WorldWideScience

Sample records for acetyl-coa synthases light

  1. Light- and metabolism-related regulation of the chloroplast ATP synthase has distinct mechanisms and functions.

    Science.gov (United States)

    Kohzuma, Kaori; Dal Bosco, Cristina; Meurer, Jörg; Kramer, David M

    2013-05-01

    The chloroplast CF0-CF1-ATP synthase (ATP synthase) is activated in the light and inactivated in the dark by thioredoxin-mediated redox modulation of a disulfide bridge on its γ subunit. The activity of the ATP synthase is also fine-tuned during steady-state photosynthesis in response to metabolic changes, e.g. altering CO2 levels to adjust the thylakoid proton gradient and thus the regulation of light harvesting and electron transfer. The mechanism of this fine-tuning is unknown. We test here the possibility that it also involves redox modulation. We found that modifying the Arabidopsis thaliana γ subunit by mutating three highly conserved acidic amino acids, D211V, E212L, and E226L, resulted in a mutant, termed mothra, in which ATP synthase which lacked light-dark regulation had relatively small effects on maximal activity in vivo. In situ equilibrium redox titrations and thiol redox-sensitive labeling studies showed that the γ subunit disulfide/sulfhydryl couple in the modified ATP synthase has a more reducing redox potential and thus remains predominantly oxidized under physiological conditions, implying that the highly conserved acidic residues in the γ subunit influence thiol redox potential. In contrast to its altered light-dark regulation, mothra retained wild-type fine-tuning of ATP synthase activity in response to changes in ambient CO2 concentrations, indicating that the light-dark- and metabolic-related regulation occur through different mechanisms, possibly via small molecule allosteric effectors or covalent modification.

  2. Endothelial nitric oxide synthase activation and nitric oxide function: new light through old windows.

    Science.gov (United States)

    Bird, Ian M

    2011-09-01

    The principle mechanisms operating at the level of endothelial nitric oxide synthase (eNOS) itself to control its activity are phosphorylation, the auto-regulatory properties of the protein itself, and Ca(2)(+)/calmodulin binding. It is now clear that activation of eNOS is greatest when phosphorylation of certain serine and threonine residues is accompanied by elevation of cytosolic [Ca2+](i). While eNOS also contains an autoinhibitory loop, Rafikov et al. (2011) present the evidence for a newly identified 'flexible arm' that operates in response to redox state. Boeldt et al. (2011) also review the evidence that changes in the nature of endothelial Ca(2)(+) signaling itself in different physiologic states can extend both the amplitude and duration of NO output, and a failure to change these responses in pregnancy is associated with preeclampsia. The change in Ca(2)(+) signaling is mediated through altering capacitative entry mechanisms inherent in the cell, and so many agonist responses using this mechanism are altered. The term 'adaptive cell signaling' is also introduced for the first time to describe this phenomenon. Finally NO is classically regarded as a regulator of vascular function, but NO has other actions. One proposed role is regulation of steroid biosynthesis but the physiologic relevance was unclear. Ducsay & Myers (2011) now present new evidence that NO may provide the adrenal with a mechanism to regulate cortisol output according to exposure to hypoxia. One thing all three of these reviews show is that even after several decades of study into NO biosynthesis and function, there are clearly still many things left to discover.

  3. Effects of truncated mutants of the ε subunit of chloroplast ATP synthase on the fast phase of millisecond delayed light emission of chloroplast and its ATP synthesis ability

    Institute of Scientific and Technical Information of China (English)

    ZENG Xiaomei; SHI Xiaobing; SHEN Yungang

    2004-01-01

    The ε subunit of the chloroplast ATP synthase and the truncated ε mutants which lack some amino acid residues from the N-terminus or C-terminus were overexpressed in E. coli. When the ε subunit or the truncated ε proteins was added to the spinach chloroplast suspension, both the intensity of the fast phase of millisecond delayed light emission (ms-DLE) and the cyclic and noncyclic photophosphorylation activity of chloroplast were enhanced. With an increase in the number of residues deleted from the N-terminus, the enhancement effect of the N-terminal truncated proteins decreased gradually. For the C-terminal truncated proteins, the enhancement effect increased gradually with an increase in the number of residues deleted from the C-terminus. Besides, the ATP synthesis activity of ε-deficient membrane reconstituted with the ε subunit or the truncated ε proteins was compared. The ATP synthesis activity of reconstituted membrane with the N-terminal truncated proteins decreased gradually as the number of residues deleted from the N-terminus increased. For the C-terminal truncated proteins, the ATP synthesis activity of reconstituted membrane increased gradually with an increase in the number of residues deleted from the C-terminus, but was still lower than that of the wild type ε protein. These results suggested that: (a) the N-terminal domain of the ε subunit of the chloroplast ATP synthase could affect the ATP synthesis activity of ATP synthase by regulating the efficiency of blocking proton leakage of ε subunit; and (b) the C-terminal domain of the ε subunit of the chloroplast ATP synthase had a subtle function in modulating the ATP synthesis ability of ATP synthase.

  4. Pseudouridine synthases.

    Science.gov (United States)

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  5. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent.

    Science.gov (United States)

    Foresi, Noelia; Correa-Aragunde, Natalia; Parisi, Gustavo; Caló, Gonzalo; Salerno, Graciela; Lamattina, Lorenzo

    2010-11-01

    The search for a nitric oxide synthase (NOS) sequence in the plant kingdom yielded two sequences from the recently published genomes of two green algae species of the Ostreococcus genus, O. tauri and O. lucimarinus. In this study, we characterized the sequence, protein structure, phylogeny, biochemistry, and expression of NOS from O. tauri. The amino acid sequence of O. tauri NOS was found to be 45% similar to that of human NOS. Folding assignment methods showed that O. tauri NOS can fold as the human endothelial NOS isoform. Phylogenetic analysis revealed that O. tauri NOS clusters together with putative NOS sequences of a Synechoccocus sp strain and Physarum polycephalum. This cluster appears as an outgroup of NOS representatives from metazoa. Purified recombinant O. tauri NOS has a K(m) for the substrate l-Arg of 12 ± 5 μM. Escherichia coli cells expressing recombinant O. tauri NOS have increased levels of NO and cell viability. O. tauri cultures in the exponential growth phase produce 3-fold more NOS-dependent NO than do those in the stationary phase. In O. tauri, NO production increases in high intensity light irradiation and upon addition of l-Arg, suggesting a link between NOS activity and microalgal physiology.

  6. Far red/near infrared light-induced protection against cardiac ischemia and reperfusion injury remains intact under diabetic conditions and is independent of nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Agnes eKeszler

    2014-08-01

    Full Text Available Far red/near-infrared light (NIR promotes a wide range of biological effects including tissue protection but whether and how NIR is capable of acutely protecting myocardium against ischemia and reperfusion injury in vivo is not fully elucidated. Our previous work indicates that NIR exposure immediately before and during early reperfusion protects the myocardium against infarction through mechanisms that are nitric oxide (NO-dependent. Here we tested the hypothesis that NIR elicits protection in a diabetic mouse model where other cardioprotective interventions such as pre- and postconditioning fail, and that the protection is independent of nitric oxide synthase (NOS. NIR reduced infarct size dose dependently. Importantly, NIR-induced protection was preserved in a diabetic mouse model (db/db and during acute hyperglycemia, as well as in endothelial NOS-/- mice and in wild type mice treated with NOS inhibitor L-NAME. In in vitro experiments NIR light liberates NO from nitrosyl hemoglobin (HbNO and nitrosyl myoglobin (MbNO in a wavelength (660-830 nm and dose-dependent manner. Irradiation at 660 nm yields the highest release of NO, while at longer wavelengths a dramatic decrease of NO release can be observed. Similar wavelength dependence was observed for the protection of mice against cardiac ischemia and reperfusion injury in vivo. NIR-induced NO release from deoxymyoglobin in the presence of nitrite mildly inhibits respiration of isolated mitochondria after hypoxia. In summary, NIR applied during reperfusion protects the myocardium against infarction in an NO dependent, but NOS-independent mechanisms, whereby mitochondria may be a target of NO released by NIR, leading to reduced reactive oxygen species generation during reperfusion. This unique mechanism preserves protection even during diabetes where other protective strategies fail.

  7. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  8. Deletion of a unique loop in the mycobacterial F‐ATP synthase γ subunit sheds light on its inhibitory role in ATP hydrolysis‐driven H+ pumping

    National Research Council Canada - National Science Library

    Hotra, Adam; Suter, Manuel; Biuković, Goran; Ragunathan, Priya; Kundu, Subhashri; Dick, Thomas; Grüber, Gerhard

    2016-01-01

    The F 1 F O ‐ ATP synthase is one of the enzymes that is essential to meet the energy requirement of both the proliferating aerobic and hypoxic dormant stages of the life cycle of mycobacteria. Most F...

  9. Pretreatment with light-emitting diode therapy reduces ischemic brain injury in mice through endothelial nitric oxide synthase-dependent mechanisms.

    Science.gov (United States)

    Lee, Hae In; Lee, Sae-Won; Kim, So Young; Kim, Nam Gyun; Park, Kyoung-Jun; Choi, Byung Tae; Shin, Yong-Il; Shin, Hwa Kyoung

    2017-05-13

    Photostimulation with low-level light emitting diode therapy (LED-T) modulates neurological and psychological functions. The purpose of this study was to evaluate the effects of LED-T pretreatment on the mouse brain after ischemia/reperfusion and to investigate the underlying mechanisms. Ischemia/reperfusion brain injury was induced by middle cerebral artery occlusion. The mice received LED-T twice a day for 2 days prior to cerebral ischemia. After reperfusion, the LED-T group showed significantly smaller infarct and edema volumes, fewer behavioral deficits compared to injured mice that did not receive LED-T and significantly higher cerebral blood flow compared to the vehicle group. We observed lower levels of endothelial nitric oxide synthase (eNOS) phosphorylation in the injured mouse brains, but significantly higher eNOS phosphorylation in LED-T-pretreated mice. The enhanced phospho-eNOS was inhibited by LY294002, indicating that the effects of LED-T on the ischemic brain could be attributed to the upregulation of eNOS phosphorylation through the phosphoinositide 3-kinase (PI3K)/Akt pathway. Moreover, no reductions in infarct or edema volume were observed in LED-T-pretreated eNOS-deficient (eNOS(-/-)) mice. Collectively, we found that pretreatment with LED-T reduced the amount of ischemia-induced brain damage. Importantly, we revealed that these effects were mediated by the stimulation of eNOS phosphorylation via the PI3K/Akt pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Functional characterization of wheat copalyl diphosphate synthases sheds light on the early evolution of labdane-related diterpenoid metabolism in the cereals.

    Science.gov (United States)

    Wu, Yisheng; Zhou, Ke; Toyomasu, Tomonobu; Sugawara, Chizu; Oku, Madoka; Abe, Shiho; Usui, Masami; Mitsuhashi, Wataru; Chono, Makiko; Chandler, Peter M; Peters, Reuben J

    2012-12-01

    Two of the most agriculturally important cereal crop plants are wheat (Triticum aestivum) and rice (Oryza sativa). Rice has been shown to produce a number of diterpenoid natural products as phytoalexins and/or allelochemicals--specifically, labdane-related diterpenoids, whose biosynthesis proceeds via formation of an eponymous labdadienyl/copalyl diphosphate (CPP) intermediate (e.g., the ent-CPP of gibberellin phytohormone biosynthesis). Similar to rice, wheat encodes a number of CPP synthases (CPS), and the three CPS characterized to date (TaCPS1-3) all have been suggested to produce ent-CPP. However, several of the downstream diterpene synthases will only react with CPP intermediate of normal or syn, but not ent, stereochemistry, as described in the accompanying report. Investigation of additional CPS did not resolve this issue, as the only other functional synthase (TaCPS4) also produced ent-CPP. Chiral product characterization of all the TaCPS then established that TaCPS2 uniquely produces normal, rather than ent-, CPP, thus, providing a suitable substrate source for the downstream diterpene synthases. Notably, TaCPS2 is most homologous to the similarly stereochemically differentiated syn-CPP synthase from rice (OsCPS4), while the non-inducible TaCPS3 and TaCPS4 cluster with the rice OsCPS1 required for gibberellin phytohormone biosynthesis, as well as with a barley (Hordeum vulgare) CPS (HvCPS1) that also is characterized here as similarly producing ent-CPP. These results suggest that diversification of labdane-related diterpenoid metabolism beyond the ancestral gibberellins occurred early in cereal evolution, and included the type of stereochemical variation demonstrated here.

  11. The promoter activities of sucrose phosphate synthase genes in rice, OsSPS1 and OsSPS11, are controlled by light and circadian clock, but not by sucrose

    Directory of Open Access Journals (Sweden)

    Madoka eYonekura

    2013-03-01

    Full Text Available Although sucrose plays a role in sugar sensing and its signaling pathway, little is known about the regulatory mechanisms of the expressions of plant sucrose-related genes. Our previous study on the expression of the sucrose phosphate synthase gene family in rice (OsSPSs suggested the involvement of sucrose sensing and/or circadian rhythm in the transcriptional regulation of OsSPS. To examine whether the promoters of OsSPSs can be controlled by sugars and circadian clock, we produced transgenic rice plants harboring a promoter–luciferase construct for OsSPS1 or OsSPS11 and analyzed the changes in the promoter activities by monitoring bioluminescence from intact transgenic plants in real time. Transgenic plants fed sucrose, glucose, or mannitol under continuous light conditions showed no changes in bioluminescence intensity; meanwhile, the addition of sucrose increased the concentration of sucrose in the plants, and the mRNA levels of OsSPS remained constant. These results suggest that these OsSPS promoters may not be regulated by sucrose levels in the tissues. Next, we investigated the changes in the promoter activities under 12-h light/12-h dark cycles and continuous light conditions. Under the light–dark cycle, both OsSPS1 and OsSPS11 promoter activities were low in the dark and increased rapidly after the beginning of the light period. When the transgenic rice plants were moved to the continuous light condition, both POsSPS1::LUC and POsSPS11::LUC reporter plants exhibited circadian bioluminescence rhythms; bioluminescence peaked during the subjective day with a 27-h period: in the early morning as for OsSPS1 promoter and midday for OsSPS11 promoter. These results indicate that these OsSPS promoters are controlled by both light illumination and circadian clock and that the regulatory mechanism of promoter activity differs between the 2 OsSPS genes.

  12. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  13. Biochemistry: Acetohydroxyacid Synthase

    Directory of Open Access Journals (Sweden)

    Pham Ngoc Chien

    2010-02-01

    Full Text Available Acetohydroxyacid synthase (AHAS, EC 2.2.1.6; formerly known as acetolactate synthase, ALS is a thiamin-and FAD-dependent enzyme which catalyses the first common step in the biosynthesis of the branched-chain amino acids (BCAA isoleucine, leucine and valine. The enzyme is inhibited by several commercial herbicides and has been studied over the last 20 to 30 years. A short introductory note about acetohydroxyacid synthase has been provided.

  14. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  15. Maternal magnesium sulfate fetal neuroprotective effects to the fetus: inhibition of neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells activation in a rodent model.

    Science.gov (United States)

    Beloosesky, Ron; Khatib, Nizar; Ginsberg, Yuval; Anabosy, Saja; Shalom-Paz, Einat; Dahis, Masha; Ross, Michael G; Weiner, Zeev

    2016-09-01

    Maternal magnesium administration has been shown to protect the preterm fetus from white- and gray-matter injury, although the mechanism is unknown. The purpose of the study is to test the following hypotheses: (1) maternal infections/inflammation activate fetal neuronal N-methyl-D-aspartate receptors that up-regulate neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells pathways; and (2) maternal magnesium sulfate attenuates fetal brain neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells activation through N-methyl-D-aspartate receptors. Pregnant rats at embryonic day 16 and embryonic day 18 (n = 6, 48 total) received injections of intraperitoneal lipopolysaccharide 500 μg/kg or saline at time 0. Dams were randomized for treatment with subcutaneous magnesium sulfate (270 mg/kg) or saline for 2 hours prior to and following lipopolysaccharide/saline injections. At 4 hours after lipopolysaccharide administration, fetal brains were collected from the 4 treatment groups (lipopolysaccharide/saline, lipopolysaccharide/magnesium sulfate, saline/magnesium sulfate, saline/saline), and phosphoneuronal nitric oxide synthase, nuclear factor kappa-light-chain-enhancer of activated B cells p65, and chemokine (C-C motif) ligand 2 protein levels were determined by Western blot. An additional group of pregnant rats (n = 5) received N-methyl-D-aspartate-receptor antagonist following the lipopolysaccharide injection to study magnesium sulfate protective mechanism. Lipopolysaccharide (lipopolysaccharide/saline) significantly increased fetal brain phosphoneuronal nitric oxide synthase, nuclear factor kappa-light-chain-enhancer of activated B cells p65, and chemokine (C-C motif) ligand 2 protein levels compared to the saline/saline group at both embryonic day 16 (phosphoneuronal nitric oxide synthase 0.23 ± 0.01 vs 0.11 ± 0.01 U; nuclear factor kappa-light-chain-enhancer of activated B cells

  16. Critical aspartic acid residues in pseudouridine synthases.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  17. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  18. Light

    CERN Document Server

    Ditchburn, R W

    2011-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  19. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  20. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  1. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    unclear whether callose synthases can also produce cellulose and whether plant cellulose synthases may also produce beta-1,3-glucans. We describe here an Arabidopsis gene, AtGsl5, encoding a plasma membrane-localized protein homologous to yeast beta-1,3-glucan synthase whose expression partially......Beta-1,3-glucan polymers are major structural components of fungal cell walls, while cellulosic beta-1,4-glucan is the predominant polysaccharide in plant cell walls. Plant beta-1,3-glucan, called callose, is produced in pollen and in response to pathogen attack and wounding, but it has been...... in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...

  2. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  3. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  4. Prenyldiphosphate synthases and gibberellin biosynthesis

    NARCIS (Netherlands)

    van Schie, C.C.N.; Haring, M.A.; Schuurink, R.C.; Bach, T.J.; Rohmer, M.

    2013-01-01

    Gibberellins are derived from the diterpene precursor geranylgeranyl diphophosphate (GGPP). GGPP is converted to ent-kaurene, which contains the basic structure of gibberellins, in the plastids by the combined actions of copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Generally, ge

  5. RNA interference-mediated repression of SmCPS (copalyldiphosphate synthase) expression in hairy roots of Salvia miltiorrhiza causes a decrease of tanshinones and sheds light on the functional role of SmCPS.

    Science.gov (United States)

    Cheng, Qiqing; Su, Ping; Hu, Yating; He, Yunfei; Gao, Wei; Huang, Luqi

    2014-02-01

    Tanshinones are a group of bioactive abietane-type norditerpenoid quinone compounds in Salvia miltiorrhiza. Copalyldiphosphate synthase of S. miltiorrhiza (SmCPS) is the first key enzyme in tanshinone biosynthesis from the universal diterpene precursor geranylgeranyl diphosphate. Hairy roots of S. miltiorrhiza were transformed with Agrobacterium rhizogenes carrying an RNA interference (RNAi) construct designed to silence SmCPS, and we examined the resulting SmCPS expression and tanshinone accumulation. In SmCPS–RNAi hairy roots, the transcript level of SmCPS was reduced to 26 % while the dihydrotanshinone I and cryptotanshinone levels were decreased by 53 and 38 % compared to those of the vector control hairy roots; tanshinone IIA was not detected. Therefore, the decreased expression of SmCPS caused a decrease in tanshinone levels which verifies that SmCPS is a key enzyme for tanshinone biosynthesis in S. miltiorrhiza.

  6. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr;

    2015-01-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichin......Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat...

  7. Biphenyl synthase, a novel type III polyketide synthase.

    Science.gov (United States)

    Liu, B; Raeth, T; Beuerle, T; Beerhues, L

    2007-05-01

    Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The carbon skeleton of the two classes of antimicrobial secondary metabolites is formed by biphenyl synthase (BIS). A cDNA encoding this key enzyme was cloned from yeast-extract-treated cell cultures of Sorbus aucuparia. BIS is a novel type III polyketide synthase (PKS) that shares about 60% amino acid sequence identity with other members of the enzyme superfamily. Its preferred starter substrate is benzoyl-CoA that undergoes iterative condensation with three molecules of malonyl-CoA to give 3,5-dihydroxybiphenyl via intramolecular aldol condensation. BIS did not accept CoA-linked cinnamic acids such as 4-coumaroyl-CoA. This substrate, however, was the preferential starter molecule for chalcone synthase (CHS) that was also cloned from S. aucuparia cell cultures. While BIS expression was rapidly, strongly and transiently induced by yeast extract treatment, CHS expression was not. In a phylogenetic tree, BIS grouped together closely with benzophenone synthase (BPS) that also uses benzoyl-CoA as starter molecule but cyclizes the common intermediate via intramolecular Claisen condensation. The molecular characterization of BIS thus contributes to the understanding of the functional diversity and evolution of type III PKSs.

  8. Genetics Home Reference: GM3 synthase deficiency

    Science.gov (United States)

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions GM3 synthase deficiency GM3 synthase ...

  9. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    Science.gov (United States)

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  10. Sphingomyelin synthase SMS2 displays dual activity as ceramide phosphoethanolamine synthase[S

    Science.gov (United States)

    Ternes, Philipp; Brouwers, Jos F. H. M.; van den Dikkenberg, Joep; Holthuis, Joost C. M.

    2009-01-01

    Sphingolipids are vital components of eukaryotic membranes involved in the regulation of cell growth, death, intracellular trafficking, and the barrier function of the plasma membrane (PM). While sphingomyelin (SM) is the major sphingolipid in mammals, previous studies indicate that mammalian cells also produce the SM analog ceramide phosphoethanolamine (CPE). Little is known about the biological role of CPE or the enzyme(s) responsible for CPE biosynthesis. SM production is mediated by the SM synthases SMS1 in the Golgi and SMS2 at the PM, while a closely related enzyme, SMSr, has an unknown biochemical function. We now demonstrate that SMS family members display striking differences in substrate specificity, with SMS1 and SMSr being monofunctional enzymes with SM and CPE synthase activity, respectively, and SMS2 acting as a bifunctional enzyme with both SM and CPE synthase activity. In agreement with the PM residency of SMS2, we show that both SM and CPE synthase activities are enhanced at the surface of SMS2-overexpressing HeLa cells. Our findings reveal an unexpected diversity in substrate specificity among SMS family members that should enable the design of specific inhibitors to target the biological role of each enzyme individually. PMID:19454763

  11. Producing biofuels using polyketide synthases

    Science.gov (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  12. EXPRESSION OF THE GEOSMIN SYNTHASE GENE IN THE CYANOBACTERIUM ANABAENA CIRCINALIS AWQC318(1).

    Science.gov (United States)

    Giglio, Steven; Saint, Christopher P; Monis, Paul T

    2011-12-01

    The occurrence of taste and odor episodes attributed to geosmin continues to trouble water utilities worldwide, and only recently have advances been made in our fundamental understanding of the biochemical and genetic mechanisms responsible for the production of geosmin in microorganisms. For the first time, we have examined the expression of the geosmin synthase gene and corresponding geosmin production by Anabaena circinalis Rabenh. ex Bornet et Flahault AWQC318 under conditions of continuous light illumination and the removal of light as a stimulus and demonstrate that the expression of geosmin synthase appears to be constitutive under these conditions. The decrease in geosmin synthase transcription post maximum cell numbers and stationary phase suggests that a decrease in isoprenoid synthesis may occur before a decrease in the transcription of ribosomal units as the process of cell death is initiated.

  13. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  14. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    Science.gov (United States)

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  15. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase*

    OpenAIRE

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-01-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic ch...

  16. The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system.

    Science.gov (United States)

    Ladenstein, Rudolf; Fischer, Markus; Bacher, Adelbert

    2013-06-01

    The xylene ring of riboflavin (vitamin B2 ) is assembled from two molecules of 3,4-dihydroxy-2-butanone 4-phosphate by a mechanistically complex process that is jointly catalyzed by lumazine synthase and riboflavin synthase. In Bacillaceae, these enzymes form a structurally unique complex comprising an icosahedral shell of 60 lumazine synthase subunits and a core of three riboflavin synthase subunits, whereas many other bacteria have empty lumazine synthase capsids, fungi, Archaea and some eubacteria have pentameric lumazine synthases, and the riboflavin synthases of Archaea are paralogs of lumazine synthase. The structures of the molecular ensembles have been studied in considerable detail by X-ray crystallography, X-ray small-angle scattering and electron microscopy. However, certain mechanistic aspects remain unknown. Surprisingly, the quaternary structure of the icosahedral β subunit capsids undergoes drastic changes, resulting in formation of large, quasi-spherical capsids; this process is modulated by sequence mutations. The occurrence of large shells consisting of 180 or more lumazine synthase subunits has recently generated interest for protein engineering topics, particularly the construction of encapsulation systems.

  17. Mammalian N-acetylglutamate synthase.

    Science.gov (United States)

    Morizono, Hiroki; Caldovic, Ljubica; Shi, Dashuang; Tuchman, Mendel

    2004-04-01

    N-Acetylglutamate synthase (NAGS, E.C. 2.3.1.1) is a mitochondrial enzyme that catalyzes the formation of N-acetylglutamate (NAG), an essential allosteric activator of carbamylphosphate synthetase I (CPSI). The mouse and human NAGS genes have been identified based on similarity to regions of NAGS from Neurospora crassa and cloned from liver cDNA libraries. These genes were shown to complement an argA- (NAGS) deficient Escherichia coli strain, and enzymatic activity of the proteins was confirmed by a new stable isotope dilution assay. The deduced amino acid sequence of mammalian NAGS contains a putative mitochondrial-targeting signal at the N-terminus. The mouse NAGS preprotein was overexpressed in insect cells to determine post-translational modifications and two processed proteins with different N-terminal truncations have been identified. Sequence analysis using a hidden Markov model suggests that the vertebrate NAGS protein contains domains with a carbamate kinase fold and an acyl-CoA N-acyltransferase fold, and protein crystallization experiments are currently underway. Inherited NAGS deficiency results in hyperammonemia, presumably due to the loss of CPSI activity. We, and others, have recently identified mutations in families with neonatal and late-onset NAGS deficiency and the identification of the gene has now made carrier testing and prenatal diagnosis feasible. A structural analog of NAG, carbamylglutamate, has been shown to bind and activate CPSI, and several patients have been reported to respond favorably to this drug (Carbaglu).

  18. Terpene synthases from Cannabis sativa.

    Science.gov (United States)

    Booth, Judith K; Page, Jonathan E; Bohlmann, Jörg

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  19. High order quaternary arrangement confers increased structural stability to Brucella Spp. lumazine synthase

    Energy Technology Data Exchange (ETDEWEB)

    Zylberman, V.; Craig, P.O.; Klinke, S.; Cauerhff, A.; Goldbaum, F.A. [Instituto Leloir, Buenos Aires (Argentina); Braden, B.C. [Bowie State Univ., Maryland (United States)

    2004-07-01

    The penultimate step in the pathway of riboflavin biosynthesis is catalyzed by the enzyme lumazine synthase (LS). One of the most distinctive characteristics of this enzyme is the structural quaternary divergence found in different species. The protein exists as pentameric and icosahedral forms, built from practically the same structural monomeric unit. The pentameric structure is formed by five 18 kDa monomers, each extensively contacting neighboring monomers. The icosahedral structure consists of 60 LS monomers arranged as twelve pentamers giving rise to a capsid exhibiting icosahedral 532 symmetry. In all lumazine synthases studied, the topologically equivalent active sites are located at the interfaces between adjacent subunits in the pentameric modules. The Brucella spp. lumazine synthase (BLS) sequence clearly diverges from pentameric and icosahedral enzymes. This unusual divergence prompted to further investigate on its quaternary arrangement. In the present work, we demonstrate by means of solution Light Scattering and X-ray structural analyses that BLS assembles as a very stable dimer of pentamers representing a third category of quaternary assembly for lumazine synthases. We also describe by spectroscopic studies the thermodynamic stability of this oligomeric protein, and postulate a mechanism for dissociation/unfolding of this macromolecular assembly. The higher molecular order of BLS increases its stability 20 deg C compared to pentameric lumazine synthases. The decameric arrangement described in this work highlights the importance of quaternary interactions in the stabilization of proteins. (author)

  20. An investigation into eukaryotic pseudouridine synthases.

    Science.gov (United States)

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  1. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  2. Protons, the thylakoid membrane, and the chloroplast ATP synthase.

    Science.gov (United States)

    Junge, W

    1989-01-01

    According to the chemiosmotic theory, proton pumps and ATP synthases are coupled by lateral proton flow through aqueous phases. Three long-standing challenges to this concept, all of which have been loosely subsumed under 'localized coupling' in the literature, were examined in the light of experiments carried out with thylakoids: (1) Nearest neighbor interaction between pumps and ATP synthases. Considering the large distances between photosystem II and CFoCF1, in stacked thylakoids this is a priori absent. (2) Enhanced proton diffusion along the surface of the membrane. This could not be substantiated for the outer side of the thylakoid membrane. Even for the interface between pure lipid and water, two laboratories have reported the absence of enhanced diffusion. (3) Localized proton ducts in the membrane. Intramembrane domains that can transiently trap protons do exist in thylakoid membranes, but because of their limited storage capacity for protons, they probably do not matter for photophosphorylation under continuous light. Seemingly in favor of localized proton ducts is the failure of a supposedly permeant buffer to enhance the onset lag of photophosphorylation. However, it was found that failure of some buffers and the ability of others in this respect were correlated with their failure/ability to quench pH transients in the thylakoid lumen, as predicted by the chemiosmotic theory. It was shown that the chemiosmotic concept is a fair approximation, even for narrow aqueous phases, as in stacked thylakoids. These are approximately isopotential, and protons are taken in by the ATP synthase straight from the lumen. The molecular mechanism by which F0F1 ATPases couple proton flow to ATP synthesis is still unknown. The threefold structural symmetry of the headpiece that, probably, finds a corollary in the channel portion of these enzymes appeals to the common wisdom that structural symmetry causes functional symmetry. "Rotation catalysis" has been proposed. It is

  3. The tomato terpene synthase gene family

    NARCIS (Netherlands)

    Falara, V.; Akhtar, T.A.; Nguyen, T.T.H.; Spyropoulou, E.A.; Bleeker, P.M.; Schauvinhold, I.; Matsuba, Y.; Bonini, M.E.; Schilmiller, A.L.; Last, R.L.; Schuurink, R.C.; Pichersky, E.

    2011-01-01

    Compounds of the terpenoid class play many roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of Solanum lycopersicum (cultivated tomato) contains 40 terpene synthase (TPS) genes, including 28

  4. Cloning of parsley flavone synthase I.

    Science.gov (United States)

    Martens, S; Forkmann, G; Matern, U; Lukacin, R

    2001-09-01

    A cDNA encoding flavone synthase I was amplified by RT-PCR from leaflets of Petroselinum crispum cv. Italian Giant seedlings and functionally expressed in yeast cells. The identity of the recombinant, 2-oxoglutarate-dependent enzyme was verified in assays converting (2S)-naringenin to apigenin.

  5. Inducible nitric oxide synthase in renal transplantation

    NARCIS (Netherlands)

    Joles, JA; Vos, IH; Grone, HJ; Rabelink, TJ

    2002-01-01

    The importance of the endothelial isoform of nitric oxide synthase (eNOS) has been well established. Endothelium-derived nitric oxide has been shown to be essential for vascular homeostasis and modulation of eNOS has thus become a target in prevention of cardiovascular disease. The role of the induc

  6. Trichinella pseudospiralis vs. T. spiralis thymidylate synthase gene structure and T. pseudospiralis thymidylate synthase retrogene sequence.

    Science.gov (United States)

    Jagielska, Elżbieta; Płucienniczak, Andrzej; Dąbrowska, Magdalena; Dowierciał, Anna; Rode, Wojciech

    2014-04-09

    Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T. pseudospiralis. Based on the sequence of parasitic nematode Trichinella spiralis thymidylate synthase cDNA, PCR techniques were employed. Each of the respective gene structures encompassed 6 exons and 5 introns located in conserved sites. Comparison with the corresponding gene structures of other eukaryotic species revealed lack of common introns that would be shared among selected fungi, nematodes, mammals and plants. The two deduced amino acid sequences were 96% identical. In addition to the thymidylate synthase gene, the intron-less retrocopy, i.e. a processed pseudogene, with sequence identical to the T. spiralis gene coding region, was found to be present within the T. pseudospiralis genome. This pseudogene, instead of the gene, was confirmed by RT-PCR to be expressed in the parasite muscle larvae. Intron load, as well as distribution of exon and intron phases in thymidylate synthase genes from various sources, point against the theory of gene assembly by the primordial exon shuffling and support the theory of evolutionary late intron insertion into spliceosomal genes. Thymidylate synthase pseudogene expressed in T. pseudospiralis muscle larvae is designated a retrogene.

  7. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...... I NO synthase immunoreactivity and NADPH diaphorase activity. Type III NO synthase immunoreactivity was observed both in the endothelium of larger vessels and of microvessels. The results establish that human skeletal muscle expresses two different constitutive isoforms of NO synthase in different...... endothelium is consistent with a role for NO in the control of blood flow in human skeletal muscle....

  8. Cellulose Synthases and Synthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Anne Endler; Staffan Persson

    2011-01-01

    Plant cell walls are complex structures composed of high-molecular-weight polysaccharides,proteins,and lignins. Among the wall polysaccharides,cellulose,a hydrogen-bonded β-1,4-linked glucan microfibril,is the main load-bearing wall component and a key precursor for industrial applications. Cellulose is synthesized by large multi-meric cellulose synthase (CesA) complexes,tracking along cortical microtubules at the plasma membrane. The only known components of these complexes are the cellulose synthase proteins. Recent studies have identified tentative interaction partners for the CesAs and shown that the migratory patterns of the CesA complexes depend on phosphorylation status. These advances may become good platforms for expanding our knowledge about cellulose synthesis in the near future. In addition,our current understanding of cellulose chain polymerization in the context of the CesA complex is discussed.

  9. Distribution of nitric oxide synthase positive neurons in the substantia nigra of rats with liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND:Nitrogen monoxide plays an important role in the physiological activity and pathological process of striatum in substantia nigra, and the nitric oxide synthase in substantia nigra may have characteristic changes after liver cirrhosis.OBJECTIYE: To observe the distribution and forms of nitric oxide synthase (NOS) positive neurons and fibers in substantia nigra of rats with liver cirrhosis.DESIGN: A comparative observational experiment.SETTINGS: Beijing Friendship Hospital; Capital Medical University.MATERIALS: Twenty 4-month-old male Wistar rats (120 - 150 g) of clean grade, were maintained in a 12-hour light/dark cycle at a constant temperature with free access to standard diet and water. Cryostat microtome (LEICA, Germany); All the reagents were purchased from Sigma Company.METHODS: The experiment was carried out in the Department of Anatomy (key laboratory of Beijing city),Capital Medical University from July 2000 to March 2002. The rats were randomly divided into normal group (n=10) and liver fibrosis group (n=10). Rats in the liver fibrosis group were subcutaneously injected with 60% CCl4 oil at a dose of 5 mL/kg for the first time, and 3 mL/kg for the next 14 times, twice a week,totally 15 times. Liver fibrosis of grades 5 - 6 was taken as successful models. Whereas rats in the normal group were not given any treatment. Four months after CCl4 treatment, all the rats were anesthetized to remove brain, and frontal frozen serial sections were prepared. The expressions of nitric oxide synthase positive neurons in substantia nigra of rats were observed under inverted microscope. The number and gray scale of cell body of nitric oxide synthase positive neurons in substantia nigra were detected with NADPH-diaphorase staining.MAIN OUTCOME MEASURES: ①Number and gray scale of cell body of nitric oxide synthase positive neurons in substantia nigra; ②Expressions of nitric oxide synthase positive neurons in substantia nigra.RESULTS: All the 20 rats were

  10. Caffeine synthase and related methyltransferases in plants.

    Science.gov (United States)

    Misako, Kato; Kouichi, Mizuno

    2004-05-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid present in high concentrations in tea and coffee and it is also found in a number of beverages such as coca cola. It is necessary to elucidate the caffeine biosynthetic pathway and to clone the genes related to the production of caffeine not only to determine the metabolism of the purine alkaloid but also to control the content of caffeine in tea and coffee. The available data support the operation of a xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine pathway as the major route to caffeine. Since the caffeine biosynthetic pathway contains three S-adenosyl-L-methionine (SAM) dependent methylation steps, N-methyltransferases play important roles. This review focuses on the enzymes and genes involved in the methylation of purine ring. Caffeine synthase, the SAM-dependent methyltransferase involved in the last two steps of caffeine biosynthesis, was originally purified from young tea leaves (Camellia sinensis). The isolated cDNA, termed TCS1, consists of 1,483 base pairs and encodes a protein of 369 amino acids. Subsequently, the homologous genes that encode caffeine biosynthetic enzymes from coffee (Coffea arabica) were isolated. The recombinant proteins are classified into the three types on the basis of their substrate specificity i.e. 7-methylxanthosine synthase, theobromine synthase and caffeine synthase. The predicted amino acid sequences of caffeine biosynthetic enzymes derived from C. arabica exhibit more than 80% homology with those of the clones and but show only 40% homology with TCS1 derived from C. sinensis. In addition, they share 40% homology with the amino acid sequences of salicylic carboxyl methyltransferase, benzoic acid carboxyl methyltransferase and jasmonic acid carboxyl methyltransferase which belong to a family of motif B' methyltransferases which are novel plant methyltransferases with motif B' instead of motif B as the conserved region.

  11. Building-block selectivity of polyketide synthases.

    Science.gov (United States)

    Liou, Grace F; Khosla, Chaitan

    2003-04-01

    For the past decade, polyketide synthases have presented an exciting paradigm for the controlled manipulation of complex natural product structure. These multifunctional enzymes catalyze the biosynthesis of polyketide natural products by stepwise condensation and modification of metabolically derived building blocks. In particular, regioselective modification of polyketide structure is possible by alterations in either intracellular acyl-CoA pools or, more commonly, by manipulation of acyl transferases that act as the primary gatekeepers for building blocks.

  12. Comparison study on effects of overexpressing citrate synthase driven by light-inducible promoter and constitutive promoter on Al tolerance of transgenic tobacco plants%光诱导和组成型启动子控制柠檬酸合酶基因过量表达对转基因烟草耐铝性影响的比较

    Institute of Scientific and Technical Information of China (English)

    王奇峰; 胡清泉; 赵玥; 易琼; 李昆志; 玉永雄; 陈丽梅

    2011-01-01

    分别用光诱导型启动子(PrbcS)和组成型启动子(CaMV 35S)驱动柠檬酸合酶基因(cs)在转基因烟草中过量表达,比较转基因烟草中柠檬酸的含量和分泌量及其铝耐受性的变化.结果表明:诱导型转基因株系的CS酶活性是野生型的2.3~2.4倍,组成型转基因株系的酶活性是野生型的1.6~2倍;在30 μmol·L-1铝胁迫下,诱导型转基因植株的根相对伸长量是野生型的2.8~2.9倍,组成型的根相对伸长量是野生型的2~2.3倍;在无铝或300 μmo1·L-1铝胁迫下,转基因烟草叶片和根中柠檬酸含量均高于野生型,其中诱导型转基因植株叶片中柠檬酸含量高于组成型转基因植株,转基因烟草柠檬酸的分泌量分别是野生型的1.8~2.0倍和3.0~3.3倍;在有铝胁迫的珍珠岩基质上培养时,转基因烟草的生长情况好于野生型.这些结果证明,与CaMV 35S相比,采用PrbcS启动子控制cs基因的过量表达可更有效地增加转基因烟草中CS的酶活性及叶片中柠檬酸的合成量,同时也能更有效地提高转基因烟草柠檬酸的分泌量,从而增强其对铝毒害的抵御能力.%Overexpression of citrate synthase (cs) cDNA of tobacco was driven by the light-inducible promoter of rubisco small subunit (PrbcS) and the constitutive promoter CaMV 35S (35S) in transgenic tobacco plants, respectively. The changes in citrate contents and exudations as well as Al tolerances in transgenic PrbcS and 35S tobacco plants were compared. The results showed that CS enzyme activities were increased 2.3-2.4 folds and 1.6-2 folds in transgenic PrbcS and 35S tobacco plants as compared with wild tobacco (WT) plants, respectively. When exposed to 30 μmol·L-1 Al, relative root elongation rates of transgenic PrbcS and 35S tobacco plants were also increased 2.8-2.9 folds and 2-2. 3 folds as compared with WT, respectively. Citrate contents in the transgenic tobacco leaves were significantly increased compared with the WT

  13. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity.

    Science.gov (United States)

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A

    2014-12-26

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.

  14. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    Science.gov (United States)

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  15. Loss of Drosophila pseudouridine synthase triggers apoptosis-induced proliferation and promotes cell-nonautonomous EMT

    Science.gov (United States)

    Vicidomini, R; Di Giovanni, A; Petrizzo, A; Iannucci, L F; Benvenuto, G; Nagel, A C; Preiss, A; Furia, M

    2015-01-01

    Many developing tissues display regenerative capability that allows them to compensate cell loss and preserve tissue homeostasis. Because of their remarkable regenerative capability, Drosophila wing discs are extensively used for the study of regenerative phenomena. We thus used the developing wing to investigate the role played in tissue homeostasis by the evolutionarily conserved eukaryotic H/ACA small nucleolar ribonucleoprotein pseudouridine synthase. Here we show that localized depletion of this enzyme can act as an endogenous stimulus capable of triggering apoptosis-induced proliferation, and that context-dependent effects are elicited in different sub-populations of the silenced cells. In fact, some cells undergo apoptosis, whereas those surrounding the apoptotic foci, although identically depleted, overproliferate. This overproliferation correlates with ectopic induction of the Wg and JAK-STAT (Janus kinase-signal transducer and activator of transcription) mitogenic pathways. Expression of a p35 transgene, which blocks the complete execution of the death program and generates the so-called ‘undead cells', amplifies the proliferative response. Pseudouridine synthase depletion also causes loss of apicobasal polarity, disruption of adherens cell junctions and ectopic induction of JNK (c-Jun N-terminal kinase) and Mmp1 (matrix metalloproteinase-1) activity, leading to a significant epithelial reorganization. Unexpectedly, cell-nonautonomous effects, such as epithelial mesenchymal transition in the contiguous unsilenced squamous epithelium, are also promoted. Collectively, these data point out that cell–cell communication and long-range signaling can take a relevant role in the response to pseudouridine synthase decline. Considering that all the affected pathways are highly conserved throughout evolution, it is plausible that the response to pseudouridine synthase depletion has been widely preserved. On this account, our results can add new light on the

  16. Morphological changes induced by class III chitin synthase gene silencing could enhance penicillin production of Penicillium chrysogenum.

    Science.gov (United States)

    Liu, Hui; Zheng, Zhiming; Wang, Peng; Gong, Guohong; Wang, Li; Zhao, Genhai

    2013-04-01

    Chitin synthases catalyze the formation of β-(1,4)-glycosidic bonds between N-acetylglucosamine residues to form the unbranched polysaccharide chitin, which is the major component of cell walls in most filamentous fungi. Several studies have shown that chitin synthases are structurally and functionally divergent and play crucial roles in the growth and morphogenesis of the genus Aspergillus although little research on this topic has been done in Penicillium chrysogenum. We used BLAST to find the genes encoding chitin synthases in P. chrysogenum related to chitin synthase genes in Aspergillus nidulans. Three homologous sequences coding for a class III chitin synthase CHS4 and two hypothetical proteins in P. chrysogenum were found. The gene which product showed the highest identity and encoded the class III chitin synthase CHS4 was studied in detail. To investigate the role of CHS4 in P. chrysogenum morphogenesis, we developed an RNA interference system to silence the class III chitin synthase gene chs4. After transformation, mutants exhibited a slow growth rate and shorter and more branched hyphae, which were distinct from those of the original strain. The results also showed that the conidiation efficiency of all transformants was reduced sharply and indicated that chs4 is essential in conidia development. The morphologies of all transformants and the original strain in penicillin production were investigated by light microscopy, which showed that changes in chs4 expression led to a completely different morphology during fermentation and eventually caused distinct penicillin yields, especially in the transformants PcRNAi1-17 and PcRNAi2-1 where penicillin production rose by 27 % and 41 %, respectively.

  17. Nitric oxide synthase is induced in sporulation of Physarum polycephalum

    Science.gov (United States)

    Golderer, Georg; Werner, Ernst R.; Leitner, Stefan; Gröbner, Peter; Werner-Felmayer, Gabriele

    2001-01-01

    The myxomycete Physarum polycephalum expresses a calcium-independent nitric oxide (NO) synthase (NOS) resembling the inducible NOS isoenzyme in mammals. We have now cloned and sequenced this, the first nonanimal NOS to be identified, showing that it shares Physarum macroplasmodia during the 5-day starvation period needed to induce sporulation competence. Induction of both NOS and sporulation competence were inhibited by glucose, a growth signal and known repressor of sporulation, and by l-N6–(1-iminoethyl)-lysine (NIL), an inhibitor of inducible NOS. Sporulation, which is triggered after the starvation period by light exposure, was also prevented by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of NO-sensitive guanylate cyclase. In addition, also expression of lig1, a sporulation-specific gene, was strongly attenuated by NIL or ODQ. 8-Bromo-cGMP, added 2 h before the light exposure, restored the capacity of NIL-treated macroplasmodia to express lig1 and to sporulate. This indicates that the second messenger used for NO signaling in sporulation of Physarum is cGMP and links this signaling pathway to expression of lig1. PMID:11358872

  18. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  19. IDENTIFICATION AND CHARACTERIZATION OF THE SUCROSE SYNTHASE 2 GENE (Sus2 IN DURUM WHEAT

    Directory of Open Access Journals (Sweden)

    Mariateresa eVolpicella

    2016-03-01

    Full Text Available Sucrose transport is the central system for the allocation of carbon resources in vascular plants. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, represents a key enzyme in the control of the flow of carbon into starch biosynthesis. In the present study the genomic identification and characterization of the Sus2-2A and Sus2-2B genes coding for sucrose synthase in durum wheat (cultivars Ciccio and Svevo is reported. The genes were analyzed for their expression in different tissues and at different seed maturation stages, in four tetraploid wheat genotypes (Svevo, Ciccio, Primadur and 5-BIL42. The activity of the encoded proteins was evaluated by specific activity assays on endosperm extracts and their structure established by modelling approaches. The combined results of SUS2 expression and activity levels were then considered in the light of their possible involvement in starch yield.

  20. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    Science.gov (United States)

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  1. Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants.

    Science.gov (United States)

    Gray, Dennis W; Breneman, Steven R; Topper, Lauren A; Sharkey, Thomas D

    2011-06-10

    2-Methyl-3-buten-2-ol (MBO) is a five-carbon alcohol produced and emitted in large quantities by many species of pine native to western North America. MBO is structurally and biosynthetically related to isoprene and can have an important impact on regional atmospheric chemistry. The gene for MBO synthase was identified from Pinus sabiniana, and the protein encoded was functionally characterized. MBO synthase is a bifunctional enzyme that produces both MBO and isoprene in a ratio of ~90:1. Divalent cations are required for activity, whereas monovalent cations are not. MBO production is enhanced by K(+), whereas isoprene production is inhibited by K(+) such that, at physiologically relevant [K(+)], little or no isoprene emission should be detected from MBO-emitting trees. The K(m) of MBO synthase for dimethylallyl diphosphate (20 mm) is comparable with that observed for angiosperm isoprene synthases and 3 orders of magnitude higher than that observed for monoterpene and sesquiterpene synthases. Phylogenetic analysis showed that MBO synthase falls into the TPS-d1 group (gymnosperm monoterpene synthases) and is most closely related to linalool synthase from Picea abies. Structural modeling showed that up to three phenylalanine residues restrict the size of the active site and may be responsible for making this a hemiterpene synthase rather than a monoterpene synthase. One of these residues is homologous to a Phe residue found in the active site of isoprene synthases. The remaining two Phe residues do not have homologs in isoprene synthases but occupy the same space as a second Phe residue that closes off the isoprene synthase active site.

  2. Lighting: Green Light.

    Science.gov (United States)

    Maniccia, Dorine

    2003-01-01

    Explains that by using sustainable (green) building practices, schools and universities can make their lighting systems more efficient, noting that embracing green design principles can help schools attract students. Discusses lighting-control technologies (occupancy sensing technology, daylighting technology, and scheduling based technologies),…

  3. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    Science.gov (United States)

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  4. Functional and evolutionary relationships between terpene synthases from Australian Myrtaceae.

    Science.gov (United States)

    Keszei, Andras; Brubaker, Curt L; Carter, Richard; Köllner, Tobias; Degenhardt, Jörg; Foley, William J

    2010-06-01

    Myrtaceae is one of the chemically most variable and most significant essential oil yielding plant families. Despite an abundance of chemical information, very little work has focussed on the biochemistry of terpene production in these plants. We describe 70 unique partial terpene synthase transcripts and eight full-length cDNA clones from 21 myrtaceous species, and compare phylogenetic relationships and leaf oil composition to reveal clades defined by common function. We provide further support for the correlation between function and phylogenetic relationships by the first functional characterisation of terpene synthases from Myrtaceae: a 1,8-cineole synthase from Eucalyptus sideroxylon and a caryophyllene synthase from Eucalyptusdives.

  5. Chloroplast ATP Synthase Modulation of the Thylakoid Proton Motive Force: Implications for Photosystem I and Photosystem II Photoprotection

    Directory of Open Access Journals (Sweden)

    Atsuko Kanazawa

    2017-05-01

    Full Text Available In wild type plants, decreasing CO2 lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (pmf. The resulting acidification of the lumen regulates both light harvesting, via the qE mechanism, and photosynthetic electron transfer through the cytochrome b6f complex. Here, we show that the cfq mutant of Arabidopsis, harboring single point mutation in its γ-subunit of the chloroplast ATP synthase, increases the specific activity of the ATP synthase and disables its down-regulation under low CO2. The increased thylakoid proton conductivity (gH+ in cfq results in decreased pmf and lumen acidification, preventing full activation of qE and more rapid electron transfer through the b6f complex, particularly under low CO2 and fluctuating light. These conditions favor the accumulation of electrons on the acceptor side of PSI, and result in severe loss of PSI activity. Comparing the current results with previous work on the pgr5 mutant suggests a general mechanism where increased PSI photodamage in both mutants is caused by loss of pmf, rather than inhibition of CEF per se. Overall, our results support a critical role for ATP synthase regulation in maintaining photosynthetic control of electron transfer to prevent photodamage.

  6. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    OpenAIRE

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity ...

  7. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Science.gov (United States)

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays. PMID:28883829

  8. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Berta Alquézar

    2017-08-01

    Full Text Available Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck genome sequence allowed us to characterize for the first time the terpene synthase (TPS family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.

  9. Evolution and function of phytochelatin synthases.

    Science.gov (United States)

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  10. Torque generation mechanism of ATP synthase

    Science.gov (United States)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  11. Inhibition of the ATP Synthase Eliminates the Intrinsic Resistance of Staphylococcus aureus towards Polymyxins.

    Science.gov (United States)

    Vestergaard, Martin; Nøhr-Meldgaard, Katrine; Bojer, Martin Saxtorph; Krogsgård Nielsen, Christina; Meyer, Rikke Louise; Slavetinsky, Christoph; Peschel, Andreas; Ingmer, Hanne

    2017-09-05

    Staphylococcus aureus is intrinsically resistant to polymyxins (polymyxin B and colistin), an important class of cationic antimicrobial peptides used in treatment of Gram-negative bacterial infections. To understand the mechanisms underlying intrinsic polymyxin resistance in S. aureus, we screened the Nebraska Transposon Mutant Library established in S. aureus strain JE2 for increased susceptibility to polymyxin B. Nineteen mutants displayed at least 2-fold reductions in MIC, while the greatest reductions (8-fold) were observed for mutants with inactivation of either graS, graR, vraF, or vraG or the subunits of the ATP synthase (atpA, atpB, atpG, or atpH), which during respiration is the main source of energy. Inactivation of atpA also conferred hypersusceptibility to colistin and the aminoglycoside gentamicin, whereas susceptibilities to nisin, gallidermin, bacitracin, vancomycin, ciprofloxacin, linezolid, daptomycin, and oxacillin were unchanged. ATP synthase activity is known to be inhibited by oligomycin A, and the presence of this compound increased polymyxin B-mediated killing of S. aureus Our results demonstrate that the ATP synthase contributes to intrinsic resistance of S. aureus towards polymyxins and that inhibition of the ATP synthase sensitizes S. aureus to this group of compounds. These findings show that by modulation of bacterial metabolism, new classes of antibiotics may show efficacy against pathogens towards which they were previously considered inapplicable. In light of the need for new treatment options for infections with serious pathogens like S. aureus, this approach may pave the way for novel applications of existing antibiotics.IMPORTANCE Bacterial pathogens that cause disease in humans remain a serious threat to public health, and antibiotics are still our primary weapon in treating bacterial diseases. The ability to eradicate bacterial infections is critically challenged by development of resistance to all clinically available

  12. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Directory of Open Access Journals (Sweden)

    Vinciane Régnier

    Full Text Available BACKGROUND: The cystathionine β-synthase (CBS gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA metabolism, a pathway important for several brain physiological processes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1 expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. CONCLUSION/SIGNIFICANCE: We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  13. Radical mechanism of cyanophage phycoerythrobilin synthase (PebS).

    Science.gov (United States)

    Busch, Andrea W U; Reijerse, Edward J; Lubitz, Wolfgang; Hofmann, Eckhard; Frankenberg-Dinkel, Nicole

    2011-02-01

    PEB (phycoerythrobilin) is a pink-coloured open-chain tetrapyrrole molecule found in the cyanobacterial light-harvesting phycobilisome. Within the phycobilisome, PEB is covalently bound via thioether bonds to conserved cysteine residues of the phycobiliprotein subunits. In cyanobacteria, biosynthesis of PEB proceeds via two subsequent two-electron reductions catalysed by the FDBRs (ferredoxin-dependent bilin reductases) PebA and PebB starting from the open-chain tetrapyrrole biliverdin IXα. A new member of the FDBR family has been identified in the genome of a marine cyanophage. In contrast with the cyanobacterial enzymes, PebS (PEB synthase) from cyanophages combines both two-electron reductions for PEB synthesis. In the present study we show that PebS acts via a substrate radical mechanism and that two conserved aspartate residues at position 105 and 206 are critical for stereospecific substrate protonation and conversion. On the basis of the crystal structures of both PebS mutants and presented biochemical and biophysical data, a mechanism for biliverdin IXα conversion to PEB is postulated and discussed with respect to other FDBR family members.

  14. [Four cases of aldosterone synthase deficiency in childhood].

    Science.gov (United States)

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  15. Pseudouridines and pseudouridine synthases of the ribosome.

    Science.gov (United States)

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  16. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  17. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway.

    Science.gov (United States)

    Taura, Futoshi; Tanaka, Shinji; Taguchi, Chiho; Fukamizu, Tomohide; Tanaka, Hiroyuki; Shoyama, Yukihiro; Morimoto, Satoshi

    2009-06-18

    Alkylresorcinol moieties of cannabinoids are derived from olivetolic acid (OLA), a polyketide metabolite. However, the polyketide synthase (PKS) responsible for OLA biosynthesis has not been identified. In the present study, a cDNA encoding a novel PKS, olivetol synthase (OLS), was cloned from Cannabis sativa. Recombinant OLS did not produce OLA, but synthesized olivetol, the decarboxylated form of OLA, as the major reaction product. Interestingly, it was also confirmed that the crude enzyme extracts from flowers and rapidly expanding leaves, the cannabinoid-producing tissues of C. sativa, also exhibited olivetol-producing activity, suggesting that the native OLS is functionally expressed in these tissues. The possibility that OLS could be involved in OLA biosynthesis was discussed based on its catalytic properties and expression profile.

  18. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae.

    Science.gov (United States)

    Samuelsson, T; Olsson, M

    1990-05-25

    A transfer RNA lacking modified nucleosides was produced by transcription in vitro of a cloned gene that encodes a Saccharomyces cerevisiae glycine tRNA. At least three different uridines (in nucleotide positions 13, 32, and 55) of this transcript tRNA are modified to pseudouridine by an extract of S. cerevisiae. Variants of the RNA substrate were also constructed that each had only one of these sites, thus allowing specific monitoring of pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis, enzymes producing this nucleoside were purified from an extract of S. cerevisiae. The activities corresponding to positions 13, 32, and 55 in the tRNA substrate could all be separated chromatographically, indicating that there is a separate enzyme for each of these sites. The enzyme specific for position 55 (denoted pseudouridine synthase 55) was purified approximately 4000-fold using a combination of DEAE-Sepharose, heparin-Sepharose, and hydroxylapatite.

  19. The nitric oxide synthase of mouse spermatozoa.

    Science.gov (United States)

    Herrero, M B; Goin, J C; Boquet, M; Canteros, M G; Franchi, A M; Perez Martinez, S; Polak, J M; Viggiano, J M; Gimeno, M A

    1997-07-01

    Nitric oxide synthase (NOS) was evidenced in mature mouse spermatozoa by means of biochemical techniques and Western blot. During 120 min of incubation, 10(7) spermatozoa synthesized 7 +/- 2 pmol of L-[14C]citrulline. Besides, L-citrulline formation depended on the incubation time and on the concentration of L-arginine present in the incubation medium. Different concentrations of N(G)-nitro-L-arginine methyl ester (L-NAME) but not aminoguanidine, inhibited L-[14C]citrulline formation. Western-blot analysis of solubilized sperm proteins revealed a unique band of M(r)=140 kDa with the neural, endothelial and inducible NOS antisera tested. These results provide evidence that mature mouse sperm contains a NOS isoform and that spermatozoa have the potential ability to synthesize NO, suggesting a role for endogenous NO on mammalian sperm function.

  20. Endothelial nitric oxide synthase in the microcirculation.

    Science.gov (United States)

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  1. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase*

    Science.gov (United States)

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-01-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic change in both substrate and product specificities of BPS was rationalized by homology modeling. The mutation may open a new pocket that accommodates the phenyl moiety of the triketide intermediate but limits polyketide elongation to two reactions, resulting in phenylpyrone formation. 3-Hydroxybenzoyl-CoA is the second best starter molecule for BPS but a poor substrate for PPS. The aryl moiety of the triketide intermediate may be trapped in the new pocket by hydrogen bond formation with the backbone, thereby acting as an inhibitor. PPS is a promising biotechnological tool for manipulating benzoate-primed biosynthetic pathways to produce novel compounds. PMID:19710020

  2. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    Science.gov (United States)

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  3. Cloning of tobacco citrate synthase cDNA and construction of its light inducible plant expression vector%烟草柠檬酸合成酶基因的克隆及其光诱导型植物表达载体的构建

    Institute of Scientific and Technical Information of China (English)

    胡清泉; 王奇峰; 李昆志; 陈丽梅; 玉永雄

    2009-01-01

    紫花苜蓿为多年生优质豆科牧草.我国南方地区酸性土壤分布比较广,铝害比较严重,限制了紫花苜蓿在南方地区的推广利用.提高有机酸合成酶基因的表达活性,增加有机酸的合成与分泌,有利于增强植物的耐铝性.本研究根据Genebank中已知的烟草柠檬酸合成酶(Citrate Synthase, cs)基因的序列,通过RT-PCR从烟草总RNA中扩增cs基因的cDNA,亚克隆于T载体得到重组载体pMD18-cs,对pMD18-cs中的插入片断进行核酸序列分析确认为cs基因的cDNA全长.用光诱导型启动子(Rubisco,小亚基的启动子)和双元载体pPZP211构建了cs基因的光诱导型植物表达载体pPZP211-PrbcS-cs,为利用基因工程手段提高紫花苜蓿耐铝毒能力,促进其在南方地区推广利用奠定了物质基础.

  4. Role of cysteine residues in pseudouridine synthases of different families.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  5. Hypersensitive Response of Plasmid-Encoded AHL Synthase Gene to Lifestyle and Nutrient by Ensifer adhaerens X097

    Directory of Open Access Journals (Sweden)

    Yanhua Zeng

    2017-06-01

    Full Text Available It is known that some bacteria, especially members of the family Rhizobiaceae, have multiple N-acyl homoserine lactones (AHL synthase genes and produce multiple AHL signals. However, how bacteria selectively utilize these multiple genes and signals to cope with changing environments is poorly understood. Ensifer adhaerens is an important microorganism in terms of biotechnology, ecology and evolutionary. In this study, we investigated the AHL-based QS system of E. adhaerens X097 and its response to different lifestyles or nutrients. Draft genome sequence data indicated that X097 harbored three distinct AHL synthase genes (ensI1, 2, 3 and seven luxR homologs, which was different from other E. adhaerens strains. In vitro expression indicated that plasmid-encoded ensI1 and ensI2 directed production of multiple AHLs, while chromosome-encoded ensI3 only directed production of C14-HSL. Predicted three dimensional structure of EnsI3 was quite different from that of EnsI1 and EnsI2. X097 produced different AHL profiles in Luria-Bertani (LB and NFB medium, under biofilm and planktonic lifestyle, respectively. Notably, expression of ensI1 and ensI2 but not ensI3 is hypersensitive to different lifestyles and nutrients. The hypersensitive response of plasmid-encoded AHL synthase genes to different culture conditions may shed a light on the phylogenetic development of AHL synthase genes in Rhizobiaceae family.

  6. ATP Synthase Deficiency due to TMEM70 Mutation Leads to Ultrastructural Mitochondrial Degeneration and Is Amenable to Treatment

    Directory of Open Access Journals (Sweden)

    Anne K. Braczynski

    2015-01-01

    Full Text Available TMEM70 is involved in the biogenesis of mitochondrial ATP synthase and mutations in the TMEM70 gene impair oxidative phosphorylation. Herein, we report on pathology and treatment of ATP synthase deficiency in four siblings. A consanguineous family of Roma (Gipsy ethnic origin gave birth to 6 children of which 4 were affected presenting with dysmorphic features, failure to thrive, cardiomyopathy, metabolic crises, and 3-methylglutaconic aciduria as clinical symptoms. Genetic testing revealed a homozygous mutation (c.317-2A>G in the TMEM70 gene. While light microscopy was unremarkable, ultrastructural investigation of muscle tissue revealed accumulation of swollen degenerated mitochondria with lipid crystalloid inclusions, cristae aggregation, and exocytosis of mitochondrial material. Biochemical analysis of mitochondrial complexes showed an almost complete ATP synthase deficiency. Despite harbouring the same mutation, the clinical outcome in the four siblings was different. Two children died within 60 h after birth; the other two had recurrent life-threatening metabolic crises but were successfully managed with supplementation of anaplerotic amino acids, lipids, and symptomatic treatment during metabolic crisis. In summary, TMEM70 mutations can cause distinct ultrastructural mitochondrial degeneration and almost complete deficiency of ATP synthase but are still amenable to treatment.

  7. Subcellular localization of the homocitrate synthase in Penicillium chrysogenum.

    Science.gov (United States)

    Bañuelos, O; Casqueiro, J; Steidl, S; Gutiérrez, S; Brakhage, A; Martín, J F

    2002-01-01

    There are conflicting reports regarding the cellular localization in Saccharomyces cerevisiae and filamentous fungi of homocitrate synthase, the first enzyme in the lysine biosynthetic pathway. The homocitrate synthase (HS) gene (lys1) of Penicillium chrysogenum was disrupted in three transformants (HS(-)) of the Wis 54-1255 pyrG strain. The three mutants named HS1(-), HS2(-) and HS3(-) all lacked homocitrate synthase activity and showed lysine auxotrophy, indicating that there is a single gene for homocitrate synthase in P. chrysogenum. The lys1 ORF was fused in frame to the gene for the green fluorescent protein (GFP) gene of the jellyfish Aequorea victoria. Homocitrate synthase-deficient mutants transformed with a plasmid containing the lys1-GFP fusion recovered prototrophy and showed similar levels of homocitrate synthase activity to the parental strain Wis 54-1255, indicating that the hybrid protein retains the biological function of wild-type homocitrate synthase. Immunoblotting analysis revealed that the HS-GFP fusion protein is maintained intact and does not release the GFP moiety. Fluorescence microscopy analysis of the transformants showed that homocitrate synthase was mainly located in the cytoplasm in P. chrysogenum; in S. cerevisiae the enzyme is targeted to the nucleus. The control nuclear protein StuA was properly targeted to the nucleus when the StuA (targeting domain)-GFP hybrid protein was expressed in P. chrysogenum. The difference in localization of homocitrate synthase between P. chrysogenum and S. cerevisiae suggests that this protein may play a regulatory function, in addition to its catalytic function, in S. cerevisiae but not in P. chrysogenum.

  8. Public lighting.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1986-01-01

    The function of public lighting and the relationship between public lighting and accidents are considered briefly as aspects of effective countermeasures. Research needs and recent developments in installation and operational described. Public lighting is an efficient accident countermeasure, but

  9. The Pseudouridine Synthases Proceed through a Glycal Intermediate.

    Science.gov (United States)

    Veerareddygari, Govardhan Reddy; Singh, Sanjay K; Mueller, Eugene G

    2016-06-29

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2'. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases.

  10. Peroxisomal and mitochondrial citrate synthase in CAM plants.

    Science.gov (United States)

    Zafra, M F; Segovia, J L; Alejandre, M J; García-Peregrín, E

    1981-12-01

    Citrate synthase wa studied for the first time in peroxisomes and mitochondria of crassulacean acid metabolism plants. Cellular organelles were isolated from Agave americana leaves by sucrose density gradient centrifugation and characterized by the use of catalase and cytochrome oxidase as marker enzymes, respectively. 48,000 X g centrifugation caused the breakdown of the cellular organelles. The presence of a glyoxylate cycle enzyme (citrate synthase) and a glycollate pathway enzyme (catalase) in the same organelles, besides the absence of another glyoxalate cycle enzyme (malate synthase) is reported for the first time, suggesting that peroxisomal and glyoxysomal proteins are synthesized at the same time and housed in he same organelle.

  11. Glycogen synthase kinase 3 regulates photic signaling in the suprachiasmatic nucleus.

    Science.gov (United States)

    Paul, Jodi R; McKeown, Alex S; Davis, Jennifer A; Totsch, Stacie K; Mintz, Eric M; Kraft, Timothy W; Cowell, Rita M; Gamble, Karen L

    2017-04-01

    Glycogen synthase kinase 3 (GSK3) is a serine-threonine kinase that regulates mammalian circadian rhythms at the behavioral, molecular and neurophysiological levels. In the central circadian pacemaker, the suprachiasmatic nucleus (SCN), inhibitory phosphorylation of GSK3 exhibits a rhythm across the 24 h day. We have recently shown that GSK3 is capable of influencing both the molecular clock and SCN neuronal activity rhythms. However, it is not known whether GSK3 regulates the response to environmental cues such as light. The goal of this study was to test the hypothesis that GSK3 activation mediates light-induced SCN excitability and photic entrainment. Immunofluorescence staining in the SCN of mice showed that late-night light exposure significantly increased GSK3 activity (decreased pGSK3β levels) 30-60 min after the light-pulse. In addition, pharmacological inhibition of GSK3 blocked the expected light-induced excitability in SCN neurons; however, this effect was not associated with changes in resting membrane potential or input resistance. Behaviorally, mice with constitutively active GSK3 (GSK3-KI) re-entrained to a 6-h phase advance in the light-dark cycle in significantly fewer days than WT control animals. Furthermore, the behavioral and SCN neuronal activity of GSK3-KI mice was phase-advanced compared to WT, in both normal and light-exposed conditions. Finally, GSK3-KI mice exhibited normal negative-masking behavior and electroretinographic responses to light, suggesting that the enhanced photic entrainment is not due to an overall increased sensitivity to light in these animals. Taken together, these results provide strong evidence that GSK3 activation contributes to light-induced phase-resetting at both the neurophysiological and behavioral levels. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. WOW: light print, light propel, light point

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew Rafael; Aabo, Thomas

    2012-01-01

    anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light...... propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation...

  13. Prostaglandin H synthase immunoreactivity in human gut. An immunohistochemical study

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Rumessen, J J; Qvortrup, Klaus

    1991-01-01

    Prostaglandins exhibit a variety of actions on intestinal smooth muscle depending upon the type, dose and muscle layer studied. As the cellular origin of prostaglandin H (PGH) synthase has not been established with certainty in the human gut wall, we studied the localization of PGH synthase...... in the human duodenum, jejunum, ileum and colon by immunohistochemistry. PGH synthase immunoreactivity appeared to be similar in all segments of the intestine. Most smooth muscle cells seemed to contain PGH synthase; however, the reaction in the lamina muscularis mucosae was much stronger than...... in the longitudinal and circular muscle layers. Endothelial cells in capillaries and larger vessels showed a positive reaction. In addition, unidentified cells in subserosa, at the level of Auerbach's plexus and in the submucosa were stained. We concluded that the smooth muscle cells of the human gut has a rather...

  14. Cooperativity of peptidoglycan synthases active in bacterial cell elongation.

    NARCIS (Netherlands)

    Banzhaf, M.; van den Berg van Saparoea, B.; Terrak, M.; Fraipont, C.; Egan, A.; Philippe, J.; Zapun, A.; Breukink, E.; Nguyen-Distèche, M.; den Blaauwen, T.; Vollmer, W.

    2012-01-01

    Growth of the bacterial cell wall peptidoglycan sacculus requires the co-ordinated activities of peptidoglycan synthases, hydrolases and cell morphogenesis proteins, but the details of these interactions are largely unknown. We now show that the Escherichia coli peptidoglycan

  15. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ahmad

    Full Text Available We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  16. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Science.gov (United States)

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  17. Sequence analysis of cereal sucrose synthase genes and isolation ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... 1Department of Environmental Biotechnology, Bharathidasan University, ... script and UA cloning vector (QIAGEN PCR Cloning Kit) was used to clone ..... Expression of a Arabidopsis sucrose synthase gene indicates a role.

  18. Insulin transcriptionally regulates argininosuccinate synthase to maintain vascular endothelial function

    OpenAIRE

    Haines, Ricci J.; Corbin, Karen D.; Pendleton, Laura C; Meininger, Cynthia J; Eichler, Duane C.

    2012-01-01

    Diminished vascular endothelial cell nitric oxide (NO) production is a major factor in the complex pathogenesis of diabetes mellitus. In this report, we demonstrate that insulin not only maintains endothelial NO production through regulation of endothelial nitric oxide synthase (eNOS), but also via the regulation of argininosuccinate synthase (AS), which is the rate-limiting step of the citrulline-NO cycle. Using serum starved, cultured vascular endothelial cells, we show that insulin up-regu...

  19. Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences.

    Directory of Open Access Journals (Sweden)

    Andrew eCarroll

    2011-03-01

    Full Text Available The development of cellulose as an organizing structure in the plant cell wall was a key event in both the initial colonization and the subsequent domination of the terrestrial ecosystem by vascular plants. A wealth of experimental data has demonstrated the complicated genetic interactions required to form the large synthetic complex that synthesizes cellulose. However, these results are lacking an extensive analysis of the evolution, specialization, and regulation of the proteins that compose this complex. Here we perform an in-depth analysis of the sequences in the cellulose synthase (CesA family. We investigate the phylogeny of the CesA family, with emphasis on evolutionary specialization. We define specialized subfamilies and identify the class-specific regions within the CesA sequence that may explain this specialization. We investigate changes in regulation of CesAs by looking at the conservation of proposed phosphorylation sites. We investigate the conservation of sites where mutations have been documented that impair cellulose synthase function, and compare these sites to those observed in the closest cellulose synthase-like (Csl families to better understand what regions may separate the CesAs from other Csls. Finally we identify two positions with strong conservation of the aromatic trait, but lacking conservation of amino acid identity, which may represent residues important for positioning the sugar substrate for catalysis. These analyses provide useful tools for understanding characterized mutations and post-translational modifications, and for informing further experiments to probe CesA assembly, regulation, and function through site-directed mutagenesis or domain swapping experiments.

  20. Homocystinuria due to cystathionine beta synthase deficiency

    Directory of Open Access Journals (Sweden)

    Rao T

    2008-01-01

    Full Text Available A two year-old male child presented with cutis marmorata congenita universalis, brittle hair, mild mental retardation, and finger spasms. Biochemical findings include increased levels of homocysteine in the blood-106.62 µmol/L (normal levels: 5.90-16µmol/L. Biochemical tests such as the silver nitroprusside and nitroprusside tests were positive suggesting homocystinuria. The patient was treated with oral pyridoxine therapy for three months. The child responded well to this therapy and the muscle spasms as well as skin manifestations such as cutis marmorata subsided. The treatment is being continued; the case is reported here because of its rarity. Homocysteinuria arising due to cystathionine beta-synthase (CBS deficiency is an autosomal recessive disorder of methionine metabolism that produces increased levels of urinary homocysteine and methionine It manifests itself in vascular, central nervous system, cutaneous, and connective tissue disturbances and phenotypically resembles Marfan′s syndrome. Skin manifestations include malar flush, thin hair, and cutis reticulata / marmorata.

  1. Nitric Oxide Synthases in Heart Failure

    Science.gov (United States)

    Carnicer, Ricardo; Crabtree, Mark J.; Sivakumaran, Vidhya

    2013-01-01

    Abstract Significance: The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca2+ homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. Recent Advances: Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. Critical Issues: Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. Future Directions: Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance. Antioxid. Redox Signal. 18, 1078–1099. PMID:22871241

  2. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    Directory of Open Access Journals (Sweden)

    Ting Xu

    2015-03-01

    Full Text Available The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.

  3. Linking pseudouridine synthases to growth, development and cell competition.

    Science.gov (United States)

    Tortoriello, Giuseppe; de Celis, José F; Furia, Maria

    2010-08-01

    Eukaryotic pseudouridine synthases direct RNA pseudouridylation and bind H/ACA small nucleolar RNA (snoRNAs), which, in turn, may act as precursors of microRNA-like molecules. In humans, loss of pseudouridine synthase activity causes dyskeratosis congenita (DC), a complex systemic disorder characterized by cancer susceptibility, failures in ribosome biogenesis and telomere stability, and defects in stem cell formation. Considering the significant interest in deciphering the various molecular consequences of pseudouridine synthase failure, we performed a loss of function analysis of minifly (mfl), the pseudouridine synthase gene of Drosophila, in the wing disc, an advantageous model system for studies of cell growth and differentiation. In this organ, depletion of the mfl-encoded pseudouridine synthase causes a severe reduction in size by decreasing both the number and the size of wing cells. Reduction of cell number was mainly attributable to cell death rather than reduced proliferation, establishing that apoptosis plays a key role in the development of the loss of function mutant phenotype. Depletion of Mfl also causes a proliferative disadvantage in mosaic tissues that leads to the elimination of mutant cells by cell competition. Intriguingly, mfl silencing also triggered unexpected effects on wing patterning and cell differentiation, including deviations from normal lineage boundaries, mingling of cells of different compartments, and defects in the formation of the wing margin that closely mimic the phenotype of reduced Notch activity. These results suggest that a component of the pseudouridine synthase loss of function phenotype is caused by defects in Notch signalling.

  4. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase.

    Science.gov (United States)

    Bergstrom, J D; Bostedor, R G; Masarachia, P J; Reszka, A A; Rodan, G

    2000-01-01

    Alendronate, a nitrogen-containing bisphosphonate, is a potent inhibitor of bone resorption used for the treatment and prevention of osteoporosis. Recent findings suggest that alendronate and other N-containing bisphosphonates inhibit the isoprenoid biosynthesis pathway and interfere with protein prenylation, as a result of reduced geranylgeranyl diphosphate levels. This study identified farnesyl disphosphate synthase as the mevalonate pathway enzyme inhibited by bisphosphonates. HPLC analysis of products from a liver cytosolic extract narrowed the potential targets for alendronate inhibition (IC(50) = 1700 nM) to isopentenyl diphosphate isomerase and farnesyl diphosphate synthase. Recombinant human farnesyl diphosphate synthase was inhibited by alendronate with an IC(50) of 460 nM (following 15 min preincubation). Alendronate did not inhibit isopentenyl diphosphate isomerase or GGPP synthase, partially purified from liver cytosol. Recombinant farnesyl diphosphate synthase was also inhibited by pamidronate (IC(50) = 500 nM) and risedronate (IC(50) = 3.9 nM), negligibly by etidronate (IC50 = 80 microM), and not at all by clodronate. In osteoclasts, alendronate inhibited the incorporation of [(3)H]mevalonolactone into proteins of 18-25 kDa and into nonsaponifiable lipids, including sterols. These findings (i) identify farnesyl diphosphate synthase as the selective target of alendronate in the mevalonate pathway, (ii) show that this enzyme is inhibited by other N-containing bisphosphonates, such as risendronate, but not by clodronate, supporting a different mechanism of action for different bisphosphonates, and (iii) document in purified osteoclasts alendronate inhibition of prenylation and sterol biosynthesis.

  5. Broadband Visible Light Induced NO Formation

    Science.gov (United States)

    Lubart, Rachel; Eichler, Maor; Friedmann, Harry; Savion, N.; Breitbart, Haim; Ankri, Rinat

    2009-06-01

    Nitric oxide formation is a potential mechanism for photobiomodulation because it is synthesized in cells by nitric oxide synthase (NOS), which contains both flavin and heme, and thus absorbs visible light. The purpose of this work was to study broadband visible light induced NO formation in various cells. Cardiac, endothelial, sperm cells and RAW 264.7 macrophages were illuminated with broadband visible light, 40-130 mW/cm2, 2.4-39 J/cm2, and nitric oxide production was quantified by using the Griess reagent. The results showed that visible light illumination increased NO concentration both in sperm and endothelial cells, but not in cardiac cells. Activation of RAW 264.7 macrophages was very small. It thus appears that NO is involved in photobiomodulation, though different light parameters and illumination protocols are needed to induce NO in various cells.

  6. "Tangible Lights"

    DEFF Research Database (Denmark)

    Sørensen, Tor; Merritt, Timothy; Andersen, Oskar

    2015-01-01

    While there has been much focus on tangible lighting interfaces embedded in physical objects and smartphones as remote control, there has not been sufficient attention on how the expressivity of bodily movement can be used when designing interactions with light. Therefore, we investigate interact...... knowledge from the tangible world. Tangible Lights has been subject to initial evaluations.......While there has been much focus on tangible lighting interfaces embedded in physical objects and smartphones as remote control, there has not been sufficient attention on how the expressivity of bodily movement can be used when designing interactions with light. Therefore, we investigate...... interaction with lighting technology beyond the smartphone and physical controllers. We examine the usefulness of the in-air gestural interaction style for lighting control. We bring forward "Tangible Lights", which serves as a novel interface for in-air interaction with lighting, drawing on existing...

  7. Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.).

    Science.gov (United States)

    Lahuta, Lesław B; Pluskota, Wioletta E; Stelmaszewska, Joanna; Szablińska, Joanna

    2014-09-01

    The exposition of 7-day-old pea seedlings to dehydration induced sudden changes in the concentration of monosaccharides and sucrose in epicotyl and roots tissues. During 24h of dehydration, the concentration of glucose and, to a lesser extent, fructose in seedling tissues decreased. The accumulation of sucrose was observed in roots after 4h and in epicotyls after 8h of stress. Epicotyls and roots also began to accumulate galactinol and raffinose after 8h of stress, when small changes in the water content of tissues occurred. The accumulation of galactinol and raffinose progressed parallel to water withdrawal from tissues, but after seedling rehydration both galactosides disappeared. The synthesis of galactinol and raffinose by an early induction (during the first hour of treatment) of galactinol synthase (PsGolS) and raffinose synthase (PsRS) gene expression as well as a later increase in the activity of both enzymes was noted. Signals possibly triggering the induction of PsGolS and PsRS gene expression and accumulation of galactinol and raffinose in seedlings are discussed.

  8. Cloning and characterization of squalene synthase and cycloartenol synthase from Siraitia grosvenorii

    Directory of Open Access Journals (Sweden)

    Huan Zhao

    2017-03-01

    Full Text Available Mogrosides and steroid saponins are tetracyclic triterpenoids found in Siraitia grosvenorii. Squalene synthase (SQS and cycloartenol synthase (CAS are key enzymes in triterpenoid and steroid biosynthesis. In this study, full-length cDNAs of SgSQS and SgCAS were cloned by a rapid amplification of cDNA-ends with polymerase chain reaction (RACE-PCR approach. The SgSQS cDNA has a 1254 bp open reading frame (ORF encoding 417 amino acids, and the SgCAS cDNA contains a 2298 bp ORF encoding 765 amino acids. Bioinformatic analysis showed that the deduced SgSQS protein has two transmembrane regions in the C-terminal. Both SgSQS and SgCAS have significantly higher levels in fruits than in other tissues, suggesting that steroids and mogrosides are competitors for the same precursors in fruits. Combined in silico prediction and subcellular localization, experiments in tobacco indicated that SgSQS was probably in the cytoplasm or on the cytoskeleton, and SgCAS was likely located in the nucleus or cytosol. These results will provide a foundation for further study of SgSQS and SgCAS gene functions in S. grosvenorii, and may facilitate improvements in mogroside content in fruit by regulating gene expression.

  9. Characterisation of the tryptophan synthase alpha subunit in maize

    Directory of Open Access Journals (Sweden)

    Gierl Alfons

    2008-04-01

    Full Text Available Abstract Background In bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP by a tryptophan synthase αββα heterotetramer. Plants have evolved multiple α (TSA and β (TSB homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS complex in Arabidopsis. On the other hand maize (Zea mays expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB. Results In order to clarify, how tryptophan is synthesized in maize, two TSA homologs, hitherto uncharacterized ZmTSA and ZmTSAlike, were functionally analyzed. ZmTSA is localized in plastids, the major site of tryptophan biosynthesis in plants. It catalyzes the tryptophan synthase α-reaction (cleavage of IGP, and forms a tryptophan synthase complex with ZmTSB1 in vitro. The catalytic efficiency of the α-reaction is strongly enhanced upon complex formation. A 160 kD tryptophan synthase complex was partially purified from maize leaves and ZmTSA was identified as native α-subunit of this complex by mass spectrometry. ZmTSAlike, for which no in vitro activity was detected, is localized in the cytosol. ZmTSAlike, BX1, and IGL were not detectable in the native tryptophan synthase complex in leaves. Conclusion It was demonstrated in vivo and in vitro that maize forms a tryptophan synthase complex and ZmTSA functions as α-subunit in this complex.

  10. Accommodation of GDP-Linked Sugars in the Active Site of GDP-Perosamine Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Paul D.; Carney, Amanda E.; Holden, Hazel M. (UW)

    2009-01-12

    Perosamine (4-amino-4,6-dideoxy-d-mannose), or its N-acetylated form, is one of several dideoxy sugars found in the O-antigens of such infamous Gram-negative bacteria as Vibrio cholerae O1 and Escherichia coli O157:H7. It is added to the bacterial O-antigen via a nucleotide-linked version, namely GDP-perosamine. Three enzymes are required for the biosynthesis of GDP-perosamine starting from mannose 1-phosphate. The focus of this investigation is GDP-perosamine synthase from Caulobacter crescentus, which catalyzes the final step in GDP-perosamine synthesis, the conversion of GDP-4-keto-6-deoxymannose to GDP-perosamine. The enzyme is PLP-dependent and belongs to the aspartate aminotransferase superfamily. It contains the typically conserved active site lysine residue, which forms a Schiff base with the PLP cofactor. Two crystal structures were determined for this investigation: a site-directed mutant protein (K186A) complexed with GDP-perosamine and the wild-type enzyme complexed with an unnatural ligand, GDP-3-deoxyperosamine. These structures, determined to 1.6 and 1.7 {angstrom} resolution, respectively, revealed the manner in which products, and presumably substrates, are accommodated within the active site pocket of GDP-perosamine synthase. Additional kinetic analyses using both the natural and unnatural substrates revealed that the K{sub m} for the unnatural substrate was unperturbed relative to that of the natural substrate, but the k{sub cat} was lowered by a factor of approximately 200. Taken together, these studies shed light on why GDP-perosamine synthase functions as an aminotransferase whereas another very similar PLP-dependent enzyme, GDP-4-keto-6-deoxy-d-mannose 3-dehydratase or ColD, catalyzes a dehydration reaction using the same substrate.

  11. Lineage-Specific Expansion of the Chalcone Synthase Gene Family in Rosids.

    Directory of Open Access Journals (Sweden)

    Kattina Zavala

    Full Text Available Rosids are a monophyletic group that includes approximately 70,000 species in 140 families, and they are found in a variety of habitats and life forms. Many important crops such as fruit trees and legumes are rosids. The evolutionary success of this group may have been influenced by their ability to produce flavonoids, secondary metabolites that are synthetized through a branch of the phenylpropanoid pathway where chalcone synthase is a key enzyme. In this work, we studied the evolution of the chalcone synthase gene family in 12 species belonging to the rosid clade. Our results show that the last common ancestor of the rosid clade possessed six chalcone synthase gene lineages that were differentially retained during the evolutionary history of the group. In fact, of the six gene lineages that were present in the last common ancestor, 7 species retained 2 of them, whereas the other 5 only retained one gene lineage. We also show that one of the gene lineages was disproportionately expanded in species that belonged to the order Fabales (soybean, barrel medic and Lotus japonicas. Based on the available literature, we suggest that this gene lineage possesses stress-related biological functions (e.g., response to UV light, pathogen defense. We propose that the observed expansion of this clade was a result of a selective pressure to increase the amount of enzymes involved in the production of phenylpropanoid pathway-derived secondary metabolites, which is consistent with the hypothesis that suggested that lineage-specific expansions fuel plant adaptation.

  12. Light Robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    Light Robotics - Structure-Mediated Nanobiophotonics covers the latest means of sculpting of both light and matter for achieving bioprobing and manipulation at the smallest scales. The synergy between photonics, nanotechnology and biotechnology spans the rapidly growing field of nanobiophotonics...

  13. Twisted light

    CSIR Research Space (South Africa)

    Forbes, A

    2010-12-01

    Full Text Available Research at the Mathematical Optics Group uses "twisted" light to study new quatum-based information security systems. In order to understand the structure of "twisted" light, it is useful to start with an ordinary light beam with zero twist, namely...

  14. Public lighting.

    NARCIS (Netherlands)

    2011-01-01

    Visual perception is very important for road users and in the dark it can be facilitated by public lighting. Public lighting has a mostly positive road safety effect. Installing public lighting on roads that were previously unlit generally results in fewer and less serious crashes. This effect seems

  15. Bacillus caldolyticus prs gene encoding phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-1-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  16. Properties of peroxisomal and mitochondrial citrate synthase from Agave americana.

    Science.gov (United States)

    Segovia, J L; Zafra, M F; Alejandre, M J; García-Peregrín, E

    1982-09-01

    Adenine nucleotides were tested as effectors of peroxisomal and mitochondrial citrate synthase from Agave americana leaves in the presence of different concentrations of acetyl-CoA and oxalacetate substrates. ATP inhibited both enzyme activities but with a different inhibition profile. 1.0-7.5 mM ADP did not inhibit the peroxisomal citrate synthase in the presence of high substrate concentrations, while the mitochondrial enzyme was strongly inhibited by 1.0 mM ADP in the same conditions. Likewise, a different pattern was obtained with AMP on both peroxisomal and mitochondrial activities. The rate of citrate formation as function of acetyl-CoA and oxalacetate concentration was also studied in both fractions. Maximal velocity was highest in the peroxisomal fraction, whether acetyl-CoA or oxalacetate were the variable substrates. These differences indicate that peroxisomal and mitochondrial citrate synthases seem to be two different isoenzymes.

  17. Solubilization of microsomal-associated phosphatidylinositol synthase from germinating soybeans.

    Science.gov (United States)

    Robinson, M L; Carman, G M

    1982-01-01

    CDP-1,2-diacyl-sn-glycerol (CDP-diacylglycerol):myo-inositol phosphatidyltransferase (EC 2.7.8.11, phosphatidylinositol synthase) catalyzes the final step in the de novo synthesis of phosphatidylinositol in the endoplasmic reticulum fraction of germinating soybeans (Glycine max L. var Cutler 71). A variety of solubilization agents were examined for their ability to release phosphatidylinositol synthase activity from the microsome fraction. The most effective agent to solubilize the enzyme was the nonionic detergent Brij W-1. A 2.1-fold increase in specific activity was achieved using 1% Brij W-1 with 69% activity solubilized.Maximal solubilization of phosphatidylinositol synthase was completely dependent on Brij W-1 (1%), potassium ions (0.3 m), and manganese ions (0.5 mm). Solubilization of the enzyme was not affected by the protein concentration of microsomes between 3 to 20 milligrams per milliliter. Solubilization was not affected by the pH of solubilization buffer between 6.5 to 8.5. To our knowledge, this is the first phospholipid biosynthetic enzyme solubilized from plant membranes. The Brij W-1-solubilized phosphatidylinositol synthase remained at the top of a glycerol gradient, whereas the membrane-associated enzyme sedimented to the bottom of the gradient. Maximal activity of the Brij W-1-solubilized phosphatidylinositol synthase was dependent on manganese (5 mm) or magnesium (30 mm) ions, and Triton X-100 (3.6 mm) at pH 8.0 with Tris-HCl buffer. The apparent K(m) values for CDP-diacylglycerol and myo-inositol for the solubilized enzyme was 0.1 mm and 46 mum, respectively. Solubilized phosphatidylinositol synthase activity was thermally inactivated at temperatures above 30 degrees C.

  18. Exploiting the Biosynthetic Potential of Type III Polyketide Synthases

    Directory of Open Access Journals (Sweden)

    Yan Ping Lim

    2016-06-01

    Full Text Available Polyketides are structurally and functionally diverse secondary metabolites that are biosynthesized by polyketide synthases (PKSs using acyl-CoA precursors. Recent studies in the engineering and structural characterization of PKSs have facilitated the use of target enzymes as biocatalysts to produce novel functionally optimized polyketides. These compounds may serve as potential drug leads. This review summarizes the insights gained from research on type III PKSs, from the discovery of chalcone synthase in plants to novel PKSs in bacteria and fungi. To date, at least 15 families of type III PKSs have been characterized, highlighting the utility of PKSs in the development of natural product libraries for therapeutic development.

  19. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides

    OpenAIRE

    2010-01-01

    Previously melittin, the α-helical basic honey bee venom peptide, was shown to inhibit F1-ATPase by binding at the β-subunit DELSEED motif of F1Fo ATP synthase. Herein, we present the inhibitory effects of the basic α-helical amphibian antimicrobial peptides, ascaphin-8, aurein 2.2, aurein 2.3, carein 1.8, carein 1.9, citropin 1.1, dermaseptin, maculatin 1.1, maganin II, MRP, or XT-7, on purified F1 and membrane bound F1Fo E. coli ATP synthase. We found that the extent of inhibition by amphib...

  20. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    OpenAIRE

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control...

  1. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Andersen, Rune W.; Lo Leggio, Leila; Hove-Jensen, Bjarne

    2015-01-01

    The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg2+-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP...... PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate...

  2. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant i......NOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age...

  3. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    to be static, and no longer acts as a kind of spatial constancy maintaining stability and order? Moreover, what new potentials open in lighting design? This book is one of four books that is published in connection with the research project entitled LED Lighting; Interdisciplinary LED Lighting Research...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... the investigations of lighting scenarios carried out in two test installations: White Cube and White Box. The test installations are discussed as large-scale experiential instruments. In these test installations we examine what could potentially occur when light using LED technology is integrated and distributed...

  4. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial lighting ceases...

  5. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages.

    Science.gov (United States)

    Belkheir, Asma K; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents.

  6. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    Science.gov (United States)

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  7. An Unusual Chimeric Diterpene Synthase from Emericella variecolor and Its Functional Conversion into a Sesterterpene Synthase by Domain Swapping.

    Science.gov (United States)

    Qin, Bin; Matsuda, Yudai; Mori, Takahiro; Okada, Masahiro; Quan, Zhiyang; Mitsuhashi, Takaaki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-26

    Di- and sesterterpene synthases produce C20 and C25 isoprenoid scaffolds from geranylgeranyl pyrophosphate (GGPP) and geranylfarnesyl pyrophosphate (GFPP), respectively. By genome mining of the fungus Emericella variecolor, we identified a multitasking chimeric terpene synthase, EvVS, which has terpene cyclase (TC) and prenyltransferase (PT) domains. Heterologous gene expression in Aspergillus oryzae led to the isolation of variediene (1), a novel tricyclic diterpene hydrocarbon. Intriguingly, in vitro reaction with the enzyme afforded the new macrocyclic sesterterpene 2 as a minor product from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). The TC domain thus produces the diterpene 1 and the sesterterpene 2 from GGPP and GFPP, respectively. Notably, a domain swap of the PT domain of EvVS with that of another chimeric sesterterpene synthase, EvSS, successfully resulted in the production of 2 in vivo as well. Cyclization mechanisms for the production of these two compounds are proposed.

  8. The Remarkable Character of Porphobilinogen Synthase.

    Science.gov (United States)

    Jaffe, Eileen K

    2016-11-15

    Porphobilinogen synthase (PBGS), also known as 5-aminolevulinate dehydratase, is an essential enzyme in the biosynthesis of all tetrapyrroles, which function in respiration, photosynthesis, and methanogenesis. Throughout evolution, PBGS adapted to a diversity of cellular niches and evolved to use an unusual variety of metal ions both for catalytic function and to control protein multimerization. With regard to the active site, some PBGSs require Zn(2+); a subset of those, including human PBGS, contain a constellation of cysteine residues that acts as a sink for the environmental toxin Pb(2+). PBGSs that do not require the soft metal ion Zn(2+) at the active site instead are suspected of using the hard metal Mg(2+). The most unexpected property of the PBGS family of enzymes is a dissociative allosteric mechanism that utilizes an equilibrium of architecturally and functionally distinct protein assemblies. The high-activity assembly is an octamer in which intersubunit interactions modulate active-site lid motion. This octamer can dissociate to dimer, the dimer can undergo a hinge twist, and the twisted dimer can assemble to a low-activity hexamer. The hexamer does not have the intersubunit interactions required to stabilize a closed conformation of the active site lid. PBGS active site chemistry benefits from a closed lid because porphobilinogen biosynthesis includes Schiff base formation, which requires deprotonated lysine amino groups. N-terminal and C-terminal sequence extensions dictate whether a specific species of PBGS can sample the hexameric assembly. The bulk of species (nearly all except animals and yeasts) use Mg(2+) as an allosteric activator. Mg(2+) functions allosterically by binding to an intersubunit interface that is present in the octamer but absent in the hexamer. This conformational selection allosteric mechanism is purported to be essential to avoid the untimely accumulation of phototoxic chlorophyll precursors in plants. For those PBGSs that do

  9. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W. (UIUC); (Iowa State); (Penn)

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  10. Isolation and expression of the Pneumocystis carinii thymidylate synthase gene

    DEFF Research Database (Denmark)

    Edman, U; Edman, J C; Lundgren, B;

    1989-01-01

    The thymidylate synthase (TS) gene from Pneumocystis carinii has been isolated from complementary and genomic DNA libraries and expressed in Escherichia coli. The coding sequence of TS is 891 nucleotides, encoding a 297-amino acid protein of Mr 34,269. The deduced amino acid sequence is similar...

  11. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as the c

  12. Biosynthesis of polyketides by trans-AT polyketide synthases.

    Science.gov (United States)

    Piel, Jörn

    2010-07-01

    This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that have recently been recognized as one of the major group of proteins involved in the production of bioactive polyketides. 436 references are cited.

  13. Polyhydroyxalkanoate Synthase Fusions as a Strategy for Oriented Enzyme Immobilisation

    Directory of Open Access Journals (Sweden)

    David O. Hooks

    2014-06-01

    Full Text Available Polyhydroxyalkanoate (PHA is a carbon storage polymer produced by certain bacteria in unbalanced nutrient conditions. The PHA forms spherical inclusions surrounded by granule associate proteins including the PHA synthase (PhaC. Recently, the intracellular formation of PHA granules with covalently attached synthase from Ralstonia eutropha has been exploited as a novel strategy for oriented enzyme immobilisation. Fusing the enzyme of interest to PHA synthase results in a bifunctional protein able to produce PHA granules and immobilise the active enzyme of choice to the granule surface. Functionalised PHA granules can be isolated from the bacterial hosts, such as Escherichia coli, and maintain enzymatic activity in a wide variety of assay conditions. This approach to oriented enzyme immobilisation has produced higher enzyme activities and product levels than non-oriented immobilisation techniques such as protein inclusion based particles. Here, enzyme immobilisation via PHA synthase fusion is reviewed in terms of the genetic designs, the choices of enzymes, the control of enzyme orientations, as well as their current and potential applications.

  14. Functional Characterization of Sesquiterpene Synthase from Polygonum minus

    Directory of Open Access Journals (Sweden)

    Su-Fang Ee

    2014-01-01

    Full Text Available Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS has a complete open reading frame (ORF of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of β-sesquiphellandrene.

  15. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    Science.gov (United States)

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with reduced reagent usage, it allows further reduction in the use of radioactive isotopes and flammable organic solvents. The sesquiterpene synthases previously characterized were expressed in yeast, and the plant-derived Thapsia garganica kunzeaol synthase TgTPS2 was tested in this method. KM for TgTPS2 was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s−1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s−1 μM−1 for TgTPS2. The kinetic parameters were in agreement with previously published data. PMID:27721652

  16. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    NARCIS (Netherlands)

    Nina, Praveen Balabaskaran; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.; Eisen, Jonathan A.

    2010-01-01

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1) sector catalyzes ATP synthesis, whereas the F(o) sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1) and F(o) sectors are highl

  17. Absence of Pneumocystis dihydropteroate synthase mutants in Brittany, France.

    Science.gov (United States)

    Le Gal, Solène; Robert-Gangneux, Florence; Perrot, Maëla; Rouillé, Amélie; Virmaux, Michèle; Damiani, Céline; Totet, Anne; Gangneux, Jean-Pierre; Nevez, Gilles

    2013-05-01

    Archival Pneumocystis jirovecii specimens from 84 patients monitored at Rennes University Hospital (Rennes, France) were assayed at the dihydropteroate synthase (DHPS) locus. No patient was infected with mutants. The results provide additional data showing that P. jirovecii infections involving DHPS mutants do not represent a public health issue in Brittany, western France.

  18. Cloning and expression pattern of chitin synthase (CHS) gene in ...

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... African Journal of Biotechnology Vol. 9(33), pp. 5297-5308, 16 ... Chitin synthase (CHS) plays an important role in biosynthesis of chitin .... strand cDNA Synthesis kit, 5'/3' RACE kit and pMD18-T vector were purchased from ...

  19. Baking Light

    DEFF Research Database (Denmark)

    Tamke, Martin

    2005-01-01

    decisions. Display quality, comfortable navigation and realistic illumination are crucial ingredients here. Light is one of the principal elements in architectural design, so design reviews must enable the architect to judge the quality of his design in this respect. Realistic light simulations, e.g. via...... radiosity algorithms, are no longer the domain of high-end graphic workstations. Today’s off-the-shelf hardware and 3D-software provide the architect with high-quality tools to simulate physically correct light distributions. But the quality and impression of light is hard to judge by looking at still...... practical experiences with global-light-simulations. We share results which we think are helpful to others, and we highlight areas where further research is necessary....

  20. Lightness functions

    DEFF Research Database (Denmark)

    Campi, Stefano; Gardner, Richard; Gronchi, Paolo;

    2012-01-01

    Variants of the brightness function of a convex body K in n-dimensional Euclidean are investigated. The Lambertian lightness function L(K; v , w ) gives the total reflected light resulting from illumination by a light source at infinity in the direction w that is visible when looking...... in the direction v . The partial brightness function R( K ; v , w ) gives the area of the projection orthogonal to v of the portion of the surface of K that is both illuminated by a light source from the direction w and visible when looking in the direction v . A class of functions called lightness functions...... is introduced that includes L(K;.) and R(K;.) as special cases. Much of the theory of the brightness function like uniqueness, stability, and the existence and properties of convex bodies of maximal and minimal volume with finitely many function values equal to those of a given convex body, is extended...

  1. Baking Light

    DEFF Research Database (Denmark)

    Tamke, Martin

    2005-01-01

    decisions. Display quality, comfortable navigation and realistic illumination are crucial ingredients here. Light is one of the principal elements in architectural design, so design reviews must enable the architect to judge the quality of his design in this respect. Realistic light simulations, e.g. via...... radiosity algorithms, are no longer the domain of high-end graphic workstations. Today’s off-the-shelf hardware and 3D-software provide the architect with high-quality tools to simulate physically correct light distributions. But the quality and impression of light is hard to judge by looking at still...... practical experiences with global-light-simulations. We share results which we think are helpful to others, and we highlight areas where further research is necessary....

  2. Detailed characterization of the substrate specificity of mouse wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  3. Phytochelatin synthase: of a protease a peptide polymerase made.

    Science.gov (United States)

    Rea, Philip A

    2012-05-01

    Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes.

  4. Significance of nitric oxide synthases: Lessons from triple nitric oxide synthases null mice.

    Science.gov (United States)

    Tsutsui, Masato; Tanimoto, Akihide; Tamura, Masahito; Mukae, Hiroshi; Yanagihara, Nobuyuki; Shimokawa, Hiroaki; Otsuji, Yutaka

    2015-01-01

    Nitric oxide (NO) is synthesized by three distinct NO synthases (neuronal, inducible, and endothelial NOSs), all of which are expressed in almost all tissues and organs in humans. The regulatory roles of NOSs in vivo have been investigated in pharmacological studies with non-selective NOS inhibitors. However, the specificity of the inhibitors continues to be an issue of debate, and the authentic significance of NOSs is still poorly understood. To address this issue, we generated mice in which all three NOS genes are completely disrupted. The triple NOSs null mice exhibited cardiovascular abnormalities, including hypertension, arteriosclerosis, myocardial infarction, cardiac hypertrophy, diastolic heart failure, and reduced EDHF responses, with a shorter survival. The triple NOSs null mice also displayed metabolic abnormalities, including metabolic syndrome and high-fat diet-induced severe dyslipidemia. Furthermore, the triple NOSs null mice showed renal abnormalities (nephrogenic diabetes insipidus and pathological renal remodeling), lung abnormalities (accelerated pulmonary fibrosis), and bone abnormalities (increased bone mineral density and bone turnover). These results provide evidence that NOSs play pivotal roles in the pathogenesis of a wide variety of disorders. This review summarizes the latest knowledge on the significance of NOSs in vivo, based on lessons learned from experiments with our triple mutant model.

  5. Significance of nitric oxide synthases: Lessons from triple nitric oxide synthases null mice

    Directory of Open Access Journals (Sweden)

    Masato Tsutsui

    2015-01-01

    Full Text Available Nitric oxide (NO is synthesized by three distinct NO synthases (neuronal, inducible, and endothelial NOSs, all of which are expressed in almost all tissues and organs in humans. The regulatory roles of NOSs in vivo have been investigated in pharmacological studies with non-selective NOS inhibitors. However, the specificity of the inhibitors continues to be an issue of debate, and the authentic significance of NOSs is still poorly understood. To address this issue, we generated mice in which all three NOS genes are completely disrupted. The triple NOSs null mice exhibited cardiovascular abnormalities, including hypertension, arteriosclerosis, myocardial infarction, cardiac hypertrophy, diastolic heart failure, and reduced EDHF responses, with a shorter survival. The triple NOSs null mice also displayed metabolic abnormalities, including metabolic syndrome and high-fat diet-induced severe dyslipidemia. Furthermore, the triple NOSs null mice showed renal abnormalities (nephrogenic diabetes insipidus and pathological renal remodeling, lung abnormalities (accelerated pulmonary fibrosis, and bone abnormalities (increased bone mineral density and bone turnover. These results provide evidence that NOSs play pivotal roles in the pathogenesis of a wide variety of disorders. This review summarizes the latest knowledge on the significance of NOSs in vivo, based on lessons learned from experiments with our triple mutant model.

  6. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  7. Shaping light

    CSIR Research Space (South Africa)

    Forbes, A

    2010-01-01

    Full Text Available mirrors, a gain medium, and a means to excite the gain medium. Quest 6(3) 2010 11 The excited gain medium has what is called a population inversion (it contains more atoms in an excited state than at a lower energy state). Laser light... of what is known as coherence, a measure of how ?in-step? the emitted photons of light are. Coherent light can be made to interfere with itself, in a way that is similar to the way in which ripples on a pond interact. As a result, it is possible...

  8. Combination Light

    Science.gov (United States)

    1990-01-01

    The Rayovac TANDEM is an advanced technology combination work light and general purpose flashlight that incorporates several NASA technologies. The TANDEM functions as two lights in one. It features a long range spotlight and wide angle floodlight; simple one-hand electrical switching changes the beam from spot to flood. TANDEM developers made particular use of NASA's extensive research in ergonomics in the TANDEM's angled handle, convenient shape and different orientations. The shatterproof, water resistant plastic casing also draws on NASA technology, as does the shape and beam distance of the square diffused flood. TANDEM's heavy duty magnet that permits the light to be affixed to any metal object borrows from NASA research on rare earth magnets that combine strong magnetic capability with low cost. Developers used a NASA-developed ultrasonic welding technique in the light's interior.

  9. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture

    Science.gov (United States)

    2016-01-01

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D80DQFD and N218DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H218O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-2H2]FDP and (R)-[1-2H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were

  10. Carbon Monoxide Dehydrogenases and Acetyl-CoA Synthases: Light at the End of the Tunnel?

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Lindahl

    2002-02-19

    OAK-B135 Metalloenzymes seem to ''come of age'' when their structures are known at atomic resolution, spectroscopic and catalytic properties are basically understood, and genetic expression systems are available. Such foundations allow detailed mechanistic and spectroscopic properties to be probed and correlated to structure. The objective of this article is to summarize what is known about the title group of enzymes, and show that, to a large degree, they have come of age.

  11. Lighting Computer Programs in Lighting Technology

    OpenAIRE

    Ekren, Nazmi; Dursun, Bahtiyar; Ercan AYKUT

    2008-01-01

    It is well known that the computer in lighting technology is a vital component for lighting designers. Lighting computer programs are preferred in preparing architectural projects in lighting techniques, especially in lighting calculations. Lighting computer programs, which arise with the aim of helping lighting designers, gain more interest day by day. The most important property of lighting computer programs is the ability to enable the simulation of lighting projects without requiring any ...

  12. Sucrose Synthase Expression during Cold Acclimation in Wheat 1

    Science.gov (United States)

    Crespi, Martin D.; Zabaleta, Eduardo J.; Pontis, Horacio G.; Salerno, Graciela L.

    1991-01-01

    When wheat (Triticum aestivum) seedlings are exposed to a cold temperature (2-4°C) above 0°C, sucrose accumulates and sucrose synthase activity increases. The effect of a cold period on the level of sucrose synthase (SS) was investigated. Using antibodies against wheat germ SS, Western blots studies showed that the amount of the SS peptide increased during 14 days in the cold, when plants were moved from 23°C to 4°C. The level of SS diminished when plants were moved back to 23°C. Northern blots of poly(A)+ RNA, confirmed a five- to sixfold induction of SS in wheat leaves during cold acclimation. These results indicate that SS is involved in the plant response to a chilling stress. ImagesFigure 1Figure 2Figure 3 PMID:16668270

  13. In vitro biochemical characterization of all barley endosperm starch synthases

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian;

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS...... classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes....... Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results...

  14. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    DEFF Research Database (Denmark)

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with ...... was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s-1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s-1 μM-1 for TgTPS2. The kinetic parameters were in agreement with previously published data....

  15. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.

  16. Dihydrodipicolinate synthase in opaque and floury maize mutants

    NARCIS (Netherlands)

    Varisi, V.A.; Medici, L.O.; Meer, van der I.M.; Lea, P.J.; Azevedo, J.L.

    2007-01-01

    Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) was isolated and studied in four high-lysine maize mutants (Oh43o1, Oh43o2, Oh43fl1 and Oh43fl2). The activity of DHDPS was analyzed at 16, 20, and 24 DAP and characterized in the presence of the amino acids, lysine, S-(2-aminoethyl)-l-cysteine (AEC)

  17. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    expression analysis and proteomics have pointed to abnormalities in mitochondrial oxidative phosphorylation and cellular stress in muscle of type 2 diabetic subjects, and recent work suggests that impaired mitochondrial activity is another early defect in the pathogenesis of type 2 diabetes. This review...... will discuss the latest advances in the understanding of the molecular mechanisms underlying insulin resistance in human skeletal muscle in type 2 diabetes with focus on possible links between impaired glycogen synthase activity and mitochondrial dysfunction....

  18. Structure and Mechanistic Implications of a Tryptophan Synthase Quinonoid Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Barends,T.; Domratcheva, T.; Kulik, V.; Blumenstein, L.; Niks, D.; Dunn, M.; Schlichting, I.

    2008-01-01

    Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Whereas structures of other PLP-bound reaction intermediates have been determined, a high-quality structure of a quinonoid species has not been reported. We present the crystal structure of the indoline quinonoid intermediate of tryptophan synthase (see figure) and discuss its implications for the enzymatic mechanism and allosteric regulation.

  19. Reduced Expression of Lipoic Acid Synthase Accelerates Diabetic Nephropathy

    OpenAIRE

    Yi, Xianwen; Xu, Longquan; Hiller, Sylvia; Kim, Hyung-Suk; Nickeleit, Volker; James, Leighton R; Maeda, Nobuyo

    2011-01-01

    Oxidative stress contributes to the pathogenesis of diabetic nephropathy. In mitochondria, lipoic acid synthase produces α-lipoic acid, an antioxidant and an essential cofactor in α-ketoacid dehydrogenase complexes, which participate in glucose oxidation and ATP generation. Administration of lipoic acid abrogates diabetic nephropathy in animal models, but whether lower production of endogenous lipoic acid promotes diabetic nephropathy is unknown. Here, we crossed mice heterozygous for lipoic ...

  20. The cellulose synthase superfamily in fully sequenced plants and algae

    Directory of Open Access Journals (Sweden)

    Xu Ying

    2009-07-01

    Full Text Available Abstract Background The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl families and one cellulose synthase (CesA family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ, providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome. Conclusion Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants.

  1. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders.

    Science.gov (United States)

    Koeberle, Andreas; Werz, Oliver

    2015-11-01

    Prostaglandin (PG)E2 encompasses crucial roles in pain, fever, inflammation and diseases with inflammatory component, such as cancer, but is also essential for gastric, renal, cardiovascular and immune homeostasis. Cyclooxygenases (COX) convert arachidonic acid to the intermediate PGH2 which is isomerized to PGE2 by at least three different PGE2 synthases. Inhibitors of COX - non-steroidal anti-inflammatory drugs (NSAIDs) - are currently the only available therapeutics that target PGE2 biosynthesis. Due to adverse effects of COX inhibitors on the cardiovascular system (COX-2-selective), stomach and kidney (COX-1/2-unselective), novel pharmacological strategies are in demand. The inducible microsomal PGE2 synthase (mPGES)-1 is considered mainly responsible for the excessive PGE2 synthesis during inflammation and was suggested as promising drug target for suppressing PGE2 biosynthesis. However, 15 years after intensive research on the biology and pharmacology of mPGES-1, the therapeutic value of mPGES-1 as drug target is still vague and mPGES-1 inhibitors did not enter the market so far. This commentary will first shed light on the structure, mechanism and regulation of mPGES-1 and will then discuss its biological function and the consequence of its inhibition for the dynamic network of eicosanoids. Moreover, we (i) present current strategies for interfering with mPGES-1-mediated PGE2 synthesis, (ii) summarize bioanalytical approaches for mPGES-1 drug discovery and (iii) describe preclinical test systems for the characterization of mPGES-1 inhibitors. The pharmacological potential of selective mPGES-1 inhibitor classes as well as dual mPGES-1/5-lipoxygenase inhibitors is reviewed and pitfalls in their development, including species discrepancies and loss of in vivo activity, are discussed.

  2. Evaluating the Effect of Expressing a Peanut Resveratrol Synthase Gene in Rice.

    Directory of Open Access Journals (Sweden)

    Shigang Zheng

    Full Text Available Resveratrol (Res is a type of natural plant stilbenes and phytoalexins that only exists in a few plant species. Studies have shown that the Res could be biosynthesized and accumulated within plants, once the complete metabolic pathway and related enzymes, such as the key enzyme resveratrol synthase (RS, existed. In this study, a RS gene named PNRS1 was cloned from the peanut, and the activity was confirmed in E. coli. Using transgenic approach, the PNRS1 transgenic rice was obtained. In T3 generation, the Res production and accumulation were further detected by HPLC. Our data revealed that compared to the wild type rice which trans-resveratrol was undetectable, in transgenic rice, the trans-resveratrol could be synthesized and achieved up to 0.697 μg/g FW in seedlings and 3.053 μg/g DW in seeds. Furthermore, the concentration of trans-resveratrol in transgenic rice seedlings could be induced up to eight or four-fold higher by ultraviolet (UV-C or dark, respectively. Simultaneously, the endogenous increased of Res also showed the advantages in protecting the host plant from UV-C caused damage or dark-induced senescence. Our data indicated that Res was involved in host-defense responses against environmental stresses in transgenic rice. Here the results describes the processes of a peanut resveratrol synthase gene transformed into rice, and the detection of trans-resveratrol in transgenic rice, and the role of trans-resveratrol as a phytoalexin in transgenic rice when treated by UV-C and dark. These findings present new outcomes of transgenic approaches for functional genes and their corresponding physiological functions, and shed some light on broadening available resources of Res, nutritional improvement of crops, and new variety cultivation by genetic engineering.

  3. Automating gene library synthesis by structure-based combinatorial protein engineering: examples from plant sesquiterpene synthases.

    Science.gov (United States)

    Dokarry, Melissa; Laurendon, Caroline; O'Maille, Paul E

    2012-01-01

    Structure-based combinatorial protein engineering (SCOPE) is a homology-independent recombination method to create multiple crossover gene libraries by assembling defined combinations of structural elements ranging from single mutations to domains of protein structure. SCOPE was originally inspired by DNA shuffling, which mimics recombination during meiosis, where mutations from parental genes are "shuffled" to create novel combinations in the resulting progeny. DNA shuffling utilizes sequence identity between parental genes to mediate template-switching events (the annealing and extension of one parental gene fragment on another) in PCR reassembly reactions to generate crossovers and hence recombination between parental genes. In light of the conservation of protein structure and degeneracy of sequence, SCOPE was developed to enable the "shuffling" of distantly related genes with no requirement for sequence identity. The central principle involves the use of oligonucleotides to encode for crossover regions to choreograph template-switching events during PCR assembly of gene fragments to create chimeric genes. This approach was initially developed to create libraries of hybrid DNA polymerases from distantly related parents, and later developed to create a combinatorial mutant library of sesquiterpene synthases to explore the catalytic landscapes underlying the functional divergence of related enzymes. This chapter presents a simplified protocol of SCOPE that can be integrated with different mutagenesis techniques and is suitable for automation by liquid-handling robots. Two examples are presented to illustrate the application of SCOPE to create gene libraries using plant sesquiterpene synthases as the model system. In the first example, we outline how to create an active-site library as a series of complex mixtures of diverse mutants. In the second example, we outline how to create a focused library as an array of individual clones to distil minimal combinations of

  4. Protective effect of inducible nitric oxide synthase inhibitor on pancreas transplantation in rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the effect of inducible nitric oxide synthase inhibitor, aminoguanidine, on pancreas transplantation in rats.METHODS: A model of pancreas transplantation was established in rats. Streptozotocin-induced diabetic male Wistar rats were randomly assigned to sham-operation control group (n = 6), transplant control group (n=6), and aminoguanidine (AG) treatment group (n=18). In the AG group, aminoguanidine was added to intravascular infusion as the onset of reperfusion at the dose of 60 mg/kg, 80 mg/kg, 100 mg/kg body weight,respectively. Serum nitric oxide (NO) level, blood sugar and amylase activity were detected. Nitric oxide synthase (NOS) test kit was used to detect the pancreas cNOS and inducible NOS (iNOS) activity. Pancreas sections stained with HE and immunohistochemistry were evaluated under a light microscope.RESULTS: As compared with the transplant control group, the serum NO level and amylase activity decreased obviously and the evidence for pancreas injury was much less in the AG group. The AG (80 mg/kg body weight) group showed the most significant difference in NO and amylase (NO: 66.0 ± 16.6 vs 192.3 ± 60.0, P <0.01 and amylase: 1426 ± 177 vs 4477 ± 630, P<0.01).The expression and activity of tissue iNOS, and blood sugar in the AG (80 mg/kg body weight) group were much lower than those in the transplant control group (iNOS: 2.01 ± 0.23 vs 26.59 ± 5.78, P < 0.01 and blood sugar: 14.2 ± 0.9 vs 16.8 ± 1.1, P < 0.01).CONCLUSION: Selective iNOS inhibitor, aminoguanidine as a free radical, has a protective effect on pancreas transplantation in rats by inhibiting NO and reducing its toxicity.

  5. Lighting and public health.

    NARCIS (Netherlands)

    Ierland, J. van & Schreuder, D.A.

    1969-01-01

    The following topics; are discussed with respect to public health: - the effect of visible and ultraviolet radiation upon man. - vision with respect to lighting. interior lighting. - artificial lighting of work environments. - day light and windows. - recommendations for lighting. public lighting. -

  6. From bacterial to human dihydrouridine synthase: automated structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Fiona, E-mail: fiona.whelan@york.ac.uk; Jenkins, Huw T., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Griffiths, Samuel C. [University of Oxford, Headington, Oxford OX3 7BN (United Kingdom); Byrne, Robert T. [Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich (Germany); Dodson, Eleanor J.; Antson, Alfred A., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-06-30

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.

  7. Mechanism of Action and Inhibition of dehydrosqualene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    F Lin; C Liu; Y Liu; Y Zhang; K Wang; W Jeng; T Ko; R Cao; A Wang; E Oldfield

    2011-12-31

    'Head-to-head' terpene synthases catalyze the first committed steps in sterol and carotenoid biosynthesis: the condensation of two isoprenoid diphosphates to form cyclopropylcarbinyl diphosphates, followed by ring opening. Here, we report the structures of Staphylococcus aureus dehydrosqualene synthase (CrtM) complexed with its reaction intermediate, presqualene diphosphate (PSPP), the dehydrosqualene (DHS) product, as well as a series of inhibitors. The results indicate that, on initial diphosphate loss, the primary carbocation so formed bends down into the interior of the protein to react with C2,3 double bond in the prenyl acceptor to form PSPP, with the lower two-thirds of both PSPP chains occupying essentially the same positions as found in the two farnesyl chains in the substrates. The second-half reaction is then initiated by the PSPP diphosphate returning back to the Mg{sup 2+} cluster for ionization, with the resultant DHS so formed being trapped in a surface pocket. This mechanism is supported by the observation that cationic inhibitors (of interest as antiinfectives) bind with their positive charge located in the same region as the cyclopropyl carbinyl group; that S-thiolo-diphosphates only inhibit when in the allylic site; activity results on 11 mutants show that both DXXXD conserved domains are essential for PSPP ionization; and the observation that head-to-tail isoprenoid synthases as well as terpene cyclases have ionization and alkene-donor sites which spatially overlap those found in CrtM.

  8. Rotation and structure of FoF1-ATP synthase.

    Science.gov (United States)

    Okuno, Daichi; Iino, Ryota; Noji, Hiroyuki

    2011-06-01

    F(o)F(1)-ATP synthase is one of the most ubiquitous enzymes; it is found widely in the biological world, including the plasma membrane of bacteria, inner membrane of mitochondria and thylakoid membrane of chloroplasts. However, this enzyme has a unique mechanism of action: it is composed of two mechanical rotary motors, each driven by ATP hydrolysis or proton flux down the membrane potential of protons. The two molecular motors interconvert the chemical energy of ATP hydrolysis and proton electrochemical potential via the mechanical rotation of the rotary shaft. This unique energy transmission mechanism is not found in other biological systems. Although there are other similar man-made systems like hydroelectric generators, F(o)F(1)-ATP synthase operates on the nanometre scale and works with extremely high efficiency. Therefore, this enzyme has attracted significant attention in a wide variety of fields from bioenergetics and biophysics to chemistry, physics and nanoscience. This review summarizes the latest findings about the two motors of F(o)F(1)-ATP synthase as well as a brief historical background.

  9. The pseudouridine synthases: revisiting a mechanism that seemed settled.

    Science.gov (United States)

    Spedaliere, Christopher J; Ginter, Joy M; Johnston, Murray V; Mueller, Eugene G

    2004-10-13

    RNA containing 5-fluorouridine, [f 5U]RNA, has been used as a mechanistic probe for the pseudouridine synthases, which convert uridine in RNA to its C-glycoside isomer, pseudouridine. Hydrated products of f 5U were attributed to ester hydrolysis of a covalent complex between an essential aspartic acid residue and f 5U, and the results were construed as strong support for a mechanism involving Michael addition by the aspartic acid residue. Labeling studies with [18O]water are now reported that rule out such ester hydrolysis in one pseudouridine synthase, TruB. The aspartic acid residue does not become labeled, and the hydroxyl group in the hydrated product of f 5U derives directly from solvent. The hydrated product, therefore, cannot be construed to support Michael addition during the conversion of uridine to pseudouridine, but the results do not rule out such a mechanism. A hypothesis is offered for the seemingly disparate behavior of different pseudouridine synthases toward [f 5U]RNA.

  10. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    Science.gov (United States)

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases.

  11. Phytochelatin synthase activity as a marker of metal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Zitka, Ondrej; Krystofova, Olga; Sobrova, Pavlina [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Adam, Vojtech [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Zehnalek, Josef; Beklova, Miroslava [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kizek, Rene, E-mail: kizek@sci.muni.cz [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic)

    2011-08-30

    Highlights: {yields} New tool for determination of phytochelatin synthase activity. {yields} The optimization of experimental condition for determination of the enzyme activity. {yields} First evaluation of K{sub m} for the enzyme. {yields} The effects of cadmium (II) not only on the activity of the enzyme but also on K{sub m}. -- Abstract: The synthesis of phytochelatins is catalyzed by {gamma}-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO{sub 3}){sub 2} for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35 {sup o}C for 30 min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270 fkat) in treated cells was more than seven times higher in comparison to control ones. K{sub m} for PCS was estimated as 2.3 mM.

  12. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance

    Science.gov (United States)

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles. PMID:27462341

  13. Phosphatidate phosphatase regulates membrane phospholipid synthesis via phosphatidylserine synthase.

    Science.gov (United States)

    Carman, George M; Han, Gil-Soo

    2017-08-16

    The yeast Saccharomyces cerevisiae serves as a model eukaryote to elucidate the regulation of lipid metabolism. In exponentially growing yeast, a diverse set of membrane lipids are synthesized from the precursor phosphatidate via the liponucleotide intermediate CDP-diacylglycerol. As cells exhaust nutrients and progress into the stationary phase, phosphatidate is channeled via diacylglycerol to the synthesis of triacylglycerol. The CHO1-encoded phosphatidylserine synthase, which catalyzes the committed step in membrane phospholipid synthesis via CDP-diacylglycerol, and the PAH1-encoded phosphatidate phosphatase, which catalyzes the committed step in triacylglycerol synthesis are regulated throughout cell growth by genetic and biochemical mechanisms to control the balanced synthesis of membrane phospholipids and triacylglycerol. The loss of phosphatidate phosphatase activity (e.g., pah1Δ mutation) increases the level of phosphatidate and its conversion to membrane phospholipids by inducing Cho1 expression and phosphatidylserine synthase activity. The regulation of the CHO1 expression is mediated through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. Consequently, phosphatidate phosphatase activity regulates phospholipid synthesis through the transcriptional regulation of the phosphatidylserine synthase enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The structural basis of Erwinia rhapontici isomaltulose synthase.

    Science.gov (United States)

    Xu, Zheng; Li, Sha; Li, Jie; Li, Yan; Feng, Xiaohai; Wang, Renxiao; Xu, Hong; Zhou, Jiahai

    2013-01-01

    Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonasmesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop(330-339) in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations.

  15. Multi-substrate terpene synthases: their occurrence and physiological significance

    Directory of Open Access Journals (Sweden)

    Leila Pazouki

    2016-07-01

    Full Text Available Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15, and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5, mono- (C10 and diterpenes (C20. Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles.

  16. Site-directed mutagenesis of bacterial cellulose synthase highlights sulfur–arene interaction as key to catalysis

    OpenAIRE

    Sun, Shi-jing; Horikawa, Yoshiki; Wada, Masahisa; SUGIYAMA, Junji; Imai, Tomoya

    2016-01-01

    Cellulose is one of the most abundant biological polymers on Earth, and is synthesized by the cellulose synthase complex in cell membranes. Although many cellulose synthase genes have been identified over the past 25 years, functional studies of cellulose synthase using recombinant proteins have rarely been conducted. In this study, we conducted a functional analysis of cellulose synthase with site-directed mutagenesis, by using recombinant cellulose synthase reconstituted in living Escherich...

  17. Lighting Design

    DEFF Research Database (Denmark)

    Hansen, Ellen Kathrine; Mullins, Michael

    2014-01-01

    Light as a multi-dimensional design element has fundamental importance for a sustainable environment. The paper discusses the need for an integration of scientific, technical and creative approaches to light and presents theory, methods and applications toward fulfilling this need. A theory...... of design developed from three experiments show how distinct qualitative and quantitative criteria in different disciplinary traditions can be integrated successfully, despite disparate technical/scientific, social scientific and art/humanities backgrounds. The model is applied to a pedagogical curriculum...

  18. Lighting Design

    DEFF Research Database (Denmark)

    Hansen, Ellen Kathrine; Mullins, Michael

    2014-01-01

    of design developed from three experiments show how distinct qualitative and quantitative criteria in different disciplinary traditions can be integrated successfully, despite disparate technical/scientific, social scientific and art/humanities backgrounds. The model is applied to a pedagogical curriculum......Light as a multi-dimensional design element has fundamental importance for a sustainable environment. The paper discusses the need for an integration of scientific, technical and creative approaches to light and presents theory, methods and applications toward fulfilling this need. A theory...

  19. Calculus light

    CERN Document Server

    Friedman, Menahem

    2011-01-01

    Another Calculus book? As long as students find calculus scary, the failure rate in mathematics is higher than in all other subjects, and as long as most people mistakenly believe that only geniuses can learn and understand mathematics, there will always be room for a new book of Calculus. We call it Calculus Light. This book is designed for a one semester course in ""light"" calculus -- mostly single variable, meant to be used by undergraduate students without a wide mathematical background and who do not major in mathematics but study subjects such as engineering, biology or management infor

  20. Expression of the Inducible Nitric Oxide Synthase Isoform in Chorionic Villi in the Early Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the relationship between inducible nitric oxide synthase (iNOS) and the early spontaneous abortion. , in situ hybridization and immunohistochemistry were used to detect the expression of iNOS in trophoblasts in the early pregnancy with and without spontaneous abortion (group Ⅰ and group Ⅱ ). By light microscopy and computer color magic image analysis system (CMIAS), light density (D) and the positive cell number per statistic square (N/S) in situ hybridization were used to analyze the positive cell index, while total positive cells (N) and the positive unit (Pu) were used in immunohistochemistry. By in situ hybridization, D and N/S in trophoblasts were 0. 35±0. 028, 0. 07±0. 011 respectively in group Ⅰ and 0. 18±0. 016,0. 015±0. 003 in group Ⅱ . In terms of immunohistochemical staining, N and Pu were 0. 058±±0. 007, 11. 94±2. 01 in group Ⅰ and 0. 013±0. 009, 1. 08±0. 35 in group Ⅱ in trophoblasts. Significant differences existed between two groups. It is concluded that the higher nitric oxide produced by the higher expression of iNOS in trophoblasts might play an important role in the early spontaneous abortion.

  1. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues.

    Directory of Open Access Journals (Sweden)

    Hyun Jo Koo

    Full Text Available The essential oils of ginger (Zingiber officinale and turmeric (Curcuma longa contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+-germacrene D synthase and (S-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (--caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+-α-turmerone and (+-β-turmerone, are produced from (--α-zingiberene and (--β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase.

  2. Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases.

    Science.gov (United States)

    Shibuya, M; Zhang, H; Endo, A; Shishikura, K; Kushiro, T; Ebizuka, Y

    1999-11-01

    Two new triterpene synthase cDNAs, named as OEW and TRW, were cloned from olive leaves (Olea europaea) and from dandelion roots (Taraxacum officinale), respectively, by the PCR method with primers designed from the conserved sequences found in the known oxidosqualene cyclases. Their ORFs consisted of 2274 bp nucleotides and coded for 758 amino acid long polypeptides. They shared high sequence identity (78%) to each other, while they showed only about 60% identities to the known triterpene synthases LUPI (lupeol synthase clone from Arabidopsis thaliana) and PNY (beta-amyrin synthase clone from Panax ginseng) at amino acid level. To determine the enzyme functions of the translates, they were expressed in an ERG7 deficient yeast mutant. Accumulation of lupeol in the cells of yeast transformants proved both of these clones code for lupeol synthase proteins. An EST (expression sequence tag) clone isolated from Medicago truncatula roots as a homologue of cycloartenol synthase gene, exhibits high sequence identity (75-77%) to these two lupeol synthase cDNAs, suggesting it to be another lupeol synthase clone. Comparatively low identity (approximately 57%) of LUP1 from Arabidopsis thaliana to either one of these clones leaves LUP1 as a distinct clone among lupeol synthases. From these sequence comparisons, now we propose that two branches of lupeol synthase gene have been generated in higher plants during the course of evolution.

  3. Structure of the human beta-ketoacyl [ACP] synthase from the mitochondrial type II fatty acid synthase

    DEFF Research Database (Denmark)

    Christensen, Caspar Elo; Kragelund, Birthe Brandt; Von Wettstein-Knowles, Penny

    2007-01-01

    Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual...... activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high...... degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic...

  4. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes.

    Science.gov (United States)

    Welsch, Ralf; Wüst, Florian; Bär, Cornelia; Al-Babili, Salim; Beyer, Peter

    2008-05-01

    We here report on the characterization of a novel third phytoene synthase gene (PSY) in rice (Oryza sativa), OsPSY3, and on the differences among all three PSY genes with respect to the tissue-specific expression and regulation upon various environmental stimuli. The two already known PSYs are under phytochrome control and involved in carotenoid biosynthesis in photosynthetically active tissues and exhibit different expression patterns during chloroplast development. In contrast, OsPSY3 transcript levels are not affected by light and show almost no tissue-specific differences. Rather, OsPSY3 transcripts are up-regulated during increased abscisic acid (ABA) formation upon salt treatment and drought, especially in roots. The simultaneous induction of genes encoding 9-cis-epoxycarotenoid dioxygenases (NCEDs), involved in the initial steps of ABA biosynthesis, indicate that decreased xanthophyll levels are compensated by the induction of the third PSY gene. Furthermore, OsPSY3 and the OsNCEDs investigated were also induced by the application of ABA, indicating positive feedback regulation. The regulatory differences are mirrored by cis-acting elements in the corresponding promoter regions, with light-responsive elements for OsPSY1 and OsPSY2 and an ABA-response element as well as a coupling element for OsPSY3. The investigation of the gene structures and 5' untranslated regions revealed that OsPSY1 represents a descendant of an ancient PSY gene present in the common ancestor of monocots and dicots. Since the genomic structures of OsPSY2 and OsPSY3 are comparable, we conclude that they originated from the most recent common ancestor, OsPSY1.

  5. Green lights

    DEFF Research Database (Denmark)

    Fisker, Peter Kielberg

    This study investigates the effect of drought on economic activity globally using remote sensing data. In particular, predicted variation in greenness is correlated with changes in the density of artificial light observed at night on a grid of 0.25 degree latitude-longitude pixels. I define drought...

  6. Role of neuronal nitric oxide synthase and inducible nitric oxide synthase in intestinal injury in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Hui LU; Bing Zhu; Xin-Dong Xue

    2006-01-01

    AIM: To investigate the dynamic change and role of neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) in neonatal rat with intestinal injury and to define whether necrotizing enterocolitis (NEC) is associated with the levels of nitric oxide synthase (NOS) in the mucosa of the affected intestine tissue.METHODS: Wistar rats less than 24 h in age received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileum tissues were collected at 1, 3, 6, 12 and 24 h following LPS challenge for histological evaluation of NEC and for measurements of nNOS and iNOS. The correlation between the degree of intestinal injury and levels of NOS was determined.RESULTS: The LPS-injected pups showed a significant increase in injury scores versus the control. The expression of nNOS protein and mRNA was diminished after LPS injection. There was a negative significant correlation between the nNOS protein and the grade of median intestinal injury within 24 h. The expression of iNOS protein and mRNA was significantly increased in the peak of intestinal injury.CONCLUSION: nNOS and iNOS play different roles in LPS-induced intestinal injury. Caution should be exerted concerning potential therapeutic uses of NOS inhibitors in NEC.

  7. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase

    OpenAIRE

    Bunney, Tom D.; van Walraven, Hendrika S.; de Boer, Albertus H.

    2001-01-01

    Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our und...

  8. Structure and Mechanism of the Diterpene Cyclase ent-Copalyl Diphosphate Synthase

    Science.gov (United States)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-01-01

    The structure of ent-copalyl diphosphate synthase (CPS) reveals three α-helical domains (α, β, γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in CPS but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions. PMID:21602811

  9. Light Sources and Lighting Circuits

    Science.gov (United States)

    Honda, Hisashi; Suwa, Takumi; Yasuda, Takeo; Ohtani, Yoshihiko; Maehara, Akiyoshi; Okada, Atsunori; Komatsu, Naoki; Mannami, Tomoaki

    According to the Machinery Statistics of the Ministry of Economy, Trade and Industry, the production of incandescent lamps in Japan in 2007 was 990 million units (90.0% of the previous year's total), in which the production of incandescent lamps for general lighting was 110 million units (90.0% of the previous year's total) and of tungsten-halogen lamps was 44 million units (96.6% of the previous year's total). The production of fluorescent lamps was 927 million units (93.9% of the previous year's total), in which general fluorescent lamps, excluding those for LCD back lighting, was 320 million units (87.2% of the previous year's total). Also, the production of HID lamps was 10 million units (101.5% of the previous year's total). On the other hand, when the numbers of sales are compared with the sales of the previous year, incandescent lamps for general use was 99.8%, tungsten-halogen lamps was 96.9%, fluorescent lamps was 95.9%, and HID lamps was 98.9%. Self-ballasted fluorescent lamps alone showed an increase in sales as strong as 29 million units, or 121.7% of the previous year's sales. It is considered that the switchover of incandescent lamps to HID lamps was promoted for energy conservation and carbon dioxide reduction with the problem of global warming in the background. In regard to exhibitions, Lighting Fair 2007 was held in Tokyo in March, and LIGHTFAIR INTERNATIONAL 2007 was held in New York in May. Regarding academic conferences, LS:11 (the 11th International Symposium on the Science & Technology of Light Sources) was held in Shanghai in May, and the First International Conference on White LEDs and Solid State Lighting was held in Tokyo in November. Both conferences suggested that there are strong needs and concerns now about energy conservation, saving natural resources, and restrictions of hazardous materials. In regard to incandescent lamps, the development of products aiming at higher efficacy, electric power savings, and longer life was advanced by

  10. EDITORIAL: Controlling light with light

    Science.gov (United States)

    Hesselink, Lambertus; Feinberg, Jack; Roosen, Gerald

    2008-11-01

    The field of photorefractive physics and optics is mature and, although there is no significant commercial activity using photorefractive media, researchers in the field have had an extraordinary impact on many related areas of research and development. For example, in the late 1990s many of the telecom innovations and products were based on the interaction between light and matter. Examples include optical switches, filters, gratings, routers and light sources. The theory of multiple interacting beams of light inside a photosensitive medium, many of which were developed or further explored in photorefractive media, has found application in medicine, engineering, communication systems, displays and other photonics devices. On the occasions of the 30th anniversary of the theory of coupled wave analysis and the 10th anniversary of the meetings on Photorefractive Effects and Devices, it seemed appropriate to the meeting organizers of PR'07 to broaden the scope to include other related fields. The name of the meeting was changed to Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More to attract a larger audience than traditionally would attend the more narrowly focused photorefractive meeting. To further disseminate the results of the 2007 meeting, Gerald Roosen proposed a special publication of original full research articles arising from key presentations at the meeting. The selection of papers in this Cluster Issue of Journal of Physics D: Applied Physics is the result of that initiative. We would like to thank all the authors for their contributions, the committee members for their valuable insight and efforts in helping to organize the meeting, and the Optical Society of America for their professional assistance throughout the preparation period of the meeting as well as during the three beautiful days in Lake Tahoe, CA.

  11. Stabilization and enhanced reactivity of actinorhodin polyketide synthase minimal complex in polymer-nucleotide coacervate droplets.

    Science.gov (United States)

    Crosby, John; Treadwell, Tom; Hammerton, Michelle; Vasilakis, Konstantinos; Crump, Matthew P; Williams, David S; Mann, Stephen

    2012-12-18

    Compartmentalization of the minimal complex of actinorhodin polyketide synthase in coacervate liquid droplets produces enhanced yields of shunt polyketides under conditions of low and high ionic strength.

  12. Fatty acid synthase inhibitors isolated from Punica granatum L

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, He-Zhong [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, (China); Ma, Qing-Yun; Liang, Wen-Juan; Huang, Sheng-Zhuo; Dai, Hao-Fu; Wang, Peng-Cheng; Zhao, You-Xing, E-mail: zhaoyx1011@163.com [Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou (China); Fan, Hui-Jin; Ma, Xiao-Feng, E-mail: maxiaofeng@gucas.ac.cn [College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing (China)

    2012-05-15

    The aim of this work is the isolation of fatty acid synthase (FAS) inhibitors from the ethyl acetate extracts of fruit peels of Punica granatum L. Bioassay-guided chemical investigation of the fruit peels resulted in the isolation of seventeen compounds mainly including triterpenoids and phenolic compounds, from which one new oleanane-type triterpene (punicaone) along with fourteen known compounds were isolated for the first time from this plant. Seven isolates were evaluated for inhibitory activities of FAS and two compounds showed to be active. Particularly, flavogallonic acid exhibited strong FAS inhibitory activity with IC{sub 50} value of 10.3 {mu}mol L{sup -1}. (author)

  13. CTP limitation increases expression of CTP synthase in Lactococcus lactis

    DEFF Research Database (Denmark)

    Jørgensen, C.M.; Hammer, Karin; Martinussen, Jan

    2003-01-01

    for regulation of the pyrG gene. It is possible to fold the pyrG leader in an alternative structure that would prevent the formation of the terminator. We suggest a model for pyrG regulation in L. lactis, and probably in other gram-positive bacteria as well, in which pyrG expression is directly dependent...... on the CTP concentration through an attenuator mechanism. At normal CTP concentrations a terminator is preferentially formed in the pyrG leader, thereby reducing expression of CTP synthase. At low CTP concentrations the RNA polymerase pauses at a stretch of C residues in the pyrG leader, thereby allowing...

  14. Structures of citrate synthase and malate dehydrogenase of Mycobacterium tuberculosis.

    Science.gov (United States)

    Ferraris, Davide M; Spallek, Ralf; Oehlmann, Wulf; Singh, Mahavir; Rizzi, Menico

    2015-02-01

    The tricarboxylic acid (TCA) cycle is a central metabolic pathway of all aerobic organisms and is responsible for the synthesis of many important precursors and molecules. TCA cycle plays a key role in the metabolism of Mycobacterium tuberculosis and is involved in the adaptation process of the bacteria to the host immune response. We present here the first crystal structures of M. tuberculosis malate dehydrogenase and citrate synthase, two consecutive enzymes of the TCA, at 2.6 Å and 1.5 Å resolution, respectively. General analogies and local differences with the previously reported homologous protein structures are described. © 2014 Wiley Periodicals, Inc.

  15. Argininosuccinate synthase as a novel biomarker for inflammatory conditions.

    Science.gov (United States)

    Cao, Mengde; George, Thomas J; Prima, Victor; Nelson, David; Svetlov, Stanislav

    2013-05-01

    Argininosuccinate synthase (ASS) plays an important role in regulating metabolic functions in mammals. We previously reported that hepatic ASS is released into circulation at very high concentrations in response to endotoxin and acute liver injury. We propose that ASS may serve as a novel biomarker for various inflammatory conditions. Our data showed that ASS accumulated in serum and urine of septic, obese or tumor mice in a condition-dependent fashion. Moreover, ASS significantly increased in urine within the first week after tumor cell implantation in mice which subsequently develop tumors. These results suggest that ASS is a novel biomarker increased upon diverse inflammatory conditions.

  16. Structural and functional characterization of Staphylococcus aureus dihydrodipicolinate synthase.

    Science.gov (United States)

    Girish, Tavarekere S; Sharma, Eshita; Gopal, B

    2008-08-20

    Lysine biosynthesis is crucial for cell-wall formation in bacteria. Enzymes involved in lysine biosynthesis are thus potential targets for anti-microbial therapeutics. Dihydrodipicolinate synthase (DHDPS) catalyzes the first step of this pathway. Unlike its homologues, Staphylococcus aureus DHDPS is a dimer both in solution and in the crystal and is not feedback inhibited by lysine. The crystal structure of S. aureus DHDPS in the free and substrate bound forms provides a structural rationale for its catalytic mechanism. The structure also reveals unique conformational features of the S. aureus enzyme that could be crucial for the design of specific non-competitive inhibitors.

  17. Microsomal prostaglandin E synthase-1 in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Marina eKorotkova

    2011-01-01

    Full Text Available Microsomal prostaglandin E synthase-1 (mPGES-1 is a well recognized target for the development of novel anti-inflammatory drugs that can reduce symptoms of inflammation in rheumatic diseases and other inflammatory conditions. In this review, we focus on mPGES-1 in rheumatic diseases with the aim to cover the most recent advances in the understanding of mPGES-1 in rheumatoid arthritis, osteoarthritis and inflammatory myopathies. Novel findings regarding regulation of mPGES1 cell expression as well as enzyme inhibitors are also summarized.

  18. Chemical synthesis of yeast mitochondrial ATP synthase membranous subunit 8.

    Science.gov (United States)

    Goetz, M; Schmitter, J M; Geoffre, S; Dufourc, E J

    1999-06-01

    Chemical synthesis of highly hydrophobic peptides and proteins remains a challenging problem. Strong interchain associations within the peptide-resin matrix have to be overcome. A synthetic strategy for solid phase peptide synthesis is proposed, mainly based on prolonged coupling time using aprotic polar solvent mixtures. A tailored chromatographic purification was required to obtain a sample sufficiently pure for structural analysis. In this work, the total chemical synthesis of the membrane-embedded yeast mitochondrial ATP synthase subunit 8 is described. The quality of the synthetic protein was checked by electrospray mass spectrometry, its tendency to adopt alpha-helical secondary structure is evidenced by circular dichroism spectroscopy.

  19. Nitric Oxide Synthase-3 Promotes Embryonic Development of Atrioventricular Valves

    OpenAIRE

    Yin Liu; Xiangru Lu; Fu-Li Xiang; Man Lu; Qingping Feng

    2013-01-01

    Nitric oxide synthase-3 (NOS3) has recently been shown to promote endothelial-to-mesenchymal transition (EndMT) in the developing atrioventricular (AV) canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT) and NOS3(-/-) mice at postnatal day 0. Our data s...

  20. Handbook of industrial lighting

    CERN Document Server

    Lyons, Stanley L

    2013-01-01

    Handbook of Industrial Lighting is a practical guide on the specification, design, installation, operation, and maintenance of lighting in industrial premises. Coverage of the book includes the importance of good localized lighting; the different lighting schemes; lighting for difficult visual tasks; lighting in consideration to safety; and emergency lighting. The book also includes the practical, thermal, ventilation, and energy considerations; lighting in different environments; maintenance of lighting installations; and the cost benefits of efficient lighting. Appendices include useful info

  1. The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z

    Directory of Open Access Journals (Sweden)

    Weiss Ingrid M

    2007-11-01

    Full Text Available Abstract Background Chitin self-assembly provides a dynamic extracellular biomineralization interface. The insoluble matrix of larval shells of the marine bivalve mollusc Mytilus galloprovincialis consists of chitinous material that is distributed and structured in relation to characteristic shell features. Mollusc shell chitin is synthesized via a complex transmembrane chitin synthase with an intracellular myosin motor domain. Results Enzymatic mollusc chitin synthesis was investigated in vivo by using the small-molecule drug NikkomycinZ, a structural analogue to the sugar donor substrate UDP-N-acetyl-D-glucosamine (UDP-GlcNAc. The impact on mollusc shell formation was analyzed by binocular microscopy, polarized light video microscopy in vivo, and scanning electron microscopy data obtained from shell material formed in the presence of NikkomycinZ. The partial inhibition of chitin synthesis in vivo during larval development by NikkomycinZ (5 μM – 10 μM dramatically alters the structure and thus the functionality of the larval shell at various growth fronts, such as the bivalve hinge and the shell's edges. Conclusion Provided that NikkomycinZ mainly affects chitin synthesis in molluscs, the presented data suggest that the mollusc chitin synthase fulfils an important enzymatic role in the coordinated formation of larval bivalve shells. It can be speculated that chitin synthesis bears the potential to contribute via signal transduction pathways to the implementation of hierarchical patterns into chitin mineral-composites such as prismatic, nacre, and crossed-lamellar shell types.

  2. Expression of a GALACTINOL SYNTHASE gene is positively associated with desiccation tolerance of Brassica napus seeds during development.

    Science.gov (United States)

    Li, Xu; Zhuo, Jiajin; Jing, Yin; Liu, Xiao; Wang, Xiaofeng

    2011-10-15

    Desiccation tolerance of seeds is positively correlated with raffinose family oligosaccharides (RFOs). However, RFOs' role in desiccation tolerance is still a matter of controversy. The aim of this work was to monitor the accumulation of RFO during acquisition of desiccation tolerance in rapeseed (Brassica napus L.). Rapeseeds become desiccation tolerant at 21-24d after flowering (DAF), and the time was coincident with an accumulation of raffinose and stachyose. A gene encoding galactinol synthase (GolS; EC2.4.1.123), involved in RFO biosynthesis, was cloned and functionally characterized. Enzymatic properties of recombinant galactinol synthase were also determined. Accumulation of BnGOLS-1 mRNA in developing rapeseeds was concomitant with dry weight deposition and the acquisition of desiccation tolerance, and was concurrent with the formation of raffinose and stachyose. The physiological implications of BnGOLS-1 expression patterns in developing seeds are discussed in light of the hypothesized role of RFOs in seed desiccation tolerance. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Engineering of geranylgeranyl pyrophosphate synthase levels and physiological conditions for enhanced carotenoid and astaxanthin synthesis in Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Breitenbach, Jürgen; Visser, Hans; Verdoes, Jan C; van Ooyen, Albert J J; Sandmann, Gerhard

    2011-04-01

    The basidiomycetous yeast, Xanthophyllomyces dendrorhous, is one of the very few organisms which can be used for biological production of the carotenoid astaxanthin. crtE cDNA has been cloned from this fungus for engineering of the terpenoid pathway. The function of its gene product as a geranylgeranyl pyrophosphate synthase was established. X. dendrorhous was transformed with the crtE cDNA to divert metabolite flow from the sterol pathway towards carotenoid biosynthesis. Transformants were obtained with increased levels of geranylgeranyl pyrophosphate synthase leading to higher carotenoid levels including astaxanthin. Physiological conditions for maximum carotenoid synthesis for wild type and the CrtE transformant were dim light and extra air supply of the shaking culture. These conditions and the transformation with crtE had additive effects and resulted in an 8-fold higher astaxanthin formation as compared to the initial wild type culture without illumination and extra air supply yielding 451 μg/g dry wt within 4 days of growth.

  4. Light fantastic

    Science.gov (United States)

    2010-05-01

    The laser has become so ubiquitous that it would be impossible to acknowledge everyone who has played a role in its success. As Roy Glauber said at the 2005 Nobel-prize banquet, when it comes to lasers, "many hands make light work". And he should know: the prize Glauber shared with fellow optics pioneers John Hall and Theodore Hänsch is one of more than 10 Nobels awarded (so far!) for laser-related research. This timeline marking 50 years of the laser contains Physics World's pick of events from laser history, including prizes (gold text), applications (green) and "firsts" (blue).

  5. Green lights

    DEFF Research Database (Denmark)

    Fisker, Peter Kielberg

    as greenness estimated by lagged variation in monthly rainfall and temperature. This definition of drought performs well in identifying self-reported drought events since 2000 compared with measures of drought that do not take greenness into account, and the subsequent analysis indicates that predicted...... variation in greenness is positively associated with year-on-year changes in luminosity: If a unit of observation experiences a predicted variation in greenness that lies 1 standard deviation below the global mean, on average 1.5 - 2.5 light pixels out of 900 are extinguished that year. Finally, an attempt...... is made to estimate the global cost of drought....

  6. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    Directory of Open Access Journals (Sweden)

    Kawamukai Makoto

    2004-11-01

    Full Text Available Abstract Background Isopentenyl diphosphate (IPP, a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  7. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family.

    Science.gov (United States)

    Wilson, Wayne A; Pradhan, Prajakta; Madhan, Nayasha; Gist, Galen C; Brittingham, Andrew

    2017-07-01

    Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. In Vitro Biochemical Characterization of All Barley Endosperm Starch Synthases

    Directory of Open Access Journals (Sweden)

    Jose Antonio Cuesta-Seijo

    2016-01-01

    Full Text Available Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs. While the overall starch synthase (SS reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates.

  9. Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications.

    Science.gov (United States)

    Zhang, Wei; Chen, Chao; Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered to be ideal alternatives to non-biodegradable synthetic plastics. However, study of PhaCs has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty, along with lack of a crystal structure, has become the main hurdle to understanding and engineering PhaCs for economical PHA production. Here we report the synthesis of two carbadethia CoA analogues--sT-CH2-CoA (26 a) and sTet-CH2-CoA (26 b)--as well as sT-aldehyde (saturated trimer aldehyde, 29), as new PhaC inhibitors. Study of these analogues with PhaECAv revealed that 26 a/b and 29 are competitive and mixed inhibitors, respectively. Both the CoA moiety and extension of PHA chain will increase binding affinity; this is consistent with our docking study. Estimation of the Kic values of 26 a and 26 b predicts that a CoA analogue incorporating an octameric hydroxybutanoate (HB) chain might facilitate the formation of a kinetically well-behaved synthase.

  10. Insulin transcriptionally regulates argininosuccinate synthase to maintain vascular endothelial function.

    Science.gov (United States)

    Haines, Ricci J; Corbin, Karen D; Pendleton, Laura C; Meininger, Cynthia J; Eichler, Duane C

    2012-04-27

    Diminished vascular endothelial cell nitric oxide (NO) production is a major factor in the complex pathogenesis of diabetes mellitus. In this report, we demonstrate that insulin not only maintains endothelial NO production through regulation of endothelial nitric oxide synthase (eNOS), but also via the regulation of argininosuccinate synthase (AS), which is the rate-limiting step of the citrulline-NO cycle. Using serum starved, cultured vascular endothelial cells, we show that insulin up-regulates AS and eNOS transcription to support NO production. Moreover, we show that insulin enhances NO production in response to physiological cues such as bradykinin. To translate these results to an in vivo model, we show that AS transcription is diminished in coronary endothelial cells isolated from rats with streptozotocin (STZ)-induced diabetes. Importantly, we demonstrate restoration of AS and eNOS transcription by insulin treatment in STZ-diabetic rats, and show that this restoration was accompanied by improved endothelial function as measured by endothelium-dependent vasorelaxation. Overall, this report demonstrates, both in cell culture and whole animal studies, that insulin maintains vascular function, in part, through the maintenance of AS transcription, thus ensuring an adequate supply of arginine to maintain vascular endothelial response to physiological cues. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  12. CTP limitation increases expression of CTP synthase in Lactococcus lactis

    DEFF Research Database (Denmark)

    Jørgensen, C.M.; Hammer, Karin; Martinussen, Jan

    2003-01-01

    on the CTP concentration through an attenuator mechanism. At normal CTP concentrations a terminator is preferentially formed in the pyrG leader, thereby reducing expression of CTP synthase. At low CTP concentrations the RNA polymerase pauses at a stretch of C residues in the pyrG leader, thereby allowing......CTP synthase is encoded by the pyrG gene and catalyzes the conversion of UTP to CTP. A Lactococcus lactis pyrG mutant with a cytidine requirement was constructed, in which beta-galactosidase activity in a pyrG-lacLM transcriptional fusion was used to monitor gene expression of pyrG. A 10-fold...... decrease in the CTP pool induced by cytidine limitation was found to immediately increase expression of the L. lactis pyrG gene. The final level of expression of pyrG is 37-fold higher than the uninduced level. CTP limitation has pronounced effects on central cellular metabolism, and both RNA and protein...

  13. Aldosterone synthase inhibitors in hypertension: current status and future possibilities

    Directory of Open Access Journals (Sweden)

    Milan Hargovan

    2014-02-01

    Full Text Available The renin-angiotensin aldosterone system is a critical mechanism for controlling blood pressure, and exerts most of its physiological effects through the action of angiotensin II. In addition to increasing blood pressure by increasing vascular resistance, angiotensin II also stimulates aldosterone secretion from the adrenal gland. Aldosterone acts to cause an increase in sodium and water reabsorption, thus elevating blood pressure. Although treatment with angiotensin converting enzyme inhibitors initially lowers circulating aldosterone, with chronic treatment aldosterone levels increase back to baseline, a phenomenon termed aldosterone escape; aldosterone blockade may therefore give added value in the treatment of hypertension. The first mineralocorticoid receptor antagonist developed was spironolactone, but its use has been severely hampered by adverse (notably oestrogenic effects. The more recently developed mineralocorticoid receptor antagonist eplerenone exhibits a better adverse effect profile, although it is not devoid of effects similar to spironolactone. In addition, aldosterone activates non-genomic receptors that are not inhibited by either eplerenone or spironolactone. It is believed that deleterious organ remodelling is mediated by aldosterone via such non-genomic pathways. A new class of drugs, the aldosterone synthase inhibitors, is currently under development. These may offer a novel therapeutic approach for both lowering blood pressure and preventing the non-genomic effects of aldosterone. Here, we will review the cardiovascular effects of aldosterone and review the drugs available that target this hormone, with a particular focus on the aldosterone synthase inhibitors.

  14. Aldosterone synthase inhibitors in hypertension: current status and future possibilities.

    Science.gov (United States)

    Hargovan, Milan; Ferro, Albert

    2014-01-01

    The renin-angiotensin aldosterone system is a critical mechanism for controlling blood pressure, and exerts most of its physiological effects through the action of angiotensin II. In addition to increasing blood pressure by increasing vascular resistance, angiotensin II also stimulates aldosterone secretion from the adrenal gland. Aldosterone acts to cause an increase in sodium and water reabsorption, thus elevating blood pressure. Although treatment with angiotensin converting enzyme inhibitors initially lowers circulating aldosterone, with chronic treatment aldosterone levels increase back to baseline, a phenomenon termed aldosterone escape; aldosterone blockade may therefore give added value in the treatment of hypertension. The first mineralocorticoid receptor antagonist developed was spironolactone, but its use has been severely hampered by adverse (notably oestrogenic) effects. The more recently developed mineralocorticoid receptor antagonist eplerenone exhibits a better adverse effect profile, although it is not devoid of effects similar to spironolactone. In addition, aldosterone activates non-genomic receptors that are not inhibited by either eplerenone or spironolactone. It is believed that deleterious organ remodelling is mediated by aldosterone via such non-genomic pathways. A new class of drugs, the aldosterone synthase inhibitors, is currently under development. These may offer a novel therapeutic approach for both lowering blood pressure and preventing the non-genomic effects of aldosterone. Here, we will review the cardiovascular effects of aldosterone and review the drugs available that target this hormone, with a particular focus on the aldosterone synthase inhibitors.

  15. Cryptic Polyketide Synthase Genes in Non-Pathogenic Clostridium SPP

    Science.gov (United States)

    Behnken, Swantje; Hertweck, Christian

    2012-01-01

    Modular type I polyketide synthases (PKS) produce a vast array of bacterial metabolites with highly diverse biological functions. Notably, all known polyketides were isolated from aerobic bacteria, and yet no example has been reported for strict anaerobes. In this study we explored the diversity and distribution of PKS genes in the genus Clostridium. In addition to comparative genomic analyses combined with predictions of modular type I polyketide synthase (PKS) gene clusters in sequenced genomes of Clostridium spp., a representative selection of other species inhabiting a variety of ecological niches was investigated by PCR screening for PKS genes. Our data reveal that all studied pathogenic Clostridium spp. are devoid of putative PKS genes. In stark contrast, cryptic PKS genes are widespread in genomes of non-pathogenic Clostridium species. According to phylogenetic analyses, the Clostridium PKS genes have unusual and diverse origins. However, reverse transcription quantitative PCR demonstrates that these genes are silent under standard cultivation conditions, explaining why the related metabolites have been overlooked until now. This study presents clostridia as a putative source for novel bioactive polyketides. PMID:22235310

  16. IPC synthase as a useful target for antifungal drugs.

    Science.gov (United States)

    Sugimoto, Yuichi; Sakoh, Hiroki; Yamada, Koji

    2004-12-01

    Inositol phosphorylceramide (IPC) synthase is a common and essential enzyme in fungi and plants, which catalyzes the transfer of phosphoinositol to the C-1 hydroxy of ceramide to produce IPC. This reaction is a key step in fungal sphingolipid biosynthesis, therefore the enzyme is a potential target for the development of nontoxic therapeutic antifungal agents. Natural products with a desired biological activity, aureobasidin A (AbA), khafrefungin, and galbonolide A, have been reported. AbA, a cyclic depsipeptide containing 8 amino acids and a hydroxyl acid, is a broad spectrum antifungal with strong activity against many pathogenic fungi such as Candida spp., Cryptococcus neoformans, and some Aspergillus spp. Khafrefungin, an aldonic acid ester with a C22 long alkyl chain, has antifungal activity against C. albicans, Cr. Neoformans, and Saccharomyces cerevisiae. Galbonolide A is a 14-membered macrolide with fungicidal activity against clinically important strains, and is especially potent against Cr. neoformans. These classes of natural products are potent and specific antifungal agents. We review current progress in the development of IPC synthase inhibitors with antifungal activities, and present structure-activity relationships (SAR), physicochemical and structural properties, and synthetic methodology for chemical modification.

  17. Eugenol synthase genes in floral scent variation in Gymnadenia species.

    Science.gov (United States)

    Gupta, Alok K; Schauvinhold, Ines; Pichersky, Eran; Schiestl, Florian P

    2014-12-01

    Floral signaling, especially through floral scent, is often highly complex, and little is known about the molecular mechanisms and evolutionary causes of this complexity. In this study, we focused on the evolution of "floral scent genes" and the associated changes in their functions in three closely related orchid species of the genus Gymnadenia. We developed a benchmark repertoire of 2,571 expressed sequence tags (ESTs) in Gymnadenia odoratissima. For the functional characterization and evolutionary analysis, we focused on eugenol synthase, as eugenol is a widespread and important scent compound. We obtained complete coding complementary DNAs (cDNAs) of two copies of putative eugenol synthase genes in each of the three species. The proteins encoded by these cDNAs were characterized by expression and testing for activity in Escherichia coli. While G. odoratissima and Gymnadenia conopsea enzymes were found to catalyze the formation of eugenol only, the Gymnadenia densiflora proteins synthesize eugenol, as well as a smaller amount of isoeugenol. Finally, we showed that the eugenol and isoeugenol producing gene copies of G. densiflora are evolutionarily derived from the ancestral genes of the other species producing only eugenol. The evolutionary switch from production of one to two compounds evolved under relaxed purifying selection. In conclusion, our study shows the molecular bases of eugenol and isoeugenol production and suggests that an evolutionary transition in a single gene can lead to an increased complexity in floral scent emitted by plants.

  18. Cloning and Identification of Methionine Synthase Gene from Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Lan HUANG; Dong-Yang LI; Shao-Xiao WANG; Shi-Ming ZHANG; Jun-Hui CHEN; Xiang-Fu WU

    2005-01-01

    Methionine synthase (MS) is grouped into two classes. Class One MS (MetH) and Class Two MS (MetE) share no homology and differ in their catalytic model. Based on the conserved sequences of metE genes from different organisms, a segment of the metE gene was first cloned from Pichia pastoris genomic DNA by PCR, and its 5' and 3' regions were further cloned by 5'- and 3'-rapid amplification of cDNA ends (RACE), respectively. The assembled sequence reveals an open reading frame encoding a polypeptide of 768 residues, and the deduced product shares 76% identity with MetE of Saccharomyces cerevisiae. P. pastoris methionine synthase (PpMetE) consists of two domains common to MetEs. The active site is located in the C-terminal domain, in which the residues involved in the interaction of zinc with substrates are conserved. Homologous expression of PpMetE in P. pastoris was achieved, and the heterologous expression of PpMetE in the S. cerevisiae strain XJB3-1D that is MetE-defective restored the growth of the mutant on methionine-free minimal media. The gene sequence has been submitted to GenBank/EMBL/DDBJ under accession No. AY601648.

  19. Tryptophan synthase of Phaeophyceae originated from the secondary host nucleus

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yalan; CHI Shan; WU Shuangxiu; LIU Cui; YU Jun; WANG Xumin; CHEN Shengping; LIU Tao

    2014-01-01

    Tryptophan synthase (TS, EC 4.2.1.20) catalyzes the last two steps of L-tryptophan biosynthesis. In pro-karyotes, tryptophan synthase is a multi-enzyme complex, and it consists ofαandβsubunit which forms anα-ββ-αcomplex. In fungi and diatoms, TS is a bifunctional enzyme. Because of the limited genomic and transcriptomic data of algae, there are few studies on TS evolution of algae. Here we analyzed the data of the 1000 Plants Project (1KP), and focused on red algae and brown algae. We found out that the TS of Phaeophy-ceae were fusion genes, which probably originated from the secondary host nucleus, and that the TS of Rho-dophyta contained two genes, TSA and TSB, which both display a possible cyanobacterial origin at the time of primary endosymbiosis. In addition, there were two types of TSB genes (TSB1 and TSB2). Through the multiple sequence alignment of TSB proteins, we found several residues conserved in TSB1 but variable in TSB2 which connect withαsubunit. The phenomenon may suggest that the TSB2 sequences of Rhodophyta cannot form stable complex with TSA.

  20. Phylogenetic analysis of uroporphyrinogen III synthase (UROS) gene.

    Science.gov (United States)

    Shaik, Abjal Pasha; Alsaeed, Abbas H; Sultana, Asma

    2012-01-01

    The uroporphyrinogen III synthase (UROS) enzyme (also known as hydroxymethylbilane hydrolyase) catalyzes the cyclization of hydroxymethylbilane to uroporphyrinogen III during heme biosynthesis. A deficiency of this enzyme is associated with the very rare Gunther's disease or congenital erythropoietic porphyria, an autosomal recessive inborn error of metabolism. The current study investigated the possible role of UROS (Homo sapiens [EC: 4.2.1.75; 265 aa; 1371 bp mRNA; Entrez Pubmed ref NP_000366.1, NM_000375.2]) in evolution by studying the phylogenetic relationship and divergence of this gene using computational methods. The UROS protein sequences from various taxa were retrieved from GenBank database and were compared using Clustal-W (multiple sequence alignment) with defaults and a first-pass phylogenetic tree was built using neighbor-joining method as in DELTA BLAST 2.2.27+ version. A total of 163 BLAST hits were found for the uroporphyrinogen III synthase query sequence and these hits showed putative conserved domain, HemD superfamily (as on 14(th) Nov 2012). We then narrowed down the search by manually deleting the proteins which were not UROS sequences and sequences belonging to phyla other than Chordata were deleted. A repeat phylogenetic analysis of 39 taxa was performed using PhyML and TreeDyn software to confirm that UROS is a highly conserved protein with approximately 85% conserved sequences in almost all chordate taxons emphasizing its importance in heme synthesis.

  1. The crystal structure of human GDP-L-fucose synthase.

    Science.gov (United States)

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  2. Suboptimal light conditions influence source-sink metabolism during flowering

    Directory of Open Access Journals (Sweden)

    Annelies eChristiaens

    2016-03-01

    Full Text Available Reliance on carbohydrates during flower forcing was investigated in one early and one late flowering cultivar of azalea (Rhododendron simsii hybrids. Carbohydrate accumulation, invertase activity, and expression of a purported sucrose synthase gene (RsSUS was monitored during flower forcing under suboptimal (natural and optimal (supplemental light light conditions, after a cold treatment (7°C + dark to break flower bud dormancy. Post-production sucrose metabolism and flowering quality was also assessed. Glucose and fructose concentrations and invertase activity increased in petals during flowering, while sucrose decreased. In suboptimal light conditions RsSUS expression in leaves increased as compared to optimal light conditions, indicating that plants in suboptimal light conditions have a strong demand for carbohydrates. However, carbohydrates in leaves were markedly lower in suboptimal light conditions compared to optimal light conditions. This resulted in poor flowering of plants in suboptimal light conditions. Post-production flowering relied on the stored leaf carbon, which could be accumulated under optimal light conditions in the greenhouse. These results show that flower opening in azalea relies on carbohydrates imported from leaves and is source-limiting under suboptimal light conditions.

  3. Selectivity of the surface binding site (SBS) on barley starch synthase I

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cuesta-Seijo, Jose A.; Palcic, Monica

    2014-01-01

    Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was ...

  4. Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli.

    Science.gov (United States)

    Del Campo, M; Kaya, Y; Ofengand, J

    2001-11-01

    There are 10 known putative pseudouridine synthase genes in Escherichia coli. The products of six have been previously assigned, one to formation of the single pseudouridine in 16S RNA, three to the formation of seven pseudouridines in 23S RNA, and three to the formation of three pseudouridines in tRNA (one synthase makes pseudouridine in 23S RNA and tRNA). Here we show that the remaining four putative synthase genes make bona fide pseudouridine synthases and identify which pseudouridines they make. RluB (formerly YciL) and RluE (formerly YmfC) make pseudouridine2605 and pseudouridine2457, respectively, in 23S RNA. RluF (formerly YjbC) makes the newly discovered pseudouridine2604 in 23S RNA, and TruC (formerly YqcB) makes pseudouridine65 in tRNA(Ile1) and tRNA(Asp). Deletion of each of these synthase genes individually had no effect on exponential growth in rich media at 25 degrees C, 37 degrees C, or 42 degrees C. A strain lacking RluB and RluF also showed no growth defect under these conditions. Mutation of a conserved aspartate in a common sequence motif, previously shown to be essential for the other six E. coli pseudouridine synthases and several yeast pseudouridine synthases, also caused a loss of in vivo activity in all four of the synthases studied in this work.

  5. Insights into the subunit in-teractions of the chloroplast ATP synthase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Subunit interactions of the chloroplast F0F1- ATP synthase were studied using the yeast two-hybrid system. The coding sequences of all the nine subunits of spinach chloroplast ATP synthase were cloned in two-hybrid vectors. The vectors were transformed into the yeast strains HF7c and SFY526 by various pairwise combinations, and the protein interactions were analyzed by measuring the yeast growth on minimal SD medium without serine, lucine and histidine. Interactions of γ Subunit with wild type or two truncated mutants of γ sununit, △εN21 and △εC45, which lose their abilities to inhibit the ATP hydrolysis, were also detected by in vitro and in vivo binding assay. The present results are largely accordant to the common structure model of F0F1-ATP synthase. Different from that in the E. Coli F0F1-ATP synthase, the δ subunit of chloroplast ATP syn- thase could interact with β,γ,ε and all the CF0 subunits in the two-hybrid system. These results suggested that though the chloroplast ATP synthase shares the similar structure and composition of subunits with the enzyme from E. Coli, it may be different in the subunit interactions and con- formational change during catalysis between these two sources of ATP synthase. Based on the present results and our knowledge of structure model of E. Coli ATP synthase, a deduced structure model of chloroplast ATP synthase was proposed.

  6. Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specifity.

    NARCIS (Netherlands)

    Tamer, el M.K.; Lucker, J.; Bosch, D.; Verhoeven, H.A.; Verstappen, F.W.A.; Schwab, W.; Tunen, van A.J.; Voragen, A.G.J.; Maagd, de R.A.; Bouwmeester, H.J.

    2003-01-01

    Monoterpene cyclases are the key enzymes in the monoterpene biosynthetic pathway, as they catalyze the cyclization of the ubiquitous geranyl diphosphate (GDP) to the specific monoterpene skeletons. From Citrus limon, four monoterpene synthase-encoding cDNAs for a P-pinene synthase named

  7. KORRIGAN1 Interacts Specifically with Integral Components of the Cellulose Synthase Machinery

    NARCIS (Netherlands)

    Mansoori Zangir, N.; Timmers, J.F.P.; Desprez, T.; Lessa Alvim Kamei, C.; Dees, D.C.T.; Vincken, J.P.; Visser, R.G.F.; Höfte, H.; Vernhettes, S.; Trindade, L.M.

    2014-01-01

    Cellulose is synthesized by the so called rosette protein complex and the catalytic subunits of this complex are the cellulose synthases (CESAs). It is thought that the rosette complexes in the primary and secondary cell walls each contains at least three different non-redundant cellulose synthases.

  8. Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specifity.

    NARCIS (Netherlands)

    Tamer, el M.K.; Lucker, J.; Bosch, D.; Verhoeven, H.A.; Verstappen, F.W.A.; Schwab, W.; Tunen, van A.J.; Voragen, A.G.J.; Maagd, de R.A.; Bouwmeester, H.J.

    2003-01-01

    Monoterpene cyclases are the key enzymes in the monoterpene biosynthetic pathway, as they catalyze the cyclization of the ubiquitous geranyl diphosphate (GDP) to the specific monoterpene skeletons. From Citrus limon, four monoterpene synthase-encoding cDNAs for a P-pinene synthase named Cl(-)betaPIN

  9. Structure of the dimeric form of CTP synthase from Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Lauritsen, Iben; Willemoës, Martin; Jensen, Kaj Frank;

    2011-01-01

    CTP synthase catalyzes the last committed step in de novo pyrimidine-nucleotide biosynthesis. Active CTP synthase is a tetrameric enzyme composed of a dimer of dimers. The tetramer is favoured in the presence of the substrate nucleotides ATP and UTP; when saturated with nucleotide, the tetramer c...

  10. Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex.

    Science.gov (United States)

    Nixon, B Tracy; Mansouri, Katayoun; Singh, Abhishek; Du, Juan; Davis, Jonathan K; Lee, Jung-Goo; Slabaugh, Erin; Vandavasi, Venu Gopal; O'Neill, Hugh; Roberts, Eric M; Roberts, Alison W; Yingling, Yaroslava G; Haigler, Candace H

    2016-06-27

    A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.

  11. Application of Grote-Hynes theory to the reaction catalyzed by thymidylate synthase.

    Science.gov (United States)

    Kanaan, Natalia; Roca, Maite; Tuñón, Iñaki; Martí, Sergio; Moliner, Vicent

    2010-10-28

    A theoretical study of dynamic effects on the rate-limiting step of the thymidylate synthase catalyzed reaction has been carried out by means of Grote-Hynes theory, successfully predicting the values of the recrossing effects for a chemical reaction that involves the transfer of a classical light particle. The transmission coefficients, obtained at 278, 293, 303, and 313 K, are almost invariant and in all cases far from unity, revealing a significant coupling of the environment motions and the reaction coordinate. Nevertheless, their energetic contribution to the activation free energy represents less than 0.50 kcal/mol for each of the four tested temperatures. Calculation of the transmission coefficient for the isotopically labeled hydride transfer has rendered almost the same values, in agreement with the experimentally observed temperature-independent KIEs. Fourier transform of the time-dependent friction kernel at these four temperatures has allowed obtaining the transition-state friction spectra, which present very small dependence with temperature. Their analysis has led to the identification of some key vibrational modes governing the coupling between the reaction coordinate and the protein environment, thus identifying the relevant motions in the active site and obtaining a full picture of the role of each amino acid.

  12. Prostaglandin H synthase kinetics in the two-phase aqueous-micellar system.

    Science.gov (United States)

    Ponomareva, Olga A; Trushkin, Nikita A; Filimonov, Ivan S; Krivoshey, Alexandr V; Barkhatov, Vladimir I; Mitrofanov, Sergey I; Vrzheshch, Petr V

    2016-09-01

    Reaction mixture for PGHS (prostaglandin-H-synthase) is a two-phase system including micellar hydrophobic phase and hydrophilic aqueous phase. Reagents added to the mixture are distributed between phases, thus concentrations of reagents dissolved in phases can differ significantly from their overall contents. Using dynamic light scattering we found that the hydrophobic phase produced by tween-20 consists of micelles, which radius (4-5nm) does not depend on either tween-20 overall content (0.1%-1% v/v) or arachidonic acid (AA) addition (10-1000μM) or PGHS addition (1μM). Tween-20 overall content changing from 0.1% to 2% v/v dramatically affected COX kinetic, but accounting AA distribution between phases allowed us to estimate "true" parameters, independent of the tween-20 overall content and the concentration of another substrate: KM(Ox) equals 9.8μM O2 in the aqueous phase or 0.0074bar in the gaseous phase, KM(AA) equals 5400μM AA in the phase of tween-20 micelles and 5400/PμM AA in the aqueous phase (P is the distribution ratio for the AA between the aqueous phase and the hydrophobic phase (P≫1000)). This approach allowed to evaluate PS, the distribution ratio for the AA between the hydrophobic phase and the PGHS active center (PS ~310). This coefficient indicates the AA selectivity toward the cyclooxygenase active center.

  13. Co-suppression in transgenic Petunia hybrida expressing chalcone synthase A (chsA)

    Institute of Scientific and Technical Information of China (English)

    LI; Yan; (

    2001-01-01

    [1]Napoli, C., Lemieux, C., Jorgensen, R., Introduction of a chimeric chalone synthase gene into petunia results in reversible cosuppession of homologous genes in trans, The Plant Cell, 1990, 2: 279-289.[2]Van der Krol, A.R., Mur, L.A., Beld, M. M. et al., Flavonnoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression, The Plant Cell, 1990, 2: 291-299.[3]Manika, P.B., Bhadra, U., Birchler, J., Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by White-Adh transgene is Polycomb dependent, Cell, 1997, 90: 479-498.[4]de Carvalho Niebel, F., Frendo, P., Van Montagu, M. et al., Post-transcriptional cosuppression of ?-1,3-glucanase transgene expression in homozygous plants, EMBO J., 1992, 11: 2595-2602.[5]Van Blokland, R., Van der Geest, N., Mol, J. N. M. et al., Transgene-mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover, The Plant Cell, 1994, 6: 861-877.[6]Stam, M., Mol, J. N. M., Kooter, J. M., The silence of genes in transgenic plants, Annals of Bot., 1997, 79: 3-12.[7]Vaucheret, H., Beclin, C., Elmayan, T. et al., Transgene-induced gene silencing in plants, Plant J., 1998, 16(6): 651-659.[8]Shao, L., Li, Y., Yang, M. Z. et al., Transformation of Petunia hybrida with chalcone synthase A (chsA) resulting flower colour alteration and male sterility, Acta Botanica Sinica (in Chinese), 1996, 38(7): 517-524.[9]Koes, R. E., Spelt, C. E., Mol, J. N. M., The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction, Plant Mol. Biol., 1989, 12: 213-225.[10]Drews, G. N., Beals, T. P., Bul, A. Q. et al., Regional and cell-specific expression patterns during petal development, The Plant Cell, 1992, 4: 1383-1404.[11]Martin, C., Gerats, T., Control of pigment biosynthesis genes during petal development, The

  14. Expression, crystallization and structure elucidation of γ-terpinene synthase from Thymus vulgaris.

    Science.gov (United States)

    Rudolph, Kristin; Parthier, Christoph; Egerer-Sieber, Claudia; Geiger, Daniel; Muller, Yves A; Kreis, Wolfgang; Müller-Uri, Frieder

    2016-01-01

    The biosynthesis of γ-terpinene, a precursor of the phenolic isomers thymol and carvacrol found in the essential oil from Thymus sp., is attributed to the activitiy of γ-terpinene synthase (TPS). Purified γ-terpinene synthase from T. vulgaris (TvTPS), the Thymus species that is the most widely spread and of the greatest economical importance, is able to catalyze the enzymatic conversion of geranyl diphosphate (GPP) to γ-terpinene. The crystal structure of recombinantly expressed and purified TvTPS is reported at 1.65 Å resolution, confirming the dimeric structure of the enzyme. The putative active site of TvTPS is deduced from its pronounced structural similarity to enzymes from other species of the Lamiaceae family involved in terpenoid biosynthesis: to (+)-bornyl diphosphate synthase and 1,8-cineole synthase from Salvia sp. and to (4S)-limonene synthase from Mentha spicata.

  15. Molecular cloning, functional expression and characterization of (E)-beta farnesene synthase from Citrus junos.

    Science.gov (United States)

    Maruyama, T; Ito, M; Honda, G

    2001-10-01

    We cloned the gene of the acyclic sesquiterpene synthase, (E)-beta-farnesene synthase (CJFS) from Yuzu (Citrus junos, Rutaceae). The function of CJFS was elucidated by the preparation of recombinant protein and subsequent enzyme assay. CJFS consisted of 1867 nucleotides including 1680 bp of coding sequence encoding a protein of 560 amino acids with a molecular weight of 62 kDa. The deduced amino acid sequence possessed characteristic amino acid residues, such as the DDxxD motif, which are highly conserved among terpene synthases. This is the first report of the cloning of a terpene synthase from a Rutaceous plant. A possible reaction mechanism for terpene biosynthesis is also discussed on the basis of sequence comparison of CJFS with known sesquiterpene synthase genes.

  16. Cloning and functional characterization of a beta-pinene synthase from Artemisia annua that shows a circadian pattern of expression.

    Science.gov (United States)

    Lu, Shan; Xu, Ran; Jia, Jun-Wei; Pang, Jihai; Matsuda, Seiichi P T; Chen, Xiao-Ya

    2002-09-01

    Artemisia annua plants produce a broad range of volatile compounds, including monoterpenes, which contribute to the characteristic fragrance of this medicinal species. A cDNA clone, QH6, contained an open reading frame encoding a 582-amino acid protein that showed high sequence identity to plant monoterpene synthases. The prokaryotically expressed QH6 fusion protein converted geranyl diphosphate to (-)-beta-pinene and (-)-alpha-pinene in a 94:6 ratio. QH6 was predominantly expressed in juvenile leaves 2 weeks postsprouting. QH6 transcript levels were transiently reduced following mechanical wounding or fungal elicitor treatment, suggesting that this gene is not directly involved in defense reaction induced by either of these treatments. Under a photoperiod of 12 h/12 h (light/dark), the abundance of QH6 transcripts fluctuated in a diurnal pattern that ebbed around 3 h before daybreak (9th h in the dark phase) and peaked after 9 h in light (9th h in the light phase). The contents of (-)-beta-pinene in juvenile leaves and in emitted volatiles also varied in a diurnal rhythm, correlating strongly with mRNA accumulation. When A. annua was entrained by constant light or constant dark conditions, QH6 transcript accumulation continued to fluctuate with circadian rhythms. Under constant light, advanced cycles of fluctuation of QH6 transcript levels were observed, and under constant dark, the cycle was delayed. However, the original diurnal pattern could be regained when the plants were returned to the normal light/dark (12 h/12 h) photoperiod. This is the first report that monoterpene biosynthesis is transcriptionally regulated in a circadian pattern.

  17. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  18. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  19. The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli

    NARCIS (Netherlands)

    Müller, Patrick; Ewers, C.; Bertsche, U.; Anstett, M.; Kallis, T.; Breukink, E.J.; Fraipont, Claudine; Terrak, Mohammed; Nguyen-Distèche, Martine; Vollmer, W.

    2007-01-01

    Bacterial cell division requires the coordinated action of cell division proteins and murein (peptidoglycan) synthases. Interactions involving the essential cell division protein FtsN and murein synthases were studied by affinity chromatography with membrane fraction. The murein synthases PBP1A, PBP

  20. Hyperactivity: glycogen synthase kinase-3 as a therapeutic target.

    Science.gov (United States)

    Mines, Marjelo A

    2013-05-15

    The diagnosis of hyperactivity-associated disorders has increased within the past few years. The prevalence of hyperactivity-associated disorders is indicative of the need to more fully understand the underlying causes and to develop improved therapeutic interventions. There is increasing evidence that glycogen synthase kinase-3 (GSK3) mediates locomotor hyperactivity in a number of animal models, and therefore may be a potential target for therapeutic intervention in hyperactivity-associated behaviors. In this review, we discuss 1) the effect of manipulations of GSK3 in the absence of drugs and disorders on locomotor activity, 2) the role of GSK3 in drug-induced hyperactivity in rodents, and 3) regulation of locomotor activity by GSK3 in transgenic mouse models related to specific disorders. These studies link GSK3 regulation and activity to hyperactivity-associated behaviors and disease pathologies. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Alterations in Nitric Oxide Synthase in the Aged CNS

    Directory of Open Access Journals (Sweden)

    Junyang Jung

    2012-01-01

    Full Text Available Aging is associated with neuronal loss, gross weight reduction of the brain, and glial proliferation in the cortex, all of which lead to functional changes in the brain. It is known that oxidative stress is a critical factor in the pathogenesis of aging; additionally, growing evidence suggests that excessive nitric oxide (NO production contributes to the aging process. However, it is still unclear how NO plays a role in the aging process. This paper describes age-related changes in the activity of NADPH-diaphorase (NADPH-d, a marker for neurons containing nitric oxide synthase (NOS, in many CNS regions. Understanding these changes may provide a novel perspective in identifying the aging mechanism.

  2. Recurrent encephalopathy: NAGS (N-acetylglutamate synthase) deficiency in adults.

    Science.gov (United States)

    Cartagena, A; Prasad, A N; Rupar, C A; Strong, M; Tuchman, M; Ah Mew, N; Prasad, C

    2013-01-01

    N-acetyl-glutamate synthase (NAGS) deficiency is a rare autosomal recessive urea cycle disorder (UCD) that uncommonly presents in adulthood. Adult presentations of UCDs include; confusional episodes, neuropsychiatric symptoms and encephalopathy. To date, there have been no detailed neurological descriptions of an adult onset presentation of NAGS deficiency. In this review we examine the clinical presentation and management of UCDs with an emphasis on NAGS deficiency. An illustrative case is provided. Plasma ammonia levels should be measured in all adult patients with unexplained encephalopathy, as treatment can be potentially life-saving. Availability of N-carbamylglutamate (NCG; carglumic acid) has made protein restriction largely unnecessary in treatment regimens currently employed. Genetic counselling remains an essential component of management of NAGS.

  3. Amino acids conferring herbicide resistance in tobacco acetohydroxyacid synthase.

    Science.gov (United States)

    Le, Dung Tien; Choi, Jung-Do; Tran, Lam-Son Phan

    2010-01-01

    Acetohydroxyacid synthase (AHAS) (EC 4.1.3.18) is a target of commercially available herbicides such as sulfonylurea, imidazolinone, and triazolopyrimidine. In plants and microorganisms, AHAS catalyzes the first common reaction in the biosynthesis pathways leading to leucine, isoleucine and valine. Intensive studies using different approaches - including site-directed mutagenesis, molecular modeling and structural analysis - on plant AHAS-s have contributed to the understanding of the herbicide-AHAS interaction. Knowledge of the critical roles of amino acid residues of plant AHAS in conferring herbicide resistance will enable the creation of new herbicide-tolerant AHAS which could be used to develop herbicide-resistant transgenic plants. Moreover, such information will also elucidate design strategies for more efficient herbicides that could also kill weeds resistant to previously used AHAS-inhibiting herbicides. In this review, we summarize the results of intensive searches for amino acid residues and their substitutions that confer herbicide resistance in tobacco AHAS.

  4. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance

    DEFF Research Database (Denmark)

    Huang, Laurence; Crothers, Kristina; Atzori, Chiara

    2004-01-01

    Pneumocystis pneumonia (PCP) remains a major cause of illness and death in HIV-infected persons. Sulfa drugs, trimethoprim-sulfamethoxazole (TMP-SMX) and dapsone are mainstays of PCP treatment and prophylaxis. While prophylaxis has reduced the incidence of PCP, its use has raised concerns about...... in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim...... for PCP treatment remains unclear. We review studies of DHPS mutations in P. jirovecii and summarize the evidence for resistance to sulfamethoxazole and dapsone....

  5. A new motif for inhibitors of geranylgeranyl diphosphate synthase.

    Science.gov (United States)

    Foust, Benjamin J; Allen, Cheryl; Holstein, Sarah A; Wiemer, David F

    2016-08-15

    The enzyme geranylgeranyl diphosphate synthase (GGDPS) is believed to receive the substrate farnesyl diphosphate through one lipophilic channel and release the product geranylgeranyl diphosphate through another. Bisphosphonates with two isoprenoid chains positioned on the α-carbon have proven to be effective inhibitors of this enzyme. Now a new motif has been prepared with one isoprenoid chain on the α-carbon, a second included as a phosphonate ester, and the potential for a third at the α-carbon. The pivaloyloxymethyl prodrugs of several compounds based on this motif have been prepared and the resulting compounds have been tested for their ability to disrupt protein geranylgeranylation and induce cytotoxicity in myeloma cells. The initial biological studies reveal activity consistent with GGDPS inhibition, and demonstrate a structure-function relationship which is dependent on the nature of the alkyl group at the α-carbon.

  6. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M. Brett; Ferreira, Antonio M.; Lee, Richard E.; Bashford, Donald; White, Stephen W. (SJCH)

    2013-04-08

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S{sub N}1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  7. Identification of sucrose synthase as an actin-binding protein

    Science.gov (United States)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  8. Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering.

    Science.gov (United States)

    Zerbe, Philipp; Bohlmann, Jörg

    2015-07-01

    Plants produce thousands of diterpenoid natural products; some of which are of significant industrial value as biobased pharmaceuticals (taxol), fragrances (sclareol), food additives (steviosides), and commodity chemicals (diterpene resin acids). In nature, diterpene synthase (diTPS) enzymes are essential for generating diverse diterpene hydrocarbon scaffolds. While some diTPSs also form oxygenated compounds, more commonly, oxygenation is achieved by cytochrome P450-dependent mono-oxygenases. Recent genome-, transcriptome-, and metabolome-guided gene discovery and enzyme characterization identified novel diTPS functions that form the core of complex modular pathway systems. Insights into diterpene metabolism may translate into the development of new bioengineered microbial and plant-based production systems.

  9. 2C-Methyl- D- erythritol 2,4-cyclodiphosphate synthase from Stevia rebaudiana Bertoni is a functional gene.

    Science.gov (United States)

    Kumar, Hitesh; Singh, Kashmir; Kumar, Sanjay

    2012-12-01

    Stevia [Stevia rebaudiana (Bertoni)] is a perennial herb which accumulates sweet diterpenoid steviol glycosides (SGs) in its leaf tissue. SGs are synthesized by 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Of the various enzymes of the MEP pathway, 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MDS) (encoded by MDS) catalyzes the cyclization of 4-(cytidine 5' diphospho)-2C-methyl-D-erythritol 2-phosphate into 2C-methyl-D-erythritol 2,4-cyclodiphosphate. Complementation of the MDS knockout mutant strain of Escherichia coli, EB370 with putative MDS of stevia (SrMDS) rescued the lethal mutant, suggesting SrMDS to be a functional gene. Experiments conducted in plant growth chamber and in the field suggested SrMDS to be a light regulated gene. Indole 3-acetic acid (IAA; 50, 100 μM) down-regulated the expression of SrMDS at 4 h of the treatment, whereas, abscisic acid did not modulate its expression. A high expression of SrMDS was observed during the light hours of the day as compared to the dark hours. The present work established functionality of SrMDS and showed the role of light and IAA in regulating expression of SrMDS.

  10. New insight into the catalytic properties of rice sucrose synthase.

    Science.gov (United States)

    Huang, Yu-Chiao; Hsiang, Erh-Chieh; Yang, Chien-Chih; Wang, Ai-Yu

    2016-01-01

    Sucrose synthase (SuS), which catalyzes the reversible conversion of sucrose and uridine diphosphate (UDP) into fructose and UDP-glucose, is a key enzyme in sucrose metabolism in higher plants. SuS belongs to family 4 of the glycosyltransferases (GT4) and contains an E-X7-E motif that is conserved in members of GT4 and two other GT families. To gain insight into the roles of this motif in rice sucrose synthase 3 (RSuS3), the two conserved glutamate residues (E678 and E686) in this motif and a phenylalanine residue (F680) that resides between the two glutamate residues were changed by site-directed mutagenesis. All mutant proteins maintained their tetrameric conformation. The mutants E686D and F680Y retained partial enzymatic activity and the mutants E678D, E678Q, F680S, and E686Q were inactive. Substrate binding assays indicated that UDP and fructose, respectively, were the leading substrates in the sucrose degradation and synthesis reactions of RSuS3. Mutations on E678, F680, and E686 affected the binding of fructose, but not of UDP. The results indicated that E678, F680, and E686 in the E-X7-E motif of RSuS3 are essential for the activity of the enzyme and the sequential binding of substrates. The sequential binding of the substrates implied that the reaction catalyzed by RSuS can be controlled by the availability of fructose and UDP, depending on the metabolic status of a tissue.

  11. Metallothionein prevents cardiac pathological changes in diabetes by modulating nitration and inactivation of cardiac ATP synthase.

    Science.gov (United States)

    Cong, Weitao; Zhao, Ting; Zhu, Zhongxin; Huang, Binbin; Ma, Weide; Wang, Yuehui; Tan, Yi; Chakrabarti, Subrata; Li, Xiaokun; Jin, Litai; Cai, Lu

    2014-04-01

    Mitochondrial ATP production is the main energy source for the cell. Diabetes reduces the efficient generation of ATP, possibly due to the inactivation of ATP synthase. However, the exact mechanism by which diabetes induces inactivation of ATP synthase remains unknown, as well as whether such inactivation has a role in the development of pathological abnormalities of the diabetic heart. To address these issues, we used cardiac metallothionein-transgenic (MT-TG) and wild-type (WT) mice with streptozotocin-induced diabetes, since we have demonstrated previously that diabetes-induced cardiac damage and remodeling were found in WT diabetic mice, but not in MT-TG diabetic mice. Immunohistochemical and biochemical assays were used to compare pathological and biochemical changes of the heart between MT-TG and WT diabetic mice, and a proteomic assay to evaluate ATP synthase expression and tyrosine nitration, with its activity. LC/MS analysis revealed that diabetes increased tyrosine nitration of the ATP synthase α subunit at Tyr(271), Tyr(311), and Tyr(476), and the β subunit at Tyr(269) and Tyr(508), and also significantly reduced ATP synthase activity by ~32%. These changes were not observed in MT-TG diabetic mice. Furthermore, parallel experiments with induced expression of cardiac MT by zinc supplementation in diabetic mice produced similar effects. These results suggest that MT can preserve ATP synthase activity in streptozotocin-induced diabetes, probably through the inhibition of ATP synthase nitration. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Evidence that nitric oxide synthase is involved in progesterone-induced acrosomal exocytosis in mouse spermatozoa.

    Science.gov (United States)

    Herrero, M B; Viggiano, J M; Pérez Martínez, S; de Gimeno, M F

    1997-01-01

    In a recent work, we detected nitric oxide synthase (NO synthase) in the acrosome and tail of mouse and human spermatozoa by an immunofluorescence technique. Also, NO-synthase inhibitors added during sperm capacitation in vitro reduced the percentage of oocytes fertilized in vitro, suggesting a role for NO synthase in sperm function. Therefore, in the present study the effect of three NO-synthase inhibitors, NG-nitro-L-arginine methyl ester (L-NAME), NG-nitro-D-arginine methyl ester (D-NAME) and L-NG-nitro-arginine (NO2-arg), and of a nitric oxide donor, spermine-NONOate, on the progesterone-induced acrosome reaction of mouse sperm was examined. NO-synthase inhibitors were added at 0, 60 or 90 min during capacitation; at 120 min, mouse epididymal spermatozoa were exposed to 15 microM progesterone for another 15 min. In another set of experiments, different concentrations of spermine-NONOate were added to capacitated spermatozoa for 15 min; in these experiments, progesterone was not included. NO2-arg and L-NAME blocked progesterone-induced exocytosis regardless of the time at which these inhibitors were added. Moreover, D-NAME did not inhibit exocytosis. In contrast, spermine-NONOate stimulated the acrosomal exocytosis in vitro directly. These results provide evidence that mouse sperm NO synthase participates in the progesterone-induced acrosome reaction in vitro and that nitric oxide induces this event.

  13. Cloning and Characterization of Cheilanthifoline and Stylopine Synthase Genes from Chelidonium majus.

    Science.gov (United States)

    Yahyazadeh, Mahdi; Ratmoyo, Purwanto; Bittner, Florian; Sato, Fumihiko; Selmar, Dirk

    2017-06-19

    The most prominent alkaloid of Chelidonium majus is dihydrocoptisine, revealing the characteristical benzophenanthridine skeleton. Up to now, any information about the enzymes responsible for its biosynthesis in C. majus and the related genes respectively, is lacking. Based on sequence similarities to the corresponding methylenedioxy bridge-forming cytochrome P450-enzymes involved in the isoquinoline alkaloid biosynthesis in Eschscholzia californica, genes for a cheilanthifoline synthase and a stylopine synthase from C. majus were isolated, sequenced and heterologously expressed in yeast.The activity of the heterologously expressed cytochrome P450-enzymes was determined in situ as well as on the basis of microsomal fractions. It was shown that the cheilanthifoline synthase (c8931) converts scoulerine into cheilanthifoline, the latter subsequently being converted to stylopine by the action of a stylopine synthase (c1128). Based on the well-known instability of stylopine, it can be assumed that in vivo - under the acidic conditions in the vacuole - this alkaloid is converted to dihydrocoptisine, which accumulates in C. majus leaves. Both methylenedioxy bridge-forming cytochrome P450-enzymes from C. majus are characterized by their high substrate specificity. Apart from their genuine substrates, i.e. scoulerine and cheilanthifoline, cheilanthifoline synthase and stylopine synthase do not accept other substrates tested; the only alternative substrate identified was scoulerine, which is converted by stylopine synthase to yield minor amounts of nandinine.Quantitative RT-PCR revealed that the expression of cheilanthifoline synthase and stylopine synthase genes is very similar in both, in roots and leaves from C. majus, although the alkaloid accumulation pattern in these organs are quite different. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Production and characterisation of monoclonal antibodies to phytoene synthase of Lycopersicon esculentum.

    Science.gov (United States)

    Fraser, P D; Misawa, N; Sandmann, G; Johnson, J; Schuch, W; Bramley, P M

    1998-10-01

    Monoclonal antibodies have been prepared against the tomato (Lycopersicon esculentum Mill.) fruit ripening-enhanced phytoene synthase (PSY1). The antigen was prepared as a beta-galactosidase fusion protein by cloning a 1.13 kb fragment of Psy1 cDNA into pUR291, followed by transformation of E. coli. The fusion protein, induced by IPTG, was purified by preparative SDS-PAGE and used to elicit an immune response. The cell lines were screened for cross-reactivity against beta-galactosidase-phytoene synthase fusion protein in E. coli extracts using western blotting and ELISA detection procedures. Positive clones were further screened for their ability to cross-react with the mature phytoene synthase protein on western blots as well as their ability to inhibit enzyme activity. Eleven monoclonal lines were obtained. Nine of these, all of the IgM isotype, exhibited strong responses to phytoene synthase of ripe tomato fruit on western blots, but did not inhibit enzyme activity effectively. The other two lines (IgG/la 2 isotypes) inhibited phytoene synthase activity in ripe tomato stroma, but produced a poor response to the protein on western blots. The monoclonals identified a ripe fruit phytoene synthase of 38 kDa, exclusively located in the chromoplast. In contrast, antibodies were unable to detect microbial phytoene synthases, nor phytoene synthase of maize leaf, tomato chloroplast or mango fruit extracts, either on western blots or from inhibition of phytoene synthase activity. However, they did cross-react with a 44 kDa protein from carrot leaf stroma and with three different proteins (44, 41, and 37 kDa) in carrot root. Cross-reactivity was also found with a 37 kDa protein from pumpkin fruit stroma.

  15. The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation.

    Science.gov (United States)

    Peng, Gang; Wang, Chunyan; Song, Song; Fu, Xiumin; Azam, Muhammad; Grierson, Don; Xu, Changjie

    2013-10-01

    Three 1-deoxy-D-xylulose-5-phosphate synthases (DXS) and three phytoene synthases (PSY) were identified in citrus, from Affymetrix GeneChip Citrus Genome Array, GenBank and public orange genome databases. Tissue-specific expression analysis of these genes was carried out on fruit peel and flesh, flower and leaf of Satsuma mandarin (Citrus unshiu Marc.) in order to determine their roles in carotenoid accumulation in different tissues. Expression of CitDXS1 and CitPSY1 was highest in all test tissues, while that of CitDXS2 and CitPSY2 was lower, and that of CitDXS3 and CitPSY3 undetectable. The transcript profiles of CitDXS1 and CitPSY1 paralleled carotenoid accumulation in flesh of Satsuma mandarin and orange (Citrus sinensis Osbeck) during fruit development, and CitPSY1 expression was also associated with carotenoid accumulation in peel, while the CitDXS1 transcript level was only weakly correlated with carotenoid accumulation in peel. Similar results were obtained following correlation analysis between expression of CitDXS1 and CitPSY1 and carotenoid accumulation in peel and flesh of 16 citrus cultivars. These findings identify CitPSY1 and CitDXS1 as the main gene members controlling carotenoid biosynthesis in citrus fruit. Furthermore, chromoplasts were extracted from flesh tissue of these citrus, and chromoplasts of different shape (spindle or globular), different size, and color depth were observed in different cultivars, indicating chromoplast abundance, number per gram tissue, size and color depth were closely correlated with carotenoid content in most cultivars. The relationship between carotenoid biosynthesis and chromoplast development was discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Guang-Jin Yuan; Xiao-Rong Zhou; Zuo-Jiong Gong; Pin Zhang; Xiao-Mei Sun; Shi-Hua Zheng

    2006-01-01

    AIM: To study the expression and activity of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) in rats with ethanol-induced liver injury and their relation with liver damage, activation of nuclear factor-KB (NF-кB) and tumor necrosis factor-α (TNF-α)expression in the liver.METHODS: Female Sprague-Dawley rats were given fish oil (0.5 mL) along with ethanol or isocaloric dextrose daily via gastrogavage for 4 or 6 wk. Liver injury was assessed using serum alanine aminotransferase (ALT)activity and pathological analysis. Liver malondialdehyde (MDA), nitric oxide contents, iNOS and eNOS activity were determined. NF-KB p65, iNOS, eNOS and TNF-αprotein or mRNA expression in the liver were detected by immunohistochemistry or reverse transcriptase-polymerase chain reaction (RT-PCR).RESULTS: Chronic ethanol gavage for 4 wk caused steatosis, inflammation and necrosis in the liver, and elevated serum ALT activity. Prolonged ethanol administration (6 wk) enhanced the liver damage. These responses were accompanied with increased lipid peroxidation, NO contents, iNOS activity and reduced eNOS activity. NF-кB p65, iNOS and TNF-α protein or mRNA expression were markedly induced after chronic ethanol gavage, whereas eNOS mRNA expression remained unchanged. The enhanced iNOS activity and expression were positively correlated with the liver damage, especially the necro-inflammation, activation of NF-кB, and TNF-α mRNA expression.CONCLUSION: iNOS expression and activity are induced in the liver after chronic ethanol exposure in rats, which are correlated with the liver damage, especially the necro-inflammation, activation of NF-KB and TNF-αexpression. eNOS activity is reduced, but its mRNA expression is not affected.

  17. Surface exposed amino acid differences between mesophilic and thermophilic phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; McGuire, James N

    2004-01-01

    The amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the thermophile Bacillus caldolyticus is 81% identical to the amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the mesophile Bacillus subtilis. Nevertheless the enzyme from the two organisms...... competitive with respect to ATP. A predicted structure of the B. caldolyticus enzyme based on homology modelling with the structure of B. subtilis 5-phospho-alpha-D-ribosyl 1-diphosphate synthase shows 92% of the amino acid differences to be on solvent exposed surfaces in the hexameric structure....

  18. Microsatellite instability and the association with plasma homocysteine and thymidylate synthase in colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Lindebjerg, Jan; Crüger, Dorthe G.;

    2008-01-01

    The possible associations between microsatellite instability, homocysteine and thymidylate synthase were investigated in tumors and plasma from 130 patients with colorectal cancer. Other analyses included thymidylate synthase and 5,10-methylene-tetrahydrofolate reductase gene polymorphisms......, carcinoembryonic antigen, vitamin B12, and folate. Microsatellite instability of tumors was associated with higher levels of plasma homocysteine (p = 0.008) and higher protein expression of thymidylate synthase (p ... factors. CEA was not associated with neither homocysteine nor microsatellite instability. The data suggests that there is a more pronounced methyl unit deficiency in microsatellite instable tumors....

  19. Crystal structure of TruD, a novel pseudouridine synthase with a new protein fold.

    Science.gov (United States)

    Kaya, Yusuf; Del Campo, Mark; Ofengand, James; Malhotra, Arun

    2004-04-30

    TruD, a recently discovered novel pseudouridine synthase in Escherichia coli, is responsible for modifying uridine13 in tRNA(Glu) to pseudouridine. It has little sequence homology with the other 10 pseudouridine synthases in E. coli which themselves have been grouped into four related protein families. Crystal structure determination of TruD revealed a two domain structure consisting of a catalytic domain that differs in sequence but is structurally very similar to the catalytic domain of other pseudouridine synthases and a second large domain (149 amino acids, 43% of total) with a novel alpha/beta fold that up to now has not been found in any other protein.

  20. ESR-spektroskopische Untersuchungen der F0F1-ATP-Synthase aus Escherichia coli

    OpenAIRE

    Motz, Christian

    1999-01-01

    Die FoF1-ATP-Synthase katalysiert die Synthese von ATP aus ADP und Pi bei der oxidativen bzw. Photophosphorylierung. Der ATP-Synthase-Komplex läßt sich in zwei funktionelle Einheiten unterteilen: Fo ist ein integraler Membranproteinkomplex, der den Protonenkanal bildet. F1 hingegen ist ein wasserlöslicher Proteinkomplex, der die Nukleotidbindungsstellen trägt. Die ATP-Synthase aus Escherichia coli hat die Zusammensetzung alpha3beta3gamma delta epsilon für die F1 und ab2c9-12 für den Fo-Teil. ...

  1. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover.

    Science.gov (United States)

    Lin, Yao-Pin; Lee, Tsung-yuan; Tanaka, Ayumi; Charng, Yee-yung

    2014-10-01

    Chlorophylls, the most abundant pigments in the photosynthetic apparatus, are constantly turned over as a result of the degradation and replacement of the damage-prone reaction center D1 protein of photosystem II. Results from isotope labeling experiments suggest that chlorophylls are recycled by reutilization of chlorophyllide and phytol, but the underlying mechanism is unclear. In this study, by characterization of a heat-sensitive Arabidopsis mutant we provide evidence of a salvage pathway for chlorophyllide a. A missense mutation in CHLOROPHYLL SYNTHASE (CHLG) was identified and confirmed to be responsible for a light-dependent, heat-induced cotyledon bleaching phenotype. Following heat treatment, mutant (chlg-1) but not wild-type seedlings accumulated a substantial level of chlorophyllide a, which resulted in a surge of phototoxic singlet oxygen. Immunoblot analysis suggested that the mutation destabilized the chlorophyll synthase proteins and caused a conditional blockage of esterification of chlorophyllide a after heat stress. Accumulation of chlorophyllide a after heat treatment occurred during recovery in the dark in the light-grown but not the etiolated seedlings, suggesting that the accumulated chlorophyllides were not derived from de novo biosynthesis but from de-esterification of the existing chlorophylls. Further analysis of the triple mutant harboring the CHLG mutant allele and null mutations of CHLOROPHYLLASE1 (CLH1) and CLH2 indicated that the known chlorophyllases are not responsible for the accumulation of chlorophyllide a in chlg-1. Taken together, our results show that chlorophyll synthase acts in a salvage pathway for chlorophyll biosynthesis by re-esterifying the chlorophyllide a produced during chlorophyll turnover.

  2. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bechard Matthew E.

    2003-01-01

    Full Text Available Tetrahydromethanopterin (H4MPT is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase. Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  3. Expression of a ferredoxin-dependent glutamate synthase gene in mesophyll and vascular cells and functions of the enzyme in ammonium assimilation in Nicotiana tabacum (L.).

    Science.gov (United States)

    Feraud, Magali; Masclaux-Daubresse, Céline; Ferrario-Méry, Sylvie; Pageau, Karine; Lelandais, Maud; Ziegler, Christine; Leboeuf, Edouard; Jouglet, Tiphaine; Viret, Lauriane; Spampinato, Axelle; Paganelli, Vanina; Hammouda, Mounir Ben; Suzuki, Akira

    2005-11-01

    GLU1 encodes the major ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) in Arabidopsis thaliana (ecotype Columbia). With the aim of providing clues on the role of Fd-GOGAT, we analyzed the expression of Fd-GOGAT in tobacco (Nicotiana tabacum L. cv. Xanthi). The 5' flanking element of GLU1 directed the expression of the uidA reporter gene in the palisade and spongy parenchyma of mesophyll, in the phloem cells of vascular tissue and in the roots of tobacco. White light, red light or sucrose induced GUS expression in the dark-grown seedlings in a pattern similar to the GLU1 mRNA accumulation in Arabidopsis. The levels of GLU2 mRNA encoding the second Fd-GOGAT and NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) were not affected by light. Both in the light and in darkness, (15)NH4(+) was incorporated into [5-(15)N]glutamine and [2-(15)N]glutamate by glutamine synthetase (GS, EC 6.3.1.2) and Fd-GOGAT in leaf disks of transgenic tobacco expressing antisense Fd-GOGAT mRNA and in wild-type tobacco. In the light, low level of Fd-glutamate synthase limited the [2-(15)N]glutamate synthesis in transgenic leaf disks. The efficient dark labeling of [2-(15)N]glutamate in the antisense transgenic tobacco leaves indicates that the remaining Fd-GOGAT (15-20% of the wild-type activity) was not the main limiting factor in the dark ammonium assimilation. The antisense tobacco under high CO2 contained glutamine, glutamate, asparagine and aspartate as the bulk of the nitrogen carriers in leaves (62.5%), roots (69.9%) and phloem exudates (53.2%). The levels of glutamate, asparagine and aspartate in the transgenic phloem exudates were similar to the wild-type levels while the glutamine level increased. The proportion of these amino acids remained unchanged in the roots of the transgenic plants. Expression of GLU1 in mesophyll cells implies that Fd-GOGAT assimilates photorespiratory and primary ammonium. GLU1 expression in vascular cells indicates that Fd-GOGAT provides

  4. Residential lighting design

    CERN Document Server

    Steffen, Marcus

    2014-01-01

    Good lighting is essential to a building. An effective design is not just about introducing light into a space, but rather an appreciation of how the space will be used. A good lighting design is so intertwined with the building that it is only noticed in its absence. This book introduces the tools of the lighting designer and explains how to produce a lighting design for a home. Looking at the nature of light and introducing different lamps and light fittings available, it explains the basics of lighting design and how to provide atmosphere through the play of light and shadow. It gives room-

  5. Solanapyrone synthase, a possible Diels-Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani.

    Science.gov (United States)

    Kasahara, Ken; Miyamoto, Takanori; Fujimoto, Takashi; Oguri, Hiroki; Tokiwano, Tetsuo; Oikawa, Hideaki; Ebizuka, Yutaka; Fujii, Isao

    2010-06-14

    The solanapyrone biosynthetic gene cluster was cloned from Alternaria solani. It consists of six genes-sol1-6-coding for a polyketide synthase, an O-methyltransferase, a dehydrogenase, a transcription factor, a flavin-dependent oxidase, and cytochrome P450. The prosolanapyrone synthase (PSS) encoded by sol1 was expressed in Aspergillus oryzae and its product was identified as desmethylprosolanapyrone I (8). Although PSS is closely related to the PKSs/Diels-Alderases LovB and MlcA of lovastatin and compactin biosynthesis, it did not catalyze cycloaddition. Sol5, encoding a flavin-dependent oxidase (solanapyrone synthase, SPS), was expressed in Pichia pastoris and purified. The purified recombinant SPS showed activity for the formation of (-)-solanapyrone A (1) from achiral prosolanapyrone II (2), establishing that this single enzyme catalyzes both the oxidation and the subsequent cycloaddition reaction, possibly as a Diels-Alder enzyme.

  6. Light up My Life

    Science.gov (United States)

    Kellett, Sarah

    2015-01-01

    Simply stated, light is nature's way of transferring energy through space. Discussions of light usually refer to visible light, which is perceived by the human eye and is responsible for the sense of sight. We see however, only a small part of the light spectrum. Light connects us as we sit and tell yarns around camp fires. Yet, one in every four…

  7. Mobile lighting apparatus

    Science.gov (United States)

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  8. Next Generation Light Robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    potential of this new ‘drone-like’ light-printed, light-driven, light-actuated micro- and nano-robotics in challenging geometries requires a versatile and real-time reconfigurable light addressing that can dynamically track a plurality of tiny tools in 3D to ensure real-time continuous light...

  9. Light up My Life

    Science.gov (United States)

    Kellett, Sarah

    2015-01-01

    Simply stated, light is nature's way of transferring energy through space. Discussions of light usually refer to visible light, which is perceived by the human eye and is responsible for the sense of sight. We see however, only a small part of the light spectrum. Light connects us as we sit and tell yarns around camp fires. Yet, one in every four…

  10. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    beta -Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamy-beta -alanine as the sole nitrogen source and exhibits diminished beta -alanine synthase...... no pyrimidine catabolic pathway, it enabled growth on N-carbamyl- beta -alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta -alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial...... N- carbamyl amidohydrolases. All three beta -alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-beta...

  11. Lack of inhibition of endothelial nitric oxide synthase in the isolated rat aorta by doxorubicin.

    NARCIS (Netherlands)

    Hartog, den GJ; Boots, AW; Haenen, GR; Vijgh, van der W.J.F.

    2003-01-01

    Besides inducing cardiotoxicity, doxorubicin also affects the vasculature. Recent observations in cultured endothelial cells indicated that the endothelial form of nitric oxide synthase might be inhibited by doxorubicin thereby seriously interfering with vascular function. We have investigated the

  12. Prostaglandin-endoperoxide H synthase-2 expression and activity increases with term labor in human chorion

    National Research Council Canada - National Science Library

    Mijovic, J E; Zakar, T; Nairn, T K; Olson, D M

    1997-01-01

    We investigated the changes in prostaglandin-endoperoxide H synthase (PGHS) specific activity and the levels and distribution of PGHS-1 and PGHS-2 mRNA in chorion collected at term before the onset of labor (CS...

  13. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng; Garavito, R. Michael (MSU); (NWU)

    2014-10-02

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) has been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-{angstrom} resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.

  14. Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases.

    Science.gov (United States)

    Schrepfer, Patrick; Buettner, Alexander; Goerner, Christian; Hertel, Michael; van Rijn, Jeaphianne; Wallrapp, Frank; Eisenreich, Wolfgang; Sieber, Volker; Kourist, Robert; Brück, Thomas

    2016-02-23

    Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure-function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids.

  15. SCREENING OF 6-PYRUVOYL-TETRAHYDROPTERIN SYNTHASE ACTIVITY DEFICIENCY AMONG HYPERP HENYLALANINEMIC PATIENTS

    Directory of Open Access Journals (Sweden)

    DURDI QUJEQ

    1999-10-01

    Full Text Available A deficiency of the phenylalanine hydroxylase activity or its cofactor tetrahydrobiopterin may"nlead to hyperphenylalamnemia and as a result, loss of IQ, poor school performance, and"nbehavior problems occurs. Deficiency in 6-pyruvoyl-tetrahydropterin synthase activity is the"nmajor cause of tetrahydrobiopterin deficient phenylketonuria. In this study, blood specimens"nfrom 165 healthy volunteers and 127 children with phenylketonuria were used to determine"nthe 6-pyruvoyl-tetrahydropterin synthase activity. It was found that the activity of 6-"npyruvoyl- tetrahydropterin synthase was decreased in comparison with control [23.46 +/-"n2.94, (mean +/- SD, mmol/ ml/h, n=I27 vs. 127.63 +/- 4.52, n=165, p<0.05]. Results of"nthis study indicate that examination of 6-pyruvoyl-tetrahydropterin synthase activity is helpful"nand may lead to the diagnosis cause of hyperphenylalaninemia.

  16. Dihydroxyacetone synthase is localized in the peroxisomal matrix of methanol-grown Hansenula polymorpha

    NARCIS (Netherlands)

    Douma, Anneke C.; Veenhuis, Marten; de Koning, Willem; Evers, Melchior; Harder, Willem

    1985-01-01

    The subcellular localization of dihydroxyacetone synthase (DHAS) in the methylotrophic yeast Hansenula polymorpha was studied by various biochemical and immunocytochemical methods. After cell fractionation involving differential and sucrose gradient centrifugation of protoplast homogenates prepared

  17. EPSP合成酶的纯化与制备%Purification and Preparation of EPSP Synthase

    Institute of Scientific and Technical Information of China (English)

    向文胜; 王相晶; 覃兆海; 任天瑞; 张雅莉; 张文吉; 苏少泉

    2000-01-01

    The rapid purification(less than 1.5 h) of EPSP synthase from bean seedling by S ephadex G-50 and Mono-Q chromtography was reported. Specific activity of E PSP synthase obtained by the method was 175.2 nmol.min-1.mg-1.Conc entrated enzyme solution after adjusting to 50% glycerol(V/V) and 1mg.mL -1BSA, was stored at -20℃. EPSP synthase activity was stable at least f or 150 days.The activity of EPSP synthase was inhibited approximately 50% by 6.3 μmol.L-1 glyphosate. It showed that the purified EPSP synth ase as herbicide screening model is possible. This purified method has been used to study enzyme mechanism of the glyphosate resistant bean.

  18. Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G

    Directory of Open Access Journals (Sweden)

    Thomas Geoffrey C

    2011-05-01

    Full Text Available Abstract Background Malate synthase, one of the two enzymes unique to the glyoxylate cycle, is found in all three domains of life, and is crucial to the utilization of two-carbon compounds for net biosynthetic pathways such as gluconeogenesis. In addition to the main isoforms A and G, so named because of their differential expression in E. coli grown on either acetate or glycolate respectively, a third distinct isoform has been identified. These three isoforms differ considerably in size and sequence conservation. The A isoform (MSA comprises ~530 residues, the G isoform (MSG is ~730 residues, and this third isoform (MSH-halophilic is ~430 residues in length. Both isoforms A and G have been structurally characterized in detail, but no structures have been reported for the H isoform which has been found thus far only in members of the halophilic Archaea. Results We have solved the structure of a malate synthase H (MSH isoform member from Haloferax volcanii in complex with glyoxylate at 2.51 Å resolution, and also as a ternary complex with acetyl-coenzyme A and pyruvate at 1.95 Å. Like the A and G isoforms, MSH is based on a β8/α8 (TIM barrel. Unlike previously solved malate synthase structures which are all monomeric, this enzyme is found in the native state as a trimer/hexamer equilibrium. Compared to isoforms A and G, MSH displays deletion of an N-terminal domain and a smaller deletion at the C-terminus. The MSH active site is closely superimposable with those of MSA and MSG, with the ternary complex indicating a nucleophilic attack on pyruvate by the enolate intermediate of acetyl-coenzyme A. Conclusions The reported structures of MSH from Haloferax volcanii allow a detailed analysis and comparison with previously solved structures of isoforms A and G. These structural comparisons provide insight into evolutionary relationships among these isoforms, and also indicate that despite the size and sequence variation, and the truncated C

  19. Light-evoked S-nitrosylation in the retina

    Science.gov (United States)

    Tooker, Ryan E; Vigh, Jozsef

    2015-01-01

    Nitric oxide (NO) synthesis in the retina is triggered by light stimulation. NO has been shown to modulate visual signal processing at multiple sites in the vertebrate retina, via activation of the most sensitive target of NO signaling, soluble guanylate cyclase. NO can also alter protein structure and function and exert biological effects directly by binding to free thiol groups of cysteine residues in a chemical reaction called S-nitrosylation. However, in the central nervous system, including the retina, this reaction has not been considered to be significant under physiological conditions. Here we provide immunohistochemical evidence for extensive S-nitrosylation that takes place in the goldfish and mouse retinas under physiologically relevant light intensities, in an intensity-dependent manner, with a strikingly similar pattern in both species. Pre-treatment with NEM, which occludes S-nitrosylation, or with TRIM, an inhibitor of neuronal NO synthase, eliminated the light-evoked increase in S-nitrosylated protein immunofluorescence (SNI) in the retinas of both species. Similarly, light did not increase SNI, above basal levels, in retinas of transgenic mice lacking neuronal NO synthase. Qualitative analysis of the light-adapted mouse retina with mass spectrometry revealed more than 300 proteins that were S-nitrosylated upon illumination, many of which are known to participate directly in retinal signal processing. Our data strongly suggest that in the retina, light-evoked NO production leads to extensive S-nitrosylation and that this process is a significant post-translational modification affecting a wide range of proteins under physiological conditions. PMID:25823749

  20. Light-evoked S-nitrosylation in the retina.

    Science.gov (United States)

    Tooker, Ryan E; Vigh, Jozsef

    2015-10-01

    Nitric oxide (NO) synthesis in the retina is triggered by light stimulation. NO has been shown to modulate visual signal processing at multiple sites in the vertebrate retina, via activation of the most sensitive target of NO signaling, soluble guanylate cyclase. NO can also alter protein structure and function and exert biological effects directly by binding to free thiol groups of cysteine residues in a chemical reaction called S-nitrosylation. However, in the central nervous system, including the retina, this reaction has not been considered to be significant under physiological conditions. Here we provide immunohistochemical evidence for extensive S-nitrosylation that takes place in the goldfish and mouse retinas under physiologically relevant light intensities, in an intensity-dependent manner, with a strikingly similar pattern in both species. Pretreatment with N-ethylmaleimide (NEM), which occludes S-nitrosylation, or with 1-(2-trifluromethylphenyl)imidazole (TRIM), an inhibitor of neuronal NO synthase, eliminated the light-evoked increase in S-nitrosylated protein immunofluorescence (SNI) in the retinas of both species. Similarly, light did not increase SNI, above basal levels, in retinas of transgenic mice lacking neuronal NO synthase. Qualitative analysis of the light-adapted mouse retina with mass spectrometry revealed more than 300 proteins that were S-nitrosylated upon illumination, many of which are known to participate directly in retinal signal processing. Our data strongly suggest that in the retina light-evoked NO production leads to extensive S-nitrosylation and that this process is a significant posttranslational modification affecting a wide range of proteins under physiological conditions.

  1. Transcriptional Modulation of Squalene Synthase Genes in Barley Treated with PGPR

    OpenAIRE

    Anam eYousaf; Abdul eQadir; Tehmina eAnjum; Aqeel eAhmad

    2015-01-01

    Phytosterol contents and food quality of plant produce is directly associated with transcription of gene Squalene Synthase (SS). In current study, barley plants were treated with different rhizobacterial strains under semi controlled (27±3°C) greenhouse conditions in order to modulate expression of SS gene. Plant samples were analysed through semi-quantitative PCR to evaluate effect of rhizobacterial application on transcriptional status of squalene synthase. Results revealed that among four ...

  2. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    Science.gov (United States)

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively).

  3. Synthèse bibliographique: la divinyl éther synthase de plantes

    OpenAIRE

    Fauconnier M.L.; Hoyaux P.; Delcarte J.; Marlier M.; du Jardin P.

    2001-01-01

    Divinyl ether synthase in plants: a review. Divinyl ether synthase, an enzyme of the lipoxygenase pathway transforms, in potato tubers, 9-hydroperoxides of fatty acids into colneleic and colnelenic acid, two divinyl ethers of fatty acids. The enzyme has been described in a limited number of quite different plants. The enzyme has also been detected in tomato roots, garlic bulbs, tobacco plants and in marine algae. The enzyme is bound to membranes and is located in the microsomal fraction. The ...

  4. Molecular cloning and expression profiling of a chalcone synthase gene from Lamiophlomis rotata

    Indian Academy of Sciences (India)

    Qiao Feng; Geng Gui-Gong; Zeng Yang; Xie Hui-Chun; Jin Lan; Shang Jun; Chen Zhi

    2015-06-01

    Lamiophlomis rotata is a renowned Chinese medicinal plant. Chalcone synthase (CHS) is important in flavonoid and isoflavonoid biosynthesis, catalysing the formation of naringenin chalcone in plants. A full-length cDNA encoding the CHS gene was cloned from L. rotata based on the highly conserved CHS gene sequences of Labiatae plants. A blast search showed its homology (named LrCHS) with other CHS genes of Labiate plants. The full-length genomic DNA of LrCHS was 2026 bp with one intron of 651 bp, two exons of 178 bp and 998 bp, flanked by a 73 bp $5'$-UTR and a 126 bp $3'$-UTR. The cDNA sequence of the LrCHS gene had an 1176 bp open reading frame encoding a 391 amino acid protein of 42,798 Da. The CHS protein predicted from L. rotata showed 79–86% identity with CHS of other plant species. We conducted a phylogenetic analysis of nine families containing 48 plants and L. rotata based on the full amino acid sequences of CHS proteins. Consequently, LrCHS was located in the Labiatae branch. Additionally, we examined LrCHS gene expression patterns in different tissues by quantitative real-time PCR with specific primers. The expression analysis showed preferential expression of LrCHS in flowers and leaves during the flowering stage. Total flavonoid content and CHS gene expression exhibited similar patterns during L. rotata organ development. In agreement with its function as an elicitor-responsive gene, LrCHS expression was coordinated by methyl jasmonate and UV light, and induced between 6 and 18 h. These results provide a molecular basis for additional functional studies of LrCHS in L. rotata.

  5. Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status.

    Science.gov (United States)

    Mizuno, Daichi; Higuchi, Kyoko; Sakamoto, Tatsuya; Nakanishi, Hiromi; Mori, Satoshi; Nishizawa, Naoko K

    2003-08-01

    Nicotianamine synthase (NAS) is an enzyme that is critical for the biosynthesis of the mugineic acid family of phytosiderophores in graminaceous plants, and for the homeostasis of metal ions in nongraminaceous plants. We isolated one genomic NAS clone, ZmNAS3, and two cDNA NAS clones, ZmNAS1 and ZmNAS2, from maize (Zea mays cv Alice). In agreement with the increased secretion of phytosiderophores with Fe deficiency, ZmNAS1 and ZmNAS2 were positively expressed only in Fe-deficient roots. In contrast, ZmNAS3 was expressed under Fe-sufficient conditions, and was negatively regulated by Fe deficiency. This is the first report describing down-regulation of NAS gene expression in response to Fe deficiency in plants, shedding light on the role of nicotianamine in graminaceous plants, other than as a precursor in phytosiderophore production. ZmNAS1-green fluorescent protein (sGFP) and ZmNAS2-sGFP were localized at spots in the cytoplasm of onion (Allium cepa) epidermal cells, whereas ZmNAS3-sGFP was distributed throughout the cytoplasm of these cells. ZmNAS1 and ZmNAS3 showed NAS activity in vitro, whereas ZmNAS2 showed none. Due to its duplicated structure, ZmNAS2 was much larger (65.8 kD) than ZmNAS1, ZmNAS3, and previously characterized NAS proteins (30-38 kD) from other plant species. We reveal that maize has two types of NAS proteins based on their expression pattern and subcellular localization.

  6. Carotenogenesis Is Regulated by 5'UTR-Mediated Translation of Phytoene Synthase Splice Variants.

    Science.gov (United States)

    Álvarez, Daniel; Voß, Björn; Maass, Dirk; Wüst, Florian; Schaub, Patrick; Beyer, Peter; Welsch, Ralf

    2016-12-01

    Phytoene synthase (PSY) catalyzes the highly regulated, frequently rate-limiting synthesis of the first biosynthetically formed carotene. While PSY constitutes a small gene family in most plant taxa, the Brassicaceae, including Arabidopsis (Arabidopsis thaliana), predominantly possess a single PSY gene. This monogenic situation is compensated by the differential expression of two alternative splice variants (ASV), which differ in length and in the exon/intron retention of their 5'UTRs. ASV1 contains a long 5'UTR (untranslated region) and is involved in developmentally regulated carotenoid formation, such as during deetiolation. ASV2 contains a short 5'UTR and is preferentially induced when an immediate increase in the carotenoid pathway flux is required, such as under salt stress or upon sudden light intensity changes. We show that the long 5'UTR of ASV1 is capable of attenuating the translational activity in response to high carotenoid pathway fluxes. This function resides in a defined 5'UTR stretch with two predicted interconvertible RNA conformations, as known from riboswitches, which might act as a flux sensor. The translation-inhibitory structure is absent from the short 5'UTR of ASV2 allowing to bypass translational inhibition under conditions requiring rapidly increased pathway fluxes. The mechanism is not found in the rice (Oryza sativa) PSY1 5'UTR, consistent with the prevalence of transcriptional control mechanisms in taxa with multiple PSY genes. The translational control mechanism identified is interpreted in terms of flux adjustments needed in response to retrograde signals stemming from intermediates of the plastid-localized carotenoid biosynthesis pathway. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii

    DEFF Research Database (Denmark)

    Kadziola, Anders; Jepsen, Clemens H; Johansson, Eva;

    2005-01-01

    The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and....... The properties of M.jannaschii PRPP synthase differ widely from previously characterised PRPP synthases by its tetrameric quaternary structure and the simultaneous phosphate ion-activation and lack of allosteric inhibition, and, thus, constitute a novel class of PRPP synthases....

  8. Energy Efficient Task Light

    DEFF Research Database (Denmark)

    Logadottir, Asta; Ardkapan, Siamak Rahimi; Johnsen, Kjeld

    2014-01-01

    The objectives of this work is to develop a task light for office lighting that fulfils the minimum requirements of the European standard EN12464 - 1 : Light and lightingLighting of work places, Part 1: Indoor workplaces and the Danish standard DS 700 : Lys og belysning I arbejdsrum , or more...... specifically the requirements that apply to the work area and the immediate surrounding area. By providing a task light that fulfils the requirements for task lighting and the immediate surrounding area, the general lighting only needs to provide the illuminance levels required for background lighting...... and thereby a reduction in installed power for general lighting of about 40 % compared to the way illuminance levels are designed in an office environment in Denmark today. This lighting strategy is useful when the placement of the task area is not defined in the space before the lighting is design ed...

  9. Loss of ceramide synthase 3 causes lethal skin barrier disruption.

    Science.gov (United States)

    Jennemann, Richard; Rabionet, Mariona; Gorgas, Karin; Epstein, Sharon; Dalpke, Alexander; Rothermel, Ulrike; Bayerle, Aline; van der Hoeven, Franciscus; Imgrund, Silke; Kirsch, Joachim; Nickel, Walter; Willecke, Klaus; Riezman, Howard; Gröne, Hermann-Josef; Sandhoff, Roger

    2012-02-01

    The stratum corneum as the outermost epidermal layer protects against exsiccation and infection. Both the underlying cornified envelope (CE) and the intercellular lipid matrix contribute essentially to these two main protective barriers. Epidermis-unique ceramides with ultra-long-chain acyl moities (ULC-Cers) are key components of extracellular lipid lamellae (ELL) and are bound to CE proteins, thereby contributing to the cornified lipid envelope (CLE). Here, we identified human and mouse ceramide synthase 3 (CerS3), among CerS1-6, to be exclusively required for the ULC-Cer synthesis in vitro and of mouse CerS3 in vivo. Deficiency of CerS3 in mice results in complete loss of ULC-Cers (≥C26), lack of continuous ELL and a non-functional CLE. Consequently, newborn mutant mice die shortly after birth from transepidermal water loss. Mutant skin is prone to Candida albicans infection highlighting ULC-Cers to be pivotal for both barrier functions. Persistent periderm, hyperkeratosis and deficient cornification are hallmarks of mutant skin demonstrating loss of Cers to trigger a keratinocyte maturation arrest at an embryonic pre-barrier stage.

  10. Hyperbaric oxygen upregulates cochlear constitutive nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Kao Ming-Ching

    2011-02-01

    Full Text Available Abstract Background Hyperbaric oxygen therapy (HBOT is a known adjuvant for treating ischemia-related inner ear diseases. Controversies still exist in the role of HBOT in cochlear diseases. Few studies to date have investigated the cellular changes that occur in inner ears after HBOT. Nitric oxide, which is synthesized by nitric oxide synthase (NOS, is an important signaling molecule in cochlear physiology and pathology. Here we investigated the effects of hyperbaric oxygen on eardrum morphology, cochlear function and expression of NOS isoforms in cochlear substructures after repetitive HBOT in guinea pigs. Results Minor changes in the eardrum were observed after repetitive HBOT, which did not result in a significant hearing threshold shift by tone burst auditory brainstem responses. A differential effect of HBOT on the expression of NOS isoforms was identified. Upregulation of constitutive NOS (nNOS and eNOS was found in the substructures of the cochlea after HBOT, but inducible NOS was not found in normal or HBOT animals, as shown by immunohistochemistry. There was no obvious DNA fragmentation present in this HBOT animal model. Conclusions The present evidence indicates that the customary HBOT protocol may increase constitutive NOS expression but such upregulation did not cause cell death in the treated cochlea. The cochlear morphology and auditory function are consequently not changed through the protocol.

  11. Adenovirus-mediated nitric oxide synthase gene transfer.

    Science.gov (United States)

    Raman, Kathleen G; Shapiro, Richard A; Tzeng, Edith; Kibbe, Melina R

    2004-01-01

    The varied biological effects of nitric oxide (NO) have led to intense research into its diverse physiologic and pathophysiologic roles in multiple disease processes. It has been implicated in the development of altered vasomotor tone, intimal hyperplasia, atherosclerosis, impotence, host defense, and wound healing. Using the modern technologies of recombinant DNA and gene transfer using adenoviral vectors, the effects of NO derived from various NO synthase (NOS) enzymes can be studied in a variety of tissues and the therapeutic applications of NOS is possible. Such uses of NOS gene transfer have been investigated extensively in the vasculature where NO is critical to regulating vascular homeostasis. NOS gene therapy has the theoretical advantage of allowing NO delivery to be localized, thereby limiting potential adverse effects of NO. The benefits of adenoviral vectors in gene transfer include relatively high transduction efficiencies, both replicating and nonreplicating cells may be infected, and the high titers of adenovirus that can be produced. The methods described in this chapter include the cloning of the iNOS cDNA into a recombinant adenoviral vector, large-scale production of that vector AdiNOS preparation, and the use of the vector to transduce tissue in vitro and in vivo.

  12. ASMPKS: an analysis system for modular polyketide synthases

    Directory of Open Access Journals (Sweden)

    Kong Eun-Bae

    2007-09-01

    Full Text Available Abstract Background Polyketides are secondary metabolites of microorganisms with diverse biological activities, including pharmacological functions such as antibiotic, antitumor and agrochemical properties. Polyketides are synthesized by serialized reactions of a set of enzymes called polyketide synthase(PKSs, which coordinate the elongation of carbon skeletons by the stepwise condensation of short carbon precursors. Due to their importance as drugs, the volume of data on polyketides is rapidly increasing and creating a need for computational analysis methods for efficient polyketide research. Moreover, the increasing use of genetic engineering to research new kinds of polyketides requires genome wide analysis. Results We describe a system named ASMPKS (Analysis System for Modular Polyketide Synthesis for computational analysis of PKSs against genome sequences. It also provides overall management of information on modular PKS, including polyketide database construction, new PKS assembly, and chain visualization. ASMPKS operates on a web interface to construct the database and to analyze PKSs, allowing polyketide researchers to add their data to this database and to use it easily. In addition, the ASMPKS can predict functional modules for a protein sequence submitted by users, estimate the chemical composition of a polyketide synthesized from the modules, and display the carbon chain structure on the web interface. Conclusion ASMPKS has powerful computation features to aid modular PKS research. As various factors, such as starter units and post-processing, are related to polyketide biosynthesis, ASMPKS will be improved through further development for study of the factors.

  13. SUCROSE SYNTHASE: ELUCIDATION OF COMPLEX POST-TRANSLATIONAL REGULATORY MECHANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Steven C. Huber

    2009-05-12

    Studies have focused on the enzyme sucrose synthase, which plays an important role in the metabolism of sucrose in seeds and tubers. There are three isoforms of SUS in maize, referred to as SUS1, SUS-SH1, and SUS2. SUS is generally considered to be tetrameric protein but recent evidence suggests that SUS can also occur as a dimeric protein. The formation of tetrameric SUS is regulated by sucrose concentration in vitro and this could also be an important factor in the cellular localization of the protein. We found that high sucrose concentrations, which promote tetramer formation, also inhibit the binding of SUS1 to actin filaments in vitro. Previously, high sucrose concentrations were shown to promote SUS association with the plasma membrane. The specific regions of the SUS molecule involved in oligomerization are not known, but we identified a region of the SUS1 moelcule by bioinformatic analysis that was predicted to form a coiled coil. We demonstrated that this sequence could, in fact, self-associate as predicted for a coiled coil, but truncation analysis with the full-length recombinant protein suggested that it was not responsible for formation of dimers or tetramers. However, the coiled coil may function in binding of other proteins to SUS1. Overall, sugar availability may differentially influence the binding of SUS to cellular structures, and these effects may be mediated by changes in the oligomeric nature of the enzyme.

  14. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    Science.gov (United States)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  15. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daren W.; Butchko, Robert A.; Baker, Scott E.; Proctor, Robert H.

    2012-02-01

    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, F. graminearum, F. oxysporum and Nectria haematococca (anamorph F. solani) identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted a phylogenomic and functional domain analysis. The resulting genealogy suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-of-function due to nucleotide mutations. Transcriptional analysis indicate that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites.

  16. Role of lupeol synthase in Lotus japonicus nodule formation.

    Science.gov (United States)

    Delis, Costas; Krokida, Afrodite; Georgiou, Sofia; Peña-Rodríguez, Luis M; Kavroulakis, Nektarios; Ioannou, Efstathia; Roussis, Vassilios; Osbourn, Anne E; Papadopoulou, Kalliope K

    2011-01-01

    • Triterpenes are plant secondary metabolites, derived from the cyclization of 2,3-oxidosqualene by oxidosqualene cyclases (OSCs). Here, we investigated the role of lupeol synthase, encoded by OSC3, and its product, lupeol, in developing roots and nodules of the model legume Lotus japonicus. • The expression patterns of OSC3 in different developmental stages of uninfected roots and in roots infected with Mesorhizobium loti were determined. The tissue specificity of OSC3 expression was analysed by in situ hybridization. Functional analysis, in which transgenic L. japonicus roots silenced for OSC3 were generated, was performed. The absence of lupeol in the silenced plant lines was determined by GC-MS. • The expression of ENOD40, a marker gene for nodule primordia initiation, was increased significantly in the OSC3-silenced plant lines, suggesting that lupeol influences nodule formation. Silenced plants also showed a more rapid nodulation phenotype, consistent with this. Exogenous application of lupeol to M. loti-infected wild-type plants provided further evidence for a negative regulatory effect of lupeol on the expression of ENOD40. • The synthesis of lupeol in L. japonicus roots and nodules can be solely attributed to OSC3. Taken together, our data suggest a role for lupeol biosynthesis in nodule formation through the regulation of ENOD40 gene expression.

  17. N-acetylglutamate synthase: structure, function and defects.

    Science.gov (United States)

    Caldovic, Ljubica; Ah Mew, Nicholas; Shi, Dashuang; Morizono, Hiroki; Yudkoff, Marc; Tuchman, Mendel

    2010-01-01

    N-acetylglutamate (NAG) is a unique enzyme cofactor, essential for liver ureagenesis in mammals while it is the first committed substrate for de novo arginine biosynthesis in microorganisms and plants. The enzyme that produces NAG from glutamate and CoA, NAG synthase (NAGS), is allosterically inhibited by arginine in microorganisms and plants and activated in mammals. This transition of the allosteric effect occurred when tetrapods moved from sea to land. The first mammalian NAGS gene (from mouse) was cloned in 2002 and revealed significant differences from the NAGS ortholog in microorganisms. Almost all NAGS genes possess a C-terminus transferase domain in which the catalytic activity resides and an N-terminus kinase domain where arginine binds. The three-dimensional structure of NAGS shows two distinctly folded domains. The kinase domain binds arginine while the acetyltransferase domain contains the catalytic site. NAGS deficiency in humans leads to hyperammonemia and can be primary, due to mutations in the NAGS gene or secondary due to other mitochondrial aberrations that interfere with the normal function of the same enzyme. For either condition, N-carbamylglutamate (NCG), a stable functional analog of NAG, was found to either restore or improve the deficient urea-cycle function.

  18. Human leucocytes in asthenozoospermic patients: endothelial nitric oxide synthase expression.

    Science.gov (United States)

    Buldreghini, E; Hamada, A; Macrì, M L; Amoroso, S; Boscaro, M; Lenzi, A; Agarwal, A; Balercia, G

    2014-12-01

    In a basic study at the Andrology Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy, we evaluated the pattern of mRNA endothelial nitric oxide synthase (eNOS) expression in human blood leucocytes isolated from normozoospermic fertile and asthenozoospermic infertile men to elucidate any pathogenic involvement in sperm cell motility. Forty infertile men with idiopathic asthenozoospermia and 45 normozoospermic fertile donors, age-matched, were included. Semen parameters were evaluated, and expression analysis of mRNA was performed in human leucocytes using reverse transcription polymerase chain reaction. Sperm volume, count, motility and morphology were determined, and eNOS expression and Western blotting analyses were performed. A positive correlation was observed between the concentrations of NO and the percentage of immotile spermatozoa. The mRNA of eNOS was more expressed in peripheral blood leucocytes isolated from asthenozoospermic infertile men versus those of fertile normozoospermic men (7.46 ± 0.38 versus 7.06 ± 0.56, P = 0.0355). A significant up-regulation of eNOS gene in peripheral blood leucocytes was 1.52-fold higher than that of fertile donors. It is concluded that eNOS expression and activity are enhanced in blood leucocytes in men with idiopathic asthenozoospermia.

  19. Squalene Synthase As a Target for Chagas Disease Therapeutics

    Science.gov (United States)

    Chan, Hsiu-Chien; Li, Jikun; Zheng, Yingying; Huang, Chun-Hsiang; Ren, Feifei; Chen, Chun-Chi; Zhu, Zhen; Galizzi, Melina; Li, Zhu-Hong; Rodrigues-Poveda, Carlos A.; Gonzalez-Pacanowska, Dolores; Veiga-Santos, Phercyles; de Carvalho, Tecia Maria Ulisses; de Souza, Wanderley; Urbina, Julio A.; Wang, Andrew H.-J.; Docampo, Roberto; Li, Kai; Liu, Yi-Liang; Oldfield, Eric; Guo, Rey-Ting

    2014-01-01

    Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease. PMID:24789335

  20. Squalene synthase as a target for Chagas disease therapeutics.

    Directory of Open Access Journals (Sweden)

    Na Shang

    2014-05-01

    Full Text Available Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease.

  1. Helicobacter pylori does not use spermidine synthase to produce spermidine.

    Science.gov (United States)

    Zhang, Huawei; Au, Shannon Wing Ngor

    2017-08-26

    Helicobacter pylori is the primary pathogen associated to gastritis and gastric cancer. Growth of H. pylori depends on the availability of spermidine in vivo. Interestingly, the genome of H. pylori contains an incomplete set of genes for the classical pathway of spermidine biosynthesis. It is thus not clear whether some other genes remained in the pathway would have any functions in spermidine biosynthesis. Here, we study spermidine synthase, which is responsible for the final catalytic process in the classical route. Protein sequence alignment reveals that H. pylori SpeE (HpSpeE) lacks key residues for substrate binding. By using isothermal titration calorimetry, we show that purified recombinant HpSpeE does not interact with the putative substrates putrescine and decarboxylated S-adenosylmethionine, and the product spermidine. High performance liquid chromatography analysis further demonstrates that HpSpeE has no detectable in vitro enzymatic activity. Additionally, intracellular spermidine level in speE-null mutant strain is comparable to that in the wild type strain. Collectively, our results suggest that HpSpeE is functionally distinct from spermidine production. H. pylori may instead employ the alternative pathway for spermidine synthesis which is dominantly exploited by other human gut microbes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes.

    Directory of Open Access Journals (Sweden)

    Alexander S Davis

    2007-12-01

    Full Text Available Mycobacterium tuberculosis is sensitive to nitric oxide generated by inducible nitric oxide synthase (iNOS. Consequently, to ensure its survival in macrophages, M. tuberculosis inhibits iNOS recruitment to its phagosome by an unknown mechanism. Here we report the mechanism underlying this process, whereby mycobacteria affect the scaffolding protein EBP50, which normally binds to iNOS and links it to the actin cytoskeleton. Phagosomes harboring live mycobacteria showed reduced capacity to retain EBP50, consistent with lower iNOS recruitment. EBP50 was found on purified phagosomes, and its expression increased upon macrophage activation, paralleling expression changes seen with iNOS. Overexpression of EBP50 increased while EBP50 knockdown decreased iNOS recruitment to phagosomes. Knockdown of EBP50 enhanced mycobacterial survival in activated macrophages. We tested another actin organizer, coronin-1, implicated in mycobacterium-macrophage interaction for contribution to iNOS exclusion. A knockdown of coronin-1 resulted in increased iNOS recruitment to model latex bead phagosomes but did not increase iNOS recruitment to phagosomes with live mycobacteria and did not affect mycobacterial survival. Our findings are consistent with a model for the block in iNOS association with mycobacterial phagosomes as a mechanism dependent primarily on reduced EBP50 recruitment.

  3. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Stêfany Bruno De Assis Cau

    2012-06-01

    Full Text Available Vascular aging is the term that describes the structural and functional disturbances of the vasculature with advancing aging. The molecular mechanisms of aging-associated endothelial dysfunction are complex, but reduced nitric oxide (NO bioavailability and altered vascular expression and activity of NO synthase (NOS enzymes have been implicated as major players. Impaired vascular relaxation in aging has been attributed to reduced endothelial NOS (eNOS-derived NO, while increased inducible NOS (iNOS expression seems to account for nitrosative stress and disrupted vascular homeostasis. Although eNOS is considered the main source of NO in the vascular endothelium, neuronal NOS (nNOS also contributes to endothelial cells-derived NO, a mechanism that is reduced in aging. Pharmacological modulation of NO generation and expression/activity of NOS isoforms may represent a therapeutic alternative to prevent the progression of cardiovascular diseases. Accordingly, this review will focus on drugs that modulate NO bioavailability, such as nitrite anions and NO-releasing non-steroidal anti-inflammatory drugs, hormones (dehydroepiandrosterone and estrogen, statins, resveratrol and folic acid, since they may be useful to treat/to prevent aging-associated vascular dysfunction. The impact of these therapies on life quality in elderly and longevity will be discussed.

  4. Virus-induced silencing of a tobacco deoxyhypusine synthase gene

    Institute of Scientific and Technical Information of China (English)

    WANG Hongzhi; MA Rongcai; LI Ruifen; WANG Guoying; WEI Jianhua

    2005-01-01

    A cDNA fragment corresponding to deoxyhypusine synthase gene NbDHS was isolated and cloned into potato virus X (PVX) vector for functional analysis in Nicotiana benthamiana by using virus-induced gene silencing (VIGS). Plants agroinfected with recombinant virus vector PVX-NbDHS exhibited an increase in leaf biomass, delay in natural leaf senescence and flowering time, and decrease in leaf chlorophyll content. Semi-quantitative RT-PCR and Northern analysis showed that the transcript level of DHS was significantly lower in PVX-NbDHS infected plants. At the same time, the expression for eIF-5A, the target proteins of DHS in N. benthamiana, was concomitantly suppressed by semi-quantitative RT-PCR and Western analysis. From the phenotypic feature of the infected plants and the reduced expression abundance of DHS and eIF-5A, we concluded that NbDHS plays important roles in plant growth, development and senescence. The possible application of DHS gene in genetic modification of crops and horticultural plants was discussed.

  5. Inducible nitric oxide synthase is expressed in synovial fluid granulocytes.

    Science.gov (United States)

    Cedergren, J; Forslund, T; Sundqvist, T; Skogh, T

    2002-10-01

    The objective of the study was to evaluate the NO-producing potential of synovial fluid (SF) cells. SF from 15 patients with arthritis was compared with blood from the same individuals and with blood from 10 healthy controls. Cellular expression of inducible nitric oxide synthase (iNOS) was analysed by flow cytometry. High-performance liquid chromatography was used to measure l-arginine and l-citrulline. Nitrite and nitrate were measured colourimetrically utilizing the Griess' reaction. Compared to whole blood granulocytes in patients with chronic arthritis, a prominent iNOS expression was observed in SF granulocytes (P < 0.001). A slight, but statistically significant, increase in iNOS expression was also recorded in lymphocytes and monocytes from SF. l-arginine was elevated in SF compared to serum (257 +/- 78 versus 176 +/- 65 micro mol/l, P = 0.008), whereas a slight increase in l-citrulline (33 +/- 11 versus 26 +/- 9 micro mol/l), did not reach statistical significance. Great variations but no significant differences were observed comparing serum and SF levels of nitrite and nitrate, respectively, although the sum of nitrite and nitrate tended to be elevated in SF (19.2 +/- 20.7 versus 8.6 +/- 6.5 micro mol/l, P = 0.054). Synovial fluid leucocytes, in particular granulocytes, express iNOS and may thus contribute to intra-articular NO production in arthritis.

  6. Gelatinization temperature of rice explained by polymorphisms in starch synthase.

    Science.gov (United States)

    Waters, Daniel L E; Henry, Robert J; Reinke, Russell F; Fitzgerald, Melissa A

    2006-01-01

    The cooking quality of rice is associated with the starch gelatinization temperature (GT). Rice genotypes with low GT have probably been selected for their cooking quality by humans during domestication. We now report polymorphisms in starch synthase IIa (SSIIa) that explain the variation in rice starch GT. Sequence analysis of the eight exons of SSIIa identified significant polymorphism in only exon 8. These single nucleotide polymorphisms (SNPs) were determined in 70 diverse genotypes of rice. Two SNPs could classify all 70 genotypes into either high GT or low GT types which differed in GT by 8 degrees C. 'A' rather than 'G' at base 2412 determined whether a methionine or valine was present at the corresponding amino acid residue in SSIIa, whilst two adjacent SNPs at bases 2543 and 2544 coded for either leucine (GC) or phenylalanine (TT). Rice varieties with high GT starch had a combination of valine and leucine at these residues. In contrast, rice varieties with low GT starch had a combination of either methionine and leucine or valine and phenylalanine at these same residues. At least two distinct polymorphisms have apparently been selected for their desirable cooking qualities in the domestication of rice.

  7. The y1 gene of maize codes for phytoene synthase.

    Science.gov (United States)

    Buckner, B; Miguel, P S; Janick-Buckner, D; Bennetzen, J L

    1996-05-01

    The cloned y1 locus of maize was sequenced and found to encode phytoene synthase. Different "wild-type" alleles of the locus were found to differ by the insertion of transposable elements in their promoter and polyA addition regions, and by the length of a CCA tandem repeat series, without any obvious effect on function of the gene. A dominant Y1 ("wild-type") allele was observed to be expressed at highest levels in the seedling but also in the embryo and endosperm. The Mu3 transposable element insertion responsible for a pastel allele of y1, which gives lowered levels of carotenoids in the endosperm of kernels and seedlings grown at high temperatures, was located in the 5' end of the gene. Although the size of the transcript from this y1 mutation suggests that the Mu3 element provides the promoter for this allele, leaf tissue in this mutant line contained approximately normal amounts of y1 mRNA. A recessive allele of y1, which conditions normal levels of carotenoids in the embryo and seedling, but almost no carotenoids in the endosperm, was found to accumulate normal amounts of y1 mRNA in the seedling and embryo, while y1 transcripts were not detected in the endosperm.

  8. Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models

    Science.gov (United States)

    Sardi, S. Pablo; Viel, Catherine; Clarke, Jennifer; Treleaven, Christopher M.; Richards, Amy M.; Park, Hyejung; Olszewski, Maureen A.; Dodge, James C.; Marshall, John; Makino, Elina; Wang, Bing; Sidman, Richard L.; Cheng, Seng H.; Shihabuddin, Lamya S.

    2017-01-01

    Mutations in the glucocerebrosidase gene (GBA) confer a heightened risk of developing Parkinson’s disease (PD) and other synucleinopathies, resulting in a lower age of onset and exacerbating disease progression. However, the precise mechanisms by which mutations in GBA increase PD risk and accelerate its progression remain unclear. Here, we investigated the merits of glucosylceramide synthase (GCS) inhibition as a potential treatment for synucleinopathies. Two murine models of synucleinopathy (a Gaucher-related synucleinopathy model, GbaD409V/D409V and a A53T–α-synuclein overexpressing model harboring wild-type alleles of GBA, A53T–SNCA mouse model) were exposed to a brain-penetrant GCS inhibitor, GZ667161. Treatment of GbaD409V/D409V mice with the GCS inhibitor reduced levels of glucosylceramide and glucosylsphingosine in the central nervous system (CNS), demonstrating target engagement. Remarkably, treatment with GZ667161 slowed the accumulation of hippocampal aggregates of α-synuclein, ubiquitin, and tau, and improved the associated memory deficits. Similarly, prolonged treatment of A53T–SNCA mice with GZ667161 reduced membrane-associated α-synuclein in the CNS and ameliorated cognitive deficits. The data support the contention that prolonged antagonism of GCS in the CNS can affect α-synuclein processing and improve behavioral outcomes. Hence, inhibition of GCS represents a disease-modifying therapeutic strategy for GBA-related synucleinopathies and conceivably for certain forms of sporadic disease. PMID:28223512

  9. Conservation and Role of Electrostatics in Thymidylate Synthase.

    Science.gov (United States)

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C

    2015-11-27

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.

  10. Upregulation of glucosylceramide synthase protein in papillary thyroid carcinoma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke; SONG Ying-hua; LIN Xiao-yan; WANG Qiang-xiu; ZHANG Hua-wei; XU Jia-wen

    2013-01-01

    Background Glucosylceramide synthase (GCS) can reduce ceramide levels and help cells escape ceramide-induced apoptosis,thus leading to multidrug resistance (MDR).However,its expression and clinical significance in thyroid neoplasms still remain unclear.We aimed to elucidate the expression of GCS and explore its correlation with the clinicopathological characteristics in papillary thyroid carcinomas (PTCs).Methods We retrospectively investigated GCS protein expression level in tissue specimens obtained from 108 consecutive PTC patients by immunohistochemistry and Western blotting.Results GCS was weakly positive or negative in normal follicular cells,but it was frequently overexpressed in PTC cells.GCS overexpression was associated with primary tumor size,local infiltration,lymph node metastasis,and local recurrence,but not associated with gender,age,pathological variants,tumor multifocality,tumor stage or distant metastasis.Western blotting also showed that GCS protein levels were much higher in PTCs' tissues than in normal thyroid tissues.Conclusion GCS was upregulated in PTCs and might be an independent factor affecting prognosis.

  11. Nitric oxide synthase: non-canonical expression patterns

    Directory of Open Access Journals (Sweden)

    Mattila eJoshua

    2014-10-01

    Full Text Available Science can move ahead by questioning established or canonical views and, so it may be with the enzymes, nitric oxide synthases (NOS. Nitric oxide (NO is generated by NOS isoforms that are often described by their tissue-specific expression patterns. NOS1 (nNOS is abundant in neural tissue, NOS2 is upregulated in activated macrophages and known as inducible NOS (iNOS, and NOS3 (eNOS is abundant in endothelium where it regulates vascular tone. These isoforms are described as constitutive or inducible, but in this Perspective we question the broad application of these labels. Are there instances where ‘constitutive’ NOS (NOS1 and NOS3 are inducibly expressed; conversely, are there instances where NOS2 is constitutively expressed? NOS1 and NOS3 inducibility may be linked to post-translational regulation, making their actual patterns activity much more difficult to detect. Constitutive NOS2 expression has been observed several tissues, especially the human pulmonary epithelium where it may regulate airway tone. These data suggest expression of the three NOS enzymes may include non-established patterns. Such information should be useful in designing strategies to modulate these important enzymes in different disease states.

  12. Inhibition studies of Mycobacterium tuberculosis salicylate synthase (MbtI).

    Science.gov (United States)

    Manos-Turvey, Alexandra; Bulloch, Esther M M; Rutledge, Peter J; Baker, Edward N; Lott, J Shaun; Payne, Richard J

    2010-07-05

    Mycobacterium tuberculosis salicylate synthase (MbtI), a member of the chorismate-utilizing enzyme family, catalyses the first committed step in the biosynthesis of the siderophore mycobactin T. This complex secondary metabolite is essential for both virulence and survival of M. tuberculosis, the etiological agent of tuberculosis (TB). It is therefore anticipated that inhibitors of this enzyme may serve as TB therapies with a novel mode of action. Herein we describe the first inhibition study of M. tuberculosis MbtI using a library of functionalized benzoate-based inhibitors designed to mimic the substrate (chorismate) and intermediate (isochorismate) of the MbtI-catalyzed reaction. The most potent inhibitors prepared were those designed to mimic the enzyme intermediate, isochorismate. These compounds, based on a 2,3-dihydroxybenzoate scaffold, proved to be low-micromolar inhibitors of MbtI. The most potent inhibitors in this series possessed hydrophobic enol ether side chains at C3 in place of the enol-pyruvyl side chain found in chorismate and isochorismate.

  13. Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits

    Energy Technology Data Exchange (ETDEWEB)

    Olson, D.C.; White, J.A.; Edelman, L.; Kende, H. (Michigan State Univ., East Lansing (United States)); Harkins, R.N. (Berlex Biosciences, Alameda, CA (United States))

    1991-06-15

    1-Aminocyclopropane-1-carboxylate synthase is the regulated enzyme in the biosynthetic pathway of the plant hormone ethylene. A full-length cDNA encoding this enzyme has been cloned from tomato fruits. The authors report here the complete nucleotide and derived amino acid sequences of a cDNA encoding a second isoform of ACC synthase from tomato fruits. The cDNAs coding for both isoforms contain highly conserved regions that are surrounded by regions of low homology, especially at the 5{prime} and 3{prime} ends. Gene-specific probes were constructed to examine the expression of transcripts encoding the two ACC synthase isoforms under two conditions of enhanced ethylene formation--namely, during fruit ripening and in response to mechanical stress (wounding). The level of mRNA encoding both isoforms, ACC synthase 1 and 2, increased during ripening. In contrast, wounding caused an increase in only the level of mRNA coding for ACC synthase 1. Blot analysis of genomic DNA digested with restriction enzymes confirmed that ACC synthase 1 and 2 are encoded by different genes.

  14. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2015-01-01

    Full Text Available The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i the supply of ADP and Mg2+, supported by adenylate kinase (AK equilibrium in the intermembrane space, (ii the supply of phosphate via membrane transporter in symport with H+, and (iii the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.

  15. Product Variability of the ‘Cineole Cassette'Monoterpene Synthases of Related Nicotiana Species

    Institute of Scientific and Technical Information of China (English)

    Anke F(a)hnrich; Katrin Krause; Birgit Piechulla

    2011-01-01

    Nicotiana species of the section Alatae characteristically emit the floral scent compounds of the ‘cineole cassere' comprising 1,8-cineole,limonene,myrcene,α-pinene,β-pinene,sabinene,and α-terpineol.We successfully isolated genes of Nicotiana alata and Nicotiana langsdorfii that encoded enzymes,which produced the characteristic monoterpenes of this ‘cineole cassette' with α-terpineol being most abundant in the volatile spectra.The amino acid sequences of both terpineol synthases were 99% identical.The enzymes cluster in a monophyletic branch together with the closely related cineole synthase of Nicotiana suaveolens and monoterpene synthase 1 of Solanum lycopersicum.The cyclization reactions (α-terpineol to 1,8-cineole) of the terpineol synthases of N.alata and N.langsdorfii were less efficient compared to the ‘cineole cassette′ monoterpene synthases of Arabidopsis thaliana,N.suaveolens,Salvia fruticosa,Salvia officinalis,and Citrus unshiu.The terpineol synthases of N.alata and N.langsdorfii were localized in pistils and in the adaxial and abaxial epidermis of the petals.The enzyme activities reached their maxima at the second day after anthesis when flowers were fully opened and the enzyme activity in N.alata was highest at the transition from day to night (diurnal rhythm).

  16. Discovery of two new inhibitors of Botrytis cinerea chitin synthase by a chemical library screening.

    Science.gov (United States)

    Magellan, Hervé; Boccara, Martine; Drujon, Thierry; Soulié, Marie-Christine; Guillou, Catherine; Dubois, Joëlle; Becker, Hubert F

    2013-09-01

    Chitin synthases polymerize UDP-GlcNAC to form chitin polymer, a key component of fungal cell wall biosynthesis. Furthermore, chitin synthases are desirable targets for fungicides since chitin is absent in plants and mammals. Two potent Botrytis cinerea chitin synthase inhibitors, 2,3,5-tri-O-benzyl-d-ribose (compound 1) and a 2,5-functionalized imidazole (compound 2) were identified by screening a chemical library. We adapted the wheat germ agglutinin (WGA) test for chitin synthase activity detection to allow miniaturization and robotization of the screen. Both identified compounds inhibited chitin synthases in vitro with IC50 values of 1.8 and 10μM, respectively. Compounds 1 and 2 were evaluated for their antifungal activity and were found to be active against B. cinerea BD90 strain with MIC values of 190 and 100μM, respectively. Finally, we discovered that both compounds confer resistance to plant leaves against the attack of the fungus by reducing the propagation of lesions by 37% and 23%, respectively. Based on the inhibitory properties found in different assays, compounds 1 and 2 can be considered as antifungal hit inhibitors of chitin synthase, allowing further optimization of their pharmacological profile to improve their antifungal properties.

  17. Not all pseudouridine synthases are potently inhibited by RNA containing 5-fluorouridine.

    Science.gov (United States)

    Spedaliere, Christopher J; Mueller, Eugene G

    2004-02-01

    RNA containing 5-fluorouridine has been assumed to inhibit strongly or irreversibly the pseudouridine synthases that act on the RNA. RNA transcripts containing 5-fluorouridine in place of uridine have, therefore, been added to reconstituted systems in order to investigate the importance of particular pseudouridine residues in a given RNA by inactivating the pseudouridine synthase responsible for their generation. In sharp contradiction to the assumption of universal inhibition of pseudouridine synthases by RNA containing 5-fluorouridine, the Escherichia coli pseudouridine synthase TruB, which has physiologically critical eukaryotic homologs, is not inhibited by such RNA. Instead, the RNA containing 5-fluorouridine was handled as a substrate by TruB. The E. coli pseudouridine synthase RluA, on the other hand, forms a covalent complex and is inhibited stoichiometrically by RNA containing 5-fluorouridine. We offer a hypothesis for this disparate behavior and urge caution in interpreting results from reconstitution experiments in which RNA containing 5-fluorouridine is assumed to inhibit a pseudouridine synthase, as normal function may result from a failure to inactivate the targeted enzyme rather than from the absence of nonessential pseudouridine residues.

  18. The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells

    Science.gov (United States)

    Kovaleva, V. D.; Berezhnaya, E. V.; Uzdensky, A. B.

    2015-03-01

    Nitric oxide (NO) is an important second messenger, involved in the implementation of various cell functions. It regulates various physiological and pathological processes such as neurotransmission, cell responses to stress, and neurodegeneration. NO synthase is a family of enzymes that synthesize NO from L-arginine. The activity of different NOS isoforms depends both on endogenous and exogenous factors. In particular, it is modulated by oxidative stress, induced by photodynamic therapy (PDT). We have studied the possible role of NOS in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Antinecrotic and proapoptotic effects of NO on the glial cells were found using inhibitory analysis. We have shown the role of inducible NO synthase in photoinduced apoptosis and involvement of neuronal NO synthase in photoinduced necrosis of glial cells in the isolated crayfish stretch receptor. The activation of NO synthase was evaluated using NADPH-diaphorase histochemistry, a marker of neurons expressing the enzyme. The activation of NO synthase in the isolated crayfish stretch receptor was evaluated as a function of time after PDT. Photodynamic treatment induced transient increase in NO synthase activity and then slowly inhibited this enzyme.

  19. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S. (Univ. of Texas Medical School, Houston (United States))

    1991-03-15

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.

  20. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    Science.gov (United States)

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  1. Functional analysis of (4S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase.

    Science.gov (United States)

    Srividya, Narayanan; Davis, Edward M; Croteau, Rodney B; Lange, B Markus

    2015-03-17

    Crystal structural data for (4S)-limonene synthase [(4S)-LS] of spearmint (Mentha spicata L.) were used to infer which amino acid residues are in close proximity to the substrate and carbocation intermediates of the enzymatic reaction. Alanine-scanning mutagenesis of 48 amino acids combined with enzyme fidelity analysis [percentage of (-)-limonene produced] indicated which residues are most likely to constitute the active site. Mutation of residues W324 and H579 caused a significant drop in enzyme activity and formation of products (myrcene, linalool, and terpineol) characteristic of a premature termination of the reaction. A double mutant (W324A/H579A) had no detectable enzyme activity, indicating that either substrate binding or the terminating reaction was impaired. Exchanges to other aromatic residues (W324H, W324F, W324Y, H579F, H579Y, and H579W) resulted in enzyme catalysts with significantly reduced activity. Sequence comparisons across the angiosperm lineage provided evidence that W324 is a conserved residue, whereas the position equivalent to H579 is occupied by aromatic residues (H, F, or Y). These results are consistent with a critical role of W324 and H579 in the stabilization of carbocation intermediates. The potential of these residues to serve as the catalytic base facilitating the terminal deprotonation reaction is discussed.

  2. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine [beta]-synthase

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma (Michigan-Med)

    2011-08-17

    The catalytic potential for H{sub 2}S biogenesis and homocysteine clearance converge at the active site of cystathionine {beta}-synthase (CBS), a pyridoxal phosphate-dependent enzyme. CBS catalyzes {beta}-replacement reactions of either serine or cysteine by homocysteine to give cystathionine and water or H{sub 2}S, respectively. In this study, high-resolution structures of the full-length enzyme from Drosophila in which a carbanion (1.70 {angstrom}) and an aminoacrylate intermediate (1.55 {angstrom}) have been captured are reported. Electrostatic stabilization of the zwitterionic carbanion intermediate is afforded by the close positioning of an active site lysine residue that is initially used for Schiff base formation in the internal aldimine and later as a general base. Additional stabilizing interactions between active site residues and the catalytic intermediates are observed. Furthermore, the structure of the regulatory 'energy-sensing' CBS domains, named after this protein, suggests a mechanism for allosteric activation by S-adenosylmethionine.

  3. Effect of aging on expression of nitric oxide synthase I and activity of nitric oxide synthase in rat penis

    Institute of Scientific and Technical Information of China (English)

    Jun-PingSHI; Yong-MeiZHAO; Yu-TongSONG

    2003-01-01

    Aim: To investigate the effect of aging on the expression of nitric oxide synthase I (NOS I) and the activity of NOS in rat penis. Methods: Sixty male rats from 3 age groups (adult, old and senescent) were investigated.The expression of NOS I protein and mRNA in rat penis were detected by Western blot and RT-PCR respectively and the NOS activity, with ultraviolet spectrophotometry. Results: In the old and senescent group, NOS I protein expression was significantly decreased as compared with the adult. NOS I mRNA expression was well correlated with the protein expression. NOS activity was not statistically different between the adult and old groups, but it was significantly reduced in the senescent compared with the adult group (P<0.01). Conclusion: The aging-induced decreases in NOS I expression and NOS activity may be one of the main mechanisms leading to erectile dysfunctionin the senescent rats. ( Asian J Androl 2003 Jun; 5: 117-120)

  4. An O-acetylserine (thiol) lyase from Leucaena leucocephala is a cysteine synthase but not a mimosine synthase.

    Science.gov (United States)

    Yafuso, Jannai T; Negi, Vishal Singh; Bingham, Jon-Paul; Borthakur, Dulal

    2014-07-01

    In plants, the final step of cysteine formation is catalyzed by O-acetylserine (thiol) lyase (OAS-TL). The purpose of this study was to isolate and characterize an OAS-TL from the tree legume Leucaena leucocephala (leucaena). Leucaena contains a toxic, nonprotein amino acid, mimosine, which is also formed by an OAS-TL, and characterization of this enzyme is essential for developing a mimosine-free leucaena for its use as a protein-rich fodder. The cDNA for a cytosolic leucaena OAS-TL isoform was obtained through interspecies suppression subtractive hybridization. A 40-kDa recombinant protein was purified from Escherichia coli and used in enzyme activity assays where it was found to synthesize only cysteine. The enzyme followed Michaelis-Menten kinetics, and the Km was calculated to be 1,850±414 μM sulfide and the Vmax was 200.6±19.92 μM cysteine min(-1). The N-terminal affinity His-tag was cleaved from the recombinant OAS-TL to eliminate its possible interference in binding with the substrate, 3-hydroxy-4-pyridone, for mimosine formation. The His-tag-cleaved OAS-TL was again observed to catalyze the formation of cysteine but not mimosine. Thus, the cytosolic OAS-TL from leucaena used in this study is specific for only cysteine synthesis and is different from previously reported OAS-TLs that also function as β-substituted alanine synthases.

  5. Geranyllinalool synthases in solanaceae and other angiosperms constitute an ancient branch of diterpene synthases involved in the synthesis of defensive compounds

    NARCIS (Netherlands)

    Falara, V.; Alba, J.M.; Kant, M.R.; Schuurink, R.C.; Pichersky, E.

    2014-01-01

    Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the

  6. Geranyllinalool synthases in solanaceae and other angiosperms constitute an ancient branch of diterpene synthases involved in the synthesis of defensive compounds

    NARCIS (Netherlands)

    Falara, V.; Alba, J.M.; Kant, M.R.; Schuurink, R.C.; Pichersky, E.

    2014-01-01

    Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the

  7. Dissecting structural and electronic effects in inducible nitric oxide synthase.

    Science.gov (United States)

    Hannibal, Luciana; Page, Richard C; Haque, Mohammad Mahfuzul; Bolisetty, Karthik; Yu, Zhihao; Misra, Saurav; Stuehr, Dennis J

    2015-04-01

    Nitric oxide synthases (NOSs) are haem-thiolate enzymes that catalyse the conversion of L-arginine (L-Arg) into NO and citrulline. Inducible NOS (iNOS) is responsible for delivery of NO in response to stressors during inflammation. The catalytic performance of iNOS is proposed to rely mainly on the haem midpoint potential and the ability of the substrate L-Arg to provide a hydrogen bond for oxygen activation (O-O scission). We present a study of native iNOS compared with iNOS-mesohaem, and investigate the formation of a low-spin ferric haem-aquo or -hydroxo species (P) in iNOS mutant W188H substituted with mesohaem. iNOS-mesohaem and W188H-mesohaem were stable and dimeric, and presented substrate-binding affinities comparable to those of their native counterparts. Single turnover reactions catalysed by iNOSoxy with L-Arg (first reaction step) or N-hydroxy-L-arginine (second reaction step) showed that mesohaem substitution triggered higher rates of Fe(II)O₂ conversion and altered other key kinetic parameters. We elucidated the first crystal structure of a NOS substituted with mesohaem and found essentially identical features compared with the structure of iNOS carrying native haem. This facilitated the dissection of structural and electronic effects. Mesohaem substitution substantially reduced the build-up of species P in W188H iNOS during catalysis, thus increasing its proficiency towards NO synthesis. The marked structural similarities of iNOSoxy containing native haem or mesohaem indicate that the kinetic behaviour observed in mesohaem-substituted iNOS is most heavily influenced by electronic effects rather than structural alterations.

  8. Immunolocalization of a microsomal prostaglandin E synthase in rabbit kidney.

    Science.gov (United States)

    Fuson, Amanda L; Komlosi, Peter; Unlap, Tino M; Bell, P Darwin; Peti-Peterdi, János

    2003-09-01

    PGE2, the major cyclooxygenase (COX) metabolite of arachidonic acid, is an important paracrine regulator of numerous tubular and vascular functions in the kidney. To date, COX activity has been considered the key step in prostaglandin synthesis and is well characterized. However, much less is known about the recently cloned microsomal PGE2 synthase (mPGES), the terminal enzyme of PGE2 synthesis, which converts COX-derived PGH2 to the biologically important PGE2. Present studies provide the detailed localization of mPGES protein in the rabbit kidney using immunohistochemistry. In the cortex, strong mPGES labeling was found in the macula densa (MD) and principal cells of the connecting segment and cortical collecting tubule but not in intercalated cells. The medulla was abundant in mPGES-positive structures, with heavy labeling in the collecting duct system. In descending thin limbs and renal medullary interstitial cells, mPGES expression was less intense, and it was below the limits of detection in the vasa recta. Expression of MD mPGES, similarly to COX-2, was greatly increased in response to low-salt diet and angiotensin I-converting enzyme inhibition by captopril. These findings suggest autocrine regulation of renal salt and water transport by PGE2 in descending thin limb and collecting tubule and a paracrine effect of PGE2 on the glomerular and medullary vasculature. Similar to other organs, mPGES in the kidney is an inducible enzyme and may be similarly regulated and acts in concert with COX-2.

  9. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Directory of Open Access Journals (Sweden)

    Roslyn D Noar

    Full Text Available Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that

  10. Expression and regulation of endothelial nitric oxide synthase.

    Science.gov (United States)

    Sase, K; Michel, T

    1997-01-01

    Endothelium-derived nitric oxide (NO) is a key determinant of blood pressure homeostasis and platelet aggregation and is synthesized by the endothelial isoform of nitric oxide synthase (eNOS). In the vascular wall, eNOS is activated by diverse cell-surface receptors and by increases in blood flow, and the consequent generation of NO leads to vascular smooth-muscle relaxation. Endothelium-dependent vasorelaxation is deranged in a variety of disease states, including hypertension, diabetes, and atherosclerosis, but the roles of eNOS in endothelial dysfunction remain to be clearly defined. The past several years have witnessed important advances in understanding the molecular and cellular biology of eNOS regulation. In endothelial cells, eNOS undergoes a complex series of covalent modifications, including myristoylation, palmitoylation, and phosphorylation. Palmitoylation of eNOS dynamically targets the enzyme to distinct domains of the endothelial plasma membrane termed caveolae; caveolae may serve as sites for the sequestration of signal-transducing proteins and are themselves subject to dynamic regulation by ligands and lipids. Originally thought to be expressed only in endothelial cells, eNOS is now known to be expressed in a variety of tissues, including blood platelets, cardiac myocytes, and brain hippocampus. Paradigms established in endothelial cells for the molecular regulation and subcellular targeting of eNOS are being extended to the investigation of eNOS expressed in nonendothelial tissues. This review summarizes recent advances in understanding the molecular regulation of eNOS and the other NOS isoforms and identifies important parallels between eNOS and other cell-signaling molecules. © 1997, Elsevier Science Inc. (Trends Cardiovasc Med 1997;7:28-37).

  11. C-S bond cleavage by a polyketide synthase domain.

    Science.gov (United States)

    Ma, Ming; Lohman, Jeremy R; Liu, Tao; Shen, Ben

    2015-08-18

    Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM's antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering.

  12. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Science.gov (United States)

    Noar, Roslyn D; Daub, Margaret E

    2016-01-01

    Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity) to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode

  13. Cystathionine beta-synthase deficiency causes fat loss in mice.

    Directory of Open Access Journals (Sweden)

    Sapna Gupta

    Full Text Available Cystathionine beta synthase (CBS is the rate-limiting enzyme responsible for the de novo synthesis of cysteine. Patients with CBS deficiency have greatly elevated plasma total homocysteine (tHcy, decreased levels of plasma total cysteine (tCys, and often a marfanoid appearance characterized by thinness and low body-mass index (BMI. Here, we characterize the growth and body mass characteristics of CBS deficient TgI278T Cbs(-/- mice and show that these animals have significantly decreased fat mass and tCys compared to heterozygous sibling mice. The decrease in fat mass is accompanied by a 34% decrease in liver glutathione (GSH along with a significant decrease in liver mRNA and protein for the critical fat biosynthesizing enzyme Stearoyl CoA desaturase-1 (Scd-1. Because plasma tCys has been positively associated with fat mass in humans, we tested the hypothesis that decreased tCys in TgI278T Cbs(-/- mice was the cause of the lean phenotype by placing the animals on water supplemented with N-acetyl cysteine (NAC from birth to 240 days of age. Although NAC treatment in TgI278T Cbs(-/- mice caused significant increase in serum tCys and liver GSH, there was no increase in body fat content or in liver Scd-1 levels. Our results show that lack of CBS activity causes loss of fat mass, and that this effect appears to be independent of low serum tCys.

  14. Nitric oxide synthase-3 promotes embryonic development of atrioventricular valves.

    Science.gov (United States)

    Liu, Yin; Lu, Xiangru; Xiang, Fu-Li; Lu, Man; Feng, Qingping

    2013-01-01

    Nitric oxide synthase-3 (NOS3) has recently been shown to promote endothelial-to-mesenchymal transition (EndMT) in the developing atrioventricular (AV) canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT) and NOS3(-/-) mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3(-/-) compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3(-/-) mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1(+) cells in the AV cushion were decreased in NOS3(-/-) compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ), bone morphogenetic protein (BMP2) and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3(-/-) compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency.

  15. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-03-25

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD.

  16. Kinetic mechanism of indole-3-glycerol phosphate synthase.

    Science.gov (United States)

    Schlee, Sandra; Dietrich, Susanne; Kurćon, Tomasz; Delaney, Pamela; Goodey, Nina M; Sterner, Reinhard

    2013-01-08

    The (βα)(8)-barrel enzyme indole-3-glycerol phosphate synthase (IGPS) catalyzes the multistep transformation of 1-(o-carboxyphenylamino)-1-deoxyribulose 5-phosphate (CdRP) into indole-3-glycerol phosphate (IGP) in tryptophan biosynthesis. Mutagenesis data and crystal structure analysis of IGPS from Sulfolobus solfataricus (sIGPS) allowed for the formulation of a plausible chemical mechanism of the reaction, and molecular dynamics simulations suggested that flexibility of active site loops might be important for catalysis. Here we developed a method that uses extrinsic fluorophores attached to active site loops to connect the kinetic mechanism of sIGPS to structure and conformational motions. Specifically, we elucidated the kinetic mechanism of sIGPS and correlated individual steps in the mechanism to conformational motions of flexible loops. Pre-steady-state kinetic measurements of CdRP to IGP conversion monitoring changes in intrinsic tryptophan and IGP fluorescence provided a minimal three-step kinetic model in which fast substrate binding and chemical transformation are followed by slow product release. The role of sIGPS loop conformational motion during substrate binding and catalysis was examined via variants that were covalently labeled with fluorescent dyes at the N-terminal extension of the enzyme and mobile active site loop β1α1. Analysis of kinetic data monitoring dye fluorescence revealed a conformational change that follows substrate binding, suggesting an induced-fit-type binding mechanism for the substrate CdRP. Global fitting of all kinetic results obtained with wild-type sIGPS and the labeled variants was best accommodated by a four-step kinetic model. In this model, both the binding of CdRP and its on-enzyme conversion to IGP are accompanied by conformational transitions. The liberation of the product from the active site is the rate-limiting step of the overall reaction. Our results confirm the importance of flexible active loops for substrate

  17. Hyaluronan synthase mediates dye translocation across liposomal membranes

    Directory of Open Access Journals (Sweden)

    Medina Andria P

    2012-01-01

    Full Text Available Abstract Background Hyaluronan (HA is made at the plasma membrane and secreted into the extracellular medium or matrix by phospolipid-dependent hyaluronan synthase (HAS, which is active as a monomer. Since the mechanism by which HA is translocated across membranes is still unresolved, we assessed the presence of an intraprotein pore within HAS by adding purified Streptococcus equisimilis HAS (SeHAS to liposomes preloaded with the fluorophore Cascade Blue (CB. Results CB translocation (efflux was not observed with mock-purified material from empty vector control E. coli membranes, but was induced by SeHAS, purified from membranes, in a time- and dose-dependent manner. CB efflux was eliminated or greatly reduced when purified SeHAS was first treated under conditions that inhibit enzyme activity: heating, oxidization or cysteine modification with N-ethylmaleimide. Reduced CB efflux also occurred with SeHAS K48E or K48F mutants, in which alteration of K48 within membrane domain 2 causes decreased activity and HA product size. The above results used liposomes containing bovine cardiolipin (BCL. An earlier study testing many synthetic lipids found that the best activating lipid for SeHAS is tetraoleoyl cardiolipin (TO-CL and that, in contrast, tetramyristoyl cardiolipin (TM-CL is an inactivating lipid (Weigel et al, J. Biol. Chem. 281, 36542, 2006. Consistent with the effects of these CL species on SeHAS activity, CB efflux was more than 2-fold greater in liposomes made with TO-CL compared to TM-CL. Conclusions The results indicate the presence of an intraprotein pore in HAS and support a model in which HA is translocated to the exterior by HAS itself.

  18. Characterization of the phytochelatin synthase of Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Debalina Ray

    2011-05-01

    Full Text Available Treatment for schistosomiasis, which is responsible for more than 280,000 deaths annually, depends exclusively on the use of praziquantel. Millions of people are treated annually with praziquantel and drug resistant parasites are likely to evolve. In order to identify novel drug targets the Schistosoma mansoni sequence databases were queried for proteins involved in glutathione metabolism. One potential target identified was phytochelatin synthase (PCS. Phytochelatins are oligopeptides synthesized enzymatically from glutathione by PCS that sequester toxic heavy metals in many organisms. However, humans do not have a PCS gene and do not synthesize phytochelatins. In this study we have characterized the PCS of S. mansoni (SmPCS. The conserved catalytic triad of cysteine-histidine-aspartate found in PCS proteins and cysteine proteases is also found in SmPCS, as are several cysteine residues thought to be involved in heavy metal binding and enzyme activation. The SmPCS open reading frame is considerably extended at both the N- and C-termini compared to PCS from other organisms. Multiple PCS transcripts are produced from the single encoded gene by alternative splicing, resulting in both mitochondrial and cytoplasmic protein variants. Expression of SmPCS in yeast increased cadmium tolerance from less than 50 µM to more than 1,000 µM. We confirmed the function of SmPCS by identifying PCs in yeast cell extracts using HPLC-mass spectrometry. SmPCS was found to be expressed in all mammalian stages of worm development investigated. Increases in SmPCS expression were seen in ex vivo worms cultured in the presence of iron, copper, cadmium, or zinc. Collectively, these results indicate that SmPCS plays an important role in schistosome response to heavy metals and that PCS is a potential drug target for schistosomiasis treatment. This is the first characterization of a PCS from a parasitic organism.

  19. Enzymatic functions of wild tomato methylketone synthases 1 and 2.

    Science.gov (United States)

    Yu, Geng; Nguyen, Thuong T H; Guo, Yongxia; Schauvinhold, Ines; Auldridge, Michele E; Bhuiyan, Nazmul; Ben-Israel, Imri; Iijima, Yoko; Fridman, Eyal; Noel, Joseph P; Pichersky, Eran

    2010-09-01

    The trichomes of the wild tomato species Solanum habrochaites subsp. glabratum synthesize and store high levels of methylketones, primarily 2-tridecanone and 2-undecanone, that protect the plants against various herbivorous insects. Previously, we identified cDNAs encoding two proteins necessary for methylketone biosynthesis, designated methylketone synthase 1 (ShMKS1) and ShMKS2. Here, we report the isolation of genomic sequences encoding ShMKS1 and ShMKS2 as well as the homologous genes from the cultivated tomato, Solanum lycopersicum. We show that a full-length transcript of ShMKS2 encodes a protein that is localized in the plastids. By expressing ShMKS1 and ShMKS2 in Escherichia coli and analyzing the products formed, as well as by performing in vitro assays with both ShMKS1and ShMKS2, we conclude that ShMKS2 acts as a thioesterase hydrolyzing 3-ketoacyl-acyl carrier proteins (plastid-localized intermediates of fatty acid biosynthesis) to release 3-ketoacids and that ShMKS1 subsequently catalyzes the decarboxylation of these liberated 3-ketoacids, forming the methylketone products. Genes encoding proteins with high similarity to ShMKS2, a member of the "hot-dog fold" protein family that is known to include other thioesterases in nonplant organisms, are present in plant species outside the genus Solanum. We show that a related enzyme from Arabidopsis (Arabidopsis thaliana) also produces 3-ketoacids when recombinantly expressed in E. coli. Thus, the thioesterase activity of proteins in this family appears to be ancient. In contrast, the 3-ketoacid decarboxylase activity of ShMKS1, which belongs to the alpha/beta-hydrolase fold superfamily, appears to have emerged more recently, possibly within the genus Solanum.

  20. Inducible nitric oxide synthase haplotype associated with migraine and aura.

    Science.gov (United States)

    de O S Mansur, Thiago; Gonçalves, Flavia M; Martins-Oliveira, Alisson; Speciali, Jose G; Dach, Fabiola; Lacchini, Riccardo; Tanus-Santos, Jose E

    2012-05-01

    Migraine is a complex neurological disorder with a clear neurogenic inflammatory component apparently including enhanced nitric oxide (NO) formation. Excessive NO amounts possibly contributing to migraine are derived from increased expression and activity of inducible NO synthase (iNOS). We tested the hypothesis that two functional, clinically relevant iNOS genetic polymorphisms (C(-1026)A-rs2779249 and G2087A-rs2297518) are associated with migraine with or without aura. We studied 142 healthy women without migraine (control group) and 200 women with migraine divided into two groups: 148 with migraine without aura (MWA) and 52 with aura (MA). Genotypes were determined by real-time polymerase chain reaction using the Taqman(®) allele discrimination assays. The PHASE 2.1 software was used to estimate the haplotypes. The A allele for the G2087A polymorphism was more commonly found in the MA group than in the MWA group (28 vs. 18%; P 0.05). The haplotype combining both A alleles for the two polymorphisms was more commonly found in the MA group than in the control group or in the MWA group (19 vs. 10 or 8%; P = 0.0245 or 0.0027, respectively). Our findings indicate that the G2087A and the C(-1026)A polymorphism in the iNOS gene affect the susceptibility to migraine with aura when their effects are combined within haplotypes, whereas the G2087A affects the susceptibility to aura in migraine patients. These finding may have therapeutic implications when examining the effects of selective iNOS inhibitors.

  1. Transcriptional regulation of human thromboxane synthase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.D.; Baek, S.J.; Fleischer, T [Univ. of Maryland Medical School, Baltimore, MD (United States)] [and others

    1994-09-01

    The human thromboxane synthase (TS) gene encodes a microsomal enzyme catalyzing the conversion of prostaglandin endoperoxide into thromboxane A{sub 2}(TxA{sub 2}), a potent inducer of vasoconstriction and platelet aggregation. A deficiency in platelet TS activity results in bleeding disorders, but the underlying molecular mechanism remains to be elucidated. Increased TxA{sub 2} has been associated with many pathophysiological conditions such as cardiovascular disease, pulmonary hypertension, pre-eclampsia, and thrombosis in sickle cell patients. Since the formation of TxA{sub 2} is dependent upon TS, the regulation of TS gene expression may presumably play a crucial role in vivo. Abrogation of the regulatory mechanism in TS gene expression might contribute, in part, to the above clinical manifestations. To gain insight into TS gene regulation, a 1.7 kb promoter of the human TS gene was cloned and sequenced. RNase protection assay and 5{prime} RACE protocols were used to map the transcription initiation site to nucleotide A, 30 bp downstream from a canonical TATA box. Several transcription factor binding sites, including AP-1, PU.1, and PEA3, were identified within this sequence. Transient expression studies in HL-60 cells transfected with constructs containing various lengths (0.2 to 5.5 kb) of the TS promoter/luciferase fusion gene indicated the presence of multiple repressor elements within the 5.5 kb TS promoter. However, a lineage-specific up-regulation of TS gene expression was observed in HL-60 cells induced by TPA to differentiate along the macrophage lineage. The increase in TS transcription was not detectable until 36 hr after addition of the inducer. These results suggest that expression of the human TS gene may be regulated by a mechanism involving repression and derepression of the TS promoter.

  2. Nitric Oxide Synthase-3 Promotes Embryonic Development of Atrioventricular Valves

    Science.gov (United States)

    Liu, Yin; Lu, Xiangru; Xiang, Fu-Li; Lu, Man; Feng, Qingping

    2013-01-01

    Nitric oxide synthase-3 (NOS3) has recently been shown to promote endothelial-to-mesenchymal transition (EndMT) in the developing atrioventricular (AV) canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT) and NOS3−/− mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3−/− compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3−/− mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1+ cells in the AV cushion were decreased in NOS3−/− compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ), bone morphogenetic protein (BMP2) and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3−/− compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency. PMID:24204893

  3. Nitric oxide synthase-3 promotes embryonic development of atrioventricular valves.

    Directory of Open Access Journals (Sweden)

    Yin Liu

    Full Text Available Nitric oxide synthase-3 (NOS3 has recently been shown to promote endothelial-to-mesenchymal transition (EndMT in the developing atrioventricular (AV canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT and NOS3(-/- mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3(-/- compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3(-/- mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1(+ cells in the AV cushion were decreased in NOS3(-/- compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ, bone morphogenetic protein (BMP2 and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3(-/- compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency.

  4. Quinazoline antifolates inhibiting thymidylate synthase: 4-thio-substituted analogues.

    Science.gov (United States)

    Thornton, T J; Jones, T R; Jackman, A L; Flinn, A; O'Connor, B M; Warner, P; Calvert, A H

    1991-03-01

    We report the synthesis of four new 4-thio-5,8-dideazafolic acid analogues and a 4-(methylthio) analogue structurally related to the thymidylate synthase (TS) inhibitor N10-propargyl-5,8-dideazafolic acid. Three N10-propargyl-4-thio-5,8-dideazafolic acid analogues had C2 amino, hydrogen, and methyl substituents. A 4-thio and a 4-(methylthio) compound each with hydrogen at C2 and ethyl at N10 were also synthesized. In general, the synthetic route involved thionation of the appropriate 4-oxoquinazoline; the sulfur thus introduced was then protected by methylation. Further protection with a pivaloyl group was required for the quinazoline bearing a 2-amino substituent. The protected quinazolines were treated with N-bromosuccinimide and the resulting 6-(bromomethyl) compounds were then coupled to the appropriate N-monoalkylated diethyl N-(4-aminobenzoyl)-L-glutamate in N,N-dimethylacetamide with calcium carbonate as base. The 4-thio-5,8-dideazafolic acids were obtained by removal of the methylthio group with sodium hydrosulfide, followed by deprotection of the carboxyl groups with cold dilute alkali. For the compound containing a pivaloyl protecting group, hot dilute alkali was used. To obtain the 5,8-dideazafolic acid containing a 4-(methylthio) substituent, the corresponding diester was treated with lithium hydroxide which selectively deprotected the carboxyl groups. The five compounds were tested as inhibitors of L1210 TS. It was found that replacement of the 4-oxygen of the quinazoline moiety by sulfur did not alter the TS inhibition. However, the introduction of a methylthio substituent at position 4 severely impaired TS inhibition. All 4-thio compounds were less cytotoxic to L1210 cells in culture than their 4-oxo counterparts.

  5. The general base in the thymidylate synthase catalyzed proton abstraction.

    Science.gov (United States)

    Ghosh, Ananda K; Islam, Zahidul; Krueger, Jonathan; Abeysinghe, Thelma; Kohen, Amnon

    2015-12-14

    The enzyme thymidylate synthase (TSase), an important chemotherapeutic drug target, catalyzes the formation of 2'-deoxythymidine-5'-monophosphate (dTMP), a precursor of one of the DNA building blocks. TSase catalyzes a multi-step mechanism that includes the abstraction of a proton from the C5 of the substrate 2'-deoxyuridine-5'-monophosphate (dUMP). Previous studies on ecTSase proposed that an active-site residue, Y94 serves the role of the general base abstracting this proton. However, since Y94 is neither very basic, nor connected to basic residues, nor located close enough to the pyrimidine proton to be abstracted, the actual identity of this base remains enigmatic. Based on crystal structures, an alternative hypothesis is that the nearest potential proton-acceptor of C5 of dUMP is a water molecule that is part of a hydrogen bond (H-bond) network comprised of several water molecules and several protein residues including H147, E58, N177, and Y94. Here, we examine the role of the residue Y94 in the proton abstraction step by removing its hydroxyl group (Y94F mutant). We investigated the effect of the mutation on the temperature dependence of intrinsic kinetic isotope effects (KIEs) and found that these KIEs are more temperature dependent than those of the wild-type enzyme (WT). These results suggest that the phenolic -OH of Y94 is a component of the transition state for the proton abstraction step. The findings further support the hypothesis that no single functional group is the general base, but a network of bases and hydroxyls (from water molecules and tyrosine) sharing H-bonds across the active site can serve the role of the general base to remove the pyrimidine proton.

  6. Platensimycin activity against mycobacterial beta-ketoacyl-ACP synthases.

    Directory of Open Access Journals (Sweden)

    Alistair K Brown

    Full Text Available BACKGROUND: There is an urgent need for the discovery and development of new drugs against Mycobacterium tuberculosis, the causative agent of tuberculosis, especially due to the recent emergence of multi-drug and extensively-drug resistant strains. Herein, we have examined the susceptibility of mycobacteria to the natural product platensimycin. METHODS AND FINDINGS: We have demonstrated that platensimycin has bacteriostatic activity against the fast growing Mycobacterium smegmatis (MIC = 14 microg/ml and against Mycobacterium tuberculosis (MIC = 12 microg/ml. Growth in the presence of paltensimycin specifically inhibited the biosynthesis of mycolic acids suggesting that the antibiotic targeted the components of the mycolate biosynthesis complex. Given the inhibitory activity of platensimycin against beta-ketoacyl-ACP synthases from Staphylococcus aureus, M. tuberculosis KasA, KasB or FabH were overexpressed in M. smegmatis to establish whether these mycobacterial KAS enzymes were targets of platensimycin. In M. smegmatis overexpression of kasA or kasB increased the MIC of the strains from 14 microg/ml, to 30 and 124 microg/ml respectively. However, overexpression of fabH on did not affect the MIC. Additionally, consistent with the overexpression data, in vitro assays using purified proteins demonstrated that platensimycin inhibited Mt-KasA and Mt-KasB, but not Mt-FabH. SIGNIFICANCE: Our results have shown that platensimycin is active against mycobacterial KasA and KasB and is thus an exciting lead compound against M. tuberculosis and the development of new synthetic analogues.

  7. Light as experiential material

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin

    2013-01-01

    'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which the experience and design of architectural lighting can be approached in research and education......'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which the experience and design of architectural lighting can be approached in research and education...

  8. Light as experiential material

    DEFF Research Database (Denmark)

    Søndergaard, Karin; Petersen, Kjell Yngve

    2013-01-01

    'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which we can approach the experience and design of architectural lighting in research and education.......'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which we can approach the experience and design of architectural lighting in research and education....

  9. Light as experiential material

    DEFF Research Database (Denmark)

    Søndergaard, Karin; Petersen, Kjell Yngve

    2013-01-01

    'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which we can approach the experience and design of architectural lighting in research and education.......'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which we can approach the experience and design of architectural lighting in research and education....

  10. Pedestrian Friendly Outdoor Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koltai, R. N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGowan, T. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    The GATEWAY program followed two pedestrian-scale lighting projects that required multiple mockups – one at Stanford University in California and the other at Chautauqua Institution in upstate New York. The report provides insight into pedestrian lighting criteria, how they differ from street and area lighting criteria, and how solid-state lighting can be better applied in pedestrian applications.

  11. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium.

    Directory of Open Access Journals (Sweden)

    Roberta d'Emmanuele di Villa Bianca

    Full Text Available Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity.

  12. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    Science.gov (United States)

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Light Rhythms in Architecture

    DEFF Research Database (Denmark)

    Bülow, Katja

    2013-01-01

    On one hand, urban lighting expresses itself in a complex visual environment made by the interplay by between many separate lighting schemes, as street lighting, shop lighting, luminous commercials etc. On the other, a noticeable order of patterns occurs, when lighting is observed as luminous...... formation and rhythm. When integrated into an architectural concept, electrical lighting non-intended for poetic composition has the ability to contribute to place, time, and function-telling aspects of places in urban contexts. Urban environments are information wise challenging to pre-historic human...... instincts, but they can be met by careful selection and adjustment of existing light situations....

  14. Light Rhythms in Architecture

    DEFF Research Database (Denmark)

    Bülow, Katja

    2013-01-01

    On one hand, urban lighting expresses itself in a complex visual environment made by the interplay by between many separate lighting schemes, as street lighting, shop lighting, luminous commercials etc. On the other, a noticeable order of patterns occurs, when lighting is observed as luminous...... formation and rhythm. When integrated into an architectural concept, electrical lighting non-intended for poetic composition has the ability to contribute to place, time, and function-telling aspects of places in urban contexts. Urban environments are information wise challenging to pre-historic human...... instincts, but they can be met by careful selection and adjustment of existing light situations....

  15. Outdoor lighting guide

    CERN Document Server

    2013-01-01

    As concern grows over environmental issues and light pollution, this book satisfies a need for a straightforward and accessible guide to the use, design and installation of outdoor lighting.This all-inclusive guide to exterior lighting from the Institution of Lighting Engineers, recognized as the pre-eminent professional source in the UK for authoritative guidance on exterior lighting, provides a comprehensive source of information and advice on all forms of exterior lighting, from floodlighting, buildings and road lighting to elaborate Christmas decorations. Useful to practitioners

  16. Light and colours

    DEFF Research Database (Denmark)

    Volf, Carlo

    2011-01-01

    Often a dichotomy between daylight and artificial light is observed, often artificial lighting replaces daylight. In Denmark daylight is characterized partly by being "borrowed" half of the year, partly by having long transitions periods between the light and the dark (nautical and civil twilight......). For these reasons artificial lighting does not complement daylight but provides, coupled with the daylight, the total lighting in the indoor environment. Electric lighting is therefore ‐ in a complex interaction with the daylight ‐ of great importance for both our lighting and our wellbeing. Studying artificial...... lighting without studying daylight seem to be a common procedure of the practice of today in Denmark and other parts of the industrialized world. As a consequence of this artificial lighting suffers from a quantifying tyranny, a tyranny where the quality of light is measured in quantities. This procedure...

  17. Light and colours

    DEFF Research Database (Denmark)

    Volf, Carlo

    2011-01-01

    Often a dichotomy between daylight and artificial light is observed, often artificial lighting replaces daylight. In Denmark daylight is characterized partly by being "borrowed" half of the year, partly by having long transitions periods between the light and the dark (nautical and civil twilight......). For these reasons artificial lighting does not complement daylight but provides, coupled with the daylight, the total lighting in the indoor environment. Electric lighting is therefore ‐ in a complex interaction with the daylight ‐ of great importance for both our lighting and our wellbeing. Studying artificial...... lighting without studying daylight seem to be a common procedure of the practice of today in Denmark and other parts of the industrialized world. As a consequence of this artificial lighting suffers from a quantifying tyranny, a tyranny where the quality of light is measured in quantities. This procedure...

  18. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes

    Science.gov (United States)

    Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny

    2016-01-01

    Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley – Cer-c, Cer-q and Cer-u – known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. PMID:26962211

  19. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes.

    Science.gov (United States)

    Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny

    2016-03-09

    Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley - Cer-c, Cer-q and Cer-u - known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes.

  20. A c subunit with four transmembrane helices and one ion (Na+)-binding site in an archaeal ATP synthase: implications for c ring function and structure.

    Science.gov (United States)

    Mayer, Florian; Leone, Vanessa; Langer, Julian D; Faraldo-Gómez, José D; Müller, Volker

    2012-11-16

    The ion-driven membrane rotors of ATP synthases consist of multiple copies of subunit c, forming a closed ring. Subunit c typically comprises two transmembrane helices, and the c ring features an ion-binding site in between each pair of adjacent subunits. Here, we use experimental and computational methods to study the structure and specificity of an archaeal c subunit more akin to those of V-type ATPases, namely that from Pyrococcus furiosus. The c subunit was purified by chloroform/methanol extraction and determined to be 15.8 kDa with four predicted transmembrane helices. However, labeling with DCCD as well as Na(+)-DCCD competition experiments revealed only one binding site for DCCD and Na(+), indicating that the mature c subunit of this A(1)A(O) ATP synthase is indeed of the V-type. A structural model generated computationally revealed one Na(+)-binding site within each of the c subunits, mediated by a conserved glutamate side chain alongside other coordinating groups. An intriguing second glutamate located in-between adjacent c subunits was ruled out as a functional Na(+)-binding site. Molecular dynamics simulations indicate that the c ring of P. furiosus is highly Na(+)-specific under in vivo conditions, comparable with the Na(+)-dependent V(1)V(O) ATPase from Enterococcus hirae. Interestingly, the same holds true for the c ring from the methanogenic archaeon Methanobrevibacter ruminantium, whose c subunits also feature a V-type architecture but carry two Na(+)-binding sites instead. These findings are discussed in light of their physiological relevance and with respect to the mode of ion coupling in A(1)A(O) ATP synthases.

  1. Occlusion, transparency, and lightness

    OpenAIRE

    2007-01-01

    The lightness of a visual surface is its perceived achromatic reflectance [Adelson, E. H., (2000). Lightness perception and lightness illusions. In M. Gazzaniga (Ed.), The new cognitive neuroscience (2nd ed.) (pp. 339-351) Berlin: Springer; Gilchrist, A. (1999). Lightness perception. In R. W. F. Keil (Ed.), MIT encyclopedia of cognitive science (pp. 471-472). Cambridge: MIT press]. Lightness ranges from black, through various shades of grey, up to white. Anderson and Winawer [Anderson, B., Wi...

  2. γ-glutamyl transpeptidase 1 specifically suppresses green-light avoidance via GABAA receptors in Drosophila.

    Science.gov (United States)

    Liu, Jiangqu; Gong, Zhefeng; Liu, Li

    2014-08-01

    Drosophila larvae innately show light avoidance behavior. Compared with robust blue-light avoidance, larvae exhibit relatively weaker green-light responses. In our previous screening for genes involved in larval light avoidance, compared with control w(1118) larvae, larvae with γ-glutamyl transpeptidase 1 (Ggt-1) knockdown or Ggt-1 mutation were found to exhibit higher percentage of green-light avoidance which was mediated by Rhodopsin6 (Rh6) photoreceptors. However, their responses to blue light did not change significantly. By adjusting the expression level of Ggt-1 in different tissues, we found that Ggt-1 in malpighian tubules was both necessary and sufficient for green-light avoidance. Our results showed that glutamate levels were lower in Ggt-1 null mutants compared with controls. Feeding Ggt-1 null mutants glutamate can normalize green-light avoidance, indicating that high glutamate concentrations suppressed larval green-light avoidance. However, rather than directly, glutamate affected green-light avoidance indirectly through GABA, the level of which was also lower in Ggt-1 mutants compared with controls. Mutants in glutamate decarboxylase 1, which encodes GABA synthase, and knockdown lines of the GABAA receptor, both exhibit elevated levels of green-light avoidance. Thus, our results elucidate the neurobiological mechanisms mediating green-light avoidance, which was inhibited in wild-type larvae. © 2014 International Society for Neurochemistry.

  3. GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Darryl Hudson

    Full Text Available Chloroplast development is an important determinant of plant productivity and is controlled by environmental factors including amounts of light and nitrogen as well as internal phytohormones including cytokinins and gibberellins (GA. The paralog GATA transcription factors GNC and CGA1/GNL up-regulated by light, nitrogen and cytokinin while also being repressed by GA signaling. Modifying the expression of these genes has previously been shown to influence chlorophyll content in Arabidopsis while also altering aspects of germination, elongation growth and flowering time. In this work, we also use transgenic lines to demonstrate that GNC and CGA1 exhibit a partially redundant control over chlorophyll biosynthesis. We provide novel evidence that GNC and CGA1 influence both chloroplast number and leaf starch in proportion to their transcript level. GNC and CGA1 were found to modify the expression of chloroplast localized GLUTAMATE SYNTHASE (GLU1/Fd-GOGAT, which is the primary factor controlling nitrogen assimilation in green tissue. Altering GNC and CGA1 expression was also found to modulate the expression of important chlorophyll biosynthesis genes (GUN4, HEMA1, PORB, and PORC. As previously demonstrated, the CGA1 transgenic plants demonstrated significantly altered timing to a number of developmental events including germination, leaf production, flowering time and senescence. In contrast, the GNC transgenic lines we analyzed maintain relatively normal growth phenotypes outside of differences in chloroplast development. Despite some evidence for partial divergence, results indicate that regulation of both GNC and CGA1 by light, nitrogen, cytokinin, and GA acts to modulate nitrogen assimilation, chloroplast development and starch production. Understanding the mechanisms controlling these processes is important for agricultural biotechnology.

  4. Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro

    OpenAIRE

    Della-Cioppa, Guy; Bauer, S. Christopher; Klein, Barbara K.; Dilip M Shah; Fraley, Robert T.; Kishore, Ganesh M.

    1986-01-01

    5-enolPyruvylshikimate-3-phosphate synthase (EPSP synthase; 3-phosphoshikimate 1-carboxyvinyl-transferase; EC 2.5.1.19) is a chloroplast-localized enzyme of the shikimate pathway in plants. This enzyme is the target for the nonselective herbicide glyphosate (N-phosphonomethylglycine). We have previously isolated a full-length cDNA clone of EPSP synthase from Petunia hybrida. DNA sequence analysis suggested that the enzyme is synthesized as a cytosolic precursor (pre-EPSP synthase) with an ami...

  5. The Properties of Light

    Science.gov (United States)

    Haglund, Richard F.

    The mystery of light has formed the core of creation stories in every culture, and attracted the earnest attentions of philosophers since at least the fifth century BCE. Their questions have ranged from how and what we see, to the interaction of light with material bodies, and finally to the nature of light itself. This chapter begins with a brief intellectual history of light from ancient Greece to the end of the 19th century. After introducing the physical parameterization of light in terms of standard units, three concepts of light are introduced: light as a wave, light as a quantum particle, and light as a quantum field. After highlighting the distinctive characteristics of light beams from various sources - thermal radiation, luminescence from atoms and molecules, and synchrotron light sources - the distinctive physical characteristics of light beams are examined in some detail. The chapter concludes with a survey of the statistical and quantum-mechanical properties of light beams. In the appropriate limits, this treatment not only recovers the classical description of light waves and the semiclassical view of light as a stream of quanta, but also forms a consistent description of quantum phenomena - such as interference phenomena generated by single photons - that have no classical analogs.

  6. Leaf-Mediated Light Responses in Petunia Flowers.

    Science.gov (United States)

    Moscovici, S.; Moalem-Beno, D.; Weiss, D.

    1996-01-01

    In the present work we studied the role of light in the regulation of flavonoid gene expression and anthocyanin synthesis in petunia (Petunia hybrida) corollas. We found that light is required for chalcone synthase gene (chs) expression, anthocyanin synthesis, and growth of detached and attached petunia corollas. Although direct illumination induced chs expression, pigmentation, and elongation of the detached corollas, irradiation of green leaves or sepals played the main role in the attached corollas. The duration, intensity, and spectrum of the light reaction suggest that phytochrome-mediated high-irradiance reactions are involved in the regulation of corolla development. Using the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, we showed that photosynthesis does not significantly contribute to the leaf-mediated light responses. When sepals were removed or covered. [14C]sucrose up-take by the corolla of detached intact flowers was inhibited. The results of this study suggest that light is perceived by leaves and sepals and enhances corolla sink activity, elongation, pigmentation, and chs expression. The role of leaves and sepals in the light regulation of petunia corolla development is discussed. PMID:12226259

  7. Role of Polymorphisms of Inducible Nitric Oxide Synthase and Endothelial Nitric Oxide Synthase in Idiopathic Environmental Intolerances

    Directory of Open Access Journals (Sweden)

    Chiara De Luca

    2015-01-01

    Full Text Available Oxidative stress and inflammation play a pathogenetic role in idiopathic environmental intolerances (IEI, namely, multiple chemical sensitivity (MCS, fibromyalgia (FM, and chronic fatigue syndrome (CFS. Given the reported association of nitric oxide synthase (NOS gene polymorphisms with inflammatory disorders, we aimed to investigate the distribution of NOS2A −2.5 kb (CCTTTn as well as Ser608Leu and NOS3 −786T>C variants and their correlation with nitrite/nitrate levels, in a study cohort including 170 MCS, 108 suspected MCS (SMCS, 89 FM/CFS, and 196 healthy subjects. Patients and controls had similar distributions of NOS2A Ser608Leu and NOS3 −786T>C polymorphisms. Interestingly, the NOS3 −786TT genotype was associated with increased nitrite/nitrate levels only in IEI patients. We also found that the NOS2A −2.5 kb (CCTTT11 allele represents a genetic determinant for FM/CFS, and the (CCTTT16 allele discriminates MCS from SMCS patients. Instead, the (CCTTT8 allele reduces by three-, six-, and tenfold, respectively, the risk for MCS, SMCS, and FM/CFS. Moreover, a short number of (CCTTT repeats is associated with higher concentrations of nitrites/nitrates. Here, we first demonstrate that NOS3 −786T>C variant affects nitrite/nitrate levels in IEI patients and that screening for NOS2A −2.5 kb (CCTTTn polymorphism may be useful for differential diagnosis of various IEI.

  8. Mitochondrial ATP synthases cluster as discrete domains that reorganize with the cellular demand for oxidative phosphorylation.

    Science.gov (United States)

    Jimenez, Laure; Laporte, Damien; Duvezin-Caubet, Stephane; Courtout, Fabien; Sagot, Isabelle

    2014-02-15

    Mitochondria are double membrane-bounded organelles that form a dynamic tubular network. Mitochondria energetic functions depend on a complex internal architecture. Cristae, inner membrane invaginations that fold into the matrix space, are proposed to be the site of oxidative phosphorylation, reactions by which ATP synthase produces ATP. ATP synthase is also thought to have a role in crista morphogenesis. To date, the exploration of the processes regulating mitochondrial internal compartmentalization have been mostly limited to electron microscopy. Here, we describe ATP synthase localization in living yeast cells and show that it clusters as discrete inner membrane domains. These domains are dynamic within the mitochondrial network. They are impaired in mutants defective in crista morphology and partially overlap with the crista-associated MICOS-MINOS-MITOS complex. Finally, ATP synthase occupancy increases with the cellular demand for OXPHOS. Overall our data suggest that domains in which ATP synthases are clustered correspond to mitochondrial cristae. Being able to follow mitochondrial sub-compartments in living yeast cells opens new avenues to explore the mechanisms involved in inner membrane remodeling, an architectural feature crucial for mitochondrial activities.

  9. Inhibition of nitric oxide synthases abrogates pregnancy-induced uterine vascular expansive remodeling.

    Science.gov (United States)

    Osol, George; Barron, Carolyn; Gokina, Natalia; Mandala, Maurizio

    2009-01-01

    It was the aim of this study to test the hypothesis that hypertension and/or inhibition of nitric oxide (NO) synthases alters uterine vascular remodeling during pregnancy. Using a model of hypertension (NO synthase inhibition with L-NAME) in nonpregnant and pregnant rats, comparisons were made with age-matched controls, as well as with animals receiving hydralazine along with L-NAME to maintain normotension in the presence of NO synthase inhibition. Circumferential and axial remodeling of large (main uterine, MUA) and small (premyometrial radial) arteries were quantified and compared. L-NAME treatment prevented expansive circumferential remodeling of the MUA; cotreatment with hydralazine was without effect. Circumferential remodeling of smaller premyometrial radial arteries was also significantly attenuated in hypertensive pregnant animals, while premyometrial radial arteries from rats receiving hydralazine with L-NAME were of intermediate diameter. Neither hypertension nor NO synthase inhibition had any effect on the substantial (200-300%) axial growth of MUA or premyometrial radial arteries. NO plays a major role in facilitating pregnancy-induced expansive remodeling in the uterine circulation, particularly in larger arteries. Some beneficial effects of hydralazine on expansive circumferential remodeling were noted in smaller radial vessels, and these may be linked to its prevention of systemic hypertension and/or to local effects on the arterial wall. Neither NO synthase inhibition nor hypertension had any effect on arterial longitudinal growth.

  10. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis.

    Science.gov (United States)

    Hegardt, F G

    1999-03-15

    Cytosolic and mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthases were first recognized as different chemical entities in 1975, when they were purified and characterized by Lane's group. Since then, the two enzymes have been studied extensively, one as a control site of the cholesterol biosynthetic pathway and the other as an important control site of ketogenesis. This review describes some key developments over the last 25 years that have led to our current understanding of the physiology of mitochondrial HMG-CoA synthase in the HMG-CoA pathway and in ketogenesis in the liver and small intestine of suckling animals. The enzyme is regulated by two systems: succinylation and desuccinylation in the short term, and transcriptional regulation in the long term. Both control mechanisms are influenced by nutritional and hormonal factors, which explains the incidence of ketogenesis in diabetes and starvation, during intense lipolysis, and in the foetal-neonatal and suckling-weaning transitions. The DNA-binding properties of the peroxisome-proliferator-activated receptor and other transcription factors on the nuclear-receptor-responsive element of the mitochondrial HMG-CoA synthase promoter have revealed how ketogenesis can be regulated by fatty acids. Finally, the expression of mitochondrial HMG-CoA synthase in the gonads and the correction of auxotrophy for mevalonate in cells deficient in cytosolic HMG-CoA synthase suggest that the mitochondrial enzyme may play a role in cholesterogenesis in gonadal and other tissues.

  11. Monoterpene synthase from Dracocephalum kotschyi and SPME-GC-MS analysis of its aroma profile

    Directory of Open Access Journals (Sweden)

    S. Saeidnia

    2014-04-01

    Full Text Available Dracocephalum kotschyi (Lamiaceae, as one of the remarkable aromatic plants, widely grows and also is cultivated in various temperate regions of Iran. There are diverse reports about the composition of the oil of this plant representing limonene derivatives as its major compounds. There is no report on cloning of mono- or sesquiterpene synthases from this plant. In the present study, the aroma profile of D. kotschyi has been extracted and analyzed via Headspace Solid-Phase Microextraction technique coupled with Gas Chromatography- Mass Spectroscopy. In order to determine the sequence of the active terpene synthase in this plant, first mRNA was prepared and cloning was performed by 3’ and 5’-RACEs-PCR method, then cDNA was sequenced and finally aligned with other recognized terpene synthases. The results showed that the plant leaves mainly comprised geranial (37.2%, limonene-10-al (28.5%, limonene (20.1% and 1,1-dimethoxy decane (14.5%. Sequencing the cDNA cloned from this plant revealed the presence of a monoterpene synthase absolutely similar to limonene synthase, responsible in formation of limonene, terpinolene, camphene and some other cyclic monoterpenes in its young leaves.

  12. Expression of cystathionine beta-synthase and histopathological observations in placentas of patients with Down syndrome.

    Science.gov (United States)

    Pinilla, J Martínez; Ayala-Ramírez, P; García-Robles, R; Olaya-C, M; Bermúdez, M

    2015-01-01

    Down syndrome is the most frequent aneuploidy in live births, with an overall frequency of 1/600-700 births. The overexpression of cystathionine β-synthase is thought to participate in the presentation of some phenotypes observed in Down syndrome. The aim of this study was to compare the expression levels of cystathionine β-synthase and histopathological observations from placentas of infants with Down syndrome and healthy newborns. Six placentas of fetuses/infants with Down syndrome and sixteen placentas of healthy fetuses were studied. Cystathionine β-synthase mRNA and protein expression were performed by real-time PCR and immunohistochemistry, respectively. We observed an increase in cystathionine β-synthase mRNA expression (p = 0.0465) and protein levels (p = 0.009) in placentas of fetus/infants with Down syndrome compared with controls. Significantly more circinate edges (p = 0.0007) and trophoblast inclusions (p = 0.0037) were observed in the group with Down syndrome compared with control group. The results demonstrate overexpression of cystathionine β-synthase mRNA and protein in placentas of fetuses/infants with trisomy 21. Further histological abnormalities were found in placentas of patients with Down syndrome, suggesting an alteration in the development of placenta.

  13. Contribution of cysteine desulfurase (NifS protein) to the biotin synthase reaction of Escherichia coli.

    Science.gov (United States)

    Kiyasu, T; Asakura, A; Nagahashi, Y; Hoshino, T

    2000-05-01

    The contribution of cysteine desulfurase, the NifS protein of Klebsiella pneumoniae and the IscS protein of Escherichia coli, to the biotin synthase reaction was investigated in in vitro and in vivo reaction systems with E. coli. When the nifS and nifU genes of K. pneumoniae were coexpressed in E. coli, NifS and NifU proteins in complex (NifU/S complex) and NifU monomer forms were observed. Both the NifU/S complex and the NifU monomer stimulated the biotin synthase reaction in the presence of L-cysteine in an in vitro reaction system. The NifU/S complex enhanced the production of biotin from dethiobiotin by the cells growing in an in vivo reaction system. Moreover, the IscS protein of E. coli stimulated the biotin synthase reaction in the presence of L-cysteine in the cell-free system. These results strongly suggest that cysteine desulfurase participates in the biotin synthase reaction, probably by supplying sulfur to the iron-sulfur cluster of biotin synthase.

  14. Altering small and medium alcohol selectivity in the wax ester synthase.

    Science.gov (United States)

    Barney, Brett M; Ohlert, Janet M; Timler, Jacobe G; Lijewski, Amelia M

    2015-11-01

    The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT or wax ester synthase) catalyzes the terminal reaction in the bacterial wax ester biosynthetic pathway, utilizing a range of alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. The wild-type wax ester synthase Maqu_0168 from Marinobacter aquaeolei VT8 exhibits a preference for longer fatty alcohols, while applications with smaller alcohols would yield products with desired biotechnological properties. Small and medium chain length alcohol substrates are much poorer substrates for the native enzyme, which may hinder broad application of the wax ester synthase in many proposed biosynthetic schemes. Developing approaches to improve enzyme activity toward specific smaller alcohol substrates first requires a clear understanding of which amino acids of the primary sequences of these enzymes contribute to substrate specificity in the native enzyme. In this report, we surveyed a range of potential residues and identified the leucine at position 356 and methionine at position 405 in Maqu_0168 as residues that affected selectivity toward small, branched, and aromatic alcohols when substituted with different amino acids. This analysis provides evidence of residues that line the binding site for wax ester synthase, which will aid rational approaches to improve this enzyme with specific substrates.

  15. Molecular evolution and functional divergence of soluble starch synthase genes in cassava (manihot esculenta crantz).

    Science.gov (United States)

    Yang, Zefeng; Wang, Yifan; Xu, Shuhui; Xu, Chenwu; Yan, Changjie

    2013-01-01

    Soluble starch synthases (SSs) are major enzymes involved in starch biosynthesis in plants. Cassava starch has many remarkable characteristics, which should be influenced by the evolution of SS genes in this starchy root crop. In this work, we performed a comprehensive phylogenetic and evolutionary analysis of the soluble starch synthases in cassava. Genome-wide identification showed that there are 9 genes encoding soluble starch synthases in cassava. All of the soluble starch synthases encoded by these genes contain both Glyco_transf_5 and Glycos_transf_1 domains, and a correlation analysis showed evidence of coevolution between these 2 domains in cassava SS genes. The SS genes in land plants can be divided into 6 subfamilies that were formed before the origin of seed plants, and species-specific expansion has contributed to the evolution of this family in cassava. A functional divergence analysis for this family provided statistical evidence for shifted evolutionary rates between the subfamilies of land plant soluble starch synthases. Although the main selective pressure acting on land plant SS genes was purifying selection, our results also revealed that point mutation with positive selection contributed to the evolution of 2 SS genes in cassava. The remarkable cassava starch characteristics might be the result of both the duplication and adaptive selection of SS genes.

  16. Crystallization of prostaglandin-H synthase for X-ray structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jahnke, K.; Degen, G.H.; Buehner, M. (Univ. of Wuerzburg (West Germany))

    1990-08-01

    Prostaglandin-H (PGH) synthase from ram seminal vesicles is a dimeric integral membrane protein of molecular weight 140 kDa. PGH synthase is a key enzyme in the biosynthesis of prostaglandins, has cyclooxygenase and peroxidase activities, and contains heme as a coenzyme. In the peroxidation step of its reaction, PGH synthase can use xenobiotics as co-substrates and can catalyze the metabolic activation of carcinogens such as diethylstilbestrol. To gain a detailed understanding of the inner workings of PGH synthase, the authors are investigating its three-dimensional structure by X-ray crystallography. A purification procedure was established that yields stable homogeneous PGH synthase that is at least 80% holoenzyme. Manipulation of these crystals is very difficult due to the small volume of the growth phase. The crystals dissolved rapidly in all aqueous media into which they were transferred for mounting in X-ray capillaries. Therefore, the authors have not yet been able to demonstrate their true X-ray scattering power. A crystal provisionally dry mounted diffracted to about 8 {angstrom} resolution.

  17. Characteristics and function of cardiac mitochondrial nitric oxide synthase.

    Science.gov (United States)

    Dedkova, Elena N; Blatter, Lothar A

    2009-02-15

    We used laser scanning confocal microscopy in combination with the nitric oxide (NO)-sensitive fluorescent dye DAF-2 and the reactive oxygen species (ROS)-sensitive dyes CM-H(2)DCF and MitoSOX Red to characterize NO and ROS production by mitochondrial NO synthase (mtNOS) in permeabilized cat ventricular myocytes. Stimulation of mitochondrial Ca(2+) uptake by exposure to different cytoplasmic Ca(2+) concentrations ([Ca(2+)](i) = 1, 2 and 5 microm) resulted in a dose-dependent increase of NO production by mitochondria when L-arginine, a substrate for mtNOS, was present. Collapsing the mitochondrial membrane potential with the protonophore FCCP or blocking the mitochondrial Ca(2+) uniporter with Ru360 as well as blocking the respiratory chain with rotenone or antimycin A in combination with oligomycin inhibited mitochondrial NO production. In the absence of L-arginine, mitochondrial NO production during stimulation of Ca(2+) uptake was significantly decreased, but accompanied by increase in mitochondrial ROS production. Inhibition of mitochondrial arginase to limit L-arginine availability resulted in 50% inhibition of Ca(2+)-induced ROS production. Both mitochondrial NO and ROS production were blocked by the nNOS inhibitor (4S)-N-(4-amino-5[aminoethyl]aminopentyl)-N'-nitroguanidine and the calmodulin antagonist W-7, while the eNOS inhibitor L-N(5)-(1-iminoethyl)ornithine (L-NIO) or iNOS inhibitor N-(3-aminomethyl)benzylacetamidine, 2HCl (1400W) had no effect. The superoxide dismutase mimetic and peroxynitrite scavenger MnTBAP abolished Ca(2+)-induced ROS generation and increased NO production threefold, suggesting that in the absence of MnTBAP either formation of superoxide radicals suppressed NO production or part of the formed NO was transformed quickly to peroxynitrite. In the absence of L-arginine, mitochondrial Ca(2+) uptake induced opening of the mitochondrial permeability transition pore (PTP), which was blocked by the PTP inhibitor cyclosporin A and Mn

  18. Structure and reaction mechanism of basil eugenol synthase.

    Directory of Open Access Journals (Sweden)

    Gordon V Louie

    Full Text Available Phenylpropenes, a large group of plant volatile compounds that serve in multiple roles in defense and pollinator attraction, contain a propenyl side chain. Eugenol synthase (EGS catalyzes the reductive displacement of acetate from the propenyl side chain of the substrate coniferyl acetate to produce the allyl-phenylpropene eugenol. We report here the structure determination of EGS from basil (Ocimum basilicum by protein x-ray crystallography. EGS is structurally related to the short-chain dehydrogenase/reductases (SDRs, and in particular, enzymes in the isoflavone-reductase-like subfamily. The structure of a ternary complex of EGS bound to the cofactor NADP(H and a mixed competitive inhibitor EMDF ((7S,8S-ethyl (7,8-methylene-dihydroferulate provides a detailed view of the binding interactions within the EGS active site and a starting point for mutagenic examination of the unusual reductive mechanism of EGS. The key interactions between EMDF and the EGS-holoenzyme include stacking of the phenyl ring of EMDF against the cofactor's nicotinamide ring and a water-mediated hydrogen-bonding interaction between the EMDF 4-hydroxy group and the side-chain amino moiety of a conserved lysine residue, Lys132. The C4 carbon of nicotinamide resides immediately adjacent to the site of hydride addition, the C7 carbon of cinnamyl acetate substrates. The inhibitor-bound EGS structure suggests a two-step reaction mechanism involving the formation of a quinone-methide prior to reduction. The formation of this intermediate is promoted by a hydrogen-bonding network that favors deprotonation of the substrate's 4-hydroxyl group and disfavors binding of the acetate moiety, akin to a push-pull catalytic mechanism. Notably, the catalytic involvement in EGS of the conserved Lys132 in preparing the phenolic substrate for quinone methide formation through the proton-relay network appears to be an adaptation of the analogous role in hydrogen bonding played by the equivalent

  19. Correlation between Thymidylate Synthase Genotype and Susceptibility to Gastric Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Lei Yang; Mingbing Xiao; Runzhou Ni; Qinghe Tan; Jinzhi Wei; Jianhong Wang; Bojian Ge

    2008-01-01

    OBTECTIVE TO investigate the COrrelation betweenpolymorphism of the 5'-untranslated region(5'-UTR)ofthymidylate synthase genes,as well as the lifestyle,and thesusceptibility of gastric carcinoma.METHoDS A case-control study,with 60 cases of gastriccarcinoma and 170 cases of general risk population-based controlsfrom Nantong,Jiangsu province,China,was conducted.Theepidemiological data,such as living habits of the cancer patients,were collected.DNA of peripheral blood leukocytes was obtainedfrom all of the subjects.The TS 5-UTR tandem repeat genotypewas detected using polymerase chain reaction(PCR).RESULTS There were three TS 5'-UTR genotypes in the groupof gastric cancer cases(2R/2R,2R/3R and 3R/3R)and six TS5'-UTR genotypes in the group of the controls(2R/2R,2R/3R,3R/3R,2R/4R,2R/5R and 3R/4R).The genotypic frequencies wererespectively 5.0%,43.3%and 51.7%in the gastric cancer group.Compared with the parameters in the control group,i,e., 4.7%,31.7%,60.6%,1.2%,1.2%and 0.6%.There were no significantdifferences between the two groups.Compared with the 3R/3R-genotvpe individuals who Where non.smokers,drank alcoholtwice or less each week,drank tea and did not intake pickled food(PF),the risk of gastric cancer significantly went up in the 2R/2Ror 2R/3R-genotype people who had habits of smoking,drinkingalcohol more than twice each week,no tea drinking but withfrequent intake of PF.The adjusted ORs were as follows,3.79 (95%CI:2.45-8.64),3.41(95%CI:1.21-8.47),5.99(95%CI:3.01-14_7),and 3.61(95%CI:1.81-8.78).CoNCLUSIoN There iS an obvious correlation between thepolymorphisms of TS 5'-UTR genotypes and the lifestyle ofindividuals in the development of gastric carcinoma.smoking,alcohol drinking,tea drinking,pickled food.Hospital and Springer

  20. Bifunctional activity of deoxyhypusine synthase/hydroxylase from Trichomonas vaginalis.

    Science.gov (United States)

    Quintas-Granados, Laura Itzel; Carvajal Gamez, Bertha Isabel; Villalpando, Jose Luis; Ortega-Lopez, Jaime; Arroyo, Rossana; Azuara-Liceaga, Elisa; Álvarez-Sánchez, María Elizbeth

    2016-04-01

    The Trichomonas vaginalis genome analysis suggested the presence of a putative deoxyhypusine synthase (TvDHS) that catalyzes the posttranslational modification of eIF-5A. Herein, we expressed and purified the recombinant TvDHS (rTvDHS) protein (43 kDa) and the recombinant TveIF-5A (rTveIF-5A) precursor protein (46 kDa). A 41 kDa band of the native TvDHS was recognized by western blot analysis in T. vaginalis total protein extract by a mouse polyclonal anti-rTvDHS antibody. The enzymatic activity of rTvDHS was determined by in vitro rTveIF-5A precursor modification. The modification reaction was performed by using ((3)H)-spermidine, and the biochemical analysis showed that rTvDHS exhibited Km value of 0.6 μM. The rTvDHS activity was inhibited by the spermidine analog, N″-guanyl-1,7-diamino-heptane (GC7). Native gel electrophoresis analysis showed two bands corresponding to an rTvDHS-rTveIF-5A complex and an intermediate form of rTveIF-5A. The two forms were subsequently separated by ion exchange chromatography to identify the hypusine residue by MS/MS analysis. Moreover, mutations in TvDHS showed that the putative HE motif present in this enzyme is involved in the hydroxylation of TveIF-5A. We observed that only hypusine-containing TveIF-5A was bound to an RNA hairpin ERE structure from the cox-2 gene, which contains the AAAUGUCACAC consensus sequence. Interestingly, 2DE-WB assays, using parasites that were grown in DAB-culture conditions and transferred to exogenous putrescine, showed the new isoform of TveIF-5A. In summary, our results indicate that T. vaginalis contains an active TvDHS capable of modifying the precursor TveIF-5A protein, which subsequently exhibits RNA binding activity.

  1. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance.

    Science.gov (United States)

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R; Junge, Wolfgang; Khan, Shahid

    2015-09-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the dynamics that may

  2. Lamps and lighting

    CERN Document Server

    Cayless, MA; Marsden, A M

    2012-01-01

    This book is a comprehensive guide to the theory and practice of lighting. Covering the physics of light production, light sources, circuits and a wide variety of lighting applications, it is both suitable as a detailed textbook and as thoroughly practical guide for practising lighting engineers. This fourth edition of Lamps and Lighting has been completely updated with new chapters on the latest lamp technology and applications. The editors ahve called upon a wide range of expertise and as a result many sections have been broadened to include both European and US practice.The book begins with

  3. The design of lighting

    CERN Document Server

    Tregenza, Peter

    2013-01-01

    This fully updated edition of the successful book The Design of Lighting, provides the lighting knowledge needed by the architect in practice, the interior designer and students of both disciplines. The new edition offers a clear structure, carefully selected material and linking of lighting with other subjects, in order to provide the reader with a comprehensive and specifically architectural approach to lighting. Features of this new edition include:technical knowledge of lighting in the context of architectural design;an emphasis on imagination in architectural light and presentation of the

  4. Function and expression study uncovered hepatocyte plasma membrane ecto-ATP synthase as a novel player in liver regeneration.

    Science.gov (United States)

    Taurino, Federica; Giannoccaro, Caterina; Sardanelli, Anna Maria; Cavallo, Alessandro; De Luca, Elisa; Santacroce, Salvatore; Papa, Sergio; Zanotti, Franco; Gnoni, Antonio

    2016-08-15

    ATP synthase, canonically mitochondrially located, is reported to be ectopically expressed on the plasma membrane outer face of several cell types. We analysed, for the first time, the expression and catalytic activities of the ecto- and mitochondrial ATP synthase during liver regeneration. Liver regeneration was induced in rats by two-thirds partial hepatectomy. The protein level and the ATP synthase and/or hydrolase activities of the hepatocyte ecto- and mitochondrial ATP synthase were analysed on freshly isolated hepatocytes and mitochondria from control, sham-operated and partial hepatectomized rats. During the priming phase of liver regeneration, 3 h after partial hepatectomy, liver mitochondria showed a marked lowering of the ATP synthase protein level that was reflected in the impairment of both ATP synthesis and hydrolysis. The ecto-ATP synthase level, in 3 h partial hepatectomized hepatocytes, was decreased similarly to the level of the mitochondrial ATP synthase, associated with a lowering of the ecto-ATP hydrolase activity coupled to proton influx. Noteworthily, the ecto-ATP synthase activity coupled to proton efflux was completely inhibited in 3 h partial hepatectomized hepatocytes, even in the presence of a marked intracellular acidification that would sustain it as in control and sham-operated hepatocytes. At the end of the liver regeneration, 7 days after partial hepatectomy, the level and the catalytic activities of the ecto- and mitochondrial ATP synthase reached the control and sham-operated values. The specific modulation of hepatocyte ecto-ATP synthase catalytic activities during liver regeneration priming phase may modulate the extracellular ADP/ATP levels and/or proton influx/efflux trafficking, making hepatocyte ecto-ATP synthase a candidate for a novel player in the liver regeneration process. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  5. Crystallization and rhenium MAD phasing of the acyl-homoserinelactone synthase EsaI

    Energy Technology Data Exchange (ETDEWEB)

    Watson, W.T.; Murphy IV, Frank V.; Gould, Ty A.; Jambeck, Per; Val, Dale L.; Cronan, Jr., John E.; Beck von Bodman, Susan; Churchill, Mair E.A. (UIUC); (Colorado); (Connecticut)

    2009-04-22

    Acyl-homoserine-L-lactones (AHLs) are diffusible chemical signals that are required for virulence of many Gram-negative bacteria. AHLs are produced by AHL synthases from two substrates, S-adenosyl-L-methionine and acyl-acyl carrier protein. The AHL synthase EsaI, which is homologous to the AHL synthases from other pathogenic bacterial species, has been crystallized in the primitive tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 66.40, c = 47.33 {angstrom}. The structure was solved by multiple-wavelength anomalous diffraction with a novel use of the rhenium anomalous signal. The rhenium-containing structure has been refined to a resolution of 2.5 {angstrom} and the perrhenate ion binding sites and liganding residues have been identified.

  6. Characterization of Two Polyketide Synthase Genes Involved in Zearalenone Biosynthesis in Gibberella zeae

    Science.gov (United States)

    Gaffoor, Iffa; Trail, Frances

    2006-01-01

    Zearalenone, a mycotoxin produced by several Fusarium spp., is most commonly found as a contaminant in stored grain and has chronic estrogenic effects on mammals. Zearalenone is a polyketide derived from the sequential condensation of multiple acetate units by a polyketide synthase (PKS), but the genetics of its biosynthesis are not understood. We cloned two genes, designated ZEA1 and ZEA2, which encode polyketide synthases that participate in the biosynthesis of zearalenone by Gibberella zeae (anamorph Fusarium graminearum). Disruption of either gene resulted in the loss of zearalenone production under inducing conditions. ZEA1 and ZEA2 are transcribed divergently from a common promoter region. Quantitative PCR analysis of both PKS genes and six flanking genes supports the view that the two polyketide synthases make up the core biosynthetic unit for zearalenone biosynthesis. An appreciation of the genetics of zearalenone biosynthesis is needed to understand how zearalenone is synthesized under field conditions that result in the contamination of grain. PMID:16517624

  7. Occurrence of theobromine synthase genes in purine alkaloid-free species of Camellia plants.

    Science.gov (United States)

    Ishida, Mariko; Kitao, Naoko; Mizuno, Kouichi; Tanikawa, Natsu; Kato, Misako

    2009-02-01

    Caffeine (1,3,7-trimethylxanthine) and theobromine (3,7-dimethylxanthine) are purine alkaloids that are present in high concentrations in plants of some species of Camellia. However, most members of the genus Camellia contain no purine alkaloids. Tracer experiments using [8-(14)C]adenine and [8-(14)C]theobromine showed that the purine alkaloid pathway is not fully functional in leaves of purine alkaloid-free species. In five species of purine alkaloid-free Camellia plants, sufficient evidence was obtained to show the occurrence of genes that are homologous to caffeine synthase. Recombinant enzymes derived from purine alkaloid-free species showed only theobromine synthase activity. Unlike the caffeine synthase gene, these genes were expressed more strongly in mature tissue than in young tissue.

  8. Adipocyte Mineralocorticoid Receptor Activation Leads to Metabolic Syndrome and Induction of Prostaglandin D2 Synthase.

    Science.gov (United States)

    Urbanet, Riccardo; Nguyen Dinh Cat, Aurelie; Feraco, Alessandra; Venteclef, Nicolas; El Mogrhabi, Soumaya; Sierra-Ramos, Catalina; Alvarez de la Rosa, Diego; Adler, Gail K; Quilliot, Didier; Rossignol, Patrick; Fallo, Francesco; Touyz, Rhian M; Jaisser, Frédéric

    2015-07-01

    Metabolic syndrome is a major risk factor for the development of diabetes mellitus and cardiovascular diseases. Pharmacological antagonism of the mineralocorticoid receptor (MR), a ligand-activated transcription factor, limits metabolic syndrome in preclinical models, but mechanistic studies are lacking to delineate the role of MR activation in adipose tissue. In this study, we report that MR expression is increased in visceral adipose tissue in a preclinical mouse model of metabolic syndrome and in obese patients. In vivo conditional upregulation of MR in mouse adipocytes led to increased weight and fat mass, insulin resistance, and metabolic syndrome features without affecting blood pressure. We identified prostaglandin D2 synthase as a novel MR target gene in adipocytes and AT56, a specific inhibitor of prostaglandin D2 synthase enzymatic activity, blunted adipogenic aldosterone effects. Moreover, translational studies showed that expression of MR and prostaglandin D2 synthase is strongly correlated in adipose tissues from obese patients.

  9. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  10. The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators

    Institute of Scientific and Technical Information of China (English)

    Logan BASHLINE; Juan DU; Ying GU

    2011-01-01

    Cellulose biosynthesis is a topic of intensive research not only due to the significance of cellulose in the integrity of plant cell walls,but also due to the potential of using cellulose,a natural carbon source,in the production ot biofuels.Characterization of the composition,regulation,and trafficking of cellulose synthase complexes (CSCs) is critical to an understanding of cellulose biosynthesis as well as the characterization of additional proteins that contribute to the production of cellulose either through direct interactions with CSCs or through indirect mechanisms.In this review,a highlight of a few proteins that appear to affect cellulose biosynthesis,which includes:KORRIGAN (KOR),Cellulose Synthase-Interactive Protein 1 (CSI1),and the poplar microtubule-associated protein,PttMAP20,will accompany a description of cellulose synthase (CESA) behavior and a discussion of CESA trafficking compartments that might act in the regulation of cellulose biosynthesis.

  11. Characterization of a sabinene synthase gene from rough lemon (Citrus jambhiri).

    Science.gov (United States)

    Kohzaki, Keisuke; Gomi, Kenji; Yamasaki-Kokudo, Yumiko; Ozawa, Rika; Takabayashi, Junji; Akimitsu, Kazuya

    2009-10-15

    We previously isolated two putative monoterpene synthase genes, RlemTPS1 and RlemTPS2, from rough lemon (Citrus jambhiri) and showed that gene expression of RlemTPS2 was induced by microbial attack. The protein product of RlemTPS2 was obtained using a prokaryotic expression system, and GC and GC-MS of monoterpene synthesis by RlemTPS2 determined that RlemTPS2 encodes a sabinene synthase. Sabinene has antifungal activity toward Alternaria alternata. Furthermore, site-directed mutagenesis identified one amino acid, Ile, located at the front of the metal ion binding motif as an important residue for the product specificity of sabinene synthase.

  12. Structure of Salmonella typhimurium OMP Synthase in a Complete Substrate Complex

    DEFF Research Database (Denmark)

    Grubmeyer, Charles; Hansen, Michael Riis; Fedorov, Alexander A.

    2012-01-01

    Dimeric Salmonella typhimurium orotate phosphoribosyltransferase (OMP synthase, EC 2.4.2.10), a key enzyme in de novo pyrimidine nucleotide synthesis, has been cocrystallized in a complete substrate E·MgPRPP·orotate complex and the structure determined to 2.2 Å resolution. This structure...... resembles that of Saccharomyces cerevisiae OMP synthase in showing a dramatic and asymmetric reorganization around the active site-bound ligands but shares the same basic topology previously observed in complexes of OMP synthase from S. typhimurium and Escherichia coli. The catalytic loop (residues 99......?109) contributed by subunit A is reorganized to close the active site situated in subunit B and to sequester it from solvent. Furthermore, the overall structure of subunit B is more compact, because of movements of the amino-terminal hood and elements of the core domain. The catalytic loop of subunit B remains...

  13. Additional diterpenes from Physcomitrella patens synthesized by copalyl diphosphate/kaurene synthase (PpCPS/KS).

    Science.gov (United States)

    Zhan, Xin; Bach, Søren Spanner; Hansen, Nikolaj Lervad; Lunde, Christina; Simonsen, Henrik Toft

    2015-11-01

    The bifunctional diterpene synthase, copalyl diphosphate/kaurene synthase from the moss Physcomitrella patens (PpCPS/KS), catalyses the formation of at least four diterpenes, including ent-beyerene, ent-sandaracopimaradiene, ent-kaur-16-ene, and 16-hydroxy-ent-kaurene. The enzymatic activity has been confirmed through generation of a targeted PpCPS/KS knock-out mutant in P. patens via homologous recombination, through transient expression of PpCPS/KS in Nicotiana benthamiana, and expression of PpCPS/KS in E. coli. GC-MS analysis of the knock-out mutant shows that it lacks the diterpenoids, supporting that all are products of PpCPS/KS as observed in N. benthamiana and E. coli. These results provide additional knowledge of the mechanism of this bifunctional diterpene synthase, and are in line with proposed reaction mechanisms in kaurene biosynthesis.

  14. Broad Substrate Specificity of the Loading Didomain of the Lipomycin Polyketide Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Yuzawa, S; Eng, CH; Katz, L; Keasling, JD

    2013-06-04

    LipPks1, a polyketide synthase subunit of the lipomycin synthase, is believed to catalyze the polyketide chain initiation reaction using isobutyryl-CoA as a substrate, followed by an elongation reaction with methylmalonyl-CoA to start the biosynthesis of antibiotic alpha-lipomycin in Streptomyces aureofaciens Tu117. Recombinant LipPks1, containing the thioesterase domain from the 6-deoxyerythronolide B synthase, was produced in Escherichia coli, and its substrate specificity was investigated in vitro. Surprisingly, several different acyl-CoAs, including isobutyryl-CoA, were accepted as the starter substrates, while no product was observed with acetyl-CoA. These results demonstrate the broad substrate specificity of LipPks1 and may be applied to producing new antibiotics.

  15. Morphology engineering of Penicillium chrysogenum by RNA silencing of chitin synthase gene.

    Science.gov (United States)

    Liu, Hui; Wang, Peng; Gong, Guohong; Wang, Li; Zhao, Genhai; Zheng, Zhiming

    2013-03-01

    Chitin synthases, that catalyze the formation of chitin the major component of cell walls in most filamentous fungi, play crucial roles in the growth and morphogenesis. To investigate the roles of chitin synthase in Penicillium chrysogenum, we developed an RNAi system to silence the class III chitin synthase gene chs4. After transformation, mutants had a slow growth rate and shorter but highly branched hyphae. All transformants either were unable to form conidia or could form only a few. Changes in chs4 expression could lead to a completely different morphology and eventually cause distinct penicillin yields. In particular, the yield of one transformant was 41 % higher than that of the original strain.

  16. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host.

    Science.gov (United States)

    Yamada, Yuuki; Arima, Shiho; Nagamitsu, Tohru; Johmoto, Kohei; Uekusa, Hidehiro; Eguchi, Tadashi; Shin-ya, Kazuo; Cane, David E; Ikeda, Haruo

    2015-06-01

    Mining of bacterial genome data has revealed numerous presumptive terpene synthases. Heterologous expression of several putative terpene synthase genes in an engineered Streptomyces host has revealed 13 newly discovered terpenes whose GC-MS and NMR data did not match with any known compounds in spectroscopic databases. Each of the genes encoding the corresponding terpene synthases were silent in their parent microorganisms. Heterologous expression and detailed NMR spectroscopic analysis allowed assignment of the structures of 13 new cyclic terpenes. Among these newly identified compounds, two were found to be linear triquinane sesquiterpenes that have never previously been isolated from bacteria or any other source. The remaining 11 new compounds were shown to be diterpene hydrocarbons and alcohol, including hydropyrene (1), hydropyrenol (2), tsukubadiene (11) and odyverdienes A (12) and B (13) each displaying a novel diterpene skeleton that had not previously been reported.

  17. Identification and characterization of a second isogene encoding γ-terpinene synthase in Thymus caespititius.

    Science.gov (United States)

    Mendes, Marta D; Barroso, José G; Oliveira, M Margarida; Trindade, Helena

    2014-07-15

    Thymus caespititius Brot. is an Iberian endemic species, whose essential oils possess high polymorphism. They consist mostly of mono- and sesquiterpene, some of them with interest for the pharmaceutical and food industries. The search for terpene synthase genes was performed in three in vitro T. caespititius genotypes. For these plants, the expression of a previously described γ-terpinene synthase gene, Tctps2, was confirmed, occurring concomitantly with a new gene encoding an enzyme with similar activity, named Thymus caespititius terpene synthase 4 (Tctps4). The two isogenes were isolated and functionally characterized in the three plant genotypes. Alignment of the two Tctps revealed a transit peptide much shorter in Tctps4 than in Tctps2 (3-4 amino acids instead of 47). The Tctps4 open reading frame is shorter than Tctps2 (1665 bp versus 1794 bp). The amino acid sequence of both γ-terpinene synthases shared an 88% pairwise identity. The fact that T. caespititius carries two isogenes for γ-terpinene synthases, suggests gene duplication along the evolutionary process, followed by mutations leading to the differentiation of both genes. These mutations didn't compromise protein activity. A high accumulation of transcripts from both genes was found in shoots of in vitro plantlets, while in roots they could not be detected. Still, γ-terpinene levels in aerial parts were reduced, probably due to fast conversion into carvacrol and thymol, the main components from T. caespititius essential oils. This study is a contribution to the identification of terpene synthase genes in Lamiaceae.

  18. Structure of 3-oxoacyl-(acyl-carrier protein) synthase II from Thermus thermophilus HB8

    Energy Technology Data Exchange (ETDEWEB)

    Bagautdinov, Bagautdin, E-mail: bagautdi@spring8.or.jp; Ukita, Yoko [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Miyano, Masashi [Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kunishima, Naoki [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2008-05-01

    The crystal structure of 3-oxoacyl-(acyl-carrier protein) synthase II from T. thermophilus HB8 has been determined at 2.0 Å resolution and compared with the structures of β-keto-ACP synthases from other sources. The β-ketoacyl-(acyl carrier protein) synthases (β-keto-ACP synthases; KAS) catalyse the addition of two-carbon units to the growing acyl chain during the elongation phase of fatty-acid synthesis. As key regulators of bacterial fatty-acid synthesis, they are promising targets for the development of new antibacterial agents. The crystal structure of 3-oxoacyl-ACP synthase II from Thermus thermophilus HB8 (TtKAS II) has been solved by molecular replacement and refined at 2.0 Å resolution. The crystal is orthorhombic, space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 72.07, b = 185.57, c = 62.52 Å, and contains one homodimer in the asymmetric unit. The subunits adopt the well known α-β-α-β-α thiolase fold that is common to ACP synthases. The structural and sequence similarities of TtKAS II to KAS I and KAS II enzymes of known structure from other sources support the hypothesis of comparable enzymatic activity. The dimeric state of TtKAS II is important to create each fatty-acid-binding pocket. Closer examination of KAS structures reveals that compared with other KAS structures in the apo form, the active site of TtKAS II is more accessible because of the ‘open’ conformation of the Phe396 side chain.

  19. EPSP合酶的研究进展%The Research Progress of EPSP Synthase

    Institute of Scientific and Technical Information of China (English)

    徐杰; 蒋世云; 傅凤鸣; 耿鹏飞; 黄凯

    2014-01-01

    5-烯醇式丙酮酰莽草酸-3-磷酸合酶(5-Enolpyruvylshikimate-3-phosphate synthase,EPSP合酶)是莽草酸途径中的第六位酶,参与合成芳香族氨基酸以及部分次生代谢的产物,同时EPSP合酶不仅是除草剂草甘膦、抗菌素、抗寄生虫药物的作用靶酶,而且也是促进生物体内莽草酸积累的重要调控位点。近年来,随着分子生物学技术的快速发展和对EPSP合酶的深入研究, EPSP合酶基因在耐草甘膦转基因作物、医药卫生等方面被广泛应用。对EPSP合酶的研究进展进行综述及展望。%5-Enolpyruvylshikimate-3-phosphate synthase(EPSP synthase for short), is the sixth enzyme of shikimic acid pathway and participates in the synthesis of aromatic amino acids and some of secondary metabolites. Meanwhile, EPSP synthase are not only targets of the herbicide(glyphosate), antibiotics, anti-parasitic drugs, but also is important regulatory site of promoting the accumulation of shikimic acid in the organism. In recent years, with the rapid development of molecular biology technology and the in-depth study of EPSP synthase, EPSP synthase genes have been widely used in resistance to glyphosate genetically modified crops, medicine and health, etc. The research progress of EPSP synthase were reviewed and prospects in this paper.

  20. Structure of Salmonella typhimurium OMP synthase in a complete substrates complex

    Science.gov (United States)

    Grubmeyer, Charles; Hansen, Michael Riis; Fedorov, Alexander A.; Almo, Steven C.

    2012-01-01

    Dimeric Salmonella typhimurium orotate phosphoribosyltransferase (OMP synthase, E.C. 2.4.2.10), a key enzyme in de novo pyrimidine nucleotide synthesis, has been co-crystallized in a complete substrate complex of E•MgPRPP•orotate, and the structure solved to 2.2 Å resolution. This structure resembles that for Saccharomyces cerevisiae OMP synthase in showing a dramatic and asymmetric reorganization around the active site-bound ligands, but shares the same basic topology previously observed in complexes of OMP synthase from S. typhimurium and Escherichia coli. The catalytic loop (residues 99–109) contributed by subunit A is reorganized to close the active site situated in subunit B and to sequester it from solvent. Furthermore, the overall structure of subunit B is more compact, due to movements of the amino-terminal hood and elements of the core domain. The catalytic loop of subunit B remains open and disordered, and subunit A retains the more relaxed conformation observed in loop-open S. typhimurium OMP synthase structures. A non-proline cis-peptide formed between Ala71 and Tyr72 is seen in both subunits. The loop-closed catalytic site of subunit B reveals that both the loop and the hood interact directly with the bound pyrophosphate group of PRPP. In contrast to dimagnesium hypoxanthine-guanine phosphoribosyltransferases, OMP synthase contains a single catalytic Mg2+ in the closed active site. The remaining pyrophosphate charges of PRPP are neutralized by interactions with Arg99A, Lys100B, Lys103A, and His105A. The new structure confirms the importance of loop movement in catalysis by OMP synthase, and identifies several additional movements that must be accomplished in each catalytic cycle. A catalytic mechanism based on enzymic and substratea-ssisted stabilization of the previously documented oxocarbenium transition state structure is proposed. PMID:22531064

  1. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells.

    Science.gov (United States)

    Huber, S C; Akazawa, T

    1986-08-01

    Enzymes of sucrose degradation and glycolysis in cultured sycamore (Acer pseudoplatanus L.) cells were assayed and characterized in crude extracts and after partial purification, in an attempt to identify pathways for sucrose catabolism. Desalted cell extracts contained similar activities (20-40 nanomoles per milligram protein per minute) of sucrose synthase, neutral invertase, glucokinase, fructokinase, phosphofructokinase, and UDPglucose pyrophosphorylase (assayed with 2 micromolar pyrophosphate (PPi). PPi-linked phosphofructokinase activity was virtually dependent upon fructose 2,6-bisphosphate, and the maximum activity exceeded that of ATP-linked phosphofructokinase. Hexokinase activity, with glucose as substrate, was highly specific for ATP, whereas fructokinase activity was relatively nonspecific. At 1 millimolar nucleoside triphosphate, fructokinase activity decreased in the order: UTP > ATP > CTP > GTP. We propose two pathways for sucrose degradation. One involves invertase action, followed by classical glycolysis of hexose sugars, and the other is a novel pathway initiated by sucrose synthase. The K(m) for sucrose of sucrose synthase was severalfold lower than that of neutral invertase (15 versus 65 millimolar), which may determine carbon partitioning between the two pathways. The sucrose synthase pathway proposed involves cycling of uridylates and PPi. UDPglucose pyrophosphorylase, which is shown to be an effective ;PPi-scavenger,' would consume PPi and form UTP. The UTP could be then utilized in the UTP-linked fructokinase reaction, thereby forming UDP for sucrose synthase. The source of PPi is postulated to arise from the back reaction of PPi-linked phosphofructokinase. Sycamore cells contained a substantial endogenous pool of PPi (about 3 nanomoles per gram fresh weight, roughly 1/10 the amount of ATP in these cells), and sufficient fructose 2,6-bisphosphate (0.09 nanomole per gram fresh weight) to activate the PPi-linked phosphofructokinase. Possible

  2. GPC Light Shaper

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Raaby, Peter; Glückstad, Jesper

    Generalized Phase Contrast is a disruptive light sculpting technology for studying brain functionalities via light-activated neuron control. GPC dynamically reshapes conventional or multiwavelength lasers for precise and efficient neuron targeting. GPC also makes existing laser systems much more...

  3. Spectrally tunable lighting facility

    Data.gov (United States)

    Federal Laboratory Consortium — Solid-state lighting (SSL) is increasingly being introduced into the market and it is expected that many of the light sources currently used for general illumination...

  4. Light Imaging Section

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of the Light Imaging Section is to give NIAMS scientists access to state-of-the-art light imaging equipment and to offer training and assistance at all...

  5. Interference and Polarized Light.

    Science.gov (United States)

    Charas, Seymour

    1988-01-01

    Discusses a demonstration of interference phenomena using three sheets of polaroid material, a light source, and a light meter. Describes instructional procedures with mathematical expressions and a diagram. (YP)

  6. Advanced Light Source (ALS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Light Source (ALS), a world leader in soft x-ray science, generates light in the wavelengths needed for examining the atomic and electronic structure of...

  7. Lighting detectives forum

    DEFF Research Database (Denmark)

    Bülow, Katja; Skindbjerg Kristensen, Lisbeth

    2003-01-01

    Belysning for boligområder var emnet for lighting detectives forum, der blev afholdt i Stockholm i august 2003.......Belysning for boligområder var emnet for lighting detectives forum, der blev afholdt i Stockholm i august 2003....

  8. Molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis.

    Science.gov (United States)

    Gou, Jun-Bo; Li, Zhen-Qiu; Li, Chang-Fu; Chen, Fang-Fang; Lv, Shi-You; Zhang, Yan-Sheng

    2016-09-01

    Junenol based-eudesmanolides have been detected in many compositae plant species and were reported to exhibit various pharmacological activities. So far, the gene encoding junenol synthase has never been isolated. Here we report the molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis (designated IhsTPS1). IhsTPS1 converts the substrate farnesyl diphosphate into multiple sesquiterpenes with the product 10-epi-junenol being predominant. The transcript levels of IhsTPS1 correlate well with the accumulation pattern of 10-epi-junenol in I. hupehensis organs, supporting its biochemical roles in vivo.

  9. In vitro biochemical characterization of all barley endosperm starch synthases

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS....... Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results...

  10. Neuronal nitric oxide synthase immunoreactivity in ependymal cells during early postnatal development.

    Science.gov (United States)

    Soygüder, Zafer; Karadağ, Hüseyin; Nazli, Mümtaz

    2004-03-01

    Neuronal nitric oxide synthase (nNOS) immunoreactivity was observed in ependymal cell layer of the central canal of spinal cord of neonatal rats (2-20 days old). Neuronal nitric oxide synthase immunoreactivity was present in postnatal day 2 and this immunoreactivity gradually disappeared by postnatal day 16. The progressive decrease in nNOS staining with the increasing postnatal age may suggest that nNOS staining paralleled the maturation of the central canal and may also suggest that nNOS activity plays a role in the development of the ependymal cells.

  11. N-acetylglutamate synthase deficiency and the treatment of hyperammonemic encephalopathy.

    Science.gov (United States)

    Elpeleg, Orly; Shaag, Avraham; Ben-Shalom, Efrat; Schmid, Tal; Bachmann, Claude

    2002-12-01

    Carbamylphosphate synthase is the first enzymatic reaction of the urea cycle. Its activator, N-acetylglutamate, is synthesized from acetyl-CoA and glutamate in a reaction catalyzed by N-acetylglutamate synthase (NAGS). We have identified the putative human NAGS gene and report the first mutation in this gene in a family with carbamylglutamate responsive hyperammonemia and normal activity of the urea cycle enzymes. Mutation analysis has a higher diagnostic specificity than the enzymatic assay in NAGS deficiency. A therapeutic trial with carbamylglutamate is recommended whenever hyperammonemia without an organic aciduria, increased orotate excretion, or diagnostic amino acidemia/uria is detected.

  12. Transcriptional regulation of mitochondrial HMG-CoA synthase in the control of ketogenesis.

    Science.gov (United States)

    Hegardt, F G

    1998-10-01

    Mitochondrial and cytosolic HMG-CoA synthases are encoded by two different genes. Control of ketogenesis is exerted by transcriptional regulation of mitochondrial HMG-CoA synthase. Fasting, cAMP, and fatty acids increase its transcriptional rate, while refeeding and insulin repress it. Fatty acids increase transcription through peroxisomal proliferator regulatory element (PPRE), to which peroxisome proliferator activated receptor (PPAR) can bind. Other transcription factors such as chicken ovalbumin upstream promoter transcription factor (COUP-TF) and hepatocyte nuclear factor 4 (HNF-4) compete for the PPRE site, modulating the response of PPAR.

  13. Contribution of Cysteine Desulfurase (NifS Protein) to the Biotin Synthase Reaction of Escherichia coli

    OpenAIRE

    Kiyasu, Tatsuya; Asakura, Akira; Nagahashi, Yoshie; Hoshino, Tatsuo

    2000-01-01

    The contribution of cysteine desulfurase, the NifS protein of Klebsiella pneumoniae and the IscS protein of Escherichia coli, to the biotin synthase reaction was investigated in in vitro and in vivo reaction systems with E. coli. When the nifS and nifU genes of K. pneumoniae were coexpressed in E. coli, NifS and NifU proteins in complex (NifU/S complex) and NifU monomer forms were observed. Both the NifU/S complex and the NifU monomer stimulated the biotin synthase reaction in the presence of...

  14. Mechanistic studies of 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Dotson, G.D.; Woodard, R.W. [Univ. of Michigan, Ann Arbor, MI (United States)

    1994-12-01

    The enzyme 3-deOXY-D-manno-octulosonic acid 8-phosphate synthase (KDO 8-P synthase) catalyses the condensation of arabinose 5-phosphate (A 5-P) with phosphoenolpyruvate (PEP) to give the unique eight-carbon acidic sugar 3-deoxy-D-nianno-octulosonic acid 8-phosphate (KDO 8-P) found only in gram-negative bacteria and required for lipid A maturation and cellular growth. The E. coli gene kdsA that encodes KDO 8-P synthase has been amplified by standard PCR methodologies. The synthetic gene, subcloned into the expression vector pT7-7 was used to infect E. coli BL 21 (DE 3). Purification of crude supernatant from this transformant on Q Sepharose yields >200 mg of near-homogeneous KDO 8-P synthase per liter of cell culture. To explore the mechanism of KDO 8-P synthase, we prepared (E)- and (Z)-(3{sup 2}H)PEP, (2-{sup 13}C)PEP, and (2-{sup 13}C,{sup 18}O)PEP chemically from the appropriately labeled 3-bromopyruvates by reaction with trimethylphosphite under Perkow reaction conditions. Our {sup 1}H-NMR analysis of the stereochemistry at C3 of the KDO 8-Ps, obtained by separate incubation of (E)- and (Z)-(3-{sup 2}H)PEP with A 5-P in the presence of KDO 8-P synthase, demonstrated that the reaction is stereospecific with respect to both the C3 of PEP and the C1 carbonyl of A 5-P. (Z)-(3-{sup 2}H)PEP gave predominantly (3S)-(3{sup 2}H)KDO 8-P and (E)-(3-{sup 2}H)PEP gave predominantly (3R)-(3{sup 2}H)KDO-8P, which indicates condensation of the si face of PEP upon the re face of A 5-P-an orientation analogous to that seen with the similar aldehyde Iyase DAH 7-P synthase. The fate of the enolic oxygen of (2-{sup 13}C, {sup 18}O)PEP, during the course of the KDO 8-P synthase-catalyzed reaction as monitored by both {sup 13}C- and {sup 31}P-NMR spectroscopy demonstrated that the inorganic phosphate (Pi) and not the KDO 8-P contained the {sup 18}O.

  15. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes

    Directory of Open Access Journals (Sweden)

    Ro Dae-Kyun

    2009-07-01

    Full Text Available Abstract Background Sesquiterpene lactones are characteristic metabolites of Asteraceae (or Compositae which often display potent bioactivities and are sequestered in specialized organs such as laticifers, resin ducts, and trichomes. For characterization of sunflower sesquiterpene synthases we employed a simple method to isolate pure trichomes from anther appendages which facilitated the identification of these genes and investigation of their enzymatic functions and expression patterns during trichome development. Results Glandular trichomes of sunflower (Helianthus annuus L. were isolated, and their RNA was extracted to investigate the initial steps of sesquiterpene lactone biosynthesis. Reverse transcription-PCR experiments led to the identification of three sesquiterpene synthases. By combination of in vitro and in vivo characterization of sesquiterpene synthase gene products in Escherichia coli and Saccharomyces cerevisiae, respectively, two enzymes were identified as germacrene A synthases, the key enzymes of sesquiterpene lactone biosynthesis. Due to the very low in vitro activity, the third enzyme was expressed in vivo in yeast as a thioredoxin-fusion protein for functional characterization. In in vivo assays, it was identified as a multiproduct enzyme with the volatile sesquiterpene hydrocarbon δ-cadinene as one of the two main products with α-muuorlene, β-caryophyllene, α-humulene and α-copaene as minor products. The second main compound remained unidentified. For expression studies, glandular trichomes from the anther appendages of sunflower florets were isolated in particular developmental stages from the pre- to the post-secretory phase. All three sesquiterpene synthases were solely upregulated during the biosynthetically active stages of the trichomes. Expression in different aerial plant parts coincided with occurrence and maturity of trichomes. Young roots with root hairs showed expression of the sesquiterpene synthase genes

  16. Development of intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase for discriminating Curcuma species.

    Science.gov (United States)

    Kita, Tomoko; Komatsu, Katsuko; Zhu, Shu; Iida, Osamu; Sugimura, Koji; Kawahara, Nobuo; Taguchi, Hiromu; Masamura, Noriya; Cai, Shao-Qing

    2016-03-01

    Various Curcuma rhizomes have been used as medicines or spices in Asia since ancient times. It is very difficult to distinguish them morphologically, especially when they are boiled and dried, which causes misidentification leading to a loss of efficacy. We developed a method for discriminating Curcuma species by intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. This method could apply to identification of not only fresh plants but also samples of crude drugs or edible spices. By applying this method to Curcuma specimens and samples, and constructing a dendrogram based on these markers, seven Curcuma species were clearly distinguishable. Moreover, Curcuma longa specimens were geographically distinguishable. On the other hand, Curcuma kwangsiensis (gl type) specimens also showed intraspecies polymorphism, which may have occurred as a result of hybridization with other Curcuma species. The molecular method we developed is a potential tool for global classification of the genus Curcuma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The Primary Diterpene Synthase Products of Picea abies Levopimaradiene/Abietadiene Synthase (PaLAS) Are Epimers of a Thermally Unstable Diterpenol*

    Science.gov (United States)

    Keeling, Christopher I.; Madilao, Lina L.; Zerbe, Philipp; Dullat, Harpreet K.; Bohlmann, Jörg

    2011-01-01

    The levopimaradiene/abietadiene synthase from Norway spruce (Picea abies; PaLAS) has previously been reported to produce a mixture of four diterpene hydrocarbons when incubated with geranylgeranyl diphosphate as the substrate: levopimaradiene, abietadiene, neoabietadiene, and palustradiene. However, variability in the assay products observed by GC-MS of this and orthologous conifer diterpene synthases over the past 15 years suggested that these diterpenes may not be the initial enzyme assay products but are rather the products of dehydration of an unstable alcohol. We have identified epimers of the thermally unstable allylic tertiary alcohol 13-hydroxy-8(14)-abietene as the products of PaLAS. The identification of these compounds, not previously described in conifers, as the initial products of PaLAS has considerable implications for our understanding of the complexity of the biosynthetic pathway of the structurally diverse diterpene resin acids of conifer defense. PMID:21518766

  18. The landscape lighting book

    CERN Document Server

    Moyer, Janet Lennox

    2013-01-01

    This richly illustrated, up-to-date guide offers practical coverage of all aspects of lighting design. Written by an award-winning, internationally known lighting designer, it covers lighting practices, materials, and their design applications and offers guidelines for preparing lighting drawings, control and transfer charts, symbol lists, and other technical specifications. This edition provides a new focus on the use of LEDs, as well as new and expanded coverage of renderings, Mesopic Vision, and the latest controls approaches and systems.

  19. OLED displays and lighting

    CERN Document Server

    Koden, Mitsuhiro

    2017-01-01

    Organic light-emitting diodes (OLEDs) have emerged as the leading technology for the new display and lighting market. OLEDs are solid-state devices composed of thin films of organic molecules that create light with the application of electricity. OLEDs can provide brighter, crisper displays on electronic devices and use less power than conventional light-emitting diodes (LEDs) or liquid crystal displays (LCDs) used today. This book covers both the fundamentals and practical applications of flat and flexible OLEDs.

  20. 16S ribosomal RNA pseudouridine synthase RsuA of Escherichia coli: deletion, mutation of the conserved Asp102 residue, and sequence comparison among all other pseudouridine synthases.

    Science.gov (United States)

    Conrad, J; Niu, L; Rudd, K; Lane, B G; Ofengand, J

    1999-06-01

    The gene for RsuA, the pseudouridine synthase that converts U516 to pseudouridine in 16S ribosomal RNA of Escherichia coli, has been deleted in strains MG1655 and BL21/DE3. Deletion of this gene resulted in the specific loss of pseudouridine516 in both cell lines, and replacement of the gene in trans on a plasmid restored the pseudouridine. Therefore, rsuA is the only gene in E. coli with the ability to produce a protein capable of forming pseudouridine516. There was no effect on the growth rate of rsuA- MG1655 either in rich or minimal medium at either 24, 37, or 42 degrees C. Plasmid rescue of the BL21/DE3 rsuA- strain using pET15b containing an rsuA gene with aspartate102 replaced by asparagine or threonine demonstrated that neither mutant was active in vivo. This result supports a role for this aspartate, located in a unique GRLD sequence in this gene, at the catalytic center of the synthase. Induction of wild-type and the two mutant synthases in strain BL21/DE3 from genes in pET15b yielded a strong overexpression of all three proteins in approximately equal amounts showing that the mutations did not affect production of the protein in vivo and thus that the lack of activity was not due to a failure to produce a gene product. Aspartate102 is found in a conserved motif present in many pseudouridine synthases. The conservation and distribution of this motif in nature was assessed.

  1. Chrysanthemyl diphosphate synthase: Isolation of the gene and characterization of the recombinant non-head-to-tail monoterpene synthase from Chrysanthemum cinerariaefolium

    OpenAIRE

    Rivera, Susan B.; Swedlund, Bradley D.; King, Gretchen J.; Bell, Russell N.; Hussey, Charles E.; Shattuck-Eidens, Donna M.; Wrobel, Wislawa M.; Peiser, Galen D.; Poulter, C. Dale

    2001-01-01

    Chrysanthemyl diphosphate synthase (CPPase) catalyzes the condensation of two molecules of dimethylallyl diphosphate to produce chrysanthemyl diphosphate (CPP), a monoterpene with a non-head-to-tail or irregular c1′-2-3 linkage between isoprenoid units. Irregular monoterpenes are common in Chrysanthemum cinerariaefolium and related members of the Asteraceae family. In C. cinerariaefolium, CPP is an intermediate in the biosynthesis of the pyrethrin ester insecticides. CPPa...

  2. Functional characterization of the Xanthophyllomyces dendrorhous farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase encoding genes that are involved in the synthesis of isoprenoid precursors.

    Directory of Open Access Journals (Sweden)

    Jennifer Alcaíno

    Full Text Available The yeast Xanthophyllomyces dendrorhous synthesizes the carotenoid astaxanthin, which has applications in biotechnology because of its antioxidant and pigmentation properties. However, wild-type strains produce too low amounts of carotenoids to be industrially competitive. Considering this background, it is indispensable to understand how the synthesis of astaxanthin is controlled and regulated in this yeast. In this work, the steps leading to the synthesis of the carotenoid precursor geranylgeranyl pyrophosphate (GGPP, C20 in X. dendrorhous from isopentenyl pyrophosphate (IPP, C5 and dimethylallyl pyrophosphate (DMAPP, C5 was characterized. Two prenyl transferase encoding genes, FPS and crtE, were expressed in E. coli. The enzymatic assays using recombinant E. coli protein extracts demonstrated that FPS and crtE encode a farnesyl pyrophosphate (FPP, C15 synthase and a GGPP-synthase, respectively. X. dendrorhous FPP-synthase produces geranyl pyrophosphate (GPP, C10 from IPP and DMAPP and FPP from IPP and GPP, while the X. dendrorhous GGPP-synthase utilizes only FPP and IPP as substrates to produce GGPP. Additionally, the FPS and crtE genes were over-expressed in X. dendrorhous, resulting in an increase of the total carotenoid production. Because the parental strain is diploid, the deletion of one of the alleles of these genes did not affect the total carotenoid production, but the composition was significantly altered. These results suggest that the over-expression of these genes might provoke a higher carbon flux towards carotenogenesis, most likely involving an earlier formation of a carotenogenic enzyme complex. Conversely, the lower carbon flux towards carotenogenesis in the deletion mutants might delay or lead to a partial formation of a carotenogenic enzyme complex, which could explain the accumulation of astaxanthin carotenoid precursors in these mutants. In conclusion, the FPS and the crtE genes represent good candidates to manipulate to

  3. Functional characterization of the Xanthophyllomyces dendrorhous farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase encoding genes that are involved in the synthesis of isoprenoid precursors.

    Science.gov (United States)

    Alcaíno, Jennifer; Romero, Ignacio; Niklitschek, Mauricio; Sepúlveda, Dionisia; Rojas, María Cecilia; Baeza, Marcelo; Cifuentes, Víctor

    2014-01-01

    The yeast Xanthophyllomyces dendrorhous synthesizes the carotenoid astaxanthin, which has applications in biotechnology because of its antioxidant and pigmentation properties. However, wild-type strains produce too low amounts of carotenoids to be industrially competitive. Considering this background, it is indispensable to understand how the synthesis of astaxanthin is controlled and regulated in this yeast. In this work, the steps leading to the synthesis of the carotenoid precursor geranylgeranyl pyrophosphate (GGPP, C20) in X. dendrorhous from isopentenyl pyrophosphate (IPP, C5) and dimethylallyl pyrophosphate (DMAPP, C5) was characterized. Two prenyl transferase encoding genes, FPS and crtE, were expressed in E. coli. The enzymatic assays using recombinant E. coli protein extracts demonstrated that FPS and crtE encode a farnesyl pyrophosphate (FPP, C15) synthase and a GGPP-synthase, respectively. X. dendrorhous FPP-synthase produces geranyl pyrophosphate (GPP, C10) from IPP and DMAPP and FPP from IPP and GPP, while the X. dendrorhous GGPP-synthase utilizes only FPP and IPP as substrates to produce GGPP. Additionally, the FPS and crtE genes were over-expressed in X. dendrorhous, resulting in an increase of the total carotenoid production. Because the parental strain is diploid, the deletion of one of the alleles of these genes did not affect the total carotenoid production, but the composition was significantly altered. These results suggest that the over-expression of these genes might provoke a higher carbon flux towards carotenogenesis, most likely involving an earlier formation of a carotenogenic enzyme complex. Conversely, the lower carbon flux towards carotenogenesis in the deletion mutants might delay or lead to a partial formation of a carotenogenic enzyme complex, which could explain the accumulation of astaxanthin carotenoid precursors in these mutants. In conclusion, the FPS and the crtE genes represent good candidates to manipulate to favor

  4. Structure of dimeric ATP synthase from mitochondria : An angular association of monomers induces the strong curvature of the inner membrane

    NARCIS (Netherlands)

    Dudkina, Natalya V.; Heinemeyer, Jesco; Keegstra, Wilko; Boekema, Egbert J.; Braun, Hans-Peter

    2005-01-01

    Respiration in all cells depends upon synthesis of ATP by the ATP synthase complex, a rotary motor enzyme. The structure of the catalytic moiety of ATP synthase, the so-called F1 headpiece, is well established. F1 is connected to the membrane-bound and ion translocating F0 subcomplex by a central

  5. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP.

    Science.gov (United States)

    Andersen, Rune W; Leggio, Leila Lo; Hove-Jensen, Bjarne; Kadziola, Anders

    2015-03-01

    The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg(2+)-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP synthase was synthesised in vitro with optimised codon usage for expression in Escherichia coli. Following expression of the gene in E. coli PRPP synthase was purified by heat treatment and ammonium sulphate precipitation and the structure of S. solfataricus PRPP synthase was determined at 2.8 Å resolution. A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate ion were observed. Sulphate ion, reminiscent of the ammonium sulphate precipitation step of the purification, seems to bind tightly and, therefore, presumably occupies and blocks the ribose 5-phosphate binding site. The activity of S. solfataricus PRPP synthase is independent of phosphate ion.

  6. Purification and N-terminal amino acid sequence of solanapyrone synthase, a natural Diels-Alderase from Alternaria solani.

    Science.gov (United States)

    Katayama, Kinya; Kobayashi, Tomonori; Chijimatsu, Masao; Ichihara, Akitami; Oikawa, Hideaki

    2008-02-01

    The first natural Diels-Alderase, solanapyrone synthase, was purified 1,630-fold from a crude extract. The 41-kDa protein on SDS-polyacrylamide gel electrophoresis was identified as truncated solanapyrone synthase, and its N-terminal amino acid sequence was found to be QETQNLNNFLESNAINP.

  7. Increased nitric oxide release and expression of endothelial and inducible nitric oxide synthases in mildly changed porcine mitral valve leaflets

    DEFF Research Database (Denmark)

    Moesgaard, Sophia G; Olsen, Lisbeth H; Viuff, Birgitte M

    2007-01-01

    BACKGROUND AND AIM OF THE STUDY: Little is known of the local role of nitric oxide (NO) in heart valves in relation to heart valve diseases. The study aim was to examine NO release and the expression of both endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) in re...

  8. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    Science.gov (United States)

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; de Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-11-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65-74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase.

  9. Increased nitric oxide release and expression of endothelial and inducible nitric oxide synthases in mildly changed porcine mitral valve leaflets

    DEFF Research Database (Denmark)

    Moesgaard, Sophia Gry; Olsen, Lisbeth Høier; Viuff, Birgitte;

    2007-01-01

    Background and aim of the study: Little is known of the local role of nitric oxide (NO) in heart valves in relation to heart valve diseases. The study aim was to examine NO release and the expression of both endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (i...

  10. Predicting the functions and specificity of triterpenoid synthases: a mechanism-based multi-intermediate docking approach.

    Directory of Open Access Journals (Sweden)

    Bo-Xue Tian

    2014-10-01

    Full Text Available Terpenoid synthases construct the carbon skeletons of tens of thousands of natural products. To predict functions and specificity of triterpenoid synthases, a mechanism-based, multi-intermediate docking approach is proposed. In addition to enzyme function prediction, other potential applications of the current approach, such as enzyme mechanistic studies and enzyme redesign by mutagenesis, are discussed.

  11. Geolocation by light

    DEFF Research Database (Denmark)

    Lisovski, Simeon; Hewson, Chris M.; Klaassen, Raymond H. G.

    2012-01-01

    1. Geolocation by light allows for tracking animal movements, based on measurements of light intensity over time by a data-logging device (‘geolocator’). Recent developments of ultra-light devices (<2 g) broadened the range of target species and boosted the number of studies using geolocators. Ho...

  12. LEDs for greenhouse lighting

    NARCIS (Netherlands)

    Nederhoff, E.M.

    2010-01-01

    Light Emitting Diodes (LED's) are a promising technology for greenhouse lighting with their efficiency to activate plant photosynthesis potentially higher in red LEDs than in HPS lamps. Due to their particular light colour, LEDs can initiate special effects in plants or steer plant processes and

  13. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  14. Light in man's environment.

    Science.gov (United States)

    Marshall, J

    2016-02-01

    Light in the form of solar radiation influenced early civilisations and resulted in the independent development of a number of sun-worshipping dieties. These were of particular importance as hunter gatherers transformed into settled agricultural societies. All artificial light sources were synonymous with fire, and early civilisations began to expand their visual day by burning brands, oil, and candles. Fire-based light sources extended for thousands of years and were still present in the era of gas lighting. Light meant fire risk. The advent of incandescent bulbs and the era of electric lighting really only expanded in the early part of the twentieth century. Fluorescent lighting became available in the 1940s, and today the drive for low energy has resulted in a plethora of novel light sources-in particular, light-emitting diodes (LEDs). Evolution governed the development of the eye in relation to roughly 12 h of light gradually changing to 12 h of darkness. Today almost daylight levels can be achieved abruptly at the flick of a switch. Many studies have demonstrated the spectral dependence of eye health, with the retinal hazard zone associated with wavelengths in the blue, peaking at 441 nm- many of today's low-energy sources peak in this region. Given the increased longevity and artificial light sources emitting at biologically unfriendly wavelengths, attention has to be directed towards light in man's environment as a risk factor in age-related ocular diseases.

  15. Plants under continuous light

    NARCIS (Netherlands)

    Velez Ramirez, A.I.; Ieperen, van W.; Vreugdenhill, D.; Millenaar, F.F.

    2011-01-01

    Continuous light is an essential tool for understanding the plant circadian clock. Additionally, continuous light might increase greenhouse food production. However, using continuous light in research and practice has its challenges. For instance, most of the circadian clock-oriented experiments wer

  16. Seeing the Light

    Science.gov (United States)

    Sportel, Samuel; Bruxvoort, Crystal; Jadrich, James

    2009-01-01

    Conceptually, students are typically introduced to light as a type of wave. However, children struggle to understand this model because it is highly abstract. Light can be represented more concretely using the photon model. According to this scientific model, light emanates from sources as tiny "packets" of energy (called "photons") that move in…

  17. Seeing the Light

    Science.gov (United States)

    Sportel, Samuel; Bruxvoort, Crystal; Jadrich, James

    2009-01-01

    Conceptually, students are typically introduced to light as a type of wave. However, children struggle to understand this model because it is highly abstract. Light can be represented more concretely using the photon model. According to this scientific model, light emanates from sources as tiny "packets" of energy (called "photons") that move in…

  18. Functional analyses of a flavonol synthase - like gene from Camellia nitidissima reveal its roles in flavonoid metabolism during floral pigmentation

    Indian Academy of Sciences (India)

    Xing-Wen Zhou; Zheng-Qi Fan; Yue Chen; Yu-Lin Zhu; Ji-Yuan Li; Heng-Fu Yin

    2013-09-01

    The flavonoids metabolic pathway plays central roles in floral coloration, in which anthocyanins and flavonols are derived from common precursors, dihydroflavonols. Flavonol synthase (FLS) catalyses dihydroflavonols into flavonols, which presents a key branch of anthocyanins biosynthesis. The yellow flower of Camellia nitidissima Chi. is a unique feature within the genus Camellia, which makes it a precious resource for breeding yellow camellia varieties. In this work, we characterized the secondary metabolites of pigments during floral development of C. nitidissima and revealed that accumulation of flavonols correlates with floral coloration. We first isolated CnFLS1 and showed that it is a FLS of C. nitidissima by gene family analysis. Second, expression analysis during floral development and different floral organs indicated that the expression level of CnFLS1 was regulated by developmental cues, which was in agreement with the accumulating pattern of flavonols. Furthermore, over-expression of CnFLS1 in Nicotiana tabacum altered floral colour into white or light yellow, and metabolic analysis showed significant increasing of flavonols and reducing of anthocyanins in transgenic plants. Our work suggested CnFLS1 plays critical roles in yellow colour pigmentation and is potentially a key point of genetic engineering toward colour modification in Camellia.

  19. The innervation of rainbow trout (Oncorhynchus mykiss) liver: protein gene product 9.5 and neuronal nitric oxide synthase immunoreactivities.

    Science.gov (United States)

    Esteban, F J; Jiménez, A; Barroso, J B; Pedrosa, J A; del Moral, M L; Rodrigo, J; Peinado, M A

    1998-08-01

    We have explored the innervation of the rainbow trout (O. mykiss) liver using immunohistochemical procedures and light microscopy to detect in situ protein gene product 9.5 and neuronal nitric oxide synthase immunoreactivities (PGP-IR and NOS-IR). The results showed PGP-IR nerve fibres running with the extralobular biliary duct (EBD), hepatic artery (EHA) and portal vein (EPV) that form the hepatic hilum, as well as following the spatial distribution of the intrahepatic blood vessel and biliary channels. These nerve fibres appear as single varicose processes, thin bundles, or thick bundles depending on their diameter and location in the wall of the blood vessel or biliary duct. No PGP-IR fibres were detected in the liver parenchyma. NOS-IR nerve fibres were located only in the vessels and ducts that form the hepatic hilum (EBD, EHA, EPV); in addition, NOS-IR nerve cell bodies were found isolated or forming ganglionated plexuses in the peribiliary fibromuscular tissue of the EBD. No PGP-IR ganglionated plexuses were detected in the EBD. The location of the general (PGP-IR) and nitrergic (nNOS-IR) intrinsic nerves of the trout liver suggest a conserved evolutionary role of the nervous control of hepatic blood flow and hepatobiliary activity.

  20. Oestrogen receptor expression and neuronal nitric oxide synthase in the clitoris and preputial gland structures of mice.

    Science.gov (United States)

    Martin-Alguacil, Nieves; Schober, Justine; Kow, Lee-Ming; Pfaff, Donald

    2008-12-01

    To study the presence of oestrogen receptors (ER) and neuronal nitric oxide synthase (nNOS) in the mouse clitoris. A series of sections of the pelvic area, including the preputial glands and clitoris, of 10 mice were assessed by immunocytochemical studies specific for ER-alpha and -beta, and nNOS; selected sections were also stained with Masson's trichrome. ER alpha was detected in the epithelium of the gland of the clitoris, and in the glandular tissue, preputial and apocrine gland. ER alpha was detected in the nuclei of stromal cells around the cavernous tissue and near the epithelium of the clitoris. Cytoplasm ER alpha was detected in a few cells in an area ventral to the clitoral gland. There was also nuclear staining in the connective tissue cells surrounding the clitoris. Very light ER beta immunostaining was detected in the clitoris and in the tissue related to it. There were some cells with nuclear staining in the vessels of the cavernous tissue of the clitoris. nNOS immunostaining was detected in the clitoris, the preputial gland and the connective tissue. ER alpha and beta isoforms, and nNOS, are present in the clitoris and preputial glands of female mice in different cellular locations and with differing levels of receptivity. Functional studies would further elucidate the role of receptor functions and their relationship to the neuronal expression of NO.

  1. Pronounced phenotypic changes in transgenic tobacco plants overexpressing sucrose synthase may reveal a novel sugar signaling pathway

    Directory of Open Access Journals (Sweden)

    Quynh Anh eNguyen

    2016-01-01

    Full Text Available Soluble sugars not only serve as nutrients, but also act as signals for plant growth and development, but how sugar signals are perceived and translated into physiological responses in plants remains unclear. We manipulated sugar levels in transgenic plants by overexpressing sucrose synthase (SuSy, which is a key enzyme believed to have reversible sucrose synthesis and sucrose degradation functions. The ectopically expressed SuSy protein exhibited sucrose-degrading activity, which may change the flux of sucrose demand from photosynthetic to non-photosynthetic cells, and trigger an unknown sucrose signaling pathway that lead to increased sucrose content in the transgenic plants. An experiment on the transition from heterotrophic to autotrophic growth demonstrated the existence of a novel sucrose signaling pathway, which stimulated photosynthesis, and enhanced photosynthetic synthesis of sucrose, which was the direct cause or the sucrose increase. In addition, a light/dark time treatment experiment, using different day length ranges for photosynthesis/respiration showed the carbohydrate pattern within a 24-hour day and consolidated the role of sucrose signaling pathway as a way to maintain sucrose demand, and indicated the relationships between increased sucrose and upregulation of genes controlling development of the shoot apical meristem (SAM. As a result, transgenic plants featured a higher biomass and a shorter time required to switch to reproduction compared to those of control plants, indicating altered phylotaxis and more rapid advancement of developmental stages in the transgenic plants.

  2. Suppression of the barley uroporphyrinogen III synthase gene by a Ds activation tagging element generates developmental photosensitivity.

    Science.gov (United States)

    Ayliffe, Michael A; Agostino, Anthony; Clarke, Bryan C; Furbank, Robert; von Caemmerer, Susanne; Pryor, Anthony J

    2009-03-01

    Chlorophyll production involves the synthesis of photoreactive intermediates that, when in excess, are toxic due to the production of reactive oxygen species (ROS). A novel, activation-tagged barley (Hordeum vulgare) mutant is described that results from antisense suppression of a uroporphyrinogen III synthase (Uros) gene, the product of which catalyzes the sixth step in the synthesis of chlorophyll and heme. In homozygous mutant plants, uroporphyrin(ogen) I accumulates by spontaneous cyclization of hydroxyl methylbilane, the substrate of Uros. Accumulation of this tetrapyrrole intermediate results in photosensitive cell death due to the production of ROS. The efficiency of Uros gene suppression is developmentally regulated, being most effective in mature seedling leaves compared with newly emergent leaves. Reduced transcript accumulation of a number of nuclear-encoded photosynthesis genes occurs in the mutant, even under 3% light conditions, consistent with a retrograde plastid-nuclear signaling mechanism arising from Uros gene suppression. A similar set of nuclear genes was repressed in wild-type barley following treatment with a singlet oxygen-generating herbicide, but not by a superoxide generating herbicide, suggesting that the retrograde signaling apparent in the mutant is specific to singlet oxygen.

  3. Tissue specificity and diurnal change in gene expression of the sucrose phosphate synthase gene family in rice.

    Science.gov (United States)

    Okamura, Masaki; Aoki, Naohiro; Hirose, Tatsuro; Yonekura, Madoka; Ohto, Chikara; Ohsugi, Ryu

    2011-08-01

    The rice genome contains 5 isogenes for sucrose phosphate synthase (SPS), the key enzyme in sucrose synthesis; however, little is known about their transcriptional regulation. In order to determine the expression patterns of the SPS gene family in rice plants, we conducted an expression analysis in various tissues and developmental stages by real-time quantitative RT-PCR. At the transcript level, the rice SPS genes, particularly SPS1, were preferentially expressed in source tissues, whereas SPS2, SPS6, and SPS8 were expressed equally in source and sink tissues. We also investigated diurnal changes in SPS gene expression, SPS activity, and soluble sugar content in leaf blades. Interestingly, the expression of all the SPS genes, particularly that of SPS1 and SPS11, tended to be higher at night when the activation state of the SPS proteins was low, and the mRNA levels of SPS1 and SPS6 were negatively correlated with sucrose content. Furthermore, the temporal patterns of SPS gene expression and sugar content under continuous light conditions suggested the involvement of endogenous rhythm and/or sucrose sensing in the transcriptional regulation of SPS genes. Our data revealed differential expression patterns in the rice SPS gene family and part of the complex mechanisms of their transcriptional control.

  4. Light On the Behavior of Light Bulbs.

    Science.gov (United States)

    Armstrong, H. L.

    1985-01-01

    Discusses a problem (on page 523 of "College Physics," by Sears, Zemansky, and Young, published by Addison-Wesley, 1980) concerning light bulbs and resistance. Shows why the assumption of constant resistance is unrealistic and provides guidelines for revision. (DH)

  5. Light On the Behavior of Light Bulbs.

    Science.gov (United States)

    Armstrong, H. L.

    1985-01-01

    Discusses a problem (on page 523 of "College Physics," by Sears, Zemansky, and Young, published by Addison-Wesley, 1980) concerning light bulbs and resistance. Shows why the assumption of constant resistance is unrealistic and provides guidelines for revision. (DH)

  6. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe

    2014-08-01

    Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme.

  7. Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation.

    Science.gov (United States)

    Salvi, Prafull; Saxena, Saurabh Chandra; Petla, Bhanu Prakash; Kamble, Nitin Uttam; Kaur, Harmeet; Verma, Pooja; Rao, Venkateswara; Ghosh, Shraboni; Majee, Manoj

    2016-10-11

    Galactinol synthase (GolS) catalyzes the first and rate limiting step of Raffinose Family Oligosaccharide (RFO) biosynthetic pathway, which is a highly specialized metabolic event in plants. Increased accumulation of galactinol and RFOs in seeds have been reported in few plant species, however their precise role in seed vigor and longevity remain elusive. In present study, we have shown that galactinol synthase activity as well as galactinol and raffinose content progressively increase as seed development proceeds and become highly abundant in pod and mature dry seeds, which gradually decline as seed germination progresses in chickpea (Cicer arietinum). Furthermore, artificial aging also stimulates galactinol synthase activity and consequent galactinol and raffinose accumulation in seed. Molecular analysis revealed that GolS in chickpea are encoded by two divergent genes (CaGolS1 and CaGolS2) which potentially encode five CaGolS isoforms through alternative splicing. Biochemical analysis showed that only two isoforms (CaGolS1 and CaGolS2) are biochemically active with similar yet distinct biochemical properties. CaGolS1 and CaGolS2 are differentially regulated in different organs, during seed development and germination however exhibit similar subcellular localization. Furthermore, seed-specific overexpression of CaGolS1 and CaGolS2 in Arabidopsis results improved seed vigor and longevity through limiting the age induced excess ROS and consequent lipid peroxidation.

  8. A cyanobacterial protein with similarity to phytochelatin synthases catalyzes the conversion of glutathione to gamma-glutamylcysteine and lacks phytochelatin synthase activity.

    Science.gov (United States)

    Harada, Emiko; von Roepenack-Lahaye, Edda; Clemens, Stephan

    2004-12-01

    Phytochelatins are glutathione-derived, non-translationally synthesized peptides essential for cadmium and arsenic detoxification in plant, fungal and nematode model systems. Recent sequencing programs have revealed the existence of phytochelatin synthase-related genes in a wide range of organisms that have not been reported yet to produce phytochelatins. Among those are several cyanobacteria. We have studied one of the encoded proteins (alr0975 from Nostoc sp. strain PCC 7120) and demonstrate here that it does not possess phytochelatin synthase activity. Instead, this protein catalyzes the conversion of glutathione to gamma-glutamylcysteine. The thiol spectrum of yeast cells expressing alr0975 shows the disappearance of glutathione and the formation of a compound that by LC-MSMS analysis was unequivocally identified as gamma-glutamylcysteine. Purified recombinant protein catalyzes the respective reaction. Unlike phytochelatin synthesis, the conversion of glutathione to gamma-glutamylcysteine is not dependent on activation by metal cations. No evidence was found for the accumulation of phytochelatins in cyanobacteria even after prolonged exposure to toxic Cd2+ concentrations. Expression of alr0975 was detected in Nostoc sp. cells with an antiserum raised against the protein. No indication for a responsiveness of expression to toxic metal exposure was found. Taken together, these data provide further evidence for possible additional functions of phytochelatin synthase-related proteins in glutathione metabolism and provide a lead as to the evolutionary history of phytochelatin synthesis.

  9. Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with various beta-glucan synthases in the stem.

    Science.gov (United States)

    Konishi, Teruko; Ohmiya, Yasunori; Hayashi, Takahisa

    2004-03-01

    Sucrose (Suc) synthase (SuSy) is believed to function in channeling UDP-Glc from Suc to various beta-glucan synthases. We produced transgenic poplars (Populus alba) overexpressing a mutant form (S11E) of mung bean (Vigna radiata) SuSy, which appeared in part in the microsomal membranes of the stems. Expression of SuSy in these membranes enhanced the incorporation of radioactive Suc into cellulose, together with the metabolic recycling of fructose (Fru), when dual-labeled Suc was fed directly into the phloem of the leaf. This overexpression also enhanced the direct incorporation of the glucosyl moiety of Suc into the glucan backbone of xyloglucan and increased recycling of Fru, although the Fru recycling system for cellulose synthesis at the plasma membrane might differ from that for xyloglucan synthesis in the Golgi network. These findings suggest that some of the Suc loaded into the phloem of a poplar leaf is used directly by SuSys associated with xyloglucan and cellulose synthases in the stem. This may be a key function of SuSy because the high-energy bond between the Glc and Fru moieties of Suc is conserved and used for polysaccharide syntheses in this sink tissue.

  10. Biochemical and Structural Characterization of Germicidin Synthase: Analysis of a Type III Polyketide Synthase That Employs Acyl-ACP as a Starter Unit Donor

    Energy Technology Data Exchange (ETDEWEB)

    Chemler, Joseph A.; Buchholz, Tonia J.; Geders, Todd W.; Akey, David L.; Rath, Christopher M.; Chlipala, George E.; Smith, Janet L.; Sherman, David H. (Michigan)

    2012-08-10

    Germicidin synthase (Gcs) from Streptomyces coelicolor is a type III polyketide synthase (PKS) with broad substrate flexibility for acyl groups linked through a thioester bond to either coenzyme A (CoA) or acyl carrier protein (ACP). Germicidin synthesis was reconstituted in vitro by coupling Gcs with fatty acid biosynthesis. Since Gcs has broad substrate flexibility, we directly compared the kinetic properties of Gcs with both acyl-ACP and acyl-CoA. The catalytic efficiency of Gcs for acyl-ACP was 10-fold higher than for acyl-CoA, suggesting a strong preference toward carrier protein starter unit transfer. The 2.9 {angstrom} germicidin synthase crystal structure revealed canonical type III PKS architecture along with an unusual helical bundle of unknown function that appears to extend the dimerization interface. A pair of arginine residues adjacent to the active site affect catalytic activity but not ACP binding. This investigation provides new and surprising information about the interactions between type III PKSs and ACPs that will facilitate the construction of engineered systems for production of novel polyketides.

  11. Pressure-related activation of inducible nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A lot of reports suggested that inducible nitric oxide synthase (iNOS) has a very different nature from constitutive NOS including endothelial NOS (eNOS) and neural NOS (nNOS). When exposed to cytokines or bacterial products, iNOS could be greatly activated and produces hundreds or thousands fold more NO than it does usually. Whether iNOS activation is arterial pressure related is not clear. In the present experiment, we studied three groups(n=6) of Sprague Dawley (SD) rats with implanted aorta and venous catheters that were maintained on 1 mEq/d, 12.5 mEq/d and 25 mEq/d of sodium intake respectively. Pulsatile arterial pressure signals from the amplifier were sent to a digital computer and the urine samples were taken every other day for nitrate/nitrite excretion (UNOx) assay using Greiss Reaction. After 6 days infusion, the rats were euthanized with an overdose of sodium pentobarbital, and the renal medullas were rapidly removed and frozen on dry ice for iNOS activity assay. Morever separate groups of hypertensive rats including spontaneously hypertensive rat (SHR, n=6) and High NaCl-induced hypertensive rat (NaHR, n=6) were used to measure renal iNOS protein by Western Blotting. The results showed that the mean arterial pressure (MAP) were significantly increased with the increase intake of sodium, the MAP (mmHg) at day 6 were 99.6±3.5,116.65±4.2 and 125.43±4.5, and the iNOS activity (nmol*g-1 protein*min-1) were 122.3±23.4, 342.4±35.6 and 623.9±65.4 in 1 mEq/d, 12.5 mEq/d and 25 mEq/d of sodium intake-rats respectively. At the same time, UNOx at day 6 were also increased, in turn, to 5 865.6±343.0 (for 12.5 mEq/d intake-rats) and (9 642.8±1 045.3) (for 25 mEq/d sodium intake-rats) nmol/d from (3 834.9±234.8) nmol/d of 1 mEq/d sodium intake-rats respectively. Western blotting showed that the renal medullary iNOS protein in SHR and NaHR were increased by 178%±13% and 104%±9% of normal Wistar rats. The data indicates that elevated arterial pressure

  12. Structural studies on the reaction of isopenicillin N synthase with the substrate analogue delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-alpha-aminobutyrate.

    Science.gov (United States)

    Long, Alexandra J; Clifton, Ian J; Roach, Peter L; Baldwin, Jack E; Schofield, Christopher J; Rutledge, Peter J

    2003-06-15

    Isopenicillin N synthase (IPNS) is a non-haem iron(II) oxidase which catalyses the biosynthesis of isopenicillin N from the tripeptide delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (ACV). Herein we report crystallographic studies to investigate the reaction of IPNS with the truncated substrate analogue delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-alpha-aminobutyrate (ACAb). It has been reported previously that this analogue gives rise to three beta-lactam products when incubated with IPNS: two methyl penams and a cepham. Crystal structures of the IPNS-Fe(II)-ACAb and IPNS-Fe(II)-ACAb-NO complexes have now been solved and are reported herein. These structures and modelling studies based on them shed light on the diminished product selectivity shown by IPNS in its reaction with ACAb and further rationalize the presence of certain key residues at the IPNS active site.

  13. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    Directory of Open Access Journals (Sweden)

    Mirian Perez Maluf

    2009-01-01

    Full Text Available In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  14. A functional tomato ACC synthase expressed in Escherichia coli demonstrates suicidal inactivation by its substrate S-adenosylmethionine.

    Science.gov (United States)

    Li, N; Wiesman, Z; Liu, D; Mattoo, A K

    1992-07-20

    1-Aminocyclopropane-1-carboxylate (ACC) synthase is a key enzyme in the biosynthesis of the plant hormone, ethylene. We have isolated, sequenced and expressed a functional tomato (cv Pik-Red) ACC synthase gene in Escherichia coli. ACC synthase expressed in E. coli was inactivated by incubation with S-adenosylmethionine (SAM), the half-time of which was concentration dependent. Mixing the tomato fruit protein extract with the cell-free extract from transformed E. coli did not affect SAM-dependent inactivation of ACC synthase activity. Thus, single isoforms of the ACC synthase enzyme, which demonstrate the biochemical features expected of the tomato fruit enzyme, can be expressed in E. coli and their structure-function relationships investigated.

  15. Roadmap on structured light

    Science.gov (United States)

    Rubinsztein-Dunlop, Halina; Forbes, Andrew; Berry, M. V.; Dennis, M. R.; Andrews, David L.; Mansuripur, Masud; Denz, Cornelia; Alpmann, Christina; Banzer, Peter; Bauer, Thomas; Karimi, Ebrahim; Marrucci, Lorenzo; Padgett, Miles; Ritsch-Marte, Monika; Litchinitser, Natalia M.; Bigelow, Nicholas P.; Rosales-Guzmán, C.; Belmonte, A.; Torres, J. P.; Neely, Tyler W.; Baker, Mark; Gordon, Reuven; Stilgoe, Alexander B.; Romero, Jacquiline; White, Andrew G.; Fickler, Robert; Willner, Alan E.; Xie, Guodong; McMorran, Benjamin; Weiner, Andrew M.

    2017-01-01

    Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized.

  16. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    2006, and supervisory authorities in many other European countries have implemented similar regulation. Traffic light options are therefore likely to attract the attention of a wider audience of pension fund managers in the future. Focusing on the valuation of the traffic light option we set up a Black......This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  17. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    2007-01-01

    2006, and supervisory authorities in many other European countries have implemented similar regulation. Traffic light options are therefore likely to attract the attention of a wider audience of pension fund managers in the future. Focusing on the valuation of the traffic light option we set up a Black......This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  18. Glycogen synthase kinase 3α regulates urine concentrating mechanism in mice

    DEFF Research Database (Denmark)

    Nørregaard, Rikke; Tao, Shixin; Nilsson, Line;

    2015-01-01

    In mammals, glycogen synthase kinase (GSK)3 comprises GSK3α and GSK3β isoforms. GSK3β has been shown to play a role in the ability of kidneys to concentrate urine by regulating vasopressin-mediated water permeability of collecting ducts, whereas the role of GSK3α has yet to be discerned. To inves...

  19. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase.

    Science.gov (United States)

    Gemperlein, Katja; Zipf, Gregor; Bernauer, Hubert S; Müller, Rolf; Wenzel, Silke C

    2016-01-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase.

  20. The maize auxotrophic mutant orange pericarp is defective in duplicate genes for tryptophan synthase beta.

    Science.gov (United States)

    Wright, A D; Moehlenkamp, C A; Perrot, G H; Neuffer, M G; Cone, K C

    1992-06-01

    orange pericarp (orp) is a seedling lethal mutant of maize caused by mutations in the duplicate unlinked recessive loci orp1 and orp2. Mutant seedlings accumulate two tryptophan precursors, anthranilate and indole, suggesting a block in tryptophan biosynthesis. Results from feeding studies and enzyme assays indicate that the orp mutant is defective in tryptophan synthase beta activity. Thus, orp is one of only a few amino acid auxotrophic mutants to be characterized in plants. Two genes encoding tryptophan synthase beta were isolated from maize and sequenced. Both genes encode polypeptides with high homology to tryptophan synthase beta enzymes from other organisms. The cloned genes were mapped by restriction fragment length polymorphism analysis to approximately the same chromosomal locations as the genetically mapped factors orp1 and orp2. RNA analysis indicates that both genes are expressed in all tissues examined from normal plants. Together, the biochemical, genetic, and molecular data verify the identity of orp1 and orp2 as duplicate structural genes for the beta subunit of tryptophan synthase.

  1. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong; Hao, Hui; Gong, Biao [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China); Yu, Xiyan, E-mail: yuxiyan@sdau.edu.cn [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China); Wang, Xiufeng, E-mail: xfwang@sdau.edu.cn [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China)

    2010-03-12

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.

  2. The absence of functional glucosylceramide synthase does not sensitize melanoma cells for anticancer drugs

    NARCIS (Netherlands)

    Veldman, RJ; Mita, A; Cuvillier, O; Garcia, [No Value; Klappe, K; Medin, JA; Campbell, JD; Carpentier, S; Kok, JW; Levade, T

    2003-01-01

    Conversion of ceramide, a putative mediator of anticancer drug-induced apoptosis, into glucosylceramide, by the action of glucosylceramide synthase (GCS), has been implicated in drug resistance. Herein, we compared GM95 mouse melanoma cells deficient in GCS activity, with cells stably transfected wi

  3. Chloroquine stimulates glucose uptake and glycogen synthase in muscle cells through activation of Akt.

    Science.gov (United States)

    Halaby, Marie-Jo; Kastein, Brandon K; Yang, Da-Qing

    2013-06-14

    Chloroquine is a pharmaceutical agent that has been widely used to treat patients with malaria. Chloroquine has also been reported to have hypoglycemic effects on humans and animal models of diabetes. Despite many previous studies, the mechanism responsible for its hypoglycemic effect is still unclear. Chloroquine was recently reported to be an activator of ATM, the protein deficient in the Ataxia-telagiectasia (A-T) disease. Since ATM is also known as an insulin responsive protein that mediates Akt activation, we tested the effect of chloroquine on the activity of Akt and its downstream targets. In L6 muscle cells treated with insulin and chloroquine, the phosphorylation of Akt and glucose uptake were dramatically increased compared to cells treated with insulin alone, suggesting that chloroquine is a potent activator of Akt and glucose uptake in these cells. We also found that the reduction of insulin-mediated Akt activity in muscle tissues of insulin resistant rats was partially reversed by chloroquine treatment. Moreover, insulin-mediated phosphorylation of glycogen synthase kinase-3β in L6 cells was greatly enhanced by chloroquine. A substantial decrease in phosphorylation of glycogen synthase was also observed in chloroquine-treated L6 cells, indicating enhanced activity of glycogen synthase. Taken together, our results not only show that chloroquine is a novel activator of Akt that stimulates glucose uptake and glycogen synthase, but also validate chloroquine as a potential therapeutic agent for patients with type 2 diabetes mellitus. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. β-Adrenergic-mediated vasodilation in young men and women: cyclooxygenase restrains nitric oxide synthase.

    Science.gov (United States)

    Limberg, Jacqueline K; Johansson, Rebecca E; Peltonen, Garrett L; Harrell, John W; Kellawan, J Mikhail; Eldridge, Marlowe W; Sebranek, Joshua J; Schrage, William G

    2016-03-15

    We tested the hypothesis that women exhibit greater vasodilator responses to β-adrenoceptor stimulation compared with men. We further hypothesized women exhibit a greater contribution of nitric oxide synthase and cyclooxygenase to β-adrenergic-mediated vasodilation compared with men. Forearm blood flow (Doppler ultrasound) was measured in young men (n = 29, 26 ± 1 yr) and women (n = 33, 25 ± 1 yr) during intra-arterial infusion of isoproterenol (β-adrenergic agonist). In subset of subjects, isoproterenol responses were examined before and after local inhibition of nitric oxide synthase [N(G)-monomethyl-l-arginine (l-NMMA); 6 male/10 female] and/or cyclooxygenase (ketorolac; 5 male/5 female). Vascular conductance (blood flow ÷ mean arterial pressure) was calculated to assess vasodilation. Vascular conductance increased with isoproterenol infusion (P 0.99) or women (P = 0.21). In contrast, ketorolac infusion markedly increased isoproterenol-mediated responses in both men (P vasodilation is not different between men and women and sex differences in the independent contribution of nitric oxide synthase and cyclooxygenase to β-mediated vasodilation are not present. However, these data are the first to demonstrate β-adrenoceptor activation of cyclooxygenase suppresses nitric oxide synthase signaling in human forearm microcirculation and may have important implications for neurovascular control in both health and disease.

  5. Synthesis of novel methotrexate derivatives with inhibition activity of nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    Ming Sheng Feng; Ping Guo; Li Xun Jiang; Jing Bo Shi; Yu Ping Cao; Qi Zheng Yao

    2009-01-01

    Seventeen 4-alkylamino/arylamino-substituted methotrexate(MTX)derivatives 6a-14a were designed and synthesized.Their inhibition activities against inducible nitric oxide synthase(iNOS)were evaluated in vitro.The pharmacological results showed that most of the prepared compounds displayed the potent inhibitory effects on iNOS.

  6. Factors influencing gene silencing of granule-bound starch synthase in potato

    NARCIS (Netherlands)

    Heilersig, H.J.B.

    2005-01-01

    In the past, antisense RNA technology was used to modify the composition of potato tuber starch. Potato starch comprises amylose and amylopectin, polymers of glucose. Amylose production in potato is completely dependent on the presence of granule-bound starch synthase I (GBSSI). Inhibition of GBSSI

  7. Crystallization of Δ{sup 1}-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    Energy Technology Data Exchange (ETDEWEB)

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi [Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota [Neutron Science Research Center, Japan Atomic Energy Research Institute, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Shoyama, Yukihiro; Morimoto, Satoshi, E-mail: morimoto@phar.kyushu-u.ac.jp [Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2005-08-01

    Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase from C. sativa was crystallized. The crystal diffracted to 2.7 Å resolution with sufficient quality for further structure determination. Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å{sup 3} Da{sup −1} assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively.

  8. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates

    Science.gov (United States)

    Caldwell, Harlan D.; Wood, Heidi; Crane, Debbie; Bailey, Robin; Jones, Robert B.; Mabey, David; Maclean, Ian; Mohammed, Zeena; Peeling, Rosanna; Roshick, Christine; Schachter, Julius; Solomon, Anthony W.; Stamm, Walter E.; Suchland, Robert J.; Taylor, Lacey; West, Sheila K.; Quinn, Tom C.; Belland, Robert J.; McClarty, Grant

    2003-01-01

    We previously reported that laboratory reference strains of Chlamydia trachomatis differing in infection organotropism correlated with inactivating mutations in the pathogen’s tryptophan synthase (trpBA) genes. Here, we have applied functional genomics to extend this work and find that the paradigm established for reference serovars also applies to clinical isolates — specifically, all ocular trachoma isolates tested have inactivating mutations in the synthase, whereas all genital isolates encode a functional enzyme. Moreover, functional enzyme activity was directly correlated to IFN-γ resistance through an indole rescue mechanism. Hence, a strong selective pressure exists for genital strains to maintain a functional synthase capable of using indole for tryptophan biosynthesis. The fact that ocular serovars (serovar B) isolated from the genital tract were found to possess a functional synthase provided further persuasive evidence of this association. These results argue that there is an important host-parasite relationship between chlamydial genital strains and the human host that determines organotropism of infection and the pathophysiology of disease. We speculate that this relationship involves the production of indole by components of the vaginal microbial flora, allowing chlamydiae to escape IFN-γ–mediated eradication and thus establish persistent infection. PMID:12782678

  9. Binding and inhibition of human spermidine synthase by decarboxylated S-adenosylhomocysteine

    Energy Technology Data Exchange (ETDEWEB)

    Še; #269; kut; #279; , Jolita; McCloskey, Diane E.; Thomas, H. Jeanette; Secrist III, John A.; Pegg, Anthony E.; Ealick, Steven E. (Cornell); (Southern Research); (UPENN-MED)

    2011-11-17

    Aminopropyltransferases are essential enzymes that form polyamines in eukaryotic and most prokaryotic cells. Spermidine synthase (SpdS) is one of the most well-studied enzymes in this biosynthetic pathway. The enzyme uses decarboxylated S-adenosylmethionine and a short-chain polyamine (putrescine) to make a medium-chain polyamine (spermidine) and 5'-deoxy-5'-methylthioadenosine as a byproduct. Here, we report a new spermidine synthase inhibitor, decarboxylated S-adenosylhomocysteine (dcSAH). The inhibitor was synthesized, and dose-dependent inhibition of human, Thermatoga maritima, and Plasmodium falciparum spermidine synthases, as well as functionally homologous human spermine synthase, was determined. The human SpdS/dcSAH complex structure was determined by X-ray crystallography at 2.0 {angstrom} resolution and showed consistent active site positioning and coordination with previously known structures. Isothermal calorimetry binding assays confirmed inhibitor binding to human SpdS with K{sub d} of 1.1 {+-} 0.3 {mu}M in the absence of putrescine and 3.2 {+-} 0.1 {mu}M in the presence of putrescine. These results indicate a potential for further inhibitor development based on the dcSAH scaffold.

  10. Structure of 3-oxoacyl-(acyl-carrier protein) synthase II from Thermus thermophilus HB8.

    Science.gov (United States)

    Bagautdinov, Bagautdin; Ukita, Yoko; Miyano, Masashi; Kunishima, Naoki

    2008-05-01

    The beta-ketoacyl-(acyl carrier protein) synthases (beta-keto-ACP synthases; KAS) catalyse the addition of two-carbon units to the growing acyl chain during the elongation phase of fatty-acid synthesis. As key regulators of bacterial fatty-acid synthesis, they are promising targets for the development of new antibacterial agents. The crystal structure of 3-oxoacyl-ACP synthase II from Thermus thermophilus HB8 (TtKAS II) has been solved by molecular replacement and refined at 2.0 A resolution. The crystal is orthorhombic, space group P2(1)2(1)2, with unit-cell parameters a = 72.07, b = 185.57, c = 62.52 A, and contains one homodimer in the asymmetric unit. The subunits adopt the well known alpha-beta-alpha-beta-alpha thiolase fold that is common to ACP synthases. The structural and sequence similarities of TtKAS II to KAS I and KAS II enzymes of known structure from other sources support the hypothesis of comparable enzymatic activity. The dimeric state of TtKAS II is important to create each fatty-acid-binding pocket. Closer examination of KAS structures reveals that compared with other KAS structures in the apo form, the active site of TtKAS II is more accessible because of the ;open' conformation of the Phe396 side chain.

  11. Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria x ananassa).

    Science.gov (United States)

    Hanhineva, Kati; Kokko, Harri; Siljanen, Henri; Rogachev, Ilana; Aharoni, Asaph; Kärenlampi, Sirpa O

    2009-01-01

    The gene encoding stilbene synthase is frequently used to modify plant secondary metabolism with the aim of producing the self-defence phytoalexin resveratrol. In this study, strawberry (Fragaria x ananassa) was transformed with the NS-Vitis3 gene encoding stilbene synthase from frost grape (Vitis riparia) under the control of the cauliflower mosaic virus 35S and the floral filament-specific fil1 promoters. Changes in leaf metabolites were investigated with UPLC-qTOF-MS (ultra performance liquid chromatography-quadrupole time of flight mass spectrometry) profiling, and increased accumulation of cinnamate, coumarate, and ferulate derivatives concomitantly with a decrease in the levels of flavonols was observed, while the anticipated resveratrol or its derivatives were not detected. The changed metabolite profile suggested that chalcone synthase was down-regulated by the genetic modification; this was verified by decreased chalcone synthase transcript levels. Changes in the levels of phenolic compounds led to increased susceptibility of the transgenic strawberry to grey mould fungus.

  12. Pathophysiology of chronic nitric oxide synthase inhibition-induced fetal growth restriction in the rat

    NARCIS (Netherlands)

    Neerhof, M.G.; Synowiec, S.; Khan, S.; Thaete, L.G.

    2011-01-01

    Objective. To evaluate the pathophysiology of chronic nitric oxide synthase (NOS) inhibition-induced fetal growth restriction (FGR) in the rat. Methods. Timed-pregnant rats received L-NAME (2.5 mg/kg/h) with or without endothelin (ET-1) receptor A (ETA) antagonist from day 14 to 21 of gestation. In

  13. Row-like organization of ATP synthase in intact mitochondria determined by cryo-electron tomography

    NARCIS (Netherlands)

    Dudkina, Natalya V.; Oostergetel, Gert T.; Lewejohann, Dagmar; Braun, Hans-Peter; Boekema, Egbert J.

    2010-01-01

    The fine structure of intact, close-to-spherical mitochondria from the alga Polytomella was visualized by dual-axis cryo-electron tomography. The supramolecular organization of dimeric ATP synthase in the cristae membranes was investigated by averaging subvolumes of tomograms and 3D details at simil

  14. Identification of two Escherichia coli pseudouridine synthases that show multisite specificity for 23S RNA.

    Science.gov (United States)

    Huang, L; Ku, J; Pookanjanatavip, M; Gu, X; Wang, D; Greene, P J; Santi, D V

    1998-11-10

    Several putative Escherichia coli pseudouridine (Psi) synthases have been identified by iterative searching of genomic databases for ORFs homologous to known Psi synthases [Gustafsson et al. (1996) Nucleic Acids Res. 24, 3756-3762]. Of these, yceC and yfiI were proposed to encode Psi synthases which modify 23S rRNA. In the present work, yceC and yfiI were cloned and overexpressed in E. coli, and the encoded enzymes, YceC and YfiI, were purified to homogeneity. Both proteins converted Urd residues of rRNA to Psi, thus confirming their identities as Psi synthases. However, in in vitro experiments both enzymes extensively modified Urd residues of both 23S rRNA and 16S rRNA. Gene-disruption of yceCresulted in the absence of Psi modification at positions U955, 2504, and 2580 of 23S RNA, thus identifying these sites as in vivo targets for YceC. Likewise, yfiI disruption resulted in the absence of Psi modification at positions U1911, 1917, and possibly 1915 of 23S RNA. Disruption of yceC did not affect the growth under the conditions tested, whereas yfiI-disrupted cells showed a dramatic decrease in growth rate. Since YceC and YfiI hypermodify RNA in vitro, factors in addition to ribonucleotide sequence must contribute to the in vivo specificity of these enzymes.

  15. Constitutive expression of inducible nitric oxide synthase in the normal human colonic epithelium

    DEFF Research Database (Denmark)

    Perner, A; Andresen, L; Normark, M

    2002-01-01

    Inducible nitric oxide synthase (iNOS) in the human colon is considered expressed only in inflammatory states such as ulcerative or collagenous colitis. As subtle iNOS labelling was previously observed in some colonic mucosal biopsies from a heterogeneous group of controls with non-inflamed bowel...

  16. Cloning,Characterization,and Gene Annotation of Cellulose Synthase Genes from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    BALASUBRAMANI G; AMUDHA J; KATEGERI I S; KHADI B M

    2008-01-01

    @@ The mechanistic basis of cellulose biosynthesis in plants has gained ground during last decade or so.The isolation of plant eDNA clones encoding cotton homologs of the bacterial cellulose synthase catalytic subunit was a significant achievement,which promises the elucidation of cellulose biosynthesis.

  17. Restoration of ureagenesis in N-acetylglutamate synthase deficiency by N-carbamylglutamate.

    Science.gov (United States)

    Caldovic, Ljubica; Morizono, Hiroki; Daikhin, Yevgeny; Nissim, Itzhak; McCarter, Robert J; Yudkoff, Marc; Tuchman, Mendel

    2004-10-01

    In a patient with N-acetylglutamate synthase (NAGS) deficiency, incorporation of an isotopic label from ammonium chloride into urea was markedly reduced before treatment with N-carbamyl-L-glutamate (NCLG) and completely normalized following treatment. Blood ammonia rose following ammonium tracer ingestion before treatment but remained low following treatment. Serum urea concentration doubled following the treatment.

  18. Structural elements in IGP synthase exclude water to optimize ammonia transfer.

    Science.gov (United States)

    Amaro, Rommie E; Myers, Rebecca S; Davisson, V Jo; Luthey-Schulten, Zaida A

    2005-07-01

    In the complex pathway of histidine biosynthesis, a key branch point linking amino acid and purine biosynthesis is catalyzed by the bifunctional enzyme imidazole glycerol phosphate (IGP) synthase. The first domain of IGP synthase, a triad glutamine amidotransferase, hydrolyzes glutamine to form glutamate and ammonia. Its activity is tightly regulated by the binding of the substrate PRFAR to its partner synthase domain. Recent crystal structures and molecular dynamics simulations strongly suggest that the synthase domain, a (beta/alpha)(8) barrel protein, mediates the insertion of ammonia and ring formation in IGP by channeling ammonia from one remote active site to the other. Here, we combine both mutagenesis experiments and computational investigations to gain insight into the transfer of ammonia and the mechanism of conduction. We discover an alternate route for the entrance of ammonia into the (beta/alpha)(8) barrel and argue that water acts as both agonist and antagonist to the enzymatic function. Our results indicate that the architecture of the two subdomains, most notably the strict conservation of key residues at the interface and within the (beta/alpha)(8) barrel, has been optimized to allow the efficient passage of ammonia, and not water, between the two remote active sites.

  19. Differential in radiosensitizing potency of enantiomers of the fatty acid synthase inhibitor C75

    Science.gov (United States)

    Babich, John W.; Mairs, Robert J.

    2016-01-01

    Abstract The elevated activity of fatty acid synthase has been reported in a number of cancer types. Inhibition of this enzyme has been demonstrated to induce cancer cell death and reduce tumor growth. In addition, the fatty acid synthase inhibitor drug C75 has been reported to synergistically enhance the cancer‐killing ability of ionizing radiation. However, clinical use of C75 has been limited due to its producing weight loss, believed to be caused by alterations in the activity of carnitine palmitoyltransferase‐1. C75 is administered in the form of a racemic mixture of (−) and (+) enantiomers that may differ in their regulation of fatty acid synthase and carnitine palmitoyltransferase‐1. Therefore, we assessed the relative cancer‐killing potency of different enantiomeric forms of C75 in prostate cancer cells. These results suggest that (−)‐C75 is the more cytotoxic enantiomer and has greater radiosensitizing capacity than (+)‐C75. These observations will stimulate the development of fatty acid synthase inhibitors that are selective for cancer cells and enhance the tumor‐killing activity of ionizing radiation, while minimizing weight loss in cancer patients. PMID:27901292

  20. Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.)

    Science.gov (United States)

    Background: 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the sixth and penultimate enzyme in the shikimate biosynthesis pathway. The EPSPS genes of allohexaploid wheat (Triticum aestivum, AABBDD) have not been well characterized. Herein, the three homoeologous copies of the wheat EPSPS gen...

  1. Differential in radiosensitizing potency of enantiomers of the fatty acid synthase inhibitor C75.

    Science.gov (United States)

    Rae, Colin; Babich, John W; Mairs, Robert J

    2017-01-01

    The elevated activity of fatty acid synthase has been reported in a number of cancer types. Inhibition of this enzyme has been demonstrated to induce cancer cell death and reduce tumor growth. In addition, the fatty acid synthase inhibitor drug C75 has been reported to synergistically enhance the cancer-killing ability of ionizing radiation. However, clinical use of C75 has been limited due to its producing weight loss, believed to be caused by alterations in the activity of carnitine palmitoyltransferase-1. C75 is administered in the form of a racemic mixture of (-) and (+) enantiomers that may differ in their regulation of fatty acid synthase and carnitine palmitoyltransferase-1. Therefore, we assessed the relative cancer-killing potency of different enantiomeric forms of C75 in prostate cancer cells. These results suggest that (-)-C75 is the more cytotoxic enantiomer and has greater radiosensitizing capacity than (+)-C75. These observations will stimulate the development of fatty acid synthase inhibitors that are selective for cancer cells and enhance the tumor-killing activity of ionizing radiation, while minimizing weight loss in cancer patients. © 2016 The Authors. Chirality Published by Wiley Periodicals, Inc.

  2. A revisit to the natural history of homocystinuria due to cystathionine beta-synthase deficiency

    DEFF Research Database (Denmark)

    Skovby, Flemming; Gaustadnes, Mette; Mudd, S Harvey

    2010-01-01

    We review the evidence that in Denmark and probably certain other European countries the number of individuals identified with homocystinuria due to homozygosity for the widespread c.833T>C (p.I278T) mutation in the gene that encodes cystathionine beta-synthase (CBS) falls far short of the number...

  3. Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene

    DEFF Research Database (Denmark)

    Le Gall, G.; Metzdorff, Stine Broeng; Pedersen, Jan W.;

    2005-01-01

    A metabolite profiling study has been carried out on Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija and a series of transgenic lines of the ecotype transformed with a CHS (chalcone synthase) antisense construct. Compound identifications by LC/MS and H-1 NMR are discussed. The glucosinolate...

  4. Epicubenol synthase. Origin of the oxygen atom of a bacterial sesquiterpene alcohol.

    Science.gov (United States)

    Cane, D E; Ke, N

    2000-01-17

    Incubation of epicubenol synthase with farnesyl pyrophosphate in the presence of 11.1 atom% H2(18)O gave epicubenol (2) in which the hydroxyl oxygen atom was shown to be derived exclusively from water, as established by GC-selected ion monitoring MS of the derived TMS-epicubenol derivative (15).

  5. Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall

    NARCIS (Netherlands)

    Timmers, J.F.P.; Vernhettes, S.; Desprez, T.; Vincken, J.P.; Visser, R.G.F.; Trindade, L.M.

    2009-01-01

    It has not yet been reported how the secondary CESA (cellulose synthase) proteins are organized in the rosette structure. A membrane-based yeast two-hybrid (MbYTH) approach was used to analyze the interactions between the CESA proteins involved in secondary cell wall synthesis of Arabidopsis and the

  6. Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants

    NARCIS (Netherlands)

    Carroll, A.; Mansoori Zangir, N.; Li, S.; Lei, L.; Vernhettes, S.; Visser, R.G.F.; Somerville, C.; Gu, Y.; Trindade, L.M.

    2012-01-01

    In higher plants, cellulose is synthesized by so-called rosette protein complexes with cellulose synthases (CESAs) as catalytic subunits of the complex. The CESAs are divided into two distinct families, three of which are thought to be specialized for the primary cell wall and three for the secondar

  7. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemolsynthase activity

    NARCIS (Netherlands)

    Yang, T.; Gao, L.; Hu, H.; Stoopen, G.M.; Wang, C.; Jongsma, M.A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme inthe biosynthesis of pyrethrins, the most widely used plant-derivedpesticide.CDScatalyzes c1’-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP).

  8. Structure of the ATP synthase from chloroplasts studied by electron microscopy. Localization of the small subunits

    NARCIS (Netherlands)

    Boekema, Egbert J.; Xiao, Jianping; McCarty, Richard E.

    1990-01-01

    The structure of the hydrophilic part of the ATP synthase from chloroplasts (CF1) has been further investigated by electron microscopy and image analysis of negatively stained samples. The projections of three different types of CF1 were analyzed: the holoenzyme with five different subunits and two

  9. Thymidine kinase and thymidylate synthase in advanced breast cancer: response to tamoxifen and chemotherapy

    NARCIS (Netherlands)

    J.A. Foekens (John); S. Romain; M.P. Look (Maxime); P.M. Martin; J.G.M. Klijn (Jan)

    2001-01-01

    textabstractThymidylate synthase (TS) is a crucial target for 5-fluorouracil (5-FU) in the de novo pathway of pyrimidine synthesis, which is necessary for DNA synthesis. Thymidine kinase (TK) plays a key role in the complementary or alternative salvage pathway of

  10. Pentalenene Synthase: Analysis of Active Site Residues by Site-Directed Mutagenesis

    NARCIS (Netherlands)

    Seemann, M.; Zhai, G.; Kraker, de J.W.; Paschall, C.M.; Christianson, D.W.; Cane, D.E.

    2002-01-01

    Incubation of farnesyl diphosphate (1) with the W308F or W308F/H309F mutants of pentalenene synthase, an enzyme from Streptomyces UC5319, yielded pentalenene (2), accompanied by varying proportions of (+)-germacrene A (7) with relatively minor changes in kcat and kcat/Km. By contrast, single H309 mu

  11. The LINKS motif zippers trans-acyltransferase polyketide synthase assembly lines into a biosynthetic megacomplex.

    Science.gov (United States)

    Gay, Darren C; Wagner, Drew T; Meinke, Jessica L; Zogzas, Charles E; Gay, Glen R; Keatinge-Clay, Adrian T

    2016-03-01

    Polyketides such as the clinically-valuable antibacterial agent mupirocin are constructed by architecturally-sophisticated assembly lines known as trans-acyltransferase polyketide synthases. Organelle-sized megacomplexes composed of several copies of trans-acyltransferase polyketide synthase assembly lines have been observed by others through transmission electron microscopy to be located at the Bacillus subtilis plasma membrane, where the synthesis and export of the antibacterial polyketide bacillaene takes place. In this work we analyze ten crystal structures of trans-acyltransferase polyketide synthases ketosynthase domains, seven of which are reported here for the first time, to characterize a motif capable of zippering assembly lines into a megacomplex. While each of the three-helix LINKS (Laterally-INteracting Ketosynthase Sequence) motifs is observed to similarly dock with a spatially-reversed copy of itself through hydrophobic and ionic interactions, the amino acid sequences of this motif are not conserved. Such a code is appropriate for mediating homotypic contacts between assembly lines to ensure the ordered self-assembly of a noncovalent, yet tightly-knit, enzymatic network. LINKS-mediated lateral interactions would also have the effect of bolstering the vertical association of the polypeptides that comprise a polyketide synthase assembly line. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Aromatic polyketide synthases from 127 Fusarium: pas de deux for chemical diversity

    Science.gov (United States)

    Fusarium species collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including mycotoxins, of great concern. Many Fusarium NPs are derived from polyketide synthases (PKSs), large enzymes that catalyze the condensation of simple carboxylic acids. To gain ...

  13. GLUT4 and glycogen synthase are key players in bed rest-induced insulin resistance

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup; Jørgensen, Stine Ringholm; Kiilerich, Kristian

    2012-01-01

    glycogen synthase (GS) was reduced with normal GS site 3 but abnormal GS site 2+2a phosphorylation after bed rest. Exercise enhanced insulin-stimulated leg glucose extraction both before and after bed rest, which was accompanied by higher GS activity in the prior-exercised leg than the rested leg...

  14. Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Tran, E H; Hardin-Pouzet, H; Verge, G;

    1997-01-01

    Nitric oxide (NO), produced by inducible NO synthase (iNOS), may play a role in inflammatory demyelinating diseases of the central nervous system (CNS). We show upregulation of iNOS mRNA in CNS of SJL/J mice with experimental allergic encephalomyelitis (EAE). Using antibodies against mouse iNOS, ...

  15. Heterologous expression of pentalenene synthase (PSS) from Streptomyces UC5319 in Xanthophyllomyces dendrorhous

    NARCIS (Netherlands)

    Melillo, Elena; Muntendam, Remco; Quax, Wim J.; Kayser, Oliver

    2012-01-01

    For the first time, the pentalenene synthase (PSS) gene from Streptomyces UC5319 was expressed in Xanthophyllomyces dendrorhous, a native producer of astaxanthin. For the expression of the gene and the concurrent knock out of the native crtE or crtYB genes, two new vectors were engineered and used f

  16. Neuronal Nitric Oxide Synthase-Dependent Amelioration of Diastolic Dysfunction in Rats with Chronic Renocardiac Syndrome

    NARCIS (Netherlands)

    Bongartz, Lennart G.; Soni, Siddarth; Cramer, MJ; Steendijk, Paul; Gaillard, Carlo A. J. M.; Verhaar, Marianne C.; Doevendans, Pieter A.; van Veen, AAB; Joles, Jaap A.; Braam, Branko

    2015-01-01

    We have recently described the chronic renocardiac syndrome (CRCS) in rats with renal failure, cardiac dysfunction and low nitric oxide (NO) availability by combining subtotal nephrectomy and transient low-dose NO synthase (NOS) inhibition. Cardiac gene expression of the neuronal isoform of NOS

  17. Neuronal Nitric Oxide Synthase-Dependent Amelioration of Diastolic Dysfunction in Rats with Chronic Renocardiac Syndrome

    NARCIS (Netherlands)

    Bongartz, Lennart G.; Soni, Siddarth; Cramer, Maarten-Jan; Steendijk, Paul; Gaillard, Carlo A. J. M.; Verhaar, Marianne C.; Doevendans, Pieter A.; van Veen, Toon A.; Joles, Jaap A.; Braam, Branko

    We have recently described the chronic renocardiac syndrome (CRCS) in rats with renal failure, cardiac dysfunction and low nitric oxide (NO) availability by combining subtotal nephrectomy and transient low-dose NO synthase (NOS) inhibition. Cardiac gene expression of the neuronal isoform of NOS

  18. Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians

    DEFF Research Database (Denmark)

    Ahluwalia, Tarun Veer Singh; Ahuja, Monica; Rai, Taranjit Singh

    2008-01-01

    Endothelial dysfunction plays a key role in the pathogenesis of diabetic vascular disease, including diabetic nephropathy. Endothelial-derived nitric oxide synthase (eNOS) gene polymorphisms affect eNOS activity and are associated with endothelial dysfunction. We evaluated the association of the ...

  19. Inducible nitric oxide synthase is responsible for nitric oxide release from murine pituicytes

    DEFF Research Database (Denmark)

    Kjeldsen, T H; Rivier, C; Lee, S;

    2003-01-01

    This study investigated whether pituicytes were able to produce and release nitric oxide (NO), and which type of nitric oxide synthase (NOS) would be responsible for this phenomenon. Lipopolysaccharide (LPS) 1 micro g/ml was used as inflammatory mediator. Because pituicytes are known to secrete...

  20. HYPOTHALAMIC BLOOD-FLOW REMAINS UNALTERED FOLLOWING CHRONIC NITRIC-OXIDE SYNTHASE BLOCKADE IN RATS

    NARCIS (Netherlands)

    BENYO, Z; SZABO, C; STUIVER, BT; BOHUS, B; SANDOR, P

    1995-01-01

    The effect of the chronic oral application of N-G-nitro-L-arginine methyl eater (L-NAME), a potent inhibitor of nitric oxide (NO) production, was studied on hypothalamic blood flow (HBF) and hypothalamic nitric oxide synthase (NOS) activity in rats. L-NAME was dissolved in the drinking water, in a c