical (TFP' {sup 1-} and that it was not in none of the other porphyrin compounds. In the NMR'H spectra of the compounds were not observed signals in the region from 0 to 10 ppm that which shows that the dysprosium complexes in special those of the porphyrin type are highly paramagnetic and its could be used as displacement reagents, creators of images and contrast agents of great utility in these days in studies of NMR, technique today by today used in medical diagnoses. (Author)

  14. Dry Sintered Metal Coating of Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    James C. Nicholson

    2016-09-01

    Full Text Available Halloysite nanotubes (HNTs are a naturally-occurring aluminosilicate whose dimensions measure microns in length and tens of nanometers in diameter. Bonding defects between the alumina and silica lead to net negative and positive charges on the exterior and interior lumen, respectively. HNTs have been shown to enhance the material properties of polymer matrices and enable the sustained release of loaded chemicals, drugs, and growth factors. Due to the net charges, these nanotubes can also be readily coated in layered-depositions using the HNT exterior lumen’s net negative charge as the basis for assembly. These coatings are primarily done through wet chemical processes, the majority of which are limited in their use of desired chemicals, due to the polarity of the halloysite. Furthermore, this restriction in the type of chemicals used often requires the use of more toxic chemicals in place of greener options, and typically necessitates the use of a significantly longer chemical process to achieve the desired coating. In this study, we show that HNTs can be coated with metal acetylacetonates—compounds primarily employed in the synthesis of nanoparticles, as metal catalysts, and as NMR shift reagents—through a dry sintering process. This method was capable of thermally decaying the metal acetylacetonate, resulting in a free positively-charged metal ion that readily bonded to the negatively-charged HNT exterior, resulting in metallic coatings forming on the HNT surface. Our coating method may enable greater deposition of coated material onto these nanotubes as required for a desired application. Furthermore, the use of chemical processes using toxic chemicals is not required, thus eliminating exposure to toxic chemicals and costs associated with the disposal of the resultant chemical waste.

  15. Coordination Chemistry Inside Polymeric Nanoreactors: Interparticle Metal Exchange and Ionic Compound Vectorization in Phosphine-Functionalized Amphiphilic Polymer Latexes.

    Science.gov (United States)

    Chen, Si; Gayet, Florence; Manoury, Eric; Joumaa, Ahmad; Lansalot, Muriel; D'Agosto, Franck; Poli, Rinaldo

    2016-04-25

    Stable latexes of hierarchically organized core-cross-linked polymer micelles that are functionalized at the core with triphenylphosphine (TPP@CCM) have been investigated by NMR spectroscopic analysis at both natural (ca. pH 5) and strongly basic (pH 13.6) pH values after core swelling with toluene. The core-shell interface structuring forces part of the hydrophilic poly(ethylene oxide) (PEO) chains to reside inside the hydrophobic core at both pH values. Loading the particle cores with [Rh(acac)(CO)2 ] (acac=acetylacetonate) at various Rh/P ratios yielded polymer-supported [Rh(acac)(CO)(TPP)] (TPP=triphenylphosphine). The particle-to-particle rhodium migration is very fast at natural pH, but slows down dramatically at high pH, whereas the size distribution of the nanoreactors remains unchanged. The slow migration at pH 13.6 leads to the generation of polymer-anchored [Rh(OH)(CO)(TPP)2 ], which is also generated immediately upon the addition of NaOH to the particles with a [Rh(acac)(CO)] loading of 50 %. Similarly, treatment of the same particles with NaCl yielded polymer-anchored [RhCl(CO)(TPP)2 ]. Interparticle coupling occurs during these rapid processes. These experiments prove that the major contribution to metal migration is direct core-core contact. The slow migration at the high pH value, however, must result from a pathway that does not involve core-core contact. The facile penetration of the polymer cores by NaOH and NaCl results from the presence of shell-linked poly(ethylene oxide) methyl ether functions both outside and inside the polymer core-shell interface. PMID:27001452

  16. Synthesis and characterization of ZnO/CuInS2 nanocomposite and investigation of their photocatalytic properties under visible light irradiation

    Science.gov (United States)

    Fakhri, H.; Mahjoub, A. R.; Khavar, A. H. Cheshme

    2014-11-01

    In this work, CuInS2 (CIS) nanoparticles were synthesized via a simple and efficient reflux route and were composite with different nanostructures of ZnO by a thermal treatment process. The particle size of 56 nm was obtained using cupper acetylacetonate (Cu(acac)2), thioacetamide (C2H5NS), indium(III) chloride tetrahydrate (InCl3·4H2O) and ethylene glycol as a solvent at the reaction time of 90 min. The product was characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and ultraviolet-visible spectroscopy (UV-vis). SEM images presented the particle morphology of the CIS sample and flower-like, narcis and particle morphologies for the ZnO samples in the arranged reaction conditions. The band gap energy of 1.55 eV estimated by the diffuse reflectance spectroscopy (DRS) for CIS nanoparticles, exhibited that this product can be appropriate for photocatalytic activity in the visible region of solar spectrum. Photocatalytic activity of ZnO/CIS nanocomposite was determined by photodegradation of crystal violet under visible light irradiation. Results showed that the presence of the CIS nanoparticles improves the efficiency of the photocatalytic activity of ZnO and the removal efficiency up to 100%, which prove capability of CIS nanoparticles to depredate crystal violet from aqueous solution. In this paper, the effects of morphology of ZnO nanostructures and initial pH of solution on the photocatalytic activity are investigated.

  17. Synthesis and characterization of ZnO/CuInS{sub 2} nanocomposite and investigation of their photocatalytic properties under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, H., E-mail: hanieh_fakhrie@yahoo.com; Mahjoub, A.R., E-mail: mahjouba@modares.ac.ir; Khavar, A.H. Cheshme

    2014-11-01

    Highlights: • The CuInS{sub 2} nanocrystals have been successfully synthesized by the new reflux route. • The effect of surfactant on the morphology was investigated. • The effect of morphology of ZnO on the photocatalytic activity was investigated. • The optimal pH was obtained for photocatalytic process. - Abstract: In this work, CuInS{sub 2} (CIS) nanoparticles were synthesized via a simple and efficient reflux route and were composite with different nanostructures of ZnO by a thermal treatment process. The particle size of 56 nm was obtained using cupper acetylacetonate (Cu(acac){sub 2}), thioacetamide (C{sub 2}H{sub 5}NS), indium(III) chloride tetrahydrate (InCl{sub 3}·4H{sub 2}O) and ethylene glycol as a solvent at the reaction time of 90 min. The product was characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and ultraviolet–visible spectroscopy (UV–vis). SEM images presented the particle morphology of the CIS sample and flower-like, narcis and particle morphologies for the ZnO samples in the arranged reaction conditions. The band gap energy of 1.55 eV estimated by the diffuse reflectance spectroscopy (DRS) for CIS nanoparticles, exhibited that this product can be appropriate for photocatalytic activity in the visible region of solar spectrum. Photocatalytic activity of ZnO/CIS nanocomposite was determined by photodegradation of crystal violet under visible light irradiation. Results showed that the presence of the CIS nanoparticles improves the efficiency of the photocatalytic activity of ZnO and the removal efficiency up to 100%, which prove capability of CIS nanoparticles to depredate crystal violet from aqueous solution. In this paper, the effects of morphology of ZnO nanostructures and initial pH of solution on the photocatalytic activity are investigated.

  18. Effect of iron salt counter ion in dose-response curves for inactivation of Fusarium solani in water through solar driven Fenton-like processes

    Science.gov (United States)

    Aurioles-López, Verónica; Polo-López, M. Inmaculada; Fernández-Ibáñez, Pilar; López-Malo, Aurelio; Bandala, Erick R.

    2016-02-01

    The inactivation of Fusarium solani in water was assessed by solar driven Fenton-like processes using three different iron salts: ferric acetylacetonate (Fe(acac)3), ferric chloride (FeCl3) and ferrous sulfate (FeSO4). The experimental conditions tested were [Fe] ≈ 5 mg L-1, [H2O2] ≈ 10 mg L-1 and [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1 mild and high, respectively, and pH 3.0 and 5.0, under solar radiation. The highest inactivation rates were observed at high reaction conditions for the three iron salts tested at pH 5.0 with less than 3.0 kJ L-1 of accumulate energy (QUV) to achieve over 99.9% of F. solani inactivation. Fe(acac)3 was the best iron salt to accomplishing F. solani inactivation. The modified Fermi equation was used to fix the experimental inactivation, data showed it was helpful for modeling the process, adequately describing dose-response curves. Inactivation process using FeSO4 at pH 3.0 was modeled fairly with r2 = 0.98 and 0.99 (mild and high concentration, respectively). Fe(acac)3, FeCl3 and FeSO4 at high concentration (i.e. [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1) and pH 5.0 showed the highest fitting values (r2 = 0.99). Iron salt type showed a remarkable influence on the Fenton-like inactivation process.

  19. A low-cost cementite (Fe3C) nanocrystal@N-doped graphitic carbon electrocatalyst for efficient oxygen reduction.

    Science.gov (United States)

    Wu, Tianxing; Zhang, Haimin; Zhang, Xian; Zhang, Yunxia; Zhao, Huijun; Wang, Guozhong

    2015-11-01

    In this work, chitosan whiskers (CWs) were first extracted using low-cost and earth-abundant crab shells as materials by a series of chemical processes, and then assembled into chitosan whisker microspheres (CWMs) via a simple photochemical polymerization approach. Subsequently, a cementite (Fe3C) nanocrystal@N-doped graphitic carbon (Fe3C@NGC) nanocomposite was successfully fabricated by high temperature pyrolysis of CWMs adsorbed with ferric acetylacetonate (Fe(acac)3) at 900 °C. It was found that a suitable growth atmosphere generated inside CWMs during high temperature pyrolysis is critically important to form Fe3C nanocrystal cores, concurrently accompanying a structural transformation from chitosan whiskers to mesoporous graphitic carbon shells with natural nitrogen (N) doping properties, resulting in the formation of a core-shell structure Fe3C@NGC nanocomposite. The resulting samples were evaluated as electrocatalysts for oxygen reduction reaction (ORR). In comparison with sole N-doped graphitic carbon without Fe3C nanocrystals obtained by direct pyrolysis of chitosan whisker microspheres at 900 °C (CWMs-900), Fe3C@NGC showed significantly improved ORR catalytic activity. The tolerance to fuel cell molecules (e.g., methanol) and the durability of Fe3C@NGC are obviously superior to commercial Pt/C catalysts in alkaline media. The high ORR performance of Fe3C@NGC could be due to its large surface area (313.7 m(2) g(-1)), a synergistic role of Fe3C nanocrystals, N doping in graphitic carbon creating more catalytic active sites, and a porous structure of the nanocomposite facilitating mass transfer to efficiently improve the utilization of these catalytic active sites.

  20. Size-controlled synthesis of monodisperse nickel nanoparticles and investigation of their magnetic and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yuan; Jia, Rongrong; Zhao, Jinchong; Liang, Jilei; Liu, Yunqi, E-mail: liuyq@upc.edu.cn; Liu, Chenguang

    2014-10-15

    Graphical abstract: - Highlights: • Monodisperse nickel nanoparticles (NPs) with different size were synthesized via the thermal decomposition approach. • The size of nickel NPs can easily be controlled by changing synthetic conditions. • The possible growth mechanism of nickel NPs was proposed. • The as-synthesized nickel NPs exhibited superparamagnetism characteristics at room temperature, and the saturation magnetization increased significantly with increasing size of the nickel NPs. • The dehydrogenation reaction of cyclohexane on nickel NPs was structure sensitive reaction. - Abstract: Monodisperse nickel nanoparticles (NPs) with different size were synthesized via the thermal decomposition approach using nickel acetylacetonate as precursors and trioctylphosphine as surfactant in oleylamine. The structure and morphology of as-synthesized nickel NPs were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and selected area electron diffraction (SAED). The surface states of as-synthesized nickel NPs were characterized by Fourier transform infrared (FT-IR) spectra. The textural properties of as-synthesized nickel NPs were characterized by N{sub 2} adsorption–desorption. The size of as-synthesized nickel NPs was found to be easily controlled by changing synthetic conditions, including P:Ni precursor ratio, reaction temperature, reaction time and oleylamine quantity, and the possible growth mechanism of nickel NPs was proposed. In addition, the magnetic measurements showed that the as-synthesized nickel NPs exhibited superparamagnetism characteristics at room temperature, and the saturation magnetization increased significantly with the increase in nickel NPs’ size. Finally, the size-dependent catalytic properties of nickel NPs for cyclohexane dehydrogenation reaction were studied. The results demonstrated that the catalytic activity can be enhanced by decreasing the size of NPs, which indicated that the dehydrogenation

  1. Ultrasonic spray-pyrolyzed CuCrO2 thin films

    Science.gov (United States)

    Sánchez-Alarcón, R. I.; Oropeza-Rosario, G.; Gutierrez-Villalobos, A.; Muro-López, M. A.; Martínez-Martínez, R.; Zaleta-Alejandre, E.; Falcony, C.; Alarcón-Flores, G.; Fragoso, R.; Hernández-Silva, O.; Perez-Cappe, E.; Mosqueda Laffita, Yodalgis; Aguilar-Frutis, M.

    2016-05-01

    In this paper the optical, structural and electrical properties of CuCrO2 thin films deposited by ultrasonic spray pyrolysis at temperatures from 400 to 600 °C in steps of 50 °C are presented. Copper and chromium acetylacetonates were chosen as sources of Cu and Cr, respectively, and N,N-dimethylformamide was used as the solvent. X-ray results confirmed that the films as deposited showed the CuCrO2 phase without any post-deposition thermal annealing. The surface morphology was observed to be mirror like, and as the films were deposited at different temperatures, they gradually revealed the presence of small crystallites. The best film’s optical percentage transmission (in the visible region), about 58%, was obtained in films deposited at 450 °C, and the highest band gap energy (3.17 eV) was measured in films deposited at 400 °C. The electrical properties of the films were obtained by the Hall effect. A hole concentration in the range 1019-1021 cm-3, conductivity as high as 35 S cm-1, and mobility lower than 1 cm2 V-1 s-1 were obtained in the films. p-type conductivity was confirmed using the hot point probe arrangement, and the Seebeck coefficient was estimated. The hole conductivity is thought to be due to excess oxygen in the films. Finally, the minimum energy required to transfer carriers from acceptor level to the valence band in the films was estimated by impedance spectroscopy.

  2. Indium tin oxide thin films elaborated by sol-gel routes: The effect of oxalic acid addition on optoelectronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kesim, Mehmet Tumerkan; Durucan, Caner, E-mail: cdurucan@metu.edu.tr

    2013-10-31

    Single layer indium tin oxide (ITO) thin films were deposited on glass using modified sol-gel formulations. The coating sols were prepared using indium (InCl{sub 3}∙ 4H{sub 2}O) and tin salts (SnCl{sub 4}∙ 5H{sub 2}O). The stable sols were obtained using ethanol (C{sub 2}H{sub 5}OH) and acetylacetone (C{sub 5}H{sub 8}O{sub 2}) as solvents and by the addition of oxalic acid dihydrate (C{sub 2}H{sub 2}O{sub 4}∙ 2H{sub 2}O) in different amounts. The effect of oxalic acid content in the sol formulation and post-coating calcination treatment (in air at 300–600 °C) on electrical/optical properties of ITO films have been reported. It was shown that film formation efficiency, surface coverage and homogeneity were all enhanced with oxalic acid addition. Oxalic acid modification also leads to a significant improvement in electrical conductivity without affecting the film thickness (45 ± 3 nm). ITO films exhibiting high transparency (≈ 93%, visible region) with a sheet resistance as low as 3.8 ± 0.4 kΩ/sqr have been formed by employing coating sols with optimized oxalic acid amount. The mechanisms and factors affecting the functional performance of oxalic acid-modified films have been thoroughly discussed and related to the microstructural and chemical characteristic of the films achieved by oxalic acid addition. - Highlights: • A solution-based method for processing indium tin oxide (ITO) thin film is reported. • Oxalic acid (OAD) modification leads to a highly compacted film microstructure. • Bulk resistivity of a single layer OAD-modified ITO film was determined as 0.02 Ωcm. • Thin films with transparency values higher than 90% were produced.

  3. Formation of inorganic nanocomposites by filling TiO{sub 2} nanopores with indium and antimony sulfide precursor aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Juma, Albert, E-mail: jumalberto@yahoo.com [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Azarpira, Anahita [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Fischer, Ch.-H. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Free University Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34-36, 14195 Berlin (Germany); Wendler, Elke [Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, 07743 Jena (Germany); Dittrich, Thomas [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2014-09-01

    Nanocomposites of nanoporous-TiO{sub 2}/In{sub 2}S{sub 3} and np-TiO{sub 2}/Sb{sub 2}S{sub 3} were formed by deposition of In{sub 2}S{sub 3} or Sb{sub 2}S{sub 3} using spray ion layer gas reaction technique from their precursor solutions onto nanoporous TiO{sub 2} substrates at temperatures of 150, 175 and 200 °C. The least penetration of the precursor into np-TiO{sub 2} was achieved for np-TiO{sub 2}/In{sub 2}S{sub 3} nanocomposites from indium acetylacetonate salt. The deepest penetration was obtained for both np-TiO{sub 2}/In{sub 2}S{sub 3}(Cl) and np-TiO{sub 2}/Sb{sub 2}S{sub 3} nanocomposites with effective diffusion coefficients of 3.3 × 10{sup −3} cm{sup 2}/s and 3.2 × 10{sup −3} cm{sup 2}/s, respectively. The transport of the precursors in np-TiO{sub 2} and the formation of different nanocomposites were described the regime of the Knudsen diffusion model. - Highlights: • Deposition of metal sulfides by ion layer gas reaction technique • Penetration and diffusion depend on precursor characteristics. • Pore transport described by Knudsen diffusion model • InCl{sub 3} precursor penetrates more than In(acac){sub 3}.

  4. The substituent effect of 2-R-o-carborane on the photophysical properties of iridium(iii) cyclometalates.

    Science.gov (United States)

    Park, Jihyun; Lee, Young Hoon; Ryu, Ji Yeon; Lee, Junseong; Lee, Min Hyung

    2016-04-01

    A family of heteroleptic iridium(iii) cyclometalates, [4-(2-RCB)ppy]2Ir(acac) (3c-3g; CB = o-carboran-1-yl; ppy = 2-phenylpyridinato-C(2),N; acac = acetylacetonate; R = (i)Pr (3c), (i)Bu (3d), Ph (3e), CF3C6H4 (3f), C6F5 (3g)) with various 2-R substituted o-carboranes at the 4-position in the phenyl ring of the ppy ligand, were prepared. The X-ray crystal structure of all complexes, including 3a (R = H) and 3b (R = Me), showed that while the carboranyl C-C bond distance increases with the increasing steric effect of the 2-R substituent (3a-3d), the bond distance is more likely to be influenced by the electronic effect of the substituent for the 2-aryl substituted complexes (3e-3g). The absorption and emission bands of all complexes were red-shifted with respect to those of the parent (ppy)2Ir(acac) (4). While 3a-3d exhibited intense green phosphorescence with good quantum efficiency in toluene (ΦPL = 0.17-0.47), the complexes were poorly emissive in THF (ΦPL carborane-centered, electrochemical reduction (Eonset = -2.01 to -1.22 V). The potential values of these reductions increased with increases in the electron accepting ability of the 2-R group (H carborane substituted complexes. This reduction behavior of 3a-3g implies that the LUMO contribution of 2-R-o-carborane units increases through the substitution at the 4-position of the ppy ligand and is influenced by the nature of the 2-R group, which may be responsible for facile carboranyl C-C bond variation leading to efficient quenching of the emissive excited states. PMID:26923990

  5. Effect of iron salt counter ion in dose-response curves for inactivation of Fusarium solani in water through solar driven Fenton-like processes

    Science.gov (United States)

    Aurioles-López, Verónica; Polo-López, M. Inmaculada; Fernández-Ibáñez, Pilar; López-Malo, Aurelio; Bandala, Erick R.

    2016-02-01

    The inactivation of Fusarium solani in water was assessed by solar driven Fenton-like processes using three different iron salts: ferric acetylacetonate (Fe(acac)3), ferric chloride (FeCl3) and ferrous sulfate (FeSO4). The experimental conditions tested were [Fe] ≈ 5 mg L-1, [H2O2] ≈ 10 mg L-1 and [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1 mild and high, respectively, and pH 3.0 and 5.0, under solar radiation. The highest inactivation rates were observed at high reaction conditions for the three iron salts tested at pH 5.0 with less than 3.0 kJ L-1 of accumulate energy (QUV) to achieve over 99.9% of F. solani inactivation. Fe(acac)3 was the best iron salt to accomplishing F. solani inactivation. The modified Fermi equation was used to fix the experimental inactivation, data showed it was helpful for modeling the process, adequately describing dose-response curves. Inactivation process using FeSO4 at pH 3.0 was modeled fairly with r2 = 0.98 and 0.99 (mild and high concentration, respectively). Fe(acac)3, FeCl3 and FeSO4 at high concentration (i.e. [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1) and pH 5.0 showed the highest fitting values (r2 = 0.99). Iron salt type showed a remarkable influence on the Fenton-like inactivation process.

  6. Metal oxide films on glass and steel substrates

    International Nuclear Information System (INIS)

    A variety of thin (10-1000nm) metal oxide films have been deposited on flat glass substrates by the pyrolysis of an aerosol of metal acetylacetonates in a suitable carrier. The optical characteristics and thickness of the films have been measured and particular interest has centered on the use of a novel pin on disc apparatus to measure the physical durability of such thin films. Characteristic friction/penetration force traces have been established for 1st Series transition metal oxide films and some ranking in terms of 'hardness' established. The use of SnO2 - coated glass for electrodes in a light modulator cell has been examined. The electrochromic behaviour of a silver matrix in DMSO electrolyte has been observed in a small glass cell and by cyclic voltammetry on a vitreous carbon electrode. Optimum conditions for practical light-shutter have been established and electrode processes elucidated. A corrosion study of mild steel in two different water/organic electrolytes of industrial importance has been carried out. Mechanisms to account for the corrosion observed have been presented. Support for the usual anodic reaction is presented Fe → Fe2+ + 2e but in the electrolyte operated at low pH film formation of a water soluble organic 'tar' has been confirmed and the proposed reaction Fe2+ + H2O → FeOH+ + H+ leads to a local increase in [H+] which accounts for the observed corrosion rate. In contrast, corrosion behaviour in the pH8 electrolyte supports the view that the rate limiting reduction reaction is possibly oxygen (or water) reduction although some contribution from an organic 'impurity' cannot be ruled out. Coatings of Fe3O4 on mild steel have been prepared by CVD using pneumatic spraying techniques and the corrosion behaviour of coated electrodes in organic-phosphate electrolyte (pH8) has been examined. (author)

  7. Catalytic nanomedicine technology: copper complexes loaded on titania nanomaterials as cytotoxic agents of cancer cell.

    Science.gov (United States)

    Lopez, Tessy; Ortiz-Islas, Emma; Guevara, Patricia; Gómez, Esteban

    2013-01-01

    The anticancer properties of pure copper (II) acetate and copper (II) acetylacetonate, alone and loaded on functionalized sol-gel titania (TiO(2)), were determined in four different cancer cell lines (C6, RG2, B16, and U373), using increasing concentrations of these compounds. The copper complexes were loaded onto the TiO(2) network during its preparation by the solgel process. Once copper-TiO(2) materials were obtained, these were characterized by several physical-chemical techniques. An in vitro copper complex-release test was developed in an aqueous medium at room temperature and monitored by ultraviolet spectroscopy. The toxic effect of the copper complexes, alone and loaded on TiO(2), was determined using a cell viability 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, when cancer cells were treated with increasing concentrations (15.75-1000 mg/mL) of these. Characterization studies revealed that the addition of copper complexes to the TiO(2) sol-gel network during its preparation, did not generate changes in the molecular structure of the complexes. The surface area, pore volume, and pore diameter were affected by the copper complex additions and by the crystalline phases obtained. The kinetic profiles of both copper complexes released indicated two different stages of release: The first one was governed by first-order kinetics and the second was governed by zero-order kinetics. The cell viability assay revealed a cytotoxic effect of copper complexes, copper-TiO(2), and cisplatin in a dose-dependent response for all the cell lines; however, the copper complexes exhibited a better cytotoxic effect than the cisplatin compound. TiO(2) alone presented a minor cytotoxicity for C6 and B16 cells; however, it did not cause any toxic effect on the RG2 and U373 cells, which indicates its high biocompatibility with these cells.

  8. Preparation of zirconia coatings by hydrolysis of zirconium alkoxide with hydrogen peroxide

    International Nuclear Information System (INIS)

    Zirconia has gained a great deal of attention because of its superior properties of mechanical strength, chemical resistance, and ionic conductivity. Zirconia coatings and thin films are receiving attention as tribological and thermal barrier coatings for engines, high-reflective coatings, solid electrolytes for fuel cells, oxygen sensors, etc. The sol-gel coating method has several advantages, such as low processing temperatures, homogeneity, control of micro-structure, and good productivity compared to chemical vapor deposition and physical vapor deposition. However, there are few reports concerning the preparation of zirconia coatings and thin films by the sol-gel method. Up to the present, zirconia coatings have been prepared from zirconium propoxide (not heated), zirconium tetrabutoxide modified by acetylacetone and ethyl acetoacetate, zirconium diethoxydichloride (ZrCl2(OC2H5)2), and a hydrosol prepared from a zirconium oxychloride solution. Coatings of 8.8-mol%-yttria-doped zirconia were fabricated using a transparent and spinnable sol prepared by hydrolysis of zirconium alkoxide with hydrogen peroxide and nitric acid. The sol gave a crack-free coating film consisting of fine grains. The crystalline phase was cubic after heating of 1,000 and 1,200 C and cubic and tetragonal at 1,350 C, with the coating being highly oriented in the (111) plane, especially at 1,000 C. Activation energy of the coating films was higher than that of the bulk. Transmittance through a film thickness of about 0.3 μm on each side was 75%

  9. Quartz Crystal Microbalance Coated with Sol-gel-derived Thin Films as Gas Sensor for NO Detection

    Directory of Open Access Journals (Sweden)

    S. J. O’Shea

    2003-10-01

    Full Text Available This paper presents the possibilities and properties of Indium tin oxide (ITO-covered quartz crystal as a NOx toxic gas-sensor. The starting sol-gel solution was prepared by mixing indium chloride dissolved in acetylacetone and tin chloride dissolved in ethanol (0-20% by weight. The ITO thin films were deposited on the gold electrodes of quartz crystal by spin-coating technique and subsequently followed a standard photolithography to pattern the derived films to ensure all sensors with the same sensing areas. All heat treatment processes were controlled below 500°C in order to avoid the piezoelectric characteristics degradation of quartz crystal (Quartz will lose its piezoelectricity at ~573°C due to the phase change from α to β. The electrical and structural properties of ITO thin films were characterized with Hall analysis system, TG/DTA, XRD, XPS, SEM and etc. The gas sensor had featured with ITO thin films of ~100nm as the receptor to sense the toxic gas NO and quartz crystal with frequency of 10MHz as the transducer to transfer the surface reactions (mass loading, etc into the frequency shift. A homemade setup had been employed to measure the sensor response under the static mode. The experimental results had indicated that the ITO-coated QCM had a good sensitivity for NO gas, ~12Hz/100ppm within 5mins. These results prove that the ITO-covered quartz crystals are usable as a gas sensor and as an analytical device.

  10. Chemical vapor deposition (CVD) of uranium for alpha spectrometry

    International Nuclear Information System (INIS)

    The uranium determination through radiometric techniques as alpha spectrometry requires for its proper analysis, preparation methods of the source to analyze and procedures for the deposit of this on a surface or substrate. Given the characteristics of alpha particles (small penetration distance and great loss of energy during their journey or its interaction with the matter), is important to ensure that the prepared sources are thin, to avoid problems of self-absorption. The routine methods used for this are the cathodic electro deposition and the direct evaporation, among others. In this paper the use of technique of chemical vapor deposition (CVD) for the preparation of uranium sources is investigated; because by this, is possible to obtain thin films (much thinner than those resulting from electro deposition or evaporation) on a substrate and comprises reacting a precursor with a gas, which in turn serves as a carrier of the reaction products to achieve deposition. Preliminary results of the chemical vapor deposition of uranium are presented, synthesizing and using as precursor molecule the uranyl acetylacetonate, using oxygen as carrier gas for the deposition reaction on a glass substrate. The uranium films obtained were found suitable for alpha spectrometry. The variables taken into account were the precursor sublimation temperatures and deposition temperature, the reaction time and the type and flow of carrier gas. Of the investigated conditions, two depositions with encouraging results that can serve as reference for further work to improve the technique presented here were selected. Alpha spectra obtained for these depositions and the characterization of the representative samples by scanning electron microscopy and X-ray diffraction are also presented. (Author)

  11. Thermodynamic modeling to analyse composition of carbonaceous coatings of MnO and other oxides of manganese grown by MOCVD

    Indian Academy of Sciences (India)

    Sukanya Dhar; A Varade; S A Shivashankar

    2011-02-01

    Equilibrium thermodynamic analysis has been applied to the low-pressure MOCVD process using manganese acetylacetonate as the precursor. ``CVD phase stability diagrams” have been constructed separately for the processes carried out in argon and oxygen ambient, depicting the compositions of the resulting films as functions of CVD parameters. For the process conduced in argon ambient, the analysis predicts the simultaneous deposition of MnO and elemental carbon in 1:3 molar proportion, over a range of temperatures. The analysis predicts also that, if CVD is carried out in oxygen ambient, even a very low flow of oxygen leads to the complete absence of carbon in the film deposited oxygen, with greater oxygen flow resulting in the simultaneous deposition of two different manganese oxides under certain conditions. The results of thermodynamic modeling have been verified quantitatively for lowpressure CVD conducted in argon ambient. Indeed, the large excess of carbon in the deposit is found to constitute a MnO/C nanocomposite, the associated cauliflower-like morphology making it a promising candidate for electrode material in supercapacitors. CVD carried out in oxygen flow, under specific conditions, leads to the deposition of more than one manganese oxide, as expected from thermodynamic analysis (and forming an oxide–oxide nanocomposite). These results together demonstrate that thermodynamic analysis of the MOCVD process can be employed to synthesize thin films in a predictive manner, thus avoiding the inefficient trial-and-error method usually associated with MOCVD process development. The prospect of developing thin films of novel compositions and characteristics in a predictive manner, through the appropriate choice of CVD precursors and process conditions, emerges from the present work.

  12. Structural characterization and DFT study of V(IV)O(acac)2 in imidazolium ionic liquids.

    Science.gov (United States)

    Mota, Andreia; Hallett, Jason P; Kuznetsov, Maxim L; Correia, Isabel

    2011-09-01

    We report the structural characterization of vanadyl acetylacetonate in imidazolium room temperature ionic liquids--bbimNTf(2), bmimNTf(2), C(3)OmimNTf(2), bm(2)imNTf(2), bmimPF(6), bmimOTf, bmimBF(4), bmimMeCO(2), bmimMeSO(4), bmimMe(2)PO(4) and bmimN(CN)(2)--and organic solvents. The complex was characterized by visible electronic (Vis) and EPR spectroscopies. VO(acac)(2) shows solvatochromism in the selected ionic liquids and behaves as in organic solvents, evidencing coordination of the ionic liquid anion in the solvents with higher coordinating ability. The Lewis basicity order obtained for the IL anions was: PF(6)(-) < NTf(2)(-) < OTf(-)≈ MeCO(2)(-) < MeSO(4)(-) < BF(4)(-)≈ N(CN)(2)(-) < Me(2)PO(4)(-). The solvent effect on the spectroscopic data was tentatively examined using linear solvation energy relationships based on the Kamlet-Taft solvent scale (α, β and π*), however no suitable correlation was found with all data. The EPR characterization showed the presence of two isomers in bmimOTf, bmimMeCO(2) and bmimMe(2)PO(4), suggesting coordination of the ionic liquid anions in both equatorial and axial positions. The full geometry optimization of cis-/trans-VO(acac)(2)(OTf)(-) and cis-/trans-VO(acac)(2)(OTf)(mmim) structures was done at the B3P86/6-31G* level of theory. The calculations confirm that the anion OTf(-) is able to coordinate to VO(acac)(2) with the trans isomer being more stable than the cis by 4.8 kcal mol(-1). PMID:21789301

  13. Microspheres of poly({epsilon}-caprolactone) loaded Holmium-165: morphology and thermal degradation behavior

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Adriana Napoleao; Miyamoto, Douglas Massao; Lira, Raphael Arivar de; Osso Junior, Joao Alberto; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Polycaprolactone (PCL), being one of the most important biocompatible and biodegradable aliphatic polyester, provides many potential biomedical. The preparation of biodegradable materials, polymer-based microspheres, is being developed by our group and the goal is to prepare and label with Ho-165 different polymer-based microspheres. The use of radionuclide-loaded microspheres is a promising treatment of liver malignancies. PCL microspheres can be loaded with holmium acetylacetonate (HoAcAc). PCL and PCL/HoAcAc microspheres were prepared by an emulsion solvent extraction/evaporation technique. The PCL/ HoAcAc microspheres were irradiated in a nuclear reactor IEA-R1 at IPEN/CNEN-SP to radionuclide activation. Gamma irradiation was performed at 25 and 50 kGy doses. The microspheres were evaluated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TG), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and con focal laser scanning microscopy (CLSM). In the CLSM images were observed emission in 488 nm characteristic of holmium. The SEM surface image of PCL/HoAcAc microspheres showed more roughness than PCL microspheres. TG of PCL/HoAcAc microspheres showed a substantial weight loss above 200 degree C, indicating decomposition of HoAcAc. The residual weight indicates the presence of Ho{sub 2}O{sub 3}. Gamma irradiation at 25 and 50 kGy doses had no effect on the PCL/HoAcAc microspheres, which indicates that the chemical composition of the microspheres had not change. (author)

  14. Hierarchical self-assembly of nanoparticles in polymer matrix and the nature of the interparticle interaction

    Science.gov (United States)

    Lin, Yu-Chiao; Chen, Chun-Yu; Chen, Hsin-Lung; Hashimoto, Takeji; Chen, Show-An; Li, Yen-Cheng

    2015-06-01

    Using small angle X-ray scattering (SAXS), we elucidated the spatial organization of palladium (Pd) nanoparticles (NPs) in the polymer matrix of poly(2-vinylpyridine) (P2VP) and the nature of inter-nanoparticle interactions, where the NPs were synthesized in the presence of P2VP by the reduction of palladium acetylacetonate (Pd(acac)2). The experimental SAXS profiles were analysed on the basis of a hierarchical structure model considering the following two types of interparticle potential: (i) hard-core repulsion only (i.e., the hard-sphere interaction) and (ii) hard-core repulsion together with an attractive potential well (i.e., the sticky hard-sphere interaction). The corresponding theoretical scattering functions, which were used for analysing the experimental SAXS profiles, were obtained within the context of the Percus-Yevick closure and the Ornstein-Zernike equation in the fundamental liquid theory. The analyses revealed that existence of the attractive potential well is indispensable to account for the experimental SAXS profiles. Moreover, the morphology of the hybrids was found to be characterized by a hierarchical structure with three levels, where about six primary NPs with the diameter of ca. 1.8 nm (level one) formed local clusters (level two), and these clusters aggregated to build up a large-scale mass-fractal structure (level three) with the fractal dimension of ca. 2.3. The scattering function developed here is of general use for quantitatively characterizing the morphological structures of polymer/NP hybrids and, in particular, for exploring the interaction potential of the NPs on the basis of the fundamental liquid theory.

  15. New approach towards the polyol route to fabricate MFe2O4 magnetic nanoparticles: The use of MCl2 and Fe(acac)3 as chemical precursors

    International Nuclear Information System (INIS)

    A new more efficient approach of the polyol route to generate MFe2O4 (M=Mn, Fe, Co, Ni, Cu, Zn) nanoparticles in triethylene glycol (TREG) is presented. The selected thermal procedure is based on the Fe metalorganic precursor (iron(III) acetylacetonate) decomposition in presence of an inorganic transition metal chloride salt (MCl2, M=Mn, Fe, Co, Ni, Cu, Zn) to produce high quality polar dispersible nanoparticles with lower production cost. In addition, the nanoparticles are stabilized by ionic (from the Cl−) and steric (TREG as capping ligand) effects inducing into the nanoparticles an extraordinary stability in different polar solvents. As result of this optimized methodology, the colloidal polar dispersible nanoparticles present a size around 10 nm with an adequate size dispersion demonstrated by analyzing transmission electron microscopy (TEM) images. X-ray powder diffraction (XRPD) results corroborate the absence of secondary phases and the high crystalline degree obtained for the spinel structure, fact proved by using synchrotron X-ray diffraction. The high magnetic performance at low and room temperature of the nanoparticles studied by magnetometry proves the high internal crystal order of the spinel. Parallel to this, the influence of the heating ramp and annealing time in the thermal procedure were also investigated for the CuFe2O4 case, where a relationship between these two parameters and the final size and their associated diameter distribution was found, allowing a possible size control of the final ferrite magnetic nanoparticles synthesized. - Highlights: • An optimized one-pot methodology is presented to produce pure MFe2O4 nanoparticles. • MCl2 and Fe(acac)3 precursors in TREG are used for a more efficient process. • Polar dispersible nanoparticles are obtained with high physicochemical properties. • The influence of the temperature ramp and rate on the final size is studied

  16. Synthesis of monodisperse MFe2O4 (M = Fe and Zn) nanoparticles for polydiethylsiloxane-based ferrofluid with a solvothermal method

    International Nuclear Information System (INIS)

    Highlights: • MFe2O4 nanoparticles were synthesized through a facile solvothermal method. • The relationship between viscosity and temperature of the polydiethylsiloxane-based ferrofluid is discussed. • Fe3O4 nanoparticles have a saturation magnetization of 73.06 emu/g at room temperature. - Abstract: Monodisperse MFe2O4 (M = Fe, Zn) nanoparticles were successfully synthesized for the application of polydiethylsiloxane-based (PDES) ferrofluids (FFs) via a novel solvothermal method, with which 1-octanol and 1-octanamine act as binary solvent, oleic acid (OA) as the surfactant and metal acetylacetonate [M(acac)3](M = Fe and Zn) as the metal source. X-ray diffractometer confirms that the resultant nanoparticles are pure MFe2O4 with a spinel structure. Infrared spectroscopy indicates that oleic acid is bound to the surface of MFe2O4 through a covalent bond between carboxylate (COO−) and metal cations. The ratio of 1-octanol and 1-octanamine plays a key role in the formation of the sphere-shaped morphology. Transmission electron microscopy (TEM) images confirm that the Fe3O4 particles are of 4–11 nm with good monodispersity and a narrow size distribution. The saturation magnetization of Fe3O4 nanoparticles with sizes of 7 nm can reach up to 73.06 emu/g. Polydiethylsiloxane-based (PDES) FFs show relatively smaller changes of the viscosity with low temperatures (from −7 to 20 °C) than the polydimethylsiloxane-based (PDMS) FFs. For FFs applications, the relationship between viscosity and temperature is also discussed

  17. Synthesis and catalytic properties of iron - cerium phosphates with surfactant Síntese e propriedades catalíticas de ferro-fosfato de cério com surfactante

    Directory of Open Access Journals (Sweden)

    H. Onoda

    2013-03-01

    Full Text Available Iron phosphate was prepared from iron nitrate and phosphoric acid with a surfactant, pentaethylene glycol mono dodecyl ether. The chemical composition of the obtained samples was estimated from ICP and XRD measurements. Particle shape and size distribution were observed by SEM images and laser diffraction / scattering methods. Further, the catalytic activity was studied with the decomposition of the complex between formaldehyde, ammonium acetate, and acetylacetone. The peaks of FePO4 were observed in XRD patterns of samples prepared in Fe/Ce=10/0 and then heated at 600 ºC. Other samples were amorphous in XRD patterns. Iron-cerium phosphates had high catalytic activity for the decomposition of the complex.Fosfato de ferro foi preparado a partir do nitrato de ferro e ácido fosfórico com um surfactante éter monododecil pentaetileno glicol. A composição química das amostras obtidas foi estimada a partir de medidas por ICP e DRX. A distribuição e forma das partículas foram observadas por imagens de MEV e o pelo método de espalhamento de laser. A atividade catalítica foi estudada com a decomposição do complexo entre formaldeido, acetato de amônio e acetilacetona. Os picos de FePO4 foram observados nos padrões de DRX das amostras preparadas Fe/Ce=10/0 e então aquecidas a 600 ºC. Outras amostras foram de padrões de DRX amorfo. Ferro-fosfatos de cério tiveram alta atividade catalítica para a decomposição do complexo.

  18. Structural and magnetic properties of Co-doped Er{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Arda, L.; Acikgoz, M. [Bahcesehir University, Faculty of Arts and Sciences, Besiktas Campus, 34349 Besiktas, Istanbul (Turkey); Aktas, Y. [Marmara University, Institute for Graduate Studies in Pure and Applied Sciences, 34722 Goztepe, Istanbul (Turkey); Cakiroglu, O., E-mail: ocakir@istanbul.edu.tr [Istanbul University, Hasan Ali Yucel Education Faculty, Beyazit 34452, Istanbul (Turkey); Dogan, N. [Gebze Institute of Technology, Department of Physics, Gebze, Kocaeli 41400 (Turkey)

    2015-01-01

    Er{sub 2−x}Co{sub x}O{sub 3} (x=0.00, 0.04, 0.10, 0.30, 0.4) solutions were synthesized by the sol–gel technique using erbium 2,4 pentadionate and cobalt acetylacetonate dissolved in methanol and acetyl acetone. The various obtained Co-doped Er{sub 2}O{sub 3} nanoparticles were annealed at 900 °C to find a doping effect on the structural and magnetic properties. The crystal structures and morphology of the Co-doped Er{sub 2}O{sub 3} nanoparticles were characterized using 2θ–θ X-ray diffraction (XRD) and scanning electron microscope (SEM). ESR spectra of Er{sub 2−x}Co{sub x}O{sub 3} nanoparticles were collected at room temperature with a Bruker EMX model X-band spectrometer at a frequency of 9.5 GHz. - Highlights: • Er{sub 2−x}Co{sub x}O{sub 3} nanoparticles were prepared by the sol–gel technique. • X-ray diffraction analysis of Er{sub 2−x}Co{sub x}O{sub 3} shows single phase (Er{sub 2}O{sub 3}) for x≤0.1. • Er{sub 2−x}Co{sub x}O{sub 3} nanoparticles are agglomerated and partially melted at 900 °C. • The minimum g-factor and maximum line-width W were observed at x=0.1 for Co.

  19. Synthesis of Al2O3 thin films using laser assisted spray pyrolysis (LASP)

    International Nuclear Information System (INIS)

    Highlights: ► Alumina thin films were made by laser assisted spray pyrolysis at various laser powers. ► The particle size was found to increase with laser power. ► The refractive index of the films was studied using ellipsometry. ► The film stoichiometry was studied using X-ray photoelectron spectroscopy. ► The film/substrate interface was studied using ellipsometer and secondary ion mass spectrometer. - Abstract: The present study reports the development of a laser assisted ultrasonic spray pyrolysis technique and synthesis of dense optical alumina films using the same. In this technique ultrasonically generated aerosols of aluminum acetylacetonate dissolved in ethanol and a laser beam (Nd:YAG, CW, 1064 nm) were fed coaxially and concurrently through a quartz tube on to a hot substrate mounted on an X–Y raster stage. At the laser focused spot the precursor underwent solvent evaporation and solute sublimation followed by precursor vapor decomposition giving rise to oxide coating, the substrate is rastered to get large surface area coating. The surface morphology revealed coalescence of particles with increase in laser power. The observed particle sizes were 17 nm for films synthesized without laser and 18, 21 and 25 nm for films made with laser at 25, 38 and 50 W, respectively. Refractive index of the films synthesized increased from 1.56 to 1.62 as the laser power increased from 0 to 50 W. The stoichiometry of films was studied using XPS and the increase in interfacial layer thickness with laser power was observed from dynamic SIMS depth profiling and ellipsometry.

  20. Synthesis of Al{sub 2}O{sub 3} thin films using laser assisted spray pyrolysis (LASP)

    Energy Technology Data Exchange (ETDEWEB)

    Dhonge, Baban P. [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 TN (India); Mathews, Tom, E-mail: tom@igcar.gov.in [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 TN (India); Tripura Sundari, S.; Krishnan, R.; Balamurugan, A.K.; Kamruddin, M. [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 TN (India); Subbarao, R.V. [Corrosion Science and Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 TN (India); Dash, S.; Tyagi, A.K. [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 TN (India)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Alumina thin films were made by laser assisted spray pyrolysis at various laser powers. Black-Right-Pointing-Pointer The particle size was found to increase with laser power. Black-Right-Pointing-Pointer The refractive index of the films was studied using ellipsometry. Black-Right-Pointing-Pointer The film stoichiometry was studied using X-ray photoelectron spectroscopy. Black-Right-Pointing-Pointer The film/substrate interface was studied using ellipsometer and secondary ion mass spectrometer. - Abstract: The present study reports the development of a laser assisted ultrasonic spray pyrolysis technique and synthesis of dense optical alumina films using the same. In this technique ultrasonically generated aerosols of aluminum acetylacetonate dissolved in ethanol and a laser beam (Nd:YAG, CW, 1064 nm) were fed coaxially and concurrently through a quartz tube on to a hot substrate mounted on an X-Y raster stage. At the laser focused spot the precursor underwent solvent evaporation and solute sublimation followed by precursor vapor decomposition giving rise to oxide coating, the substrate is rastered to get large surface area coating. The surface morphology revealed coalescence of particles with increase in laser power. The observed particle sizes were 17 nm for films synthesized without laser and 18, 21 and 25 nm for films made with laser at 25, 38 and 50 W, respectively. Refractive index of the films synthesized increased from 1.56 to 1.62 as the laser power increased from 0 to 50 W. The stoichiometry of films was studied using XPS and the increase in interfacial layer thickness with laser power was observed from dynamic SIMS depth profiling and ellipsometry.

  1. Behavior of the potential antitumor V(IV)O complexes formed by flavonoid ligands. 3. Antioxidant properties and radical production capability.

    Science.gov (United States)

    Sanna, Daniele; Ugone, Valeria; Fadda, Angela; Micera, Giovanni; Garribba, Eugenio

    2016-08-01

    The radical production capability and the antioxidant properties of some V(IV)O complexes formed by flavonoid ligands were examined. In particular, the bis-chelated species of quercetin (que), [VO(que)2](2-), and morin (mor), [VO(mor)2], were evaluated for their capability to reduce the stable radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and produce the hydroxyl radical (•)OH by Fenton-like reactions, where the reducing agent is V(IV)O(2+). The results were compared with those displayed by other V(IV)O complexes, such as [VO(H2O)5](2+), [VO(acac)2] (acac=acetylacetonate) and [VO(cat)2](2-) (cat=catecholate). The capability of the V(IV)O flavonoids complexes to reduce DPPH is much larger than that of the V(IV)O species formed by non-antioxidant ligands and it is due mainly to the flavonoid molecule. Through the 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trapping assay of the hydroxyl radical it was possible to demonstrate that in acidic solution V(IV)O(2+) has an effectiveness in producing (•)OH radicals comparable to that of Fe(2+). When V(IV)O complexes of flavonoids were taken into account, the amount of hydroxyl radicals produced in Fenton-like reactions depends on the specific structure of the ligand and on their capability to reduce H2O2 to give (•)OH. Both the formation of reactive oxygen species (ROS) under physiological conditions by V(IV)O complexes of flavonoid ligands and their radical scavenging capability can be put in relationship with their antitumor effectiveness and it could be possible to modulate these actions by changing the features of the flavonoid coordinated to the V(IV)O(2+) ion, such as the entity, nature and position of the substituents and the number of phenolic groups.

  2. Preparation of ZnO:CeO2-x thin films by AP-MOCVD: Structural and optical properties

    International Nuclear Information System (INIS)

    The growth of columnar CeO2, ZnO and ZnO:CeO2-x films on quartz and AA6066 aluminum alloy substrates by economic atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) is reported. A novel and efficient combination of metal acetylacetonate precursors as well as mild operating conditions were used in the deposition process. The correlation among crystallinity, surface morphology and optical properties of the as-prepared films was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The synthesized films showed different crystallographic orientations depending on the ZnO and CeO2 lattice mismatch, cerium content and growth rate. The CeO2 films synthesized in this work showed plate-like compact structures as a result of the growth process typical of CVD. Both pure and ZnO:CeO2-x films were obtained with a hexagonal structure and highly preferred orientation with the c-axis perpendicular to both substrates under the optimal deposition conditions. The microstructure was modified from dense, short round columns to round structures with cavities ('rose-flower-like' structures) and the typical ZnO morphology by controlling the cerium doping the film and substrate nature. High optical transmittance (>87%) was observed in the pure ZnO films. As for the ZnO:CeO2-x films, the optical transmission was decreased and the UV absorption increased, which subsequently was affected by an increase in cerium content. This paper assesses the feasibility of using ZnO:CeO2-x thin films as UV-absorbers in industrial applications. - Graphical abstract: TEM micrographs and their corresponding SAED pattern obtained for the as-deposited ZnO-CeO2-x thin films for a Zn/Ce metallic ratio 16:9.

  3. Study of atomic layer deposition of indium oxy-sulfide films for Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bugot, Cathy, E-mail: cathy-externe.bugot@edf.fr [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP, UMR 7174 CNRS-EDF-Chimie Paristech), Chatou (France); Schneider, Nathanaelle [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP, UMR 7174 CNRS-EDF-Chimie Paristech), Chatou (France); Bouttemy, Muriel; Etcheberry, Arnaud [Institut Lavoisier de Versailles, UMR 8180 (CNRS-UVSQ), Versailles (France); Lincot, Daniel; Donsanti, Frédérique [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP, UMR 7174 CNRS-EDF-Chimie Paristech), Chatou (France)

    2015-05-01

    This paper explores the growth mechanism of plasma enhanced atomic layer deposition of In{sub 2}(S,O){sub 3} films. The films were deposited using indium acetylacetonate (In(acac){sub 3}), hydrogen sulfide (H{sub 2}S) and Ar/O{sub 2} plasma as oxygen precursor. The films were characterized using X-ray reflectometry, spectrophotometry, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. To understand the growth mechanism and especially the interactions between Ar/O{sub 2} plasma and In{sub 2}(S,O){sub 3} growing film, in-situ analyses were performed using quadrupole mass spectrometry. In-situ qualitative analysis revealed good correlation between the species detected in vapor phase and thin film properties. High concentrations of atomic and molecular oxygen were measured in the vapor phase during O{sub 2} plasma pulses. Significant decrease of these species could be observed by varying the plasma power from 2600 to 300 W, while the optical band gap remained at high values (> 2.6 eV). The analysis of the O{sub 2}-free/Ar plasma process showed that some of these oxygen species originate either from the indium precursor or from the substrate surface. This study explains the high oxygen content of the films, and allows us to reduce and control it. Generally, this report provides keys to understand the effect of plasma reactivity for the elaboration of oxide based materials. - Highlights: • In{sub 2}(S,O){sub 3} films were synthesized by plasma enhanced atomic layer deposition. • Growth mechanism was studied via gas phase analysis by Quadrupole Mass Spectrometry. • Good correlation between the vapor phase species and thin films properties was observed. • The film compositions and band gaps can be controlled by varying the plasma power.

  4. Dysprosium complexes with the tetraphenylporphyrin macrocyclic ligand

    International Nuclear Information System (INIS)

    In this report, the results obtained on the synthesis, characterization and study of the chemical behavior of dysprosium complex with the acetylacetone chelating agent (Hacac) and the tetraphenylporphyrin macrocyclic ligand (H2TFP) are given. Based on the literature but according to our necessities and interest, the appropriate methodology settled down from the synthesis of prime matters until the obtaining and characterization of the products. The acetyl acetonate complex was obtained of mono hydrated dysprosium [Dy(acac)3. H20] and trihydrated [Dy(acac)3 .3 H20], the mono tetra phenyl porphyrinate [Dy(TFP)(acac). 2 ac] the double sandwich of the dysprosium porphyrinate [Dy(TFP)2] and the triple sandwich of the dysprosium porphyrinate [Dy(TFP)3. 2 TCB] (TCB = trichlorobenzene). Its were characterized by their melting points, solubility, IR, UV, TGA and DTA both first and besides the techniques already mentioned for NMR'H, RPE and Magnetic susceptibility the three last complexes. From the spectroscopic point of view, IR and RPE its suggested the existence of a complex of inverse mixed valence [Dy(TFP)2- (TFP) 1-] for the Dy(TFP)2 as a result of the existence of the free radical (TFP' 1- and that it was not in none of the other porphyrin compounds. In the NMR'H spectra of the compounds were not observed signals in the region from 0 to 10 ppm that which shows that the dysprosium complexes in special those of the porphyrin type are highly paramagnetic and its could be used as displacement reagents, creators of images and contrast agents of great utility in these days in studies of NMR, technique today by today used in medical diagnoses. (Author)

  5. Enhancement of superconducting Tc (33 K) by entrapment of FeSe in carbon coated Au-Pd17Se15 nanoparticles.

    Science.gov (United States)

    Mishra, Sukhada; Song, Kai; Ghosh, Kartik C; Nath, Manashi

    2014-03-25

    FeSe has been an interesting member of the Fe-based superconductor family ever since the discovery of superconductivity in this simple binary chalcogenide. Simplicity of composition and ease of synthesis has made FeSe, in particular, very lucrative as a test system to understand the unconventional nature of superconductivity, especially in low-dimensional models. In this article we report the synthesis of composite nanoparticles containing FeSe nanoislands entrapped within an ent-FeSe-Pd16Se15-Au nanoparticle and sharing an interface with Pd17Se15. This assembly exhibits a significant enhancement in the superconducting Tc (onset at 33 K) accompanied by a noticeable lattice compression of FeSe along the and directions. The Tc in FeSe is very sensitive to application of pressure and it has been shown that with increasing external pressure Tc can be increased almost 4-fold. In these composite nanoparticles reported here, immobilization of FeSe on the Pd17Se15 surface contributes to increasing the effect of interfacial pressure, thereby enhancing the Tc. The effect of interfacial pressure is also manifested in the contraction of the FeSe lattice (up to 3.8% in direction) as observed through extensive high-resolution TEM imaging. The confined FeSe in these nanoparticles occupied a region of approximately 15-25 nm, where lattice compression was uniform over the entire FeSe region, thereby maximizing its effect in enhancing the Tc. The nanoparticles have been synthesized by a simple catalyst-aided vapor transport reaction at 800 °C where iron acetylacetonate and Se were used as precursors. Morphology and composition of these nanoparticles have been studied in details through extensive electron microscopy. PMID:24494773

  6. Controllable Synthesis of Monodispersed Middle and Heavy Rare Earth Oxysulfide Nanoplates Based on the Principles of HSAB Theory%基于软硬酸碱理论的单分散中重稀土硫氧化物纳米板的可控合成

    Institute of Scientific and Technical Information of China (English)

    顾均; 丁祎; 柯俊; 张亚文; 严纯华

    2013-01-01

    Based on the theory of hard and soft acids and bases, trivalent ions of middle and heavy rare earths belong to very hard acids, which possess weak affinity towards S2- ions but strong affinity to O2- ions. So it is difficult to synthesize middle and heavy rare earth oxysulfide nano-materials through the thermolysis method in high-boiling-point organic solvent. In this article, monodispersed oxysulfide nanoplates of Y, Eu, Gd, Er and Yb were synthesized through this thermolysis method we developed. Both sodium-doped and undoped rare earth oxysulfide nanoplates could be prepared, and the doping of sodium ions could promote the crystallization of the nanoplates. Rare earth acetylacetonates were used as metal precursors and H2S gas as the sulfurizing reagent. The reactions were conducted in oleylamine at 280 °C for 1 hour. The thermogravimetric analysis of the precursor showed that the initial decomposition temperature of the rare earth acetylacetonates is about 200 'C, which is much lower than that of rare earth oleates. The transmission electron microscopy observation and energy dispersive X-ray analyses of the intermediate products during the synthesis of the nanoplates showed that rare earth oxide nanoplates formed firstly at about 220 °C, and these nanoplates transformed to oxysulfide nanoplates gradually during the temperature ramping period. Density functional theory calculation was used to compare the total free energy of the oxide and oxysulfide of different rare earth elements. According to this thermodynamical comparison, we concluded that, from light rare earths to heavy rare earths, higher chemical potential of sulfur is needed to obtain the oxysulfide rather than oxide. On one hand, H2S gas has higher sulphurizing power than sulfur. On the other hand, a comparatively low reaction temperature favors the dissolving of H2S in oleylamine. As a result, the chemical potential of sulfur in synthetic system could be effectively increased by using rare earth

  7. Electronic state of ruthenium deposited onto oxide supports: An XPS study taking into account the final state effects

    Science.gov (United States)

    Larichev, Yurii V.; Moroz, Boris L.; Bukhtiyarov, Valerii I.

    2011-12-01

    The electronic state of ruthenium in the supported Ru/EOx (EOx = MgO, Al2O3 or SiO2) catalysts prepared by with the use of Ru(OH)Cl3 or Ru(acac)3 (acac = acetylacetonate) and reduced with H2 at 723 K is characterized by X-ray photoelectron spectroscopy (XPS) in the Ru 3d, Cl 2p and O 1s regions. The influence of the final state effects (the differential charging and variation of the relaxation energy) on the binding energy (BE) of Ru 3d5/2 core level measured for supported Ru nanoparticles is estimated by comparison of the Fermi levels and the modified Auger parameters determined for the Ru/EOx samples with the corresponding characteristics of the bulk Ru metal. It is found that the negative shift of the Ru 3d5/2 peak which is observed in the spectrum of ruthenium deposited onto MgO (BE = 279.5-279.7 eV) with respect to that of Ru black (BE = 280.2 eV) or ruthenium supported on γ-Al2O3 and SiO2 (BE = 280.4 eV) is caused not by the transfer of electron density from basic sites of MgO, as considered earlier, but by the differential charging of the supported Ru particles compared with the support surface. Correction for the differential charging value reveals that the initial state energies of ruthenium in the Ru/EOx systems are almost identical (BE = 280.5 ± 0.1 eV) irrespectively of acid-base properties of the support, the mean size of supported Ru crystallites (within the range of 2-10 nm) and the surface Cl content. The results obtained suggest that the difference in ammonia synthesis activity between the Ru catalysts supported on MgO and on the acidic supports is accounted for by not different electronic state of ruthenium on the surface of these oxides but by some other reasons.

  8. Determination of the antiepileptics vigabatrin and gabapentin in dosage forms and biological fluids using Hantzsch reaction.

    Science.gov (United States)

    al-Zehouri, J; al-Madi, S; Belal, F

    2001-02-01

    A selective and sensitive method was developed for the determination of the anticonvulsants vigabatrin (I) (CAS 60643-86-9) and gabapentin (II) (CAS 60142-96-3). The method is based on the condensation of the drugs through their amino groups with acetylacetone and formaldehyde according to Hantzsch reaction yeilding the highly fluorescent dihydropyridine derivatives. The yellowish-orange color was also measured spectrophotometrically at 410 nm and 415 nm for I and II, respectively. The absorbance-concentration plots were rectilinear over the ranges 10-70 micrograms/ml and 20-140 micrograms/ml for I and II, respectively. As for the fluorescence-concentration plots, they were linear over the ranges 0.5-10 micrograms/ml and 2.5-20 micrograms/ml with minimum detection limits (S/N = 2) of 0.05 microgram/ml (approximately 2.1 x 10(-8) mol/l) and 0.1 microgram/ml (approximately 5.8 x 10(-7) mol/l) for I and II, respectively. The spectrophotometric method was applied to the determination of I and II in their tablets. The percentage recoveries +/- SD (n = 6) were 99.45 +/- 0.13 and 98.05 +/- 0.53, respectively. The spectrofluorimetric method was successfully applied to the determination of I and II in spiked human urine and plasma. The % recoveries +/- SD (n = 5) were 98.77 +/- 0.29 and 98.39 +/- 0.53 for urine and 99.32 +/- 0.74 and 98.90 +/- 0.96 for plasma, for I and II, respectively. No interference was encountered with the co-administered drugs: valproic acid (CAS 99-66-1), diphenylhydantoin (CAS 57-41-0), phenobarbital (CAS 50-06-6), carbamazepine (CAS 298-46-4), clonazepam (CAS 1622-61-3), clobazam (CAS 22316-47-8) or cimetidine (CAS 51481-61-9). A proposal of the reaction pathway is suggested. The advantages of the proposed methods over existing method are discussed. PMID:11258050

  9. Solution processed single-emission layer white polymer light-emitting diodes with high color quality and high performance from a poly(N-vinyl)carbazole host.

    Science.gov (United States)

    Ye, Shang-Hui; Hu, Tian-Qing; Zhou, Zhou; Yang, Min; Quan, Mei-Han; Mei, Qun-Bo; Zhai, Bang-Cheng; Jia, Zhen-Hong; Lai, Wen-Yong; Huang, Wei

    2015-04-14

    Low cost and high performance white polymer light-emitting diodes (PLEDs) are very important as solid-state lighting sources. In this research three commercially available phosphors were carefully chosen, bis[2-(4,6-difluorophenyl)pyridinato-N,C(2)](picolinate)iridium(III) (FIrpic), bis[2-(2-pyridinyl-N)phenyl-C](2,4-pentanedionato-O(2),O(4))iridium(III) [Ir(ppy)2(acac)], and bis(2-phenyl-benzothiazole-C(2),N)(acetylacetonate)iridium(III) [Ir(bt)2(acac)], plus a home-made red phosphor of tris[1-(2,6-dimethylphenoxy)-4-(4-chlorophenyl)phthalazine]iridium(III) [Ir(MPCPPZ)3], and their photophysical and morphological properties were systematically studied as well as their applications in single-emission layer white PLEDs comprising poly(N-vinylcarbazole) as host. Additionally, the electrochemical properties and energy level alignment, possible energy transfer process, and thin-film morphology were also addressed. The binary blue/orange complementary white PLEDs exhibit stable electroluminescence spectra, wide spectrum-covering region range from 380-780 nm, and high color rendering index (CRI) over 70 with Commission Internationale de l'Eclairage coordinates x,y (CIEx,y) of (0.388, 0.440), correlated color temperature (CCT) of around 4400, plus high efficiency of 25.5 cd A(-1). The optimized red-green-blue white PLEDs showed a satisfactory CRI of around 82.4, maximum current efficiency of 20.0 cd A(-1) and external quantum efficiency (EQE) of 10.8%, corresponding to a CCT of 3700-2800, which is a warm-white hue. At last, stable and high color quality, red-green-orange-blue four component white PLEDs, with a CRI of over 82, a high efficiency of 24.0 cd A(-1), EQE of 11.5%, and high brightness of 43,569.9 cd m(-2) have been obtained. PMID:25742776

  10. The Preparation of TiO2 Thin Films with Level Sedimentation and Its Properties%液位沉降法制备 Ti O2薄膜及其性能研究

    Institute of Scientific and Technical Information of China (English)

    殷天兰; 武光明; 高德文; 丁尧; 姚天宇

    2014-01-01

    以钛酸丁酯为前驱液,无水乙醇为溶剂,乙酰丙酮为稳定剂,制备了 T iO 2溶胶,采用液位沉降法在清洁的玻璃衬底上镀制T iO 2薄膜。研究了添加剂聚乙二醇(1000)、p H、衬底温度对 T iO 2溶胶在玻璃基板上附着性的影响;研究了液位沉降速度、容器倾角以及溶胶附着性对T iO 2薄膜厚度的影响。考察了TiO2薄膜的表面形貌、晶相、光催化性能。结果表明,采用PEG与 Ti4+的质量比为1,不调节pH的TiO2溶胶,在沉降速度为7 cm/min ,容器倾角为30°所制得的TiO2薄膜的光催化性能最好,光照3 h时其光催化降解率高达52.1%。%TiO2 sol was prepared with butyl titanate as precursor solution ,anhydrous ethanol as solvent ,acetylacetone as the stabilizer .TiO2 thin film was coated on a clean glass substrate by level sedimentation method .The effect of Polyethylene glycol (1 000) as the additives ,pH and the substrate temperature on the adhesion between TiO 2 sol and the glass substrate was studied . The influence of level sedimentation velocity ,container angle and the adhesion on TiO2 thin film thickness was also studied .The surface morphology ,crystal phase ,and the photocatalytic per-formance of TiO2 thin films were researched too .The results showed that when the PEG with Ti4+ mass ratio was 1 ,the pH value was not adjusted ,the settling velocity was 7 cm/min ,the container angle was 30° ,the photocatalytic properties of TiO2 thin film was the best ,which was as high as 52.1% after being lighted for 3 hours .

  11. Hydride mobility in trinuclear sulfido clusters with the core [Rh3(μ-H)(μ3-S)2]: molecular models for hydrogen migration on metal sulfide hydrotreating catalysts.

    Science.gov (United States)

    Jiménez, M Victoria; Lahoz, Fernando J; Lukešová, Lenka; Miranda, José R; Modrego, Francisco J; Nguyen, Duc H; Oro, Luis A; Pérez-Torrente, Jesús J

    2011-07-11

    The treatment of [{Rh(μ-SH){P(OPh)(3)}(2)}(2)] with [{M(μ-Cl)(diolef)}(2)] (diolef=diolefin) in the presence of NEt(3) affords the hydrido-sulfido clusters [Rh(3)(μ-H)(μ(3)-S)(2)(diolef){P(OPh)(3)}(4)] (diolef=1,5-cyclooctadiene (cod) for 1, 2,5-norbornadiene (nbd) for 2, and tetrafluorobenzo[5,6]bicyclo[2.2.2]octa-2,5,7-triene (tfb) for 3) and [Rh(2)Ir(μ-H)(μ(3)-S)(2)(cod){P(OPh)(3)}(4)] (4). Cluster 1 can be also obtained by treating [{Rh(μ-SH){P(OPh)(3)}(2)}(2)] with [{Rh(μ-OMe)(cod)}(2)], although the main product of the reaction with [{Ir(μ-OMe)(cod)}(2)] was [RhIr(2)(μ-H)(μ(3)-S)(2)(cod)(2){P(OPh)(3)}(2)] (5). The molecular structures of clusters 1 and 4 have been determined by X-ray diffraction methods. The deprotonation of a hydrosulfido ligand in [{Rh(μ-SH)(CO)(PPh(3))}(2)] by [M(acac)(diolef)] (acac=acetylacetonate) results in the formation of hydrido-sulfido clusters [Rh(3)(μ-H)(μ(3)-S)(2)(CO)(2) (diolef)(PPh(3))(2)] (diolef=cod for 6, nbd for 7) and [Rh(2)Ir(μ-H)(μ(3)-S)(2)(CO)(2)(cod)(PPh(3))(2)] (8). Clusters 1-3 and 5 exist in solution as two interconverting isomers with the bridging hydride ligand at different edges. Cluster 8 exists as three isomers that arise from the disposition of the PPh(3) ligands in the cluster (cis and trans) and the location of the hydride ligand. The dynamic behaviour of clusters with bulky triphenylphosphite ligands, which involves hydrogen migration from rhodium to sulfur with a switch from hydride to proton character, is significant to understand hydrogen diffusion on the surface of metal sulfide hydrotreating catalysts. PMID:21633978

  12. Improved light emission utilizing polyfluorene derivatives by thermal printing and solution process

    Science.gov (United States)

    Kasama, Daisuke; Takata, Ryotaro; Kajii, Hirotake; Inoue, Jun; Yoshino, Katsumi; Ohmori, Yutaka

    2009-08-01

    The emission properties of polymer light-emitting diode (PLEDs), using blue emissive poly(9,9-dioctylfluorene) (PFO) and yellow-green emissive poly[9,9-dioctylfluorenyl-2,7-diyl)-co-1, 4-benzo-{2,1'-3}- thiadiazole)] (F8BT) fabricated by the spin-coating method, the toluene vapor method and the thermal printing method, were investigated. poly(2,7-(9,9-din-octylfluorene)-alt-(1,4-phenylene-( (4-sec-butylphenyl)imino)-1,4-phenylene)) (TFB) is useful for buffer layer and a dopant when we use the spin-coating method. When we use TFB as interlayer of PLED, TFB acts as exciton-blocking layer, thus prevents luminescence quenching. When we use TFB with 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole (PBD) as dopants of PFO, better current efficiency was achieved, compared to PFO only device. This result derives from these materials working as hole and electron transporting molecules. The blue and yellow-green PLEDs fabricated by the spincoating method showed maximum efficiencies of approximately 1.1 and 1cd/A, respectively. The device with bis[1-(9,9-dimethyl-9H-fluoren-2-yl)-isoquinoline](acetylacetonate)iridium(III) (Ir(fliq)2acac) doped in PFO showed red-emission and a maximum efficiency of approximately 1cd/A. Current efficiencies of PLEDs with the β phase of PFO fabricated by the thermal printing method and the toluene vapor method were found to have better emission efficiency than that with the amorphous phase of PFO by the spin-coating method. The EL spectra of PLEDs using PFO and PFO:F8BT fabricated by the thermal printing method were polarized. The transient characteristics of PLEDs using β phase of PFO were better than amorphous phase of that. It is expected to improve the characteristics of PLEDs by the optimization of the thermal printing method. We demonstrated improved light emission of PLEDs with the high-quality β phase by the thermal printing method.

  13. Preparation of hydrotalcite compounds using ultrasound irradiation to capture CO{sub 2}; Preparacion de compuestos tipo hidrotalcita utilizando irradiacion de ultrasonido para la captura de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.A.J.; Paredes, S.P.; Valenzuela, M.A.; Hernandez, M.L. [Instituto Politecnico Nacional, ESIQIE, Mexico, D.F. (Mexico)]. E-mail: sparedesc@ipn.com.mx

    2009-09-15

    Al-Mg hydrotalcite compounds (HTC) were prepared using co-precipitation, sol-gel and reconstruction of the structure with ultrasound-assisted irradiation. The interlaminar components for each method were nitrate, acetylacetonate ethoxide and metavanadate, respectively. Optimization of the synthesis was performed using x-ray diffraction. The effect of the different parameters on synthesis was studied, including pH, time and ultrasound irradiation power. In addition, for the reconstruction method, temperature and calcination time were evaluated. For all methods, ultrasound-assisted methods were found to be more efficient and economical than conventional methods reported (autoclave). They also have the advantage of being able to control properties such as crystallinity, porosity and the specific surface, which significantly depends on the preparation method, irradiation time and type of interlaminar component. These methods are intended to synthesize interlaminar anionic materials that are very scarce in nature with better properties than traditional adsorbents used for the capture of CO{sub 2}. [Spanish] Se prepararon compuestos tipo hidrotalcita Al-Mg por los metodos de: coprecipitacion, sol gel y reconstruccion de la estructura asistidos por irradiacion de ultrasonido. Los componentes interlaminares para cada metodo fueron respectivamente: nitrato, etoxido-acetilacetonato y metavanadato. La optimizacion de la sintesis, se efectuo mediante difraccion de rayos-X. Se estudio el efecto de diversos parametros en la sintesis: pH, tiempo y potencia de irradiacion de ultrasonido, ademas, para el metodo de reconstruccion se evaluaron la temperatura y el tiempo de calcinacion. En todos los casos se encontro que el empleo de metodos asistidos por ultrasonido resultan ser mas eficientes y economicos que los metodos convencionales reportados (autoclave), ademas tienen la ventaja, de poder controlar propiedades tales como: la cristalinidad, la porosidad y la superficie

  14. Is the enthalpy of fusion of tris(acetylacetonato)metal(III) complexes affected by their potential energy in the crystal state?

    Science.gov (United States)

    Sabolović, Jasmina; Mrak, Zeljko; Kostrun, Sanja; Janeković, August

    2004-12-27

    In this Article we present enthalpies of fusion and melting points obtained from new thermochemical measurements of tris(acetylacetonato)metal(III), M(acac)(3), complexes (M = Fe, Al, Cr, Mn, Co) using differential scanning calorimetry (DSC) and evaluate them in relation to their different values found in the literature. An enthalpy of fusion of 27.67 kJ mol(-)(1) was derived for Mn(acac)(3) from a symmetrical DSC thermogram captured for the first time. The enthalpy value was indirectly confirmed with the solubility measurements of Mn(acac)(3) in acetylacetone. A hypothesis has been stated that the enthalpy of fusion and the potential energy of M(acac)(3) in the crystal state may be related. To calculate molecular in-crystal potential energy, in this Article we proposed a molecular mechanics model for the M(acac)(3) class of compounds. Nine X-ray crystal structures of M(acac)(3) complexes (M = Fe, Al, V, Mn, Co, Cr, Sc) were included in the modeling. The conformational potential energy was minimized for a molecule surrounded by other molecules in the crystal lattice. The partial charges from two schemes, the electrostatic potential (ESP) fit and the natural population analysis (NPA), were used to construct two types of force fields to examine which force field type would yield a better fit with the experimental thermal properties. The final force fields were named FF-ESP and FF-NPA. Both force field sets reproduced well the experimental crystal data of nine M(acac)(3) complexes as well as of tris(3-methyl-2,4-pentanedionato-O,O')cobalt(III). Only in-crystal potential energies derived by FF-NPA yielded a significant correlation (correlation coefficient R = -0.71) with the measured enthalpies of fusion. The enthalpy of fusion for Co(acac)(3) could not be determined experimentally because of simultaneous decomposition and fusion, and it is predicted to be 33.2 kJ mol(-)(1) from the correlation regression line.

  15. Use of silicate shells to prevent sintering during thermally induced chemical ordering of iron platinum nanoparticles

    Science.gov (United States)

    Reed, Dwayne Fitzgerald

    Its very high value of magnetocrystalline anisotropy makes the L1 0 phase of FePt a leading candidate for future high density magnetic recording systems. FePt nanoparticles can be prepared by a number of chemical methods. However, these particles have a face-centered cubic structure, with low anisotropy and are superparamagnetic. They must be heated to temperatures above 500 °C to obtain the chemically ordered L10 phase. However, during heating the particles coalesce to give twinned grains with large sizes (10-30 nm). Here we provide a solution to the sintering problem by developing a sol-gel procedure for coating the FePt particles with an amorphous silica shell. The silica shell prevents the FePt particles from agglomerating when heated to 700 °C to effect chemical ordering. FePt nanoparticles were prepared by the super-hydride reduction of platinum(II) acetylacetonate and iron(II) chloride in hot diphenyl ether in the presence of oleylamine and oleic acid capping ligands. The particles had an average diameter of 5-6 nm, a face-centered cubic structure and were superparamagnetic. The particles were coated using a microemulsion process producing a 6 nm silicon oxide shell with a single nanoparticle core-shell structure. The nanoparticles were heated to 700 °C for times of 30 min and 1hr to achieve L10 phase transformation. These samples were annealed in a tube furnace under 95% Ar/5% H2. Many procedures were found to be ineffective. They mostly consisted of biphasic reaction systems and several trials where reaction variables were altered in search of the appropriate conditions. This work has impacted the search for a higher density magnetic recording medium by allowing the study of FePt under a protected environment while achieving chemical ordering. If the L10 FePt nanoparticles will be used in magnetic recording, the particles will require a hard coating to prevent wear. In the course of the present work, it has been shown that the silicate shells

  16. The effect of precursors salts on surface state of Pd/Al2O3 and Pd/CeO2/Al2O3 catalysts

    Directory of Open Access Journals (Sweden)

    André L. Guimarães

    2004-12-01

    Full Text Available The influence of the precursors on the promoting effect of ceria on Pd/Al2O3 catalyst, when ceria is coated over alumina was studied. The reaction of propane oxidation proceeded under different feed conditions and the surface active sites were characterized by X-ray photoelectron spectroscopy (XPS and in situ diffuse reflectance spectroscopy (DRS. XPS and DRS results show that PdO/Pd0 interface are the active sites independent of the precursor, while the catalysts containing CeO2 showed formation of palladium species in the highest oxidation state, probably PdO2 (338 eV after the oxidation of propane. Besides, the O/Al and O/Ce ratios evidenced the increase of oxygen storage in the presence of CeO2. In addition, the precursor acetylacetonate favors the oxygen storage in the lattice.Estudo da influência dos precursores sobre os catalisadores de Pd/Al2O3 promovidos com céria ancorado sobre a alumina. A oxidação do propano foi feita sob diferentes condições de alimentação sendo caracterizados os sítios superficiais por Espectroscopia Fotoeletrônica de raios X (XPS e por Refletância Difusa em ''situ''. Resultados de XPS e DRS mostraram a formação de interfaces de PdO/Pd0 como sendo os sítios ativos, independentes do precursor utilizado na preparação, enquanto que os catalisadores contendo CeO2 mostraram a formação de espécies de paládio com estado de oxidação mais altos, provavelmente PdO2 (338 eV após a oxidação do propano. Além disso, as razões O/Al e O/Ce evidenciaram um aumento de oxigênio armazenado na presença de CeO2. O precursor acetilacetonato favoreceu o armazenamento de oxigênio na rede.

  17. Thin films of copper oxide and copper grown by atomic layer deposition for applications in metallization systems of microelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Waechtler, Thomas

    2010-05-25

    Copper-based multi-level metallization systems in today's ultralarge-scale integrated electronic circuits require the fabrication of diffusion barriers and conductive seed layers for the electrochemical metal deposition. Such films of only several nanometers in thickness have to be deposited void-free and conformal in patterned dielectrics. The envisaged further reduction of the geometric dimensions of the interconnect system calls for coating techniques that circumvent the drawbacks of the well-established physical vapor deposition. The atomic layer deposition method (ALD) allows depositing films on the nanometer scale conformally both on three-dimensional objects as well as on large-area substrates. The present work therefore is concerned with the development of an ALD process to grow copper oxide films based on the metal-organic precursor bis(trin- butylphosphane)copper(I)acetylacetonate [({sup n}Bu{sub 3}P){sub 2}Cu(acac)]. This liquid, non-fluorinated {beta}-diketonate is brought to react with a mixture of water vapor and oxygen at temperatures from 100 to 160 C. Typical ALD-like growth behavior arises between 100 and 130 C, depending on the respective substrate used. On tantalum nitride and silicon dioxide substrates, smooth films and selfsaturating film growth, typical for ALD, are obtained. On ruthenium substrates, positive deposition results are obtained as well. However, a considerable intermixing of the ALD copper oxide with the underlying films takes place. Tantalum substrates lead to a fast self-decomposition of the copper precursor. As a consequence, isolated nuclei or larger particles are always obtained together with continuous films. The copper oxide films grown by ALD can be reduced to copper by vapor-phase processes. If formic acid is used as the reducing agent, these processes can already be carried out at similar temperatures as the ALD, so that agglomeration of the films is largely avoided. Also for an integration with subsequent

  18. Chelate Ring Size Effect as a Factor of Selective Fluorescent Recognition of Zn(2+) Ions by Pyrrolo[2,3-b]quinoxaline with a Substituted 2-Pyridyl Group Receptor.

    Science.gov (United States)

    Ostrowska, Katarzyna; Musielak, Bogdan; Szneler, Edward; Dudek, Łukasz; Gryl, Marlena; Stadnicka, Katarzyna

    2015-09-01

    Analysis of the spectral properties and structural differences of two turn-on ratiometric fluorescent receptors for Zn(2+) and Cd(2+) ions, derivatives of pyrrolo[2,3-b]quinoxaline (2), and earlier published 3 (Ostrowska et al. CrystEngComm 2015, 17, 498-502) was performed. Both ligands are E/Z push-pull olefins interconverting at room temperature, with barriers to rotation about enamine double bonds, from E to Z isomers of 19.3 ± 0.1 and 16.9 ± 0.3 kcal/mol and from Z to E of 16.9 ± 0.3 and 15.7 ± 0.2 kcal/mol, respectively. Diastereoisomers (E)-2 and (Z)-2 were isolated and characterized by X-ray structural analysis. The formation of complexes by (E/Z)-2 with acetates and acetylacetonates of Zn(2+) and Cd(2+) was monitored by UV-vis, fluorescence, and (1)H NMR titrations in acetonitrile, respectively. X-ray structural analysis for isolated [(E)-2]2Zn in relation to earlier published (E)-3-ZnOAc revealed the formation of a six-coordinated zinc ion with six- and four-membered bis-chelate rings by (E)-2. The chelate effect increases the ligand affinity for Zn(2+) (log β12 = 12.45) and causes the elongation of nitrogen-metal bonds. Extension of the coordination cavity size allows coordination of a cadmium ion. The introduction of a flexible ethylene linker between the fluorophore and ionophore pyridyl groups in 3 significantly affects the selectivity of zinc-ion recognition. The distorted tetrahedral geometry of (E)-3-ZnOAc with a four-coordinated zinc ion appears to be the most preferred because of the short donor-zinc distance with a 1:1 binding mode. The formation of the small coordination cavity size with six-membered bis-chelate rings provides an effective overlap of zinc and donor orbitals, precluding the coordination of a cadmium ion in the same manner as zinc.

  19. Preparation and Characterization of Electrospun Magnetic Carbon Composite Nanofibres%静电纺丝制备磁性碳纳米复合纤维及其表征

    Institute of Scientific and Technical Information of China (English)

    汤营茂; 缪清清; 肖荔人; 钱庆荣; 陈庆华

    2014-01-01

    Magnetic carbon composite nanofibres, using the mixed homogeneous solution consist of polyacryloni-trile (PAN), ferric acetylacetonate (AAI) and dimetbylformamide (DMF) as raw material, were prepared by elec-trospinning-calcination technology. TEM analysis showed that the carbon nanofibre diameter of sample CF900 was about 130-210 nm, in which magnetic nanoparticles were uniformly distributed. The magnetic properties of car-bon composite nanofibres under different carbonization temperature was also investigated. Results showed that saturation magnetization (Ms) and remanent magnetization (Mr) increased with the increase of the temperature. When carbonization temperature was 900℃, the sample was of good magnetic property with high saturation magnetization (Ms=27.55 A·m2/kg). Moreover, the specific surface area (SBET) and total pore volume (Vtotal) were up to 354.0 m2/g and 0.315 mL/g, respectively.%以聚丙烯腈(PAN)、乙酰丙酮铁(AAI)、N, N-二甲基甲酰胺(DMF)为原料,采用静电纺丝-煅烧技术成功制备出磁性碳纳米复合纤维。通过TEM分析发现CF900的直径约为130~210 nm,磁性纳米颗粒均匀地分散在碳纳米纤维中,并探讨了碳化温度对碳纳米复合纤维磁性能的影响。结果显示:饱和磁化强度(Ms)和剩余磁化强度(Mr)均随温度的升高而增大,样品 CF900的饱和磁化强度(Ms)高达27.55 A·m2/kg,比表面积(SBET)和总孔容积(Vtotal)达354.0 m2/g和0.315 mL/g。

  20. Behavior of the potential antitumor V(IV)O complexes formed by flavonoid ligands. 3. Antioxidant properties and radical production capability.

    Science.gov (United States)

    Sanna, Daniele; Ugone, Valeria; Fadda, Angela; Micera, Giovanni; Garribba, Eugenio

    2016-08-01

    The radical production capability and the antioxidant properties of some V(IV)O complexes formed by flavonoid ligands were examined. In particular, the bis-chelated species of quercetin (que), [VO(que)2](2-), and morin (mor), [VO(mor)2], were evaluated for their capability to reduce the stable radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and produce the hydroxyl radical (•)OH by Fenton-like reactions, where the reducing agent is V(IV)O(2+). The results were compared with those displayed by other V(IV)O complexes, such as [VO(H2O)5](2+), [VO(acac)2] (acac=acetylacetonate) and [VO(cat)2](2-) (cat=catecholate). The capability of the V(IV)O flavonoids complexes to reduce DPPH is much larger than that of the V(IV)O species formed by non-antioxidant ligands and it is due mainly to the flavonoid molecule. Through the 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trapping assay of the hydroxyl radical it was possible to demonstrate that in acidic solution V(IV)O(2+) has an effectiveness in producing (•)OH radicals comparable to that of Fe(2+). When V(IV)O complexes of flavonoids were taken into account, the amount of hydroxyl radicals produced in Fenton-like reactions depends on the specific structure of the ligand and on their capability to reduce H2O2 to give (•)OH. Both the formation of reactive oxygen species (ROS) under physiological conditions by V(IV)O complexes of flavonoid ligands and their radical scavenging capability can be put in relationship with their antitumor effectiveness and it could be possible to modulate these actions by changing the features of the flavonoid coordinated to the V(IV)O(2+) ion, such as the entity, nature and position of the substituents and the number of phenolic groups. PMID:27184413

  1. Photo-induced DNA cleavage activity and remarkable photocytotoxicity of lanthanide(III) complexes of a polypyridyl ligand.

    Science.gov (United States)

    Hussain, Akhtar; Gadadhar, Sudarshan; Goswami, Tridib K; Karande, Anjali A; Chakravarty, Akhil R

    2012-01-21

    Lanthanide(III) complexes [Ln(pyphen)(acac)(2)(NO(3))] (1, 2), [Ln(pydppz)(acac)(2)(NO(3))] (3, 4) and [La(pydppz)(anacac)(2)(NO(3))] (5), where Ln is La(III) (in 1, 3, 5) and Gd(III) (in 2, 4), pyphen is 6-(2-pyridyl)-1,10-phenanthroline, pydppz is 6-(2-pyridyl)-dipyrido[3,2-a:2',3'-c]phenazine, anacac is anthracenylacetylacetonate and acac is acetylacetonate, were prepared, characterized and their DNA photocleavage activity and photocytotoxicity studied. The crystal structure of complex 2 displays a GdO(6)N(3) coordination. The pydppz complexes 3-5 show an electronic spectral band at ~390 nm in DMF. The La(III) complexes are diamagnetic, while the Gd(III) complexes are paramagnetic with seven unpaired electrons. The molar conductivity data suggest 1 : 1 electrolytic nature of the complexes in aqueous DMF. They are avid binders to calf thymus DNA giving K(b) in the range of 5.4 × 10(4)-1.2 × 10(6) M(-1). Complexes 3-5 efficiently cleave supercoiled DNA to its nicked circular form in UV-A light of 365 nm via formation of singlet oxygen ((1)O(2)) and hydroxyl radical (HO˙) species. Complexes 3-5 also exhibit significant photocytotoxic effect in HeLa cancer cells giving respective IC(50) value of 0.16(±0.01), 0.15(±0.01) and 0.26±(0.02) μM in UV-A light of 365 nm, while they are less toxic in dark with an IC(50) value of >3 μM. The presence of an additional pyridyl group makes the pydppz complexes more photocytotoxic than their dppz analogues. FACS analysis of the HeLa cells treated with complex 4 shows apoptosis as the major pathway of cell death. Nuclear localization of complex 5 having an anthracenyl moiety as a fluorophore is evidenced from the confocal microscopic studies.

  2. Electronic state of ruthenium deposited onto oxide supports: An XPS study taking into account the final state effects

    Energy Technology Data Exchange (ETDEWEB)

    Larichev, Yurii V. [G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 5 Avenue Akademika Lavrentieva, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk (Russian Federation); Moroz, Boris L., E-mail: moroz@catalysis.ru [G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 5 Avenue Akademika Lavrentieva, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk (Russian Federation); Bukhtiyarov, Valerii I. [G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 5 Avenue Akademika Lavrentieva, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk (Russian Federation)

    2011-12-01

    The electronic state of ruthenium in the supported Ru/EO{sub x} (EO{sub x} = MgO, Al{sub 2}O{sub 3} or SiO{sub 2}) catalysts prepared by with the use of Ru(OH)Cl{sub 3} or Ru(acac){sub 3} (acac = acetylacetonate) and reduced with H{sub 2} at 723 K is characterized by X-ray photoelectron spectroscopy (XPS) in the Ru 3d, Cl 2p and O 1s regions. The influence of the final state effects (the differential charging and variation of the relaxation energy) on the binding energy (BE) of Ru 3d{sub 5/2} core level measured for supported Ru nanoparticles is estimated by comparison of the Fermi levels and the modified Auger parameters determined for the Ru/EO{sub x} samples with the corresponding characteristics of the bulk Ru metal. It is found that the negative shift of the Ru 3d{sub 5/2} peak which is observed in the spectrum of ruthenium deposited onto MgO (BE = 279.5-279.7 eV) with respect to that of Ru black (BE = 280.2 eV) or ruthenium supported on {gamma}-Al{sub 2}O{sub 3} and SiO{sub 2} (BE = 280.4 eV) is caused not by the transfer of electron density from basic sites of MgO, as considered earlier, but by the differential charging of the supported Ru particles compared with the support surface. Correction for the differential charging value reveals that the initial state energies of ruthenium in the Ru/EO{sub x} systems are almost identical (BE = 280.5 {+-} 0.1 eV) irrespectively of acid-base properties of the support, the mean size of supported Ru crystallites (within the range of 2-10 nm) and the surface Cl content. The results obtained suggest that the difference in ammonia synthesis activity between the Ru catalysts supported on MgO and on the acidic supports is accounted for by not different electronic state of ruthenium on the surface of these oxides but by some other reasons.

  3. Nanocrystalline spinel ferrite (MFe{sub 2}O{sub 4}, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Maensiri, Santi, E-mail: santimaensiri@gmail.com [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)

    2013-06-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe{sub 2}O{sub 4}, MgFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} respectively, whereas the samples of NiFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe{sub 2}O{sub 4} powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M{sub s} of 68.9 emu/g at 10 kOe were observed for the samples of MnFe{sub 2}O{sub 4}. - Abstract: Nanocrystalline spinel ferrite MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac){sub 3}, M(acac){sub 3} (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} samples contain nanoparticles, whereas the MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe{sub 2}O{sub 4} sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe{sub 2}O{sub 4}, MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples, whereas the

  4. Zinc complexes of Ttz(R,Me) with O and S donors reveal differences between Tp and Ttz ligands: acid stability and binding to H or an additional metal (Ttz(R,Me) = tris(3-R-5-methyl-1,2,4-triazolyl)borate; R = Ph, tBu).

    Science.gov (United States)

    Kumar, Mukesh; Papish, Elizabeth T; Zeller, Matthias; Hunter, Allen D

    2011-08-01

    Alkylzinc complexes, (Ttz(R,Me))ZnR' (R = tBu, Ph; R' = Me, Et), show interesting reactivity with acids, bases and water. With acids (e.g. fluorinated alcohols, phenols, thiophenol, acetylacetone, acetic acid, HCl and triflic acid) zinc complexes of the conjugate base (CB), (Ttz(R,Me))ZnCB, are generated. Thus the B-N bonds in Ttz ligands are acid stable. (Ttz(R,Me))ZnCB complexes were characterized by (1)H, (13)C-NMR, IR, MS, elemental analysis, and, in most cases, single crystal X-ray diffraction. The four coordinate crystal structures included (Ttz(R,Me))Zn(CB) [where R = Ph, CB (conjugate base) = OCH(2)CF(3) (2), OPh (6), SPh (8), p-OC(6)H(4)(NO(2)) (10); R = tBu, CB = OCH(CF(3))(2) (3), OPh (5), SPh (7)*, p-OC(6)H(4)(NO(2)) (9) (* indicates a rearranged Ttz ligand)]. The use of bidentate ligands resulted in structures [(Ttz(Ph,Me))Zn(CB) (CB = acac (12), OAc (14))] in which the coordination geometries are five, and intermediate between four and five, respectively. Interestingly, three forms of (Ttz(Ph,Me))Zn(p-OC(6)H(4)(NO(2))) (10) were analyzed crystallographically including a Zn coordinated water molecule in 10(H(2)O), a coordination polymer in 10(CP), and a p-nitrophenol molecule hydrogen bonded to a triazole ring in 10(Nit). Ttz ligands are flexible since they are capable of providing κ(3) or κ(2) metal binding and intermolecular interactions with either a metal center or H through the four position nitrogen (e.g. in 10(CP) and HTtz(tBu,Me)·H(2)O, respectively). Preliminary kinetic studies on the protonolysis of LZnEt (L = Ttz(tBu,Me), Tp(tBu,Me)) with p-nitrophenol in toluene at 95 °C show that these reactions are zero order in acid and first order in the LZnEt. PMID:21706096

  5. Manipulation of phosphorescence efficiency of cyclometalated iridium complexes by substituted o-carboranes.

    Science.gov (United States)

    Lee, Young Hoon; Park, Jihyun; Jo, Song-Jin; Kim, Miyoung; Lee, Junseong; Lee, Sang Uck; Lee, Min Hyung

    2015-01-26

    A series of [(C^N)2 Ir(acac)] complexes [{5-(2-R-CB)ppy}2 Ir(acac)] (3 a-3 g; acac=acetylacetonate, CB=o-carboran-1-yl, ppy=2-phenylpyridine; R=H (3 a), Me (3 b), iPr (3 c), iBu (3 d), Ph (3 e), CF3 C6 H4 (3 f), C6 F5 (3 g)) with various 2-R-substituted o-carboranes at the 5-position in the phenyl ring of the ppy ligand were prepared. X-ray diffraction studies revealed that the carboranyl CC bond length increases with increasing steric and electron-withdrawing effects from the 2-R substituents. Although the absorption and emission wavelengths of the complexes are almost invariant to the change of 2-R group, the phosphorescence quantum efficiency varies from highly emissive (ΦPL ≈0.80 for R=H, alkyl) to poorly emissive (R=aryl) depending on the 2-R group and the polarity of the medium. Theoretical studies suggest that 1) the almost nonemissive nature of the 2-aryl-substituted complexes is mainly attributable to the large contribution to the LUMO in the S1 excited state from an o-carborane unit and 2) the variation in the CC bond length between the S0 and T1 state structures increases with increasing steric (2-alkyl) and electronic effects (2-aryl) of the 2-R substituent and the polarity of the solvent. The solution-processed electroluminescence (EL) devices that incorporated 3 b and 3 d as emitters displayed higher performance than the device based on the parent [(ppy)2 Ir(acac)] complex. Along with the high phosphorescence efficiency, the bulkiness of the 2-R-o-carborane unit is shown to play an important role in improving device performance.

  6. [Spectrophotometric determination of scandium,gallium and vanadium in white cabbage leaves].

    Science.gov (United States)

    Buhl, F; Połedniok, J

    1997-01-01

    Scandium, gallium and vanadium contents in plants is on the ppm level, although plants from industrial areas can show higher concentrations of these elements. In Department of Analytical Chemistry of Silesian University there have been elaborated new, sensitive, spectrophotometric methods of determination of scandium, gallium and vanadium using Chrome Azurol S (CAS) and Sterinol (ST). The aim of this study was the application of these methods in analysis of cultivated plants from polluted regions. White cabbage from Upper Silesia was chosen. Because the spectrophotometric methods are not selective, scandium, gallium and vanadium should be preliminary separated from interfering elements. The solvent reaction was applied for the isolation from main and trace components of investigated material. Tienoiltrifluoracetone solution in xylene was used for the extraction of scandium, mesithyloxide for vanadium and n-butyl acetate--for gallium. Interfering and not separated Fe(III) was isolated using the extraction with acetylacetone solution in CHCl3 in the case of scandium and the reduction to Fe(II) by ascorbic acid in the case of gallium and vanadium. Due to influence of Fe(II) on the vanadium determination, KCN was used as a masking agent directly after the reduction. Scandium, gallium and vanadium were determined in 6 independent samples of white cabbage after dry or wet mineralization and contents of these leemnets were found from calibration graphs. Obtain results were checked by the internal standard addition method and Atomic Emission Spectrometry Method (ICP AES). The amounts of gallium and vanadium in white cabbage from Upper Silesia District determined by elaborated methods are in good correlation with a literature data, although the contents of vanadium are on the toxic level. The scandium concentration is higher than in plants from not industrial areas. The standard recovery is satisfactory. The Atomic Emission Spectrometry Method gave comparable results. The

  7. Secondary brown carbon - Formation of light-absorbing compounds in atmospheric particulates from selected dicarbonyls and amines

    Science.gov (United States)

    Kampf, Christopher; Filippi, Alexander; Hoffmann, Thorsten

    2015-04-01

    One of the main open questions regarding organic compounds in atmospheric chemistry today is related to the formation of optically-active compounds and the occurrence of so called brown carbon (Andreae and Gelencsér, 2006). While organic compounds in ambient fine particles for decades have been assumed to not absorb solar radiation, thus resulting in a net cooling effect on climate (IPCC, 2007), it is now generally accepted that a continuum of light-absorbing carbonaceous species is present in fine aerosols (Pöschl, 2003). In this study, light-absorbing compounds from reactions between dicarbonyl compounds, i.e., glyoxal, methylglyoxal, acetylacetone, 2,3-butanedione, 2,5-hexanedione, and glutaraldehyde, and amine species, i.e., ammonia and glycine, were investigated at atmospherically relevant concentrations in bulk solution experiments mimicking atmospheric particulates. Product analyses were performed using UV/Vis spectrophotometry and (ultra) high performance liquid chromatography coupled to diode array detection and ion trap mass spectrometry (HPLC-DAD-ESI-MS/MS), as well as ultra-high resolution (Orbitrap) mass spectrometry (UHPLC-ESI-HRMS/MS). We demonstrate that light-absorbing compounds are formed from a variety of atmospherically relevant dicarbonyls via particle phase reactions with amine nucleophiles. Single dicarbonyl and mixed dicarbonyl experiments were performed and products were analyzed. The reaction products are suggested to be cyclic nitrogen containing compounds such as imidazoles or dihydropyridines as well as open chain compounds resulting from aldol condensation reactions. Further, the reactive turnover was found to be higher at increasing pH values. The aforementioned processes may be of higher relevance in regions with high aerosol pH, e.g., resulting from high ammonia emissions as for example in northern India (Clarisse et al., 2009). References Andreae, M.O., and Gelencsér, A. (2006): Black carbon or brown carbon? The nature of light

  8. Nanosized Ni–Al layered double hydroxides—Structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Jitianu, Mihaela, E-mail: jitianum@wpunj.edu [William Paterson University, Department of Chemistry, 300 Pompton Road, Wayne, NJ 07470 (United States); Gunness, Darren C. [William Paterson University, Department of Chemistry, 300 Pompton Road, Wayne, NJ 07470 (United States); Aboagye, Doreen E. [Lehman College – City University of New York, Department of Chemistry, Davis Hall, 250 Bedford Boulevard West, Bronx, NY 10468 (United States); Zaharescu, Maria [Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest (Romania); Jitianu, Andrei, E-mail: andrei.jitianu@lehman.cuny.edu [Lehman College – City University of New York, Department of Chemistry, Davis Hall, 250 Bedford Boulevard West, Bronx, NY 10468 (United States)

    2013-05-15

    Highlights: ► The takovite anionic clays were obtained using the sol–gel method. ► The effect of samples’ composition on the structural and textural characteristics has been investigated. ► X-ray analysis. ► FTIR spectroscopy evidenced a disordered interlayer structure. ► FESEM and TEM analysis showed that the samples have high porosity. - Abstract: Takovite, a natural mineral with the formula Ni{sub 6}Al{sub 2}(OH){sub 6}CO{sub 3}·5H{sub 2}O belongs to the large class of layered double hydroxides (LDHs) and contains positively charged Ni(II) and Al(III) layers alternating with layers containing carbonate ions and water molecules. Mesoporous takovite-type layered double hydroxides (LDH) of the general formula [Ni{sub 1−x}Al{sub x}(OH){sub 2}]{sup x+}(CO{sub 3}{sup 2−}){sub x/2}·nH{sub 2}O with different Ni/Al molar ratios (1.9–2.8) have been successfully synthesized by the sol–gel method, followed by anionic exchange using nickel acetylacetonate and aluminum isopropylate as cation precursors. A single LDH phase and an anisotropic growth of very small crystallites (below 4 nm) have been evidenced by X-ray diffraction. The effect of samples’ composition on their structural and textural characteristics has been investigated. The BET surface area values are in the range of 100–122 m{sup 2}/g. BJH pore radius decreased with increase in the Al(III) content in the LDHs. FESEM micrographs show large aggregates of highly porous LDH particles, while TEM analysis reveals irregular agglomerates of crystallites, among which some of them displayed a developing hexagonal shape. The average particle size variation with the Al(III) content in the samples follows the same trend as the pore radius, the sample with the highest Ni/Al ratio displaying also the smallest particle size. This sample becomes even more interesting, since TEM analysis shows agglomerates with inside circular structures, feature not observed for the other Ni/Al ratios investigated.

  9. Photophysical and photocatalytic properties of Bi{sub 2}MNbO{sub 7} (M = Al, In, Ga, Fe) thin films prepared by dip-coating

    Energy Technology Data Exchange (ETDEWEB)

    Ropero-Vega, J.L., E-mail: jlropero@ciencias.uis.edu.co [Centro de Investigaciones en Catalisis - CICAT, Universidad Industrial de Santander - UIS, Sede Guatiguara Km. 2 via El Refugio, C.P. 681011, Piedecuesta (Santander) (Colombia); Rosas-Barrera, K.L. [Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente - GIMBA, Universidad Industrial de Santander - UIS, Sede Guatiguara Km. 2 via El Refugio, C.P. 681011, Piedecuesta (Santander) (Colombia); Pedraza-Avella, J.A. [Centro de Investigaciones en Catalisis - CICAT, Universidad Industrial de Santander - UIS, Sede Guatiguara Km. 2 via El Refugio, C.P. 681011, Piedecuesta (Santander) (Colombia); Laverde-Catano, D.A., E-mail: dlaverde@uis.edu.co [Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente - GIMBA, Universidad Industrial de Santander - UIS, Sede Guatiguara Km. 2 via El Refugio, C.P. 681011, Piedecuesta (Santander) (Colombia); Pedraza-Rosas, J.E. [Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente - GIMBA, Universidad Industrial de Santander - UIS, Sede Guatiguara Km. 2 via El Refugio, C.P. 681011, Piedecuesta (Santander) (Colombia); Nino-Gomez, M.E. [Centro de Investigaciones en Catalisis - CICAT, Universidad Industrial de Santander - UIS, Sede Guatiguara Km. 2 via El Refugio, C.P. 681011, Piedecuesta (Santander) (Colombia)

    2010-10-25

    In this work we report the preparation and characterization of Bi{sub 2}MNbO{sub 7} (M = Al, Ga, In, Fe) transparent thin films on glass slides. The films were obtained by dip-coating using bismuth(III) acetate, niobium(V) ethoxide and the corresponding metal(III) acetylacetonate precursors. Crystal structure and elemental analysis were performed by X-ray diffraction (XRD) and energy dispersive X-ray fluorescence (EDXRF). The band-gap energy (E{sub g}) of the semiconductor films was estimated by UV-vis spectroscopy. Their photocatalytic activity was evaluated in the degradation of methyl orange (MeO) in aqueous solution. The presence of a crystalline phase in the Bi-M-Nb-O (M = Al, Ga, In, Fe) systems with pyrochlore-type structure was suggested by the diffraction peak at 2{theta} {approx} 29.01. The elemental proportion in the Bi-Ga-Nb-O film fits better to the stoichiometric ratio in Bi{sub 2}MNbO{sub 7}. The estimated E{sub g} values were: Bi{sub 2}FeNbO{sub 7} (2.47 eV) < Bi{sub 2}GaNbO{sub 7} (2.67 eV) < Bi{sub 2}AlNbO{sub 7} (2.79 eV) < Bi{sub 2}InNbO{sub 7} (3.01 eV) and the calculated kinetic parameter t{sub 1/2} were: Bi{sub 2}GaNbO{sub 7} (239 min) < Bi{sub 2}AlNbO{sub 7} (278 min) < Bi{sub 2}InNbO{sub 7} (296 min) < Bi{sub 2}FeNbO{sub 7} (319 min). These results indicate that a slight band-gap narrowing has a positive effect in the photocatalytic properties but those further than E{sub g} < 2.5 eV has a detrimental effect.

  10. Highly efficient white organic light-emitting devices consisting of undoped ultrathin yellow phosphorescent layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengqiang [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Ma, Zhu; Zhao, Juan [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2013-02-15

    High-efficiency white organic light-emitting devices (WOLEDs) based on an undoped ultrathin yellow light-emitting layer and a doped blue light-emitting layer were demonstrated. While the thickness of blue light-emitting layer, formed by doping a charge-trapping phosphor, iridium(III) bis(4 Prime ,6 Prime -difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6) in a wide bandgap host, was kept constant, the thickness of neat yellow emissive layer of novel phosphorescent material, bis[2-(4-tertbutylphenyl)benzothiazolato-N,C{sup 2 Prime }]iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)] was varied to optimize the device performance. The optimized device exhibited maximum luminance, current efficiency and power efficiency of 24,000 cd/m{sup 2} (at 15.2 V), 79.0 cd/A (at 1550 cd/m{sup 2}) and 40.5 lm/W (at 1000 cd/m{sup 2}), respectively. Besides, the white-light emission covered a wide range of visible spectrum, and the Commission Internationale de l'Eclairage coordinates were (0.32, 0.38) with a color temperature of 5800 K at 8 V. Moreover, high external quantum efficiency was also obtained in the high-efficiency WOLEDs. The performance enhancement was attributed to the proper thickness of (t-bt){sub 2}Ir(acac) layer that enabled adequate current density and enough phosphorescent dye to trap electrons. - Highlights: Black-Right-Pointing-Pointer Highly efficient WOLEDs based on two complementary layers were fabricated. Black-Right-Pointing-Pointer The yellow emissive layer was formed by utilizing undoping system. Black-Right-Pointing-Pointer The blue emissive layer was made by host-guest doping system. Black-Right-Pointing-Pointer The thickness of the yellow emissive layer was varied to make device optimization. Black-Right-Pointing-Pointer The optimized device achieved high power efficiency of 40.5 lm/W.

  11. Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    International Nuclear Information System (INIS)

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe2O4 (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe2O4, MgFe2O4 and MnFe2O4 respectively, whereas the samples of NiFe2O4 and ZnFe2O4 show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe2O4 powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum Ms of 68.9 emu/g at 10 kOe were observed for the samples of MnFe2O4. - Abstract: Nanocrystalline spinel ferrite MFe2O4 (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac)3, M(acac)3 (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe2O4 and CoFe2O4 samples contain nanoparticles, whereas the MnFe2O4 and MgFe2O4 samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe2O4 sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe2O4, MnFe2O4 and MgFe2O4 samples, whereas the samples of NiFe2O4 and ZnFe2O4 exhibit a superparamagnetic behavior

  12. Properties of PZT Thin Films Fabricated by Sol-Gel Processing%溶胶-凝胶法制备PZT薄膜及其物性特性分析

    Institute of Scientific and Technical Information of China (English)

    唐立军; 梁庭

    2012-01-01

    By taking lead acetate, zirconium tetra-n-butoxide, tetraburyl titanate as raw materials, acetylacetone as chelating agent, and ethylene glycol monomethyl ether (EM) as solvent, the PZT was prepared.Sol PZT pyroelectric film in the Si-Pt substrate in the way of Sol-Gel was prepared by using spin coater (KW-4A)with rotation speed of 4 500 r/m and rotating time of 30 s.The PZT Sol was treated in the muffle with sintering temperature of 400 C and annealing temperature of 600 C , 650 C , and 700 C , respectively.AFM and Raman spectrum were used to investigate the morphology and the Raman peaks.The experiment showed that the Raman peaks were found when the material was treated at annealing temperatures of 600 C , 650 C and 700 C.The surface of the film was smooth and dense at the annealing temperature 650 C.The perovskite type structure of tetragonal and trigonal concomitant were formed at the annealing temperature 700 C.%以三水合乙酸铅、四正丁氧基锆和钛酸四丁酯为原料,并以乙酰丙酮为熬合剂,乙二醇甲醚为溶剂制备PZT溶胶;在Si-Pt基板上采用溶胶-凝胶法制备热释电薄膜.采用KW-4A型匀胶机,甩胶速度为4 500 r/m,甩胶30 s,在马弗炉中烧结温度为400 ℃,退火温度分别为600 ℃,650 ℃,700 ℃.使用AFM观察表面形貌,在拉曼光谱仪下观测拉曼峰.试验结果表明:在600 ℃,650 ℃,700 ℃退火时均形成拉曼峰,650 ℃退火时局部区域内薄膜材料的表面光滑而致密,700 ℃形成了三方、四方共存的钙钛矿相结构.

  13. 双相分散聚乙烯吡咯烷酮包覆氧化锌纳米粒子的微乳液法制备,结构和光学性质%Synthesis of bi-phase dispersible polyvinylpyrrolidone-capped zinc oxide nano-particulate via emulsion route and its structure as well as optical property

    Institute of Scientific and Technical Information of China (English)

    侯澎; 张晓燕; 吴君华; 刘红玲

    2011-01-01

    Bi-phase dispersible ZnO nanoparticles surface-capped by polyvinylpyrrolidone (PVP) were prepared using nano-emulsion method in the presence of zinc acetylacetone [Zn(acac)2] as the precursor and PVP as the surfactant. The phase composition, microstructure and chemical feature of resultant PVP-ZnO nanoparticles were analyzed by means of X-ray diffraction, transmission electron microscopy, and infrared spectrometry. Its optical properties were evaluated by means of ultraviolet-visible light absorbance spectrometry and florescence spectrometry. It has been found that as-synthesized PVP-ZnO nanoparticles have hexagonal structure and narrow size distribution as well as high crystallinity. Thanks to the encapsulation of nano-ZnO by PVP, PVP-ZnO nanoparticles are well dispersible in both organic and inorganic solvents. In the meantime, PVP-ZnO nanoparticles show a strong absorption band around 373 nm. Under an excitation at 380 nm, PVP-ZnO nanoparticles show strong blue-greenish emission peaks around 496 nm and weak emission peaks around 587 nm at room temperature.%以乙酰丙酮锌为前躯体、聚乙烯吡咯烷酮(PVP)为表面活性剂,采用纳米微乳液法制备了有机相和水相双分散PVP包覆氧化锌(PVP-ZnO)纳米粒子;采用X射线衍射仪、透射电镜、红外光谱仪分析了其相组成、微结构及化学特征,利用紫外-可见吸收光谱仪和荧光光谱仪测定了其光学性质.结果表明,制备的纳米ZnO具有六方纤锌矿结构,粒径分布范围窄,结晶性好.纳米ZnO表面包裹PVP,使得PVP-ZnO在无机和有机溶剂中皆具有很好的分散性.与此同时,PVP-ZnO纳米粒子在紫外区尤其是373 nm处显示很强的紫外吸收,而在380 nm的激发光下在496 nm左右产生强蓝绿光发射,并在587 nm处伴有弱黄绿光发射.

  14. Design, synthesis, characterization, and OFET properties of amphiphilic heteroleptic tris(phthalocyaninato) europium(III) complexes. The effect of crown ether hydrophilic substituents.

    Science.gov (United States)

    Gao, Yingning; Ma, Pan; Chen, Yanli; Zhang, Ying; Bian, Yongzhong; Li, Xiyou; Jiang, Jianzhuang; Ma, Changqin

    2009-01-01

    Two amphiphilic heteroleptic tris(phthalocyaninato) europium complexes with hydrophilic crown ether heads and hydrophobic octyloxy tails [Pc(mCn)(4)]Eu[Pc(mCn)(4)]Eu[Pc(OC(8)H(17))(8)] [m = 12, n = 4, H(2)Pc(12C4)(4) = 2,3,9,10,16,17,23,24-tetrakis(12-crown-4)phthalocyanine; m = 18, n = 6, H(2)Pc(18C6)(4) = 2,3,9,10,16,17,23,24-tetrakis(18-crown-6)phthalocyanine; H(2)Pc(OC(8)H(17))(8) = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine] (1, 2) were designed and prepared from the reaction between homoleptic bis(phthalocyaninato) europium compound [Pc(mCn)(4)]Eu[Pc(mCn)(4)] (m = 12, n = 4; m = 18, n = 6) and metal-free H(2)Pc(OC(8)H(17))(8) in the presence of Eu(acac)(3).H(2)O (Hacac = acetylacetone) in boiling 1,2,4-trichlorobenzene. These novel sandwich triple-decker complexes were characterized by a wide range of spectroscopic methods and electrochemically studied. With the help of the Langmuir-Blodgett technique, these typical amphiphilic triple-decker complexes were fabricated into organic field effect transistors (OFET) with top contact configuration on bare SiO(2)/Si substrate, hexamethyldisilazane-treated SiO(2)/Si substrate, and octadecyltrichlorosilane (OTS)-treated SiO(2)/Si substrate, respectively. The device performance is revealed to be dependent on the species of crown ether substituents and substrate surface treatment. OFETs fabricated from the triple decker with 12-crown-4 hydrophilic substituents, 1, allow the hole transfer in the direction parallel to the aromatic phthalocyanine rings. In contrast, the devices of a triple-decker compound containing 18-crown-6 as hydrophilic heads, 2, transfer holes in a direction along the long axis of the assembly composed of face-to-face aggregated triple-decker molecules, revealing the effect of molecular structure, specifically the crown ether substituents on the film structure and OFET functional properties. The carrier mobility for hole as high as 0.33 cm(2) V(-1) s(-1) and current modulation of 7.91 x 10

  15. NiMoB/γ-Al2O3催化生物油加氢提质%Upgrading bio-oil by hydrogenation with NiMoB/γ-Al2O3 as catalyst

    Institute of Scientific and Technical Information of China (English)

    崔洪友; 魏书芹; 王景华; 马成亮; 糕淑萍; 王丽红; 易维明; 李志合

    2011-01-01

    试验以NiMoB/γ-Al2O3,为催化剂,在一定温度条件下,考察了对玉米秸秆快速热裂解油(生物油)的加氢提质效果.结果表明,在80℃下,生物油中部分代表性不饱和醛酮化合物(如糠醛、苯甲醛、环己酮、乙醛、乙酞丙酮等)可以在甲醇溶液中被高效地加氢转化为相应的醇.由于生物油中含水量高和各类不饱和化合物含量很低的原因,直接对生物油加氢时,只能部分地将其转化为饱和化合物.研究发现,生物油经超临界萃取处理获得的轻组分,其加氢能力明显增强,羰基化合物(C=O)和碳碳双键化合物((C=C)的转化率分别可达87%和70%.加氢过程中会伴有酯化反应,加氢处理生物油的酸度明显降低,热稳定性提高.%Experimental investigation on catalytic hydrogenation of a pyrolysis oil from corn straw over NiMoB/γ-Al2O3 was carried out under mild conditions. The results showed that the unsaturated compounds such as furfural, benzaldehyde, cyclohexanone, ethanal, acetylacetone, etc, which are representative unsaturated compounds existed in bio-oils, were effectively converted into saturated compounds under 80 ℃ in methanol solution. Due to the high water content and the low concentration of unsaturated compounds in the bio-oil, direct hydrogenation only enables to partly convert the unsaturated compounds, with conversions about 40%~50%. After supercritical CO2 extraction treatment, it was found that the conversion of unsaturated compounds with C=O and/or C=C groups increased evidently, affording conversions of 87% and 70%, respectively. The thermal stability of the bio-oil after hydrogenation was markedly improved and the acidity decreased significantly owing to the simultaneous esterification of acids with methanol.

  16. Electron charging in epitaxial germanium quantum dots on silicon (100)

    Science.gov (United States)

    Ketharanathan, Sutharsan

    The electron charging behavior of self assembled epitaxial Ge quantum dots on Si(100) grown using molecular beam epitaxy has been studied. Ge quantum dots encapsulated in n-type Si matrix were incorporated into Schottky diodes to investigate their charging behavior using capacitance-voltage measurements. These experimental results were interpreted in the context of theoretical models to assess the degree of charge localization to the dot. Experiments involving Ge quantum dot growth, growth of Sb-doped Si and morphological evolution during encapsulation of the Ge dots during Si overgrowth were performed in order to optimize the conditions for obtaining distinct Ge quantum dot morphologies. This investigation included finding a suitable method to minimize Sb segregation while maintaining good dot epitaxy and overall crystal quality. Holes are confined to the Ge dots for which the valence band offsets are large (˜650 meV). Electrons are confined to the strained Si regions adjacent to the Ge quantum dots which have relatively smaller confinement potentials (˜100--150 meV). Experimentally, it was found that but and pyramid clusters in the range from 20--40 nm in diameter confine ˜1electron per dot while dome clusters in the range from 60--80 nm diameter confine ˜6--8 electrons per dot. Theoretical simulations predict that similar pyramid structures confine ˜0.4 electrons per dot and dome structures confine ˜2.2--3 electrons per dot. Even though the theory and the experimental results disagree due to various uncertainties and approximations, the ratio between theory and experiment agree remarkably well for both island types. We also investigated constructive three-dimensional nanolithography. Nanoscale Au rich dots and pure Ge dots were deposited on SiO2 and Si3N4 substrates by decomposing adsorbed precursors using a focused electron beam in an environmental transmission electron microscope. Dimethyl acetylacetonate gold was used for Au and digermane was used to

  17. On the reaction of Ph2PNHPPh2 with RNCS (R=Et, Ph, p-NO2C6H4): preparation of the zwitterionic ligand EtNHC(S)Ph2P==NPPh2C(S)NEt (HSNS) and the zwitterionic metalate [(SNS)Rh(CO)].

    Science.gov (United States)

    Asti, Mattia; Cammi, Roberto; Cauzzi, Daniele; Graiff, Claudia; Pattacini, Roberto; Predieri, Giovanni; Stercoli, Alessandro; Tiripicchio, Antonio

    2005-05-20

    The reaction of Ph(2)PNHPPh(2) (PNP) with RNCS (Et, Ph, p-NO(2)(C(6)H(4))) gives addition products resulting from the attack of the P atoms of PNP on the electrophilic carbon atom of the isothiocyanate. When PNP is reacted with EtNCS in a 1:2 molar ratio, the zwitterionic molecule EtNHC(S)PPh(2)==NP(+)Ph(2)C(S)N(-)Et (HSNS) is obtained in high yield. HSNS can be protonated (H(2)SNS(+)) or deprotonated (SNS(-)), behaving in the latter form as an S,N,S-donor pincer ligand. The reaction of HSNS with [(acac)Rh(CO)(2)] (acac=acetylacetonate) affords the zwitterionic metalate [(SNS)Rh(CO)]. Other products can be obtained depending on the R group, the PNP/RNCS ratio (1:1 or 1:2), and the reaction temperature. The proposed product of the primary attack of PNP on RNCS, Ph(2)PN==PPh(2)C(S)NHR (A), cannot be isolated. Reaction of A with another RNCS molecule leads to 1:2 addition compounds of the general formula RNHC(S)PPh(2)==NP(+)Ph(2)C(S)N(-)R (1), which can rearrange into the non-zwitterionic product RNHC(S)PPh(2)==NP(S)Ph(2) (2) by eliminating a molecule of RNC. Two molecules of A can react together, yielding 1:1 PNP/RNCS zwitterionic products of the formula RNHCH[PPh(2)==NP(S)Ph(2)]PPh(2)==NP(+)Ph(2)C(S)N(-)R (3). Compound 3 can then rearrange into RNHCH[PPh(2)==NP(S)Ph(2)](2) (4) by losing a RNC molecule. When R=Et (a), compounds 1 a, 2 a (HSNS), and 4 a have been isolated and characterized. When R=Ph (b), compounds 2 b and 4 b can be prepared in high yield. When R=p-NO(2)C(6)H(4) (c), only compound 3 c is observed and isolated in high yield. The crystal structures of HSNS, [(SNS)Rh(CO)], and of the most representative products have been determined by X-ray diffraction methods. PMID:15798977

  18. Influence of the process parameters on the spray pyrolysis technique, on the synthesis of gadolinium doped-ceria thin film

    International Nuclear Information System (INIS)

    Graphical abstract: Gas-tight CGO made by spray pyrolysis suitable to be used as SOFC electrolyte. Display Omitted Highlights: ► Dense and crystalline CGO films deposited by spray pyrolysis on various substrates. ► Solvent did not have a strong influence on the film microstructure, defect concentration or thickness. ► The substrate did not have a strong influence on the film microstructure, defect concentration or thickness. ► Films with at least 2.5 μm of thickness presented high impermeability. ► The films obtained are suitable to use as a SOFC electrolyte. -- Abstract: This work presents the results of a process of optimization applied to gadolinia-doped ceria (Ce0.8Gd0.2O1.9−x, or CGO) thin films, deposited by spray pyrolysis (SP). Spray pyrolysis is a high thermal deposition method that combines material deposition and heat treatment. This combination is advantageous since the post-deposition heat treatment step is not necessary. However, stresses are solidified in the coating during the deposition, which may lead to the initiation of a crack in the coating. The aim of this work was to achieve thin, dense, and continuous CGO coatings, which may be used as gas separation membranes and as a solid state electrochemical interfaces. Dense, flat, low-defect substrates such as silica slides, silicon mono crystal wafers, and porous substrates were used as substrates in this work. Cerium ammonium nitrate and gadolinium acetylacetonate were dissolved in ethanol and butyl carbitol to form a precursor solution that was sprayed on the heated substrates. Process parameters such as solvent composition, deposition rate and different heating regimes were analyzed. The microstructure was analyzed by secondary electron microscopy (SEM) and was found that thin, dense, and defect-free films could be produced on dense and porous substrates. The results obtained show that it is possible to obtain a CGO dense film deposited by spray pyrolysis. X-ray diffraction (XRD

  19. Characterization of gamma-Ga2O3-Al2O3 prepared by solvothermal method and its performance for methane-SCR of NO.

    Science.gov (United States)

    Nakatani, Tetsu; Watanabe, Tsunenori; Takahashi, Masaru; Miyahara, Yuya; Deguchi, Hiroshi; Iwamoto, Shinji; Kanai, Hiroyoshi; Inoue, Masashi

    2009-06-25

    The gamma-Ga(2)O(3)-Al(2)O(3) mixed oxides with a spinel structure were prepared by the solvothermal reaction of gallium acetylacetonate and aluminum isopropoxide in diethylenetriamine. In the crystal structures of the catalysts obtained by the calcination of these mixed oxides, Ga(3+) and Al(3+) ions preferentially occupied tetrahedral and octahedral sites, respectively. The catalysts with low Ga contents had a unique structure with high surface areas and a concentration gradient of decreasing Ga content from the surface to the bulk. In methane-selective catalytic reduction (SCR) of NO, higher NO conversion to N(2) was attained on the catalyst with high occupation of Ga(3+) ions at tetrahedral sites and Al(3+) ions at octahedral sites. For the gamma-Ga(2)O(3)-Al(2)O(3) mixed oxide with a charged Ga molar content of 0.3 (ST(0.3)), tetrahedral and octahedral sites were solely occupied by Ga(3+) and Al(3+) ions, respectively, and the catalyst exhibited the highest NO conversion to N(2). Therefore, it was concluded that the active site for methane-SCR of NO is tetrahedral Ga(3+) ion and octahedral Al(3+) ion, which are linked to each other. Nitrogen monoxide is adsorbed on the isolated hydroxyl group attached to Al(3+) ions and then oxidized by O(2) yielding surface nitrate species. Tetrahedral Ga(3+) ions work as Lewis acid sites for the activation of methane because of their coordinative unsaturation. The Ga(3+) ions in the gamma-Ga(2)O(3)-Al(2)O(3) catalyst have a redox property, which plays important roles in both the oxidation of NO to surface nitrate species and the activation of methane. The most important factor for this catalyst is that the sites for the formation of surface nitrate species reside next to the methane activation sites, which facilitates the reaction between surface nitrate species and the activated species derived from methane, thus mitigating the consumption of methane by simple combustion with O(2). Therefore, ST(0.3), which has the largest

  20. Spray-ILGAR {sup registered} deposition of controllable ZnS nanodots and application as passivation/point contact at the In{sub 2}S{sub 3}/Cu(In,Ga)(S,Se){sub 2} junction in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yanpeng Fu

    2012-03-15

    The spray ion layer gas reaction (Spray-ILGAR) technique produces homogeneous compact metal chalcogenide films used as buffer layers for thin film solar cells with high efficiencies. It was a great challenge to elaborate this method for the deposition of nanodots. This thesis shows that high quality, uncoated, monodisperse and sub 10 nm ZnS nanodots with controllable dot density and size (to some extend) can be prepared at the requisite low temperature by this sequential, cyclic and low cost method which can be scaled up for industrial in-line production. In addition, by this Spray-ILGAR technique, a structured buffer layer, composed of ZnS nanodots covered by a closed In{sub 2}S{sub 3} film, has been introduced as a defect passivation / point contact layer at the Cu(In,Ga)(S,Se){sub 2} (CIGSSe) absorber interface. The ZnS nanodots are deposited starting from nebulizing an aqueous Zn acetylacetonate (Zn(acac){sub 2}) solution followed by H{sub 2}S sulfurization. The unique sequential process allows the formation of the nanodot film with good properties. The choice of the process parameters (e.g. solvent, temperature, concentration) allows the control of particle density and partly also of particle size. These nanodots are rather homogeneous in size, shape and composition, and tend to keep maximum distance from each other. In contrast, ZnS nanodots deposited by a continuous spray chemical vapor deposition (Spray-CVD) are irregular in shape with inclusions of ZnO. The mechanism behind the ZnS nanodots formation is studied in two ways. On one hand, the decomposition mechanism of Zn(acac){sub 2} on the hot substrate in the spray based processes is studied by means of in-situ mass spectroscopy. On the other hand, by interpretation of the scanning electron microscopy (SEM), energy filtered transmission electron microscopy results (EF-TEM), it is possible to elucidate the self-limiting growth of ZnS nanodots in the Spray-ILGAR and Spray-CVD processes. The fundamental

  1. Spray-ILGAR {sup registered} deposition of controllable ZnS nanodots and application as passivation/point contact at the In{sub 2}S{sub 3}/Cu(In,Ga)(S,Se){sub 2} junction in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yanpeng Fu

    2012-03-15

    The spray ion layer gas reaction (Spray-ILGAR) technique produces homogeneous compact metal chalcogenide films used as buffer layers for thin film solar cells with high efficiencies. It was a great challenge to elaborate this method for the deposition of nanodots. This thesis shows that high quality, uncoated, monodisperse and sub 10 nm ZnS nanodots with controllable dot density and size (to some extend) can be prepared at the requisite low temperature by this sequential, cyclic and low cost method which can be scaled up for industrial in-line production. In addition, by this Spray-ILGAR technique, a structured buffer layer, composed of ZnS nanodots covered by a closed In{sub 2}S{sub 3} film, has been introduced as a defect passivation / point contact layer at the Cu(In,Ga)(S,Se){sub 2} (CIGSSe) absorber interface. The ZnS nanodots are deposited starting from nebulizing an aqueous Zn acetylacetonate (Zn(acac){sub 2}) solution followed by H{sub 2}S sulfurization. The unique sequential process allows the formation of the nanodot film with good properties. The choice of the process parameters (e.g. solvent, temperature, concentration) allows the control of particle density and partly also of particle size. These nanodots are rather homogeneous in size, shape and composition, and tend to keep maximum distance from each other. In contrast, ZnS nanodots deposited by a continuous spray chemical vapor deposition (Spray-CVD) are irregular in shape with inclusions of ZnO. The mechanism behind the ZnS nanodots formation is studied in two ways. On one hand, the decomposition mechanism of Zn(acac){sub 2} on the hot substrate in the spray based processes is studied by means of in-situ mass spectroscopy. On the other hand, by interpretation of the scanning electron microscopy (SEM), energy filtered transmission electron microscopy results (EF-TEM), it is possible to elucidate the self-limiting growth of ZnS nanodots in the Spray-ILGAR and Spray-CVD processes. The fundamental

  2. Electron injection dynamics in high-potential porphyrin photoanodes.

    Science.gov (United States)

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    promising sensitizers because their high reduction potentials are compatible with the energy requirements of water oxidation. TRTS of free-base and metalated pentafluorophenyl porphyrins reveal inefficient electron injection into TiO2 nanoparticles but more efficient electron injection into SnO2 nanoparticles. With SnO2, injection time scales depend strongly on the identity of the central substituent and are affected by competition with excited-state deactivation processes. Heavy or paramagnetic metal ions increase the electron injection time scale by roughly one order of magnitude relative to free-base or Zn(2+) porphyrins due to the possibility of electron injection from longer-lived, lower-lying triplet states. Furthermore, electron injection efficiency loosely correlates with DSSC performance. The carboxylate anchoring group is commonly used to bind DSSC sensitizers to metal oxide surfaces but typically is not stable under the aqueous and oxidative conditions required for water oxidation. Electron injection efficiency of several water-stable alternatives, including phosphonic acid, hydroxamic acid, acetylacetone, and boronic acid, were evaluated using TRTS, and hydroxamate was found to perform as well as the carboxylate. The next challenge is incorporating a water oxidation catalyst into the design. An early example, in which an Ir-based precatalyst is cosensitized with a fluorinated porphyrin, reveals decreased electron injection efficiency despite an increase in photocurrent. Future research will seek to better understand and address these difficulties. PMID:25938858

  3. Physicochemical characterization of functionalized-nanostructured-titania as a carrier of copper complexes for cancer treatment

    International Nuclear Information System (INIS)

    In the present paper we report the preparation and characterization of functionalized-TiO2 (F-TiO2) to obtain a biocompatible material to be used as carrier of alternative anticancer agents: copper acetate and copper acetylacetonate. The sol–gel procedure was used to prepare the fuctionalized titania material through hydrolysis and condensation of the titanium's butoxide. Sulfate, amine and phosphate ions served as functional groups which were anchored to the titania's surface. Mineral acids and gamma amine butyric acid were the precursors and they were added at the initial step of the synthesis. The copper complexes were loaded on titania and were also added to the reactor synthesis from the beginning. Infrared and ultraviolet–visible spectroscopies were the principal techniques used to the characterization of F-TiO2 and copper complexes loaded on titania materials. Transmission Electronic Microscopy (TEM) was used to complement the characterization's studies. The biocompatibility of F-TiO2 was evaluated by treating different cancer cell lines with increased concentration of this compound. The amine, the sulfate and the phosphate on the titania's surface, as well as the integral structures of the metal complexes on titania were well identified by infrared and ultraviolet–visible spectroscopies. The TEM photographs of Cu(acac)2/F-TiO2 and Cu(Oac)2/F-TiO2 materials showed the formation of nanoparticles, which have sizes ranging from 4 to 10 nm, with no morphology alterations in comparison with F-TiO2 nanoparticles, suggesting that the presence of low quantities of copper do not affect the structure of the nanoparticles. The Energy Dispersive Spectroscopy (EDS) confirms the presence of copper on the titania's nanoparticles. The biological results indicate that there is more than 90% cell survival, thus suggesting that F-TiO2 does not cause damage to the cells. Therefore, highly biocompatible titania was obtained by functionalizing its

  4. Cu2ZnSnS4纳米晶的制备及其三阶非线性光学性能的研究%Synthesis of Cu2ZnSnS4 Nanocrystals and Its Third-order Nonlinear Optical Properties

    Institute of Scientific and Technical Information of China (English)

    王芸; 梁晓娟; 蔡倩; 冯丽; 邵明国; 钟家松; 向卫东

    2012-01-01

    Monodisperse CUEZnSnS4 (CZTS) nanocrystals were synthesized by one-pot method using cop- per(Ⅱ) acetylacetonate, zinc(II) acetate, tin(II) chloride, S powder and oleylamine as precursors. The compo- sition, structure, morphology and properties of the CZTS were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDS), transmission electron microscopy (TEM), high-resolution transmission elec- tron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis and Z-scan technology. The results showed that the as-prepared CZTS nanocrystals were tetragonal phase with hexagonal shape and par- ticle size about 10 nm. The nonlinear refraction index γ(- 1.08×10^-15, -9.08× 10^-17 m^2·W^-l), nonlinear absorption coefficientβ (6.5 ×10^-9, 3.69×10^-11 m·W^-1) and third-order optical susceptibility X^(3) (1.49 × 10^- 9, 4.35× 10^-10esu) ofCZTS nanocrystals with different size (10 nm, 13 nm) were calculated. Finally, the growth mechanism ofnanocrystals and the nonlinear optical properties were investigated.%以乙酰丙酮铜、醋酸锌、二氯亚锡、油胺和硫粉为前驱体,采用one-pot法合成出了单分散的Cu2ZnSnS4(CZTS)纳米晶.所得样品采用X射线粉末衍射仪(XRD),能量色散谱仪(EDS),透射电子显微镜(TEM),高分辨透射电子显微镜(HRTEM),光电子能谱仪(XPS),紫外-可见光谱仪(UV-vis)和Z-扫描(z-scan)技术对其结构组成、形貌、性能等进行了表征.结果表明:所获得的产物为四方相结构的六边形CZTS纳米颗粒,直径约为10nm.计算出尺寸大小为10nm,13nm的纳米晶的三阶非线性光学折射率γ(-1.08X10^-15,-9.08X10^17m^2·W^-1),三阶非线性光学吸收系数β(6.5X10^-9,3.69×10^-11m·W^-1)以及三阶非线性光学极化率X^(3)(1.49×10^-9,4.35×10^-10esu).并探讨了CZTS纳米晶可能的形成机理,

  5. Storage of Hydrogen in the Ti-Zr System; Almacenamiento de hidrogeno en el sistema Ti-Zr

    Energy Technology Data Exchange (ETDEWEB)

    Salmones, J.; Zeifert, B. [Instituto Politecnico Nacional, ESIQIE, Mexico D.F. (Mexico)]. E-mail: jose_salmones@yahoo.com.mx; Ortega-Aviles, M. [Instituto Politecnico Nacional, Mexico D.F. (Mexico); Contreras-Larios, J. L. [Universidad Autonoma Metropolitana, Mexico D.F. (Mexico); Garibay-Febles, V. [Instituto Mexicano del Petroleo, Mexico D.F. (Mexico)

    2009-09-15

    This research was conducted to contribute to the study of hydrogen storage systems, synthesizing and characterizing two Ti-Zr based systems: I) titanium dioxide (TiO{sub 2}) + zirconium acetylacetonate (C{sub 20}H{sub 28}O{sub 8}Zr) and II) titanium dioxide (TiO{sub 2}) + zirconium tetrachloride (ZrCl{sub 4}). Both systems were prepared using mechanical grinding under the same conditions, with a composition of 50% Ti and Zr weights and grinding times of 2, 5, 7, 15, 30 and 70 hours. The samples were evaluated with hydrogen absorption tests and characterized with BET, DRX and MET. The results of hydrogen storage for one absorption-desorption cycle, at ambient temperature and pressure, showed that the samples from system I absorbed the greatest amount of hydrogen, but did not desorb them, while samples from system II liberated the hydrogen absorbed in them. The increase in temperature from mechanical grinding is directly associated with changes in the adsorption capacity of hydrogen, the size of the particle and formation of new components, as shows by BET measurements, XRD diffractograms and MET micrographs. The formation of Ti and Zr oxide nanoparticles in the samples in series II were associated with the desorption capacity of hydrogen. [Spanish] Esta investigacion se realizo para contribuir al estudio de sistemas para almacenamiento de hidrogeno, sintetizando y caracterizando dos sistemas base Ti-Zr: I) dioxido de titanio (TiO{sub 2}) + acetilacetonato de zirconio (C{sub 20}H{sub 28}O{sub 8}Zr) y II) dioxido de titanio (TiO{sub 2}) + tetracloruro de zirconio (ZrCl{sub 4}). Ambos sistemas se prepararon por molienda mecanica a las mismas condiciones, con composicion de 50% en peso de Ti y Zr y tiempos de molienda de 2, 5, 7, 15, 30 y 70 hrs. Las muestras fueron evaluadas mediante pruebas de absorcion de hidrogeno y caracterizadas por BET, DRX y MET. Los resultados de almacenamiento de hidrogeno para un ciclo de absorcion-desorcion, a presion y temperatura ambientes

  6. 中间层对白色全磷光有机电致发光器件性能的影响%Effect of Interlayer on Phosphorescent White Organic Light-emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    朱映光; 梁春军; 刘姝; 刘淑洁; 何志群

    2014-01-01

    Phosphorescent white organic light-emitting diodes with double light-emitting layers were fabricated based on phosphorescent blue emittor bis[3,5-difluoro-2-(2-pridyl) phenyl-(2-earboxy-pyribyl)iridumⅢ] (FIrpic) and red emittor bis(2-methyldibenzo[f,h]quinoxaline)(acetylaceto-nate) iridium(Ⅲ)(Ir(MDQ)2acac). FIrpic was doped in an ultra wide band-gap host 1,3-bis(tri-phenylsilyl)benzene (UGH3), and Ir(MDQ)2acac was doped in the host 4,4’,4"-tris(carbazol-9-yl)triphenylamine(TCTA). A hole transporting wide-band-gap material 1,3-bis(carbazol-9-yl)ben-zene (mCP) was introduced between the emitting layers. The device structure was ITO/NPB(40 nm)/TCTA:Ir(MDQ)2acac 7%(10 nm)/mCP(x nm)/UGH3: Firpic 8%(30 nm)/BPhen(30 nm)/LiF(0. 8 nm)/Al(200 nm). The results show that the interlayer plays an important role of balancing charge carriers, and blocking energy transfer between the emitting layers. With an appro-priate thickness of the interlayer, the device performances can be significantly enhanced. Compared with the device without interlayer, the maximum current efficiency can be enhanced from 3. 4 cd/A to 13. 2 cd/A.%制备了基于蓝色磷光材料bis[3,5-difluoro-2-(2-pridyl)phenyl-(2-earboxypyribyl)iridum芋](FIrpic)、红色磷光材料bis(2-methyldibenzo[f,h]quinoxaline)(acetylacetonate)iridium (芋)(Ir(MDQ)2acac)的双波段白光有机电致发光器件。蓝色磷光材料 FIrpic被掺杂在一种宽带隙的主体材料1,3-bis(triphenylsilyl)benzene (UGH3)之中,红色磷光材料Ir(MDQ)2acac被掺杂在主体材料4,4忆,4义-tris(carbazol-9-yl)triphenylamine(TC-TA)之中,并在两发光层之间加入一种宽带隙的空穴传输材料1,3-bis( carbazol-9-yl) benzene( mCP)作为中间层。制备的器件结构为ITO/NPB(40 nm)/TCTA.Ir(MDQ)2acac 7%(10 nm)/mCP(x nm)/UGH3.Firpic 8%(30 nm)/BPhen (30 nm)/LIF(0.8 nm)/AL(200 nm)。实验结果表明,中间层的加入促进了发光层中电子和空穴的平衡并抑制了发光层之间的能量转移。加入

  7. OLEDs under high current densities. Transient electroluminescence turn-on peaks and singlet-triplet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Kasemann, Daniel

    2012-02-27

    This work focuses on a better understanding of the behavior of organic light emitting devices (OLEDs) under intense electrical excitation. Attaining high exciton densities in organic semiconductors by electrical excitation is of special interest for the field of organic semiconductor lasers (OSLs). In these devices, the high singlet exciton density needed in the active layer to obtain population inversion is easily created by pulsed optical pumping, but direct electrical pumping has not been achieved yet. First, the steps necessary to achieve stable high current densities in organic semiconductors are discussed. After determining the optimal excitation scheme using single p-doped transport layers, the device complexity is increased up to full p-i-n OLEDs with their power dependent emission spectra. For this purpose, two exemplary emitter systems are chosen: the fluorescent laser dye 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) doped into Aluminum(III)bis (2-methyl-8-quinolinato)-4-phenylphenolate (Alq{sub 3}) and the efficient phosphorescent emitter system N,N'-di(naphthalen-1-yl)-N,N'-diphenyl-benzidine (alpha-NPD) doped by Iridium(III) bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate) (Ir(MDQ){sub 2}(acac)). For pulsed excitation using 50 ns pulses and a repetition rate of 1 kHz, single 100 nm thin p- and n-doped transport layers sustain current densities of over 6 kA/cm{sup 2}. While the maximum current density decreases with increasing device thickness, the full OLEDs still sustain current densities beyond 800 A/cm{sup 2} and exhibit a continuously increasing emission intensity with increasing input power. Next, the time-resolved emission behavior of the singlet and triplet emitter device at high excitation densities is analyzed on the nanosecond scale. Here, the peak emission intensity of the phosphorescent emitter system is found to be more than eight times lower than for the singlet emitter system at comparable current

  8. Lu{sub 2}O{sub 3}:Eu{sup 3+} glass ceramic films: Synthesis, structural and spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Carrera Jota, M.L. [Alumna del posgrado en Tecnología Avanzada del IPN CIITEC Azcapotzalco (Mexico); García Murillo, A., E-mail: angarciam@ipn.mx [Instituto Politécnico Nacional – CIITEC Azcapotzalco, Cerrada de Cecati S/N, Col. Santa Catarina, Del. Azcapotzalco, C.P. 02250 México, D.F. (Mexico); Carrillo Romo, F. [Instituto Politécnico Nacional – CIITEC Azcapotzalco, Cerrada de Cecati S/N, Col. Santa Catarina, Del. Azcapotzalco, C.P. 02250 México, D.F. (Mexico); García Hernández, M. [Departamento de Ciencias Naturales, DCNI, UAM Cuajimalpa, Pedro Antonio de los Santos 84, C.P. 11850 México, D.F. (Mexico); Morales Ramírez, A. de J. [Instituto Politécnico Nacional – CIITEC Azcapotzalco, Cerrada de Cecati S/N, Col. Santa Catarina, Del. Azcapotzalco, C.P. 02250 México, D.F. (Mexico); Velumani, S. [Instituto Politécnico Nacional, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Departamento de Ingeniería Eléctrica (SEES), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 México, D.F. Apartado Postal 14-740, 07000 México, D.F. (Mexico); Rosa Cruz, E. de la [Centro de Investigaciones en Óptica A.C., A.P. 1-94837150, León, Gto. (Mexico); Kassiba, Abdelhadi [Institut des Molécules et Matériaux du Mans, CNRS6283, Université du Maine, 72085 Le Mans Cedex 9 (France)

    2014-03-01

    Graphical abstract: - Highlights: • Lu{sub 2}O{sub 3}:Eu{sup 3+}@SiO{sub 2} films were synthesized by sol–gel and by dip-coating technique. • Effects of incorporating PVP on structural properties were studied. • Effects of incorporating silica (SiO{sub 2}) luminescence characteristics were analyzed. • X-ray diffraction results showed that Lu{sub 2}O{sub 3}:Eu{sup 3+}@SiO{sub 2} crystallizes at 700 °C. • The 611 nm emission for the Lu:Si = 8:1 system presented an improvement. - Abstract: For the first time, transparent and crack free europium-doped lutetia silica sol–gel films were synthesized using the dip-coating technique on silica quartz substrates. In this study, we examined the effects of incorporating polyvinylpyrrolidone (PVP) and silica (SiO{sub 2}) into different precursor solutions for different Lu–Si molar ratios: 4:1, 6:1, 8:1 and 10:1. Different systems, such as Lu{sub 2}O{sub 3}:Eu{sup 3+}@SiO{sub 2} (using the above Lu:Si molar ratios), were synthesized by sol–gel and by dip-coating technique, employing acetylacetonate lutetium and tetraethylorthosilicate as Lu and Si precursors, in order to produce Lu{sub 2}O{sub 3}:Eu{sup 3+} (5 mol%)@SiO{sub 2} glass–ceramic films. The film microstructure was studied by microRaman spectroscopy (MRS) and X-ray diffraction (XRD) for different Lu:Si molar ratios on films annealed at 700 °C. X-ray diffraction results showed that the lutetium oxide cubic phase crystallizes in the silica matrix at 700 °C, and the crystallite size of Lu{sub 2}O{sub 3}:Eu{sup 3+}@SiO{sub 2} films varies from 5 nm to 17 nm according to the respective Lu:Si molar ratios. Opto-geometrical parameters determined by m-lines spectroscopy using a 632.5 nm He–Ne laser showed that the Eu{sup 3+} doped films heat-treated at 700 °C presented a thickness and density of 1.7 μm (8.8 g cm{sup −3}), 970 nm (9.2 g cm{sup −3}), 1 μm (9.3 g cm{sup −3}) and 1.3 μm (9.25 g cm{sup −3}) for the Lu:Si = 4:1, 6:1, 8:1 and 10

  9. Electrochemical performance in the hydrogen evolution reaction of Ni-TR (TR= La, Ce) materials synthesized using the solid state reaction method; Desempeno electroquimico en la reaccion de evolucion de hidrogeno de materiales de electrodo Ni-TR (TR = La, Ce) sintetizados por el metodo de reaccion de estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A. M.; Dominguez-Crespo, M. A.; Ramirez-Meneses, E.; Yanez-Zamora, C. [CICATA, IPN, Altamira, Tamaulipas (Mexico); Avila-Garcia, I. [IPN, ESIQIE, UPALM, Mexico, D.F. (Mexico)]. E-mail: mdominguezc@ipn.mx; adcrespo2000@yahoo.com.mx

    2009-09-15

    At the industrial level, the use of fuel cell technology is still limited because of the high costs of its parts and costs related to its operations. Although the electrode material with greater electroactivity is Pt, because of its high cost, alternative electrocatalysts have been sought that balance cost and activity. One of the materials that have been most widely used is nickel, along with some of its alloys. This material has shown good performance using low overpotentials in traditional reactions such as hydrogen (HER) and oxygen (OER) evolution, as well as high resistance to corrosion and low costs. In particular, binary and ternary alloys have shown significant increases in HER activity when compared to materials in the pure or massive state. Therefore, in the search for new alternatives with acceptable efficiency and low-cost, this work obtained Ni-TR (TR = La, Ce) using solid-state reaction with metallic acetylacetonates and metallic powder. These materials were synthesized for 3 h at different temperatures (795 or 920, 1000 and 1200 degrees Celsius) in order to evaluate the effect on the electrochemical performance of the electrocatalysts. The structural and morphological characterization of materials was performed with XRD and SEM techniques, respectively. In addition, the electrochemical performance of electrode materials was evaluated with HER using cyclic voltametry (CV) and potentiodynamic curves. The results obtained show that a combination of oxides was obtained (NiO, CeO{sub 2} and LaNiO{sub 3}) at low temperatures; nonetheless, as the synthesis temperatures increase, NiO-CeO{sub 2} and NiO-LaNiO{sub 3} alloys are formed, respectively. A clear dependence was also observed between electrocatalytic activity and the source for obtaining these materials(Ni-TR). [Spanish] A nivel industrial, el uso de la tecnologia de celdas de combustible esta todavia limitada debido sobre todo a los altos costos de las partes que la constituyen y los costos

  10. Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures∗%Cu/C核/壳纳米结构的气相合成、形成机理及其光学性能研究*

    Institute of Scientific and Technical Information of China (English)

    黄小林; 侯丽珍; 喻博闻; 陈国良; 王世良†; 马亮; 刘新利; 贺跃辉

    2013-01-01

    Copper/carbon core/shell structure nanoparticles and nanowires are successfully synthesized by using a one-step low-temperature metal-organic chemical vapor with copper (II) acetylacetonate powders as precursor. Morphology and structure of copper/carbon core/shell nanomaterial can be well controlled by deposition temperature For instance, copper/carbon core/shell nanowires about 200 nm in diameter can be produced at 400 ◦C. The mixture of nanowires and nanoparticles can be produced at 450 ◦C. At 600 ◦C the production is the copper/carbon core/shell nanoparticles about 22 nm in diameter. The obtained copper/carbon core/shell nanos-tucture is found to be formed by a novel coalescence mechanism that is quite different from the well-known dissolution-precipitation mechanism The optical property of copper/carbon core/shell nanostructure is investigated Uv-vis spectrometer and the fluorescence spectrometer (PL). The results show that the surface plasma resonance peaks of copper/carbon core/shell nanowire and nanoparticle are located at 620 nm and 616 nm respectively. At 225 nm, copper absorbing peak can be found. The PL peaks of copper/carbon core/shell nanowires are located at 312 nm and 348 nm, and the PL peaks of copper/carbon core/shell nanoparticles are observed at 304 nm and 345 nm.%  采用乙酰丙酮铜为原料,通过化学气相沉积大批量制备出Cu/C核/壳纳米颗粒和纳米线。研究结果表明,通过控制沉积温度可对Cu/C核/壳纳米材料的形貌和结构进行很好的控制。比如,沉积温度为400◦C时可获得直径约200 nm的Cu/C核/壳纳米线,沉积温度为450◦C时可获得直径约200 nm的Cu/C核/壳纳米颗粒和纳米棒的混合产物,沉积温度为600◦C时可获得直径约22 nm的Cu/C核/壳纳米颗粒。获得的Cu/C核/壳纳米结构是由一个新颖的凝聚机理形成的,而这种机理不同于著名的溶解-析出机理。紫外-可见光谱和荧

  11. Preparation and thermal properties of titanium-containing hybrid silicone resin%含钛杂化硅树脂的制备与耐热性能研究∗

    Institute of Scientific and Technical Information of China (English)

    翟倩倩; 严岑琪; 赵士贵; 周传健; 周凯运

    2014-01-01

    以钛酸四正丁酯、甲基三乙氧基硅烷、二甲基二乙氧基硅烷、甲基苯基二甲氧基硅烷为原料,乙酰丙酮(acac)为螯合剂、盐酸为催化剂、乙醇为溶剂,利用溶胶-凝胶法、控制 n (Ti)∶n (Si)=0.1~0.5,50℃水解温度下制备了含钛硅树脂,钛的引入使得杂化硅树脂在不使用催化剂和室温固化剂的情况下,140℃3 d实现固化.通过涂层外观分析、光学显微镜、扫描电镜、紫外-可见吸收光谱、傅里叶变换红外光谱、变温傅里叶变换红外光谱、热重进行了表征.结果表明成功合成了含 Si—O—Ti 共价键的杂化硅树脂;当n (acac)/n (Ti)=0.3时,含钛硅树脂预聚物的储存稳定性较好;R/(Si+Ti)≥1.36时,能制备表面光滑的硅树脂;含钛杂化硅树脂具有较好的耐热性且其热性能随钛含量的增大而提高.%In this paper,a kind of titanium-containing hydrid silicone resin was prepared by the hydrolysis-con-densation of tetra-n-butyltitanate,methyltriethoxysilane,dimethyldiethoxylsilane and methylphenyldimethox-ysilane through sol-gel method in ethanol system,using hydrochloric acid as catalyst,acetylacetone as comple-xing agent,hydrolysis temperature 50 ℃,and n (Ti)∶n (Si)=0.1-0.5.The curing condition was 140 ℃ for 3 d. The appearance and structure of titanium-containing hybrid silicone resin was characterized by optical micro-scope,scanning electron microscope (SEM),energy dispersive spectroscopy (EDS),ultraviolet and visible spectroscopy (UV-Vis),Fourier transform infrared spectroscopy (FT-IR )and thermal gravimetric analysis (TGA).The results indicate that,titanium-containing hybrid silicone resin consists of Ti—O—Si covalent bond,when n (acac)/n (Ti)=0.3,the storage stability was well,and when R/(Si+Ti)≥1.36,the resin had a smooth surface without cracks.The introduction of Ti improves its thermal property.

  12. Diagramas de fase CVD para la preparación de películas de iridio

    Directory of Open Access Journals (Sweden)

    Hernández-Pérez, M. A.

    2002-02-01

    Full Text Available Chemical vapor deposition (CVD phase diagrams for the preparation of iridium films were calculated using Gibbs free energy minimization method. Iridium acetylacetonate (Ir(acac3 was used as the precursor compound. Two gaseous mixtures were analyzed: Ir(acac3-O2-Ar and Ir(acac3-Ar. The deposition temperatures were explored from 300 to 800 °C, total pressures from 13.3 to 13.332 Pa and partial pressures of Ir(acac3 gas and O2 gas from 0.001 to 1.000 Pa. The Ir-CVD diagrams predicted that without Oj gas in the gaseous mixture, the solid films consist of two solid phases: Ir+C. In contrast, with addition of O2 to the gaseous mixture, the Ir-CVD diagrams revealed different domains of condensed phases which include IrO2, IrO2+Ir, Ir and Ir+C. These diagrams allow one to establish the total pressures and temperatures required to obtain a given film composition. The results predicted by the Ir-CVD diagrams are in good agreement with those experimentally obtained.

    Se calcularon los diagramas de fase CVD (Chemical Vapor Deposition para la preparación de películas de iridio empleando el método de minimización de la energía libre de Gibbs. Como precursor se utilizó acetilacetonato de iridio (Ir(acac3. Se analizaron las mezclas gaseosas Ir(acac3-O2Ar e Ir(acac3-Ar. Las temperaturas de depósito se exploraron desde 300 hasta 800 °C, las presiones totales de 13,3 a 13.332 Pa y las presiones parciales de los gases Ir(acac3 y O2 desde 0,001 hasta 1.000 Pa. Los diagramas Ir-CVD predicen que sin O2 en la mezcla gaseosa, las películas constan de las fases sólidas Ir+C. En contraste, con adición de O2 los diagramas Ir-CVD revelan diferentes dominios de fases sólidas que incluyen IrO2, IrO2+Ir, Ir e Ir+C. Estos diagramas permiten establecer

  13. Physicochemical characterization of functionalized-nanostructured-titania as a carrier of copper complexes for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    López, Tessy [Nanotechnology and Nanomedicine Laboratory, Metropolitan Autonomous University-Xochimilco, Calzada del Hueso 1100, Villa Quietud, Coyoacán, 04960 México D.F. (Mexico); Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery “MVS”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 México D.F. (Mexico); Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans (United States); Ortiz, Emma, E-mail: emma170@hotmail.com [Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery “MVS”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 México D.F. (Mexico); Guevara, Patricia [Neuroimmunology Laboratory, National Institute of Neurology and Neurosurgery “MVS”, Insurgentes Sur 3877, La Fama, Tlalpan, 14269 México D.F. (Mexico); Gómez, Esteban [Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery “MVS”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 México D.F. (Mexico); Novaro, Octavio [Institute of Physics-UNAM, Circuito de la Investigación Científica Ciudad Universitaria, CP 04510 México D.F. (Mexico)

    2014-07-01

    In the present paper we report the preparation and characterization of functionalized-TiO{sub 2} (F-TiO{sub 2}) to obtain a biocompatible material to be used as carrier of alternative anticancer agents: copper acetate and copper acetylacetonate. The sol–gel procedure was used to prepare the fuctionalized titania material through hydrolysis and condensation of the titanium's butoxide. Sulfate, amine and phosphate ions served as functional groups which were anchored to the titania's surface. Mineral acids and gamma amine butyric acid were the precursors and they were added at the initial step of the synthesis. The copper complexes were loaded on titania and were also added to the reactor synthesis from the beginning. Infrared and ultraviolet–visible spectroscopies were the principal techniques used to the characterization of F-TiO{sub 2} and copper complexes loaded on titania materials. Transmission Electronic Microscopy (TEM) was used to complement the characterization's studies. The biocompatibility of F-TiO{sub 2} was evaluated by treating different cancer cell lines with increased concentration of this compound. The amine, the sulfate and the phosphate on the titania's surface, as well as the integral structures of the metal complexes on titania were well identified by infrared and ultraviolet–visible spectroscopies. The TEM photographs of Cu(acac){sub 2}/F-TiO{sub 2} and Cu(Oac){sub 2}/F-TiO{sub 2} materials showed the formation of nanoparticles, which have sizes ranging from 4 to 10 nm, with no morphology alterations in comparison with F-TiO{sub 2} nanoparticles, suggesting that the presence of low quantities of copper do not affect the structure of the nanoparticles. The Energy Dispersive Spectroscopy (EDS) confirms the presence of copper on the titania's nanoparticles. The biological results indicate that there is more than 90% cell survival, thus suggesting that F-TiO{sub 2} does not cause damage to the cells. Therefore

  14. Electron injection dynamics in high-potential porphyrin photoanodes.

    Science.gov (United States)

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    promising sensitizers because their high reduction potentials are compatible with the energy requirements of water oxidation. TRTS of free-base and metalated pentafluorophenyl porphyrins reveal inefficient electron injection into TiO2 nanoparticles but more efficient electron injection into SnO2 nanoparticles. With SnO2, injection time scales depend strongly on the identity of the central substituent and are affected by competition with excited-state deactivation processes. Heavy or paramagnetic metal ions increase the electron injection time scale by roughly one order of magnitude relative to free-base or Zn(2+) porphyrins due to the possibility of electron injection from longer-lived, lower-lying triplet states. Furthermore, electron injection efficiency loosely correlates with DSSC performance. The carboxylate anchoring group is commonly used to bind DSSC sensitizers to metal oxide surfaces but typically is not stable under the aqueous and oxidative conditions required for water oxidation. Electron injection efficiency of several water-stable alternatives, including phosphonic acid, hydroxamic acid, acetylacetone, and boronic acid, were evaluated using TRTS, and hydroxamate was found to perform as well as the carboxylate. The next challenge is incorporating a water oxidation catalyst into the design. An early example, in which an Ir-based precatalyst is cosensitized with a fluorinated porphyrin, reveals decreased electron injection efficiency despite an increase in photocurrent. Future research will seek to better understand and address these difficulties.

  15. Synthesis of TiO2/hydroxyapatite composite microspheres%TiO2/羟基磷灰石复合微球的合成

    Institute of Scientific and Technical Information of China (English)

    那驰; 董如林; 张汉平; 陈智栋; 金长春; 王芳

    2016-01-01

    将乙酰丙酮稳定的钛酸四正丁酯分散到含有硬脂酸的水中,接着加入Ca2+、H2PO4−源,然后通过150℃的水热过程,合成了TiO2/羟基磷灰石(HAP)复合微球。其中的硬脂酸作为界面媒介吸附Ca2+,确保生成的羟基磷灰石的粒子吸附在分散的钛酸四正丁酯球形“油滴”表面。经水热过程,分散的油滴转化为TiO2为内核,HAP为壳层的复合微球。HAP 粒子组成的微球外壳层对内核钛酸四正丁酯水解及缩聚反应而引起的体积收缩产生抑制作用,从而对最终的 TiO2内核的微结构产生影响。亚甲基蓝的紫外光催化降解实验结果表明,复合微球的光催化性能与微球对亚甲基蓝的平衡吸附量有密切的关系,并取决于产品的微结构。当复合微球中羟基磷灰石的理论质量分数为1%~1.5%时,微球对亚甲基蓝显示了较高的光催化降解效率。%Titanium dioxide/hydroxyapatite (HAP) composite microspheres were synthesized by dispersing acetylacetone-stabilizedtetra-n-butyltitanate in water containing stearic acid, then adding Ca2+and H2PO4− sources, and finally employing a hydrothermal process at 150℃. Stearic acid was used as interface intermediary to adsorb Ca2+ and ensure the adsorption of subsequently formed hydroxyapatile particles on the surface of tetra-n-butyltitanate “oil droplets”. The dispersed droplets transformed into composite microspheres with TiO2 core and HAP shell after hydrothermal process. The shell consisting of HAP particles suppressed the volume shrinkage of the core induced by the hydrolysis and condensation reaction oftetra-n-butyltitanate under hydrothermal condition, and therefore influenced the microstructure of final TiO2core. The result of the degradation of methylene blue under UV light irradiation indicated that the photocatalytic property of the composite microspheres was closely related to the equilibrium adsorption capacity for methylene

  16. Oxygen reduction using platinum electrocatalysts prepared by liquid phase photo-deposition; Reduccion de oxigeno mediante electrocatalizadores de platino preparados por foto-deposicion en fase liquida

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Camacho, B.; Perez-Galindo, J. A.; Valenzuela, M. A.; Gonzalez-Huerta, R. G. [Instituto Politecnico Nacional, ESIQIE, Mexico D.F. (Mexico)]. E-mail: rosgonzalez_h@yahoo.com.mx

    2009-09-15

    This work presents the synthesis and characterization of nanometric-sized Pt/C electrochemical catalysts using impregnation and liquid phase photo-deposition methods. Two platinum precursors were used, C{sub 10}H{sub 14}O{sub 4}Pt (Pt acetylacetonate, Pt(acac){sub 2}) and H{sub 2}PtCl{sub 6} (hexachloroplatinic acid) to study the effect on the particle size and the electrocatalytic behavior in the oxygen reduction reaction. The characterization of the catalysts was done using x-ray diffraction, hydrogen chemisorption and transmission electron microscopy. The electrochemical study was conducted with cyclic voltamperometry and rotary disc electrode (RDE) techniques. Pt (E-tek) was used as a reference catalyst. The peaks of the platinum were identified based on the x-ray diffraction results, and correspond to crystalline phases (111) and (200), whose intensity was greater when using H{sub 2}PtCl{sub 6} versus Pt(acac){sub 2}. The hydrogen chemisorption and transmission electron microscopy tests found that the larger-sized particle (1-5 nm) and greater metallic dispersion was obtained using Pt(acac){sub 2} as a platinum precursor and liquid phase photo-deposition. It was also found that this material presented the best electrochemical response, showing a open-circuit potential of 0.96 V and over-potential of 0.05 V with respect to H{sub 2}PtCl{sub 6} and of 0.22 V with respect to the catalyst obtained using impregnation. [Spanish] En este trabajo se presenta la sintesis y caracterizacion electroquimica de catalizadores de tamano nanometrico de Pt/C empleando los metodos de impregnacion y foto-deposicion en fase liquida. Se utilizaron dos precursores del platino C{sub 10}H{sub 14}O{sub 4}Pt (acetil-acetonato de Pt, Pt(acac){sub 2}) y H2PtCl6 (acido hexacloroplatinico), para estudiar el efecto que tienen sobre el tamano de particula y el comportamiento electrocatalitico en la reaccion de reduccion de oxigeno. La caracterizacion de los catalizadores se realizo mediante

  17. Facile Fabrication of Novel Magnetic and Fluorescent Fe3O4-CdSe Nanocomposites%新型磁性荧光Fe3O4-CdSe纳米复合材料的制备

    Institute of Scientific and Technical Information of China (English)

    刘梨; 姜炜; 杨浠雯; 陈斌华; 吴世曦; 李凤生

    2013-01-01

    Novel Fe3O4-CdSe nanocomposites were prepared by depositing semiconductor on monodisperse magnetic nanoparticles. First, monodisperse Fe3O4 nanoparticles were fabricated by a solvothermal process in which iron acetylacetonate (Fe(acac)3) was used as precursor, phenyl ether as reaction medium, oleic acid as surfactant and oleylamine (OAm) as both surfactant and reducing agent. Novel Fe3O4-CdSe heterostructures were prepared using 1-octadecene as high boiling solvent, cadmium oxide as Cd precursor, trioctyl phosphate (TOP)-Se as Se precursor, n-hexadecylamine (HDA) as surfactant, and stearic acid (SA) as growth promoter and nucleating agent. The structure and properties of the Fe3O4-CdSe nanocomposite were ful y characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrometry, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), UV-Vis spectrum, and photoluminescence (PL). CdSe nanoparticles were successful y attached to the surface of Fe3O4 and grew along the c-axis to form novel jujube pit-liked and nail-liked heterostructures with a width of 3.6 nm and length of 14.5 and 32.5 nm, %  以1-十八烯作为高沸点溶剂,在磁性粒子表面沉积量子点获得新型的磁性荧光Fe3O4-CdSe纳米异质结构.首先以乙酰丙酮铁(Fe(acac)3)为前驱体,二苯醚为溶剂,油酸为表面活性剂和油胺(OAm)为表面活性剂兼还原剂,通过溶剂热法制备单分散性的Fe3O4纳米粒子.然后以1-十八烯为高沸点溶剂, CdO为镉源, TOP-Se为硒源,十六胺为表面活性剂以及硬脂酸为生长促进剂和成核剂制备得到新型的Fe3O4-CdSe纳米异质结构.通过透射电镜(TEM),傅里叶变换红外(FTIR)光谱, X射线衍射(XRD)谱, X射线光电子能谱(XPS)分析仪,振动样品磁强计(VSM),紫外-可见(UV-Vis)光谱和光致发光(PL)等手段对Fe3O4-CdSe纳米复合材料的结构和性能进行表征.结果表明, CdSe纳

  18. 不同有机溶剂对缓释重组人骨形态发生蛋白2微胶囊的影响%Effects of different organic solvents on slow-release recombinant human bone morphogenetic protein-2 microcapsules

    Institute of Scientific and Technical Information of China (English)

    李夏林; 易伟宏; 靳安民; 闵少雄

    2015-01-01

    BACKGROUND:In literatures, the recombinant human bone morphogenetic protein-2 (rhBMP-2) loaded microcapsules can be fabricated by double emulsion solvent evaporation method with different organic solvents, such as methylene chloride, ethyl acetate or their mixture. But so far it is not determined yet which one is better. OBJECTIVE: To optimize the preparation method of microcapsules encapsulating rhBMP-2 and to compare the effects of different organic solvents on the microcapsules. METHODS:Polylactic acid-polyethylene glycol-polylactic acid copolymer as microcapsules was used to prepare rhBMP-2 loaded microcapsules with double emulsion solvent evaporation method. Four kinds of organic solvents, methylene chloride (group A), mixture of methylene chloride and ethyl acetate (group B), ethyl acetate (group C) and acetyl acetone (group D) were chosen as oil phases to compare their effects on microcapsule's morphology, diameter, and encapsulation efficiency. Passage 3 bone marrow mesenchymal stem cels from rats were co-cultured with prepared microcapsules for 14 days, and then alkaline phosphatase activity was detected. RESULTS AND CONCLUSION:Compared with the other organic solvents, dichloromethane could cause microcapsules with the smaler and more uniform shape (4-10 microns) and the highest encapsulation efficiency; the microcapsules prepared by mixture of methylene chloride and ethyl acetate had relatively wide size distribution and moderate encapsulation efficiency; the microcapsules prepared by acetylacetone were difficult to form and keep the bioactivity of rhBMP-2. After cultured with rat bone marrow mesenchymal stem cels for 14 days, the alkaline phosphatase activity in groups A, B and C was significantly higher than that in group D and there was no significant difference between group A and group B; the alkaline phosphatase activity in groups A and B was significantly higher than that in group C (P< 0.05). The results show the rhBMP-2-loaded microcapsules

  19. Titanium (IV) sol-gel chemistry in varied gravity environments

    Science.gov (United States)

    Hales, Matthew; Martens, Wayde; Steinberg, Theodore

    . The test systems and experimental results obtained will be presented. 1. Okubo, T., Tsuchida, A., Okuda, T., Fujitsuna, K., Ishikawa, M., Morita, T., Tada, T. , Kinetic Analyses of Colloidal Crystallization in Microgravity -Aircraft Experiments. . Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999. 153: p. 515-524. 2. Okubo, T., Tsuchida, A., Kobayashi, K., Kuno, A., Morita, T., Fujishima, M., Kohno, Y., Kinetic Study of the Formation Reaction of Colloidal Silica Spheres in Microgravity Using Aircraft. Colloid Polymer Science, 1999. 277(5): p. 474-478. 3. Pienaar, C.L., Chiffoleau, G. J. A., Follens, L. R. A., Martens, J. A., Kirschhock, C. E. A., Steinberg, T. A., Effect of Gravity on the Gelation of Silica Sols. Chem. Mater., 2007. 19(4): p. 660-664. 4. Smith, D.D., et al., Effect of Microgravity on the Growth of Silica Nanostructures. Langmuir, 2000. 16(26): p. 10055-10060. 5. Zhang, X., Johnson, D.P., Manerbino, A.R., Moore, J.J., Schowengerdt, F. , Recent Mi-crogravity Results in the Synthesis of Porous Materials. AIP Conference Proceedings (Space Technology and Applications International Forum-1999, Pt. 1), 1999. 458: p. 88-93. 6. Dunbar, P.B., Bendzko, N.J.,, 1H and 13C NMR observation of the reaction of acetic acid with titanium isopropoxide. Materials Chemistry and Physics, 1999. 59: p. 26-35. 7. Krunks, M., Oja, I., T˜nsuaadu, K., Es-Souni, M., Gruselle, M., Niinistü,. L, Thermoanalytical study of acetylacetonate-modified titanium (iv) isopropoxide as precursor for TiO2 films. Journal of Thermal Analysis and Calorimetry, 2005: p. 483-488. 8. Moran, P.D., Bowmaker, G. A., Cooney, R. P., Vibrational Spectra and Molecular Associa-tion of Titanium Tetraisopropoxide. Inorg. Chem., 1998. 37(1): p. 2741-2748. 9. Somogyvari, A., Serpone, N.,, Evidence for five-coordination in titanium(1V) complexes. A nuclear magnetic resonance investigation. Canadian Journal of Chemistry, 1977. 56: p. 316-319.