WorldWideScience

Sample records for acetonide selectively inhibits

  1. Fluocinolone acetonide ophthalmic--Bausch & Lomb: fluocinolone acetonide Envision TD implant.

    Science.gov (United States)

    2005-01-01

    Bausch & Lomb and Control Delivery Systems have developed an intravitreal implant that can deliver the corticosteroid fluocinolone acetonide [fluocinolone acetonide implant, Retisert] to posterior eye tissue for up to 3 years. The implant uses Bausch & Lomb's Envision TD technology. This fluocinolone acetonide implant has been designed for the treatment of non-infectious uveitis affecting the posterior segment of the eye and other eye disorders, which benefit from local anti-inflammatory therapy. In July 2003, Bausch & Lomb assumed all responsibility for day-to-day clinical development and regulatory activities relating to fluocinolone acetonide implant development from Control Delivery Systems. In May 2002, Control Delivery systems and Bausch & Lomb formally amended their budget for their license and development agreement. Bausch & Lomb will increase its funding to support the development of agents for the treatment of diabetic macular oedema, posterior uveitis and wet age-related macular degeneration to USD $206 million through to 2008. In January 2004, Bausch & Lomb decided to focus development of the fluocinolone acetonide implant in only one indication, non-infectious uveitis affecting the posterior segment of the eye. It had been in development for other indications, including macular oedema and age-related macular degeneration. However, these will be targeted with later-generation implant technologies, different drugs, or combinations of both. The implant delivering fluocinolone acetonide 0.59 mg or 2.1mg has completed enrollment in two pivotal 3-year phase IIb/III trials in the US, Canada, Australia and Asia for the treatment of posterior uveitis. Enrollment in these multicenter randomised, double-masked studies was closed in May 2003. Bausch & Lomb was expected to file an NDA with the US FDA for the use of the agent in the treatment of uveitis in mid-2003. However, in February 2003, the company reported that, after a review of various filing strategies

  2. Supramolecular nanofibers of triamcinolone acetonide for uveitis therapy

    Science.gov (United States)

    Li, Xingyi; Wang, Yuqin; Yang, Chengbiao; Shi, Shuai; Jin, Ling; Luo, Zichao; Yu, Jing; Zhang, Zhaoliang; Yang, Zhimou; Chen, Hao

    2014-11-01

    Supramolecular nanofibers of prodrugs hold advantages for drug release due to their high drug payload, sustained and constant drug release behavior, and stimuli responsiveness. In this study, we report on a supramolecular hydrogel mainly formed by a clinically used drug triamcinolone acetonide (TA). Such a hydrogel could only be prepared via an ester bond hydrolysis process from its prodrug of succinated triamcinolone acetonide (STA). The resulting hydrogel could constantly release TA in the in vitro release experiment. The TA hydrogel possessed an excellent transscleral penetration ability, as evaluated by the in vitro transscleral transport study. The developed TA hydrogel also exhibited a great ocular compatibility in rats, as indicated by the optical coherence tomography (OCT) images, HE observation, and glial fibrillary acidic protein (GFAP) and vimentin immuno-staining assays of the retinas. Our TA hydrogel showed a decreased efficacy to inhibit ocular inflammation in the rat's experiment autoimmune uveitis (EAU) model compared to the commercial TA suspension (Transton®), but without causing complications such as high intraocular pressure and cataracts. These promising properties of the hydrogel indicated its great potential for the treatment of eye diseases.Supramolecular nanofibers of prodrugs hold advantages for drug release due to their high drug payload, sustained and constant drug release behavior, and stimuli responsiveness. In this study, we report on a supramolecular hydrogel mainly formed by a clinically used drug triamcinolone acetonide (TA). Such a hydrogel could only be prepared via an ester bond hydrolysis process from its prodrug of succinated triamcinolone acetonide (STA). The resulting hydrogel could constantly release TA in the in vitro release experiment. The TA hydrogel possessed an excellent transscleral penetration ability, as evaluated by the in vitro transscleral transport study. The developed TA hydrogel also exhibited a great ocular

  3. Improved anti-inflammatory effects in rabbit eye model using biodegradable poly beta-amino ester nanoparticles of triamcinolone acetonide.

    Science.gov (United States)

    Sabzevari, Araz; Adibkia, Khosro; Hashemi, Hassan; De Geest, Bruno G; Mohsenzadeh, Navid; Atyabi, Fatemeh; Ghahremani, Mohammad Hossein; Khoshayand, Mohammad-Reza; Dinarvand, Rassoul

    2013-08-15

    Results of previous studies on the benefits of ocular drug delivery using polymeric mucoadhesive nanoparticles suggested longer presence and better penetration of nanoparticles, and, thus, increased effect and bioavailability of drugs entrapped in nanoparticles. In this study, a novel polymer, poly β-amino ester, was used for the preparation of triamcinolone acetonide-loaded nanoparticles using a modified emulsification/solvent diffusion method. Mucoadhesiveness studies, in vitro drug release, x-ray powder diffraction, differential scanning calorimetry, and scanning electron microscopy were used for physicochemical characterization of nanoparticles. Thirty-six hours after inducing uveitis by intravitreal injection of a lipopolysaccharide, sampling from the aqueous humor was done and inflammatory factors, such as cell, protein, nitric oxide, and prostaglandin E2, were compared. Nanoparticles with a mean size of 178 nm and drug loading of 5.3% were prepared and used for in vivo studies in rabbits with uveitis. Higher anti-inflammatory effect was observed for polymeric nanoparticles of triamcinolone acetonide compared with microparticles of prednisolone acetate and triamcinolone acetonide, and an equal effect compared with subconjunctival injection of triamcinolone acetonide in terms of inhibiting inflammation and inflammatory mediators. It can be concluded that polymeric nanoparticles of triamcinolone acetonide will provide as good an anti-inflammatory effect as the subconjunctival injection method and are better compared with other drug delivery systems.

  4. Evaluation of subconjunctival injection of triamcinolone acetonide in patients with macular edema secondary to uveitis

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2016-05-01

    Full Text Available AIM:To evaluate the clinical effect of subconjunctival injection of triamcinolone acetonide in patients with macular edema secondary to uveitis. METHODS:Sixty-eight patients(82 eyeswith macular edema secondary to uveitis selected in our hospital from October 2014 to October 2015 were assigned into control group and experimental group according to random number table method, with 34 cases(41 eyesin each group. Patients in the control group were treated by intraocular injection of triamcinolone acetonide, and patients in the experimental group were given subconjunctival injection of triamcinolone acetonide. Clinical effect, central macular thickness and adverse reactions in the two groups were compared. RESULTS:There was no significant difference on the central macular thickness and best corrected visual acuity between the two groups before treatment(P>0.05. Central macular thickness in the experimental group after treatment(214.26±65.54 μmwas significantly lower than that in the control group after treatment(256.47±84.52 μm,PPPPCONCLUSION:Subconjunctival injection of triamcinolone acetonide exerts obvious effect in uveitis patients with macular edema, effectively improves visual acuity, alleviates macular edema and reduces the incidence of intraocular pressure increasing, conjunctival hemorrhage and other adverse reactions, which is safe and effective, thus has potential application.

  5. Efficacy of triamcinolone acetonide and bupivacaine for pain after lumbar discectomy.

    LENUS (Irish Health Repository)

    Bahari, Syah

    2012-02-01

    The study is a prospective blinded randomised controlled trial to compare the efficacy of triamcinolone acetonide, bupivacaine or in combination in managing pain after lumbar discectomy. Patients undergoing primary single-level lumbar discectomy were randomised. Triamcinolone acetonide, bupivacaine or in combination was instilled at the nerve root as decompression. Preoperative, day 1 and 6 weeks pain score, 24-h postoperative opiate requirements and duration of inpatient stay were recorded. Data was analysed using Mann-Whitney test for statistical significance. 100 patients were recruited. A significant difference was noted in day one postoperative mean pain score, mean 24-h opiate requirement and mean inpatient stay in the triamcinolone acetonide and bupivacaine group. At 8 weeks postoperatively, no significant differences were seen in the pain score in all groups. Significant postoperative pain reduction and opiate requirements in the first 24 h, and significantly shortened duration of inpatient stay were achieved in the triamcinolone acetonide and bupivacaine group compared with other groups.

  6. [Clinical observation on treating diabetic macular edema with intravitreal triamcinolone acetonide and laser].

    Science.gov (United States)

    Wang, Yongbo; Shi, Anna; Shi, Xun; Liu, Weifeng

    2010-08-01

    To evaluate the effect of intravitreal injection of triamcinolone acetonide(IVTA) combining with retinal laser treating for diabetic macular edema(DME). Twenty five patients(32 eyes) with DME who has microangioma in macula lutea were randomly divided into group A, B,C and D(8 eyes each group). Eyes in group A were treated with laser photocoagulation. Eyes in group B were treated with multiplier-532 laser photocoagulation and transpupillary thermotherapy. Eyes in group C were treated with multiplier-532 laser photocoagulation and intravitreal triamcinolone acetonide. Eyes in group D were treated with multiplier-532 laser, transpupillary thermotherapy plus triamcinolone acetonide injection. Intravitreal injection of 4 mg triamcinolone acetonide was done 1 week after laser photocoagulation in group C and D. The visual acuity, intraocular pressure, macular thickness (foveal thickness) of the eyes in 4 groups were observed before and 1, 3 and 6 months after treatment. The visual acuity, intraocular pressure and foveal thickness of the 4 groups before treatment showed no significant difference(p> ). The visual acuity, intraocular pressure, macular thickness of eyes in group A, B were better than those of group C, D at 1, 3 and 6 months after treatment, and they had significant difference(p0.05). The effect of laser photocoagulation and intravitreal triamcinolone acetonide, laser photocoagulation combining with transpupillary thermotherapy plus triamcinolone acetonide injectionvisual treating for DME was better than laser photocoagulation alone, laser photocoagulation combining with transpupillary thermotherapy.

  7. Subacromial triamcinolone acetonide, hyaluronic acid and saline injections for shoulder pain an RCT investigating the effectiveness in the first days.

    Science.gov (United States)

    Penning, Ludo I F; de Bie, Rob A; Walenkamp, Geert H I M

    2014-10-23

    Subacromial impingement is a common cause of shoulder complaints in general practice. When the initial treatment with acetaminophen and low dose Non Steroidal Anti Inflammatory Drugs fails, triamcinolone acetonide injections are commonly used. Triamcinolone acetonide injections are effective at four to six weeks. Little is known about the pain relief effect of triamcinolone acetonide injections in the first days after injection and the effect of repeated injection. In this study we investigate the effect of triamcinolone acetonide injections compared to hyaluronic acid and NaCl injections using a pain diary. 159 Patients recruited for an RCT comparing the effect of subacromial injections of triamcinolone acetonide, hyaluronic acid and sodium chloride (NaCl) were used in this study. They were blinded for their treatment and could receive up to three injections. Primary outcome consisted of the patient perceived pain on a VAS score recorded on a daily basis during 21 days following injection. Secondary outcome consisted of the amount of taken escape medication following injection and adverse effects. All patients received the first injection. 150 patients also received the second and third injections. 97% Of the paper and pencil pain diaries were returned for data analysis.The triamcinolone acetonide group showed the largest decrease in pain on the VAS scores after injection compared to the hyaluronic acid and NaCl group in the first week after injection. The reduction in pain was best achieved after the first injection, the second triamcinolone acetonide injection showed a further reduction in pain. The third triamcinolone acetonide injection only showed a slight improvement in pain reduction. In this study we could show a booster effect in pain reduction after repeated triamcinolone acetonide injection. The triamcinolone acetonide group showed a faster reduction in pain after injection compared to the hyaluronic acid and NaCl group. The effect was best seen after

  8. Diclofenac and triamcinolone acetonide impair tenocytic differentiation and promote adipocytic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Fredriksson, Maritha; Li, Yan; Stålman, Anders; Haldosén, Lars-Arne; Felländer-Tsai, Li

    2013-09-02

    Tendinopathies are often empirically treated with oral/topical nonsteroidal anti-inflammatory medications and corticosteroid injections despite their unclear effects on tendon regeneration. Recent studies indicate that tendon progenitors exhibit stem cell-like properties, i.e., differentiation to osteoblasts, adipocytes, and chondrocytes, in addition to tenocytes. Our present study aims at understanding the effects of triamcinolone acetonide and diclofenac on tenocytic differentiation of mesenchymal stem cells. The murine fibroblast C3H10T1/2 cell line was induced to tenocytic differentiation by growth differentiation factor-7. Cell proliferation and differentiation with the exposure of different concentrations of triamcinolone acetonide and diclofenac were measured by WST-1 assay and real-time polymerase chain reaction analysis, respectively. Cell proliferation was decreased in a concentration-dependent manner when exposed to triamcinolone acetonide and diclofenac. In addition to tenocytic differentiation, adipocyte formation was observed, both at gene expression and microscopic level, when the cells were exposed to triamcinolone acetonide or high concentrations of diclofenac. Our results indicate that triamcinolone acetonide and diclofenac might alter mesenchymal stem cell differentiation in a nonfavorable way regarding tendon regeneration; therefore, these medications should be used with more caution clinically.

  9. Fluocinolone acetonide and its potential in the treatment of chronic diabetic macular edema

    Directory of Open Access Journals (Sweden)

    Haritoglou C

    2013-03-01

    Full Text Available Christos Haritoglou, Aljoscha S Neubauer, Marcus KerntDepartment of Ophthalmology, Ludwig-Maximilians-University, Munich, GermanyAbstract: Diabetic macular edema (DME is a potentially sight-threatening disease that predominantly affects patients with type 2 diabetes. The pathogenesis is complex, with many contributing factors involved. In addition to overexpression of vascular endothelial growth factor in the diabetic eye, there is an inflammatory pathway that contributes to the breakdown of the blood-retina barrier and nonperfusion. In addition to vascular endothelial growth factor inhibitors, clinical and experimental investigations underline the great potential of steroids in the treatment of DME. Fluocinolone acetonide is currently the only corticosteroid approved for the treatment of DME in Europe. It is manufactured as an intravitreal insert, releasing fluocinolone acetonide at a rate of 0.2 µg per day. Phase III clinical studies have demonstrated that the beneficial effect of the fluocinolone acetonide insert lasts up to 3 years. Improvement in visual acuity was especially remarkable in patients with a prolonged duration of DME of at least 3 years at the initiation of therapy. Cataract formation occurs in nearly all phakic eyes treated, and needs to be considered when the indication for treatment is made. Given the efficacy versus potential complications of the insert, fluocinolone acetonide represents a promising second-line treatment option in patients with DME. Fluocinolone appears to be especially beneficial for patients whose options for visual recovery have seemed limited up until now.Keywords: diabetic macular edema, fluocinolone acetonide

  10. Triamcinolone Acetonide and 5-Fluorouracil Intralesional Combination Injection in Keloid Treatment

    Directory of Open Access Journals (Sweden)

    Jono Hadi Agusni

    2017-03-01

    Full Text Available Objective: To evaluate the effectiveness of steroid and 5-fluorouracil (5-FU injection combination for keloid management. Methods: A 22-year-old female patient was presented with recurrent skin lesions. The skin lesions first appeared 10 years prior to consultation, had been surgically excised, and were given triamcinolone acetonide injection. However, no improvement was observed. A decision was made to use and evaluate treatment using an intralesional 4 mg (0.1 ml of 40 mg/ml triamcinolone acetonide and 45 mg (0.9 ml of 50 mg/ml 5-FU injection combination for 5 weeks. Results: Clinical improvements were observed in the third week as the lesions softened and pruritic sensation dinimished. At the end of the fifth week, improvements in the form of keloid lesion flattening and size reduction were observed. Conclusions: Intralesional injection using a combination of triamcinolone acetonide and 5-fluorouracil is effective for keloid lesion treatment.

  11. [Fluocinolone acetonide (ILUVIEN®) micro-implant for chronic diabetic macular edema].

    Science.gov (United States)

    Soubrane, G; Behar-Cohen, F

    2015-02-01

    Diabetic macular edema (DME) is a frequent complication of diabetic retinopathy and may cause severe visual loss. In this article, we examine the pathophysiology of DME and review various treatment options, such as laser photocoagulation, anti-vascular endothelial growth factor (VEGF) receptor antibodies, and steroids including ILUVIEN(®), which is a new sustained-release, non biodegradable, injectable, intravitreal micro-implant containing fluocinolone acetonide. The results of the FAME (Fluocinolone Acetonide in Diabetic Macular Edema) studies, conducted to evaluate the efficacy and safety of ILUVIEN(®) in DME, are discussed. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Pythiosis cutaneous in horses treated with triamcinolone acetonide. Part 3. Histomorphometric analysis

    Directory of Open Access Journals (Sweden)

    José Cardona-Álvarez

    2017-05-01

    Full Text Available Objective. The objective of the study was to analyze Histomorphometrically of the healing process with cutaneous pythiosis in horses treated with triamcinolone acetonide. Materials and methods. 24 horses with pythiosis were used, to a group 50 mg of intramuscular triamcinolone acetonide (GT was applied, while the other group was not applied treatment (GC. They were collected tissue biopsies, processed, sliced and stained with hematoxylin and eosin (H & E, Gomori trichrome (TG, picrosirius red / polarization (PR / P and Grocott methenamine silver (GMS. Photomicrographs were selected and 10 histological changes, analyzed with BioEstat 5.0 software, obtaining quantities of tissue cells such as eosinophils, neutrophils, macrophages, fibroblasts and collagen through planimetric evaluation point count. Results. In GSM staining was observed decrease in the presence of intralesional hyphae of P. insidiosum to 16 days (p<0.05. Staining H&E, we observed a decrease of the inflammatory process, shown in eosinophils (p=0.0001, neutrophils (p=0.0001, and macrophage (p=0.00001. In the staining of GT and PR/P increase the amount of fibroblasts and collagen fibers were observed, also the gradual exchange of type III collagen to type I, increased fibroblast show significant (p=0.0001 from day 16 until day 40, the expression of collagen was significant (p=0.0001 from day 16 until the end of the study. It was statistically significant correlation between neutrophils and macrophages (p=0.00018, collagen and eosinophil (p=0.03 and fibroblasts and collagen (p=0.02. The animals in the CG do not present histomorphometric improvement during the study. Conclusions. We conclude that the cell produces triamcinolone acetonide and histomorphometric tecidual recovery in horses with pythiosis.

  13. Environment friendly chemoselective deprotection of acetonides and ...

    Indian Academy of Sciences (India)

    lective deprotection of functional groups is still a chal- lenge in synthetic organic chemistry especially in aque- ous medium. We report here an environment friendly efficient method for chemoselective deprotection of. ∗. For correspondence acetonides by simply heating in pure water at 90. ◦. C without using any catalyst and ...

  14. Intravitreal triamcinolone acetonide injections in the treatment of retinal vein occlusions.

    Science.gov (United States)

    Roth, Daniel B; Cukras, Catherine; Radhakrishnan, Ravi; Feuer, William J; Yarian, David L; Green, Stuart N; Wheatley, Harold M; Prenner, Jonathan

    2008-01-01

    To report the visual acuity response after intravitreal triamcinolone injection in patients with macular edema due to retinal vein occlusions. Retrospective nonrandomized interventional series of 172 consecutive patients with macular edema due to retinal vein occlusions who were treated with intravitreal triamcinolone acetonide injection. Patients underwent Snellen visual acuity testing and ophthalmoscopic examination at baseline and 1, 3, 6, and 12 months after intravitreal triamcinolone acetonide injection. All subtypes of retinal vein occlusions showed significant improvements in mean visual acuity 1 month after injection. This improvement in visual acuity was maintained over the 12-month period for all but the central retinal vein occlusion group. Seventy-one (41.3%) of the 172 patients received more than one intravitreal triamcinolone injection for unresolved or recurrent macular edema. This study demonstrates a benefit associated with intravitreal triamcinolone acetonide injection for retinal vein occlusions that was maintained by patients with branch retinal vein occlusions and hemiretinal vein occlusions over a 12-month period. Visual acuity improvement was not maintained in patients with central retinal vein occlusions with this course of treatment.

  15. Intravitreal Triamcinolone Acetonide for Macular Edema in HLA-B27 Negative Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    M.M. Moschos

    2010-12-01

    Full Text Available We report a case of a human leukocyte antigen B27 (HLA-B27-negative patient with cystoid macular edema (CME and ankylosing spondylitis (AS after treatment with triamcinolone acetonide. The patient complained of deterioration of visual acuity of the right eye during the last 10 days. At presentation visual acuity of the right eye was 0.2, and the ophthalmic examination did not reveal any sign of active uveitis. Fluorescein angiography (FA and ocular coherent tomography (OCT showed CME. The left eye was normal with a visual acuity of 0.9. Eight weeks after intravitreal injection of triamcinolone acetonide, visual acuity improved to 0.8 and OCT revealed regression of macular edema. Six months later no recurrence was observed. Our case report indicates for the first time that CME may occur in AS independently of the presence of HLA-B27 and intraocular inflammation. Intravitreal use of triamcinolone acetonide can reduce macular edema and restore visual acuity.

  16. Clinical analysis of intravitreal injection of triamcinolone acetonide combined macular grid photocoagulation treatment for macular edema

    Directory of Open Access Journals (Sweden)

    Xian-Hua Jing

    2014-10-01

    Full Text Available AIM: To investigate the clinical efficacy and safety of intravitreal injection of triamcinolone combined macular grid photocoagulation treatment for macular edema. METHODS: Totally 150 cases(150 eyeswith macular edema in our hospital from July 2009 to November 2013 were selected, which were randomly divided into study group(75 cases, 75 eyesand control group(75 cases, 75 eyes. The cases in control group were treated with macular grid photocoagulation treatment, those in the study group used triamcinolone acetonide combined macular grid photocoagulation treatment. Best corrected visual acuity(BCVA, parallel optical coherence tomography(OCTand fundus fluorescein angiography(FFAwere detected before treatment, after treatment 7d, 1, 3, and 9mo. RESULTS:After the treatment, patients' vision were significantly improved in two groups(PPPP>0.05. Fovea macular neurosensory retinal thickness in the study group was significantly lower than that in control group(PCONCLUSION: Triamcinolone acetonide combined macular grid photocoagulation treatment is accurate, can effectively improve the visual acuity, reduce macular edema, it is safe and reliable, and suitable for clinical application.

  17. Solid-state characterization of triamcinolone acetonide nanosuspensiones by X-ray spectroscopy, ATR Fourier transforms infrared spectroscopy and differential scanning calorimetry analysis

    Directory of Open Access Journals (Sweden)

    Eva García-Millán

    2017-12-01

    Full Text Available The data presented in this article describe the physical state of the triamcinolone acetonide (TA in nanosuspension stabilized with polyvinyl alcohol (PVA and poloxamer 407 (PL. The data were assessed by X-ray spectroscopy, ATR Fourier transforms infrared spectroscopy measurements (FTIR, and Differential scanning calorimetry (DSC analysis. PVA, PL and polymeric mixture (PVA and PL were compared with nanosuspension and the interactions between drug triamcinolone acetonide and polymers were studied. The data are related and are complementary to the research article entitle “Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions” (García-Millán et al., 2017 [1]. Keywords: Triamcinolona acetonide nanosuspensiones, X-ray spectroscopy, FTIR spectroscopy, DSC

  18. Surgical management of fibrotic encapsulation of the fluocinolone acetonide implant in CAPN5-associated proliferative vitreoretinopathy

    Directory of Open Access Journals (Sweden)

    Tlucek PS

    2013-06-01

    Full Text Available Paul S Tlucek,1 James C Folk,1 Warren M Sobol,2 Vinit B Mahajan1,3 1Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA; 2Retina Physicians and Surgeons, Dayton, OH, USA; 3Omics Laboratory, University of Iowa, Iowa City, IA, USA Objective: To review fibrosis of fluocinolone acetonide (FA implants in subjects with CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV. Methods: A retrospective case series was assembled from ADNIV patients in which there was fibrotic encapsulation of a fluocinolone acetonide implant. CAPN5 genotypes and surgical repair techniques were reviewed. Results: Two eyes of two ADNIV patients developed a fibrotic capsule over the fluocinolone acetonide implant. Both patients had Stage IV disease. Patient A had a c.731T > C mutation in the CAPN5 gene and patient B had a c.728G > T mutation. The fibrotic membrane was surgically excised and the implant function was restored. Conclusion: The exuberant fibrotic response in later stages of ADNIV may be resistant to local immunosuppression with steroids. Surgical excision of fibrotic membranes over FA implants can reestablish local steroid delivery in cases of severe proliferative vitreoretinopathy. Keywords: autosomal dominant neovascular inflammatory vitreoretinopathy, ADNIV, CAPN5, calpain-5, Retisert, fluocinolone acetonide, fibrotic encapsulation

  19. Surgical management of fibrotic encapsulation of the fluocinolone acetonide implant in CAPN5-associated proliferative vitreoretinopathy.

    Science.gov (United States)

    Tlucek, Paul S; Folk, James C; Sobol, Warren M; Mahajan, Vinit B

    2013-01-01

    To review fibrosis of fluocinolone acetonide (FA) implants in subjects with CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV). A retrospective case series was assembled from ADNIV patients in which there was fibrotic encapsulation of a fluocinolone acetonide implant. CAPN5 genotypes and surgical repair techniques were reviewed. Two eyes of two ADNIV patients developed a fibrotic capsule over the fluocinolone acetonide implant. Both patients had Stage IV disease. Patient A had a c.731T > C mutation in the CAPN5 gene and patient B had a c.728G > T mutation. The fibrotic membrane was surgically excised and the implant function was restored. The exuberant fibrotic response in later stages of ADNIV may be resistant to local immunosuppression with steroids. Surgical excision of fibrotic membranes over FA implants can reestablish local steroid delivery in cases of severe proliferative vitreoretinopathy.

  20. Fluocinolone acetonide partially restores the mineralization of LPS-stimulated dental pulp cells through inhibition of NF-κB pathway and activation of AP-1 pathway

    Science.gov (United States)

    Liu, Zhongning; Jiang, Ting; Wang, Xinzhi; Wang, Yixiang

    2013-01-01

    BACKGROUND AND PURPOSE Fluocinolone acetonide (FA) is commonly used as a steroidal anti-inflammatory drug. We recently found that in dental pulp cells (DPCs) FA has osteo-/odonto-inductive as well as anti-inflammatory effects. However, the mechanism by which FA induces these effects in DPCs is poorly understood. EXPERIMENTAL APPROACH The effect of FA on the mineralization of DPCs during inflammatory conditions and the underlying mechanism were investigated by real-time PCR, Western blot, EMSA, histochemical staining, immunostaining and pathway blockade assays. KEY RESULTS FA significantly inhibited the inflammatory response in LPS-treated DPCs not only by down-regulating the expression of pro–inflammation-related genes, but also by up-regulating the expression of the anti-inflammatory gene PPAR-γ and mineralization-related genes. Moreover, histochemical staining and immunostaining showed that FA could partially restore the expressions of alkaline phosphatase, osteocalcin and dentin sialophosphoprotein (DSPP) and mineralization in LPS-stimulated DPCs. Real-time PCR and Western blot analysis revealed that FA up-regulated DSPP and runt-related transcription factor 2 expression by inhibiting the expression of phosphorylated-NF-κB P65 and activating activator protein-1 (AP-1) (p-c-Jun and Fra-1). These results were further confirmed through EMSA, by detection of NF-κB DNA-binding activity and pathway blockade assays using a NF-κB pathway inhibitor, AP-1 pathway inhibitor and glucocorticoid receptor antagonist. CONCLUSIONS AND IMPLICATIONS Inflammation induced by LPS suppresses the mineralization process in DPCs. FA partially restored this osteo-/odonto-genesis process in LPS-treated DPCs and had an anti-inflammatory effect through inhibition of the NF-κB pathway and activation of the AP-1 pathway. Hence, FA is a potential new treatment for inflammation-associated bone/teeth diseases. PMID:24024985

  1. 21 CFR 524.1600a - Nystatin, neomycin, thiostrepton, and triamcinolone acetonide ointment.

    Science.gov (United States)

    2010-04-01

    ... glands and cystic areas: Drain gland or cyst and fill with petrolatum base ointment. (2) Indications for... acetonide ointment. (a) Specifications. Each milliliter of petrolatum base or each gram of vanishing cream base ointment contains: 100,000 units of nystatin; neomycin sulfate equivalent to 2.5 milligrams of...

  2. Simultaneous determination of triamcinolone acetonide palmitate and triamcinolone acetonide in beagle dog plasma by UPLC-MS/MS and its application to a long-term pharmacokinetic study of triamcinolone acetonide palmitate lipid emulsion injection.

    Science.gov (United States)

    Liu, Hui; Yang, Mingjing; Wu, Panpan; Guan, Jiao; Men, Lei; Lin, Hongli; Tang, Xing; Zhao, Yunli; Yu, Zhiguo

    2015-02-01

    In order to investigate the pharmacokinetics of triamcinolone acetonide palmitate (TAP) which is a lipid-soluble prodrug of triamcinolone acetonide (TA), a rapid, simple, sensitive and reproducible UPLC-MS/MS method has been developed and validated for the simultaneous determination of TAP and TA in beagle dog plasma. After simple liquid-liquid extraction, the analytes and internal standard (dexamethasone, DEX) were separated on Phenomenex Luna C18 column (50 mm × 2.1mm, 1.7 μm) using a mobile phase consisting of solvent A (acetonitrile) and solvent B (0.1% ammonia solution) at a flow rate of 0.2 ml/min with gradient elution. Acquisition of mass spectrometric data was performed in multiple reaction monitoring (MRM) mode via positive electrospray ionization using the ion transitions of m/z 673.5→397.3, 435.3→415.3 and 393.3→355.3 for TAP, TA and IS, respectively. The method was of satisfactory specificity, sensitivity, precision and accuracy over the concentration range of 1-1,000 ng/ml for TAP and 0.5-500 ng/ml for TA. The intra- and inter-day precisions for both TAP and TA were 3.2% to 18.7% and the accuracy was in the range of -8.4% to 6.8%. The mean recoveries of TAP, TA and IS were 86.7-104.7%. The method was successfully applied to a long-term pharmacokinetic study of TAP and TA after 28-day repeated intravenous administration of TAP lipid emulsion injection to beagle dogs. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Pythiosis cutaneous in horses treated with triamcinolone acetonide. Part 2. Histological and histochemical description

    Directory of Open Access Journals (Sweden)

    José Cardona-Álvarez

    2017-09-01

    Full Text Available Objective. The study aimed to evaluate the histomorphometry tissue recovery process of the skin granuloma of skin pythiosis in horses treated with triamcinolone acetonide. Materials and methods. We conducted a descriptive study, not probabilistic in convenience animals with cutaneous pythiosis. 24 horses were used with cutaneous pythiosis, a group of 12 animals was administered 50 mg of intramuscular injection of triamcinolone acetonide (TG and the other group was not applied any treatment (CG. Are tissue biopsies performed for histological and histochemical evaluation and stained with hematoxylin eosin (HE, Gomori trichrome (GT, picrosirius red polarization (PR/P, Grocott methenamine silver (GMS and periodic acid-Schiff (PAS. Results. It is noted that in TG inflammation was gradually decreasing, as evidenced in decreased fibrin layer leukocyte, PMN and phenomena Splendore Hoepli, also in increased angiogenesis, epiteliogénesis, and increasing the overall amount of fibroblasts and collagen fibers, anyway in the progressive replacement of collagen type III to type I collagen at the end of the process, and that the presence of intralesional pseudohyphae of Pythium insidiosum reduces it to the second week. Neither of the animals in the CG showed improvement in histological and histochemical characteristics of pythiosis and maintained equal to the first day throughout the study. Conclusions. The use of triamcinolone acetonide is a good therapeutic alternative for the treatment of granulomatous pythiosis wounds in horses with 100% clinical recovery and demonstrated with histological and histochemical findings.

  4. Selective inhibition of distracting input.

    Science.gov (United States)

    Noonan, MaryAnn P; Crittenden, Ben M; Jensen, Ole; Stokes, Mark G

    2017-10-16

    We review a series of studies exploring distractor suppression. It is often assumed that preparatory distractor suppression is controlled via top-down mechanisms of attention akin to those that prepare brain areas for target enhancement. Here, we consider two alternative mechanisms: secondary inhibition and expectation suppression within a predictive coding framework. We draw on behavioural studies, evidence from neuroimaging and some animal studies. We conclude that there is very limited evidence for selective top-down control of preparatory inhibition. By contrast, we argue that distractor suppression often relies secondary inhibition of non-target items (relatively non-selective inhibition) and on statistical regularities of the environment, learned through direct experience. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. Effect of intravitreal triamcinolone acetonide on healing of retinal photocoagulation lesions.

    Science.gov (United States)

    Nomoto, Hiroyuki; Lavinsky, Daniel; Paulus, Yannis M; Leung, Loh-Shan; Dalal, Roopa; Blumenkranz, Mark S; Palanker, Daniel

    2013-01-01

    To evaluate the effect of intravitreal triamcinolone acetonide (TA) on healing of retinal photocoagulation lesions using drug and laser dosing typically employed in clinical practice. Laser burns with a 267-μm retinal beam size at 532-nm wavelength were applied to 40 eyes of Dutch belted rabbits. Barely visible to intense lesions were produced with pulses of 5, 10, 20, and 50 milliseconds and power of 175 mW. Eyes received intravitreal injections of either 2 mg TA/50 μL or balanced salt solution administered either 1 week before or immediately after laser treatment. Lesion grades were assessed acutely ophthalmoscopically and by a masked observer histologically at 1, 3, 7, 30, and 60 days. Both TA groups demonstrated significant reduction in retinal thickness throughout follow-up compared with balanced salt solution groups (P salt solution groups contracted much more than in the TA groups, especially the more intense burns, and this difference persisted to 2 months. The healing rate of the barely visible burns was not significantly affected by TA compared with the balanced salt solution control eyes. Triamcinolone acetonide injection previously or concurrently with photocoagulation significantly decreases laser-induced edema but interferes with lesions healing, thereby leaving wider residual scarring, especially persistent in more intense burns.

  6. Local Injection of Triamcinolone Acetonide: A Forgotten Aetiology of Cushing’s Syndrome

    OpenAIRE

    Sukhumthammarat, Weera; Putthapiban, Prapaipan; Sriphrapradang, Chutintorn

    2017-01-01

    Many different non systemic corticosteroid administrations can cause iatrogenic Cushing’s Syndrome (CS). We herein report a case series of iatrogenic CS from keloid scars treatment and aesthetic regimen called mesotherapy. Our first patient developed CS after having exceeded recommended dose of intralesional injection of Triamcinolone Acetonide (TAC). Second case presented with CS followed by unidentified mesotherapy treatment for local fat reduction. Subcutaneous injections of dexamethasone ...

  7. Effect of fluocinolone acetonide cream on human skin blood flow

    International Nuclear Information System (INIS)

    Chimoskey, J.E.; Holloway, A. Jr.; Flanagan, W.J.

    1975-01-01

    Blood flow rate was measured in the forearm skin of human subjects exposed to ultraviolet irradiation. Blood flow was determined by the 133 Xe disappearance technique 18 hr after ultraviolet (UV) irradiation with a Westinghouse RS sunlamp held 10 inches from the skin for 10 min. Ultraviolet irradiation caused skin blood flow to increase. Application of fluocinolone acetonide cream, 0.025 percent, 4 times in the 16 hr following UV irradiation had no effect on either control skin blood flow or the UV-induced hyperemia

  8. Primary iris claw IOL retrofixation with intravitreal triamcinolone acetonide in cases of inadequate capsular support.

    Science.gov (United States)

    Kelkar, Aditya; Shah, Rachana; Vasavda, Viraj; Kelkar, Jai; Kelkar, Shreekant

    2018-02-01

    To assess the outcomes and analyze complication rates following primary iris claw IOL retrofixation with intravitreal triamcinolone acetonide. This is a retrospective interventional case series. Patients with poor capsular support-diagnosed preoperatively or owing to intraoperative complications-were treated with iris claw IOL retrofixation with intravitreal triamcinolone acetonide. The data were retrospectively analyzed. 104 eyes of 102 patients with poor capsular support who underwent the procedure between 2010 and 2013 were analyzed. The minimum follow-up period was 12 months (ranging from 12 to 36 months). Iris claw IOL was implanted in-traumatic subluxated cataracts-24 cases (23.07%), non-traumatic subluxated cataracts in 16 cases (15.38%), or as a complication of cataract surgery-intraoperative posterior capsular rent in 48 cases (46.15%) and intraoperative nucleus drop in 16 cases (15.38%). The final mean best-corrected logMAR visual acuity improved from 1.36 ± 0.64 preoperatively to 0.36 ± 0.32 at 1-year follow-up. Complications included pupil ovalization in 11 cases (10.57%), transient elevation in intraocular pressure in 7 eyes (6.73%), postoperative hypotony in 5 eyes (4.80%), cystoid macular edema in 2 eyes (1.92%), retinal detachment in 1 eye (0.96%), vitreous hemorrhage in 1 eye (0.96%), and hyphema in 1 eye (0.96%). Primary iris claw IOL retrofixation provided excellent alternative in patients with inadequate capsular support. The visual outcomes were good along with favorable rates of complications. The addition of triamcinolone acetonide helps in reducing the chances of cystoid macular edema.

  9. Triamcinolone acetonide activates an anti-inflammatory and folate receptor-positive macrophage that prevents osteophytosis in vivo

    NARCIS (Netherlands)

    M. Siebelt (Michiel); N. Korthagen (Nicoline); W. Wei (Wu); H.C. Groen (Harald); Y.M. Bastiaansen-Jenniskens (Yvonne); C. Müller (Cristina); J.H. Waarsing (Jan); M. de Jong (Marcel); H.H. Weinans (Harrie)

    2015-01-01

    textabstractIntroduction: Triamcinolone acetonide (TA) is used for osteoarthritis management to reduce pain, and pre-clinical studies have shown that TA limits osteophyte formation. Osteophyte formation is known to be facilitated by synovial macrophage activation. TA injections might influence

  10. Triamcinolone acetonide activates an anti-inflammatory and folate receptor-positive macrophage that prevents osteophytosis in vivo

    NARCIS (Netherlands)

    Siebelt, Michiel; Korthagen, Nicoline; Wei, Wu; Groen, Harald; Bastiaansen-Jenniskens, Yvonne; Müller, Christina; Waarsing, Jan Hendrik; de Jong, Marion; Weinans, Harrie

    2015-01-01

    INTRODUCTION: Triamcinolone acetonide (TA) is used for osteoarthritis management to reduce pain, and pre-clinical studies have shown that TA limits osteophyte formation. Osteophyte formation is known to be facilitated by synovial macrophage activation. TA injections might influence macrophage

  11. Ahmed glaucoma valve in uveitic patients with fluocinolone acetonide implant-induced glaucoma: 3-year follow-up

    Directory of Open Access Journals (Sweden)

    Kubaisi B

    2018-05-01

    Full Text Available Buraa Kubaisi,1,2 Arash Maleki,1,2 Aseef Ahmed,1,2 Neel Lamba,1,2 Haitham Sahawneh,1,2 Andrew Stephenson,1,2 Alyssa Montieth,1,2 Shobha Topgi,3 C Stephen Foster1,2,4 1Massachusetts Eye Research and Surgery Institution, Waltham, MA, USA; 2Ocular Immunology & Uveitis Foundation, Waltham, MA, USA; 3The State University of New York Downstate, Brooklyn, NY, USA; 4Harvard Medical School, Boston, MA, USA Purpose: To evaluate the efficacy and safety of Ahmed glaucoma valve (AGV in eyes with noninfectious uveitis that had fluocinolone acetonide intravitreal implant (Retisert™-induced glaucoma. Methods: This retrospective study reviewed the safety and efficacy of AGV implantation in patients with persistently elevated intraocular pressure (IOP after implantation of a fluocinolone acetonide intravitreal implant at the Massachusetts Eye Research and Surgery Institution between August 2006 and November 2015. Results: Nine patients with 10 uveitic eyes were included in this study, none of which had preexisting glaucoma in the study eye. Mean patient age was 42 years; 6 patients were female and 3 were male. Baseline mean IOP was 30.6 mmHg prior to AGV placement while mean IOP-lowering medications were 2.9. In the treatment groups, there was a statistically significant reduction in post-AGV IOP. IOP was lowest at 1-week after AGV implantation (9.0 mmHg. Nine out of 10 eyes achieved an IOP below target value of 22 mmHg and/or a 20% reduction in IOP from baseline 1 month and 1 year following AGV placement. All other postoperative time points showed all 10 eyes reaching this goal. A statistically significant decrease in IOP-lowering medication was seen at the 1-week, 1-month, and 3-year time points compared to baseline, while a statistically significant increase was seen at the 3-month, 6-month, and 2-year post-AGV time points. No significant change in retinal nerve thickness or visual field analysis was found. Conclusion: AGV is an effective and safe method of

  12. Research of triamcinolone acetonide with compound anisodine hydrobromide for mild central retinal vein occlusion in early stage

    Directory of Open Access Journals (Sweden)

    Jun Fan

    2016-03-01

    Full Text Available AIM: To explore the clinical significance of triamcinolone acetonide combined with compound anisodine hydrobromide injection for the treatment of mild(non ischemiccentral retinal vein occlusion(CRVOin the early stage.METHODS: One hundred and sixteen eyes in 116 patients with non ischemic CRVO in early stage were randomly divided into four groups, group A, group B, group C, and group D. Divided by the completely random data method, each group had 29 eyes. Group A received no treatment. Group B was given compound anisodine hydrobromide injection in subcutaneous injection besides superficial temporal artery of the eye. Group C was injected with triamcinolone acetonide beside eyeballs and Group D was given triamcinolone acetonide combined with compound anisodine hydrobromide injection. In each group, we observed and recorded the best corrected visual acuity(BCVA, using EDTRS chart, bleeding, optical coherence tomography(OCTscanning for central macular thickness(CMT, fundus fluorescence angiography(FFAimaging check for the possibility of ischemic CRVO at 1, 2, 4, 8 and 12wk respectively. The total curative effect after 3mo was being compared among the three groups.RESULTS: After 12 weeks' treatment, the mean BCVA was lower and the mean CMT was higher in group A than those before the treatment. The mean BCVA was increased and the mean CMT decreased in group B, C and D after treated for 3mo. Comparing Group D with the rest groups, the variation of BCVA and CMT had statistical significance(PP>0.05. Ischemic CRVO was found in 8 cases of group A, 6 cases of group B, 5 cases of group C, and 2 cases of group D,and the difference was not statistically significant(χ2=4.361; P=0.225. Flame-shaped bleeding was found in 14 cases of group A, 7 cases of group B, 9 cases of group C and 4 cases of group D and the difference was statistically significant(χ2=8.821; P=0.032. CONCLUSION: The combination of triamcinolone acetonide and compound anisodine hydrobromide

  13. Assessment of the effect of intravitreal triamcinolone acetonide on the chorioretinal and vitreous inflammatory reaction to cryotherapy in rabbits

    Directory of Open Access Journals (Sweden)

    Eugênio Santana de Figueirêdo

    2012-10-01

    Full Text Available PURPOSE: To evaluate the inflammatory response in the choroid, retina and vitreous in rabbit eyes underwent cryotherapy followed by intravitreal triamcinolone acetonide and to compare with those underwent cryotherapy followed by intravitreal injection of saline solution. METHODS: This is a prospective case-control study. Surgical procedures were performed in eleven rabbits. Two animals were excluded because they did not complete the postoperative period or had intraoperative or postoperative complications. All rabbits underwent superior temporal peritomy and transscleralcryotherapy in both eyes. After cryotherapy, animals received intravitreal injection of triamcinolone acetonide in one eye and saline solution in the fellow eye. Animals were sacrificed seven days after the procedure and their eyes were enucleated. Histological sections of eyeballs were prepared and the vitreous humor was aspirated. The count of inflammatory cells was performed by light microscopy. RESULTS: Histological sections of both eyes of nine rabbits were analyzed. Inflammatory cells were found only in the choroid. There was no statistically significant difference in the number of inflammatory cells between the two groups, regardless of cell type analyzed. CONCLUSION: This study showed no statistically significant difference between the use or absence of intravitreal triamcinolone acetonide in the inflammatory response to cryotherapy in rabbit eyes. Studies with larger samples are needed to confirm the trend of this paper.

  14. Ahmed glaucoma valve in uveitic patients with fluocinolone acetonide implant-induced glaucoma: 3-year follow-up.

    Science.gov (United States)

    Kubaisi, Buraa; Maleki, Arash; Ahmed, Aseef; Lamba, Neel; Sahawneh, Haitham; Stephenson, Andrew; Montieth, Alyssa; Topgi, Shobha; Foster, C Stephen

    2018-01-01

    To evaluate the efficacy and safety of Ahmed glaucoma valve (AGV) in eyes with noninfectious uveitis that had fluocinolone acetonide intravitreal implant (Retisert™)-induced glaucoma. This retrospective study reviewed the safety and efficacy of AGV implantation in patients with persistently elevated intraocular pressure (IOP) after implantation of a fluocinolone acetonide intravitreal implant at the Massachusetts Eye Research and Surgery Institution between August 2006 and November 2015. Nine patients with 10 uveitic eyes were included in this study, none of which had preexisting glaucoma in the study eye. Mean patient age was 42 years; 6 patients were female and 3 were male. Baseline mean IOP was 30.6 mmHg prior to AGV placement while mean IOP-lowering medications were 2.9. In the treatment groups, there was a statistically significant reduction in post-AGV IOP. IOP was lowest at 1-week after AGV implantation (9.0 mmHg). Nine out of 10 eyes achieved an IOP below target value of 22 mmHg and/or a 20% reduction in IOP from baseline 1 month and 1 year following AGV placement. All other postoperative time points showed all 10 eyes reaching this goal. A statistically significant decrease in IOP-lowering medication was seen at the 1-week, 1-month, and 3-year time points compared to baseline, while a statistically significant increase was seen at the 3-month, 6-month, and 2-year post-AGV time points. No significant change in retinal nerve thickness or visual field analysis was found. AGV is an effective and safe method of treatment in fluocinolone acetonide intravitreal implant-induced glaucoma. High survival rate is expected for at least 3 years.

  15. Diclofenac and triamcinolone acetonide impair tenocytic differentiation and promote adipocytic differentiation of mesenchymal stem cells

    OpenAIRE

    Fredriksson, Maritha; Li, Yan; St?lman, Anders; Haldos?n, Lars-Arne; Fell?nder-Tsai, Li

    2013-01-01

    Background Tendinopathies are often empirically treated with oral/topical nonsteroidal anti-inflammatory medications and corticosteroid injections despite their unclear effects on tendon regeneration. Recent studies indicate that tendon progenitors exhibit stem cell-like properties, i.e., differentiation to osteoblasts, adipocytes, and chondrocytes, in addition to tenocytes. Our present study aims at understanding the effects of triamcinolone acetonide and diclofenac on tenocytic differentiat...

  16. Rilonacept in the treatment of subacromial bursitis: A randomized, non-inferiority, unblinded study versus triamcinolone acetonide.

    Science.gov (United States)

    Carroll, Matthew B; Motley, Spencer A; Wohlford, Susanna; Ramsey, Bryan C

    2015-12-01

    Subacromial bursitis is caused by inflammation of the bursa that separates the superior surface of the supraspinatus tendon from the overlying coraco-acromial ligament and acromion. While multiple cytokines are implicated, interleukin-1 beta appears to play a prominent role. Rilonacept, an interleukin-1 trap, may be an alternative to corticosteroid injection for the management of this condition. This single center, randomized, non-inferiority, unblinded study recruited 33 subjects over 9 months. Twenty subjects received 160mg intrabursal injection of rilonacept and 13 received a 6mL mixture of lidocaine, bupivacaine, and 80mg triamcinolone acetonide. QuickDASH, subject reported pain, and adverse events were recorded at time of injection, 2 days later, 2 weeks later, and 4 weeks later. Primary outcome was improvement in QuickDASH 4 weeks post-injection. Secondary outcomes were improvement in subject reported pain and occurrence of adverse events at 4 weeks. Both study groups were equally matched for age, gender, ethnicity, and site of bursa injection. Both medications demonstrated a statistically significant improvement in QuickDASH 4 weeks post-injection, but triamcinolone acetonide injection offered greater improvement (P=0.004). Both medications demonstrated improvement in subject reported pain but between group comparison at 4 weeks showed that triamcinolone was superior (P=0.044). No statistically significant differences in adverse events were noted between groups, but subjects who received rilonacept experienced more episodes of diarrhea and headache. While improvement in QuickDASH and pain was noted with a single intrabursal injection of rilonacept at 4 weeks, injection with triamcinolone acetonide was more efficacious. This trial was registered with www.clinicaltrials.gov (NCT01830699). Copyright © 2015 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  17. Distractor Inhibition: Principles of Operation during Selective Attention

    Science.gov (United States)

    Wyatt, Natalie; Machado, Liana

    2013-01-01

    Research suggests that although target amplification acts as the main determinant of the efficacy of selective attention, distractor inhibition contributes under some circumstances. Here we aimed to gain insight into the operating principles that regulate the use of distractor inhibition during selective attention. The results suggest that, in…

  18. Hypertensive phase and early complications after Ahmed glaucoma valve implantation with intraoperative subtenon triamcinolone acetonide

    OpenAIRE

    Turalba, Angela; Pasquale,Louis

    2014-01-01

    Angela V Turalba,1,2 Louis R Pasquale1,2 1Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; 2Department of Ophthalmology, Harvard Medical School, Boston, MA, USA Objective: To evaluate intraoperative subtenon triamcinolone acetonide (TA) as an adjunct to Ahmed glaucoma valve (AGV) implantation. Design: Retrospective comparative case series. Participants: Forty-two consecutive cases of uncontrolled glaucoma undergoing AGV implantation: 19 eyes receivi...

  19. Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition

    Science.gov (United States)

    Limongelli, Vittorio; Bonomi, Massimiliano; Marinelli, Luciana; Gervasio, Francesco Luigi; Cavalli, Andrea; Novellino, Ettore; Parrinello, Michele

    2010-01-01

    The widely used nonsteroidal anti-inflammatory drugs block the cyclooxygenase enzymes (COXs) and are clinically used for the treatment of inflammation, pain, and cancers. A selective inhibition of the different isoforms, particularly COX-2, is desirable, and consequently a deeper understanding of the molecular basis of selective inhibition is of great demand. Using an advanced computational technique we have simulated the full dissociation process of a highly potent and selective inhibitor, SC-558, in both COX-1 and COX-2. We have found a previously unreported alternative binding mode in COX-2 explaining the time-dependent inhibition exhibited by this class of inhibitors and consequently their long residence time inside this isoform. Our metadynamics-based approach allows us to illuminate the highly dynamical character of the ligand/protein recognition process, thus explaining a wealth of experimental data and paving the way to an innovative strategy for designing new COX inhibitors with tuned selectivity. PMID:20215464

  20. Efficacy of reduced dose of intravitreal triamcinolone acetonide in a case of active serpiginous choroiditis

    Directory of Open Access Journals (Sweden)

    Avirupa Ghose

    2016-01-01

    Full Text Available Active serpiginous choroiditis (SC is a vision-threatening condition which requires intensive treatment using corticosteroids and/or immunosuppressives, especially if the lesions are involving or encroaching on the macula. Use of oral and intravenous high-dose steroids are contraindicated in uncontrolled diabetics. Intravitreal steroid delivers a localized dose in such situations. This case report highlights the efficacy of reduced dose of intravitreal triamcinolone acetonide (2 mg in the treatment of active SC.

  1. Selective mutism and temperament: the silence and behavioral inhibition to the unfamiliar.

    Science.gov (United States)

    Gensthaler, Angelika; Khalaf, Sally; Ligges, Marc; Kaess, Michael; Freitag, Christine M; Schwenck, Christina

    2016-10-01

    Behavioral inhibition (BI) is a suspected precursor of selective mutism. However, investigations on early behavioral inhibition of children with selective mutism are lacking. Children aged 3-18 with lifetime selective mutism (n = 109), social phobia (n = 61), internalizing behavior (n = 46) and healthy controls (n = 118) were assessed using the parent-rated Retrospective Infant Behavioral Inhibition (RIBI) questionnaire. Analyses showed that children with lifetime selective mutism and social phobia were more inhibited as infants and toddlers than children of the internalizing and healthy control groups, who displayed similar low levels of behavioral inhibition. Moreover, behavioral inhibition was higher in infants with lifetime selective mutism than in participants with social phobia according to the Total BI score (p = 0.012) and the Shyness subscale (p selective mutism. Results yield first evidence of the recently hypothesized temperamental origin of selective mutism. Children at risk should be screened for this debilitating child psychiatric condition.

  2. A green synthesis of α,β-unsaturated carbonyl compounds from glyceraldehyde acetonide

    Directory of Open Access Journals (Sweden)

    Cláudia O. Veloso

    2011-01-01

    Full Text Available The catalytic behavior of Cs-exchanged and Cs-impregnated zeolites (X and Y was studied using the Knoevenagel condensation between glyceraldehyde acetonide and ethyl acetoacetate in order to produce the corresponding α,β-unsaturated carbonyl compound that is an important intermediate for fine chemicals. The influence of reaction temperature, type of zeolite, and basicity of the sites on the catalytic behavior of the samples was evaluated. All zeolites were active for the studied reaction. The formation of the main condensation product was favored at lower reaction temperatures. Products of further condensations were also observed especially for samples that were only dried before catalytic test.

  3. Efficacy and safety of sustained-delivery fluocinolone acetonide intravitreal implant in patients with chronic diabetic macular edema insufficiently responsive to available therapies: a real-life study

    Directory of Open Access Journals (Sweden)

    Massin P

    2016-07-01

    Full Text Available Pascale Massin, Ali Erginay, Bénédicte Dupas, Aude Couturier, Ramin Tadayoni Ophthalmology Department, Lariboisière Hospital, Paris, France Purpose: To evaluate the efficacy and safety of sustained-delivery fluocinolone acetonide (FAc intravitreal implant for diabetic macular edema (DME. Patients and methods: Prospective study in patients with DME insufficiently responsive to laser and anti-vascular endothelial growth factor (anti-VEGF. Patients with history of rise of intraocular pressure after intravitreal corticosteroids were excluded. Results: The macular edema rapidly decreased both in group 1 (prior laser only; n=7 eyes and group 2 (prior laser and ≥3 monthly anti-VEGF therapy; n=10 eyes and central subfield thickness was reduced by -299 µm (P=0.008 and -251 µm (P=0.016 at 12 months, respectively. Mean area under the curve from baseline to last value for pseudophakic eyes was +4.2 letters in group 1 and +9.5 letters in group 2. Overall, the FAc implant was well tolerated. Conclusion: This prospective study confirms the efficacy of the FAc implant in DME patients insufficiently responsive to laser and anti-VEGF. Moreover, with a careful patient selection, our safety results would support an earlier use of FAc in the DME treatment pathway. Keywords: diabetic macular edema, intravitreal corticosteroid, corticosteroid intravitreal implant, fluocinolone acetonide

  4. Delivery of Intraocular Triamcinolone Acetonide in the Treatment of Macular Edema

    Directory of Open Access Journals (Sweden)

    Brent Siesky

    2012-03-01

    Full Text Available Macular edema (ME is one of the eventual outcomes of various intraocular and systemic pathologies. The pathogenesis for ME is not yet entirely understood; however, some of the common risk factors for its development have been identified. While this investigation will not discuss the numerous etiologies of ME in detail, it appraises the two most widely studied delivery modalities of intraocular corticosteroids in the treatment of ME—intravitreal injection (IVI and sub-Tenon’s infusion (STI. A thorough review of the medical literature was conducted to identify the efficacy and safety of IVI and STI, specifically for the administration of triamcinolone acetonide (TA, in the setting of ME in an attempt to elucidate a preferred steroid delivery modality for treatment of ME.

  5. Development of a radioimmunoassay for triamcinolone acetonide in horse plasma

    International Nuclear Information System (INIS)

    Gylstorff, B.

    1982-01-01

    A radioimmunoassay (RIA) was developed for the detection of triamcinolone acetonide (TAAc) in equine blood plasma. These antibodies exhibited cross reactions of 0,015% with cortisol and of 0,1% with other endogenous glucocorticoids. Four different synthetic corticosteroids interfered in a range of 0,21 to 0,93%. In vitro 86 of TAAc could be recovered. This method proved sufficient reproducibility down to a limit of 131,7 fmol/ml = 57,2 pg/ml. The TAAc RIA is suitable for the detection of a TAAc application particularly during the 1st day p.i. The results may obtain a higher limit of confidence by the simultaneous demonstration of cortisol suppression. By the use of this test more detailed conclusions may be drawn about presence and duration of a pharmacodynamic action originating from the TAAc depot. (orig./TRV) [de

  6. Surgical management of fibrotic encapsulation of the fluocinolone acetonide implant in CAPN5-associated proliferative vitreoretinopathy

    OpenAIRE

    Tlucek, Paul S; Folk, James C; Sobol, Warren M; Mahajan, Vinit B

    2013-01-01

    Paul S Tlucek,1 James C Folk,1 Warren M Sobol,2 Vinit B Mahajan1,3 1Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA; 2Retina Physicians and Surgeons, Dayton, OH, USA; 3Omics Laboratory, University of Iowa, Iowa City, IA, USA Objective: To review fibrosis of fluocinolone acetonide (FA) implants in subjects with CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV). Methods: A retrospective case series was assembled from ADNIV patie...

  7. Determination of physicochemical properties and degradation kinetics of triamcinolone acetonide palmitate in vitro.

    Science.gov (United States)

    Peng, Cuilian; Liu, Cong; Tang, Xing

    2010-12-01

    Triamcinolone acetonide palmitate (TAP) is a lipophilic prodrug of triamcinolone acetonide (TAA) to improve the insoluble TAA physicochemical properties for the preparation of emulsions. This investigation has focused on the preformulation study of TAP, including its physicochemical properties and hydrolysis kinetics in vitro. The solubility of TAP in medium-chain triglyceride is about twice greater than that in soybean oil (long-chain triglyceride) (19.17 versus 9.55 mg/g) at 25°C, and in all investigated cases, lecithin (80, 160, and 240 mg/g) as solubilizer provided increased solubility of drugs in medium-chain triglyceride and long-chain triglyceride, whereas the maximum water solubility of TAP was 0.10 μg/mL. The partition coefficient (log P) of TAP was 5.79 irrespective of the pH conditions. The hydrolysis of TAP followed pseudo-first-order kinetics in aqueous solutions, and the stable pH range was from pH 5.0 to 9.0. The in vitro enzymolysis kinetics of TAP in rat plasma and liver homogenate was evaluated by measuring the decrease of TAP as well as the increase of TAA at 37°C for 96 hours. The results demonstrated that the TAP may be hydrolyzed mainly by rat plasma esterase and, to a minor extent, by liver esterase, and the hydrolysis half-life of TAP in 100% rat plasma was 17.53 ± 6.85 hours at pH 7.4. All these results indicated that TAP had successfully obtained higher lipid-soluble property for the preparation of intravenous emulsion and may be an effective prodrug for sustained release of TAA in vivo.

  8. A Comparative Evaluation of Efficacy of Tacrolimus and Triamcinolone Acetonide in the Management of Symptomatic Oral Lichen Planus

    Directory of Open Access Journals (Sweden)

    Y M Swarna

    2011-01-01

    Interpretation and conclusion Topical tacrolimus 0.03% ointment induced better initial therapeutic response than triamcinolone acetonide 0.1 % ointment. However, relapses occurred in two subjects in group ′A′ and three subjects in group ′B′ after the cessation of the respective treatments. Nevertheless, at present topical tacrolimus may be a valuable addition to the already existing therapeutic modalities for treating subjects with OLP.

  9. Development and validation of a stability-indicating HPLC-UV method for the determination of triamcinolone acetonide and its degradation products in an ointment formulation

    NARCIS (Netherlands)

    van Heugten, A J P; Boer, W.; de Vries, W S; Markesteijn, C M A; Vromans, H

    2018-01-01

    A stability indicating high performance liquid chromatography method has been developed for the determination of triamcinolone acetonide (TCA) and its main degradation products in ointment formulations. The method, based on extensive stress testing using metal salts, azobisisobutyronitrile, acid,

  10. A Case of Herpetic Keratitis after Subconjunctival Triamcinolone Acetonide Injection

    Directory of Open Access Journals (Sweden)

    Hidenori Inoue

    2014-09-01

    Full Text Available Purpose: We report a case of herpetic epithelial keratitis that developed after subconjunctival triamcinolone acetonide injection (STI. Methods: A 65-year-old female with anterior uveitis and hypotony in her right eye was given a STI (2 mg/0.5 ml. After the injection, she developed redness and an ocular discharge. A clinical examination was performed and real-time polymerase chain reaction (PCR was used to amplify the viral DNA in a corneal scraping. Results: Slit-lamp biomicroscopy revealed a severe purulent discharge, conjunctival injection, and a geographic corneal ulcer in the right eye. Herpes simplex virus 1 DNA was identified in the corneal scraping using real-time PCR. Herpetic keratitis was diagnosed and topical acyclovir ointment as well as systemic valacyclovir were started. The inflammation subsided with this medication. Conclusion: We encountered a case of herpetic epithelial keratitis after a STI.

  11. Combined Ahmed Glaucoma Valve Placement, Intravitreal Fluocinolone Acetonide Implantation and Cataract Extraction for Chronic Uveitis.

    Science.gov (United States)

    Chang, Ingrid T; Gupta, Divakar; Slabaugh, Mark A; Vemulakonda, Gurunadh A; Chen, Philip P

    2016-10-01

    To report the outcomes of combined Ahmed glaucoma valve (AGV) placement, intravitreal fluocinolone acetonide implant, and cataract extraction procedure in the treatment of chronic noninfectious uveitis. Retrospective case series of patients with chronic noninfectious uveitis who underwent AGV placement, intravitreal fluocinolone acetonide implantation, and cataract extraction in a single surgical session performed at 1 institution from January 2009 to November 2014. Outcome measures included intraocular pressure (IOP) and glaucoma medication use. Secondary outcome measures included visual acuity, systemic anti-inflammatory medications, number of uveitis flares, and complications. Fifteen eyes of 10 patients were studied, with a mean age of 40.3±15.7 and mean follow-up duration of 26 months (range, 13 to 39 mo). Before surgery, the IOP was 18.5±7.3 mm Hg and patients were using 1.5±1.5 topical glaucoma medications. At the 12-month follow-up, IOP was 12.8±3.2 mm Hg (P=0.01) and patients were using 0.5±0.8 (P=0.03) topical glaucoma medications. At 36 months of follow-up, late, nonsustained hypotony had occurred in 3 eyes (20%), and 1 eye (6%) had received a second AGV for IOP control. Before treatment, patients had 2.7±1.5 uveitis flares in the year before surgery while on an average of 2.1±0.6 systemic anti-inflammatory medications, which decreased to an average of 0.1±0.3 (Pglaucoma medications at 12 months after treatment in patients with chronic uveitis.

  12. Pharmacokinetics of triamcinolone acetonide following intramuscular and intra-articular administration to exercised Thoroughbred horses.

    Science.gov (United States)

    Knych, H K; Vidal, M A; Casbeer, H C; McKemie, D S

    2013-11-01

    The use of triamcinolone acetonide (TA) in performance horses necessitates establishing appropriate withdrawal times prior to performance. To describe the plasma pharmacokinetics of TA and time-related urine and synovial fluid concentrations following i.m. and intra-articular administration to exercised Thoroughbred horses. Block design. Twelve racing fit adult Thoroughbred horses received a single i.m. administration of TA (0.1 mg/kg bwt). After an appropriate washout period, the same horses then received a single intra-articular TA administration (9 mg) into the right antebrachiocarpal joint. Blood, urine and synovial fluid samples were collected prior to, and at various times, up to 60 days post drug administration and analysed using liquid chromatography-mass spectrometry. Plasma data were analysed using noncompartmental analysis. Maximum measured plasma TA concentrations were 0.996 ± 0.391 at 13.2 h and 1.27 ± 0.278 ng/ml at 6.5 h for i.m. and intra-articular administration, respectively. The plasma terminal elimination half-life was 11.4 ± 6.53 and 0.78 ± 1.00 days for i.m. and intra-articular administration, respectively. Following i.m. administration, TA was below the limit of detection (LOD) by Days 52 and 60 in plasma and urine, respectively. Following intra-articular administration TA was undetectable by Day 7 in plasma and Day 8 in urine. Triamcinolone acetonide was also undetectable in any of the joints sampled following i.m. administration and remained above the limit of quantitation (LOQ) for 21 days following intra-articular administration. This study extends previous studies describing the pharmacokinetics of TA following i.m. and intra-articular administration to the horse and suggests that plasma and urine concentrations are not a good indicator of synovial fluid concentrations. Furthermore, results of this study supports an extended withdrawal time for TA given i.m. © 2013 EVJ Ltd.

  13. Uniform Suspension of the Clustered Triamcinolone Acetonide Particle

    Directory of Open Access Journals (Sweden)

    Masahiko Sugimoto

    2013-01-01

    Full Text Available Purpose. MaQaid (MaQ is a new triamcinolone acetonide commercialised in Japan to visualize the vitreous. Because MaQ is preservative-free, it has a lower risk of ocular toxicities. However, since MaQ is only available as a powder, it needs suspenssion. Suspension does not always result uniformally, which causes poor visibility. This study reports a new MaQ suspension for better visibility. Methods. After medium addition to a MaQ vial, various methods were used. These included the use of (1 vortex mixer, (2 two syringes and a three-way stopcock, and (3 ultrasonic washer. We calculated suspended MaQ concentration (. To evaluate the reproducibility, we estimated the coefficient of variance (CV, . We used this MaQ for pig eyes, and vitreous visualization was simulated. Subsequently, we used this MaQ suspension for humans. Results. MaQ suspensions were sucessfull, and the concentrations of single particles increased significantly (. The CV was 36.1% for the routine method and 9.03% ffor the new method. Administration of a suspended MaQ made it possible to clearly visualize the vitreous in both pig and human eyes. Conclusions. We devised new techniques for uniformal MaQ suspension. These new methods can compensate for the MaQ disadvantages and ensure a safety surgery.

  14. How Do Parameters of Motor Response Influence Selective Inhibition? Evidence from the Stop-Signal Paradigm

    Directory of Open Access Journals (Sweden)

    Chien Hui Tang

    2011-05-01

    Full Text Available The ability to selectively inhibit the execution of an action while performing other ones is crucial in humans' multitasking daily life. The current study aims to compare selective inhibition for choice reaction involving two effectors or response directions. We adopted a variation of the stop-signal paradigm to examine how selective inhibition is modulated by the way potential motor responses are combined and inhibited. Experiment 1 investigated selective inhibition under different combinations of effectors, namely “index and middle fingers” versus “hand and foot”. The results showed SSRT of the index finger was longer when the other response option was the foot than the middle finger. Experiment 2 examined how selective inhibition differs between selective stopping of effectors and movement directions, and that for most of the situations SSRT is longer for stopping a response based on its direction than effector. After equating complexity of response mapping between direction and effector conditions in Experiment 2, Experiment 3 still showed that SSRT differs between selecting direction or effectors. To summarize, SSRT varies depending on the way response effectors are paired and selectively stopped. Selective inhibition is thus likely not amodal and may involve different inhibitory mechanisms depending on parameters specifying the motor response.

  15. Regulation of spatial selectivity by crossover inhibition.

    Science.gov (United States)

    Cafaro, Jon; Rieke, Fred

    2013-04-10

    Signals throughout the nervous system diverge into parallel excitatory and inhibitory pathways that later converge on downstream neurons to control their spike output. Converging excitatory and inhibitory synaptic inputs can exhibit a variety of temporal relationships. A common motif is feedforward inhibition, in which an increase (decrease) in excitatory input precedes a corresponding increase (decrease) in inhibitory input. The delay of inhibitory input relative to excitatory input originates from an extra synapse in the circuit shaping inhibitory input. Another common motif is push-pull or "crossover" inhibition, in which increases (decreases) in excitatory input occur together with decreases (increases) in inhibitory input. Primate On midget ganglion cells receive primarily feedforward inhibition and On parasol cells receive primarily crossover inhibition; this difference provides an opportunity to study how each motif shapes the light responses of cell types that play a key role in visual perception. For full-field stimuli, feedforward inhibition abbreviated and attenuated responses of On midget cells, while crossover inhibition, though plentiful, had surprisingly little impact on the responses of On parasol cells. Spatially structured stimuli, however, could cause excitatory and inhibitory inputs to On parasol cells to increase together, adopting a temporal relation very much like that for feedforward inhibition. In this case, inhibitory inputs substantially abbreviated a cell's spike output. Thus inhibitory input shapes the temporal stimulus selectivity of both midget and parasol ganglion cells, but its impact on responses of parasol cells depends strongly on the spatial structure of the light inputs.

  16. The therapeutic efficacy of sacroiliac joint blocks with triamcinolone acetonide in the treatment of sacroiliac joint dysfunction without spondyloarthropathy.

    Science.gov (United States)

    Liliang, Po-Chou; Lu, Kang; Weng, Hui-Ching; Liang, Cheng-Loong; Tsai, Yu-Duan; Chen, Han-Jung

    2009-04-20

    Prospective case series. The study aimed to investigate the therapeutic efficacy of sacroiliac joint (SIJ) blocks with triamcinolone acetonide in patients with SIJ pain without spondyloarthropathy. Numerous studies have demonstrated that SIJ blocks with corticosteroid/anesthetic provide long-term pain relief in seronegative spondyloarthropathy. However, only one report on SIJ dysfunction patients without spondyloarthropathy shows promising results. We conducted a prospective observational study of patients at a University Spine Center from March 2005 to May 2006. The above mentioned SIJ blocks were performed in 150 patients, and dual SIJ blocks confirmed SIJ pain in 39 patients (26%). Twenty-six patients (66.7%) experienced significant pain reduction for more than 6 weeks; the overall mean duration of pain reduction in these responders was 36.8 +/- 9.9 weeks. SIJ blocks were ineffective in 13 patients (33.3%); the mean duration of pain reduction in these patients was 4.4 +/- 1.8 weeks. Univariate analysis revealed that treatment failure was significantly associated with a history of lumbar/lumbosacral fusion (P = 0.03). SIJ blocks with triamcinolone acetonide are beneficial for some patients with SIJ pain without spondyloarthropathy. The SIJ blocks showed a long-lasting efficacy in two-thirds of the patients; however, the duration of its efficacy was shorter in patients with a history of lumbar/lumbosacral fusion. These findings suggest the need for further studies.

  17. Local Injection of Triamcinolone Acetonide: A Forgotten Aetiology of Cushing’s Syndrome

    Science.gov (United States)

    Sukhumthammarat, Weera; Putthapiban, Prapaipan

    2017-01-01

    Many different non systemic corticosteroid administrations can cause iatrogenic Cushing’s Syndrome (CS). We herein report a case series of iatrogenic CS from keloid scars treatment and aesthetic regimen called mesotherapy. Our first patient developed CS after having exceeded recommended dose of intralesional injection of Triamcinolone Acetonide (TAC). Second case presented with CS followed by unidentified mesotherapy treatment for local fat reduction. Subcutaneous injections of dexamethasone were found to be the part of mesotherapy regimen in one case. Physicians should be insightful in prescribing TAC especially in those patients who have high predisposing factors for developing CS. In the same way, off-label mesotherapy combine with corticosteroid can lead to iatrogenic CS and Hypothalamic-Pituitary-Adrenal (HPA) axis suppression. Currently, there are no standard guidelines for mesotherapy treatment. Therefore, further clinical trials on dosage, duration and effective combination of mesotherapy regimens are needed to increase safety uses. PMID:28764237

  18. Feasibility of binary composition in development of nanoethosomal glycolic vesicles of triamcinolone acetonide using Box-behnken design: in vitro and ex vivo characterization.

    Science.gov (United States)

    Akhtar, Nida; Verma, Anurag; Pathak, Kamla

    2017-09-01

    Triamcinolone acetonide (TA) employed for the treatment of atopic dermatitis exhibits limited penetration into the epidermis. This investigation aimed to explore the role of binary solvents in topical drug delivery of TA by developing nanoethosomal glycolic lipid vesicles by infusion method. Screening of vesicles (TA1-TA17) formulated by Box Behnken design identified the optimized formulation (TA10) that was developed as carbomer gels. The gels were then evaluated for pharmaceutical properties and compared with control and reference ethosomal gel (RG). Higher in vitro permeation was found in gels containing TA10, prepared with or without using penetration enhancer (EGP 83.76 ± 0.72% and EG 82.42 ± 0.89%, respectively). CLSM studies depicted deeper uniform penetration of fluorescent tracer into the epidermis via EG as compared with RG and control gel. Enhanced penetration was due to combinational solvent effect exerted by ethanol and propylene glycol. Histological analysis confirmed the non-irritant potential of the gel. Thus, it can be concluded that nanoethosomal glycolic vesicles proved to be an effective non irritant carrier for improvised penetration of triamcinolone acetonide for potential topical therapeutics.

  19. Selective inhibition of monoamine oxidase A by purpurin, an anthraquinone.

    Science.gov (United States)

    Lee, Hyun Woo; Ryu, Hyung Won; Kang, Myung-Gyun; Park, Daeui; Oh, Sei-Ryang; Kim, Hoon

    2017-03-01

    Monoamine oxidase (MAO) catalyzes the oxidation of monoamines that act as neurotransmitters. During a target-based screening of natural products using two isoforms of recombinant human MAO-A and MAO-B, purpurin (an anthraquinone derivative) was found to potently and selectively inhibit MAO-A, with an IC 50 value of 2.50μM, and not to inhibit MAO-B. Alizarin (also an anthraquinone) inhibited MAO-A less potently with an IC 50 value of 30.1μM. Furthermore, purpurin was a reversible and competitive inhibitor of MAO-A with a K i value of 0.422μM. A comparison of their chemical structures suggested the 4-hydroxy group of purpurin might play an important role in its inhibition of MAO-A. Molecular docking simulation showed that the binding affinity of purpurin for MAO-A (-40.0kcal/mol) was higher than its affinity for MAO-B (-33.9kcal/mol), and that Ile 207 and Gly 443 of MAO-A were key residues for hydrogen bonding with purpurin. The findings of this study suggest purpurin is a potent, selective, reversible inhibitor of MAO-A, and that it be considered a new potential lead compound for development of novel reversible inhibitors of MAO-A (RIMAs). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus*

    Science.gov (United States)

    Soares da Costa, Tatiana P.; Tieu, William; Yap, Min Y.; Pendini, Nicole R.; Polyak, Steven W.; Sejer Pedersen, Daniel; Morona, Renato; Turnidge, John D.; Wallace, John C.; Wilce, Matthew C. J.; Booker, Grant W.; Abell, Andrew D.

    2012-01-01

    There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (Ki 90 nm) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class. PMID:22437830

  1. Selective inhibition of biotin protein ligase from Staphylococcus aureus.

    Science.gov (United States)

    Soares da Costa, Tatiana P; Tieu, William; Yap, Min Y; Pendini, Nicole R; Polyak, Steven W; Sejer Pedersen, Daniel; Morona, Renato; Turnidge, John D; Wallace, John C; Wilce, Matthew C J; Booker, Grant W; Abell, Andrew D

    2012-05-18

    There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (K(i) 90 nM) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class.

  2. The selective estrogen receptor modulator raloxifene inhibits neutrophil extracellular trap formation.

    Directory of Open Access Journals (Sweden)

    Roxana Flores

    2016-12-01

    Full Text Available Raloxifene is a selective estrogen receptor modulator typically prescribed for the prevention/treatment of osteoporosis in postmenopausal women. Although raloxifene is known to have anti-inflammatory properties, its effect on human neutrophils, the primary phagocytic leukocytes of the immune system, remain poorly understood. Here, through a screen of pharmacologically active small molecules, we find that raloxifene prevents neutrophil cell death in response to the classical activator phorbol 12-myristate 13-acetate (PMA, a compound known to induce formation of DNA-based neutrophil extracellular traps (NETs. Inhibition of PMA-induced NET production by raloxifene was confirmed using quantitative and imaging-based assays. Human neutrophils from both male and female donors express the nuclear estrogen receptors ERα and ERβ, known targets of raloxifene. Like raloxifene, selective antagonists of these receptors inhibit PMA-induced NET production. Furthermore, raloxifene inhibited PMA-induced ERK phosphorylation but not reactive oxygen species (ROS production, pathways known to be key modulators of NET production. Finally, we found that raloxifene inhibited PMA-induced, NET-based killing of the leading human bacterial pathogen, methicillin-resistant Staphylococcus aureus (MRSA. Our results reveal that raloxifene is a potent modulator of neutrophil function and NET production.

  3. Scalable gastroscopic video summarization via similar-inhibition dictionary selection.

    Science.gov (United States)

    Wang, Shuai; Cong, Yang; Cao, Jun; Yang, Yunsheng; Tang, Yandong; Zhao, Huaici; Yu, Haibin

    2016-01-01

    This paper aims at developing an automated gastroscopic video summarization algorithm to assist clinicians to more effectively go through the abnormal contents of the video. To select the most representative frames from the original video sequence, we formulate the problem of gastroscopic video summarization as a dictionary selection issue. Different from the traditional dictionary selection methods, which take into account only the number and reconstruction ability of selected key frames, our model introduces the similar-inhibition constraint to reinforce the diversity of selected key frames. We calculate the attention cost by merging both gaze and content change into a prior cue to help select the frames with more high-level semantic information. Moreover, we adopt an image quality evaluation process to eliminate the interference of the poor quality images and a segmentation process to reduce the computational complexity. For experiments, we build a new gastroscopic video dataset captured from 30 volunteers with more than 400k images and compare our method with the state-of-the-arts using the content consistency, index consistency and content-index consistency with the ground truth. Compared with all competitors, our method obtains the best results in 23 of 30 videos evaluated based on content consistency, 24 of 30 videos evaluated based on index consistency and all videos evaluated based on content-index consistency. For gastroscopic video summarization, we propose an automated annotation method via similar-inhibition dictionary selection. Our model can achieve better performance compared with other state-of-the-art models and supplies more suitable key frames for diagnosis. The developed algorithm can be automatically adapted to various real applications, such as the training of young clinicians, computer-aided diagnosis or medical report generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Laser isotope separation using selective inhibition and encouragement of dimer formation

    International Nuclear Information System (INIS)

    Kivel, B.

    1979-01-01

    Method and apparatus for inhibiting dimer formation of molecules of a selected isotope type in a cooled flow of gas to enhance the effectiveness of mass difference isotope separation techniques are described. Molecules in the flow containing atoms of the selected isotope type are selectively excited by infrared radiation in order to inhibit the formation of dimers and larger clusters of such molecules, while the molecules not containing atoms of the selected, excited type are encouraged to form dimers and higher order aggregates by the cooling of the gaseous flow. The molecules with the excited isotope will predominate in monomers and will constitute the enriched product stream, while the aggregated group comprising molecules having the unexcited isotope will predominate in dimers and larger clusters of molecules, forming the tails stream. The difference in diffusion coefficientts between particles of the excited and unexcited isotopes is enhanced by the greater mass differences resulting from aggregation of unexcited particles into dimers and larger clusters. Prior art separation techniques which exploit differences in isotopic diffusion rates will consequently exhibit enhanced enrichment per stage by the utilization of the present invention

  5. Toxicity profiles of subretinal indocyanine green, Brilliant Blue G, and triamcinolone acetonide: a comparative study

    DEFF Research Database (Denmark)

    Ejstrup, Rasmus; Dornonville de la Cour, Morten; Heegaard, Steffen

    2012-01-01

    BACKGROUND: This study introduces a novel porcine model to examine the histopathological and electrophysiological consequences of retinotoxicity exerted by dyes commonly used for internal limiting membrane (ILM) staining. METHODS: Indocyanine green (ICG) 0.5 mg/ml, Brilliant Blue G (BBG) 0.25 mg....../ml and triamcinolone acetonide (TA) 13 mg/ml was injected subretinally in 12 vitrectomized pig eyes. At 6 weeks, retinas were examined by multifocal electroretinography (mfERG), ophthalmoscopy, fluorescein angiograpy, histopathology, and apoptosis assay. RESULTS: mfERG responses were significantly lower in ICG......-injected eyes than in healthy fellow eyes (p¿=¿0.039). The ratio between injected eyes and healthy fellow eyes was lower in the ICG group than in the BBG (p¿=¿0.009) and TA group (p¿=¿0.025). No difference between BBG and TA existed. All retinas were reattached, and fluorescein angiographies showed a window...

  6. The Neural Basis of Cognitive Control: Response Selection and Inhibition

    Science.gov (United States)

    Goghari, Vina M.; MacDonald, Angus W., III

    2009-01-01

    The functional neuroanatomy of tasks that recruit different forms of response selection and inhibition has to our knowledge, never been directly addressed in a single fMRI study using similar stimulus-response paradigms where differences between scanning time and sequence, stimuli, and experimenter instructions were minimized. Twelve right-handed…

  7. The efficacy of preoperative posterior subtenon injection of triamcinolone acetonide in noninfectious uveitic patients with secondary glaucoma undergoing trabeculectomy

    Directory of Open Access Journals (Sweden)

    Keorochana N

    2017-11-01

    Full Text Available Narumon Keorochana, Sutheera Kunasuntiwarakul, Isaraporn Treesit, Raveewan Choontanom Department of Ophthalmology, Phramongkutklao Hospital, Phramongkutklao College of Medicine, Bangkok, Thailand Objective: The aim of this study was to evaluate the efficacy and safety of preoperative posterior subtenon injection of triamcinolone acetonide (PSTA in noninfectious uveitic patients with secondary glaucoma undergoing primary trabeculectomy with mitomycin C.Design: This was a retrospective study.Patients and methods: We reviewed the medical records of 10 noninfectious uveitic patients, who had received a single preoperative PSTA 40 mg/1 mL, with secondary glaucoma undergoing primary trabeculectomy with mitomycin C. We collected data before and after surgery on intraocular pressure (IOP, anterior chamber (AC cells, best-corrected visual acuity (BCVA, morphologic characteristics of the filtering bleb and complications.Results: The mean time between injection and surgery was 7.8±3.88 days. Postoperative IOP level was significantly lower than preoperative level (31.3±11.44 mmHg at all visits (P<0.02. Antiglaucoma medications were decreased from preoperative (4.9±0.88 to 12-month postoperative (0.8±1.31; P-value <0.001 and also discontinued in seven eyes (70%. About 12 months after surgery, eight eyes (80% with qualified success and two eyes (20% with failed treatment were recorded. AC cells and BCVA did not differ significantly from baseline; however, all inflammations were controlled successfully. Most desirable bleb morphology was shown at 12 months as well. Complications were blepharoptosis and hypotony maculopathy in two eyes (20%.Conclusion: A preoperative PSTA may be an effective and safe option in controlling intraocular inflammation and maintaining bleb function after trabeculectomy in noninfectious uveitic patients with secondary glaucoma during a 12-month period. Keywords: periocular injection, steroid, uveitis, triamcinolone acetonide

  8. Selective Inhibition and Naming Performance in Semantic Blocking, Picture-Word Interference, and Color-Word Stroop Tasks

    Science.gov (United States)

    Shao, Zeshu; Roelofs, Ardi; Martin, Randi C.; Meyer, Antje S.

    2015-01-01

    In 2 studies, we examined whether explicit distractors are necessary and sufficient to evoke selective inhibition in 3 naming tasks: the semantic blocking, picture-word interference, and color-word Stroop task. Delta plots were used to quantify the size of the interference effects as a function of reaction time (RT). Selective inhibition was…

  9. Innovative Strategies for Selective Inhibition of Histone Deacetylases

    DEFF Research Database (Denmark)

    Maolanon, Alex Ramalak; Madsen, Andreas Stahl; Olsen, Christian Adam

    2016-01-01

    Histone deacetylases (HDAC) are a family of closely related enzymes involved in epigenetic and posttranscriptional regulation of numerous genes and proteins. Their deregulation is associated with a number of diseases, and a handful of HDAC inhibitors have been approved for cancer treatment. None......, functionally important, features. Based on this analysis, we suggest alternative strategies to achieve selective HDAC inhibition that does not rely on chelation of the zinc ion in the active site but rather on disruption of protein-protein interactions important for HDAC activity. We believe that, although...

  10. Selective inhibition of Bacillus subtilis sporulation by acridine orange and promethazine.

    Science.gov (United States)

    Burke, W F; Spizizen, J

    1977-03-01

    Two structurally similar compounds were found to inhibit sporulation in Bacillus subtilis 168. A dye, acridine orange, and an antischizophrenic drug, promethazine, blocked spore formation at concentrations subinhibitory to vegetative growth, while allowing synthesis of serine protease, antibiotic, and certain catabolite-repressed enzymes. The sporulation process was sensitive to promethazine through T2, whereas acridine orange was inhibitory until T4. The drug-treated cells were able to support the replication of phages phie and phi29, although the lytic cycles were altered slightly. The selective inhibition of sporulation by these compounds may be related to the affinity of some sporulation-specific genes to intercalating compounds.

  11. Micro-implant d'acétonide de fluocinolone (ILUVIEN(®)) pour l'oedème maculaire diabétique chronique [Fluocinolone acetonide (ILUVIEN®) micro-implant for chronic diabetic macular edema].

    OpenAIRE

    Soubrane, G.; Behar-Cohen, F.

    2015-01-01

    Diabetic macular edema (DME) is a frequent complication of diabetic retinopathy and may cause severe visual loss. In this article, we examine the pathophysiology of DME and review various treatment options, such as laser photocoagulation, anti-vascular endothelial growth factor (VEGF) receptor antibodies, and steroids including ILUVIEN(®), which is a new sustained-release, non biodegradable, injectable, intravitreal micro-implant containing fluocinolone acetonide. The results of the FAME (Flu...

  12. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications.

    Science.gov (United States)

    Araújo, J; Gonzalez-Mira, E; Egea, M A; Garcia, M L; Souto, E B

    2010-06-30

    The purpose of this study was to develop a novel nanostructured lipid carrier (NLC) for the intravitreal-targeting delivery of triamcinolone acetonide (TA) by direct ocular instillation. A five-level central composite rotable design was used to study the influence of four different variables on the physicochemical characteristics of NLCs. The analysis of variance (ANOVA) statistical test was used to assess the optimization of NLC production parameters. The systems were produced by high pressure homogenization using Precirol ATO5 and squalene as solid and liquid lipids respectively, and Lutrol F68 as surfactant. Homogenization at 600 bar for 3 cycles of the optimized formulation resulted in the production of small NLC (mean diameter < 200 nm) with a homogeneous particle size distribution (polydispersity index (PI) approximately 0.1), of negatively charged surface (approximately |45| mV) and high entrapment efficiency (approximately 95%). Surface morphology was assessed by SEM which revealed fairly spherical shape. DSC, WAXS and FT-IR analyses confirmed that TA was mostly entrapped into the NLC, characterized by an amorphous matrix. In vivo Draize test showed no signs of ocular toxicity. 2010 Elsevier B.V. All rights reserved.

  13. Selective attentional enhancement and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching.

    Science.gov (United States)

    van Schouwenburg, Martine R; den Ouden, Hanneke E M; Cools, Roshan

    2015-06-01

    The prefrontal cortex and the basal ganglia interact to selectively gate a desired action. Recent studies have shown that this selective gating mechanism of the basal ganglia extends to the domain of attention. Here, we investigate the nature of this action-like gating mechanism for attention using a spatial attention-switching paradigm in combination with functional neuroimaging and dynamic causal modeling. We show that the basal ganglia guide attention by focally releasing inhibition of task-relevant representations, while simultaneously inhibiting task-irrelevant representations by selectively modulating prefrontal top-down connections. These results strengthen and specify the role of the basal ganglia in attention. Moreover, our findings have implications for psychological theorizing by suggesting that inhibition of unattended sensory regions is not only a consequence of mutual suppression, but is an active process, subserved by the basal ganglia. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Selective inhibition of type 2 fatty acid synthetase by the antibiotic thiolactomycin

    International Nuclear Information System (INIS)

    Nishida, Ikuo; Kawaguchi, Akihiko; Yamada, Mitsuhiro

    1984-01-01

    The antibiotic thiolactomycin inhibits the fatty acid synthesis from both [1- 14 C]-acetate and [2 14 C] malonyl-CoA of spinach leaves, developing castor bean endosperms and avocado mesocarp. On the other hand, fatty acid synthetases of Brevibacterium ammoniagenes and Corynebacterium glutamicum are much less sensitive to this antibiotic. As Hayashi et al. have indicated in their paper that thiolactomycin inhibits fatty acid synthetase of Escherichia coli but has little effect on the synthetases of yeast and rat liver, thiolactomycin is suggested to be a selective inhibitor of type 2 fatty acid synthetases. (author)

  15. Selective inhibition of type 2 fatty acid synthetase by the antibiotic thiolactomycin

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Ikuo; Kawaguchi, Akihiko; Yamada, Mitsuhiro (Tokyo Univ. (Japan). Faculty of Science)

    1984-03-01

    The antibiotic thiolactomycin inhibits the fatty acid synthesis from both (1-/sup 14/C)-acetate and (2/sup 14/C) malonyl-CoA of spinach leaves, developing castor bean endosperms and avocado mesocarp. On the other hand, fatty acid synthetases of Brevibacterium ammoniagenes and Corynebacterium glutamicum are much less sensitive to this antibiotic. As Hayashi et al. have indicated in their paper that thiolactomycin inhibits fatty acid synthetase of Escherichia coli but has little effect on the synthetases of yeast and rat liver, thiolactomycin is suggested to be a selective inhibitor of type 2 fatty acid synthetases.

  16. The duration of effect of centrifuge concentrated intravitreal triamcinolone acetonide.

    Science.gov (United States)

    Ober, Michael D; Valijan, Sevak

    2013-04-01

    To estimate the duration of activity for intravitreal triamcinolone injected with a new technique using centrifuge concentration (Centrifuge concentrated IntraVitreal Triamcinolone, C-IVT). All injections were performed by a single surgeon (M.D.O.) using a 30-gauge needle. A vial of Triesence (triamcinolone; Alcon Laboratories, Fort Worth, TX) was drawn into a 1-mL syringe and the plunger cut off. The contents were spun in a centrifuge, and a second plunger was placed. Records of all patients receiving C-IVT with 0.05 mL or 0.1 mL from January 1, 2009, through December 31, 2009, were retrospectively reviewed. Eighty-four injections from 69 eyes of 57 patients were included. Sixty-nine injections from 54 eyes of 44 patients received 0.05 mL of C-IVT, whereas 15 injections from 15 eyes of 13 patients received 0.1 mL of C-IVT. Triamcinolone acetonide was still visualized in the vitreous on an average of 5.0 ± 2.4 months (median 5 months) after 0.05 mL of C-IVT and 8.3 ± 4.0 months (median 8 months) after 0.1 mL of C-IVT during follow-up visits. The longest duration recorded was 14 months for the 0.05-mL group and 18 months for the 0.l-mL group. The C-IVT results in a long duration of effect that seems to be greater than previously published techniques. It may be considered for patients requiring chronic steroid therapy, in which the benefits of long-term intravitreal steroids are believed to outweigh their risk.

  17. Selective antibacterial activity of patchouli alcohol against Helicobacter pylori based on inhibition of urease.

    Science.gov (United States)

    Yu, Xiao-Dan; Xie, Jian-Hui; Wang, Yong-Hong; Li, Yu-Cui; Mo, Zhi-Zhun; Zheng, Yi-Feng; Su, Ji-Yan; Liang, Ye-er; Liang, Jin-Zhi; Su, Zi-Ren; Huang, Ping

    2015-01-01

    The aim of this study is to evaluate the antibacterial activity and urease inhibitory effects of patchouli alcohol (PA), the bioactive ingredient isolated from Pogostemonis Herba, which has been widely used for the treatment of gastrointestinal disorders. The activities of PA against selected bacteria and fungi were determined by agar dilution method. It was demonstrated that PA exhibited selective antibacterial activity against Helicobacter pylori, without influencing the major normal gastrointestinal bacteria. Noticeably, the antibacterial activity of PA was superior to that of amoxicillin, with minimal inhibition concentration value of 78 µg/mL. On the other hand, PA inhibited ureases from H.pylori and jack bean in concentration-dependent fashion with IC50 values of 2.67 ± 0.79 mM and 2.99 ± 0.41 mM, respectively. Lineweaver-Burk plots indicated that the type of inhibition was non-competitive against H.pylori urease whereas uncompetitive against jack bean urease. Reactivation of PA-inactivated urease assay showed DL-dithiothreitol, the thiol reagent, synergistically inactivated urease with PA instead of enzymatic activity recovery. In conclusion, the selective H.pylori antibacterial activity along with urease inhibitory potential of PA could make it a possible drug candidate for the treatment of H.pylori infection. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.

    Science.gov (United States)

    Lee, Yurim; Lim, Yeni; Kwon, Oran

    2015-09-18

    This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was tested by using human intestinal Caco-2 cells. Then, the relative contribution of the two apical-facing intestinal fructose transporters, GLUT2 and GLUT5, and the signature components for fructose uptake inhibition was confirmed in naive, phloretin-treated and forskolin-treated Caco-2 cells. HPLC/MS analysis of the chemical signature revealed that guava leaf contained quercetin and catechin, and turmeric contained curcumin, bisdemethoxycurcumin and dimethoxycurcumin. Similar inhibition of fructose uptake (by ~50%) was observed with guava leaf and turmeric in Caco-2 cells, but with a higher contribution of GLUT2 for turmeric and that of GLUT5 for guava leaf. The data suggested that, in turmeric, demethoxycurcumin specifically contributed to GLUT2-mediated fructose uptake inhibition, and curcumin did the same to GLUT5-mediated fructose uptake inhibition, but GLUT2 inhibition was more potent. By contrast, in guava leaf, catechin specifically contributed to GLUT5-mediated fructose uptake inhibition, and quercetin affected both GLUT5- and GLUT2-mediated fructose uptake inhibition, resulting in the higher contribution of GLUT5. These results suggest that demethoxycurcumin is an important contributor to GLUT2-mediated fructose uptake inhibition for turmeric extract, and catechin is the same to GLUT5-mediated fructose uptake inhibition for guava leaf extract. Quercetin, curcumin and bisdemethoxycurcumin contributed to both GLUT5- and GLUT2-mediated fructose uptake inhibition, but the contribution to GLUT5 inhibition was higher than the contribution to GLUT2 inhibition.

  19. IL-15 inhibits pre-B cell proliferation by selectively expanding Mac-1+B220+ NK cells

    International Nuclear Information System (INIS)

    Nakajima, Shinsuke; Hida, Shigeaki; Taki, Shinsuke

    2008-01-01

    Natural killer (NK) cells are the cells critical for inhibition of repopulation of allogenic bone marrow cells. However, it is not well known if NK cells affect autologous lymphopoiesis. Here, we observed that NK cells could inhibit pre-B cell proliferation in vitro driven by interleukin (IL)-7 in a manner dependent on IL-15. Interestingly, the great majority of expanding NK cells were Mac-1 + B220 + , a recently identified potent interferon (IFN)-γ producer. Indeed, IFN-γ was produced in those cultures, and pre-B cells lacking IFN-γ receptors, but not those lacking type I IFN receptors, were resistant to such an inhibition. Furthermore, even NK cells from mice lacking β2-microglobulin, which were known to be functionally dampened, inhibited pre-B cell proliferation as well. Thus, activated NK cells, which were expanded selectively by IL-15, could potentially regulate B lymphopoiesis through IFN-γ beyond the selection imposed upon self-recognition

  20. Selective small-molecule inhibition of an RNA structural element

    Energy Technology Data Exchange (ETDEWEB)

    Howe, John A.; Wang, Hao; Fischmann, Thierry O.; Balibar, Carl J.; Xiao, Li; Galgoci, Andrew M.; Malinverni, Juliana C.; Mayhood, Todd; Villafania, Artjohn; Nahvi, Ali; Murgolo, Nicholas; Barbieri, Christopher M.; Mann, Paul A.; Carr, Donna; Xia, Ellen; Zuck, Paul; Riley, Dan; Painter, Ronald E.; Walker, Scott S.; Sherborne, Brad; de Jesus, Reynalda; Pan, Weidong; Plotkin, Michael A.; Wu, Jin; Rindgen, Diane; Cummings, John; Garlisi, Charles G.; Zhang, Rumin; Sheth, Payal R.; Gill, Charles J.; Tang, Haifeng; Roemer , Terry (Merck)

    2015-09-30

    Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.

  1. Adjunctive triamcinolone acetonide for Ahmed glaucoma valve implantation: a randomized clinical trial.

    Science.gov (United States)

    Yazdani, Shahin; Doozandeh, Azadeh; Pakravan, Mohammad; Ownagh, Vahid; Yaseri, Mehdi

    2017-06-26

    To evaluate the effect of intraoperative sub-Tenon injection of triamcinolone acetonide (TA) as an adjunct to Ahmed glaucoma valve (AGV) implantation. In this triple-blind randomized clinical trial, 104 eyes with refractory glaucoma were randomly assigned to conventional AGV (non-TA group) or AGV with adjunctive triamcinolone (TA group). In the TA group, 10 mg TA was injected in the sub-Tenon space around the AGV plate intraoperatively. Patients were followed for 1 year. The main outcome measure was intraocular pressure (IOP). Other outcome measures included best-corrected visual acuity (BCVA), occurrence of hypertensive phase (HP), peak IOP, number of antiglaucoma medications, and complications. A total of 90 patients were included in the final analysis. Mean IOP was lower in the TA group at most follow-up visits; however, the difference was statistically significant only at the first month (p = 0.004). Linear mixed model showed that mean IOP was 1.5 mm Hg lower in the TA group throughout the study period (p = 0.006). Peak postoperative IOP was significantly lower in the TA group (19.3 ± 4.8 mm Hg versus 29 ± 9.2 mm Hg, p = 0.032). Rates of success (defined as 6 2 lines was more common in the non-TA group (p = 0.032). Adjunctive intraoperative TA injection during AGV implantation can blunt peak IOP levels and reduce mean IOP up to 1 year. Visual outcomes also seem to be superior to standard surgery.

  2. Molecular Basis for the Selective Inhibition of Respiratory Syncytial Virus RNA Polymerase by 2'-Fluoro-4'-Chloromethyl-Cytidine Triphosphate.

    Directory of Open Access Journals (Sweden)

    Jerome Deval

    2015-06-01

    Full Text Available Respiratory syncytial virus (RSV causes severe lower respiratory tract infections, yet no vaccines or effective therapeutics are available. ALS-8176 is a first-in-class nucleoside analog prodrug effective in RSV-infected adult volunteers, and currently under evaluation in hospitalized infants. Here, we report the mechanism of inhibition and selectivity of ALS-8176 and its parent ALS-8112. ALS-8176 inhibited RSV replication in non-human primates, while ALS-8112 inhibited all strains of RSV in vitro and was specific for paramyxoviruses and rhabdoviruses. The antiviral effect of ALS-8112 was mediated by the intracellular formation of its 5'-triphosphate metabolite (ALS-8112-TP inhibiting the viral RNA polymerase. ALS-8112 selected for resistance-associated mutations within the region of the L gene of RSV encoding the RNA polymerase. In biochemical assays, ALS-8112-TP was efficiently recognized by the recombinant RSV polymerase complex, causing chain termination of RNA synthesis. ALS-8112-TP did not inhibit polymerases from host or viruses unrelated to RSV such as hepatitis C virus (HCV, whereas structurally related molecules displayed dual RSV/HCV inhibition. The combination of molecular modeling and enzymatic analysis showed that both the 2'F and the 4'ClCH2 groups contributed to the selectivity of ALS-8112-TP. The lack of antiviral effect of ALS-8112-TP against HCV polymerase was caused by Asn291 that is well-conserved within positive-strand RNA viruses. This represents the first comparative study employing recombinant RSV and HCV polymerases to define the selectivity of clinically relevant nucleotide analogs. Understanding nucleotide selectivity towards distant viral RNA polymerases could not only be used to repurpose existing drugs against new viral infections, but also to design novel molecules.

  3. Inhibition of CYP1 by berberine, palmatine, and jatrorrhizine: Selectivity, kinetic characterization, and molecular modeling

    International Nuclear Information System (INIS)

    Lo, Sheng-Nan; Chang, Yu-Ping; Tsai, Keng-Chang; Chang, Chia-Yu; Wu, Tian-Shung; Ueng, Yune-Fang

    2013-01-01

    Cytochrome P450 (P450, CYP) 1 family plays a primary role in the detoxification and bioactivation of polycyclic aromatic hydrocarbons. Human CYP1A1, CYP1A2, and CYP1B1 exhibit differential substrate specificity and tissue distribution. Berberine, palmatine, and jatrorrhizine are protoberberine alkaloids present in several medicinal herbs, such as Coptis chinensis (Huang-Lian) and goldenseal. These protoberberines inhibited CYP1A1.1- and CYP1B1.1-catalyzed 7-ethoxyresorufin O-deethylation (EROD) activities, whereas CYP1A2.1 activity was barely affected. Kinetic analysis revealed that berberine noncompetitively inhibited EROD activities of CYP1A1.1 and CYP1B1.1, whereas palmatine and jatrorrhizine caused either competitive or mixed type of inhibition. Among protoberberines, berberine caused the most potent and selective inhibitory effect on CYP1B1.1 with the least K i value of 44 ± 16 nM. Berberine also potently inhibited CYP1B1.1 activities toward 7-ethoxycoumarin and 7-methoxyresorufin, whereas the inhibition of benzo(a)pyrene hydroxylation activity was less pronounced. Berberine inhibited the polymorphic variants, CYP1B1.3 (V432L) and CYP1B1.4 (N453S), with IC 50 values comparable to that for CYP1B1.1 inhibition. Berberine-mediated inhibition was abolished by a mutation of Asn228 to Thr in CYP1B1.1, whereas the inhibition was enhanced by a reversal mutation of Thr223 to Asn in CYP1A2.1. This result in conjugation with the molecular modeling revealed the crucial role of hydrogen-bonding interaction of Asn228 on CYP1B1.1 with the methoxy moiety of berberine. These findings demonstrate that berberine causes a selective CYP1B1-inhibition, in which Asn228 appears to be crucial. The inhibitory effects of berberine on CYP1B1 activities toward structurally diverse substrates can be different. - Highlights: • Berberine preferentially inhibited CYP1B1 activity. • Berberine caused similar inhibitory effects on CYP1B1.1, CYP1B1.3 and CYP1B1.4. • Asn228 in CYP1B1 was an

  4. Inhibition of CYP1 by berberine, palmatine, and jatrorrhizine: Selectivity, kinetic characterization, and molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Sheng-Nan [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC (China); Chang, Yu-Ping; Tsai, Keng-Chang [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Chang, Chia-Yu [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Medical Sciences, Taipei Medical University, Taipei 101, Taiwan, ROC (China); Wu, Tian-Shung [Department of Chemistry, National Chung-Kung University, Tainan 701, Taiwan, ROC (China); Ueng, Yune-Fang, E-mail: ueng@nricm.edu.tw [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC (China); Institute of Medical Sciences, Taipei Medical University, Taipei 101, Taiwan, ROC (China)

    2013-11-01

    Cytochrome P450 (P450, CYP) 1 family plays a primary role in the detoxification and bioactivation of polycyclic aromatic hydrocarbons. Human CYP1A1, CYP1A2, and CYP1B1 exhibit differential substrate specificity and tissue distribution. Berberine, palmatine, and jatrorrhizine are protoberberine alkaloids present in several medicinal herbs, such as Coptis chinensis (Huang-Lian) and goldenseal. These protoberberines inhibited CYP1A1.1- and CYP1B1.1-catalyzed 7-ethoxyresorufin O-deethylation (EROD) activities, whereas CYP1A2.1 activity was barely affected. Kinetic analysis revealed that berberine noncompetitively inhibited EROD activities of CYP1A1.1 and CYP1B1.1, whereas palmatine and jatrorrhizine caused either competitive or mixed type of inhibition. Among protoberberines, berberine caused the most potent and selective inhibitory effect on CYP1B1.1 with the least K{sub i} value of 44 ± 16 nM. Berberine also potently inhibited CYP1B1.1 activities toward 7-ethoxycoumarin and 7-methoxyresorufin, whereas the inhibition of benzo(a)pyrene hydroxylation activity was less pronounced. Berberine inhibited the polymorphic variants, CYP1B1.3 (V432L) and CYP1B1.4 (N453S), with IC{sub 50} values comparable to that for CYP1B1.1 inhibition. Berberine-mediated inhibition was abolished by a mutation of Asn228 to Thr in CYP1B1.1, whereas the inhibition was enhanced by a reversal mutation of Thr223 to Asn in CYP1A2.1. This result in conjugation with the molecular modeling revealed the crucial role of hydrogen-bonding interaction of Asn228 on CYP1B1.1 with the methoxy moiety of berberine. These findings demonstrate that berberine causes a selective CYP1B1-inhibition, in which Asn228 appears to be crucial. The inhibitory effects of berberine on CYP1B1 activities toward structurally diverse substrates can be different. - Highlights: • Berberine preferentially inhibited CYP1B1 activity. • Berberine caused similar inhibitory effects on CYP1B1.1, CYP1B1.3 and CYP1B1.4. • Asn228 in CYP

  5. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    Science.gov (United States)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  6. Mean-field analysis of orientation selectivity in inhibition-dominated networks of spiking neurons.

    Science.gov (United States)

    Sadeh, Sadra; Cardanobile, Stefano; Rotter, Stefan

    2014-01-01

    Mechanisms underlying the emergence of orientation selectivity in the primary visual cortex are highly debated. Here we study the contribution of inhibition-dominated random recurrent networks to orientation selectivity, and more generally to sensory processing. By simulating and analyzing large-scale networks of spiking neurons, we investigate tuning amplification and contrast invariance of orientation selectivity in these networks. In particular, we show how selective attenuation of the common mode and amplification of the modulation component take place in these networks. Selective attenuation of the baseline, which is governed by the exceptional eigenvalue of the connectivity matrix, removes the unspecific, redundant signal component and ensures the invariance of selectivity across different contrasts. Selective amplification of modulation, which is governed by the operating regime of the network and depends on the strength of coupling, amplifies the informative signal component and thus increases the signal-to-noise ratio. Here, we perform a mean-field analysis which accounts for this process.

  7. The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition

    International Nuclear Information System (INIS)

    Lazar, I.; Voicu, A.; Dobrota, S.; Petrisor, I.G.; Stefanescu, M.; Sandulescu, L.; Nicolescu, C.; Mucenica, D.

    1999-01-01

    One of the most severe problems at any oil fields producing paraffinic oils is that of paraffin depositions. Romania which has a long experience in oil production is also faced with this problem in many oil fields. The microbial treatment, based on the activity of naturally occurring, selectively isolated bacteria, is already proved as an effective alternative to conventional methods to prevent and remove paraffin damage. Using such kind of bacterial products, exciting results for inhibiting paraffin depositions have been obtained. In this paper results concerning the naturally occurring bacteria selectively isolated from hydrocarbon polluted sites as well as from paraffinic oils, semi-solid and solid paraffin depositions are presented. After a laboratory screening, 15 bacterial strains (BS 1-15), three bacterial consortia (BC 1-3) and a Special Bacterial Consortium (SBC1) were selected. For the selection of bacterial consortia, the classical enrichment culture method has been used. The Special Bacterial Consortium resulted from a mixture of BS 1-15 and BC 1-3 following the steps of the classical enrichment culture method. The BS 1-15, BC 1-3 and SBC1 have been tested for their performances in producing biosurfactants and biosolvents as well as for hydrocarbon utilisation. The SBC1 has been tested for its ability in degradation of hydrocarbons contained in several types of paraffinic or non-paraffinic oils, and then for inhibiting paraffin deposition on a 'flow equipment' using two types of paraffinic oils. The SBC1 has been also tested for degradation of hydrocarbons contained in semi-solid and solid paraffin depositions. The results obtained could support further applications to prevent and control paraffin depositions

  8. The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, I.; Voicu, A.; Dobrota, S.; Petrisor, I.G.; Stefanescu, M.; Sandulescu, L. [Institute of Biology of the Romanian Academy, Spl. Independentei 296, Bucharest (Romania); Nicolescu, C.; Mucenica, D. [PETROSTAR Ploiesti, Bdul Bucuresti 35, Ploiesti (Romania)

    1999-01-01

    One of the most severe problems at any oil fields producing paraffinic oils is that of paraffin depositions. Romania which has a long experience in oil production is also faced with this problem in many oil fields. The microbial treatment, based on the activity of naturally occurring, selectively isolated bacteria, is already proved as an effective alternative to conventional methods to prevent and remove paraffin damage. Using such kind of bacterial products, exciting results for inhibiting paraffin depositions have been obtained. In this paper results concerning the naturally occurring bacteria selectively isolated from hydrocarbon polluted sites as well as from paraffinic oils, semi-solid and solid paraffin depositions are presented. After a laboratory screening, 15 bacterial strains (BS 1-15), three bacterial consortia (BC 1-3) and a Special Bacterial Consortium (SBC1) were selected. For the selection of bacterial consortia, the classical enrichment culture method has been used. The Special Bacterial Consortium resulted from a mixture of BS 1-15 and BC 1-3 following the steps of the classical enrichment culture method. The BS 1-15, BC 1-3 and SBC1 have been tested for their performances in producing biosurfactants and biosolvents as well as for hydrocarbon utilisation. The SBC1 has been tested for its ability in degradation of hydrocarbons contained in several types of paraffinic or non-paraffinic oils, and then for inhibiting paraffin deposition on a `flow equipment` using two types of paraffinic oils. The SBC1 has been also tested for degradation of hydrocarbons contained in semi-solid and solid paraffin depositions. The results obtained could support further applications to prevent and control paraffin depositions

  9. Potency and selectivity of carprofen enantiomers for inhibition of bovine cyclooxygenase in whole blood assays.

    Science.gov (United States)

    Brentnall, Claire; Cheng, Zhangrui; McKellar, Quintin A; Lees, Peter

    2012-12-01

    Whole blood in vitro assays were used to determine the potency and selectivity of carprofen enantiomers for inhibition of the isoforms of cyclooxygenase (COX), COX-1 and COX-2, in the calf. S(+)-carprofen possessed preferential activity for COX-2 inhibition but, because the slopes of inhibition curves differed, the COX-1:COX-2 inhibition ratio decreased from 9.04:1 for inhibitory concentration (IC)10 to 1.84:1 for IC95. R(-) carprofen inhibited COX-2 preferentially only for low inhibition of the COX isoforms (IC10 COX-1:COX-2=6.63:1), whereas inhibition was preferential for COX-1 for a high level of inhibition (IC95 COX-1:COX-2=0.20:1). S(+) carprofen was the more potent inhibitor of COX isoforms; potency ratios S(+):R(-) carprofen were 11.6:1 for IC10 and 218:1 for IC90. Based on serum concentrations of carprofen enantiomers obtained after administration of a therapeutic dose of 1.4 mg/kg to calves subcutaneously, S(+)-carprofen concentrations exceeded the in vitro IC80 COX-2 value for 32 h and the IC20 for COX-1 for 33 h. The findings are discussed in relation to efficacy and safety of carprofen in calves. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Characterization of Intraocular Pressure Increases and Management Strategies Following Treatment With Fluocinolone Acetonide Intravitreal Implants in the FAME Trials.

    Science.gov (United States)

    Parrish, Richard K; Campochiaro, Peter A; Pearson, P Andrew; Green, Ken; Traverso, Carlo E

    2016-05-01

    To compare elevated intraocular pressure (IOP) management and outcomes among patients with diabetic macular edema who received fluocinolone acetonide (FAc) implants versus sham-control treatment and explore the prior ocular steroid exposure impact on IOP outcomes. Best-corrected visual acuity (BCVA) was measured using Early Treatment Diabetic Retinopathy Study charts or electronic VA testers. Goldmann applanation tonometry was used to measure IOP. Elevated IOP was more common in FAc-versus sham control-treated patients. Medication, and less often trabeculoplasty or surgery, was used to lower IOP without affecting VA outcomes. No patient treated with 0.2 µg/day FAc who received prior ocular steroid required IOP-lowering surgery. Elevated IOP may occur following FAc implant receipt; however, in the present study, it was manageable and did not impact vision outcomes. Patients previously treated with ocular steroid did not require IOP-lowering surgery following 0.2 µg/day FAc implant administration. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:426-435.]. Copyright 2016, SLACK Incorporated.

  11. The effectiveness and reliability of posterior sub-Tenon triamcinolone acetonide injection in branch retinal vein occlusion-related macular edema.

    Science.gov (United States)

    Kola, Mehmet; Hacioglu, Dilek; Turk, Adem; Erdol, Hidayet

    2016-09-01

    To investigate the effectiveness and reliability of posterior sub-Tenon triamcinolone acetonide (PSTA) application in branch retinal vein occlusion (BRVO)-related macular edema. Patients with confirmed BRVO-related macular edema were enrolled in the study. Patients were injected with a single, therapeutic dose of 40 mg PSTA. Detailed ophthalmic examination was performed at baseline and at 1, 3 and 6 months after the treatment. Best corrected visual acuity (BCVA), intraocular pressure (IOP), cataractogenic change (CC) and macular optical coherence tomography (OCT) analysis results were evaluated. The results were compared statistically. Forty-one eyes of 41 patients with a mean age of 63.49 ± 10.99 (55-86) years, 15 (36.6%) females, were included in the study. BCVA in LogMAR values at 1 and 3 months were significantly better than at baseline, while no significant difference from baseline was observed in sixth month values (p application is an effective and safe option in BRVO-related macular edema.

  12. Dynamic modulation of corticospinal excitability and short-latency afferent inhibition during onset and maintenance phase of selective finger movement.

    Science.gov (United States)

    Cho, Hyun Joo; Panyakaew, Pattamon; Thirugnanasambandam, Nivethida; Wu, Tianxia; Hallett, Mark

    2016-06-01

    During highly selective finger movement, corticospinal excitability is reduced in surrounding muscles at the onset of movement but this phenomenon has not been demonstrated during maintenance of movement. Sensorimotor integration may play an important role in selective movement. We sought to investigate how corticospinal excitability and short-latency afferent inhibition changes in active and surrounding muscles during onset and maintenance of selective finger movement. Using transcranial magnetic stimulation (TMS) and paired peripheral stimulation, input-output recruitment curve and short-latency afferent inhibition (SAI) were measured in the first dorsal interosseus and abductor digiti minimi muscles during selective index finger flexion. Motor surround inhibition was present only at the onset phase, but not at the maintenance phase of movement. SAI was reduced at onset but not at the maintenance phase of movement in both active and surrounding muscles. Our study showed dynamic changes in corticospinal excitability and sensorimotor modulation for active and surrounding muscles in different movement states. SAI does not appear to contribute to motor surround inhibition at the movement onset phase. Also, there seems to be different inhibitory circuit(s) other than SAI for the movement maintenance phase in order to delineate the motor output selectively when corticospinal excitability is increased in both active and surrounding muscles. This study enhances our knowledge of dynamic changes in corticospinal excitability and sensorimotor interaction in different movement states to understand normal and disordered movements. Published by Elsevier Ireland Ltd.

  13. Mitochondrial toxicity of selective COX-2 inhibitors via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria

    DEFF Research Database (Denmark)

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-01-01

    Cyclooxygenase-2 (COX-2) inhibitors (coxibs) are non-steroidal anti-inflammatory drugs (NSAIDs) designed to selectively inhibit COX-2. However, drugs of this therapeutic class are associated with drug induced liver injury (DILI) and mitochondrial injury is likely to play a role. The effects...... of selective COX-2 inhibitors on inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria were investigated. The order of potency of inhibition of ATP synthesis was: lumiracoxib (IC50: 6.48 ± 2.74 μM)>celecoxib (IC50: 14.92 ± 6.40 μM)>valdecoxib (IC50: 161.4 ± 28.6 μM)>rofecoxib (IC50...... correlation (with r(2)=0.921) was observed between the potency of inhibition of ATP synthesis and the log P values. The in vitro metabolism of coxibs in rat liver mitochondria yielded for each drug substance a major single metabolite and identified a hydroxy metabolite with each of the coxibs...

  14. Comparison of the transplacental pharmacokinetics of cortisol and triamcinolone acetonide in the rhesus monkey

    International Nuclear Information System (INIS)

    Slikker, W. Jr.; Althaus, Z.R.; Rowland, J.M.; Hill, D.E.; Hendrickx, A.G.

    1982-01-01

    The late gestational age rhesus monkey was used to study the transplacental pharmacokinetics of radiolabeled triamcinolone acetonide (TAC) and cortisol. Tritiated-TAC and [ 14 C]cortisol were administered simultaneously via the maternal radial vein were administered simultaneously via the maternal radial vein and blood samples were serially drawn from catheters implanted in both the maternal femoral artery and fetal umbilical vein and artery. High-performance liquid chromatography of the processed blood samples revealed that from 93 to 100% of the 3 H in the fetal circulation was parent TAC, whereas only 14 to 49% of the 14 C was cortisol during the 40-min period after dose administration. Fetal tissue samples taken at 3 hr after dose administration showed that 75 to 96% of the 3 H present was TAC, whereas no cortisol was observed. TAC demonstrated dose-independent kinetics. Samples collected from the umbilical vein of the in situ placenta after fetectomy revealed that cortisol was extensively converted to cortisone by the placenta, whereas TAC was refractory to placental metabolism. This placental conversion of cortisol to cortisone and the further metabolism and conjugation of cortisol by the fetoplacental unit resulted in a fetal to maternal plasma cortisol ratio of 0.2. In contrast, the lack of placental or fetoplacental metabolism of TAC resulted in a fetal to maternal plasma TAC ratio of 0.6

  15. Piperlongumine selectively suppresses ABC-DLBCL through inhibition of NF-κB p65 subunit nuclear import

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Mingshan [Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu (China); Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu (China); Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu (China); Shen, Yangling; Xu, Xiaoyu [Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu (China); Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu (China); Yao, Yao; Fu, Chunling [Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu (China); Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu (China); Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu (China); Yan, Zhiling [Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu (China); Wu, Qingyun [Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu (China); Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu (China); Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu (China); Cao, Jiang; Sang, Wei [Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu (China); Zeng, Lingyu [Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu (China); Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu (China); Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu (China); Li, Zhenyu [Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu (China); Liu, Xuejiao, E-mail: liuxuejiao0923@126.com [Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu (China); and others

    2015-07-10

    Constitutive NF-κB activation is required for survival of activated B cell-like subtype of diffuse large B cell lymphoma (ABC-DLBCL). However, current NF-κB targeting strategies lack cancer cell specificity. Here, we identified a novel inhibitor, piperlongumine, features direct binding to NF-κB p65 subunit and suppression of p65 nuclear import. This was accompanied by NF-κB reporter activity suppression and NF-κB target gene downregulation. Moreover, mutation of Cys{sup 38} to Ser in p65 abolished this effect of piperlongumine on inhibition of p65 nuclear import. Furthermore, we show that piperlongumine selectively inhibited proliferation and induced apoptosis of ABC-DLBCL cells. Most notably, it has been reported that piperlongumine did not affect normal cells even at high doses and was nontoxic to animals. Hence, our current study provides new insight into piperlongumine's mechanism of action and novel approach to ABC-DLBCL target therapy. - Highlights: • Current NF-κB targeting strategies lack cancer cell specificity. • Piperlongumine inhibits NF-κB p65 subunit nuclear import via directly binding to p65. • Piperlongumine selectively inhibits proliferation of ABC-DLBCL cells. • This study provides a novel approach to ABC-DLBCL target therapy.

  16. Piperlongumine selectively suppresses ABC-DLBCL through inhibition of NF-κB p65 subunit nuclear import

    International Nuclear Information System (INIS)

    Niu, Mingshan; Shen, Yangling; Xu, Xiaoyu; Yao, Yao; Fu, Chunling; Yan, Zhiling; Wu, Qingyun; Cao, Jiang; Sang, Wei; Zeng, Lingyu; Li, Zhenyu; Liu, Xuejiao

    2015-01-01

    Constitutive NF-κB activation is required for survival of activated B cell-like subtype of diffuse large B cell lymphoma (ABC-DLBCL). However, current NF-κB targeting strategies lack cancer cell specificity. Here, we identified a novel inhibitor, piperlongumine, features direct binding to NF-κB p65 subunit and suppression of p65 nuclear import. This was accompanied by NF-κB reporter activity suppression and NF-κB target gene downregulation. Moreover, mutation of Cys 38 to Ser in p65 abolished this effect of piperlongumine on inhibition of p65 nuclear import. Furthermore, we show that piperlongumine selectively inhibited proliferation and induced apoptosis of ABC-DLBCL cells. Most notably, it has been reported that piperlongumine did not affect normal cells even at high doses and was nontoxic to animals. Hence, our current study provides new insight into piperlongumine's mechanism of action and novel approach to ABC-DLBCL target therapy. - Highlights: • Current NF-κB targeting strategies lack cancer cell specificity. • Piperlongumine inhibits NF-κB p65 subunit nuclear import via directly binding to p65. • Piperlongumine selectively inhibits proliferation of ABC-DLBCL cells. • This study provides a novel approach to ABC-DLBCL target therapy

  17. Impaired distractor inhibition on a selective attention task in unmedicated, depressed subjects.

    Science.gov (United States)

    MacQueen, G M; Tipper, S P; Young, L T; Joffe, R T; Levitt, A J

    2000-05-01

    Impaired distractor inhibition may contribute to the selective attention deficits observed in depressed patients, but studies to date have not tested the distractor inhibition theory against the possibility that processes such as transient memory review processes may account for the observed deficits. A negative priming paradigm can dissociate inhibition from such a potentially confounding process called object review. The negative priming task also isolates features of the distractor such as colour and location for independent examination. A computerized negative priming task was used in which colour, identification and location features of a stimulus and distractor were systematically manipulated across successive prime and probe trials. Thirty-two unmedicated subjects with DSM-IV diagnoses of non-psychotic unipolar depression were compared with 32 age, sex and IQ matched controls. Depressed subjects had reduced levels of negative priming for conditions where the colour feature of the stimulus was repeated across prime and probe trials but not when identity or location was the repeated feature. When both the colour and location feature were the repeated feature across trials, facilitation in response was apparent. The pattern of results supports studies that found reduced distractor inhibition in depressed subjects, and suggests that object review is intact in these subjects. Greater impairment in negative priming for colour versus location suggests that subjects may have greater impairment in the visual stream associated with processing colour features.

  18. Posterior subtenon triamcinolone acetonide in gas-filled eyes as an adjunctive treatment for complicated proliferative diabetic retinopathy.

    Science.gov (United States)

    Lee, Yongeun; Kang, Seungbum; Park, Young-Hoon

    2013-02-01

    To evaluate the effect of adjunctive subtenon injection of triamcinolone acetonide (TA) in gas-filled eyes after vitrectomy for complicated proliferative diabetic retinopathy (PDR). This nonrandomized comparative study included 27 patients (27 eyes) who underwent pars plana vitrectomy and gas tamponade for treatment of PDR with tractional or combined tractional-rhegmatogenous retinal detachment and who received subtenon injection of TA (40 mg) at the end of surgery. The study group was compared with the control group (29 eyes), which was matched with the study group for preoperative and intraoperative parameters, but underwent pars plana vitrectomy and gas tamponade without a subtenon injection of TA. Retinal reattachments without reoperation were achieved in 25 eyes (92.6%) and 26 eyes (89.7%) at 6 months (p = 1.000) in the study and control groups, respectively. The study group and the control group did not differ significantly in the frequency of postoperative proliferative vitreoretinopathy, retinal redetachment rate, reoperation rate, macular pucker formation, postoperative vitreous hemorrhage, gain in visual acuity, intraocular pressure, and intraocular inflammation (p > 0.05). The clinical results of pars plana vitrectomy for complicated PDR are not improved significantly by an adjunctive subtenon TA injection in gas-filled eyes.

  19. Inhibition shapes selectivity to vocalizations in the inferior colliculus of awake mice

    Directory of Open Access Journals (Sweden)

    Zachary eMayko

    2012-10-01

    Full Text Available The inferior colliculus (IC is a major center for integration of auditory information as itreceives ascending projections from a variety of brainstem nuclei as well as descending projectionsfrom the thalamus and auditory cortex. The ascending projections are both excitatory andinhibitory and their convergence at the IC results in a microcircuitry that is important forshaping responses to simple, binaural, and modulated sounds in the IC. Here, we examined therole inhibition plays in shaping selectivity to vocalizations in the IC of awake, normal-hearingadult mice (CBA/CaJ strain. Neurons in the IC of mice show selectivity in their responses tovocalizations, and we hypothesized that this selectivity is created by inhibitory microcircuitryin the IC. We compared single unit responses in the IC to pure tones and a variety of ultrasonicmouse vocalizations before and after iontophoretic application of GABAA receptor (GABAARand glycine receptor (GlyR antagonists. The most pronounced effects of blocking GABAAR andGlyR on IC neurons were to increase spike rates and broaden excitatory frequency tuning curvesin response to pure tone stimuli, and to decrease selectivity to vocalizations. Thus, inhibitionplays an important role in creating selectivity to vocalizations in the inferior colliculus.

  20. Selective inhibition of plant serine hydrolases by agrochemicals revealed by competitive ABPP.

    Science.gov (United States)

    Kaschani, Farnusch; Nickel, Sabrina; Pandey, Bikram; Cravatt, Benjamin F; Kaiser, Markus; van der Hoorn, Renier A L

    2012-01-15

    Organophosphate and -phosphonates and their thio derivatives are often used in agroindustry as herbicides and insecticides, but their potential off-targets in the plant are poorly investigated. Here, we use competitive activity-based protein profiling (ABPP) of serine hydrolases (SHs) to detect targets of these agrochemicals and other compounds in Arabidopsis thaliana. Using broad-range and specific probes, and by overexpression of various SHs in planta, we are able to confirm eight SH-compound interactions, including selective inhibition of carboxylesterase CXE12, prolyloligopeptidase, methylesterase MES2 and tripeptidyl peptidase TPP2. These observations can be used for the design of novel probes and selective inhibitors and may help to assess physiological effects of agrochemicals on crop plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. NAC selectively inhibit cancer telomerase activity: A higher redox homeostasis threshold exists in cancer cells

    Directory of Open Access Journals (Sweden)

    Pengying Li

    2016-08-01

    Full Text Available Telomerase activity controls telomere length, and this plays an important role in stem cells, aging and tumors. Antioxidant was shown to protect telomerase activity in normal cells but inhibit that in cancer cells, but the underlying mechanism is elusive. Here we found that 7721 hepatoma cells held a higher redox homeostasis threshold than L02 normal liver cells which caused 7721 cells to have a higher demand for ROS; MnSOD over-expression in 7721 decreased endogenous reactive oxygen species (ROS and inhibited telomerase activity; Akt phosphorylation inhibitor and NAC both inhibited 7721 telomerase activity. The over-elimination of ROS by NAC resulted in the inhibition of Akt pathway. Our results suggest that ROS is involved in the regulation of cancer telomerase activity through Akt pathway. The different intracellular redox homeostasis and antioxidant system in normal cells and tumor cells may be the cause of the opposite effect on telomerase activity in response to NAC treatment. Our results provide a theoretical base of using antioxidants selectively inhibit cancer telomerase activity. Findings of the present study may provide insights into novel approaches for cancer treatment.

  2. Second Generation Grp94-Selective Inhibitors Provide Opportunities for the Inhibition of Metastatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Vincent M. [Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Dr. Malott 4070 Lawrence KS 66045 USA; Huard, Dustin J. E. [School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta GA 30332 USA; Lieberman, Raquel L. [School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta GA 30332 USA; Blagg, Brian S. J. [Warren Family Research Center for Drug Discovery and Development, and Department of Chemistry & Biochemistry, University of Notre Dame, 305 McCourtney Hall Notre Dame IN 46556 USA

    2017-09-27

    Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum (ER) resident isoform of the 90 kDa heat shock protein (Hsp90) family and its inhibition represents a promising therapeutic target for the treatment of many diseases. Modification of the first generation cis-amide bioisostere imidazole to alter the angle between the resorcinol ring and the benzyl side chain via cis-amide replacements produced compounds with improved Grp94 affinity and selectivity. Structure–activity relationship studies led to the discovery of compound 30, which exhibits 540 nm affinity and 73-fold selectivity towards Grp94. Grp94 is responsible for the maturation and trafficking of proteins associated with cell signaling and motility, including select integrins. The Grp94-selective inhibitor 30 was shown to exhibit potent anti-migratory effects against multiple aggressive and metastatic cancers.

  3. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 inhibits adhesion of human endometriotic epithelial and stromal cells through suppression of integrin-mediated mechanisms.

    Science.gov (United States)

    Lee, JeHoon; Banu, Sakhila K; Burghardt, Robert C; Starzinski-Powitz, Anna; Arosh, Joe A

    2013-03-01

    Endometriosis is a chronic gynecological disease of reproductive age women characterized by the presence of functional endometrial tissues outside the uterine cavity. Interactions between the endometriotic cells and the peritoneal extracellular matrix proteins (ECM) are crucial mechanisms that allow adhesion of the endometriotic cells into peritoneal mesothelia. Prostaglandin E2 (PGE2) plays an important role in the pathogenesis of endometriosis. In previous studies, we have reported that selective inhibition of PGE2 receptors PTGER2 and PTGER4 decreases survival and invasion of human endometriotic epithelial and stromal cells through multiple mechanisms. Results of the present study indicates that selective inhibition of PTGER2- and PTGER4-mediated PGE2 signaling 1) decreases the expression and/or activity of specific integrin receptor subunits Itgb1 (beta1) and Itgb3 (beta3) but not Itgb5 (beta5), Itga1 (alpha1), Itga2 (alpha2), Itga5 (alpha5), and Itgav (alphav); 2) decreases integrin-signaling components focal adhesion kinase or protein kinase 2 (PTK2) and talin proteins; 3) inhibits interactions between Itgb1/Itgb3 subunits, PTK2, and talin and PTGER2/PTGER4 proteins through beta-arrestin-1 and Src kinase protein complex in human endometriotic epithelial cells 12Z and stromal cells 22B; and 4) decreases adhesion of 12Z and 22B cells to ECM collagen I, collagen IV, fibronectin, and vitronectin in a substrate-specific manner. These novel findings provide an important molecular framework for further evaluation of selective inhibition of PTGER2 and PTGER4 as potential nonsteroidal therapy to expand the spectrum of currently available treatment options for endometriosis in child-bearing age women.

  4. Sterile endophthalmitis rates and particle size analyses of different formulations of triamcinolone acetonide.

    Science.gov (United States)

    Dodwell, David G; Krimmel, Darrel A; de Fiebre, Christopher M

    2015-01-01

    To evaluate the rate of sterile endophthalmitis (SE) following intravitreal injection of three different formulations of triamcinolone acetonide (TA) in a single physician practice and also to assess the mean diameter and concentration of particles of the two TA formulations currently available commercially in the USA. It was hypothesized that TA formulations with smaller particles and/or greater concentrations would have a higher incidence of SE. Single-site, interventional case series in which the medical records of 392 consecutive eyes receiving intravitreal TA as Triesence(®), Kenalog(®)-40, or preservative-free TA between September 2008 and October 2013 were retrospectively reviewed for the incidence of SE. Particle sizing of TA formulations was conducted by an independent commercial laboratory. Five cases of SE were identified. The four cases of SE following Triesence(®) (4.6%) represented a rate significantly higher than the one case of SE following preservative-free TA (0.6%; P=0.049) and the 0% incidence rate of SE following Kenalog(®)-40 (P=0.0210). Triesence(®) had significantly smaller particles than Kenalog(®)-40 (P<0.0001). The rate of SE was the highest with the formulation of TA that had the smallest particle size and highest particle load (number of particles injected). The lowest rate of SE was seen with Kenalog(®)-40, the only TA formulation that contained a benzyl alcohol preservative. The data do not support a principal causative role of benzyl alcohol in the development of TA-induced SE. Instead, the data support the particle theory of TA-induced SE; however, larger-scale, multicenter studies are needed to confirm and expand on these findings.

  5. Intravitreal injection with ranibizumab combined with triamcinolone acetonide sub-Tenon injection for macular edema due to CRVO

    Directory of Open Access Journals (Sweden)

    Ting-Ting Li

    2015-01-01

    Full Text Available AIM: To evaluate the efficacy of intravitreal injection with Ranibizumab combined with sub-Tenon injection with Triamcinolone acetonide(TAfor macular edema(MEdue to central retinal venous occlusions(CRVO.METHODS:Forty-six patients(46 eyeswere diagnosed ischemic CRVO with significant macular edema by fundus fluorescence-angiography(FFAand optical coherence tomography(OCT. All the patients had panretinal photocoagulation(PRP, a week after the four times therapies. Twenty-three patients(23 eyesin group A were randomly chosen to receive intravitreal injection with ranibizumab(IVR, another 23 patients(23 eyesin group B to treat with both IVR and sub-Tenon injection with TA(PSTT. There was no significant difference on macular edema and best corrected visual activity(BCVAbetween the two groups. The changes in BCVA and central macular thickness(CMTbefore and 1wk; 1, 3, 6mo after treatments were analyzed.RESULTS: One week after the treatment: the BCVA increased while the CMT decreased compared with that of pretreatment in groups A and B(PPPPPP>0.05.CONCLUSION: Not only IVR can decrease ME caused by CRVO and increase the BCVA, but also IVR combined with PSTT can. But combined therapies can be more rapidly and have more positive effect on decreasing the ME and protecting the visual function.

  6. Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson's disease

    NARCIS (Netherlands)

    van den Wildenberg, Wery P. M.; van Boxtel, Geert J. M.; van der Molen, Maurits W.; Bosch, D. Andries; Speelman, Johannes D.; Brunia, Cornelis H. M.

    2006-01-01

    The aim of the present study was to specify the involvement of the basal ganglia in motor response selection and response inhibition. Two samples were studied. The first sample consisted of patients diagnosed with Parkinson's disease (PD) who received deep-brain stimulation (DBS) of the subthalamic

  7. Photodynamic monotherapy or combination treatment with intravitreal triamcinolone acetonide, bevacizumab or ranibizumab for choroidal neovascularization associated with pathological myopia

    Directory of Open Access Journals (Sweden)

    Pukhraj Rishi

    2011-01-01

    Full Text Available This retrospective, interventional case series analyses treatment outcomes in eyes with choroidal neovascularization (CNV secondary to pathological myopia, managed with photodynamic therapy, (PDT, (Group 1, N = 11, PDT and intravitreal triamcinolone acetonide (4 mg/0.1ml (Group 2, N = 3, PDT and intravitreal anti-vascular endothelial growth factor (anti-VEGF bevacizumab 1.25 mg/0.05 ml, ranibizumab 0.5 mg/0.05 ml and reduced-fluence PDT and intravitreal ranibizumab 0.5 mg/0.05 ml (Group 3, N=12. All the patients underwent PDT. Intravitreal injections were repeated as required. SPSS 14 software was used to evaluate the data. Wilcoxon signed ranks test was used to evaluate pre- and post-treatment vision. The Kruskal-Wallis test was used for comparison between the groups. All the groups were statistically comparable. All the eyes showed complete regression of CNV, with a minimum follow-up of six months. All groups had visual improvement; significantly in Group 3 ( p = 0.003. Combination PDT with anti-VEGF agents appeared to be efficacious in eyes with myopic CNV. However, a larger study with a longer follow-up is required to validate these results.

  8. The Effect of Pimecrolimus Cream 1% Compared with Triamcinolone Acetonide Paste in Treatment of Atrophic-Erosive Oral Lichen Planus

    Directory of Open Access Journals (Sweden)

    Atessa Pakfetrat

    2015-03-01

    Full Text Available Introduction: Oral lichen planus (OLP is a common chronic mucocutaneous disease. Patients with atrophic and erosive types of OLP often have symptoms of soreness, and require proper treatment. The main treatment for OLP has been the administration of topical or systemic corticosteroids. The objective of this study was to compare the efficacy of adcortyl cream (triamcinolone acetonide in orabase with topical pimecrolimus cream for the treatment of erosive OLP.   Materials and Methods: Twenty-eight patients with OLP were enrolled in a single blind clinical trial and assigned to either a pimecrolimus 1% cream group or an adcortyl 0.1% cream group. The medication was applied every day for 2 months and patients were assessed every 2 weeks.   Results: The mean lesion size and mean pain and burning sensation scores did not differ between the pimecrolimus and adcortyl cream groups. The pimecrolimus cream was well tolerated. No clinical drug-related adverse events were observed.   Conclusion:  Topical pimecrolimus cream may be recommended as a safe and effective alternative therapy in the treatment of OLP. Pimecrolimus cream is as effective as adcortyl cream in managing the signs and symptoms of OLP.

  9. Development of Triamcinolone Acetonide-Loaded Nanostructured Lipid Carriers (NLCs) for Buccal Drug Delivery Using the Box-Behnken Design.

    Science.gov (United States)

    Kraisit, Pakorn; Sarisuta, Narong

    2018-04-23

    The aim of this present work was to prepare triamcinolone acetonide (TA)-loaded nanostructured lipid carriers (TA-loaded NLCs) for buccal drug delivery systems using the Box-Behnken design. A hot homogenization method was used to prepare the TA-loaded NLCs. Spermaceti (X₁), soybean oil (X₂), and Tween 80 (X₃) were used as solid lipid, liquid lipid, and stabilizer, respectively. The particle size of TA-loaded NLCs was lower than 200 nm and the zeta potential displayed the negative charge in all formulations. The percentage encapsulation efficiency (%EE) of the TA-loaded NLCs showed that it was higher than 80% for all formulations. Field emission scanning electron microscope (FESEM) confirmed that the size of TA-loaded NLCs was approximately 100 nm and energy-dispersive X-ray spectroscopy (EDS) confirmed that the TA could be incorporated in the NLC system. The Higuchi model gave the highest value of the R², indicating that this model was a fit for the TA release profiles of TA-loaded NLCs. Confocal laser scanning microscopy (CLSM) was used to observe the drug penetration within the porcine buccal mucosa and Nile red-loaded NLCs showed significantly higher penetration depth at 8 h than at 2 h. Therefore, TA-loaded NLCs could be an efficient carrier for drug delivery through the buccal mucosa.

  10. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation.

    Science.gov (United States)

    Scannevin, Robert H; Alexander, Richard; Haarlander, Tara Mezzasalma; Burke, Sharon L; Singer, Monica; Huo, Cuifen; Zhang, Yue-Mei; Maguire, Diane; Spurlino, John; Deckman, Ingrid; Carroll, Karen I; Lewandowski, Frank; Devine, Eric; Dzordzorme, Keli; Tounge, Brett; Milligan, Cindy; Bayoumy, Shariff; Williams, Robyn; Schalk-Hihi, Celine; Leonard, Kristi; Jackson, Paul; Todd, Matthew; Kuo, Lawrence C; Rhodes, Kenneth J

    2017-10-27

    Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression.

    Directory of Open Access Journals (Sweden)

    Kyla Walworth

    -DDN. Moreover, we confirmed by clonogenic-assay that DDNDBeQ treatment significantly (p<0.001 inhibits H1299 colony-formation as compared to control/DDN. Overall, encapsulation of potent VCP-inhibitor DBeQ into a dendrimer allows selective VCP-mediated proteostasis-inhibition for controlling NSCLC-tumor growth and progression to allow tumor-targeted sustained drug delivery.

  12. Tiamulin selectively inhibits oxidative hepatic steroid and drug metabolism in vitro in the pig.

    Science.gov (United States)

    Witkamp, R F; Nijmeijer, S M; Csikó, G; van Miert, A S

    1994-08-01

    The simultaneous use of the antibiotic tiamulin with certain ionophoric antibiotics (monensin, salinomycin) may give rise to a toxic interaction in pigs and poultry. In the present study, effects of tiamulin on hepatic cytochrome P450 activities in vitro were studied using pig liver microsomes. When tiamulin was added to the incubation medium the N-demethylation rate of ethylmorphine and the hydroxylation of testosterone at the 6 beta- and 11 alpha-positions was strongly inhibited. Tiamulin inhibited these activities more than SKF525A or cimetidine, but less than ketoconazole. The microsomal N-demethylation rate of erythromycin and the hydroxylation of testosterone at the 2 beta-position were inhibited to a lesser degree, whereas the ethoxyresorufin-O-deethylation, aniline hydroxylation and testosterone hydroxylations at the 15 alpha- and 15 beta-positions were not affected by tiamulin. No in vitro complexation by tiamulin of cytochrome P450 resulting in a loss of CO-binding capacity could be demonstrated. Results from the present study suggest a selective inhibition of cytochrome P450 enzymes in pigs, probably belonging to the P4503A subfamily. The mechanism of this interaction is still unclear. However, interactions between tiamulin and those veterinary drugs or endogenous compounds which undergo oxidative metabolism by P450 enzymes must be considered. More research is needed to reveal which of the P450 enzymes are affected by tiamulin in order to improve the understanding and probably the predictability of this interaction.

  13. Selective inhibition of CYP2C8 by fisetin and its methylated metabolite, geraldol, in human liver microsomes.

    Science.gov (United States)

    Shrestha, Riya; Kim, Ju-Hyun; Nam, Wongshik; Lee, Hye Suk; Lee, Jae-Mok; Lee, Sangkyu

    2018-04-01

    Fisetin is a flavonol compound commonly found in edible vegetables and fruits. It has anti-tumor, antioxidant, and anti-inflammatory effects. Geraldol, the O-methyl metabolite of fisetin in mice, is reported to suppress endothelial cell migration and proliferation. Although the in vivo and in vitro effects of fisetin and its metabolites are frequently reported, studies on herb-drug interactions have not yet been performed. This study was designed to investigate the inhibitory effect of fisetin and geraldol on eight isoforms of human cytochrome P450 (CYP) by using cocktail assay and LC-MS/MS analysis. The selective inhibition of CYP2C8-catalyzed paclitaxel hydroxylation by fisetin and geraldol were confirmed in pooled human liver microsomes (HLMs). In addition, an IC 50 shift assay under different pre-incubation conditions confirmed that fisetin and geraldol shows a reversible concentration-dependent, but not mechanism-based, inhibition of CYP2C8. Moreover, Michaelis-Menten, Lineweaver-burk plots, Dixon and Eadie-Hofstee showed a non-competitive inhibition mode with an equilibrium dissociation constant of 4.1 μM for fisetin and 11.5 μM for geraldol, determined from secondary plot of the Lineweaver-Burk plot. In conclusion, our results indicate that fisetin showed selective reversible and non-competitive inhibition of CYP2C8 more than its main metabolite, geraldol, in HLMs. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  14. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex.

    Science.gov (United States)

    Bonds, A B

    1989-01-01

    Mechanisms supporting orientation selectivity of cat striate cortical cells were studied by stimulation with two superimposed sine-wave gratings of different orientations. One grating (base) generated a discharge of known amplitude which could be modified by the second grating (mask). Masks presented at nonoptimal orientations usually reduced the base-generated response, but the degree of reduction varied widely between cells. Cells with narrow orientation tuning tended to be more susceptible to mask presence than broadly tuned cells; similarly, simple cells generally showed more response reduction than did complex cells. The base and mask stimuli were drifted at different temporal frequencies which, in simple cells, permitted the identification of individual response components from each stimulus. This revealed that the reduction of the base response by the mask usually did not vary regularly with mask orientation, although response facilitation from the mask was orientation selective. In some sharply tuned simple cells, response reduction had clear local maxima near the limits of the cell's orientation-tuning function. Response reduction resulted from a nearly pure rightward shift of the response versus log contrast function. The lowest mask contrast yielding reduction was within 0.1-0.3 log unit of the lowest contrast effective for excitation. The temporal-frequency bandpass of the response-reduction mechanism resembled that of most cortical cells. The spatial-frequency bandpass was much broader than is typical for single cortical cells, spanning essentially the entire visual range of the cat. These findings are compatible with a model in which weak intrinsic orientation-selective excitation is enhanced in two stages: (1) control of threshold by nonorientation-selective inhibition that is continuously dependent on stimulus contrast; and (2) in the more narrowly tuned cells, orientation-selective inhibition that has local maxima serving to increase the slope of

  15. The selective serotonin reuptake inhibitor, escitalopram, enhances inhibition of prepotent responding and spatial reversal learning

    Science.gov (United States)

    Brown, Holden D.; Amodeo, Dionisio A.; Sweeney, John A.; Ragozzino, Michael E.

    2011-01-01

    Previous findings indicate treatment with a selective serotonin reuptake inhibitor (SSRI) facilitates behavioral flexibility when conditions require inhibition of a learned response pattern. The present experiment investigated whether acute treatment with the SSRI, escitalopram, affects behavioral flexibility when conditions require inhibition of a naturally-biased response pattern (elevated conflict test) and/or reversal of a learned response pattern (spatial reversal learning). An additional experiment was carried out to determine whether escitalopram, at doses that affected behavioral flexibility, also reduced anxiety as tested in the elevated plus-maze. In each experiment, Long-Evans rats received an intraperitoneal injection of either saline or escitalopram (0.03, 0.3 or 1.0 mg/kg) 30 minutes prior to behavioral testing. Escitalopram, at all doses tested, enhanced acquisition in the elevated conflict test, but did not affect performance in the elevated plus-maze. Escitalopram (0.3 and 1.0 mg/kg) did not alter acquisition of the spatial discrimination, but facilitated reversal learning. In the elevated conflict and spatial reversal learning test, escitalopram enhanced the ability to maintain the relevant strategy after being initially selected. The present findings suggest that enhancing serotonin transmission with a SSRI facilitates inhibitory processes when conditions require a shift away from either a naturally-biased response pattern or a learned choice pattern. PMID:22219222

  16. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5

    Science.gov (United States)

    Huang, Yue; Yan, Jingli; Li, Qi; Li, Jiafei; Gong, Shouzhe; Zhou, Hu; Gan, Jianhua; Jiang, Hualiang; Jia, Gui-Fang; Luo, Cheng; Yang, Cai-Guang

    2015-01-01

    Two human demethylases, the fat mass and obesity-associated (FTO) enzyme and ALKBH5, oxidatively demethylate abundant N6-methyladenosine (m6A) residues in mRNA. Achieving a method for selective inhibition of FTO over ALKBH5 remains a challenge, however. Here, we have identified meclofenamic acid (MA) as a highly selective inhibitor of FTO. MA is a non-steroidal, anti-inflammatory drug that mechanistic studies indicate competes with FTO binding for the m6A-containing nucleic acid. The structure of FTO/MA has revealed much about the inhibitory function of FTO. Our newfound understanding, revealed herein, of the part of the nucleotide recognition lid (NRL) in FTO, for example, has helped elucidate the principles behind the selectivity of FTO over ALKBH5. Treatment of HeLa cells with the ethyl ester form of MA (MA2) has led to elevated levels of m6A modification in mRNA. Our collective results highlight the development of functional probes of the FTO enzyme that will (i) enable future biological studies and (ii) pave the way for the rational design of potent and specific inhibitors of FTO for use in medicine. PMID:25452335

  17. Inhibition of Action, Thought, and Emotion: A Selective Neurobiological Review

    OpenAIRE

    Dillon, Daniel; Pizzagalli, Diego

    2007-01-01

    The neural bases of inhibitory function are reviewed, covering data from paradigms assessing inhibition of motor responses (antisaccade, go/nogo, stop-signal), cognitive sets (e.g., Wisconsin Card Sort Test), and emotion (fear extinction). The frontal cortex supports performance on these paradigms, but the specific neural circuitry varies: response inhibition depends upon fronto-basal ganglia networks, inhibition of cognitive sets is supported by orbitofrontal cortex, and retention of fear ex...

  18. Counting on dis-inhibition: a circuit motif for interval counting and selectivity in the anuran auditory system.

    Science.gov (United States)

    Naud, Richard; Houtman, Dave; Rose, Gary J; Longtin, André

    2015-11-01

    Information can be encoded in the temporal patterning of spikes. How the brain reads these patterns is of general importance and represents one of the greatest challenges in neuroscience. We addressed this issue in relation to temporal pattern recognition in the anuran auditory system. Many species of anurans perform mating decisions based on the temporal structure of advertisement calls. One important temporal feature is the number of sound pulses that occur with a species-specific interpulse interval. Neurons representing this pulse count have been recorded in the anuran inferior colliculus, but the mechanisms underlying their temporal selectivity are incompletely understood. Here, we construct a parsimonious model that can explain the key dynamical features of these cells with biologically plausible elements. We demonstrate that interval counting arises naturally when combining interval-selective inhibition with pulse-per-pulse excitation having both fast- and slow-conductance synapses. Interval-dependent inhibition is modeled here by a simple architecture based on known physiology of afferent nuclei. Finally, we consider simple implementations of previously proposed mechanistic explanations for these counting neurons and show that they do not account for all experimental observations. Our results demonstrate that tens of millisecond-range temporal selectivities can arise from simple connectivity motifs of inhibitory neurons, without recourse to internal clocks, spike-frequency adaptation, or appreciable short-term plasticity. Copyright © 2015 the American Physiological Society.

  19. A group-specific inhibitor of lysosomal cysteine proteinases selectively inhibits both proteolytic degradation and presentation of the antigen dinitrophenyl-poly-L-lysine by guinea pig accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    of antigens by guinea pig accessory cells. The proteinase inhibitor benzyloxycarbonyl-phenylalanylalanine-diazomethyl-ketone, which selectively inhibits cysteine proteinases, was used to block this set of enzymes in cultured cells. We demonstrate that the selective inhibition of the cysteine proteinases...

  20. Selective inhibition by a synthetic hirudin peptide of fibrin-dependent thrombosis in baboons

    International Nuclear Information System (INIS)

    Cadroy, Y.; Hanson, S.R.; Harker, L.A.; Maraganore, J.M.

    1991-01-01

    To determine the importance of the thrombin substrate recognition exosite for fibrinogen binding in the formation of both arterial and venous thrombi the authors evaluated the antithrombotic effects of the tyrosine-sulfated dodecapeptide from residues 53-64 of hirudin (H peptide) in a nonhuman primate model. This peptide was studied because it inhibits thrombin cleavages of fibrinogen by simple competition without blocking enzyme catalytic-site function. When an exteriorized arteriovenous access shunt model was used in baboons (Papio anubis), thrombus formation was induced by placing a thrombogenic device made of (i) a segment of tubing coated covalently with type I collagen, which generated platelet-rich thrombi under arterial flow conditions, and (ii) two subsequent annular regions of flow expansion that produced fibrin-rich thrombi typically associated with venous valves and veins. Thrombus formation was quantified by measurements of 111 In-labeled platelet and 125 I-labeled fibrinogen deposition in both arterial-flow and venous-flow portions of the device. These finding suggest that, by competitive inhibition of fibrinogen binding to thrombin, fibrin-rich venous-type thrombus formation may be selectively prevented. This strategy may be therapeutically attractive for preserving normal platelet function when conventional anticoagulant therapy is contraindicated

  1. Selective Inhibition of Histone Deacetylation in Melanoma Increases Targeted Gene Delivery by a Bacteriophage Viral Vector

    Directory of Open Access Journals (Sweden)

    Samuel Campbell

    2018-04-01

    Full Text Available The previously developed adeno-associated virus/phage (AAVP vector, a hybrid between M13 bacteriophage (phage viruses that infect bacteria only and human Adeno-Associated Virus (AAV, is a promising tool in targeted gene therapy against cancer. AAVP can be administered systemically and made tissue specific through the use of ligand-directed targeting. Cancer cells and tumor-associated blood vessels overexpress the αν integrin receptors, which are involved in tumor angiogenesis and tumor invasion. AAVP is targeted to these integrins via a double cyclic RGD4C ligand displayed on the phage capsid. Nevertheless, there remain significant host-defense hurdles to the use of AAVP in targeted gene delivery and subsequently in gene therapy. We previously reported that histone deacetylation in cancer constitutes a barrier to AAVP. Herein, to improve AAVP-mediated gene delivery to cancer cells, we combined the vector with selective adjuvant chemicals that inhibit specific histone deacetylases (HDAC. We examined the effects of the HDAC inhibitor C1A that mainly targets HDAC6 and compared this to sodium butyrate, a pan-HDAC inhibitor with broad spectrum HDAC inhibition. We tested the effects on melanoma, known for HDAC6 up-regulation, and compared this side by side with a normal human kidney HEK293 cell line. Varying concentrations were tested to determine cytotoxic levels as well as effects on AAVP gene delivery. We report that the HDAC inhibitor C1A increased AAVP-mediated transgene expression by up to ~9-fold. These findings indicate that selective HDAC inhibition is a promising adjuvant treatment for increasing the therapeutic value of AAVP.

  2. Segregating Top-Down Selective Attention from Response Inhibition in a Spatial Cueing Go/NoGo Task: An ERP and Source Localization Study.

    Science.gov (United States)

    Hong, Xiangfei; Wang, Yao; Sun, Junfeng; Li, Chunbo; Tong, Shanbao

    2017-08-29

    Successfully inhibiting a prepotent response tendency requires the attentional detection of signals which cue response cancellation. Although neuroimaging studies have identified important roles of stimulus-driven processing in the attentional detection, the effects of top-down control were scarcely investigated. In this study, scalp EEG was recorded from thirty-two participants during a modified Go/NoGo task, in which a spatial-cueing approach was implemented to manipulate top-down selective attention. We observed classical event-related potential components, including N2 and P3, in the attended condition of response inhibition. While in the ignored condition of response inhibition, a smaller P3 was observed and N2 was absent. The correlation between P3 and CNV during the foreperiod suggested an inhibitory role of P3 in both conditions. Furthermore, source analysis suggested that P3 generation was mainly localized to the midcingulate cortex, and the attended condition showed increased activation relative to the ignored condition in several regions, including inferior frontal gyrus, middle frontal gyrus, precentral gyrus, insula and uncus, suggesting that these regions were involved in top-down attentional control rather than inhibitory processing. Taken together, by segregating electrophysiological correlates of top-down selective attention from those of response inhibition, our findings provide new insights in understanding the neural mechanisms of response inhibition.

  3. Item-cued directed forgetting of related words and pictures in children and adults: selective rehearsal versus cognitive inhibition.

    Science.gov (United States)

    Lehman, E B; McKinley-Pace, M; Leonard, A M; Thompson, D; Johns, K

    2001-01-01

    The main purpose of this study was to compare the relative importance of selective rehearsal and cognitive inhibition in accounting for developmental changes in the directed-forgetting paradigm developed by R. A. Bjork (1972). In two experiments, children in Grades 2 and 5 and college students were asked to remember some words or pictures and to forget others when items were categorically related. Their memory for both items and the associated remember or forget cues was then tested with recall and recognition. Fifth graders recognized more of the forget-cued words than college students did. The pattern of results suggested that age differences in rehearsal and source monitoring (i.e., remembering whether a word had been cued remember or forget) were better explanatory mechanisms for children's forgetting inefficiencies than retrieval inhibition was. The results are discussed in terms of a multiple process view of inhibition.

  4. Blocking S1P interaction with S1P1 receptor by a novel competitive S1P1-selective antagonist inhibits angiogenesis

    International Nuclear Information System (INIS)

    Fujii, Yasuyuki; Ueda, Yasuji; Ohtake, Hidenori; Ono, Naoya; Takayama, Tetsuo; Nakazawa, Kiyoshi; Igarashi, Yasuyuki; Goitsuka, Ryo

    2012-01-01

    Highlights: ► The effect of a newly developed S1P 1 -selective antagonist on angiogenic responses. ► S1P 1 is a critical component of VEGF-related angiogenic responses. ► S1P 1 -selective antagonist showed in vitro activity to inhibit angiogenesis. ► S1P 1 -selective antagonist showed in vivo activity to inhibit angiogenesis. ► The efficacy of S1P 1 -selective antagonist for anti-cancer therapies. -- Abstract: Sphingosine 1-phosphate receptor type 1 (S1P 1 ) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P 1 and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P 1 -selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P 1 antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P 1 is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.

  5. Selective albumin-binding surfaces modified with a thrombin-inhibiting peptide.

    Science.gov (United States)

    Freitas, Sidónio C; Maia, Sílvia; Figueiredo, Ana C; Gomes, Paula; Pereira, Pedro J B; Barbosa, Mário A; Martins, M Cristina L

    2014-03-01

    Blood-contacting medical devices have been associated with severe clinical complications, such as thrombus formation, triggered by the activation of the coagulation cascade due to the adsorption of certain plasma proteins on the surface of biomaterials. Hence, the coating of such surfaces with antithrombotic agents has been used to increase biomaterial haemocompatibility. Biomaterial-induced clotting may also be decreased by albumin adsorption from blood plasma in a selective and reversible way, since this protein is not involved in the coagulation cascade. In this context, this paper reports that the immobilization of the thrombin inhibitor D-Phe-Pro-D-Arg-D-Thr-CONH2 (fPrt) onto nanostructured surfaces induces selective and reversible adsorption of albumin, delaying the clotting time when compared to peptide-free surfaces. fPrt, synthesized with two glycine residues attached to the N-terminus (GGfPrt), was covalently immobilized onto self-assembled monolayers (SAMs) having different ratios of carboxylate-hexa(ethylene glycol)- and tri(ethylene glycol)-terminated thiols (EG6-COOH/EG3) that were specifically designed to control GGfPrt orientation, exposure and density at the molecular level. In solution, GGfPrt was able to inactivate the enzymatic activity of thrombin and to delay plasma clotting time in a concentration-dependent way. After surface immobilization, and independently of its concentration, GGfPrt lost its selectivity to thrombin and its capacity to inhibit thrombin enzymatic activity against the chromogenic substrate n-p-tosyl-Gly-Pro-Arg-p-nitroanilide. Nevertheless, surfaces with low concentrations of GGfPrt could delay the capacity of adsorbed thrombin to cleave fibrinogen. In contrast, GGfPrt immobilized in high concentrations was found to induce the procoagulant activity of the adsorbed thrombin. However, all surfaces containing GGfPrt have a plasma clotting time similar to the negative control (empty polystyrene wells), showing resistance to

  6. Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes

    Science.gov (United States)

    Song, Yong-Ak; Melik, Rohat; Rabie, Amr N.; Ibrahim, Ahmed M. S.; Moses, David; Tan, Ara; Han, Jongyoon; Lin, Samuel J.

    2011-12-01

    Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.

  7. Cushing's syndrome after intralesional triamcinolone acetonide: a systematic review of the literature and multinational survey.

    Science.gov (United States)

    Fredman, Rafi; Tenenhaus, Mayer

    2013-06-01

    Intralesional triamcinolone acetonide (TAC) is a well-established treatment for keloids and hypertrophic scars. The present text provides a systematic review of all previously reported cases of Cushing's syndrome resulting from intralesional TAC in an effort to discover whether an association exists between dosage or frequency of injection and the subsequent development of Cushing's syndrome. Data collected from a multinational survey of plastic surgeons is presented and discussed to understand current trends in the use of TAC. Recommendations for early recognition of Cushing's syndrome, TAC dosages in children, and follow up guidelines are presented. A systematic review of the literature from 1950 to 2012 was performed to evaluate outcomes following intralesional TAC used for the treatment of scars. A confidential survey was sent to 4125 plastic surgeons, 102 responses from 9 countries were received. A total of 18 cases of Cushing's syndrome after intralesional TAC have been reported in the English world literature. Survey data reveals that at least 30% (25/84) of plastic surgeons exceed the recommended dosage of TAC and 47% (46/97) are not aware of Cushing's syndrome as a possible complication of intralesional TAC. Cushing's syndrome resulting from intralesional TAC has been reported multiple times in the literature. Published literature suggests that TAC administered within the most recent recommendations does not appear to place adult patients at increased risk for developing Cushing's syndrome. Children appear to be most at risk for developing Cushing's syndrome and yet insufficient recommendations currently exist with regard to their safe dosage. Intralesional dosage should not exceed 30 mg per month in children while noting that at least one reported case of Cushing's syndrome resulted from a smaller dose. Diligent follow up and patient education is advised for any patient treated with TAC so that complications can be recognized and addressed promptly

  8. Evaulation of Incidence and Risk Factors for Intraocular Pressure Elevation After Intravitreal Triamcinolone Acetonide Injection

    Directory of Open Access Journals (Sweden)

    Didar Uçar

    2015-05-01

    Full Text Available Objectives: To investigate the effect of intravitreal triamcinolone acetonide (IVTA used for the macular edema on intraocular pressure (IOP and to determine the risk factors for IOP elevation. Materials and Methods: This retrospective study included 93 eyes of 85 patients who had 4 mg intravitreal triamcinolone injection. Of the 85 patients, 56 (65.8% had diabetic macular edema, 22 (25.8% had branch retinal, and 7 (8.2% had central retinal vein occlusion. IOP changes after injection as well as the relation between IOP elevation and age, sex, lens status, etiology of macular edema, baseline IOP were evaluated. Results: Fourty-six male and 39 female patients with mean age 61.58±9.5 years were evaluated. IOP was recorded to be >24 mmHg in 30 eyes (32.2% at follow-up visit after an average of 7.5 weeks. Normalization of IOP with medication was achieved in all IOP elevated eyes. Fifteen of 29 eyes (51.7% with vein occlusion and 15 of 64 eyes (23.3% with diabetic macula edema had IOP elevation (p=0.01. Twenty-six of 73 phakic (35.6% and 4 of 20 pseudophakic eyes (20% had IOP >24 mmHg (p=0.16. There was no association between IOP elevation and sex (p=0.33. Baseline IOP was 16.47±2.8 mmHg in eyes which had elevated IOP and 14.78±2.4 mmHg in the remaining. There was significant relation between IOP elevation and baseline IOP level (p=0.01. Conclusion: Elevated IOP is common side effect after IVTA, but normalization is usually achieved by topical medication. Patients with baseline IOP ≥15 mmHg and vein occlusion have higher risk for IOP elevation. (Turk J Ophthalmol 2015; 45: 86-91

  9. Comparison of dexamethasone intravitreal implant and intravitreal triamcinolone acetonide for the treatment of pseudophakic cystoid macular edema in diabetic patients

    Directory of Open Access Journals (Sweden)

    Dang Y

    2014-09-01

    Full Text Available Yalong Dang,1,* Yalin Mu,2,* Lin Li,3,* Yahui Mu,2 Shujing Liu,2 Chun Zhang,4 Yu Zhu,1 Yimin Xu4 1Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 2Department of Ophthalmology, Yellow River Hospital, Henan University of Science and Technology, Sanmenxia, Henan Province, 3Department of Ophthalmology, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province, 4Department of Ophthalmology, Peking University Third Hospital, Haidian District, Beijing, People's Republic of China *These authors contributed equally to this work. Background and objective: Our objective was to investigate the efficacy and safety of dexamethasone (DEX implant for the treatment of pseudophakic cystoid macular edema (PCME in diabetic patients. Study design: This was a prospective, non-randomized, interventional case series of 43 participants. Eighteen patients were enrolled in the DEX implant group and 25 were enrolled in an intravitreal triamcinolone acetonide (IVTA group. Main outcome measures: The primary efficacy measurement was the percentage of patients who gained improvements of more than ten letters in best corrected visual acuity (BCVA during 6 months of follow-up. Other efficacy measurements included change in BCVA, change in central macular thickness (CMT, and number of retreatments. The primary safety evaluation was the percentage of patients with intraocular hypertension and variation in intraocular pressure (IOP during 6 months of follow-up. Other adverse events, such as conjunctival hemorrhage, eye pain, secondary infection, endophthalmitis, noninfectious inflammation, retinal detachment, and implant migration, were also recorded during follow-up. Results: At month 1, we observed that the percentage of patients gaining improvement of more than ten letters was similar in both groups (P=0.625. As patients in the IVTA group were retreated several times, this

  10. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells

    Science.gov (United States)

    Lagadinou, Eleni D.; Sach, Alexander; Callahan, Kevin; Rossi, Randall M.; Neering, Sarah J.; Minhajuddin, Mohammad; Ashton, John M.; Pei, Shanshan; Grose, Valerie; O’Dwyer, Kristen M.; Liesveld, Jane L.; Brookes, Paul S.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    Summary Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally-defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed “ROS-low”). Second, ROS-low LSCs aberrantly over-express BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation. PMID:23333149

  11. Selective increase of in vivo firing frequencies in DA SN neurons after proteasome inhibition in the ventral midbrain.

    Science.gov (United States)

    Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen

    2014-09-01

    The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile.

    Directory of Open Access Journals (Sweden)

    Rami A Al-Horani

    Full Text Available Factor XIIIa (FXIIIa is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa's active site by using sulfated glycosaminoglycans (GAGs or non-saccharide GAG mimetics (NSGMs would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%. Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71% and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants.

  13. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata

    International Nuclear Information System (INIS)

    Aceves, J.; Young, J.M.; Arias-Montano, J.A.; Floran, B.; Garcia, M.

    1997-01-01

    The release of [ 3 H]GABA from slices of rat substantia nigra pars reticulata induced by increasing extracellular K + from 6 to 15 mM in the presence of 10 μM sulpiride was inhibited by 73±3% by 1 μM SCH 23390, consistent with a large component of release dependent upon D 1 receptor activation. The histamine H 3 receptor-selective agonist immepip (1 μM) and the non-selective agonist histamine (100 μM) inhibited [ 3 H]GABA release by 78±2 and 80±2%, respectively. The inhibition by both agonists was reversed by the H 3 receptor antagonist thioperamide (1 μM). However, in the presence of 1 μM SCH 23390 depolarization-induced release of [ 3 H]GABA was not significantly decreased by 1 μM immepip. In rats depleted of dopamine by pretreatment with reserpine, immepip no longer inhibited control release of [ 3 H]GABA, but in the presence of 1 μM SKF 38393, which produced a 7±1-fold stimulation of release, immepip reduced the release to a level not statistically different from that in the presence of immepip alone. Immepip (1 μM) also inhibited the depolarization-induced release of [ 3 H]dopamine from substantia nigra pars reticulata slices, by 38±3%.The evidence is consistent with the proposition that activation of histamine H 3 receptors leads to the selective inhibition of the component of depolarization-induced [ 3 H]GABA release in substantia nigra pars reticulata slices which is dependent upon D 1 receptor activation. This appears to be largely an action at the terminals of the striatonigral GABA projection neurons, which may be enhanced by a partial inhibition of dendritic [ 3 H]dopamine release. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation.

    Science.gov (United States)

    Radenkovic, Filip; Holland, Olivia; Vanderlelie, Jessica J; Perkins, Anthony V

    2017-12-15

    Auranofin is a thiol-reactive gold (I)-containing compound with potential asa chemotherapeutic. Auranofin has the capacity to selectively inhibit endogenous antioxidant enzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx), resulting in oxidative stress and the initiation of a pro-apoptotic cascade. The effect of Auranofin exposure on TrxR and GPx, and the potential for cellular protection through selenium supplementation was examined in the non-cancerous human cell line Swan-71. Auranofin exposure resulted in a concentration dependent differential inhibition of selenoprotein antioxidants. Significant inhibition of TrxR was observed at 20nM Auranofin with inhibition of GPx from 10µM. Significant increases in reactive oxygen species (ROS) were associated with antioxidant inhibition at Auranofin concentrations of 100nM (TrxR inhibition) and 10µM (TrxR and GPx inhibition), respectively. Evaluation of mitochondrial respiration demonstrated significant reductions in routine and maximal respiration at both 100nM and 10μM Auranofin. Auranofin treatment at concentrations of 10μM and higher concentrations resulted in a ∼68% decrease in cellular viability and was associated with elevations in pro-apoptotic markers cytochrome c flux control factor (FCFc) at concentration of 100nM and mitochondrial Bax at 10μM. The supplementation of selenium (100nM) prior to treatment had a generalized protective affect through the restoration of antioxidant activity with a significant increase in TrxR and GPx activity, a significant reduction in ROS and associated improvement in mitochondrial respiration and cellular viability (10µM ∼48% increase). Selenium supplementation reduced the FCFc at low doses of Auranofin (selenium exposure. Therefore, Auranofin dose and the selenium status of patients are important considerations in the therapeutic use of Auranofin as an agent of chemosensitization. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  15. Betulinic acid selectively increases protein degradation and enhances prostate cancer-specific apoptosis: possible role for inhibition of deubiquitinase activity.

    Directory of Open Access Journals (Sweden)

    Teresita Reiner

    Full Text Available Inhibition of the ubiquitin-proteasome system (UPS of protein degradation is a valid anti-cancer strategy and has led to the approval of bortezomib for the treatment of multiple myeloma. However, the alternative approach of enhancing the degradation of oncoproteins that are frequently overexpressed in cancers is less developed. Betulinic acid (BA is a plant-derived small molecule that can increase apoptosis specifically in cancer but not in normal cells, making it an attractive anti-cancer agent. Our results in prostate cancer suggested that BA inhibited multiple deubiquitinases (DUBs, which resulted in the accumulation of poly-ubiquitinated proteins, decreased levels of oncoproteins, and increased apoptotic cell death. In normal fibroblasts, however, BA did not inhibit DUB activity nor increased total poly-ubiquitinated proteins, which was associated with a lack of effect on cell death. In the TRAMP transgenic mouse model of prostate cancer, treatment with BA (10 mg/kg inhibited primary tumors, increased apoptosis, decreased angiogenesis and proliferation, and lowered androgen receptor and cyclin D1 protein. BA treatment also inhibited DUB activity and increased ubiquitinated proteins in TRAMP prostate cancer but had no effect on apoptosis or ubiquitination in normal mouse tissues. Overall, our data suggests that BA-mediated inhibition of DUBs and induction of apoptotic cell death specifically in prostate cancer but not in normal cells and tissues may provide an effective non-toxic and clinically selective agent for chemotherapy.

  16. Selective inhibition of influenza virus protein synthesis by inhibitors of DNA function

    International Nuclear Information System (INIS)

    Minor, P.D.; Dimmock, N.J.

    1977-01-01

    Various known inhibitors of cellular DNA function were shown to inhibit cellular RNA synthesis and influenza (fowl plague) virus multiplication. The drugs were investigated for their effect upon the synthesis of influenza virus proteins. According to this effect they could be classified with previously studied compounds as follows: Group I (ethidium bromide, proflavine, and N-nitroquinoline-N-oxide) inhibited both viral and cellular protein synthesis; Group II (nogalomycin, daunomycin and α-amanitin) inhibited viral but not cellular protein synthesis, and all viral proteins were inhibited coordinately; Group III (mithramycin, echinomycin, and actinomycin D) inhibited all viral but not cellular protein synthesis at high concentrations, but at a lower critical concentration inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein preferentially; Group IV(uv irradiation and camptothecin) inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein, but not other viral proteins, even at high doses. The mode of action of these inhibitors is discussed in relation to the mechanism of the nuclear events upon which influenza virus multiplication is dependent

  17. Structural, Biochemical, and Computational Studies Reveal the Mechanism of Selective Aldehyde Dehydrogenase 1A1 Inhibition by Cytotoxic Duocarmycin Analogues.

    Science.gov (United States)

    Koch, Maximilian F; Harteis, Sabrina; Blank, Iris D; Pestel, Galina; Tietze, Lutz F; Ochsenfeld, Christian; Schneider, Sabine; Sieber, Stephan A

    2015-11-09

    Analogues of the natural product duocarmycin bearing an indole moiety were shown to bind aldehyde dehydrogenase 1A1 (ALDH1A1) in addition to DNA, while derivatives without the indole solely addressed the ALDH1A1 protein. The molecular mechanism of selective ALDH1A1 inhibition by duocarmycin analogues was unraveled through cocrystallization, mutational studies, and molecular dynamics simulations. The structure of the complex shows the compound embedded in a hydrophobic pocket, where it is stabilized by several crucial π-stacking and van der Waals interactions. This binding mode positions the cyclopropyl electrophile for nucleophilic attack by the noncatalytic residue Cys302, thereby resulting in covalent attachment, steric occlusion of the active site, and inhibition of catalysis. The selectivity of duocarmycin analogues for ALDH1A1 is unique, since only minor alterations in the sequence of closely related protein isoforms restrict compound accessibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modeling intentional inhibition of actions

    NARCIS (Netherlands)

    Thilakarathne, D.J.; Treur, J.

    2015-01-01

    Inspired by cognitive and neurological literature on action ownership and action awareness, in this paper a computational cognitive model for intentional inhibition (i.e.; the capacity to voluntarily suspend or inhibit an action) is introduced. The interplay between (positive) potential selection of

  19. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis

    International Nuclear Information System (INIS)

    Zhao, Hangyong; Zhu, Huanghuang; Lin, Zhou; Lin, Gang; Lv, Guoqiang

    2015-01-01

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition of AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK–HO–1 signaling. - Highlights: • We synthesized compound 13 (C13), a α1-selective small molecule AMPK activator. • C13-induced AMPK activation requires α1 subunit in gastric epithelial cells (GECs). • C13 enhances Helicobacter pylori-induced pro-survival AMPK activation to inhibit GEC apoptosis. • C13 inhibits H. pylori-induced reactive oxygen species (ROS) production in GECs. • AMPK-heme oxygenase (HO-1) activation is required for C13-mediated anti-oxidant activity

  20. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hangyong; Zhu, Huanghuang; Lin, Zhou; Lin, Gang; Lv, Guoqiang, E-mail: lvguoqiangwuxivip@163.com

    2015-08-07

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition of AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK–HO–1 signaling. - Highlights: • We synthesized compound 13 (C13), a α1-selective small molecule AMPK activator. • C13-induced AMPK activation requires α1 subunit in gastric epithelial cells (GECs). • C13 enhances Helicobacter pylori-induced pro-survival AMPK activation to inhibit GEC apoptosis. • C13 inhibits H. pylori-induced reactive oxygen species (ROS) production in GECs. • AMPK-heme oxygenase (HO-1) activation is required for C13-mediated anti-oxidant activity.

  1. The modulation of inhibition of return by object-internal structure: implications for theories of object-based attentional selection.

    Science.gov (United States)

    Reppa, Irene; Leek, E Charles

    2003-06-01

    Recently, Vecera, Behrmann, and McGoldrick (2000), using a divided-attention task, reported that targets are detected more accurately when they occur on the same structural part of an object, suggesting that attention can be directed toward object-internal features. We present converging evidence using the object-based inhibition of return (IOR) paradigm as an implicit measure of selection. The results show that IOR is attenuated when cues and targets appear on the same part of an object relative to when they are separated by a part boundary. These findings suggest that object-based mechanisms of selection can operate over shape representations that make explicit information about object-internal structure.

  2. Children of Few Words: Relations Among Selective Mutism, Behavioral Inhibition, and (Social) Anxiety Symptoms in 3- to 6-Year-Olds.

    Science.gov (United States)

    Muris, Peter; Hendriks, Eline; Bot, Suili

    2016-02-01

    Children with selective mutism (SM) fail to speak in specific public situations (e.g., school), despite speaking normally in other situations (e.g., at home). The current study explored the phenomenon of SM in a sample of 57 non-clinical children aged 3-6 years. Children performed two speech tasks to assess their absolute amount of spoken words, while their parents completed questionnaires for measuring children's levels of SM, social anxiety and non-social anxiety symptoms as well as the temperament characteristic of behavioral inhibition. The results indicated that high levels of parent-reported SM were primarily associated with high levels of social anxiety symptoms. The number of spoken words was negatively related to behavioral inhibition: children with a more inhibited temperament used fewer words during the speech tasks. Future research is necessary to test whether the temperament characteristic of behavioral inhibition prompts children to speak less in novel social situations, and whether it is mainly social anxiety that turns this taciturnity into the psychopathology of SM.

  3. Fluoxetine-induced inhibition of synaptosomal [3H]5-HT release: Possible Ca2+-channel inhibition

    International Nuclear Information System (INIS)

    Stauderman, K.A.; Gandhi, V.C.; Jones, D.J.

    1992-01-01

    Fluoxetine, a selective 5-Ht uptake inhibitor, inhibited 15 mM K + -induced [ 3 H]5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K + used to depolarize the synaptosomes and the concentration of external Ca 2+ . Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of [ 3 H]5-HT release induced by the Ca 2+ -ionophore A 23187 or Ca 2+ -independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K + -induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca 2+ channels and Ca 2+ entry

  4. A novel intravitreal fluocinolone acetonide implant (Iluvien® in the treatment of patients with chronic diabetic macular edema that is insufficiently responsive to other medical treatment options: a case series

    Directory of Open Access Journals (Sweden)

    Schmit-Eilenberger VK

    2015-05-01

    Full Text Available Vera K Schmit-Eilenberger Augenklinik Städtisches Klinikum, Karlsruhe, Baden-Württemberg, Germany Background: Iluvien® is a novel, nonbiodegradable, sustained-release drug delivery system (0.2 µg/d fluocinolone acetonide [FAc] indicated in Europe for the treatment of vision impairment associated with chronic diabetic macular edema (DME, considered insufficiently responsive to available therapies.Objective: To evaluate the safety and efficacy of 190-µg FAc implant in patients with chronic DME refractory to other medical treatment options in a clinical setting. Methods: Retrospective registry data were collected by using standard case report forms (CRFs. Prior to intravitreal injection of the FAc implant, all patients were treated either with a vascular endothelial growth factor (VEGF antagonist and/or a steroid (triamcinolone, dexamethasone implant. Patients were excluded from receiving FAc if they had a known history of elevated intraocular pressure (IOP following corticosteroid therapy, glaucoma, ocular hypertension, or any contraindications cited in the summary of product characteristics. Best-corrected visual acuity (BCVA was the main study parameter. Central fovea thickness (CFT and IOP were measured concurrently. These parameters were recorded prior to and after the injection of the 190-µg FAc implant (between 1 week and 9 months. Injections were performed between May 2013 and March 2014.Results: Fifteen eyes from ten patients were treated. Thirteen eyes (nine patients were pseudophakic, and seven eyes (five patients were vitrectomized prior to receiving therapy. BCVA improved in eleven eyes (73.3%, remained unchanged in two eyes (13.3%, and decreased slightly in two eyes (13.3% at the last follow-up visit versus baseline levels. IOP increased in two patients and was controlled using fixed-combination of IOP-lowering eyedrops or sectorial cyclocryotherapy (n=1.Conclusion: The 190-µg FAc implant was efficacious and showed a favorable

  5. Hypertensive phase and early complications after Ahmed glaucoma valve implantation with intraoperative subtenon triamcinolone acetonide.

    Science.gov (United States)

    Turalba, Angela V; Pasquale, Louis R

    2014-01-01

    To evaluate intraoperative subtenon triamcinolone acetonide (TA) as an adjunct to Ahmed glaucoma valve (AGV) implantation. Retrospective comparative case series. Forty-two consecutive cases of uncontrolled glaucoma undergoing AGV implantation: 19 eyes receiving intraoperative subtenon TA and 23 eyes that did not receive TA. A retrospective chart review was performed on consecutive pseudophakic adult patients with uncontrolled glaucoma undergoing AGV with and without intraoperative subtenon TA injection by a single surgeon. Clinical data were collected from 42 eyes and analyzed for the first 6 months after surgery. Primary outcomes included intraocular pressure (IOP) and number of glaucoma medications prior to and after AGV implantation. The hypertensive phase (HP) was defined as an IOP measurement of greater than 21 mmHg (with or without medications) during the 6-month postoperative period that was not a result of tube obstruction, retraction, or malfunction. Postoperative complications and visual acuity were analyzed as secondary outcome measures. Five out of 19 (26%) TA cases and 12 out of 23 (52%) non-TA cases developed the HP (P=0.027). Mean IOP (14.2±4.6 in TA cases versus [vs] 14.7±5.0 mmHg in non-TA cases; P=0.78), and number of glaucoma medications needed (1.8±1.3 in TA cases vs 1.6±1.1 in the comparison group; P=0.65) were similar between both groups at 6 months. Although rates of serious complications did not differ between the groups (13% in the TA group vs 16% in the non-TA group), early tube erosion (n=1) and bacterial endophthalmitis (n=1) were noted with TA but not in the non-TA group. Subtenon TA injection during AGV implantation may decrease the occurrence of the HP but does not alter the ultimate IOP outcome and may pose increased risk of serious complications within the first 6 months of surgery.

  6. Benefits of Systemic Anti-inflammatory Therapy versus Fluocinolone Acetonide Intraocular Implant for Intermediate Uveitis, Posterior Uveitis, and Panuveitis: Fifty-four-Month Results of the Multicenter Uveitis Steroid Treatment (MUST) Trial and Follow-up Study.

    Science.gov (United States)

    Kempen, John H; Altaweel, Michael M; Drye, Lea T; Holbrook, Janet T; Jabs, Douglas A; Sugar, Elizabeth A; Thorne, Jennifer E

    2015-10-01

    To compare the benefits of fluocinolone acetonide implant therapy versus systemic corticosteroid therapy supplemented (when indicated) with immunosuppression for intermediate uveitis, posterior uveitis, and panuveitis. Additional follow-up of a randomized comparative effectiveness trial cohort. Two hundred fifty-five patients with intermediate uveitis, posterior uveitis, or panuveitis randomized to implant or systemic therapy. Best-corrected visual acuity (BCVA), visual field mean deviation (MD), activity of uveitis, and presence of macular edema (per reading center grading) ascertained prospectively. Trial participants were followed-up for 54 months from original randomization. The visual function trajectory in uveitic eyes demonstrated a similar (P = 0.73) degree of modest (not statistically significant) improvement from baseline to 54 months in both groups (mean improvement in BCVA at 54 months, 2.4 and 3.1 letters in the implant and systemic groups, respectively). Many had excellent initial visual acuity, limiting the potential for improvement. The mean automated perimetry MD score remained similar to baseline throughout 48 months of follow-up in both groups. Overall control of inflammation was superior in the implant group at every time point assessed (P treatment within the first 6 months, the systemic group gradually improved over time such that the proportions with macular edema converged in the 2 groups by 36 months and overlapped thereafter (P = 0.41 at 48 months). Visual outcomes of fluocinolone acetonide implant and systemic treatment for intermediate uveitis, posterior uveitis, and panuveitis were similarly favorable through 54 months. The implant maintained a clear advantage in controlling inflammation through 54 months. Nevertheless, with systemic therapy, most patients also experienced greatly improved inflammatory status. Macular edema improved equally with longer follow-up. Based on cost effectiveness and side-effect considerations, systemic

  7. Blocking S1P interaction with S1P{sub 1} receptor by a novel competitive S1P{sub 1}-selective antagonist inhibits angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yasuyuki, E-mail: y.fujii@po.rd.taisho.co.jp [Department of Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Saitama, Saitama 331-9530 (Japan); Ueda, Yasuji; Ohtake, Hidenori; Ono, Naoya; Takayama, Tetsuo; Nakazawa, Kiyoshi [Department of Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Saitama, Saitama 331-9530 (Japan); Igarashi, Yasuyuki [Laboratory of Biomembrane and Biofunctional Chemistry, Hokkaido University, Sapporo, Hokkaido 060-0812 (Japan); Goitsuka, Ryo [Division of Development and Aging, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba 278-0022 (Japan)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer The effect of a newly developed S1P{sub 1}-selective antagonist on angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1} is a critical component of VEGF-related angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vitro activity to inhibit angiogenesis. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vivo activity to inhibit angiogenesis. Black-Right-Pointing-Pointer The efficacy of S1P{sub 1}-selective antagonist for anti-cancer therapies. -- Abstract: Sphingosine 1-phosphate receptor type 1 (S1P{sub 1}) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P{sub 1} and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P{sub 1}-selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P{sub 1} antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P{sub 1} is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.

  8. Inhibition selectivity of grapefruit juice components on human cytochromes P450.

    Science.gov (United States)

    Tassaneeyakul, W; Guo, L Q; Fukuda, K; Ohta, T; Yamazoe, Y

    2000-06-15

    Five compounds including furanocoumarin monomers (bergamottin, 6', 7'-dihydroxybergamottin (DHB)), furanocoumarin dimers (4-¿¿6-hydroxy-71-¿(1-hydroxy-1-methyl)ethyl-4-methyl-6-(7-oxo-7H- furo¿3,2-g1benzopyran-4-yl)-4-hexenyl]oxy]-3,7-dimethyl- 2-octenyl]oxy]-7H-furo[3,2-g]¿1benzopyran-7-one (GF-I-1) and 4-¿¿6-hydroxy-7¿¿4-methyl-1-(1-methylethenyl)-6-(7-oxo-7H-furo¿3, 2-g1benzopyran-4-yl)-4-hexenylŏxy-3, 7-dimethyl-2-octenylŏxy-7H-furo¿3,2-g1benzopyran-7-one (GF-I-4)), and a sesquiterpene nootkatone have been isolated from grapefruit juice and screened for their inhibitory effects toward human cytochrome P450 (P450) forms using selective substrate probes. Addition of ethyl acetate extract of grapefruit juice into an incubation mixture resulted in decreased activities of CYP3A4, CYP1A2, CYP2C9, and CYP2D6. All four furanocoumarins clearly inhibited CYP3A4-catalyzed nifedipine oxidation in concentration- and time-dependent manners, suggesting that these compounds are mechanism-based inhibitors of CYP3A4. Of the furanocoumarins investigated, furanocoumarin dimers, GF-I-1 and GF-I-4, were the most potent inhibitors of CYP3A4. Inhibitor concentration required for half-maximal rate of inactivation (K(I)) values for bergamottin, DHB, GF-I-1, and GF-I-4 were calculated, respectively, as 40.00, 5. 56, 0.31, and 0.13 microM, whereas similar values were observed on their inactivation rate constant at infinite concentration of inhibitor (k(inact), 0.05-0.08 min(-1)). Apparent selectivity toward CYP3A4 does occur with the furanocoumarin dimers. In contrast, bergamottin showed rather stronger inhibitory effect on CYP1A2, CYP2C9, CYP2C19, and CYP2D6 than on CYP3A4. DHB inhibited CYP3A4 and CYP1A2 activities at nearly equivalent potencies. Among P450 forms investigated, CYP2E1 was the least sensitive to the inhibitory effect of furanocoumarin components. A sesquiterpene nootkatone has no significant effect on P450 activities investigated except for CYP2A6 and CYP2C19

  9. Cooperation for Better Inhibiting.

    Science.gov (United States)

    Novoa, Eva Maria; Ribas de Pouplana, Lluís

    2015-06-18

    Cladosporin is an antimalarial drug that acts as an ATP-mimetic to selectively inhibit Plasmodium lysyl-tRNA synthetase. Using multiple crystal structures, Fang et al. (2015) reveal in this issue of Chemistry & Biology the fascinating mechanism responsible for cladosporin selectivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Bare eye detection of Hg(II) ions based on enzyme inhibition and using mercaptoethanol as a reagent to improve selectivity.

    Science.gov (United States)

    He, Liuying; Lu, Yuexiang; Wang, Feiyang; Gao, Xinxin; Chen, Ying; Liu, Yueying

    2018-02-13

    The authors describe a colorimetric method for the determination of Hg 2+ ions based on the inhibition of the activity of the enzyme urease. The pH value of solution increases when urease hydrolyzes urea, which can be visualized by adding a pH indicator such as Phenol Red (PhR). Mercaptoethanol as a typical thiol is added to the system to improve selectivity because it binds metal ions and then - unlike the Hg 2+ mercaptoethanol complex - does not inhibit urease. Hence, the color of the pH indicator PhR turns from yellow to pink as the solution becomes alkaline. The Hg 2+ mercaptoethanol complex, in contrast, strongly inhibits urease and the color of the solution remains yellow. The findings were used to design a photometric assay based on the measurement of the ratio of absorptions of PhR at 558 nm and 430 nm. It has a linear response over the 25 to 40 nM Hg 2+ concentration range and a 5 nM detection limit. This is well below the guideline values of Hg 2+ specified by the US Environmental Protection Agency and the World Health Organization for drinking water (10 nM and 30 nM, respectively). The method was employed to the determination of Hg 2+ in water samples spiked with 10 nM levels of Hg 2+ where color changes still can be observed visually. Graphical Abstract Schematic presentation of a colorimetric method for the ultrasensitive detection of Hg 2+ based on the inhibition of urease activity. Mercaptoethanol is used to improve the selectivity. Even at Hg 2+ concentrations as low as 5 nM, the color change still can be easily observed by bare eyes.

  11. Sulindac, a nonsteroidal anti-inflammatory drug, selectively inhibits interferon-γ-induced expression of the chemokine CXCL9 gene in mouse macrophages

    International Nuclear Information System (INIS)

    Sakaeda, Yoshiichi; Hiroi, Miki; Shimojima, Takahiro; Iguchi, Mayumi; Kanegae, Haruhide; Ohmori, Yoshihiro

    2006-01-01

    Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFNγ)-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFNγ-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 was not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFNγ-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFNγ-induced STAT1 activation; however, constitutive nuclear factor κB activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFNγ-inducible gene expression without inhibiting STAT1 activation

  12. Selective inhibition by chloramphenicol of pregnenolone-16 α-carbonitrile-inducible rat liver cytochrome P-450 isozymes

    International Nuclear Information System (INIS)

    Graves, P.E.; Kaminsky, L.S.; Halpert, J.

    1986-01-01

    Pregnenolone-16 α-carbonitrile (PCN) has been shown to induce, in male rats, cytochrome P-450 isozymes responsible for the formation of R-10-hydroxywarfarin and R-dehydrowarfarin. Antibodies to the major PCN-inducible isozyme (PB/PCN-E) inhibit both activities in microsomal preparations. Recently the authors have shown that PCN treatment of female rats also induces the formation of both R-warfarin metabolites. However, in both sexes chloramphenicol (CAP) treatment selectively inhibits only the rate of formation of the R-dehydrowarfarin. A decrease in microsomal P-450 content occurs after in vivo administration of CAP to PCN-treated rats of both sexes. This is in contrast to the lack of effect of CAP on P-450 levels in phenobarbital-treated rats. Covalent binding of 14 C-CAP to microsomal protein in vitro was increased 3 to 4-fold following PCN treatment. Chromatographic evidences suggests the presence of at least two PCN-induced isozymes of similar molecular weights in both male and female rat liver microsomes. These data are consistent with the multiplicity of PCN-inducible P-450 in rat liver

  13. Corrosion inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A O

    1965-12-29

    An acid corrosion-inhibiting composition consists essentially of a sugar, and an alkali metal salt selected from the group consisting of iodides and bromides. The weight ratio of the sugar to the alkali metal salt is between 2:1 and about 20,000:1. Also, a corrosion- inhibited phosphoric acid composition comprising at least about 20 wt% of phosphoric acid and between about 0.1 wt% and about 10 wt% of molasses, and between about 0.0005 wt% and about 1 wt% of potassium iodide. The weight ratio of molasses to iodide is greater than about 2:1. (11 claims)

  14. Contour detection based on nonclassical receptive field inhibition

    NARCIS (Netherlands)

    Grigorescu, Cosmin; Petkov, Nicolai; Westenberg, Michel A.

    We propose a biologically motivated computational step, called nonclassical receptive field (non-CRF) inhibition, more generally surround inhibition or suppression, to improve contour detection in machine vision. Non-CRF inhibition is exhibited by 80% of the orientation-selective neurons in the

  15. Preliminary Experience with Instillation of Triamcinolone Acetonide into the Urethra for Idiopathic Urethritis: A Prospective Pilot Study.

    Science.gov (United States)

    Ashraf, Junaid; Radford, Anna R; Turner, Alexander; Subramaniam, Ramnath

    2017-11-01

    Idiopathic bulbar urethritis (IBU) is characterized by hematuria ± dysuria without infection. Symptoms result from inflammation of the bulbar urethra, distal to external sphincter. IBU is difficult to manage and there is no recommended therapy. To determine whether instillation of triamcinolone acetonide is a useful treatment of IBU and its associated complications. Data were prospectively collected, for 22 months, on 14 consecutive patients presenting with terminal hematuria or blood spotting ± dysuria to a pediatric urology unit. Median age was 12 years (range: 10-15). Mean symptom duration was 13 months (range: 8-24). Normal baseline laboratory blood tests, urine cultures, and ultrasound assessments were seen in all; therefore, none were excluded on the basis of a known pathology. Follow-up telephone interviews, to assess symptom persistence and side effects, were performed at 6 weeks postintervention. The mean follow-up period was 15 months (range: 4-20). Visual confirmation of IBU was obtained cystoscopically and 40 mg of triamcinolone was instilled to the inflamed area under direct vision using an open-ended ureteral catheter. Symptoms resolution was the primary outcome. Repeat cystoscopic assessment ± triamcinolone instillation was recorded, as was the occurrence of complications. Seven patients (50%) required at least one further treatment. Overall complete or partial resolution was reported in 12/14 patients (85.7%). No side effects were reported. This small prospective series demonstrates that intraurethral instillation of triamcinolone seems to be a promising treatment option to alleviate inflammatory symptoms in majority of cases of idiopathic urethritis. Patient Summary: Fourteen boys with inflammation of the urethra, with no identifiable cause, were treated by topically triamcinolone, directly to the inflamed area. We demonstrate an 85.7% complete/partial resolution of symptoms with no side effects seen.

  16. Dissociations of the Fluocinolone Acetonide Implant: The Multicenter Uveitis Steroid Treatment (MUST) Trial and Follow-up Study.

    Science.gov (United States)

    Holbrook, Janet T; Sugar, Elizabeth A; Burke, Alyce E; Vitale, Albert T; Thorne, Jennifer E; Davis, Janet L; Jabs, Douglas A

    2016-04-01

    To describe fluocinolone acetonide implant dissociations in the Multicenter Uveitis Steroid Treatment (MUST) Trial. Randomized clinical trial with extended follow-up. Review of data collected on the first implant in the eye(s) of participants. Dissociation was defined as the drug pellet no longer being affixed to the strut and categorized as spontaneous or surgically related. A total of 250 eyes (146 patients) had at least 1 implant placed. Median follow-up time after implant placement was 6 years (range 0.5-9.2 years). Thirty-four dissociations were reported in 30 participants. There were 22 spontaneous events in 22 participants; 6-year cumulative risk of a spontaneous dissociation was 4.8% (95% confidence interval [CI]: 2.4%-9.1%). The earliest event occurred 4.8 years after placement. Nine of 22 eyes with data had a decline in visual acuity ≥5 letters temporally related to the dissociation. Thirty-nine implant removal surgeries were performed, 33 with replacement. Twelve dissociations were noted during implant removal surgeries in 10 participants (26%, 95% CI 15%-48%); 5 of these eyes had a decline in visual acuity ≥5 letters after surgery. The time from implant placement to removal surgery was longer for the surgeries at which dissociated implants were identified than for those without one (5.7 vs 3.7 years, P uveitis or its treatment. There is an increasing risk of dissociation of Retisert implants during follow-up; the risk is greater with removal/exchange surgeries, but the risk of both spontaneous and surgically related events increases with longevity of the implants. In 22% of affected eyes visual acuity declined by 15 letters. In the context of eyes with moderate to severe uveitis for years, this rate is not unexpected. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Molecular size is important for the safety and selective inhibition of intrinsic factor Xase for fucosylated chondroitin sulfate.

    Science.gov (United States)

    Yan, Lufeng; Li, Junhui; Wang, Danli; Ding, Tian; Hu, Yaqin; Ye, Xingqian; Linhardt, Robert J; Chen, Shiguo

    2017-12-15

    Fucosylated chondroitin sulfate from sea cucumber Isostichopus badionotus (FCS-Ib) showed potent anticoagulant activities without selectivity. The present study focused on developing safe FCS-Ib oligomers showing selective inhibition of intrinsic factor Xase (anti-FXase) prepared through partial N-deacetylation-deaminative cleavage. The N-deacetylation degree was regulated by reaction time, controlling the resulting oligomer distribution. Structure analysis confirmed the selectivity of degradation, and 12 high purity fractions with trisaccharide-repeating units were separated. In vitro anticoagulant assays indicated a decrease in molecular weight (Mw) dramatically reduced activated partial thromboplastin time (APTT), thrombin time (TT), AT-dependent anti-FIIa and anti-FXa activities, while the oligomers retained potent anti-FXase activity until they fell below 3kDa. Meanwhile, human FXII activation and platelet aggregation were markedly reduced with decreasing Mw and were moderate when under 12.0kDa. Thus, fragments of 3-12.0kDa should be safe and effective as selective inhibitors of intrinsic tenase complex for application as clinical anticoagulants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    International Nuclear Information System (INIS)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-01-01

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  19. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng, E-mail: zhouqs@suda.edu.cn

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  20. Structure-Activity Relationships of 1,2-Disubstituted Benzimidazoles: Selective Inhibition of Heme Oxygenase-2 Activity.

    Science.gov (United States)

    Kong, Xianqi; Vukomanovic, Dragic; Nakatsu, Kanji; Szarek, Walter A

    2015-08-01

    Devising ways to up- or down-regulate heme oxygenase activity is attracting much interest as a strategy for the treatment of a variety of disorders. With a view of obtaining compounds that exhibit high potency and selectivity as inhibitors of the heme oxygenase-2 (HO-2) isozyme (constitutive) relative to the heme oxygenase-1 (HO-1) isozyme (inducible), several 1,2-disubstituted 1H-benzimidazoles were designed and synthesized. Specifically, analogues were synthesized in which the C2 substituent was the following: (1H-imidazol-1-yl)methyl, (N-morpholinyl)methyl, cyclopentylmethyl, cyclohexylmethyl, or (norborn-2-yl)methyl. Compounds with the cyclic system in the C2 substituent being a carbocyclic ring, especially cyclohexyl or norborn-2-yl, and the N1 substituent being a ring-substituted benzyl group, especially 4-chlorobenzyl or 4-bromobenzyl, best exhibited the target criteria of high potency and selectivity toward inhibition of HO-2. The new candidates should be useful pharmacological tools and may have therapeutic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. P2-2: Effects of Color Preview History on Inter-Trial Inhibition of Selective Attention

    Directory of Open Access Journals (Sweden)

    Eunsam Shin

    2012-10-01

    Full Text Available The distractor previewing effect (DPE refers to the phenomenon that search times for target colors that were previewed (target preview or TP in a preceding target-absent display (TAD are slower than for distractor colors that were previewed (distractor preview, DP in the TAD. The DPE is explained as attentional inhibition for the features associated with TADs. We investigated history effects of this inter-trial inhibition by manipulating color preview history and examined the DPE using RT and the N2pc (an electrophysiological index of attention allocation. The TAD, ranging from 0 to 2, was followed by a target-present display in which participants responded to the shape of a color-oddball. For the 2TADs, a single color (red or green was repeated twice or the two colors were alternated, resulting in TTP, DDP, TDP, and DTP conditions depending on which color (target or distractor in the search display was previewed. The 1TADs resulted in the TP and the DP, and the 0TADs comprised immediate search trials. RTs showed: (a the TP was slower than the DP; (b the TTP and DDP were slowest and fastest, respectively, and between these the DTP was slower than the TDP; (c the TTP-DDP difference doubled the TP-DP difference due to the RT increase in the TTP. The conditions with slower RTs corresponded with late onsets and smaller amplitudes in the N2pc. These results suggest that effects of color preview history are cumulative with weight on more recent events and support the idea of inter-trial inhibition of target selection.

  2. The proteolytically stable peptidomimetic Pam-(Lys-βNSpe)6-NH2 selectively inhibits human neutrophil activation via formyl peptide receptor 2.

    Science.gov (United States)

    Skovbakke, Sarah Line; Heegaard, Peter M H; Larsen, Camilla J; Franzyk, Henrik; Forsman, Huamei; Dahlgren, Claes

    2015-01-15

    Immunomodulatory host defense peptides (HDPs) are considered to be lead compounds for novel anti-sepsis and anti-inflammatory agents. However, development of drugs based on HDPs has been hampered by problems with toxicity and low bioavailability due to in vivo proteolysis. Here, a subclass of proteolytically stable HDP mimics consisting of lipidated α-peptide/β-peptoid oligomers was investigated for their effect on neutrophil function. The most promising compound, Pam-(Lys-βNSpe)6-NH2, was shown to inhibit formyl peptide receptor 2 (FPR2) agonist-induced neutrophil granule mobilization and release of reactive oxygen species. The potency of Pam-(Lys-βNSpe)6-NH2 was comparable to that of PBP10, the most potent FPR2-selective inhibitor known. The immunomodulatory effects of structural analogs of Pam-(Lys-βNSpe)6-NH2 emphasized the importance of both the lipid and peptidomimetic parts. By using imaging flow cytometry in primary neutrophils and FPR-transfected cell lines, we found that a fluorescently labeled analog of Pam-(Lys-βNSpe)6-NH2 interacted selectively with FPR2. Furthermore, the interaction between Pam-(Lys-βNSpe)6-NH2 and FPR2 was found to prevent binding of the FPR2-specific activating peptide agonist Cy5-WKYMWM, while the binding of an FPR1-selective agonist was not inhibited. To our knowledge, Pam-(Lys-βNSpe)6-NH2 is the first HDP mimic found to inhibit activation of human neutrophils via direct interaction with FPR2. Hence, we consider Pam-(Lys-βNSpe)6-NH2 to be a convenient tool in the further dissection of the role of FPR2 in inflammation and homeostasis as well as for investigation of the importance of neutrophil stimulation in anti-infective therapy involving HDPs. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue

    International Nuclear Information System (INIS)

    Delport, Anzelle; Harvey, Brian H.; Petzer, Anél; Petzer, Jacobus P.

    2017-01-01

    The thionine dye, methylene blue (MB), is a potent inhibitor of monoamine oxidase (MAO) A, a property that may, at least in part, mediate its antidepressant effects in humans and animals. The central inhibition of MAO-A by MB has also been linked to serotonin toxicity (ST) which may arise when MB is used in combination with serotonergic drugs. Structural analogues and the principal metabolite of MB, azure B, have also been reported to inhibit the MAO enzymes, with all compounds exhibiting specificity for the MAO-A isoform. To expand on the structure-activity relationships (SARs) of MAO inhibition by MB analogues, the present study investigates the human MAO inhibition properties of five MB analogues: neutral red, Nile blue, new methylene blue, cresyl violet and 1,9-dimethyl methylene blue. Similar to MB, these analogues also are specific MAO-A inhibitors with cresyl violet (IC 50 = 0.0037 μM), Nile blue (IC 50 = 0.0077 μM) and 1,9-dimethyl methylene blue (IC 50 = 0.018 μM) exhibiting higher potency inhibition compared to MB (IC 50 = 0.07 μM). Nile blue also represents a potent MAO-B inhibitor with an IC 50 value of 0.012 μM. From the results it may be concluded that non-thionine MB analogues (e.g. cresyl violet and Nile blue) also may exhibit potent MAO inhibition, a property which should be considered when using these compounds in pharmacological studies. Benzophenoxazines such as cresyl violet and Nile blue are, similar to phenothiazines (e.g. MB), representative of high potency MAO-A inhibitors with a potential risk of ST. - Highlights: • MB analogues, cresyl violet and Nile blue, are high potency MAO-A inhibitors. • Nile blue also represents a potent MAO-B inhibitor. • Potent MAO-A inhibition should alert to potential serotonin toxicity.

  4. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Delport, Anzelle [Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Harvey, Brian H. [Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Pharmacology, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Petzer, Anél [Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Petzer, Jacobus P., E-mail: jacques.petzer@nwu.ac.za [Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa)

    2017-06-15

    The thionine dye, methylene blue (MB), is a potent inhibitor of monoamine oxidase (MAO) A, a property that may, at least in part, mediate its antidepressant effects in humans and animals. The central inhibition of MAO-A by MB has also been linked to serotonin toxicity (ST) which may arise when MB is used in combination with serotonergic drugs. Structural analogues and the principal metabolite of MB, azure B, have also been reported to inhibit the MAO enzymes, with all compounds exhibiting specificity for the MAO-A isoform. To expand on the structure-activity relationships (SARs) of MAO inhibition by MB analogues, the present study investigates the human MAO inhibition properties of five MB analogues: neutral red, Nile blue, new methylene blue, cresyl violet and 1,9-dimethyl methylene blue. Similar to MB, these analogues also are specific MAO-A inhibitors with cresyl violet (IC{sub 50} = 0.0037 μM), Nile blue (IC{sub 50} = 0.0077 μM) and 1,9-dimethyl methylene blue (IC{sub 50} = 0.018 μM) exhibiting higher potency inhibition compared to MB (IC{sub 50} = 0.07 μM). Nile blue also represents a potent MAO-B inhibitor with an IC{sub 50} value of 0.012 μM. From the results it may be concluded that non-thionine MB analogues (e.g. cresyl violet and Nile blue) also may exhibit potent MAO inhibition, a property which should be considered when using these compounds in pharmacological studies. Benzophenoxazines such as cresyl violet and Nile blue are, similar to phenothiazines (e.g. MB), representative of high potency MAO-A inhibitors with a potential risk of ST. - Highlights: • MB analogues, cresyl violet and Nile blue, are high potency MAO-A inhibitors. • Nile blue also represents a potent MAO-B inhibitor. • Potent MAO-A inhibition should alert to potential serotonin toxicity.

  5. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate

    Science.gov (United States)

    Loftin, Keith A.; Henny, Cynthia; Adams, Craig D.; Surampali, Rao; Mormile, Melanie R.

    2005-01-01

    Antibiotics are used to maintain healthy livestock and to promote weight gain in concentrated animal feed operations. Antibiotics rarely are metabolized completely by livestock and, thus, are often present in livestock waste and in waste-treatment lagoons. The introduction of antibiotics into anaerobic lagoons commonly used for swine waste treatment has the potential for negative impacts on lagoon performance, which relies on a consortium of microbes ranging from fermentative microorganisms to methanogens. To address this concern, the effects of eight common veterinary antibiotics on anaerobic activity were studied. Anaerobic microcosms, prepared from freshly collected lagoon slurries, were amended with individual antibiotics at 10 mg/L for the initial screening study and at 1, 5, and 25 mg/L for the dose-response study. Monitored metabolic indicators included hydrogen, methane, and volatile fatty acid concentrations as well as chemical oxygen demand. The selected antibiotics significantly inhibited methane production relative to unamended controls, thus indicating that antibiotics at concentrations commonly found in swine lagoons can negatively impact anaerobic metabolism. Additionally, historical antibiotic usage seems to be a potential factor in affecting methane production. Specifically, less inhibition of methane production was noted in samples taken from the lagoon with a history of multiple-antibiotic use.

  6. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate.

    Science.gov (United States)

    Loftin, Keith A; Henny, Cynthia; Adams, Craig D; Surampali, Rao; Mormile, Melanie R

    2005-04-01

    Antibiotics are used to maintain healthy livestock and to promote weight gain in concentrated animal feed operations. Antibiotics rarely are metabolized completely by livestock and, thus, are often present in livestock waste and in waste-treatment lagoons. The introduction of antibiotics into anaerobic lagoons commonly used for swine waste treatment has the potential for negative impacts on lagoon performance, which relies on a consortium of microbes ranging from fermentative microorganisms to methanogens. To address this concern, the effects of eight common veterinary antibiotics on anaerobic activity were studied. Anaerobic microcosms, prepared from freshly collected lagoon slurries, were amended with individual antibiotics at 10 mg/L for the initial screening study and at 1, 5, and 25 mg/L for the dose-response study. Monitored metabolic indicators included hydrogen, methane, and volatile fatty acid concentrations as well as chemical oxygen demand. The selected antibiotics significantly inhibited methane production relative to unamended controls, thus indicating that antibiotics at concentrations commonly found in swine lagoons can negatively impact anaerobic metabolism. Additionally, historical antibiotic usage seems to be a potential factor in affecting methane production. Specifically, less inhibition of methane production was noted in samples taken from the lagoon with a history of multiple-antibiotic use.

  7. Intentional and Reactive Inhibition during Spoken-Word Stroop Task Performance in People with Aphasia

    Science.gov (United States)

    Pompon, Rebecca Hunting; McNeil, Malcolm R.; Spencer, Kristie A.; Kendall, Diane L.

    2015-01-01

    Purpose: The integrity of selective attention in people with aphasia (PWA) is currently unknown. Selective attention is essential for everyday communication, and inhibition is an important part of selective attention. This study explored components of inhibition--both intentional and reactive inhibition--during spoken-word production in PWA and in…

  8. Triamcinolone acetonide activates an anti-inflammatory and folate receptor-positive macrophage that prevents osteophytosis in vivo.

    Science.gov (United States)

    Siebelt, Michiel; Korthagen, Nicoline; Wei, Wu; Groen, Harald; Bastiaansen-Jenniskens, Yvonne; Müller, Christina; Waarsing, Jan Hendrik; de Jong, Marion; Weinans, Harrie

    2015-12-05

    Triamcinolone acetonide (TA) is used for osteoarthritis management to reduce pain, and pre-clinical studies have shown that TA limits osteophyte formation. Osteophyte formation is known to be facilitated by synovial macrophage activation. TA injections might influence macrophage activation and subsequently reduce osteophytosis. Although widely applied in clinical care, the mechanism through which TA exerts this effect remains unknown. In this animal study, we investigated the in vivo effects of TA injections on macrophage activation, osteophyte development and joint degeneration. Furthermore, in vitro macrophage differentiation experiments were conducted to further explain working mechanisms of TA effects found in vivo. Osteoarthritis was induced in rat knees using papain injections and a running protocol. Untreated and TA-treated animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes. Synovial macrophage activation was measured in vivo using folate receptor β (FRβ)-targeted single-photon emission computed tomography/computed tomography. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology. To further explain the outcomes of our in vivo study, TA on macrophages was also studied in vitro. These cultured macrophages were either M1- or M2-activated, and they were analyzed using fluorescence-activated cell sorting for CD163 and FRβ expression as well as for messenger RNA (mRNA) expression of interleukin (IL)-10. Our in vivo study showed that intra-articular injections with TA strongly enhanced FRβ(+) macrophage activation. Despite stimulated macrophage activation, osteophyte formation was fully prevented. There was no beneficial effect of TA against cartilage degradation or subchondral bone sclerosis. In vitro macrophage cultures showed that TA strongly induced monocyte differentiation towards CD163(+) and FRβ(+) macrophages. Furthermore

  9. Selective and specific inhibition of the plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin.

    Science.gov (United States)

    Hoepfner, Dominic; McNamara, Case W; Lim, Chek Shik; Studer, Christian; Riedl, Ralph; Aust, Thomas; McCormack, Susan L; Plouffe, David M; Meister, Stephan; Schuierer, Sven; Plikat, Uwe; Hartmann, Nicole; Staedtler, Frank; Cotesta, Simona; Schmitt, Esther K; Petersen, Frank; Supek, Frantisek; Glynne, Richard J; Tallarico, John A; Porter, Jeffrey A; Fishman, Mark C; Bodenreider, Christophe; Diagana, Thierry T; Movva, N Rao; Winzeler, Elizabeth A

    2012-06-14

    With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity against both blood and liver stages. Using postgenomic methods, including a yeast deletion strains collection, we show that cladosporin specifically inhibits protein synthesis by directly targeting P. falciparum cytosolic lysyl-tRNA synthetase. Further, cladosporin is >100-fold more potent against parasite lysyl-tRNA synthetase relative to the human enzyme, which is conferred by the identity of two amino acids within the enzyme active site. Our data indicate that lysyl-tRNA synthetase is an attractive, druggable, antimalarial target that can be selectively inhibited. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Alkylation of phosphorothioated thrombin binding aptamers improves the selectivity of inhibition of tumor cell proliferation upon anticoagulation.

    Science.gov (United States)

    Yang, Xiantao; Zhu, Yuejie; Wang, Chao; Guan, Zhu; Zhang, Lihe; Yang, Zhenjun

    2017-07-01

    Recently, aptamers have been extensively researched for therapy and diagnostic applications. Thrombin-binding aptamer is a 15nt deoxyribonucleic acid screened by SELEX, it can specifically bind to thrombin and inhibit blood coagulation. Since it is also endowed with excellent antitumor activity, the intrinsic anticoagulation advantage converted to a main potential side effect for its further application in antiproliferative therapy. Site-specific alkylation was conducted through nucleophilic reaction of phosphorothioated TBAs using bromide reagents. Circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR) measurements were used to evaluate anticoagulation activity, and a CCK-8 assay was used to determine cell proliferation activity. The CD spectra of the modified TBAs were weakened, and their affinity for thrombin was dramatically reduced, as reflected by the K D values. On the other hand, their inhibition of A549 cells was retained. Incorporation of different alkyls apparently disrupted the binding of TBA to thrombin while maintaining the antitumor activity. A new modification strategy was established for the use of TBA as a more selective antitumor agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Prostaglandin E 2 (PgE 2 ) Inhibition By Crude Extracts Of Selected ...

    African Journals Online (AJOL)

    This study was undertaken to assess anti-inflammatory activity of crude extracts of Cassine transvaalensis Burtt-Davy, Clerodendrum uncinatum Schinz and Commiphora glandulosa Schinz using COX inhibition assay. Water extract of C. transvaalensis root bark (125mg/ml) exhibited a (90%) PGE2 inhibition in ...

  12. Disturbed prepulse inhibition in patients with schizophrenia is consequential to dysfunction of selective attention.

    Science.gov (United States)

    Scholes, Kirsty E; Martin-Iverson, Mathew T

    2010-03-01

    Controversy exists as to the cause of disturbed prepulse inhibition (PPI) in patients with schizophrenia. This study aimed to clarify the nature of PPI in schizophrenia using improved methodology. Startle and PPI were measured in 44 patients with schizophrenia and 32 controls across a range of startling stimulus intensities under two conditions, one while participants were attending to the auditory stimuli (ATTEND condition) and one while participants completed a visual task in order to ensure they were ignoring the auditory stimuli (IGNORE condition). Patients showed reduced PPI of R(MAX) (reflex capacity) and increased PPI of Hillslope (reflex efficacy) only under the INGORE condition, and failed to show the same pattern of attentional modulation of the reflex parameters as controls. In conclusion, disturbed PPI in schizophrenia appears to result from deficits in selective attention, rather than from preattentive dysfunction.

  13. Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the Wnt/beta-catenin pathway.

    Directory of Open Access Journals (Sweden)

    Desheng Lu

    Full Text Available BACKGROUND: Aberrant activation of Wnt/beta-catenin signaling promotes the development of several cancers. It has been demonstrated that the Wnt signaling pathway is activated in chronic lymphocytic leukemia (CLL cells, and that uncontrolled Wnt/beta-catenin signaling may contribute to the defect in apoptosis that characterizes this malignancy. Thus, the Wnt signaling pathway is an attractive candidate for developing targeted therapies for CLL. METHODOLOGY/PRINCIPAL FINDINGS: The diuretic agent ethacrynic acid (EA was identified as a Wnt inhibitor using a cell-based Wnt reporter assay. In vitro assays further confirmed the inhibitory effect of EA on Wnt/beta-catenin signaling. Cell viability assays showed that EA selectively induced cell death in primary CLL cells. Exposure of CLL cells to EA decreased the expression of Wnt/beta-catenin target genes, including LEF-1, cyclin D1 and fibronectin. Immune co-precipitation experiments demonstrated that EA could directly bind to LEF-1 protein and destabilize the LEF-1/beta-catenin complex. N-acetyl-L-cysteine (NAC, which can react with the alpha, beta-unsaturated ketone in EA, but not other anti-oxidants, prevented the drug's inhibition of Wnt/beta-catenin activation and its ability to induce apoptosis in CLL cells. CONCLUSIONS/SIGNIFICANCE: Our studies indicate that EA selectively suppresses CLL survival due to inhibition of Wnt/beta-catenin signaling. Antagonizing Wnt signaling in CLL with EA or related drugs may represent an effective treatment of this disease.

  14. Inhibition of G-Protein-Activated Inwardly Rectifying K+ Channels by the Selective Norepinephrine Reuptake Inhibitors Atomoxetine and Reboxetine

    Science.gov (United States)

    Kobayashi, Toru; Washiyama, Kazuo; Ikeda, Kazutaka

    2010-01-01

    Atomoxetine and reboxetine are commonly used as selective norepinephrine reuptake inhibitors (NRIs) for the treatment of attention-deficit/hyperactivity disorder and depression, respectively. Furthermore, recent studies have suggested that NRIs may be useful for the treatment of several other psychiatric disorders. However, the molecular mechanisms underlying the various effects of NRIs have not yet been sufficiently clarified. G-protein-activated inwardly rectifying K+ (GIRK or Kir3) channels have an important function in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to be a potential treatment for several neuropsychiatric disorders and cardiac arrhythmias. In this study, we investigated the effects of atomoxetine and reboxetine on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2, GIRK2, or GIRK1/GIRK4 subunits, extracellular application of atomoxetine or reboxetine reversibly reduced GIRK currents. The inhibitory effects were concentration-dependent, but voltage-independent, and time-independent during each voltage pulse. However, Kir1.1 and Kir2.1 channels were insensitive to atomoxetine and reboxetine. Atomoxetine and reboxetine also inhibited GIRK currents induced by activation of cloned A1 adenosine receptors or by intracellularly applied GTPγS, a nonhydrolyzable GTP analogue. Furthermore, the GIRK currents induced by ethanol were concentration-dependently inhibited by extracellularly applied atomoxetine but not by intracellularly applied atomoxetine. The present results suggest that atomoxetine and reboxetine inhibit brain- and cardiac-type GIRK channels, revealing a novel characteristic of clinically used NRIs. GIRK channel inhibition may contribute to some of the therapeutic effects of NRIs and adverse side effects related to nervous system and heart function. PMID:20393461

  15. Selection of proteolytic bacteria with ability to inhibit Vibrio harveyi during white shrimp (Litopenaeus vannamei cultivation

    Directory of Open Access Journals (Sweden)

    Suntinanalert, P.

    2007-03-01

    Full Text Available Five isolates of bacteria with high proteolytic activity, isolated from water samples of intensive shrimp ponds in southern Thailand, were selected to test for the ability to control the shrimp pathogen Vibrioharveyi. 70 μl of each culture broth were investigated for their ability to inhibit V. harveyi using an agar well diffusion test but only one isolate W3 gave a reasonable sized inhibition zone of 21.62 mm. This zone wassimilar to that of oxolinic acid (2 μg and sulfamethoxazole (25 μg. The W3 isolate was identified as Pseudomonas sp. Shrimp cultivation in aquaria was conducted to investigate the inhibition of V. harveyi bythe isolate W3. The experiment consisted of a treatment of the shrimp culture with an inoculum of the isolate W3 and V. harveyi (biocontrol set, a positive control set (only inoculation of V. harveyi and a negativecontrol set as without inoculation. No mortality was found in the negative control. Shrimp mortality in the biocontrol set (33% was lower than that in the positive control set (40%; however, it showed no significantdifference (p>0.05. The average numbers of V. harveyi over 12 days of the biocontrol set were lower than those in the positive control set by about 1 log cycle although the numbers were not significantly different(p>0.05. The shrimp growth rate at day 32 of cultivation was in order of the biocontrol treatment (10.17% > the negative control treatment (9.44% > the positive control set (9.28%, but no significant difference (p>0.05 was observed among treatments.

  16. Skin-targeted inhibition of PPAR β/δ by selective antagonists to treat PPAR β/δ-mediated psoriasis-like skin disease in vivo.

    Directory of Open Access Journals (Sweden)

    Katrin Hack

    Full Text Available We have previously shown that peroxisome proliferator activating receptor ß/δ (PPAR β/δ is overexpressed in psoriasis. PPAR β/δ is not present in adult epidermis of mice. Targeted expression of PPAR β/δ and activation by a selective synthetic agonist is sufficient to induce an inflammatory skin disease resembling psoriasis. Several signalling pathways dysregulated in psoriasis are replicated in this model, suggesting that PPAR β/δ activation contributes to psoriasis pathogenesis. Thus, inhibition of PPAR β/δ might harbour therapeutical potential. Since PPAR β/δ has pleiotropic functions in metabolism, skin-targeted inhibition offer the potential of reducing systemic adverse effects. Here, we report that three selective PPAR β/δ antagonists, GSK0660, compound 3 h, and GSK3787 can be formulated for topical application to the skin and that their skin concentration can be accurately quantified using ultra-high performance liquid chromatography (UPLC/mass spectrometry. These antagonists show efficacy in our transgenic mouse model in reducing psoriasis-like changes triggered by activation of PPAR β/δ. PPAR β/δ antagonists GSK0660 and compound 3 do not exhibit systemic drug accumulation after prolonged application to the skin, nor do they induce inflammatory or irritant changes. Significantly, the irreversible PPAR β/δ antagonist (GSK3787 retains efficacy when applied topically only three times per week which could be of practical clinical usefulness. Our data suggest that topical inhibition of PPAR β/δ to treat psoriasis may warrant further exploration.

  17. Combined Glaucoma Tube Shunt (Ahmed) and Fluocinolone Acetonide (Retisert™) Implantation Compared to Ahmed Alone in Uveitic Glaucoma.

    Science.gov (United States)

    Zivney, Mark; Lin, Phoebe; Edmunds, Beth; Parikh, Mansi; Takusagawa, Hana; Tehrani, Shandiz

    2016-12-01

    Glaucoma is a known complication of uveitis, and may require glaucoma tube shunt implantation for intraocular pressure (IOP) control. The success of glaucoma tube shunt implantation in the setting of a local ocular steroid depot in uveitic glaucoma remains unknown. The purpose of this study was to determine whether patients who underwent combined glaucoma tube shunt (Ahmed) and fluocinolone acetonide (Retisert™, Bausch + Lomb, Bridgewater, NJ, USA) implantation have superior outcomes compared to patients with Ahmed implants only in the setting of uveitic glaucoma. All participants were studied retrospectively and underwent Ahmed implantation alone or with existing/concurrent Retisert implantation (combined group) at a single academic institution. The main outcome measures were IOP, visual acuity (VA), number of IOP-lowering medications, and adverse events at 6 months after Ahmed implantation. Secondary outcome measures included adverse events and surgical success at 6 months after Ahmed implantation. Mean IOP at 6 months after Ahmed implantation was 15.3 ± 4.8 and 15.1 ± 4.9 mm Hg in the Ahmed only group (n = 17) and the combined group (n = 17), respectively (p = 0.89). The mean number of IOP-lowering medications at 6 months after Ahmed implantation was 1.7 ± 1.0 and 1.8 ± 1.0 in the Ahmed only group and the combined group, respectively (p = 0.86). Mean VA at 6 months after Ahmed implantation was 0.35 ± 0.29 and 0.42 ± 0.33 log mean angle of resolution in the Ahmed only group and the combined group, respectively (p = 0.50). No significant differences in surgical success or adverse events were noted between the two groups. At 6 months, no significant differences in mean IOP, mean number of IOP-lowering medications, VA, surgical success, or adverse events were noted between Ahmed implantation alone or combined Ahmed and Retisert implantation in patients with uveitic glaucoma.

  18. Glucocorticoids selectively inhibit the transcription of the interleukin 1β gene and decrease the stability of interleukin 1β mRNA

    International Nuclear Information System (INIS)

    Lee, S.W.; Tsou, A.P.; Chan, H.; Thomas, J.; Petrie, K.; Eugui, E.M.; Allison, A.C.

    1988-01-01

    Transcription of the interleukin 1β (IL-1β) gene was studied by mRNA hybridization with a cDNA probe in the human promonocytic cell line U-937. Phorbol ester and lipopolysaccharide increased the steady-state level of Il-1β mRNA. Glucocorticoids markedly decreased IL-1β mRNA levels by two mechanisms. Transcription of the IL-1 gene was inhibited, as shown by in vitro transcription assays with nuclei isolated from glucocorticoid-treated cells. Moreover, kinetic analyses and pulse-labeling of mRNAs showed that glucocorticoids selectively decrease the stability of IL-1β mRNA, without affecting the stability of β-actin and FOS mRNAs. Inhibition of the formation and effects IL-1 is a mechanism by which glucocorticoids can exert antiinflammatory and immunosuppressive effects

  19. Potent and selective inhibition of pathogenic viruses by engineered ubiquitin variants.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-05-01

    Full Text Available The recent Middle East respiratory syndrome coronavirus (MERS-CoV, Ebola and Zika virus outbreaks exemplify the continued threat of (re-emerging viruses to human health, and our inability to rapidly develop effective therapeutic countermeasures. Many viruses, including MERS-CoV and the Crimean-Congo hemorrhagic fever virus (CCHFV encode deubiquitinating (DUB enzymes that are critical for viral replication and pathogenicity. They bind and remove ubiquitin (Ub and interferon stimulated gene 15 (ISG15 from cellular proteins to suppress host antiviral innate immune responses. A variety of viral DUBs (vDUBs, including the MERS-CoV papain-like protease, are responsible for cleaving the viral replicase polyproteins during replication, and are thereby critical components of the viral replication cycle. Together, this makes vDUBs highly attractive antiviral drug targets. However, structural similarity between the catalytic cores of vDUBs and human DUBs complicates the development of selective small molecule vDUB inhibitors. We have thus developed an alternative strategy to target the vDUB activity through a rational protein design approach. Here, we report the use of phage-displayed ubiquitin variant (UbV libraries to rapidly identify potent and highly selective protein-based inhibitors targeting the DUB domains of MERS-CoV and CCHFV. UbVs bound the vDUBs with high affinity and specificity to inhibit deubiquitination, deISGylation and in the case of MERS-CoV also viral replicative polyprotein processing. Co-crystallization studies further revealed critical molecular interactions between UbVs and MERS-CoV or CCHFV vDUBs, accounting for the observed binding specificity and high affinity. Finally, expression of UbVs during MERS-CoV infection reduced infectious progeny titers by more than four orders of magnitude, demonstrating the remarkable potency of UbVs as antiviral agents. Our results thereby establish a strategy to produce protein-based inhibitors

  20. A novel method of liquid chromatography–tandem mass spectrometry combined with chemical derivatization for the determination of ribonucleosides in urine

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shangfu [State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong (China); Jin, Yibao [Shenzhen Institute for Drug Control, Shenzhen 518055 (China); State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Zhi; Lin, Shuhai [State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong (China); Liu, Hongxia [State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055 (China); Jiang, Yuyang [State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Cai, Zongwei, E-mail: zwcai@hkbu.edu.hk [State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong (China)

    2015-03-15

    Highlights: • A simple, robust and low-cost derivatization method was reported for ribonucleoside determination for the first time. • Improvement of separation and enhancement of sensitivity were achieved by using the derivatization approach. • Isotope labeling method with acetone-d{sub 6} and multivariate statistical analysis facilitated ribonucleoside identification. • Application of the method enabled the positive identification of 56 ribonucleosides. - Abstract: Ribonucleosides are the end products of RNA metabolism. These metabolites, especially the modified ribonucleosides, have been extensively evaluated as cancer-related biomarkers. However, the determination of urinary ribonucleosides is still a challenge due to their low abundance, high polarity and serious matrix interferences in urine samples. In this study, a derivatization method based on a chemical reaction between ribonucleosides and acetone to form acetonides was developed for the determination of urinary ribonucleosides. The derivative products, acetonides, were detected by using liquid chromatography–tandem mass spectrometry (LC–MS/MS). The methodological evaluation was performed by quantifying four nucleosides for linear range, average recovery, precision, accuracy and stability. The validated procedures were applied to screen modified ribonucleosides in urine samples. Improvement of separation and enhancement of sensitivity were obtained in the analysis. To identify ribonucleosides, inexpensive isotope labeling acetone (acetone-d{sub 6}) and label-free acetone were applied to form ordinary and deuterated acetonides, respectively. The two groups of samples were separated with orthogonal partial least squares (OPLS). The ordinary and deuterated pairs of acetonides were symmetrically distributed in the S-plot for easy and visual signal identification. After structural confirmation, a total of 56 ribonucleosides were detected, 52 of which were modified ribonucleosides. The application

  1. Selective and rapid monitoring of dual platelet inhibition by aspirin and P2Y12 antagonists by using multiple electrode aggregometry

    Directory of Open Access Journals (Sweden)

    Lorenz Reinhard

    2010-05-01

    Full Text Available Abstract Background Poor platelet inhibition by aspirin or clopidogrel has been associated with adverse outcomes in patients with cardiovascular diseases. A reliable and facile assay to measure platelet inhibition after treatment with aspirin and a P2Y12 antagonist is lacking. Multiple electrode aggregometry (MEA, which is being increasingly used in clinical studies, is sensitive to platelet inhibition by aspirin and clopidogrel, but a critical evaluation of MEA monitoring of dual anti-platelet therapy with aspirin and P2Y12 antagonists is missing. Design and Methods By performing in vitro and ex vivo experiments, we evaluated in healthy subjects the feasibility of using MEA to monitor platelet inhibition of P2Y12 antagonists (clopidogrel in vivo, cangrelor in vitro and aspirin (100 mg per day in vivo, and 1 mM or 5.4 mM in vitro alone, and in combination. Statistical analyses were performed by the Mann-Whitney rank sum test, student' t-test, analysis of variance followed by the Holm-Sidak test, where appropriate. Results ADP-induced platelet aggregation in hirudin-anticoagulated blood was inhibited by 99.3 ± 1.4% by in vitro addition of cangrelor (100 nM; p 95% and 100 ± 3.2%, respectively (p in vitro or ex vivo. Oral intake of clopidogrel did not significantly reduce AA-induced aggregation, but P2Y12 blockade by cangrelor (100 nM in vitro diminished AA-stimulated aggregation by 53 ± 26% (p Conclusions Selective platelet inhibition by aspirin and P2Y12 antagonists alone and in combination can be rapidly measured by MEA. We suggest that dual anti-platelet therapy with these two types of anti-platelet drugs can be optimized individually by measuring platelet responsiveness to ADP and AA with MEA before and after drug intake.

  2. Hydrocortisone selectively inhibits IgE-dependent arachidonic acid release from rat peritoneal mast cells

    International Nuclear Information System (INIS)

    Heiman, A.S.; Crews, F.T.

    1984-01-01

    Purified rat mst cells were used to study the effects of antiinflammatory steroids on the release of [1-14C]-arachidonic acid ([1-14C]AA) and metabolites. Mast cell were incubated overnight with glucocorticoids, [1-14C]AA incorporated into cellular phospholipids and the release of [1-14C]AA, and metabolites determined using a variety of secretagogues. Release of [1-14C]AA and metabolites by concanavalin A, the antigen ovalbumin and anti-immunoglobulin E antibody was markedly reduced by glucocorticoid treatment. Neither the total incorporation of [1-14C]AA nor the distribution into phospholipids was altered by hydrocortisone pretreatment. Glucocorticoid pretreatment did not alter [1-14C]AA release stimulated by somatostatin, compound 48/80, or the calcium ionophore, A23187. These data indicate that antiinflammatory steroids selectively inhibit immunoglobulin dependent release of arachidonic acid from rat mast cells. These findings question the role of lipomodulin and macrocortin as general phospholipase inhibitors and suggest that they may be restricted to immunoglobulin stimuli

  3. Selective inhibition of Sarcocystis neurona calcium-dependent protein kinase 1 for equine protozoal myeloencephalitis therapy.

    Science.gov (United States)

    Ojo, Kayode K; Dangoudoubiyam, Sriveny; Verma, Shiv K; Scheele, Suzanne; DeRocher, Amy E; Yeargan, Michelle; Choi, Ryan; Smith, Tess R; Rivas, Kasey L; Hulverson, Matthew A; Barrett, Lynn K; Fan, Erkang; Maly, Dustin J; Parsons, Marilyn; Dubey, Jitender P; Howe, Daniel K; Van Voorhis, Wesley C

    2016-12-01

    Sarcocystis neurona is the most frequent cause of equine protozoal myeloencephalitis, a debilitating neurological disease of horses that can be difficult to treat. We identified SnCDPK1, the S. neurona homologue of calcium-dependent protein kinase 1 (CDPK1), a validated drug target in Toxoplasma gondii. SnCDPK1 shares the glycine "gatekeeper" residue of the well-characterized T. gondii enzyme, which allows the latter to be targeted by bumped kinase inhibitors. This study presents detailed molecular and phenotypic evidence that SnCDPK1 can be targeted for rational drug development. Recombinant SnCDPK1 was tested against four bumped kinase inhibitors shown to potently inhibit both T. gondii (Tg) CDPK1 and T. gondii tachyzoite growth. SnCDPK1 was inhibited by low nanomolar concentrations of these BKIs and S. neurona growth was inhibited at 40-120nM concentrations. Thermal shift assays confirmed these bumped kinase inhibitors bind CDPK1 in S. neurona cell lysates. Treatment with bumped kinase inhibitors before or after invasion suggests that bumped kinase inhibitors interfere with S. neurona mammalian host cell invasion in the 0.5-2.5μM range but interfere with intracellular division at 2.5μM. In vivo proof-of-concept experiments were performed in a murine model of S. neurona infection. The experimental infected groups treated for 30days with compound BKI-1553 (n=10 mice) had no signs of disease, while the infected control group had severe signs and symptoms of infection. Elevated antibody responses were found in 100% of control infected animals, but only 20% of BKI-1553 treated infected animals. Parasites were found in brain tissues of 100% of the control infected animals, but only in 10% of the BKI-1553 treated animals. The bumped kinase inhibitors used in these assays have been chemically optimized for potency, selectivity and pharmacokinetic properties, and hence are good candidates for treatment of equine protozoal myeloencephalitis. Copyright © 2016

  4. L-carnitine is an endogenous HDAC inhibitor selectively inhibiting cancer cell growth in vivo and in vitro.

    Science.gov (United States)

    Huang, Hongbiao; Liu, Ningning; Guo, Haiping; Liao, Siyan; Li, Xiaofen; Yang, Changshan; Liu, Shouting; Song, Wenbin; Liu, Chunjiao; Guan, Lixia; Li, Bing; Xu, Li; Zhang, Change; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2012-01-01

    L-carnitine (LC) is generally believed to transport long-chain acyl groups from fatty acids into the mitochondrial matrix for ATP generation via the citric acid cycle. Based on Warburg's theory that most cancer cells mainly depend on glycolysis for ATP generation, we hypothesize that, LC treatment would lead to disturbance of cellular metabolism and cytotoxicity in cancer cells. In this study, Human hepatoma HepG2, SMMC-7721 cell lines, primary cultured thymocytes and mice bearing HepG2 tumor were used. ATP content was detected by HPLC assay. Cell cycle, cell death and cell viability were assayed by flow cytometry and MTS respectively. Gene, mRNA expression and protein level were detected by gene microarray, Real-time PCR and Western blot respectively. HDAC activities and histone acetylation were detected both in test tube and in cultured cells. A molecular docking study was carried out with CDOCKER protocol of Discovery Studio 2.0 to predict the molecular interaction between L-carnitine and HDAC. Here we found that (1) LC treatment selectively inhibited cancer cell growth in vivo and in vitro; (2) LC treatment selectively induces the expression of p21(cip1) gene, mRNA and protein in cancer cells but not p27(kip1); (4) LC increases histone acetylation and induces accumulation of acetylated histones both in normal thymocytes and cancer cells; (5) LC directly inhibits HDAC I/II activities via binding to the active sites of HDAC and induces histone acetylation and lysine-acetylation accumulation in vitro; (6) LC treatment induces accumulation of acetylated histones in chromatin associated with the p21(cip1) gene but not p27(kip1) detected by ChIP assay. These data support that LC, besides transporting acyl group, works as an endogenous HDAC inhibitor in the cell, which would be of physiological and pathological importance.

  5. Combined inhibition of glycolysis, the pentose cycle, and thioredoxin metabolism selectively increases cytotoxicity and oxidative stress in human breast and prostate cancer

    Directory of Open Access Journals (Sweden)

    Ling Li

    2015-04-01

    Full Text Available Inhibition of glycolysis using 2-deoxy-d-glucose (2DG, 20 mM, 24–48 h combined with inhibition of the pentose cycle using dehydroepiandrosterone (DHEA, 300 µM, 24–48 h increased clonogenic cell killing in both human prostate (PC-3 and DU145 and human breast (MDA-MB231 cancer cells via a mechanism involving thiol-mediated oxidative stress. Surprisingly, when 2DG+DHEA treatment was combined with an inhibitor of glutathione (GSH synthesis (l-buthionine sulfoximine; BSO, 1 mM that depleted GSH>90% of control, no further increase in cell killing was observed during 48 h exposures. In contrast, when an inhibitor of thioredoxin reductase (TrxR activity (Auranofin; Au, 1 µM, was combined with 2DG+DHEA or DHEA-alone for 24 h, clonogenic cell killing was significantly increased in all three human cancer cell lines. Furthermore, enhanced clonogenic cell killing seen with the combination of DHEA+Au was nearly completely inhibited using the thiol antioxidant, N-acetylcysteine (NAC, 20 mM. Redox Western blot analysis of PC-3 cells also supported the conclusion that thioredoxin-1 (Trx-1 oxidation was enhanced by treatment DHEA+Au and inhibited by NAC. Importantly, normal human mammary epithelial cells (HMEC were not as sensitive to 2DG, DHEA, and Au combinations as their cancer cell counterparts (MDA-MB-231. Overall, these results support the hypothesis that inhibition of glycolysis and pentose cycle activity, combined with inhibition of Trx metabolism, may provide a promising strategy for selectively sensitizing human cancer cells to oxidative stress-induced cell killing.

  6. Hypertensive phase and early complications after Ahmed glaucoma valve implantation with intraoperative subtenon triamcinolone acetonide

    Directory of Open Access Journals (Sweden)

    Turalba AV

    2014-07-01

    Full Text Available Angela V Turalba,1,2 Louis R Pasquale1,2 1Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; 2Department of Ophthalmology, Harvard Medical School, Boston, MA, USA Objective: To evaluate intraoperative subtenon triamcinolone acetonide (TA as an adjunct to Ahmed glaucoma valve (AGV implantation. Design: Retrospective comparative case series. Participants: Forty-two consecutive cases of uncontrolled glaucoma undergoing AGV implantation: 19 eyes receiving intraoperative subtenon TA and 23 eyes that did not receive TA.Methods: A retrospective chart review was performed on consecutive pseudophakic adult patients with uncontrolled glaucoma undergoing AGV with and without intraoperative subtenon TA injection by a single surgeon. Clinical data were collected from 42 eyes and analyzed for the first 6 months after surgery.Main outcome measures: Primary outcomes included intraocular pressure (IOP and number of glaucoma medications prior to and after AGV implantation. The hypertensive phase (HP was defined as an IOP measurement of greater than 21 mmHg (with or without medications during the 6-month postoperative period that was not a result of tube obstruction, retraction, or malfunction. Postoperative complications and visual acuity were analyzed as secondary outcome measures. Results: Five out of 19 (26% TA cases and 12 out of 23 (52% non-TA cases developed the HP (P=0.027. Mean IOP (14.2±4.6 in TA cases versus [vs] 14.7±5.0 mmHg in non-TA cases; P=0.78, and number of glaucoma medications needed (1.8±1.3 in TA cases vs 1.6±1.1 in the comparison group; P=0.65 were similar between both groups at 6 months. Although rates of serious complications did not differ between the groups (13% in the TA group vs 16% in the non-TA group, early tube erosion (n=1 and bacterial endophthalmitis (n=1 were noted with TA but not in the non-TA group.Conclusions: Subtenon TA injection during AGV implantation may decrease the

  7. Selectivity of Inhibition of N-Succinyl-l,l-Diaminopimelic Acid Desuccinylase in Bacteria: The product of dapE-gene Is Not the Target of l-Captopril Antimicrobial Activity.

    Science.gov (United States)

    Uda, Narasimha Rao; Creus, Marc

    2011-01-01

    The emergence of bacterial strains that are resistant to virtually all currently available antibiotics underscores the importance of developing new antimicrobial compounds. N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a metallohydrolase involved in the meso-diaminopimelate (mDAP)/lysine biosynthetic pathway necessary for lysine biosynthesis and for building the peptidoglycan cell wall. Because DapE is essential for Gram-negative and some Gram-positive bacteria, DapE has been proposed as a good target for antibiotic development. Recently, l-captopril has been suggested as a lead compound for inhibition of DapE, although its selectivity for this enzyme target in bacteria remains unclear (Gillner et al. (2009)). Here, we tested the selectivity of l-captopril against DapE in bacteria. Since DapE knockout strains of gram-negative bacteria are viable upon chemical supplementation with mDAP, we reasoned that the antimicrobial activity of compounds targeting DapE should be abolished in mDAP-containing media. Although l-captopril had modest antimicrobial activity in Escherichia coli and in Salmonella enterica, to our surprise, inhibition of bacterial growth was independent both of mDAP supplementation and DapE over-expression. We conclude that DapE is not the main target of l-captopril inhibition in these bacteria. The methods implemented here will be useful for screening DapE-selective antimicrobial compounds directly in bacterial cultures.

  8. Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics.

    Science.gov (United States)

    Sadeh, Sadra; Rotter, Stefan

    2015-01-01

    The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not

  9. Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics.

    Directory of Open Access Journals (Sweden)

    Sadra Sadeh

    2015-01-01

    Full Text Available The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are

  10. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres

    Directory of Open Access Journals (Sweden)

    Chang R

    2015-05-01

    cytotoxicity against MG-63 osteosarcoma cells when compared with normal osteoblasts. We have demonstrated for the first time that APNPs can encapsulate hydrophobic curcumin in their hydrophobic cores, and curcumin-loaded APNPs could be an innovative treatment for the selective inhibition of osteosarcoma cells. Keywords: osteosarcoma, selective inhibition, curcumin, arginine-rich, arginine-glycine-aspartic acid, self-assembly

  11. Examining Mechanical Strength Characteristics of Selective Inhibition Sintered HDPE Specimens Using RSM and Desirability Approach

    Science.gov (United States)

    Rajamani, D.; Esakki, Balasubramanian

    2017-09-01

    Selective inhibition sintering (SIS) is a powder based additive manufacturing (AM) technique to produce functional parts with an inexpensive system compared with other AM processes. Mechanical properties of SIS fabricated parts are of high dependence on various process parameters importantly layer thickness, heat energy, heater feedrate, and printer feedrate. In this paper, examining the influence of these process parameters on evaluating mechanical properties such as tensile and flexural strength using Response Surface Methodology (RSM) is carried out. The test specimens are fabricated using high density polyethylene (HDPE) and mathematical models are developed to correlate the control factors to the respective experimental design response. Further, optimal SIS process parameters are determined using desirability approach to enhance the mechanical properties of HDPE specimens. Optimization studies reveal that, combination of high heat energy, low layer thickness, medium heater feedrate and printer feedrate yielded superior mechanical strength characteristics.

  12. Inhibition of PAF-induced expression of CD11b and shedding of L-selectin on human neutrophils and eosinophils by the type IV selective PDE inhibitor, rolipram

    NARCIS (Netherlands)

    Dijkhuizen, B; deMonchy, JGR; Dubois, AEJ; Gerritsen, J; Kauffman, HF

    We quantitatively determined whether the selective phosphodiesterase (PDE) inhibitor, rolipram, inhibits changes in the adhesion molecules CD11b and L-selectin on platelet-activating factor (PAF)-stimulated human neutrophils and eosinophils in vitro. Incubations were performed in human whole blood

  13. The role of non-CRF inhibition in contour detection

    NARCIS (Netherlands)

    Grigorescu, C.; Petkov, N.; Westenberg, M.A.

    2003-01-01

    We propose a biologically motivated computational step, called non-classical receptive field (non-CRF) inhibition, to improve the performance of contour detectors. Non-CRF inhibition is exhibited by 80% of the orientation selective neurons in the primary visual cortex of macaque monkeys and has been

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Environment friendly chemoselective deprotection of acetonides and cleavage of acetals and ketals in aqueous medium without using any catalyst or organic solvent · S Mukherjee A Sengupta S C Roy · More Details Abstract Fulltext PDF. Highly chemoselective environment friendly deprotection of acetonides and cleavage ...

  15. Peroxisome Proliferator-Activated Receptor-γ Inhibits Transformed Growth of Non-Small Cell Lung Cancer Cells through Selective Suppression of Snail

    Directory of Open Access Journals (Sweden)

    Rashmi Choudhary

    2010-03-01

    Full Text Available Work from our laboratory and others has demonstrated that activation of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ inhibits transformed growth of non-small cell lung cancer (NSCLC cell lines in vitro and in vivo. We have demonstrated that activation of PPARγ promotes epithelial differentiation of NSCLC by increasing expression of E-cadherin, as well as inhibiting expression of COX-2 and nuclear factor-κB. The Snail family of transcription factors, which includes Snail (Snail1, Slug (Snail2, and ZEB1, is an important regulator of epithelial-mesenchymal transition, as well as cell survival. The goal of this study was to determine whether the biological responses to rosiglitazone, a member of the thiazolidinedione family of PPARγ activators, are mediated through the regulation of Snail family members. Our results indicate that, in two independent NSCLC cell lines, rosiglitazone specifically decreased expression of Snail, with no significant effect on either Slug or ZEB1. Suppression of Snail using short hairpin RNA silencing mimicked the effects of PPARγ activation, in inhibiting anchorage-independent growth, promoting acinar formation in three-dimensional culture, and inhibiting invasiveness. This was associated with the increased expression of E-cadherin and decreased expression of COX-2 and matrix metaloproteinases. Conversely, overexpression of Snail blocked the biological responses to rosiglitazone, increasing anchorage-independent growth, invasiveness, and promoting epithelial-mesenchymal transition. The suppression of Snail expression by rosiglitazone seemed to be independent of GSK-3 signaling but was rather mediated through suppression of extracellular signal-regulated kinase activity. These findings suggest that selective regulation of Snail may be critical in mediating the antitumorigenic effects of PPARγ activators.

  16. Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Magdalena Markowicz-Piasecka

    2017-01-01

    Full Text Available The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM may predispose to Alzheimer’s disease (AD. The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35 μmol/mL, mixed type of inhibition and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC50 = 890 nmol/mL, noncompetitive inhibition and BuChE (IC50 = 28 nmol/mL, mixed type inhibition, while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC50 = 184 nmol/mL. Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future.

  17. Chondroitinase C Selectively Degrades Chondroitin Sulfate Glycosaminoglycans that Inhibit Axonal Growth within the Endoneurium of Peripheral Nerve.

    Science.gov (United States)

    Graham, James B; Muir, David

    2016-01-01

    The success of peripheral nerve regeneration is highly dependent on the regrowth of axons within the endoneurial basal lamina tubes that promote target-oriented pathfinding and appropriate reinnervation. Restoration of nerve continuity at this structural level after nerve transection injury by direct repair and nerve grafting remains a major surgical challenge. Recently, biological approaches that alter the balance of growth inhibitors and promoters in nerve have shown promise to improve appropriate axonal regeneration and recovery of peripheral nerve function. Chondroitin sulfate proteoglycans (CSPGs) are known inhibitors of axonal growth. This growth inhibition is mainly associated with a CSPG's glycosaminoglycan chains. Enzymatic degradation of these chains with chondroitinase eliminates this inhibitory activity and, when applied in vivo, can improve the outcome of nerve repair. To date, these encouraging findings were obtained with chondroitinase ABC (a pan-specific chondroitinase). The aim of this study was to examine the distribution of CSPG subtypes in rodent, rabbit, and human peripheral nerve and to test more selective biological enzymatic approaches to improve appropriate axonal growth within the endoneurium and minimize aberrant growth. Here we provide evidence that the endoneurium, but not the surrounding epineurium, is rich in CSPGs that have glycosaminoglycan chains readily degraded by chondroitinase C. Biochemical studies indicate that chondroitinase C has degradation specificity for 6-sulfated glycosaminoglycans found in peripheral nerve. We found that chondroitinase C degrades and inactivates inhibitory CSPGs within the endoneurium but not so much in the surrounding nerve compartments. Cryoculture bioassays (neurons grown on tissue sections) show that chondroitinase C selectively and significantly enhanced neuritic growth associated with the endoneurial basal laminae without changing growth-inhibiting properties of the surrounding epineurium

  18. Intralesional triamcinolone alone and in combination with 5-fluorouracil for the treatment of Keloid and Hypertrophic scars

    International Nuclear Information System (INIS)

    Khan, M. A.; Bashir, M. M.; Khan, F. A.

    2014-01-01

    Objective: To compare the use of intralesional triamcinolone acetonide and its combination with 5 flourouracil in the treatment of keloid and hypertrophic scars in terms of reduction in initial height of the scar. Methods: The randomised controlled trial was conducted at the Department of Plastic Surgery, King Edward Medical University, Lahore, from March 2011 to December 2012. It comprised patients of both genders having keloids or hypertrophic scars (1 cm to 5 cm in size) having no history of treatment for the scars in preceding 6 months. Those who were pregnant, planning pregnancy or lactating were excluded. The subjects were divided into two groups: Group A received intralesional triamcinolone acetonide alone; and Group B received triamcinolone acetonide + 5 flourouracil. Eight injections were given at weekly interval. Scars were assessed 4 weeks after the completion of treatment on a five-point scale. SPSS 16 was used for statistical analysis. Results: The 150 subjects in the study were divided into two equal groups of 75(50%) each. Good to excellent results were seen in 51(68%) cases in Group A compared to 63(84%) in Group B. Frequency of complications was 18(24%) and 6(8%) in Group A and Group B respectively. Conclusion: Combination of triamcinolone acetonide and 5 flourouracil is superior to triamcinolone acetonide therapy in the treatment of keloids and hypertrophic scars. (author)

  19. Selective inhibition of miR-92 in hippocampal neurons alters contextual fear memory.

    Science.gov (United States)

    Vetere, Gisella; Barbato, Christian; Pezzola, Silvia; Frisone, Paola; Aceti, Massimiliano; Ciotti, MariaTeresa; Cogoni, Carlo; Ammassari-Teule, Martine; Ruberti, Francesca

    2014-12-01

    Post-transcriptional gene regulation mediated by microRNAs (miRNAs) is implicated in memory formation; however, the function of miR-92 in this regulation is uncharacterized. The present study shows that training mice in contextual fear conditioning produces a transient increase in miR-92 levels in the hippocampus and decreases several miR-92 gene targets, including: (i) the neuronal Cl(-) extruding K(+) Cl(-) co-transporter 2 (KCC2) protein; (ii) the cytoplasmic polyadenylation protein (CPEB3), an RNA-binding protein regulator of protein synthesis in neurons; and (iii) the transcription factor myocyte enhancer factor 2D (MEF2D), one of the MEF2 genes which negatively regulates memory-induced structural plasticity. Selective inhibition of endogenous miR-92 in CA1 hippocampal neurons, by a sponge lentiviral vector expressing multiple sequences imperfectly complementary to mature miR-92 under the control of the neuronal specific synapsin promoter, leads to up-regulation of KCC2, CPEB3 and MEF2D, impairs contextual fear conditioning, and prevents a memory-induced increase in the spine density. Taken together, the results indicate that neuronal-expressed miR-92 is an endogenous fine regulator of contextual fear memory in mice. © 2014 Wiley Periodicals, Inc.

  20. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  1. Inhibition of Pain and Pain-Related Brain Activity by Heterotopic Noxious Counter-Stimulation and Selective Attention in Chronic Non-Specific Low Back Pain.

    Science.gov (United States)

    Ladouceur, Alexandra; Rustamov, Nabi; Dubois, Jean-Daniel; Tessier, Jessica; Lehmann, Alexandre; Descarreaux, Martin; Rainville, Pierre; Piché, Mathieu

    2017-10-10

    The aim of the present study was to assess inhibition of pain and somatosensory-evoked potentials (SEPs) by heterotopic noxious counter-stimulation (HNCS) and by selective attention in patients with chronic non-specific LBP. Seventeen patients and age/sex-matched controls were recruited (10 men, 7 women; mean age ± SD: 43.3 ± 10.4 and 42.7 ± 11.1, respectively). On average, patients with LBP reported pain duration of 7.6 ± 6.5 years, light to moderate disability (19.3 ± 5.7/100) and low clinical pain intensity (21.8 ± 1.5/100), while pain catastrophizing, state and trait anxiety and depressive symptoms were not significantly different between groups (all p's >0.05). HNCS and selective attention had differential inhibitory effects on pain and SEP, but no difference was observed between groups. Across both groups, HNCS decreased pain (p = 0.06) as well as the N100 and the N150 components of SEP (p's selective attention only decreased pain (p attention was directed toward the HNCS stimulus (pselective attention. Importantly, this experiment was carefully designed to control for non-specific effects associated with the repetition of the test stimulus and the effect of an innocuous counter-stimulation. It remains to be determined if these results hold for patients with severe LBP and psychological symptoms or whether symptom severity may be associated with pain inhibition deficits. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Terbinafine inhibits gap junctional intercellular communication

    International Nuclear Information System (INIS)

    Lee, Ju Yeun; Yoon, Sei Mee; Choi, Eun Ju; Lee, Jinu

    2016-01-01

    Terbinafine is an antifungal agent that selectively inhibits fungal sterol synthesis by blocking squalene epoxidase. We evaluated the effect of terbinafine on gap junctional intercellular communication (GJIC). Fluorescence recovery after photobleaching (FRAP) and I-YFP GJIC assays revealed that terbinafine inhibits GJIC in a reversible and dose-dependent manner in FRT-Cx43 and LN215 cells. Treatment with terbinafine did not affect Cx43 phosphorylation status or intracellular Ca 2+ concentration, well-known action mechanisms of various GJIC blockers. While a structurally related chemical, naftifine, attenuated GJIC, epigallocatechin gallate, another potent squalene epoxidase inhibitor with a different structure, did not. These results suggest that terbinafine inhibits GJIC with a so far unknown mechanism of action. - Highlights: • In vitro pharmacological studies were performed on FRT-Cx43 and LN215 cells. • Terbinafine inhibits gap junctional intercellular communication in both cell lines. • The inhibitory effect of terbinafine is reversible and dose-dependent. • Treatment of terbinafine does not alter Cx43 phosphorylation or cytosolic Ca 2+ concentration. • Inhibition of squalene epoxidase is not involved in this new effect of terbinafine.

  3. Terbinafine inhibits gap junctional intercellular communication.

    Science.gov (United States)

    Lee, Ju Yeun; Yoon, Sei Mee; Choi, Eun Ju; Lee, Jinu

    2016-09-15

    Terbinafine is an antifungal agent that selectively inhibits fungal sterol synthesis by blocking squalene epoxidase. We evaluated the effect of terbinafine on gap junctional intercellular communication (GJIC). Fluorescence recovery after photobleaching (FRAP) and I-YFP GJIC assays revealed that terbinafine inhibits GJIC in a reversible and dose-dependent manner in FRT-Cx43 and LN215 cells. Treatment with terbinafine did not affect Cx43 phosphorylation status or intracellular Ca(2+) concentration, well-known action mechanisms of various GJIC blockers. While a structurally related chemical, naftifine, attenuated GJIC, epigallocatechin gallate, another potent squalene epoxidase inhibitor with a different structure, did not. These results suggest that terbinafine inhibits GJIC with a so far unknown mechanism of action. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Prostaglandin E(2) synthase inhibition as a therapeutic target.

    Science.gov (United States)

    Iyer, Jitesh P; Srivastava, Punit K; Dev, Rishabh; Dastidar, Sunanda G; Ray, Abhijit

    2009-07-01

    Most NSAIDs function by inhibiting biosynthesis of PGE(2) by inhibition of COX-1 and/or COX-2. Since COX-1 has a protective function in the gastro-intestinal tract (GIT), non-selective inhibition of both cycloxy genases leads to moderate to severe gastro-intestinal intolerance. Attempts to identify selective inhibitors of COX-2, led to the identification of celecoxib and rofecoxib. However, long-term use of these drugs has serious adverse effects of sudden myocardial infarction and thrombosis. Drug-mediated imbalance in the levels of prostaglandin I(2) (PGI(2)) and thromboxane A(2) (TXA(2)) with a bias towards TXA(2) may be the primary reason for these events. This resulted in the drugs being withdrawn from the market, leaving a need for an effective and safe anti-inflammatory drug. Recently, the focus of research has shifted to enzymes downstream of COX in the prosta glandin biosynthetic pathway such as prostaglandin E(2) synthases. Microsomal prostaglandin E(2) synthase-1 (mPGES-1) specifically isomerizes PGH(2) to PGE(2), under inflammatory conditions. In this review, we examine the biology of mPGES-1 and its role in disease. Progress in designing molecules that can selectively inhibit mPGES-1 is reviewed. mPGES-1 has the potential to be a target for anti-inflammatory therapy, devoid of adverse GIT and cardiac effects and warrants further investigation.

  5. Visual attention spreads broadly but selects information locally.

    Science.gov (United States)

    Shioiri, Satoshi; Honjyo, Hajime; Kashiwase, Yoshiyuki; Matsumiya, Kazumichi; Kuriki, Ichiro

    2016-10-19

    Visual attention spreads over a range around the focus as the spotlight metaphor describes. Spatial spread of attentional enhancement and local selection/inhibition are crucial factors determining the profile of the spatial attention. Enhancement and ignorance/suppression are opposite effects of attention, and appeared to be mutually exclusive. Yet, no unified view of the factors has been provided despite their necessity for understanding the functions of spatial attention. This report provides electroencephalographic and behavioral evidence for the attentional spread at an early stage and selection/inhibition at a later stage of visual processing. Steady state visual evoked potential showed broad spatial tuning whereas the P3 component of the event related potential showed local selection or inhibition of the adjacent areas. Based on these results, we propose a two-stage model of spatial attention with broad spread at an early stage and local selection at a later stage.

  6. Comparison Of Metal Corrosion Inhibition By Gravimetric And Linear Polarization Resistance Methods

    OpenAIRE

    Banerji, Shankha

    1992-01-01

    Studies were conducted to evaluate the effectiveness of various dosages of the selected silicate and phosphate compounds applied for corrosion inhibition of cast iron, copper, lead, and galvanized steel specimens. The compounds selected for study were zinc polyphosphate (Calgon C-39), zinc orthophosphate (Virchem V-931), sodium metasilicate and glassy silicate. The effectiveness of these compounds for corrosion inhibition were studied under differing water quality conditions using gravimetric...

  7. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fortanet, Jorge Garcia; Chen, Christine Hiu-Tung; Chen, Ying-Nan P.; Chen, Zhouliang; Deng, Zhan; Firestone, Brant; Fekkes, Peter; Fodor, Michelle; Fortin, Pascal D.; Fridrich, Cary; Grunenfelder, Denise; Ho, Samuel; Kang, Zhao B.; Karki, Rajesh; Kato, Mitsunori; Keen, Nick; LaBonte, Laura R.; Larrow, Jay; Lenoir, Francois; Liu, Gang; Liu, Shumei; Lombardo, Franco; Majumdar, Dyuti; Meyer, Matthew J.; Palermo, Mark; Perez, Lawrence; Pu, Minying; Ramsey, Timothy; Sellers, William R.; Shultz, Michael D.; Stams, Travis; Towler, Christopher; Wang, Ping; Williams, Sarah L.; Zhang, Ji-Hu; LaMarche, Matthew J. (Novartis)

    2016-09-08

    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein–ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.

  8. Initiator of carcinogenesis selectively and stably inhibits stem cell differentiation: a concept that initiation of carcinogenesis involves multiple phases

    International Nuclear Information System (INIS)

    Scott, R.E.; Maercklein, P.B.

    1985-01-01

    A concept of carcinogenesis was recently devised in our laboratory that suggests the development of defects in the control of cell differentiation is associated with an early phase of carcinogenesis. To test this proposal directly, the effects of an initiator of carcinogenesis (i.e., UV irradiation) on proadipocyte stem cell differentiation and proliferation was assayed. In this regard, 3T3 T proadipocytes represent a nontransformed mesenchymal stem cell line that possesses the ability to regulate its differentiation at a distinct state in the G 1 phase of the cell cycle as well as the ability to regulate its proliferation at two additional G 1 states. The results establish that a slow dosage of 254 nm UV irradiation selectivity and stably inhibits the differentiation of a high percentage of proadipocyte stem cells without significantly altering their ability to regulate cellular proliferation in growth factor-deficient or nutrient-deficient culture conditions. Differentiation-defect proadipocyte stem cells are demonstrated not to be completely transformed but to show an increased spontaneous transformation rate, as evidenced by the formation of type III foci in high density cell cultures. These data support the role of defects in the control of differentiation in the inhibition of carcinogenesis. These observations support a concept that the initiation of carcinogenesis involves multiple phases

  9. A novel small molecule FL118 that selectively inhibits survivin, Mcl-1, XIAP and cIAP2 in a p53-independent manner, shows superior antitumor activity.

    Directory of Open Access Journals (Sweden)

    Xiang Ling

    Full Text Available Drug/radiation resistance to treatment and tumor relapse are major obstacles in identifying a cure for cancer. Development of novel agents that address these challenges would therefore be of the upmost importance in the fight against cancer. In this regard, studies show that the antiapoptotic protein survivin is a central molecule involved in both hurdles. Using cancer cell-based survivin-reporter systems (US 7,569,221 B2 via high throughput screening (HTS of compound libraries, followed by in vitro and in vivo analyses of HTS-derived hit-lead compounds, we identified a novel anticancer compound (designated FL118. FL118 shows structural similarity to irinotecan. However, while the inhibition of DNA topoisomerase 1 activity by FL118 was no better than the active form of irinotecan, SN-38 at 1 µM, FL118 effectively inhibited cancer cell growth at less than nM levels in a p53 status-independent manner. Moreover, FL118 selectively inhibited survivin promoter activity and gene expression also in a p53 status-independent manner. Although the survivin promoter-reporter system was used for the identification of FL118, our studies revealed that FL118 not only inhibits survivin expression but also selectively and independently inhibits three additional cancer-associated survival genes (Mcl-1, XIAP and cIAP2 in a p53 status-independent manner, while showing no inhibitory effects on control genes. Genetic silencing or overexpression of FL118 targets demonstrated a role for these targets in FL118's effects. Follow-up in vivo studies revealed that FL118 exhibits superior antitumor efficacy in human tumor xenograft models in comparison with irinotecan, topotecan, doxorubicin, 5-FU, gemcitabine, docetaxel, oxaliplatin, cytoxan and cisplatin, and a majority of mice treated with FL118 showed tumor regression with a weekly × 4 schedule. FL118 induced favorable body-weight-loss profiles (temporary and reversible and was able to eliminate large tumors. Together

  10. Prolonged early G1 arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle–coupled loss of IRF4

    Science.gov (United States)

    Huang, Xiangao; Di Liberto, Maurizio; Jayabalan, David; Liang, Jun; Ely, Scott; Bretz, Jamieson; Shaffer, Arthur L.; Louie, Tracey; Chen, Isan; Randolph, Sophia; Hahn, William C.; Staudt, Louis M.; Niesvizky, Ruben; Moore, Malcolm A. S.

    2012-01-01

    Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G1 arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G1 and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G1 block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy. PMID:22718837

  11. Prolonged early G(1) arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle-coupled loss of IRF4.

    Science.gov (United States)

    Huang, Xiangao; Di Liberto, Maurizio; Jayabalan, David; Liang, Jun; Ely, Scott; Bretz, Jamieson; Shaffer, Arthur L; Louie, Tracey; Chen, Isan; Randolph, Sophia; Hahn, William C; Staudt, Louis M; Niesvizky, Ruben; Moore, Malcolm A S; Chen-Kiang, Selina

    2012-08-02

    Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G(1) arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G(1) and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G(1) block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy.

  12. Selective inhibition of sheep kidney 11 beta-hydroxysteroid dehydrogenase isoform 2 activity by 5 alpha-reduced (but not 5 beta) derivatives of adrenocorticosteroids.

    Science.gov (United States)

    Latif, S A; Sheff, M F; Ribeiro, C E; Morris, D J

    1997-02-01

    We have previously reported that 5 alpha and 5 beta pathways of steroid metabolism are controlled in vivo by dietary Na+ and glycyrrhetinic acid, see Gorsline et al. 1988; Latif et al. 1990. The present investigations provide evidence supporting the suggestion that endogenous substances may regulate the glucocorticoid inactivating isoenzymes, 11 beta-HSD (hydroxysteroid dehydrogenase) 1 (liver) and 11 beta-HSD2 (kidney). The activity of 11 beta-HSD is impaired in essential hypertension, following licorice ingestion, and in patients with apparent mineralocorticoid excess where 11 beta-HSD2 is particularly affected. In all three conditions, excretion of the less common 5 alpha metabolites is elevated in urine. We now report on the differential abilities of a series of Ring A reduced (5 alpha and 5 beta) adrenocorticosteroid and progesterone metabolites to inhibit these isoenzymes. Using liver microsomes with NADP+ as co-factor (11 beta-HSD1), and sheep kidney microsomes with NAD+ as co-factor (11 beta-HSD2), we have systematically investigated the abilities of a number of adrenocorticosteroids and their derivatives to inhibit the individual isoforms of 11 beta-HSD. A striking feature is the differential sensitivity of the two isoenzymes to inhibition by 5 alpha and 5 beta derivatives. 11 beta-HSD1 is inhibited by both 5 alpha and certain 5 beta derivatives. 11 beta-HSD-2 was selectively inhibited only by 5 alpha derivatives: 5 beta derivatives were without inhibitory activity toward this isoform of 11 beta-HSD. These results indicate the importance of the structural conformation of the A and B Rings in conferring specific inhibitory properties on these compounds. In addition, we discuss the effects of additions or substitutions of other functional groups on the inhibitory potency of these steroid molecules against 11 beta-HSD1 and 11 beta-HSD2.

  13. Chondroitinase C Selectively Degrades Chondroitin Sulfate Glycosaminoglycans that Inhibit Axonal Growth within the Endoneurium of Peripheral Nerve.

    Directory of Open Access Journals (Sweden)

    James B Graham

    Full Text Available The success of peripheral nerve regeneration is highly dependent on the regrowth of axons within the endoneurial basal lamina tubes that promote target-oriented pathfinding and appropriate reinnervation. Restoration of nerve continuity at this structural level after nerve transection injury by direct repair and nerve grafting remains a major surgical challenge. Recently, biological approaches that alter the balance of growth inhibitors and promoters in nerve have shown promise to improve appropriate axonal regeneration and recovery of peripheral nerve function. Chondroitin sulfate proteoglycans (CSPGs are known inhibitors of axonal growth. This growth inhibition is mainly associated with a CSPG's glycosaminoglycan chains. Enzymatic degradation of these chains with chondroitinase eliminates this inhibitory activity and, when applied in vivo, can improve the outcome of nerve repair. To date, these encouraging findings were obtained with chondroitinase ABC (a pan-specific chondroitinase. The aim of this study was to examine the distribution of CSPG subtypes in rodent, rabbit, and human peripheral nerve and to test more selective biological enzymatic approaches to improve appropriate axonal growth within the endoneurium and minimize aberrant growth. Here we provide evidence that the endoneurium, but not the surrounding epineurium, is rich in CSPGs that have glycosaminoglycan chains readily degraded by chondroitinase C. Biochemical studies indicate that chondroitinase C has degradation specificity for 6-sulfated glycosaminoglycans found in peripheral nerve. We found that chondroitinase C degrades and inactivates inhibitory CSPGs within the endoneurium but not so much in the surrounding nerve compartments. Cryoculture bioassays (neurons grown on tissue sections show that chondroitinase C selectively and significantly enhanced neuritic growth associated with the endoneurial basal laminae without changing growth-inhibiting properties of the surrounding

  14. Selective Inhibition of Steroidogenic Enzymes by Ketoconazole in Rat Ovary Cells

    Directory of Open Access Journals (Sweden)

    Michael Gal

    2014-01-01

    Full Text Available Objective Ketoconazole (KCZ is an anti-fungal agent extensively used for clinical applications related to its inhibitory effects on adrenal and testicular steroidogenesis. Much less information is available on the effects of KCZ on synthesis of steroid hormones in the ovary. The present study aimed to characterize the in situ effects of KCZ on steroidogenic enzymes in primary rat ovary cells. Methods Following the induction of folliculogenesis in gonadotropin treated rats, freshly prepared ovarian cells were incubated in suspension for up to four hours while radiolabeled steroid substrates were added and time dependent generation of their metabolic products was analyzed by thin layer chromatography (TLC. Results KCZ inhibits the P450 steroidogenic enzymes in a selective and dose dependent manner, including cholesterol side-chain cleavage cytochrome P450 (CYP11A1/P450scc, the 17α-hydroxylase activity of CYP17A1/P450c17, and CYP19A1/P450arom, with IC 50 values of 0.3, 1.8, and 0.3 μg/mL (0.56, 3.36, and 0.56 μM, respectively. Unaffected by KCZ, at 10 μg/mL, were the 17,20 lyase activity of CYP17A1, as well as five non-cytochrome steroidogenic enzymes including 3β-hydroxysteroid dehydrogenase-δ 5-4 isomerase type 1 (3βHSD1, 5α-reductase, 20α-hydroxysteroid dehydrogenase (20α-HSD, 3α-hydroxysteroid dehydrogenase (3α-HSD, and 17β-hydroxysteroid dehydrogenase type 1 (17HSD1. Conclusion These findings map the effects of KCZ on the ovarian pathways of progestin, androgen, and estrogen synthesis. Hence, the drug may have a potential use as an acute and reversible modulator of ovarian steroidogenesis in pathological circumstances.

  15. Terbinafine inhibits gap junctional intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Yeun, E-mail: whitewndus@naver.com [College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983 (Korea, Republic of); Yoon, Sei Mee, E-mail: sei_mee@naver.com [College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983 (Korea, Republic of); Department of Integrated OMICS for Biomedical Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Choi, Eun Ju, E-mail: yureas@naver.com [College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983 (Korea, Republic of); Lee, Jinu, E-mail: jinulee@yonsei.ac.kr [College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983 (Korea, Republic of)

    2016-09-15

    Terbinafine is an antifungal agent that selectively inhibits fungal sterol synthesis by blocking squalene epoxidase. We evaluated the effect of terbinafine on gap junctional intercellular communication (GJIC). Fluorescence recovery after photobleaching (FRAP) and I-YFP GJIC assays revealed that terbinafine inhibits GJIC in a reversible and dose-dependent manner in FRT-Cx43 and LN215 cells. Treatment with terbinafine did not affect Cx43 phosphorylation status or intracellular Ca{sup 2+} concentration, well-known action mechanisms of various GJIC blockers. While a structurally related chemical, naftifine, attenuated GJIC, epigallocatechin gallate, another potent squalene epoxidase inhibitor with a different structure, did not. These results suggest that terbinafine inhibits GJIC with a so far unknown mechanism of action. - Highlights: • In vitro pharmacological studies were performed on FRT-Cx43 and LN215 cells. • Terbinafine inhibits gap junctional intercellular communication in both cell lines. • The inhibitory effect of terbinafine is reversible and dose-dependent. • Treatment of terbinafine does not alter Cx43 phosphorylation or cytosolic Ca{sup 2+} concentration. • Inhibition of squalene epoxidase is not involved in this new effect of terbinafine.

  16. Quality of Life and Risks Associated with Systemic Anti-inflammatory Therapy versus Fluocinolone Acetonide Intraocular Implant for Intermediate Uveitis, Posterior Uveitis, or Panuveitis: Fifty-four-Month Results of the Multicenter Uveitis Steroid Treatment Trial and Follow-up Study.

    Science.gov (United States)

    2015-10-01

    To evaluate the risks and quality-of-life (QoL) outcomes of fluocinolone acetonide implant versus systemic therapy with corticosteroid and immunosuppression when indicated for intermediate uveitis, posterior uveitis, and panuveitis. Additional follow-up of a randomized trial cohort. Two hundred fifty-five patients with intermediate uveitis, posterior uveitis, or panuveitis, randomized to implant or systemic therapy. Randomized subjects with intermediate uveitis, posterior uveitis, or panuveitis (479 eyes) were followed up over 54 months, with 79.2% completing the 54-month visit. Local and systemic potential complications of the therapies and self-reported health utility and vision-related and generic health-related QoL were studied prospectively. Among initially phakic eyes, cataract and cataract surgery occurred significantly more often in the implant group (hazard ratio [HR], 3.0; P = 0.0001; and HR, 3.8; P < 0.0001, respectively). In the implant group, most cataract surgery occurred within the first 2 years. Intraocular pressure elevation measures occurred more frequently in the implant group (HR range, 3.7-5.6; all P < 0.0001), and glaucoma (assessed annually) also occurred more frequently (26.3% vs. 10.2% by 48 months; HR, 3.0; P = 0.0002). In contrast, potential complications of systemic therapy, including measures of hypertension, hyperlipidemia, diabetes, bone disease, and hematologic and serum chemistry indicators of immunosuppression toxicity, did not differ between groups through 54 months. Indices of QoL initially favored implant therapy by a modest margin. However, all summary measures of health utility and vision-related or generic health-related QoL were minimally and nonsignificantly different by 54 months, with the exception of the 36-item Short-Form Health Survey physical component summary score, which favored implant by a small margin at 54 months (3.17 on a scale of 100; P = 0.01, not adjusted for multiple comparisons). Mean QoL results were

  17. Inhibition of cell proliferation by a selective inhibitor of the Ca{sup 2+}-activated Cl{sup -} channel, Ano1

    Energy Technology Data Exchange (ETDEWEB)

    Mazzone, Amelia; Eisenman, Seth T.; Strege, Peter R. [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States); Yao, Zhen [Laboratory of Molecular Genetics, UCSF, San Francisco, CA (United States); Ordog, Tamas; Gibbons, Simon J. [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States); Farrugia, Gianrico, E-mail: farrugia.gianrico@mayo.edu [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer T16A{sub inh}-A01 blocked Ano1 currents in HEK cells expressing Ano1. Black-Right-Pointing-Pointer T16A{sub inh}-A01 reduced proliferation in ICC primary cultures and CFPAC-1 cell line. Black-Right-Pointing-Pointer T16A{sub inh}-A01 reduced proliferation of ICC in intact smooth muscle strips. -- Abstract: Background: Ion channels play important roles in regulation of cellular proliferation. Ano1 (TMEM16A) is a Ca{sup 2+}-activated Cl{sup -} channel expressed in several tumors and cell types. In the muscle layers of the gastrointestinal tract Ano1 is selectively expressed in interstitial cells of Cajal (ICC) and appears to be required for normal gastrointestinal slow wave electrical activity. However, Ano1 is expressed in all classes of ICC, including those that do not generate slow waves suggesting that Ano1 may have other functions. Indeed, a role for Ano1 in regulating proliferation of tumors and ICC has been recently suggested. Recently, a high-throughput screen identified a small molecule, T16A{sub inh}-A01 as a specific inhibitor of Ano1. Aim: To investigate the effect of the T16A{sub inh}-A01 inhibitor on proliferation in ICC and in the Ano1-expressing human pancreatic cancer cell line CFPAC-1. Methods: Inhibition of Ano1 was demonstrated by whole cell voltage clamp recordings of currents in cells transfected with full-length human Ano1. The effect of T16A{sub inh}-A01 on ICC proliferation was examined in situ in organotypic cultures of intact mouse small intestinal smooth muscle strips and in primary cell cultures prepared from these tissues. ICC were identified by Kit immunoreactivity. Proliferating ICC and CFPAC-1 cells were identified by immunoreactivity for the nuclear antigen Ki67 or EdU incorporation, respectively. Results: T16A{sub inh}-A01 inhibited Ca{sup 2+}-activated Cl{sup -} currents by 60% at 10 {mu}M in a voltage-independent fashion. Proliferation of ICC was significantly reduced in primary cultures

  18. Fungicide selective for basidiomycetes.

    Science.gov (United States)

    Edgington, L V; Walton, G S; Miller, P M

    1966-07-15

    Concentrations of 2,3-dihydro-5-carboxanilido-6-methyl-1,4-oxathiin lower than 8 parts per million prevented mycelial growth of a number of Basidiomycetes. By contrast, mycelial growth of various other fungi-Phycomycetes, Ascomycetes, and Deuteromycetes-was 50 percent inhibited only by concentrations of 32 ppm or higher. Two exceptions to this pattern of selective fungitoxicity were found:an isolate of Rhizoctonia solani was not as sensitive as other Basidiomycetes, and the deuteromycete Verticillium alboatrum was inhibited by lower concentrations than affected other fungi in this group. Spore germination of two Basidiomycetes, Uromyces phaseoli and Ustilago nuda, was inhibited 95 percent or more at 10 ppm.

  19. Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer disease.

    Science.gov (United States)

    Wright, C I; Guela, C; Mesulam, M M

    1993-01-01

    Neurofibrillary tangles and amyloid plaques express acetylcholinesterase and butyrylcholinesterase activity in Alzheimer disease. We previously reported that traditional acetylcholinesterase inhibitors such as BW284C51, tacrine, and physostigmine were more potent inhibitors of the acetylcholinesterase in normal axons and cell bodies than of the acetylcholinesterase in plaques and tangles. We now report that the reverse pattern is seen with indoleamines (such as serotonin and its precursor 5-hydroxytryptophan), carboxypeptidase inhibitor, and the nonspecific protease inhibitor bacitracin. These substances are more potent inhibitors of the cholinesterases in plaques and tangles than of those in normal axons and cell bodies. These results show that the enzymatic properties of plaque and tangle-associated cholinesterases diverge from those of normal axons and cell bodies. The selective susceptibility to bacitracin and carboxypeptidase inhibitor indicates that the catalytic sites of plaque and tangle-bound cholinesterases are more closely associated with peptidase or protease-like properties than the catalytic sites of cholinesterases in normal axons and cell bodies. This shift in enzymatic affinity may lead to the abnormal protein processing that is thought to play a major role in the pathogenesis of Alzheimer disease. The availability of pharmacological and dietary means for altering brain indoleamines raises therapeutic possibilities for inhibiting the abnormal cholinesterase activity associated with Alzheimer disease. Images PMID:8421706

  20. The Proteolytically Stable Peptidomimetic Pam-(Lys-ßNSpe)6-NH2 Selectively Inhibits Human Neutrophil Activation via Formyl Peptide Receptor 2

    DEFF Research Database (Denmark)

    Skovbakke, Sarah Line; Heegaard, Peter M. H.; Larsen, Camilla J.

    2015-01-01

    of proteolytically stable HDP mimics consisting of lipidated α-peptide/β-peptoid oligomers was investigated for their effect on neutrophil function. The most promising compound, Pam-(Lys-βNSpe)6-NH2, was shown to inhibit formyl peptide receptor 2 (FPR2) agonist-induced neutrophil granule mobilization and release...... of reactive oxygen species. The potency of Pam-(Lys-βNSpe)6-NH2 was comparable to that of PBP10, the most potent FPR2-selective inhibitor known. The immunomodulatory effects of structural analogues of Pam-(Lys-βNSpe)6-NH2 emphasized the importance of both the lipid and peptidomimetic parts. By using imaging...... flow cytometry in primary neutrophils and FPR-transfected cell lines we found that a fluorescently labelled analogue of Pam-(Lys-βNSpe)6-NH2 interacted selectively with FPR2. Furthermore the interaction between Pam-(Lys-βNSpe)6-NH2 and FPR2 was found to prevent binding of the FPR2-specific activating...

  1. Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism.

    Science.gov (United States)

    Cullen, Joseph J; Hinkhouse, Marilyn M; Grady, Matthew; Gaut, Andrew W; Liu, Jingru; Zhang, Yu Ping; Weydert, Christine J Darby; Domann, Frederick E; Oberley, Larry W

    2003-09-01

    NADPH:quinone oxidoreductase (NQO(1)), a homodimeric, ubiquitous, flavoprotein, catalyzes the two-electron reduction of quinones to hydroquinones. This reaction prevents the one-electron reduction of quinones by cytochrome P450 reductase and other flavoproteins that would result in oxidative cycling with generation of superoxide (O(2)(.-)). NQO(1) gene regulation may be up-regulated in some tumors to accommodate the needs of rapidly metabolizing cells to regenerate NAD(+). We hypothesized that pancreatic cancer cells would exhibit high levels of this enzyme, and inhibiting it would suppress the malignant phenotype. Reverse transcription-PCR, Western blots, and activity assays demonstrated that NQO(1) was up-regulated in the pancreatic cancer cell lines tested but present in very low amounts in the normal human pancreas. To determine whether inhibition of NQO(1) would alter the malignant phenotype, MIA PaCa-2 pancreatic cancer cells were treated with a selective inhibitor of NQO(1), dicumarol. Dicumarol increased intracellular production of O(2)(.-), as measured by hydroethidine staining, and inhibited cell growth. Both of these effects were blunted with infection of an adenoviral vector containing the cDNA for manganese superoxide dismutase. Dicumarol also inhibited cell growth, plating efficiency, and growth in soft agar. We conclude that inhibition of NQO(1) increases intracellular O(2)(.-) production and inhibits the in vitro malignant phenotype of pancreatic cancer. These mechanisms suggest that altering the intracellular redox environment of pancreatic cancer cells may inhibit growth and delineate a potential strategy directed against pancreatic cancer.

  2. Selective inhibition by harmane of the apurinic apyrimidinic endonuclease activity of phage T4-induced UV endonuclease.

    Science.gov (United States)

    Warner, H R; Persson, M L; Bensen, R J; Mosbaugh, D W; Linn, S

    1981-11-25

    1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not inhibited by harmane. Human fibroblast AP endonucleases I and II also were only slightly inhibited. Therefore, harmane is neither a general inhibitor of AP endonucleases, nor a general inhibitor of Class I AP endonucleases which incise DNA on the 3'-side of AP sites. However, E. coli endonuclease III and its associated dihydroxythymine-DNA glycosylase activity were both inhibited by harmane. This observation suggests that harmane may inhibit only AP endonucleases which have associated glycosylase activities.

  3. Distribution of fluorescein sodium and triamcinolone acetonide in the simulated liquefied and vitrectomized Vitreous Model with simulated eye movements.

    Science.gov (United States)

    Stein, Sandra; Bogdahn, Malte; Rosenbaum, Christoph; Weitschies, Werner; Seidlitz, Anne

    2017-11-15

    Intravitreal administration is the method of choice for drug delivery to the posterior segment of the eye with special emphasis on the vitreous body and its surrounding retinal vasculature. In order to gain a better understanding of the underlying distribution processes, an in vitro model simulating the vitreous body (Vitreous Model, VM) and a system simulating the impact of movement on the VM (Eye Movement System, EyeMoS) was previously developed. In the study reported here, these systems were modified in regard to a standardized injection procedure, the diversity of simulated eye movements, extended periods of investigation, the opportunity to simulate the state after vitrectomy and in considering the physiological temperature. Fluorescein sodium (FS) and triamcinolone acetonide (TA) were used as (model) drugs to examine the drug distribution within the VM. Vitrectomy was simulated by replacing half the volume of the polyacrylamide gel that was used as vitreous substitute with the clinically used Siluron® 5000 whereas for a simulated liquefaction half the volume of the gel was replaced by buffer. A simulated liquefaction caused a 12-fold faster distribution of FS compared to the simulated juvenile VM, which was most likely caused by convective forces and mass transfer. Also, the injection technique (injection into the gel or into the buffer compartment) influenced the resulting distribution pattern. Without any liquefaction, the previously described initial injection channel occurred with both (model) drugs and, in the case of TA, remained almost unchanged during the investigation period of 72h. Simulating vitrectomized eyes, TA did not spread uniformly, but either remained in the depot or strongly sedimented within the VM suggesting that a homogenous distribution of a TA suspension is highly unlikely in vitrectomized eyes. High variabilities were observed with ex vivo animal eyes, demonstrating the limited benefit of explanted tissues for such distribution

  4. Selective inhibition of precursor incorporation into ribosomal RNA in gamma-irradiated Tetrahymena pyriformis

    International Nuclear Information System (INIS)

    Ernst, S.G.; Oleinick, N.L.; Rustad, R.C.; Greenblatt, R.M.

    1979-01-01

    Sublethal doses of γ radiation are known to inhibit total RNA synthesis in the ciliate protozoan Tetrahymena. To determine if the synthesis of a particular class of RNA is preferentially inhibited, pulse-labeled RNA was isolated from normal exponentially growing cells, irradiated cells, and cells in which total RNA synthesis had recovered to the pre-irradiation level. The RNAs were analyzed by SDS-polyacrylamide gel electrphoresis and oligo(dT)-cellulose column chromatography. Inhibition of RNA synthesis primarily involves ribosomal RNA. However, radiation does not cause a delay in the processing of precursor rRNA or a preferential loss of either of the mature rRNAs. Following irradiation, poly(A)-containing RNA [poly(A+)RNA] is synthesized at a rate up to three times greater than the control rate. The elevated poly(A+)RNA synthesis occurs during the period of depressed rRNA synthesis and even after rRNA synthesis has recovered to its pre-irradiation rate. While the sizes of the total cellular ribonucleoside triphosphate pools are depressed in the irradiated cells, these pools probably do not represent the actual compartments containing the precursors for RNA synthesis, and the observed changes cannot explain the modifications in macromolecular synthesis in irradiated Tetrahymena. (Auth.)

  5. Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies.

    Directory of Open Access Journals (Sweden)

    Matej Zábrady

    Full Text Available With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated "silencing" represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein-protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell.

  6. Myelin-induced inhibition in a spiral ganglion organ culture - Approaching a natural environment in vitro.

    Science.gov (United States)

    Kramer, Benedikt; Tropitzsch, Anke; Müller, Marcus; Löwenheim, Hubert

    2017-08-15

    The performance of a cochlear implant depends on the defined interaction between afferent neurons of the spiral ganglion and the inserted electrode. Neurite outgrowth can be induced by neurotrophins such as brain-derived neurotrophic factor (BDNF) via tropomyosin kinase receptor B (TrkB). However, neurotrophin signaling through the p75 neurotrophin receptor (p75) inhibits neurite outgrowth in the presence of myelin. Organotypic cultures derived from postnatal (P3-5) mice were used to study myelin-induced inhibition in the cochlear spiral ganglion. Neurite outgrowth was analyzed and quantified utilizing an adapted Sholl analysis. Stimulation of neurite outgrowth was quantified after application of BDNF, the selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) and a selective inhibitor of the Rho-associated kinase (Y27632), which inhibits the p75 pathway. Myelin-induced inhibition was assessed by application of myelin-associated glycoprotein (MAG-Fc) to stimulate the inhibitory p75 pathway. Inhibition of neurite outgrowth was achieved by the selective TrkB inhibitor K252a. Stimulation of neurite outgrowth was observed after treatment with BDNF, 7,8 DHF and a combination of BDNF and Y27632. The 7,8-DHF-induced growth effects could be inhibited by K252a. Furthermore, inhibition of neurite outgrowth was observed after supplementation with MAG-Fc. Myelin-induced inhibition could be overcome by 7,8-DHF and the combination of BDNF and Y27632. In this study, myelin-induced inhibition of neurite outgrowth was established in a spiral ganglion model. We reveal that 7,8-DHF is a viable novel compound for the stimulation of neurite outgrowth in a myelin-induced inhibitory environment. The combination of TrkB stimulation and ROCK inhibition can be used to overcome myelin inhibition. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Examination of 12-lipoxygenase (12-LOX) as a therapeutic target in non-small cell lung cancer (NSCLC): Mechanisms controlling survival and induction of apoptosis following selective inhibition

    LENUS (Irish Health Repository)

    Cathcart, Mary Clare

    2011-06-01

    Background: Platelet-type 12-LOX is an arachidonic acid metabolising enzyme resulting in the formation of 12(S)-HETE, which stimulates tumour cell adhesion, invasion and metastasis. This study aimed to examine the expression profile and role of this enzyme in NSCLC, and determine if it is a potential target for intervention. Methods: A panel of retrospective resected lung tumours was stained for 12-LOX expression by IHC. Levels of the 12-LOX metabolite, 12(S)-HETE, were examined in 50 NSCLC serum samples, and correlated with serum VEGF. A panel of NSCLC cell lines were treated with baicalein (10 uM), a selective inhibitor of 12-LOX, or 12(S)-HETE (100 ng\\/ml) and cell survival\\/proliferation examined by BrdU. Apoptosis following 12-LOX inhibition was examined by HCS and validated by FACS and DNA laddering. The effect of 12-LOX inhibition on NSCLC tumour growth and survival was examined in-vivo using an athymic nude mouse model. Gene alterations following 12-LOX inhibition in NSCLC cell lines were assessed by qPCR arrays and validated by RT-PCR. Transient transfection methods were used to examine the effects of 12-LOX overexpression in NSCLC cells. Results: 12-LOX expression was observed to a varying degree in human lung cancers of varying histological subtypes. 12(S)-HETE levels were correlated (p<0.05) with those of VEGF. Baicalein inhibited proliferation\\/survival in all cell lines, while 12(S)-HETE increased proliferation. 12-LOX inhibition increased apoptosis, indicated by a reduction in f-actin content and mitochondrial mass potential. Treatment with baicalein significantly reduced the growth of NSCLC tumours and increased overall survival in athymic nude mice. qPCR array data implicated a number of apoptosis\\/angiogenesis genes regulating these effects, including bcl-2, VEGF, integrin A2 and A4. 12-LOX overexpression resulted in an increase in VEGF secretion, confirming qPCR observations. Conclusions: 12-LOX is a survival factor\\/potential target in

  8. Effects of selective serotonin reuptake inhibition on neural activity related to risky decisions and monetary rewards in healthy males

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Fisher, Patrick M; Haahr, Mette E

    2014-01-01

    the involvement of the normally functioning 5HT-system in decision-making under risk and processing of monetary rewards. The data suggest that prolonged SSRI treatment might reduce emotional engagement by reducing the impact of risk during decision-making or the impact of reward during outcome evaluation.......Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are commonly prescribed antidepressant drugs targeting the dysfunctional serotonin (5-HT) system, yet little is known about the functional effects of prolonged serotonin reuptake inhibition in healthy individuals. Here we used...... functional MRI (fMRI) to investigate how a three-week fluoxetine intervention influences neural activity related to risk taking and reward processing. Employing a double-blinded parallel-group design, 29 healthy young males were randomly assigned to receive 3 weeks of a daily dose of 40 mg fluoxetine...

  9. Potent and Selective Peptide-based Inhibition of the G Protein Gαq*

    Science.gov (United States)

    Charpentier, Thomas H.; Waldo, Gary L.; Lowery-Gionta, Emily G.; Krajewski, Krzysztof; Strahl, Brian D.; Kash, Thomas L.; Harden, T. Kendall; Sondek, John

    2016-01-01

    In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gαq binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gαq within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gαq in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gαq. A representative peptide was specific for active Gαq because it did not bind inactive Gαq or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ1γ2. In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gαq; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gαq in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gαq-dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gαq in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gαq in cells. PMID:27742837

  10. A novel piperazine-bis(rhodamine-B)-based chemosensor for highly sensitive and selective naked-eye detection of Cu{sup 2+} and its application as an INHIBIT logic device

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zebin; Li, Haizhen; Guo, Dan; Liu, Yan; Tian, Zhang; Yan, Shiqiang, E-mail: yansq@lzu.edu.cn

    2015-11-15

    Abstact: We report the design and synthesis of a new piperazine-bis(rhodamine-B) (RB-P-RB)-based indicator for selective detection of Cu{sup 2+} ion. Optical sensing behavior toward various metal ions including alkali, alkaline earth and transition metal ions (Na{sup +}, K{sup +}, Ba{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, Zn{sup 2+}, Cd{sup 2+}, Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, Hg{sup 2+}, and Ag{sup +}) were investigated by UV–vis and fluorescence spectroscopy in ethassnol solution. The indicator showed highly selective and sensitive colorimetric and “turn-on” fluorescence enhancement responses toward Cu{sup 2+} ion owing to the ring-opening structure of the rhodamine spirolactam. The significant change from colorless to pink upon the addition of Cu{sup 2+} could make it a suitable “naked-eye” indicator for Cu{sup 2+}. Furthermore, a possible ring-opening mechanism (off-on) of the rhodamine spirolactam induced by Cu{sup 2+} binding is supported by Job plot, ESI-mass, FT-IR, and {sup 1}H NMR. More significantly, the probe displayed highly selective Cu{sup 2+}-amplified absorption in the presence of Cu{sup 2+} ions. Finally, using Cu{sup 2+} and EDTA as inputs and the fluorescence emission intensity as output, an INHIBIT logic gate can be constructed at the molecular level. - Highlights: • A novel piperazine-bis(rhodamine-B)-based sensor for selective detection of Cu{sup 2+} ion was synthesized via simple synthetic procedures. • The probe exhibited highly selective and sensitive colorimetric and “turn on” fluorescence enhancement responses to Cu{sup 2+}. • The probe can serve as a reversible and selective “naked eye” indicator for Cu{sup 2+} ions in ethanol solution. • The probe can be utilized to construct an INHIBIT logic gate at the molecular level. • The probe displays highly selective Cu{sup 2+}-amplified absorption in ethanol solution.

  11. Spermine selectively inhibits high-conductance, but not low-conductance calcium-induced permeability transition pore.

    Science.gov (United States)

    Elustondo, Pia A; Negoda, Alexander; Kane, Constance L; Kane, Daniel A; Pavlov, Evgeny V

    2015-02-01

    The permeability transition pore (PTP) is a large channel of the mitochondrial inner membrane, the opening of which is the central event in many types of stress-induced cell death. PTP opening is induced by elevated concentrations of mitochondrial calcium. It has been demonstrated that spermine and other polyamines can delay calcium-induced swelling of isolated mitochondria, suggesting their role as inhibitors of the mitochondrial PTP. Here we further investigated the mechanism by which spermine inhibits the calcium-induced, cyclosporine A (CSA) -sensitive PTP by using three indicators: 1) calcium release from the mitochondria detected with calcium green, 2) mitochondrial membrane depolarization using TMRM, and 3) mitochondrial swelling by measuring light absorbance. We found that despite calcium release and membrane depolarization, indicative of PTP activation, mitochondria underwent only partial swelling in the presence of spermine. This was in striking contrast to the high-amplitude swelling detected in control mitochondria and in mitochondria treated with the PTP inhibitor CSA. We conclude that spermine selectively prevents opening of the high-conductance state, while allowing activation of the lower conductance state of the PTP. We propose that the existence of lower conductance, stress-induced PTP might play an important physiological role, as it is expected to allow the release of toxic levels of calcium, while keeping important molecules (e.g., NAD) within the mitochondrial matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Improving response inhibition in Parkinson's disease with atomoxetine.

    Science.gov (United States)

    Ye, Zheng; Altena, Ellemarije; Nombela, Cristina; Housden, Charlotte R; Maxwell, Helen; Rittman, Timothy; Huddleston, Chelan; Rae, Charlotte L; Regenthal, Ralf; Sahakian, Barbara J; Barker, Roger A; Robbins, Trevor W; Rowe, James B

    2015-04-15

    Dopaminergic drugs remain the mainstay of Parkinson's disease therapy but often fail to improve cognitive problems such as impulsivity. This may be due to the loss of other neurotransmitters, including noradrenaline, which is linked to impulsivity and response inhibition. We therefore examined the effect of the selective noradrenaline reuptake inhibitor atomoxetine on response inhibition in a stop-signal paradigm. This pharmacological functional magnetic resonance imaging study used a double-blinded randomized crossover design with low-frequency inhibition trials distributed among frequent Go trials. Twenty-one patients received 40 mg atomoxetine or placebo. Control subjects were tested on no-drug. The effects of disease and drug on behavioral performance, regional brain activity, and functional connectivity were analyzed using general linear models. Anatomical connectivity was examined using diffusion-weighted imaging. Patients with Parkinson's disease had longer stop-signal reaction times, less stop-related activation in the right inferior frontal gyrus (RIFG), and weaker functional connectivity between the RIFG and striatum compared with control subjects. Atomoxetine enhanced stop-related RIFG activation in proportion to disease severity. Although there was no overall behavioral benefit from atomoxetine, analyses of individual differences revealed that enhanced response inhibition by atomoxetine was associated with increased RIFG activation and functional frontostriatal connectivity. Improved performance was more likely in patients with higher structural frontostriatal connectivity. This study suggests that enhanced prefrontal cortical activation and frontostriatal connectivity by atomoxetine may improve response inhibition in Parkinson's disease. These results point the way to new stratified clinical trials of atomoxetine to treat impulsivity in selected patients with Parkinson's disease. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  13. Potent and Selective Peptide-based Inhibition of the G Protein Gαq.

    Science.gov (United States)

    Charpentier, Thomas H; Waldo, Gary L; Lowery-Gionta, Emily G; Krajewski, Krzysztof; Strahl, Brian D; Kash, Thomas L; Harden, T Kendall; Sondek, John

    2016-12-02

    In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gα q binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gα q within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gα q in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gα q A representative peptide was specific for active Gα q because it did not bind inactive Gα q or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ 1 γ 2 In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gα q ; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gα q in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gα q -dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gα q in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gα q in cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Physiological markers of motor inhibition during human behavior

    Science.gov (United States)

    Duque, Julie; Greenhouse, Ian; Labruna, Ludovica; Ivry, Richard B.

    2017-01-01

    Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another. PMID:28341235

  15. Distractor inhibition: Evidence from lateralized readiness potentials.

    Science.gov (United States)

    Pramme, Lisa; Dierolf, Angelika M; Naumann, Ewald; Frings, Christian

    2015-08-01

    The present study investigated distractor inhibition on the level of stimulus representation. In a sequential distractor-to-distractor priming task participants had to respond to target letters flanked by distractor digits. Reaction time and stimulus-locked lateralized readiness potentials (S-LRPs) of probe responses were measured. Distractor-target onset asynchrony was varied. For RTs responses to probe targets were faster in the case of prime-distractor repetition compared to distractor changes indicating distractor inhibition. Benefits in RTs and the latency of S-LRP onsets for distractor repetition were also modulated by distractor-target onset asynchrony. For S-LRPs distractor inhibition was only present with a simultaneous onset of distractors and target. The results confirm previous results indicating inhibitory mechanisms of object-based selective attention on the level of distractor representations. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Glycine-containing selective medium for isolation of Legionellaceae from environmental specimens.

    Science.gov (United States)

    Wadowsky, R M; Yee, R B

    1981-11-01

    Glycine, at a final concentration of 0.3%, has been shown to be an excellent selective agent for the isolation of Legionellaceae. Stock cultures of Legionella pneumophila were not inhibited on buffered charcoal-yeast extract agar containing the amino acid. Among the other Legionellaceae tested, only one of two strains of L. dumoffii and two of six strains of L. micdadei were appreciably inhibited. This medium permitted the isolation of L. pneumophila from environmental specimens with marked inhibition of many non-Legionellaceae bacteria. The selectivity of the medium was subsequently improved by the incorporation of vancomycin (5 microgram/ml) and polymyxin B (100 U/ml). This selective medium, glycine-vancomycin-polymyxin B agar, should facilitate the recovery of Legionellaceae from environmental sources.

  17. Discovery of Fragment-Derived Small Molecules for in Vivo Inhibition of Ketohexokinase (KHK)

    Energy Technology Data Exchange (ETDEWEB)

    Huard, Kim; Ahn, Kay; Amor, Paul; Beebe, David A.; Borzilleri, Kris A.; Chrunyk, Boris A.; Coffey, Steven B.; Cong, Yang; Conn, Edward L.; Culp, Jeffrey S.; Dowling, Matthew S.; Gorgoglione, Matthew F.; Gutierrez, Jemy A.; Knafels, John D.; Lachapelle, Erik A.; Pandit, Jayvardhan; Parris, Kevin D.; Perez, Sylvie; Pfefferkorn, Jeffrey A.; Price, David A.; Raymer, Brian; Ross, Trenton T.; Shavnya, Andre; Smith, Aaron C.; Subashi, Timothy A.; Tesz, Gregory J.; Thuma, Benjamin A.; Tu, Meihua; Weaver, John D.; Weng, Yan; Withka, Jane M.; Xing, Gang; Magee, Thomas V. (Pfizer)

    2017-05-23

    Increased fructose consumption and its subsequent metabolism have been implicated in hepatic steatosis, dyslipidemia, obesity, and insulin resistance in humans. Since ketohexokinase (KHK) is the principal enzyme responsible for fructose metabolism, identification of a selective KHK inhibitor may help to further elucidate the effect of KHK inhibition on these metabolic disorders. Until now, studies on KHK inhibition with small molecules have been limited due to the lack of viable in vivo pharmacological tools. Herein we report the discovery of 12, a selective KHK inhibitor with potency and properties suitable for evaluating KHK inhibition in rat models. Key structural features interacting with KHK were discovered through fragment-based screening and subsequent optimization using structure-based drug design, and parallel medicinal chemistry led to the identification of pyridine 12.

  18. Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro

    DEFF Research Database (Denmark)

    Vinggaard, A.M.; Hnida, C.; Breinholt, V.

    2000-01-01

    than 50 mu M. The positive control 4-hydroxyandrostendione (1 mu M) caused an inhibition of aromatase activity by 74%. The compounds, which did not affect the aromatase activity, were bromopropylate, chlorfenvinphos. chlorobenzilate, chlorpyrifos, diuron, heptachlor, iprodion, linuron, pentachlorphenol...

  19. A selective inhibition of c-Fos/activator protein-1 as a potential therapeutic target for intervertebral disc degeneration and associated pain.

    Science.gov (United States)

    Makino, Hiroto; Seki, Shoji; Yahara, Yasuhito; Shiozawa, Shunichi; Aikawa, Yukihiko; Motomura, Hiraku; Nogami, Makiko; Watanabe, Kenta; Sainoh, Takeshi; Ito, Hisakatsu; Tsumaki, Noriyuki; Kawaguchi, Yoshiharu; Yamazaki, Mitsuaki; Kimura, Tomoatsu

    2017-12-05

    Intervertebral disc (IVD) degeneration is a major cause of low back pain. The transcription factor c-Fos/Activator Protein-1 (AP-1) controls the expression of inflammatory cytokines and matrix metalloproteinases (MMPs) that contribute to the pathogenesis IVD degeneration. We investigated the effects of inhibition of c-Fos/AP-1 on IVD degeneration and associated pain. A selective inhibitor, T-5224, significantly suppressed the interleukin-1β-induced up-regulation of Mmp-3, Mmp-13 and Adamts-5 transcription in human nucleus pulposus cells and in a mouse explant culture model of IVD degeneration. We used a tail disc percutaneous needle puncture method to further assess the effects of oral administration of T-5224 on IVD degeneration. Analysis of disc height, T2-magnetic resonance imaging (MRI) findings, and histology revealed that IVD degeneration was significantly mitigated by T-5224. Further, oral administration of T-5224 ameliorated pain as indicated by the extended tail-flick latency in response to heat stimulation of rats with needle-puncture-induced IVD degeneration. These findings suggest that the inhibition of c-Fos/AP-1 prevents disc degeneration and its associated pain and that T-5224 may serve as a drug for the prevention of IVD degeneration.

  20. Cortical organization of inhibition-related functions and modulation by psychopathology.

    Science.gov (United States)

    Warren, Stacie L; Crocker, Laura D; Spielberg, Jeffery M; Engels, Anna S; Banich, Marie T; Sutton, Bradley P; Miller, Gregory A; Heller, Wendy

    2013-01-01

    Individual differences in inhibition-related functions have been implicated as risk factors for a broad range of psychopathology, including anxiety and depression. Delineating neural mechanisms of distinct inhibition-related functions may clarify their role in the development and maintenance of psychopathology. The present study tested the hypothesis that activity in common and distinct brain regions would be associated with an ecologically sensitive, self-report measure of inhibition and a laboratory performance measure of prepotent response inhibition. Results indicated that sub-regions of DLPFC distinguished measures of inhibition, whereas left inferior frontal gyrus and bilateral inferior parietal cortex were associated with both types of inhibition. Additionally, co-occurring anxiety and depression modulated neural activity in select brain regions associated with response inhibition. Results imply that specific combinations of anxiety and depression dimensions are associated with failure to implement top-down attentional control as reflected in inefficient recruitment of posterior DLPFC and increased activation in regions associated with threat (MTG) and worry (BA10). Present findings elucidate possible neural mechanisms of interference that could help explain executive control deficits in psychopathology.

  1. Cortical organization of inhibition-related functions and modulation by psychopathology

    Directory of Open Access Journals (Sweden)

    Stacie L. Warren

    2013-06-01

    Full Text Available Individual differences in inhibition-related functions have been implicated as risk factors for a broad range of psychopathology, including anxiety and depression. Delineating neural mechanisms of distinct inhibition-related functions may clarify their role in the development and maintenance of psychopathology. The present study tested the hypothesis that activity in common and distinct brain regions would be associated with an ecologically sensitive, self-report measure of inhibition and a laboratory performance measure of prepotent response inhibition. Results indicated that sub-regions of DLPFC distinguished measures of inhibition, whereas left inferior frontal gyrus and bilateral inferior parietal cortex were associated with both types of inhibition. Additionally, co-occurring anxiety and depression modulated neural activity in select brain regions associated with response inhibition. Results imply that specific combinations of anxiety and depression dimensions are associated with failure to implement top-down attentional control as reflected in inefficient recruitment of posterior DLPFC and increased activation in regions associated with threat (MTG and worry (BA10. Present findings elucidate possible neural mechanisms of interference that could help explain executive control deficits in psychopathology.

  2. β-Elemene Selectively Inhibits the Proliferation of Glioma Stem-Like Cells Through the Downregulation of Notch1.

    Science.gov (United States)

    Feng, Hai-Bin; Wang, Jing; Jiang, Hao-Ran; Mei, Xin; Zhao, Yi-Ying; Chen, Fu-Rong; Qu, Yue; Sai, Ke; Guo, Cheng-Cheng; Yang, Qun-Ying; Zhang, Zong-Ping; Chen, Zhong-Ping

    2017-03-01

    Glioma is the most frequent primary central nervous system tumor. Although the current first-line medicine, temozolomide (TMZ), promotes patient survival, drug resistance develops easily. Thus, it is important to investigate novel therapeutic reagents to solidify the treatment effect. β-Elemene (bELE) is a compound from a Chinese herb whose anticancer effect has been shown in various types of cancer. However, its role in the inhibition of glioma stem-like cells (GSLCs) has not yet been reported. We studied both the in vitro and the in vivo inhibitory effect of bELE and TMZ in GSLCs and parental cells and their combined effects. The molecular mechanisms were also investigated. We also optimized the delivery methods of bELE. We found that bELE selectively inhibits the proliferation and sphere formation of GSLCs, other than parental glioma cells, and TMZ exerts its effects on parental cells instead of GSLCs. The in vivo data confirmed that the combination of bELE and TMZ worked better in the xenografts of GSLCs, mimicking the situation of tumorigenesis of human cancer. Notch1 was downregulated with bELE treatment. Our data also demonstrated that the continuous administration of bELE produces an ideal effect to control tumor progression. Our findings have demonstrated, for the first time, that bELE could compensate for TMZ to kill both GSLCs and nonstem-like cancer cells, probably improving the prognosis of glioma patients tremendously. Notch1 might be a downstream target of bELE. Therefore, our data shed light on improving the outcomes of glioma patients by combining bELE and TMZ. Stem Cells Translational Medicine 2017;6:830-839. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. Selectivity and sparseness in randomly connected balanced networks.

    Directory of Open Access Journals (Sweden)

    Cengiz Pehlevan

    Full Text Available Neurons in sensory cortex show stimulus selectivity and sparse population response, even in cases where no strong functionally specific structure in connectivity can be detected. This raises the question whether selectivity and sparseness can be generated and maintained in randomly connected networks. We consider a recurrent network of excitatory and inhibitory spiking neurons with random connectivity, driven by random projections from an input layer of stimulus selective neurons. In this architecture, the stimulus-to-stimulus and neuron-to-neuron modulation of total synaptic input is weak compared to the mean input. Surprisingly, we show that in the balanced state the network can still support high stimulus selectivity and sparse population response. In the balanced state, strong synapses amplify the variation in synaptic input and recurrent inhibition cancels the mean. Functional specificity in connectivity emerges due to the inhomogeneity caused by the generative statistical rule used to build the network. We further elucidate the mechanism behind and evaluate the effects of model parameters on population sparseness and stimulus selectivity. Network response to mixtures of stimuli is investigated. It is shown that a balanced state with unselective inhibition can be achieved with densely connected input to inhibitory population. Balanced networks exhibit the "paradoxical" effect: an increase in excitatory drive to inhibition leads to decreased inhibitory population firing rate. We compare and contrast selectivity and sparseness generated by the balanced network to randomly connected unbalanced networks. Finally, we discuss our results in light of experiments.

  4. Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds

    International Nuclear Information System (INIS)

    M’hiri, Nouha; Veys-Renaux, Delphine; Rocca, Emmanuel; Ioannou, Irina; Boudhrioua, Nourhéne Mihoubi; Ghoul, Mohamed

    2016-01-01

    Highlights: • Catechol and derived functions are responsible for flavonoids antioxidant activity. • Antioxidant activity of adsorbed molecules explains cathodic inhibition. • Orange peel extract inhibition is enhanced by the precipitation of a covering film. - Abstract: Chemical compounds of orange peel extracts were identified and their antioxidant activities were determined. The inhibiting effect on acidic steel corrosion brought by the extract and selected antioxidant compounds (neohesperidin, naringin, ascorbic acid) was evaluated separately by electrochemical methods. Whatever the extract concentration, a significant inhibition is observed, whereas selected antioxidant compounds show only a slight effect. Both electrochemical impedance spectroscopy results and scanning electron microscopy observations after immersion reveal that the inhibiting efficiency of orange peel extract is not only due to the antioxidant activity of its compounds but also to the precipitation of a surface film.

  5. PDE1A inhibition elicits cGMP-dependent relaxation of rat mesenteric arteries

    DEFF Research Database (Denmark)

    Khammy, Makhala Michell; Dalsgaard, Thomas; Larsen, Peter Hjorringgaard

    2017-01-01

    (EC50 = 32 nM). Inhibition of NOS with L-NAME, soluble GC with ODQ, or PKG with Rp-8-Br-PET-cGMP all attenuated PDE1 inhibition-induced relaxation, whereas PKA inhibition with H89 had no effect. CONCLUSION AND IMPLICATIONS: Pde1a was the dominant PDE1 isoform present in VSMC and relaxation mediated...... by PDE1A-inhibition was predominantly driven by enhanced cGMP signalling. These results imply that isoform-selective PDE1 inhibitors are powerful investigative tools allowing examination of physiological and pathological roles of PDE1 isoforms....

  6. Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake.

    Science.gov (United States)

    Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung

    2015-03-05

    High concentrations of cesium (Cs(+)) inhibit plant growth but the detailed mechanisms of Cs(+) uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs(+), chemical library screening was performed using Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs(+) tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs(+) concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs(+). Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs(+) tolerance enhancer isolated here renders plants tolerant to Cs(+) by inhibiting Cs(+) entry into roots via specific binding to the ion thus, for instance, providing a basis for phytostabilisation of radiocesium-contaminated farmland.

  7. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres.

    Science.gov (United States)

    Chang, Run; Sun, Linlin; Webster, Thomas J

    2015-01-01

    for the selective inhibition of osteosarcoma cells.

  8. Altered cortical processing of motor inhibition in schizophrenia.

    Science.gov (United States)

    Lindberg, Påvel G; Térémetz, Maxime; Charron, Sylvain; Kebir, Oussama; Saby, Agathe; Bendjemaa, Narjes; Lion, Stéphanie; Crépon, Benoît; Gaillard, Raphaël; Oppenheim, Catherine; Krebs, Marie-Odile; Amado, Isabelle

    2016-12-01

    Inhibition is considered a key mechanism in schizophrenia. Short-latency intracortical inhibition (SICI) in the motor cortex is reduced in schizophrenia and is considered to reflect locally deficient γ-aminobutyric acid (GABA)-ergic modulation. However, it remains unclear how SICI is modulated during motor inhibition and how it relates to neural processing in other cortical areas. Here we studied motor inhibition Stop signal task (SST) in stabilized patients with schizophrenia (N = 28), healthy siblings (N = 21) and healthy controls (n = 31) matched in general cognitive status and educational level. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were used to investigate neural correlates of motor inhibition. SST performance was similar in patients and controls. SICI was modulated by the task as expected in healthy controls and siblings but was reduced in patients with schizophrenia during inhibition despite equivalent motor inhibition performance. fMRI showed greater prefrontal and premotor activation during motor inhibition in schizophrenia. Task-related modulation of SICI was higher in subjects who showed less inhibition-related activity in pre-supplementary motor area (SMA) and cingulate motor area. An exploratory genetic analysis of selected markers of inhibition (GABRB2, GAD1, GRM1, and GRM3) did not explain task-related differences in SICI or cortical activation. In conclusion, this multimodal study provides direct evidence of a task-related deficiency in SICI modulation in schizophrenia likely reflecting deficient GABA-A related processing in motor cortex. Compensatory activation of premotor areas may explain similar motor inhibition in patients despite local deficits in intracortical processing. Task-related modulation of SICI may serve as a useful non-invasive GABAergic marker in development of therapeutic strategies in schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. β‐Elemene Selectively Inhibits the Proliferation of Glioma Stem‐Like Cells Through the Downregulation of Notch1

    Science.gov (United States)

    Feng, Hai‐bin; Wang, Jing; Jiang, Hao‐ran; Mei, Xin; Zhao, Yi‐ying; Chen, Fu‐rong; Qu, Yue; Sai, Ke; Guo, Cheng‐cheng; Yang, Qun‐ying; Zhang, Zong‐ping

    2016-01-01

    Abstract Glioma is the most frequent primary central nervous system tumor. Although the current first‐line medicine, temozolomide (TMZ), promotes patient survival, drug resistance develops easily. Thus, it is important to investigate novel therapeutic reagents to solidify the treatment effect. β‐Elemene (bELE) is a compound from a Chinese herb whose anticancer effect has been shown in various types of cancer. However, its role in the inhibition of glioma stem‐like cells (GSLCs) has not yet been reported. We studied both the in vitro and the in vivo inhibitory effect of bELE and TMZ in GSLCs and parental cells and their combined effects. The molecular mechanisms were also investigated. We also optimized the delivery methods of bELE. We found that bELE selectively inhibits the proliferation and sphere formation of GSLCs, other than parental glioma cells, and TMZ exerts its effects on parental cells instead of GSLCs. The in vivo data confirmed that the combination of bELE and TMZ worked better in the xenografts of GSLCs, mimicking the situation of tumorigenesis of human cancer. Notch1 was downregulated with bELE treatment. Our data also demonstrated that the continuous administration of bELE produces an ideal effect to control tumor progression. Our findings have demonstrated, for the first time, that bELE could compensate for TMZ to kill both GSLCs and nonstem‐like cancer cells, probably improving the prognosis of glioma patients tremendously. Notch1 might be a downstream target of bELE. Therefore, our data shed light on improving the outcomes of glioma patients by combining bELE and TMZ. Stem Cells Translational Medicine 2017;6:830–839 PMID:28297578

  10. Comparison of Acute Toxicity of Algal Metabolites Using Bioluminescence Inhibition Assay

    Directory of Open Access Journals (Sweden)

    Hansa Jeswani

    2015-01-01

    Full Text Available Microalgae are reported to degrade hazardous compounds. However, algae, especially cyanobacteria are known to produce secondary metabolites which may be toxic to flora, fauna and human beings. The aim of this study was selection of an appropriate algal culture for biological treatment of biomass gasification wastewater based on acute toxicity considerations. The three algae that were selected were Spirulina sp., Scenedesmus abundans and a fresh water algal consortium. Acute toxicity of the metabolites produced by these algal cultures was tested at the end of log phase using the standard bioluminescence inhibition assay based on Vibrio fischeri NRRLB 11174. Scenedesmus abundans and a fresh water algal consortium dominated by cyanobacteria such as Phormidium, Chroococcus and Oscillatoria did not release much toxic metabolites at the end of log phase and caused only about 20% inhibition in bioluminescence. In comparison, Spirulina sp. released toxic metabolites and caused 50% bioluminescence inhibition at 3/5 times dilution of the culture supernatant (EC50.

  11. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Nan P.; LaMarche, Matthew J.; Chan, Ho Man; Fekkes, Peter; Garcia-Fortanet, Jorge; Acker, Michael G.; Antonakos, Brandon; Chen, Christine Hiu-Tung; Chen, Zhouliang; Cooke, Vesselina G.; Dobson, Jason R.; Deng, Zhan; Fei, Feng; Firestone, Brant; Fodor, Michelle; Fridrich, Cary; Gao, Hui; Grunenfelder, Denise; Hao, Huai-Xiang; Jacob, Jaison; Ho, Samuel; Hsiao, Kathy; Kang, Zhao B.; Karki, Rajesh; Kato, Mitsunori; Larrow, Jay; La Bonte, Laura R.; Lenoir, Francois; Liu, Gang; Liu, Shumei; Majumdar, Dyuti; Meyer, Matthew J.; Palermo, Mark; Perez, Lawrence; Pu, Minying; Price, Edmund; Quinn, Christopher; Shakya, Subarna; Shultz, Michael D.; Slisz, Joanna; Venkatesan, Kavitha; Wang, Ping; Warmuth, Markus; Williams, Sarah; Yang, Guizhi; Yuan, Jing; Zhang, Ji-Hu; Zhu, Ping; Ramsey, Timothy; Keen, Nicholas J.; Sellers, William R.; Stams, Travis; Fortin , Pascal D. (Novartis)

    2016-06-29

    The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase1. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma1, 2, 3, 4, 5. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway2, 3. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways6, 7. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy8, 9. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.

  12. Selective inhibition of phosphodiesterase 5 enhances glutamatergic synaptic plasticity and memory in mice.

    Science.gov (United States)

    Uthayathas, Subramaniam; Parameshwaran, Kodeeswaran; Karuppagounder, Senthilkumar S; Ahuja, Manuj; Dhanasekaran, Muralikrishnan; Suppiramaniam, Vishnu

    2013-11-01

    Phosphodiesterases (PDEs) belong to a family of proteins that control metabolism of cyclic nucleotides. Targeting PDE5, for enhancing cellular function, is one of the therapeutic strategies for male erectile dysfunction. We have investigated whether in vivo inhibition of PDE5, which is expressed in several brain regions, will enhance memory and synaptic transmission in the hippocampus of healthy mice. We have found that acute administration of sildenafil, a specific PDE5 inhibitor, enhanced hippocampus-dependent memory tasks. To elucidate the underlying mechanism in the memory enhancement, effects of sildenafil on long-term potentiation (LTP) were measured. The level of LTP was significantly elevated, with concomitant increases in basal synaptic transmission, in mice treated with sildenafil (1 mg/kg/day) for 15 days compared to control mice. These results suggest that moderate PDE5 inhibition enhances memory by increasing synaptic plasticity and transmission in the hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  13. Multimodal Microvascular Imaging Reveals that Selective Inhibition of Class I PI3K Is Sufficient to Induce an Antivascular Response

    Directory of Open Access Journals (Sweden)

    Deepak Sampath

    2013-07-01

    Full Text Available The phosphatidylinositol 3-kinase (PI3K pathway is a central mediator of vascular endothelial growth factor (VEGF-driven angiogenesis. The discovery of small molecule inhibitors that selectively target PI3K or PI3K and mammalian target of rapamycin (mTOR provides an opportunity to pharmacologically determine the contribution of these key signaling nodes in VEGF-A-driven tumor angiogenesis in vivo. This study used an array of microvascular imaging techniques to monitor the antivascular effects of selective class I PI3K, mTOR, or dual PI3K/ mTOR inhibitors in colorectal and prostate cancer xenograft models. Micro-computed tomography (micro-CT angiography, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI, vessel size index (VSI MRI, and DCE ultrasound (DCE-U/S were employed to quantitatively evaluate the vascular (structural and physiological response to these inhibitors. GDC-0980, a dual PI3K/mTOR inhibitor, was found to reduce micro-CT angiography vascular density, while VSI MRI demonstrated a significant reduction in vessel density and an increase in mean vessel size, consistent with a loss of small functional vessels and a substantial antivascular response. DCE-MRI showed that GDC-0980 produces a strong functional response by decreasing the vascular permeability/perfusion-related parameter, Ktrans. Interestingly, comparable antivascular effects were observed for both GDC-980 and GNE-490 (a selective class I PI3K inhibitor. In addition, mTOR-selective inhibitors did not affect vascular density, suggesting that PI3K inhibition is sufficient to generate structural changes, characteristic of a robust antivascular response. This study supports the use of noninvasive microvascular imaging techniques (DCE-MRI, VSI MRI, DCE-U/S as pharmacodynamic assays to quantitatively measure the activity of PI3K and dual PI3K/mTOR inhibitors in vivo.

  14. Improving Response Inhibition in Parkinson’s Disease with Atomoxetine

    Science.gov (United States)

    Ye, Zheng; Altena, Ellemarije; Nombela, Cristina; Housden, Charlotte R.; Maxwell, Helen; Rittman, Timothy; Huddleston, Chelan; Rae, Charlotte L.; Regenthal, Ralf; Sahakian, Barbara J.; Barker, Roger A.; Robbins, Trevor W.; Rowe, James B.

    2015-01-01

    Background Dopaminergic drugs remain the mainstay of Parkinson’s disease therapy but often fail to improve cognitive problems such as impulsivity. This may be due to the loss of other neurotransmitters, including noradrenaline, which is linked to impulsivity and response inhibition. We therefore examined the effect of the selective noradrenaline reuptake inhibitor atomoxetine on response inhibition in a stop-signal paradigm. Methods This pharmacological functional magnetic resonance imaging study used a double-blinded randomized crossover design with low-frequency inhibition trials distributed among frequent Go trials. Twenty-one patients received 40 mg atomoxetine or placebo. Control subjects were tested on no-drug. The effects of disease and drug on behavioral performance, regional brain activity, and functional connectivity were analyzed using general linear models. Anatomical connectivity was examined using diffusion-weighted imaging. Results Patients with Parkinson’s disease had longer stop-signal reaction times, less stop-related activation in the right inferior frontal gyrus (RIFG), and weaker functional connectivity between the RIFG and striatum compared with control subjects. Atomoxetine enhanced stop-related RIFG activation in proportion to disease severity. Although there was no overall behavioral benefit from atomoxetine, analyses of individual differences revealed that enhanced response inhibition by atomoxetine was associated with increased RIFG activation and functional frontostriatal connectivity. Improved performance was more likely in patients with higher structural frontostriatal connectivity. Conclusions This study suggests that enhanced prefrontal cortical activation and frontostriatal connectivity by atomoxetine may improve response inhibition in Parkinson’s disease. These results point the way to new stratified clinical trials of atomoxetine to treat impulsivity in selected patients with Parkinson’s disease. PMID:24655598

  15. Evaluation of a rapid radiometric differentiation test for the Mycobacterium tuberculosis complex by selective inhibition with p-nitro-alpha-acetylamino-beta-hydroxypropiophenone

    International Nuclear Information System (INIS)

    Laszlo, A.; Siddiqi, S.H.

    1984-01-01

    This study is an evaluation of a rapid technique for the differentiation of the Mycobacterium tuberculosis complex from other mycobacteria, using p-nitro-alpha-acetylamino-beta- hydroxypropiophenone (NAP) as a selective inhibitory agent. A total of 416 coded cultures, 234 cultures belonging to the M. tuberculosis complex and 182 cultures belonging to 35 other mycobacterial species, were tested in two laboratories for p-nitro-alpha-acetylamino-beta- hydroxypropiophenone inhibition to concentrations of 5 and 10 micrograms of NAP per ml in Middlebrook 7H12 liquid medium. Two testing modes were compared: the indirect, in which a large bacterial inoculum was used from an isolated culture on a solid medium, and the direct, which used a small inoculum from 7H12 medium. A decrease or no increase in daily 14 CO 2 output as measured by a BACTEC system was considered evidence of inhibition. The data presented show that a concentration of 5 micrograms of NAP per ml can effectively separate the M. tuberculosis complex from other mycobacterial species in 4 to 6 days. The direct test data show that, unlike other conventional biochemical tests, it does not require a heavy inoculum of mycobacteria and can therefore be performed soon after growth is detected by the radiometric method

  16. Hesperetin-7,3'-O-dimethylether selectively inhibits phosphodiesterase 4 and effectively suppresses ovalbumin-induced airway hyperresponsiveness with a high therapeutic ratio

    Directory of Open Access Journals (Sweden)

    Yang You-Lan

    2011-11-01

    Full Text Available Abstract Background Hesperetin was reported to selectively inhibit phosphodiesterase 4 (PDE4. While hesperetin-7,3'-O-dimethylether (HDME is a synthetic liposoluble hesperetin. Therefore, we were interested in investigating its selectivity on PDE4 and binding ability on high-affinity rolipram-binding sites (HARBs in vitro, and its effects on ovalbumin-induced airway hyperresponsiveness in vivo, and clarifying its potential for treating asthma and chronic obstructive pulmonary disease (COPD. Methods PDE1~5 activities were measured using a two-step procedure. The binding of HDME on high-affinity rolipram-binding sites was determined by replacing 2 nM [3H]-rolipram. AHR was assessed using the FlexiVent system and barometric plethysmography. Inflammatory cells were counted using a hemocytometer. Cytokines were determined using mouse T helper (Th1/Th2 cytokine CBA kits, and total immunoglobulin (IgE or IgG2a levels were done using ELISA method. Xylazine (10 mg/kg/ketamine (70 mg/kg-induced anesthesia was performed. Results HDME revealed selective phosphodiesterase 4 (PDE4 inhibition with a therapeutic (PDE4H/PDE4L ratio of 35.5 in vitro. In vivo, HDME (3~30 μmol/kg, orally (p.o. dose-dependently and significantly attenuated the airway resistance (RL and increased lung dynamic compliance (Cdyn, and decreased enhanced pause (Penh values induced by methacholine in sensitized and challenged mice. It also significantly suppressed the increases in the numbers of total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL-2, IL-4, IL-5, interferon-γ, and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF of these mice. In addition, HDME (3~30 μmol/kg, p.o. dose-dependently and significantly suppressed total and ovalbumin-specific immunoglobulin (IgE levels in the BALF and serum, and enhanced IgG2a level in the serum of these mice. Conclusions HDME exerted anti

  17. Selective attention relates to the development of executive functions in 2,5- to 3-year-olds : A longitudinal study

    NARCIS (Netherlands)

    Veer, Ilona M.; Luyten, Hans; Mulder, Hanna; van Tuijl, Cathy; Sleegers, Peter J.C.

    2017-01-01

    To study the central role of selective attention in the early development of executive functions (EFs), longitudinal relationships between selective attention, working memory, and simple response inhibition were explored. Selective attention, working memory, and simple response inhibition were

  18. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 induces apoptosis of human endometriotic cells through suppression of ERK1/2, AKT, NFkappaB, and beta-catenin pathways and activation of intrinsic apoptotic mechanisms.

    Science.gov (United States)

    Banu, Sakhila K; Lee, JeHoon; Speights, V O; Starzinski-Powitz, Anna; Arosh, Joe A

    2009-08-01

    Endometriosis is a benign chronic gynecological disease of reproductive-age women characterized by the presence of functional endometrial tissues outside the uterine cavity. It is an estrogen-dependent disease. Current treatment modalities to inhibit biosynthesis and actions of estrogen compromise menstruation, pregnancy, and the reproductive health of women and fail to prevent reoccurrence of disease. There is a critical need to identify new specific signaling modules for non-estrogen-targeted therapies for endometriosis. In our previous study, we reported that selective inhibition of cyclooxygenase-2 prevented survival, migration, and invasion of human endometriotic epithelial and stromal cells, which was due to decreased prostaglandin E(2) (PGE(2)) production. In this study, we determined mechanisms through which PGE(2) promoted survival of human endometriotic cells. Results of the present study indicate that 1) PGE(2) promotes survival of human endometriotic cells through EP2 and EP4 receptors by activating ERK1/2, AKT, nuclear factor-kappaB, and beta-catenin signaling pathways; 2) selective inhibition of EP2 and EP4 suppresses these cell survival pathways and augments interactions between proapoptotic proteins (Bax and Bad) and antiapoptotic proteins (Bcl-2/Bcl-XL), facilitates the release of cytochrome c, and thus activates caspase-3/poly (ADP-ribose) polymerase-mediated intrinsic apoptotic pathways; and 3) these PGE(2) signaling components are more abundantly expressed in ectopic endometriosis tissues compared with eutopic endometrial tissues during the menstrual cycle in women. These novel findings may provide an important molecular framework for further evaluation of selective inhibition of EP2 and EP4 as potential therapy, including nonestrogen target, to expand the spectrum of currently available treatment options for endometriosis in women.

  19. Oxamate, but Not Selective Targeting of LDH-A, Inhibits Medulloblastoma Cell Glycolysis, Growth and Motility

    Directory of Open Access Journals (Sweden)

    Cara J. Valvona

    2018-03-01

    Full Text Available Medulloblastoma is the most common malignant paediatric brain tumour and current therapies often leave patients with severe neurological disabilities. Four major molecular groups of medulloblastoma have been identified (Wnt, Shh, Group 3 and Group 4, which include additional, recently defined subgroups with different prognosis and genetic characteristics. Lactate dehydrogenase A (LDHA is a key enzyme in the aerobic glycolysis pathway, an abnormal metabolic pathway commonly observed in cancers, associated with tumour progression and metastasis. Studies indicate MBs have a glycolytic phenotype; however, LDHA has not yet been explored as a therapeutic target for medulloblastoma. LDHA expression was examined in medulloblastoma subgroups and cell lines. The effects of LDHA inhibition by oxamate or LDHA siRNA on medulloblastoma cell line metabolism, migration and proliferation were examined. LDHA was significantly overexpressed in Group 3 and Wnt MBs compared to non-neoplastic cerebellum. Furthermore, we found that oxamate significantly attenuated glycolysis, proliferation and motility in medulloblastoma cell lines, but LDHA siRNA did not. We established that aerobic glycolysis is a potential therapeutic target for medulloblastoma, but broader LDH inhibition (LDHA, B, and C may be more appropriate than LDHA inhibition alone.

  20. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability

    Science.gov (United States)

    Luo, Haitao; Jiang, Bingbing; Li, Bingyun; Li, Zhaoliang; Jiang, Bing-Hua; Chen, Yi Charlie

    2012-01-01

    Ovarian cancer is one of the leading causes of cancer death for women throughout the Western world. Kaempferol, a natural flavonoid, has shown promise in the chemoprevention of ovarian cancer. A common concern about using dietary supplements for chemoprevention is their bioavailability. Nanoparticles have shown promise in increasing the bioavailability of some chemicals. Here we developed five different types of nanoparticles incorporating kaempferol and tested their efficacy in the inhibition of viability of cancerous and normal ovarian cells. We found that positively charged nanoparticle formulations did not lead to a significant reduction in cancer cell viability, whereas nonionic polymeric nanoparticles resulted in enhanced reduction of cancer cell viability. Among the nonionic polymeric nanoparticles, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) nanoparticles incorporating kaempferol led to significant reduction in cell viability of both cancerous and normal cells. Poly(DL-lactic acid-co-glycolic acid) (PLGA) nanoparticles incorporating kaempferol resulted in enhanced reduction of cancer cell viability together with no significant reduction in cell viability of normal cells compared with kaempferol alone. Therefore, both PEO-PPO-PEO and PLGA nanoparticle formulations were effective in reducing cancer cell viability, while PLGA nanoparticles incorporating kaempferol had selective toxicity against cancer cells and normal cells. A PLGA nanoparticle formulation could be advantageous in the prevention and treatment of ovarian cancers. On the other hand, PEO-PPO-PEO nanoparticles incorporating kaempferol were more effective inhibitors of cancer cells, but they also significantly reduced the viability of normal cells. PEO-PPO-PEO nanoparticles incorporating kaempferol may be suitable as a cancer-targeting strategy, which could limit the effects of the nanoparticles on normal cells while retaining their potency against cancer cells. We

  1. Restriction Inhibition Assay: A Qualitative and Quantitative Method to ...

    African Journals Online (AJOL)

    rich fractions (PRFs) with high affinity for EcoRI and HindIII restriction sequences and correlate their interaction to an anticancer activity. Methods: pBR322 linear plasmid DNA was used as a template to screen the sequence-selective inhibition of ...

  2. HET0016, a selective inhibitor of 20-HETE synthesis, decreases pro-angiogenic factors and inhibits growth of triple negative breast cancer in mice.

    Directory of Open Access Journals (Sweden)

    Thaiz Ferraz Borin

    Full Text Available A selective inhibitor of 20-HETE synthesis, HET0016, has been reported to inhibit angiogenesis. 20-HETE has been known as a second mitogenic messenger of angiogenesis inducing growth factors. HET0016 effects were analyzed on MDA-MB-231 derived breast cancer in mouse and in vitro cell line. MDA-MB-231 tumor cells were implanted in animals' right flank and randomly assigned to early (1 and 2, starting treatments on day 0, or delayed groups (3 and 4 on day 8 after implantation of tumor. Animals received HET0016 (10 mg/kg treatment via intraperitoneal injection for 5 days/week for either 3 or 4 weeks. Control group received vehicle treatment. Tumor sizes were measured on days 7, 14, 21, and 28 and the animals were euthanized on day 22 and 29. Proteins were extracted from the whole tumor and from cells treated with 10 µM HET0016 for 4 and 24 hrs. Protein array kits of 20 different cytokines/factors were used. ELISA was performed to observe the HIF-1α and MMP-2 protein expression. Other markers were confirmed by IHC. HET0016 significantly inhibited tumor growth in all treatment groups at all-time points compared to control (p<0.05. Tumor growth was completely inhibited on three of ten animals on early treatment group. Treatment groups showed significantly lower expression of pro-angiogenic factors compared to control at 21 days; however, there was no significant difference in HIF-1α expression after treatments. Similar results were found in vitro at 24 hrs of HET0016 treatment. After 28 days, significant increase of angiogenin, angiopoietin-1/2, EGF-R and IGF-1 pro-angiogenic factors were found (p<0.05 compared to control, as well as an higher intensity of all factors were found when compared to that of 21 day's data, suggesting a treatment resistance. HET0016 inhibited tumor growth by reducing expression of different set of pro-angiogenic factors; however, a resistance to treatment seemed to happen after 21 days.

  3. Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition

    Directory of Open Access Journals (Sweden)

    Abhinav eGrama

    2012-09-01

    Full Text Available The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction selective ganglion cells (DS-RGCs in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de-novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction selective responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in-vivo whole cell electrophysiology on these direction selective tectal neurons and we found that their inhibitory inputs were strongly biased towards the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons.

  4. Selective histone deacetylase 6 inhibition prolongs survival in a lethal two-hit model.

    Science.gov (United States)

    Cheng, Xin; Liu, Zhengcai; Liu, Baoling; Zhao, Ting; Li, Yongqing; Alam, Hasan B

    2015-07-01

    Hemorrhagic shock (HS) followed by a subsequent insult ("second hit") often initiates an exaggerated systemic inflammatory response and multiple organ failure. We have previously demonstrated that valproic acid, a pan histone deacetylase inhibitor, could improve survival in a rodent "two-hit" model. In the present study, our goal was to determine whether selective inhibition of histone deacetylase 6 with Tubastatin A (Tub-A) could prolong survival in a two-hit model where HS was followed by sepsis from cecal ligation and puncture (CLP). C57Bl/6J mice were subjected to sublethal HS (30% blood loss) and then randomly divided into two groups (n = 13 per group) such as Tub-A group (treatment) and vehicle (VEH) group (control). The Tub-A group was given an intraperitoneal injection of Tub-A (70 mg/kg) dissolved in dimethyl sulfoxide (DMSO). The VEH group was injected with DMSO (1 μl/g body weight). After 24 h, all mice were subjected CLP followed immediately by another dose of Tub-A or DMSO. Survival was monitored for 10 d. In a parallel study, peritoneal irrigation fluid and liver tissue from Tub-A- or DMSO-treated mice were collected 3 h after CLP. Enzyme-linked immunosorbent assay was performed to quantify activity of the myeloperoxidase and concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) in the peritoneal irrigation fluid. RNA was isolated from the liver tissue, and real-time polymerase chain reaction was performed to measure relative messenger RNA levels of TNF-α and IL-6. Treatment with Tub-A significantly improved survival compared with that of the control (69.2% versus 15.4%). In addition, Tub-A significantly suppressed myeloperoxidase activity (169.9 ± 8.4 ng/mL versus 70.4 ± 17.4 ng/mL; P hit model. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Curcumin synergizes with resveratrol to inhibit colon cancer.

    Science.gov (United States)

    Majumdar, Adhip P N; Banerjee, Sanjeev; Nautiyal, Jyoti; Patel, Bhaumik B; Patel, Vaishali; Du, Jianhua; Yu, Yingjie; Elliott, Althea A; Levi, Edi; Sarkar, Fazlul H

    2009-01-01

    Development and progression of many malignancies, including colorectal cancer, are associated with activation of multiple signaling pathways. Therefore, inhibition of these signaling pathways with noncytotoxic natural products represents a logical preventive and/or therapeutic approach for colon cancer. Curcumin and resveratrol, both of which inhibit the growth of transformed cells and colon carcinogenesis, were selected to examine whether combining them would be an effective preventive and/or therapeutic strategy for colon cancer. Indeed, the combination of curcumin and resveratrol was found to be more effective in inhibiting growth of p53-positive (wt) and p53-negative colon cancer HCT-116 cells in vitro and in vivo in SCID xenografts of colon cancer HCT-116 (wt) cells than either agent alone. Analysis by Calcusyn software showed synergism between curcumin and resveratrol. The inhibition of tumors in response to curcumin and/or resveratrol was associated with the reduction in proliferation and stimulation of apoptosis accompanied by attenuation of NF-kappaB activity. In vitro studies have further demonstrated that the combinatorial treatment caused a greater inhibition of constitutive activation of EGFR and its family members as well as IGF-1R. Our current data suggest that the combination of curcumin and resveratrol could be an effective preventive/therapeutic strategy for colon cancer.

  6. Selective inhibition of dopamine-beta-hydroxylase enhances dopamine release from noradrenergic terminals in the medial prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Frau, Roberto; Gessa, Gian L

    2015-10-01

    Disulfiram has been claimed to be useful in cocaine addiction therapy, its efficacy being attributed to dopamine-beta-hydroxylase (DBH) inhibition. Our previous results indicate that disulfiram and the selective DBH inhibitor nepicastat increase extracellular dopamine (DA) in the rat medial prefrontal cortex (mPFC), and markedly potentiated cocaine-induced increase. Concomitantly, in rats with cocaine self-administration history, cocaine-seeking behavior induced by drug priming was prevented, probably through overstimulation of D1 receptors due to the DA increase. The present research was aimed at studying the neurochemical mechanisms originating the enhanced DA release. Noradrenergic system ablation was attained by intracerebroventricular (i.c.v.) administration of the neurotoxin anti-DBH-saporin (aDBH-sap). DA, noradrenaline (NA), and DOPAC were assessed by HPLC after ex vivo tissue extraction or in vivo microdialysis. Control and denervated rats were subjected to microdialysis in the mPFC and caudate nucleus to evaluate the effect of nepicastat-cocaine combination on extracellular DA levels and their regulation by α2-adrenoceptors. Fifteen days after neurotoxin or its vehicle administration, tissue and extracellular NA were reduced to less than 2% the control value, while extracellular DA was increased by approximately 100%. In control rats, nepicastat given alone and in combination with cocaine increased extracellular DA by about 250% and 1100%, respectively. In denervated rats, nepicastat slightly affected extracellular DA, while in combination with cocaine increased extracellular DA by 250%. No differences were found in the caudate nucleus. Clonidine almost totally reversed the extracellular DA elevation produced by nepicastat-cocaine combination, while it was ineffective in denervated rats. This research shows that the increase of extracellular DA produced by nepicastat alone or in combination with cocaine was prevented by noradrenergic denervation. The

  7. Vanadate monomers and dimers both inhibit the human prostatic acid phosphatase.

    Science.gov (United States)

    Crans, D C; Simone, C M; Saha, A K; Glew, R H

    1989-11-30

    A combination of enzyme kinetics and 51V NMR spectroscopy was used to identify the species of vanadate that inhibits acid phosphatases. Monomeric vanadate was shown to inhibit wheat germ and potato acid phosphatases. At pH 5.5, the vanadate dimer inhibits the human prostatic acid phosphatase whereas at pH 7.0 it is the vanadate monomer that inhibits this enzyme. The pH-dependent shift in the affinity of the prostatic phosphatase for vanadate is presumably due to deprotonation of an amino acid side chain in or near the binding site resulting in a conformational change in the protein. pH may be a subtle effector of the insulin-like vanadate activity in biological systems and may explain some of the differences in selectivity observed with the protein phosphatases.

  8. Vitisin B, a resveratrol tetramer, inhibits migration through inhibition of PDGF signaling and enhancement of cell adhesiveness in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Ong, Eng-Thaim; Hwang, Tsong-Long; Huang, Yu-Ling; Lin, Chwan-Fwu; Wu, Wen-Bin

    2011-01-01

    Vascular smooth muscle cells (VSMCs) play an important role in normal vessel formation and in the development and progression of cardiovascular diseases. Grape plants contain resveratrol monomer and oligomers and drinking of wine made from grape has been linked to 'French Paradox'. In this study we evaluated the effect of vitisin B, a resveratrol tetramer, on VSMC behaviors. Vitisin B inhibited basal and PDGF-induced VSMC migration. Strikingly, it did not inhibit VSMC proliferation but inversely enhanced cell cycle progression and proliferation. Among the tested resveratrol oligomers, vitisin B showed an excellent inhibitory activity and selectivity on PDGF signaling. The anti-migratory effect by vitisin B was due to direct inhibition on PDGF signaling but was independent of interference with PDGF binding to VSMCs. Moreover, the enhanced VSMC adhesiveness to matrix contributed to the anti-migratory effect by vitisin B. Fluorescence microscopy revealed an enhanced reorganization of actin cytoskeleton and redistribution of activated focal adhesion proteins from cytosol to the peripheral edge of the cell membrane. This was confirmed by the observation that enhanced adhesiveness was repressed by the Src inhibitor. Finally, among the effects elicited by vitisin B, only the inhibitory effect toward basal migration was partially through estrogen receptor activation. We have demonstrated here that a resveratrol tetramer exhibited dual but opposite actions on VSMCs, one is to inhibit VSMC migration and the other is to promote VSMC proliferation. The anti-migratory effect was through a potent inhibition on PDGF signaling and novel enhancement on cell adhesion. - Highlights: → Several resveratrol oligomers from grape plants are examined on VSMC behaviors. → Tetraoligomer vitisin B shows excellent inhibitory activity and selectivity. → It exerts dual but opposing actions: anti-migratory and pro-proliferative effects. → The anti-migratory effect results from anti

  9. BDNF/TrkB Signaling as a Potential Novel Target in Pediatric Brain Tumors: Anticancer Activity of Selective TrkB Inhibition in Medulloblastoma Cells.

    Science.gov (United States)

    Thomaz, Amanda; Jaeger, Mariane; Buendia, Marienela; Bambini-Junior, Victorio; Gregianin, Lauro José; Brunetto, Algemir Lunardi; Brunetto, André T; de Farias, Caroline Brunetto; Roesler, Rafael

    2016-07-01

    Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Deregulation of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signaling has been associated with increased proliferative capabilities, invasiveness, and chemoresistance in several types of cancer. However, the relevance of this pathway in MB remains unknown. Here, we show that the selective TrkB inhibitor N-[2-[[(hexahydro-2-oxo-1H-azepin-3-yl)amino]carbonyl]phenyl]-benzo[b]thiophene-2-carboxamide (ANA-12) markedly reduced the viability and survival of human cell lines representative of different MB molecular subgroups. These findings provide the first evidence supporting further investigation of TrkB inhibition as a potential novel strategy for MB treatment.

  10. Selected essential oils inhibit key physiological enzymes and possess intracellular and extracellular antimelanogenic properties in vitro

    Directory of Open Access Journals (Sweden)

    Zaahira Aumeeruddy-Elalfi

    2018-01-01

    Full Text Available Essential oils (EOs extracted from six medicinal herbs and food plants [Cinnamomum zeylanicum (CZ, Psiadia arguta (PA, Psiadia terebinthina (PT, Citrus grandis (CGp, Citrus hystrix (CH, and Citrus reticulata (CR] were studied for any inhibitory potential against key physiological enzymes involved in diabetes (α-glucosidase, skin aging (collagenase and elastase, and neurodegenerative disorders (acetylcholinesterase. Kinetic studies of the active EOs on the aforementioned enzymes were determined using Lineweaver–Burk plots. The intracellular and extracellular antimelanogenic potential of the EOs were evaluated on B16F10 mouse melanocytes. CH and CR were found to significantly inhibit (2.476 ± 0.13 μg/mL and 3.636 ± 0.10 μg/mL, respectively acetylcholinesterase, compared with galantamine (3.989 ± 0.16 μg/mL. CH inhibited collagenase (50% inhibitory concentration 28.71 ± 0.16 μg/mL compared with the control (24.45 ± 0.19 μg/mL. The percentage inhibition in the elastase assay of CH was 63.21% compared to the positive control (75.09%. In addition, CH, CR, CGp, CZ, and PT were found to significantly inhibit α-glucosidase (276.70 ± 0.73 μg/mL, 169.90 ± 0.58 μg/mL, 240.60 ± 6.50 μg/mL, 64.52 ± 0.69 μg/mL, and 313.0 ± 5.0 μg/mL, respectively, compared to acarbose (448.80 ± 0.81 μg/mL. Active EOs showed both uncompetitive and competitive types of inhibition. The EOs also inhibited intracellular (50% inhibitory concentration 15.92 ± 1.06 μg/mL, 23.75 ± 4.47 μg/mL, and 28.99 ± 5.70 μg/mL for CH, CR, and CGp, respectively and extracellular (< 15.625 μg/mL for CH, CR, CGp, and PT melanin production when tested against B16F10 mouse melanocytes. Results from the present study tend to show that EOs extracted from these medicinal plants can inhibit key enzymes and may be potential candidates for cosmetic and pharmaceutical industries.

  11. Identification of ligand-selective peptidic ActRIIB-antagonists using phage display technology

    Directory of Open Access Journals (Sweden)

    Kotaro Sakamoto

    2017-09-01

    Full Text Available ActRIIB (activin receptor type-2B is an activin receptor subtype constitutively expressed in the whole body, playing a role in cellular proliferation, differentiation, and metabolism. For its various physiological activities, ActRIIB interacts with activin and multiple other ligands including myostatin (MSTN, growth differentiation factor 11 (GDF11, and bone morphogenetic protein 9 (BMP9. Notably, the protein-protein interaction (PPI between ActRIIB and MSTN negatively controls muscular development. Therefore, this PPI has been targeted for effective treatment of muscle degenerative diseases such as muscular dystrophy and sarcopenia. Here, we report the identification of ligand-selective peptidic ActRIIB-antagonists by phage display technology. Our peptides bound to the extracellular domain of ActRIIB, inhibited PPIs between ActRIIB expressed on the cell surface and its ligands, and subsequently suppressed activation of Smad that serves as the downstream signal of the ActRIIB pathway. Interestingly, these peptidic antagonists displayed different ligand selectivities; the AR2mini peptide inhibited multiple ligands (activin A, MSTN, GDF11, and BMP9, AR9 inhibited MSTN and GDF11, while AR8 selectively inhibited MSTN. This is the first report of artificial peptidic ActRIIB-antagonists possessing ligand-selectivity.

  12. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death

    International Nuclear Information System (INIS)

    Cheng, Gang; Zielonka, Jacek; McAllister, Donna M; Mackinnon, A Craig Jr; Joseph, Joy; Dwinell, Michael B; Kalyanaraman, Balaraman

    2013-01-01

    Recent research has revealed that targeting mitochondrial bioenergetic metabolism is a promising chemotherapeutic strategy. Key to successful implementation of this chemotherapeutic strategy is the use of new and improved mitochondria-targeted cationic agents that selectively inhibit energy metabolism in breast cancer cells, while exerting little or no long-term cytotoxic effect in normal cells. In this study, we investigated the cytotoxicity and alterations in bioenergetic metabolism induced by mitochondria-targeted vitamin E analog (Mito-chromanol, Mito-ChM) and its acetylated ester analog (Mito-ChMAc). Assays of cell death, colony formation, mitochondrial bioenergetic function, intracellular ATP levels, intracellular and tissue concentrations of tested compounds, and in vivo tumor growth were performed. Both Mito-ChM and Mito-ChMAc selectively depleted intracellular ATP and caused prolonged inhibition of ATP-linked oxygen consumption rate in breast cancer cells, but not in non-cancerous cells. These effects were significantly augmented by inhibition of glycolysis. Mito-ChM and Mito-ChMAc exhibited anti-proliferative effects and cytotoxicity in several breast cancer cells with different genetic background. Furthermore, Mito-ChM selectively accumulated in tumor tissue and inhibited tumor growth in a xenograft model of human breast cancer. We conclude that mitochondria-targeted small molecular weight chromanols exhibit selective anti-proliferative effects and cytotoxicity in multiple breast cancer cells, and that esterification of the hydroxyl group in mito-chromanols is not a critical requirement for its anti-proliferative and cytotoxic effect

  13. Myrtenal inhibits acetylcholinesterase, a known Alzheimer target.

    Science.gov (United States)

    Kaufmann, Dorothea; Dogra, Anudeep Kaur; Wink, Michael

    2011-10-01

    Inhibition of acetylcholinesterase (AChE) is a common treatment for early stages of the most general form of dementia, Alzheimer's disease. In this study selected components of essential oils, which carry a variety of important functional groups, were tested for their in-vitro anti-acetylcholinesterase activity. In-vitro anti-acetylcholinesterase activity was measured by an adapted version of Ellman's colorimetric assay. 1,8-cineole, carvacrol, myrtenal and verbenone apparently inhibited AChE; the highest inhibitory activity was observed for myrtenal (IC50 = 0.17 mm). This is the first study showing the AChE inhibitory activity of myrtenal. Our investigations provided evidence for the efficacy of monoterpenes as inhibitors of AChE. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  14. Phosphoenolpyruvate carboxylase from C4 leaves is selectively targeted for inhibition by anionic phospholipids

    NARCIS (Netherlands)

    Monreal, J.A.; McLoughlin, F.; Echevarría, C.; García-Mauriño, S.; Testerink, C.

    2010-01-01

    Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an enzyme playing a crucial role in photosynthesis of C4 plants. Here, we identify anionic phospholipids as novel regulators that inhibit C4 PEPC activity and provide evidence that the enzyme partially localizes to membranes.

  15. Selective attention and control of action: comparative psychology of an artificial, evolved agent and people.

    Science.gov (United States)

    Ward, Robert; Ward, Ronnie

    2008-10-01

    This study examined the selective attention abilities of a simple, artificial, evolved agent and considered implications of the agent's performance for theories of selective attention and action. The agent processed two targets in continuous time, catching one and then the other. This task required many cognitive operations, including prioritizing the first target (T1) over the second (T2); selectively focusing responses on T1, while preventing T2 from interfering with responses; creating a memory for the unselected T2 item, so that it could be efficiently processed later; and reallocating processing towards T2 after catching T1. The evolved agent demonstrated all these abilities. Analysis shows that the agent used reactive inhibition to selectively focus behavior. That is, the more salient T2, the more strongly responses towards T2 were inhibited and the slower the agent was to subsequently reallocate processing towards T2. Reactive inhibition was also suggested in two experiments with people, performing a virtually identical catch task. The presence of reactive inhibition in the simple agent and in people suggests that it is an important mechanism for selective processing.

  16. Glucagon Amyloid-like Fibril Morphology Is Selected via Morphology-Dependent Growth Inhibition

    DEFF Research Database (Denmark)

    Andersen, C.B.; Otzen, D.; Christiansen, Gunna

    2007-01-01

    Protein Structure and Biophysics, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Malov, Denmark, Centre for Insoluble Protein Structures (inSPIN), Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, and Institute of Medical Microbiology and Immunology...... twisted fibril seeds cannot grow at high concentrations. We conclude that there exists a morphology-dependent mechanism for inhibition of glucagon fibril growth. Light scattering experiments indicate that glucagon is mainly monomeric below 1 mg/mL and increasingly trimeric above this concentration. We...

  17. Efficient data selection for ASR

    CSIR Research Space (South Africa)

    Kleynhans, NT

    2014-10-01

    Full Text Available the deployment of ASR systems in the developing world is severely inhibited. One approach to assist with resource-scarce ASR system development, is to select ‘‘useful’’ training samples which could reduce the resources needed to collect new corpora. In this work...

  18. Visual working memory simultaneously guides facilitation and inhibition during visual search.

    Science.gov (United States)

    Dube, Blaire; Basciano, April; Emrich, Stephen M; Al-Aidroos, Naseem

    2016-07-01

    During visual search, visual working memory (VWM) supports the guidance of attention in two ways: It stores the identity of the search target, facilitating the selection of matching stimuli in the search array, and it maintains a record of the distractors processed during search so that they can be inhibited. In two experiments, we investigated whether the full contents of VWM can be used to support both of these abilities simultaneously. In Experiment 1, participants completed a preview search task in which (a) a subset of search distractors appeared before the remainder of the search items, affording participants the opportunity to inhibit them, and (b) the search target varied from trial to trial, requiring the search target template to be maintained in VWM. We observed the established signature of VWM-based inhibition-reduced ability to ignore previewed distractors when the number of distractors exceeds VWM's capacity-suggesting that VWM can serve this role while also representing the target template. In Experiment 2, we replicated Experiment 1, but added to the search displays a singleton distractor that sometimes matched the color (a task-irrelevant feature) of the search target, to evaluate capture. We again observed the signature of VWM-based preview inhibition along with attentional capture by (and, thus, facilitation of) singletons matching the target template. These findings indicate that more than one VWM representation can bias attention at a time, and that these representations can separately affect selection through either facilitation or inhibition, placing constraints on existing models of the VWM-based guidance of attention.

  19. Structure–inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs)

    International Nuclear Information System (INIS)

    Fang, Zhong-Ze; Cao, Yun-Feng; Hu, Cui-Min; Hong, Mo; Sun, Xiao-Yu; Ge, Guang-Bo; Liu, Yong; Zhang, Yan-Yan; Yang, Ling; Sun, Hong-Zhi

    2013-01-01

    The wide utilization of ginseng provides the high risk of herb–drug interaction (HDI) with many clinical drugs. The inhibition of ginsenosides towards drug-metabolizing enzymes (DMEs) has been regarded as an important reason for herb–drug interaction (HDI). Compared with the deep studies on the ginsenosides' inhibition towards cytochrome P450 (CYP), the inhibition of ginsenosides towards the important phase II enzymes UDP-glucuronosyltransferases (UGTs) remains to be unclear. The present study aims to evaluate the inhibition behavior of ginsenosides towards important UGT isoforms located in the liver and intestine using in vitro methods. The recombinant UGT isoform-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as in vitro probe reaction. The results showed that structure-dependent inhibition existed for the inhibition of ginsenosides towards UGT isoforms. To clarify the possibility of in vivo herb–drug interaction induced by this kind of inhibition, the ginsenoside Rg 3 was selected as an example, and the inhibition kinetic type and parameters (K i ) were determined. Rg 3 competitively inhibited UGT1A7, 2B7 and 2B15-catalyzed 4-MU glucuronidation reaction, and exerted noncompetitive inhibition towards UGT1A8-catalyzed 4-MU glucuronidation. The inhibition parameters (K i values) were calculated to be 22.6, 7.9, 1.9, and 2.0 μM for UGT1A7, 1A8, 2B7 and 2B15. Using human maximum plasma concentration of Rg 3 (400 ng/ml (0.5 μM)) after intramuscular injection of 60 mg Rg 3 , the area under the plasma concentration-time curve (AUC) was extrapolated to increase by 2.2%, 6.3%, 26.3%, and 25% for the co-administered drugs completely undergoing the metabolism catalyzed by UGT1A7, 1A8, 2B7 and 2B15, respectively. All these results indicated that the ginsenosides' inhibition towards UGT isoforms might be an important reason for ginseng–drug interaction. - Highlights: ► Structure-dependent inhibition of ginsenoside towards UDP

  20. Structure–inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs)

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhong-Ze [The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of Sciences and The first Affiliated Hospital of Liaoning Medical University, No.457, Zhongshan Road, Dalian 116023 (China); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); Cao, Yun-Feng [Key Laboratory of Contraceptives and Devices Research(NPFPC),Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032 (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of Sciences and The first Affiliated Hospital of Liaoning Medical University, No.457, Zhongshan Road, Dalian 116023 (China); Hu, Cui-Min [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); Hong, Mo; Sun, Xiao-Yu [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of Sciences and The first Affiliated Hospital of Liaoning Medical University, No.457, Zhongshan Road, Dalian 116023 (China); Ge, Guang-Bo; Liu, Yong; Zhang, Yan-Yan; Yang, Ling [Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China); Sun, Hong-Zhi, E-mail: zzfang228@gmail.com [The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China)

    2013-03-01

    The wide utilization of ginseng provides the high risk of herb–drug interaction (HDI) with many clinical drugs. The inhibition of ginsenosides towards drug-metabolizing enzymes (DMEs) has been regarded as an important reason for herb–drug interaction (HDI). Compared with the deep studies on the ginsenosides' inhibition towards cytochrome P450 (CYP), the inhibition of ginsenosides towards the important phase II enzymes UDP-glucuronosyltransferases (UGTs) remains to be unclear. The present study aims to evaluate the inhibition behavior of ginsenosides towards important UGT isoforms located in the liver and intestine using in vitro methods. The recombinant UGT isoform-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as in vitro probe reaction. The results showed that structure-dependent inhibition existed for the inhibition of ginsenosides towards UGT isoforms. To clarify the possibility of in vivo herb–drug interaction induced by this kind of inhibition, the ginsenoside Rg{sub 3} was selected as an example, and the inhibition kinetic type and parameters (K{sub i}) were determined. Rg{sub 3} competitively inhibited UGT1A7, 2B7 and 2B15-catalyzed 4-MU glucuronidation reaction, and exerted noncompetitive inhibition towards UGT1A8-catalyzed 4-MU glucuronidation. The inhibition parameters (K{sub i} values) were calculated to be 22.6, 7.9, 1.9, and 2.0 μM for UGT1A7, 1A8, 2B7 and 2B15. Using human maximum plasma concentration of Rg{sub 3} (400 ng/ml (0.5 μM)) after intramuscular injection of 60 mg Rg{sub 3}, the area under the plasma concentration-time curve (AUC) was extrapolated to increase by 2.2%, 6.3%, 26.3%, and 25% for the co-administered drugs completely undergoing the metabolism catalyzed by UGT1A7, 1A8, 2B7 and 2B15, respectively. All these results indicated that the ginsenosides' inhibition towards UGT isoforms might be an important reason for ginseng–drug interaction. - Highlights: ► Structure

  1. IFN-γ fails to overcome inhibition of selected macrophage activation events in response to pathogenic mycobacteria.

    Directory of Open Access Journals (Sweden)

    Shyamala Thirunavukkarasu

    Full Text Available According to most models of mycobacterial infection, inhibition of the pro-inflammatory macrophage immune responses contributes to the persistence of bacteria. Mycobacterium avium subsp. paratuberculosis (MAP is a highly successful pathogen in cattle and sheep and is also implicated as the causative agent of Crohn's disease in humans. Pathogenic mycobacteria such as MAP have developed multiple strategies to evade host defence mechanisms including interfering with the macrophages' capacity to respond to IFN-γ, a feature which might be lacking in non-pathogenic mycobacteria such as M. smegmatis. We hypothesized that pre-sensitisation of macrophages with the pro-inflammatory cytokine IFN-γ would help in overcoming the inhibitory effect of MAP or its antigens on macrophage inflammatory responses. Herein we have compared a series of macrophage activation parameters in response to MAP and M. smegmatis as well as mycobacterial antigens. While IFN-γ did overcome the inhibition in immune suppressive mechanisms in response to MAP antigen as well as M. smegmatis, we could not find a clear role for IFN-γ in overcoming the inhibition of macrophage inflammatory responses to the pathogenic mycobacterium, MAP. We demonstrate that suppression of macrophage defence mechanisms by pathogenic mycobacteria is unlikely to be overcome by prior sensitization with IFN-γ alone. This indicates that IFN-γ signaling pathway-independent mechanisms may exist for overcoming inhibition of macrophage effector functions in response to pathogenic mycobacteria. These findings have important implications in understanding the survival mechanisms of pathogenic mycobacteria directed towards finding better therapeutics and vaccination strategies.

  2. The ability of fruit and vegetable enzyme system to hydrolyse ester bonds

    Directory of Open Access Journals (Sweden)

    Agnieszka Mironowicz

    2014-01-01

    Full Text Available The pulp of potato tubers (Solanum tuberosum, topinambur (Helianthus tuberosus and apples (Malus silvestris can hydrolyse totally, or almost totally, ester bonds in phenyl, α- and β-naphthyl, benzyl and cinnamyl acetates. In methyl 4-acetoxy-3-metoxybenzoate and methyl 2,5-diacetoxybenzoate as well as testosterone propionate and 16,17-acetonide of 21-acetoxy-6-fluoro-16α,17β,21-trihydroxy-4-pregnen-3,20-dione, the hydrolysis is selective towards the substrate and the bioreagent. In contrast, ethyl benzoate and cinnamate are resistant to hydrolysis.

  3. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Bastus Neus

    2008-01-01

    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  4. Structural Implications for Selective Targeting of PARPs.

    Science.gov (United States)

    Steffen, Jamin D; Brody, Jonathan R; Armen, Roger S; Pascal, John M

    2013-12-20

    Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that use NAD(+) as a substrate to synthesize polymers of ADP-ribose (PAR) as post-translational modifications of proteins. PARPs have important cellular roles that include preserving genomic integrity, telomere maintenance, transcriptional regulation, and cell fate determination. The diverse biological roles of PARPs have made them attractive therapeutic targets, which have fueled the pursuit of small molecule PARP inhibitors. The design of PARP inhibitors has matured over the past several years resulting in several lead candidates in clinical trials. PARP inhibitors are mainly used in clinical trials to treat cancer, particularly as sensitizing agents in combination with traditional chemotherapy to reduce side effects. An exciting aspect of PARP inhibitors is that they are also used to selectivity kill tumors with deficiencies in DNA repair proteins (e.g., BRCA1/2) through an approach termed "synthetic lethality." In the midst of the tremendous efforts that have brought PARP inhibitors to the forefront of modern chemotherapy, most clinically used PARP inhibitors bind to conserved regions that permits cross-selectivity with other PARPs containing homologous catalytic domains. Thus, the differences between therapeutic effects and adverse effects stemming from pan-PARP inhibition compared to selective inhibition are not well understood. In this review, we discuss current literature that has found ways to gain selectivity for one PARP over another. We furthermore provide insights into targeting other domains that make up PARPs, and how new classes of drugs that target these domains could provide a high degree of selectivity by affecting specific cellular functions. A clear understanding of the inhibition profiles of PARP inhibitors will not only enhance our understanding of the biology of individual PARPs, but may provide improved therapeutic options for patients.

  5. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cawley, George F.; Ardoin, Taylor G. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Backes, Wayne L. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  6. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    International Nuclear Information System (INIS)

    Reed, James R.; Cawley, George F.; Ardoin, Taylor G.; Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W.; Backes, Wayne L.

    2014-01-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  7. Evidence inhibition responds reactively to the salience of distracting information during focused attention.

    Directory of Open Access Journals (Sweden)

    Natalie Wyatt

    Full Text Available Along with target amplification, distractor inhibition is regarded as a major contributor to selective attention. Some theories suggest that the strength of inhibitory processing is proportional to the salience of the distractor (i.e., inhibition reacts to the distractor intensity. Other theories suggest that the strength of inhibitory processing does not depend on the salience of the distractor (i.e., inhibition does not react to the distractor intensity. The present study aimed to elucidate the relationship between the intensity of a distractor and its subsequent inhibition during focused attention. A flanker task with a variable distractor-target stimulus-onset asynchrony (SOA was used to measure both distractor interference and distractor inhibition. We manipulated the intensity of the distractor in two separate ways, by varying its distance from the target (Experiment 1 and by varying its brightness (Experiment 2. The results indicate that more intense distractors were associated with both increased interference and stronger distractor inhibition. The latter outcome provides novel support for the reactive inhibition hypothesis, which posits that inhibition reacts to the strength of distractor input, such that more salient distractors elicit stronger inhibition.

  8. Ultraviolet-induced cutaneous hyperemia and steroid-induced cutaneous hypoemia measured by 133Xe disappearance in dogs

    International Nuclear Information System (INIS)

    Chimoskey, J.E.; Flanagan, W.

    1974-01-01

    133 Xe disappearance rates in dog skin were determined by injection of 100 μc 133 Xe dissolved in 0.025 ml physiologic saline solution into the skin with a 30-gauge needle and external detection of gamma radiation with a 2-inch sodium iodide crystal, photomultiplier, rate meter, and timer-scaler system. Skin temperature was measured by a thermistor. Skin blood flow was manipulated by the topical application of fluocinolone acetonide and by ultraviolet radiation. Fluocinolone acetonide caused significant reduction of skin blood flow, and ultraviolet irradiation caused significant increase in skin blood flow

  9. Inhibition of two-photon absorption due to dipole-dipole interaction in nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 (Canada)], E-mail: msingh@uwo.ca

    2008-07-21

    We have investigated the inhibition of two-photon absorption in photonic crystals doped with an ensemble of four-level nanoparticles. The particles are interacting with one another by the dipole-dipole interaction. Dipoles in nanoparticles are induced by a selected transition. Numerical simulations have been performed for an isotropic photonic crystal. Interesting phenomena have been predicted such as the inhibition of the two-photon absorption due to the dipole-dipole interaction. It has also been found that the inhibition effect can be switched on and off by tuning a decay resonance energy within the energy band of the crystal. A theory of dressed states has been used to explain the results.

  10. Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.

    Science.gov (United States)

    Tan, Andrew Y Y; Brown, Brandon D; Scholl, Benjamin; Mohanty, Deepankar; Priebe, Nicholas J

    2011-08-24

    Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations, whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation selectivity in mouse V1 opens cortical computation to dissection by genetic and imaging tools, but also raises two essential questions: (1) How does orientation selectivity in mouse V1 neurons compare with that in previously described species? (2) What is the synaptic basis for orientation selectivity in mouse V1? A comparison of orientation selectivity in mouse and in cat, where such measures have traditionally been made, reveals that orientation selectivity in mouse V1 is weaker than in cat V1, but that spike threshold plays a similar role in narrowing selectivity between membrane potential and spike rate. To uncover the synaptic basis for orientation selectivity, we made whole-cell recordings in vivo from mouse V1 neurons, comparing neuronal input selectivity-based on membrane potential, synaptic excitation, and synaptic inhibition-to output selectivity based on spiking. We found that a neuron's excitatory and inhibitory inputs are selective for the same stimulus orientations as is its membrane potential response, and that inhibitory selectivity is not broader than excitatory selectivity. Inhibition has different dynamics than excitation, adapting more rapidly. In neurons with temporally modulated responses, the timing of excitation and inhibition was different in mice and cats.

  11. The neural markers of an imminent failure of response inhibition

    NARCIS (Netherlands)

    Bengson, Jesse J.; Mangun, George R.; Mazaheri, Ali

    2012-01-01

    In his novel Ulysses, James Joyce wrote that mistakes are the "...portals of discovery". The present study investigated the pre-stimulus oscillatory EEG signatures of selective attention and motor preparation that predicted failures of overt response inhibition. We employed a trial-by-trial spatial

  12. Anxiety and retrieval inhibition: support for an enhanced inhibition account.

    Science.gov (United States)

    Nuñez, Mia; Gregory, Josh; Zinbarg, Richard E

    2017-02-01

    Retrieval inhibition of negative associations is important for exposure therapy for anxiety, but the relationship between memory inhibition and anxiety is not well understood-anxiety could either be associated with enhanced or deficient inhibition. The present study tested these two competing hypotheses by measuring retrieval inhibition of negative stimuli by related neutral stimuli. Non-clinically anxious undergraduates completed measures of trait and state anxiety and completed a retrieval induced forgetting task. Adaptive forgetting varied with state anxiety. Low levels of state anxiety were associated with no evidence for retrieval inhibition for either threatening or non-threatening categories. Participants in the middle tertile of state anxiety scores exhibited retrieval inhibition for non-threatening categories but not for threatening categories. Participants in the highest tertile of state anxiety, however, exhibited retrieval inhibition for both threatening and non-threatening categories with the magnitude of retrieval inhibition being greater for threatening than non-threatening categories. The data are in line with the avoidance aspect of the vigilance-avoidance theory of anxiety and inhibition. Implications for cognitive behavioural therapy practices are discussed.

  13. Chronic inhibition of dopamine β-hydroxylase facilitates behavioral responses to cocaine in mice.

    Directory of Open Access Journals (Sweden)

    Meriem Gaval-Cruz

    Full Text Available The anti-alcoholism medication, disulfiram (Antabuse, decreases cocaine use in humans regardless of concurrent alcohol consumption and facilitates cocaine sensitization in rats, but the functional targets are unknown. Disulfiram inhibits dopamine β-hydroxylase (DBH, the enzyme that converts dopamine (DA to norepinephrine (NE in noradrenergic neurons. The goal of this study was to test the effects of chronic genetic or pharmacological DBH inhibition on behavioral responses to cocaine using DBH knockout (Dbh -/- mice, disulfiram, and the selective DBH inhibitor, nepicastat. Locomotor activity was measured in control (Dbh +/- and Dbh -/- mice during a 5 day regimen of saline+saline, disulfiram+saline, nepicastat+saline, saline+cocaine, disulfiram+cocaine, or nepicastat+cocaine. After a 10 day withdrawal period, all groups were administered cocaine, and locomotor activity and stereotypy were measured. Drug-naïve Dbh -/- mice were hypersensitive to cocaine-induced locomotion and resembled cocaine-sensitized Dbh +/- mice. Chronic disulfiram administration facilitated cocaine-induced locomotion in some mice and induced stereotypy in others during the development of sensitization, while cocaine-induced stereotypy was evident in all nepicastat-treated mice. Cocaine-induced stereotypy was profoundly increased in the disulfiram+cocaine, nepicastat+cocaine, and nepicastat+saline groups upon cocaine challenge after withdrawal in Dbh +/- mice. Disulfiram or nepicastat treatment had no effect on behavioral responses to cocaine in Dbh -/- mice. These results demonstrate that chronic DBH inhibition facilitates behavioral responses to cocaine, although different methods of inhibition (genetic vs. non-selective inhibitor vs. selective inhibitor enhance qualitatively different cocaine-induced behaviors.

  14. Chronic Inhibition of Dopamine β-Hydroxylase Facilitates Behavioral Responses to Cocaine in Mice

    Science.gov (United States)

    Gaval-Cruz, Meriem; Liles, Larry Cameron; Iuvone, Paul Michael; Weinshenker, David

    2012-01-01

    The anti-alcoholism medication, disulfiram (Antabuse), decreases cocaine use in humans regardless of concurrent alcohol consumption and facilitates cocaine sensitization in rats, but the functional targets are unknown. Disulfiram inhibits dopamine β-hydroxylase (DBH), the enzyme that converts dopamine (DA) to norepinephrine (NE) in noradrenergic neurons. The goal of this study was to test the effects of chronic genetic or pharmacological DBH inhibition on behavioral responses to cocaine using DBH knockout (Dbh −/−) mice, disulfiram, and the selective DBH inhibitor, nepicastat. Locomotor activity was measured in control (Dbh +/−) and Dbh −/− mice during a 5 day regimen of saline+saline, disulfiram+saline, nepicastat+saline, saline+cocaine, disulfiram+cocaine, or nepicastat+cocaine. After a 10 day withdrawal period, all groups were administered cocaine, and locomotor activity and stereotypy were measured. Drug-naïve Dbh −/− mice were hypersensitive to cocaine-induced locomotion and resembled cocaine-sensitized Dbh +/− mice. Chronic disulfiram administration facilitated cocaine-induced locomotion in some mice and induced stereotypy in others during the development of sensitization, while cocaine-induced stereotypy was evident in all nepicastat-treated mice. Cocaine-induced stereotypy was profoundly increased in the disulfiram+cocaine, nepicastat+cocaine, and nepicastat+saline groups upon cocaine challenge after withdrawal in Dbh +/− mice. Disulfiram or nepicastat treatment had no effect on behavioral responses to cocaine in Dbh −/− mice. These results demonstrate that chronic DBH inhibition facilitates behavioral responses to cocaine, although different methods of inhibition (genetic vs. non-selective inhibitor vs. selective inhibitor) enhance qualitatively different cocaine-induced behaviors. PMID:23209785

  15. Norepinephrine transporter inhibition alters the hemodynamic response to hypergravitation.

    Science.gov (United States)

    Strempel, Sebastian; Schroeder, Christoph; Hemmersbach, Ruth; Boese, Andrea; Tank, Jens; Diedrich, André; Heer, Martina; Luft, Friedrich C; Jordan, Jens

    2008-03-01

    Sympathetically mediated tachycardia and vasoconstriction maintain blood pressure during hypergravitational stress, thereby preventing gravitation-induced loss of consciousness. Norepinephrine transporter (NET) inhibition prevents neurally mediated (pre)syncope during gravitational stress imposed by head-up tilt testing. Thus it seems reasonable that NET inhibition could increase tolerance to hypergravitational stress. We performed a double-blind, randomized, placebo-controlled crossover study in 11 healthy men (26 +/- 1 yr, body mass index 24 +/- 1 kg/m2), who ingested the selective NET inhibitor reboxetine (4 mg) or matching placebo 25, 13, and 1 h before testing on separate days. We monitored heart rate, blood pressure, and thoracic impedance in three different body positions (supine, seated, standing) and during a graded centrifuge run (incremental steps of 0.5 g for 3 min each, up to a maximal vertical acceleration load of 3 g). NET inhibition increased supine blood pressure and heart rate. With placebo, blood pressure increased in the seated position and was well maintained during standing. However, with NET inhibition, blood pressure decreased in the seated and standing position. During hypergravitation, blood pressure increased in a graded fashion with placebo. With NET inhibition, the increase in blood pressure during hypergravitation was profoundly diminished. Conversely, the tachycardic responses to sitting, standing, and hypergravitation all were greatly increased with NET inhibition. In contrast to our expectation, short-term NET inhibition did not improve tolerance to hypergravitation. Redistribution of sympathetic activity to the heart or changes in baroreflex responses could explain the excessive tachycardia that we observed.

  16. Acute inhibition of selected membrane-proximal mouse T cell receptor signaling by mitochondrial antagonists.

    Directory of Open Access Journals (Sweden)

    Kwangmi Kim

    2009-11-01

    Full Text Available T cells absorb nanometric membrane vesicles, prepared from plasma membrane of antigen presenting cells, via dual receptor/ligand interactions of T cell receptor (TCR with cognate peptide/major histocompatibility complex (MHC plus lymphocyte function-associated antigen 1 (LFA-1 with intercellular adhesion molecule 1. TCR-mediated signaling for LFA-1 activation is also required for the vesicle absorption. Exploiting those findings, we had established a high throughput screening (HTS platform and screened a library for isolation of small molecules inhibiting the vesicle absorption. Follow-up studies confirmed that treatments (1 hour with various mitochondrial antagonists, including a class of anti-diabetic drugs (i.e., Metformin and Phenformin, resulted in ubiquitous inhibition of the vesicle absorption without compromising viability of T cells. Further studies revealed that the mitochondrial drug treatments caused impairment of specific membrane-proximal TCR signaling event(s. Thus, activation of Akt and PLC-gamma1 and entry of extracellular Ca(2+ following TCR stimulation were attenuated while polymerization of monomeric actins upon TCR triggering progressed normally after the treatments. Dynamic F-actin rearrangement concurring with the vesicle absorption was also found to be impaired by the drug treatments, implying that the inhibition by the drug treatments of downstream signaling events (and the vesicle absorption could result from lack of directional relocation of signaling and cell surface molecules. We also assessed the potential application of mitochondrial antagonists as immune modulators by probing effects of the long-term drug treatments (24 hours on viability of resting primary T cells and cell cycle progression of antigen-stimulated T cells. This study unveils a novel regulatory mechanism for T cell immunity in response to environmental factors having effects on mitochondrial function.

  17. Selective Insulin Resistance in the Kidney

    Science.gov (United States)

    Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George

    2016-01-01

    Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938

  18. Effects of Methylphenidate and Atomoxetine on Cortical Inhibition in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-09-01

    Full Text Available The effects of methylphenidate (MPH, a psychostimulant, and atomoxetine (ATX, a selective norepinephrine reuptake inhibitor, on short interval-cortical inhibition (SICI were measured in motor cortex with transcranial magnetic stimulation, in a study at Cincinnati Children’s Medical Center, OH, and other centers.

  19. Formation of distinct inclusion bodies by inhibition of ubiquitin-proteasome and autophagy-lysosome pathways.

    Science.gov (United States)

    Lee, Junho; Yang, Kyu-Hwan; Joe, Cheol O; Kang, Seok-Seong

    2011-01-14

    Accumulation of misfolded proteins is caused by the impairment of protein quality control systems, such as ubiquitin-proteasome pathway (UPP) and autophagy-lysosome pathway (ALP). In this study, the formation of inclusion bodies was examined after the blockade of UPP and/or ALP in A549 cells. UPP inhibition induced a single and large inclusion body localized in microtubule-organizing center. Interestingly, however, ALP inhibition generated dispersed small inclusion bodies in the cytoplasm. Tuberous sclerosis complex 2 was selectively accumulated in the inclusion bodies of UPP-inhibited cells, but not those of ALP-inhibited cells. Blockade of transcription and translation entirely inhibited the formation of inclusion body induced by UPP inhibition, but partially by ALP inhibition. Moreover, the simultaneous inhibition of two protein catabolic pathways independently developed two distinct inclusion bodies within a single cell. These findings clearly demonstrated that dysfunction of each catabolic pathway induced formation and accumulation of unique inclusion bodies on the basis of morphology, localization and formation process in A549 cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Inhibition of human prostate cancer cells proliferation by a selective alpha1-adrenoceptor antagonist labedipinedilol-A involves cell cycle arrest and apoptosis

    International Nuclear Information System (INIS)

    Liou, S.-F.; Lin, H.-H.; Liang, J.-C.; Chen, I.-J.; Yeh, J.-L.

    2009-01-01

    In this research, we conducted an in vitro analysis to evaluate the prostate cancer cells response to labedipinedilol-A in order to determine the effect of this selective α 1 -adrenoceptor antagonist to suppress prostate cancer cell growth by affecting cell proliferation and apoptosis. Here, we report that treatment of androgen-sensitive (LNCaP) and androgen-insensitive (PC-3) prostate cancer cells with labedipinedilol-A inhibited cell proliferation in concentration-dependent and time-dependent manners. Moreover, norepinephrine-stimulated proliferation of both cell lines are markedly inhibited by labedipinedilol-A. The probable involvement of α 1 -adrenoceptors in this cellular response is suggested. Labedipinedilol-A-induced growth inhibition was associated with G 0 /G 1 arrest, and G 2 /M arrest depending upon concentrations. Cell cycle blockade was associated with reduced amounts of cyclin D1/2, cyclin E, Cdk2, Cdk4, and Cdk6 and increased levels of the Cdk inhibitory proteins (Cip1/p21 and Kip1/p27). In addition, labedipinedilol-A also induced apoptosis in PC-3 cells, as determined by using Hoechst 33342 staining, DNA fragmentation, and Annexin V staining assay. Furthermore, labedipinedilol-A triggered the mitochondrial apoptotic pathway, as indicated by increasing the expression of Bax, but decreasing the level of Bcl-2, resulting in mitochondrial membrane potential loss, cytochrome c release, and activation of caspase-9 and -3. We further investigated the role of MAPK cascades in the anti-proliferative and apoptosis effects of labedipinedilol-A, and confirmed that labedipinedilol-A could activate JNK1/2 but not p38 in both cell lines. Unlike JNK1/2, however, labedipinedilol-A treatment resulted in down-regulation of phospho-ERK1/2 expression. We concluded that labedipinedilol-A possessed the growth-suppressive and apoptotic effects on LNCaP and PC-3 cells by its α 1 -adrenoceptor blockade, and the apoptotic effects of labedipinedilol-A primarily through

  1. Comparing the effects of cryotherapy with nitrous oxide gas versus topical corticosteroids in the treatment of oral lichen planus.

    Science.gov (United States)

    Amanat, Dariush; Ebrahimi, Hooman; Zahedani, Maryam Zahed; Zeini, Nasim; Pourshahidi, Sara; Ranjbar, Zahra

    2014-01-01

    Oral lichen planus (OLP) is a chronic inflammatory disease of the oral mucosa with treatment challenges for clinicians. The objective of this study is to compare the effects of cryotherapy as a new modality with topical corticosteroids as a conventional therapy in the treatment of OLP. Thirty patients with bilateral OLP lesions were selected. From each patient a lesion on one side was chosen randomly for a single session of cryotherapy with nitrous oxide gas and the lesion on the other side received triamcinolone acetonide 0.1% ointment in orabase. Treatment outcome was measured by means of an appearance score, pain score (visual analogue scale), and severity of lesions before treatment and after 2, 4 and 6 weeks of treatment. Paired samples t-test and Wilcoxon test. In both methods of treatment sign score, pain score and severity of lesions was significantly reduced in all follow-up sessions (Ptreatment outcome and relapse was not significantly different between the two treatment methods (P>0.05). Cryotherapy with nitrous oxide gas is as effective as topical triamcinolone acetonide in the treatment of OLP with no systemic side effects and needs less patient compliance. It can be considered as an alternative or adjuvant therapy in OLP patients to reduce the use of treatments with adverse effects.

  2. Co-aggregation and growth inhibition of probiotic lactobacilli and clinical isolates of mutans streptococci: An in vitro study

    DEFF Research Database (Denmark)

    Keller, Mette Kirstine; Hassl F, Pamela; Stecks N-Blicks, Christina

    2011-01-01

    -free and caries-susceptible individuals. Conclusions. The selected lactobacilli displayed co-aggregation activity and inhibited growth of clinical mutans streptococci. The growth inhibition was strain-specific and dependent on pH and cell concentration. The findings indicate that the outcome of lactobacilli...

  3. BET bromodomain inhibition promotes neurogenesis while inhibiting gliogenesis in neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Jingjun Li

    2016-09-01

    Full Text Available Neural stem cells and progenitor cells (NPCs are increasingly appreciated to hold great promise for regenerative medicine to treat CNS injuries and neurodegenerative diseases. However, evidence for effective stimulation of neuronal production from endogenous or transplanted NPCs for neuron replacement with small molecules remains limited. To identify novel chemical entities/targets for neurogenesis, we had established a NPC phenotypic screen assay and validated it using known small-molecule neurogenesis inducers. Through screening small molecule libraries with annotated targets, we identified BET bromodomain inhibition as a novel mechanism for enhancing neurogenesis. BET bromodomain proteins, Brd2, Brd3, and Brd4 were found to be downregulated in NPCs upon differentiation, while their levels remain unaltered in proliferating NPCs. Consistent with the pharmacological study using bromodomain selective inhibitor (+-JQ-1, knockdown of each BET protein resulted in an increase in the number of neurons with simultaneous reduction in both astrocytes and oligodendrocytes. Gene expression profiling analysis demonstrated that BET bromodomain inhibition induced a broad but specific transcription program enhancing directed differentiation of NPCs into neurons while suppressing cell cycle progression and gliogenesis. Together, these results highlight a crucial role of BET proteins as epigenetic regulators in NPC development and suggest a therapeutic potential of BET inhibitors in treating brain injuries and neurodegenerative diseases.

  4. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Liu, Yuan [Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Wang, Xiujuan; Kong, Wei [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Zhao, Feng, E-mail: taixingzhaofeng163@163.com [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China)

    2016-01-29

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  5. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    International Nuclear Information System (INIS)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan; Kong, Wei; Zhao, Feng

    2016-01-01

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  6. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    Science.gov (United States)

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition.

  7. Cortical topography of intracortical inhibition influences the speed of decision making.

    Science.gov (United States)

    Wilimzig, Claudia; Ragert, Patrick; Dinse, Hubert R

    2012-02-21

    The neocortex contains orderly topographic maps; however, their functional role remains controversial. Theoretical studies have suggested a role in minimizing computational costs, whereas empirical studies have focused on spatial localization. Using a tactile multiple-choice reaction time (RT) task before and after the induction of perceptual learning through repetitive sensory stimulation, we extend the framework of cortical topographies by demonstrating that the topographic arrangement of intracortical inhibition contributes to the speed of human perceptual decision-making processes. RTs differ among fingers, displaying an inverted U-shaped function. Simulations using neural fields show the inverted U-shaped RT distribution as an emergent consequence of lateral inhibition. Weakening inhibition through learning shortens RTs, which is modeled through topographically reorganized inhibition. Whereas changes in decision making are often regarded as an outcome of higher cortical areas, our data show that the spatial layout of interaction processes within representational maps contributes to selection and decision-making processes.

  8. Hili Inhibits HIV Replication in Activated T Cells.

    Science.gov (United States)

    Peterlin, B Matija; Liu, Pingyang; Wang, Xiaoyun; Cary, Daniele; Shao, Wei; Leoz, Marie; Hong, Tian; Pan, Tao; Fujinaga, Koh

    2017-06-01

    P-element-induced wimpy-like (Piwil) proteins restrict the replication of mobile genetic elements in the germ line. They are also expressed in many transformed cell lines. In this study, we discovered that the human Piwil 2 (Hili) protein can also inhibit HIV replication, especially in activated CD4 + T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express Hili, its expression was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of Hili increased levels of viral proteins and new viral particles. Further studies revealed that Hili binds to tRNA. Some of the tRNAs represent rare tRNA species, whose codons are overrepresented in the viral genome. Targeting tRNA Arg (UCU) with an antisense oligonucleotide replicated effects of Hili and also inhibited HIV replication. Finally, Hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, Hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements. IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germ line. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small Piwi-interacting RNAs (piRNAs). However, in some species and in human somatic cells, Piwil proteins bind primarily to tRNA. In this report, we demonstrate that human Piwil proteins, especially Hili, not only bind to select tRNA species, including rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of Hili in CD4 + T cells. Since Hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements. Copyright © 2017 American Society for Microbiology.

  9. Intraglomerular inhibition shapes the strength and temporal structure of glomerular output.

    Science.gov (United States)

    Shao, Zuoyi; Puche, Adam C; Liu, Shaolin; Shipley, Michael T

    2012-08-01

    Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites via the MC→GC→MC circuit. We investigated the contribution of intraglomerular inhibition to MC and ETCs responses to ON input. ON input evokes initial excitation followed by early, strongly summating inhibitory postsynaptic currents (IPSCs) in MCs; this is followed by prolonged, intermittent IPSCs. The N-methyl-d-aspartate receptor antagonist dl-amino-5-phosphovaleric acid, known to suppress GABA release by GCs, reduced late IPSCs but had no effect on early IPSCs. In contrast, selective intraglomerular block of GABA(A) receptors eliminated all early IPSCs and caused a 5-fold increase in ON-evoked MC spiking and a 10-fold increase in response duration. ETCs also receive intraglomerular inhibition; blockade of inhibition doubled ETC spike responses. By reducing ETC excitatory drive and directly inhibiting MCs, intraglomerular inhibition is a key factor shaping the strength and temporal structure of MC responses to sensory input. Sensory input generates an intraglomerular excitation-inhibition sequence that limits MC spike output to a brief temporal window. Glomerular circuits may dynamically regulate this input-output window to optimize MC encoding across sniff-sampled inputs.

  10. Kinase inhibition by the Jamaican ball moss, Tillandsia recurvata L.

    Science.gov (United States)

    Lowe, Henry I C; Watson, Charah T; Badal, Simone; Toyang, Ngeh J; Bryant, Joseph

    2012-10-01

    This research was undertaken in order to investigate the inhibitory potential of the Jamaican ball moss, Tillandsia recurvata against several kinases. The inhibition of these kinases has emerged as a potential solution to restoring the tight regulation of normal cellular growth, the loss of which leads to cancer cell formation. Kinase inhibition was investigated using competition binding (to the ATP sites) assays, which have been previously established and authenticated. Four hundred and fifty one kinases were tested against the Jamaican ball moss extract and a dose-response was tested on 40 kinases, which were inhibited by more than 35% compared to the control. Out of the 40 kinases, the Jamaican ball moss selectively inhibited 5 (CSNK2A2, MEK5, GAK, FLT and DRAK1) and obtained Kd(50)s were below 20 μg/ml. Since MEK5 and GAK kinases have been associated with aggressive prostate cancer, the inhibitory properties of the ball moss against them, coupled with its previously found bioactivity towards the PC-3 cell line, makes it promising in the arena of drug discovery towards prostate cancer.

  11. Esterase inhibition by synergists in the western flower thrips Frankliniella occidentalis.

    Science.gov (United States)

    López-Soler, Neus; Cervera, Amelia; Quinto, Vicente; Abellán, Jaime; Bielza, Pablo; Martínez-Pardo, Rafael; Garcerá, Maria Dolores

    2011-12-01

    Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is among the most important crop pests in the south-eastern region of Spain. Its increasing resistance to insecticides constitutes a serious problem, and understanding the mechanisms involved is therefore of great interest. Use of synergists to inhibit the enzymes involved in insecticide detoxification is widely used to determine their responsibility for insecticide resistance. However, they do not always act as intended or expected, and caution must be exercised when interpreting synergist results. Laboratory-selected strains of WFT were used to analyse the effects of the synergists piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and methiocarb on total esterase activity. Significant differences were found, indicating esterase activity inhibition by DEF, a lower effect for methiocarb and a small inhibition of the activity by PBO. Esterase isoenzyme inhibition by these compounds showed a similar result; this assay revealed an extreme sensitivity of Triplet A (resistance-associated esterases) to DEF. In an in vivo assay carried out with these compounds at different incubation times, only DEF caused posterior in vitro esterase activity inhibition, with a maximum effect 1 h after treatment. In this work, only DEF shows true synergistic inhibition of WFT esterases. Copyright © 2011 Society of Chemical Industry.

  12. Perivascular delivery of Notch 1 siRNA inhibits injury-induced arterial remodeling.

    Directory of Open Access Journals (Sweden)

    Eileen M Redmond

    Full Text Available To determine the efficacy of perivascular delivery of Notch 1 siRNA in preventing injury-induced arterial remodeling.Carotid artery ligation was performed to induce arterial remodeling. After 14 days, morphometric analysis confirmed increased vSMC growth and subsequent media thickening and neointimal formation. Laser capture microdissection, quantitative qRT-PCR and immunoblot analysis of medial tissue revealed a significant increase in Notch1 receptor and notch target gene, Hrt 1 and 2 expression in the injured vessels. Perivascular delivery of Notch 1 siRNA by pluronic gel inhibited the injury-induced increase in Notch 1 receptor and target gene expression when compared to scrambled siRNA controls while concomitantly reducing media thickening and neointimal formation to pre-injury, sham-operated levels. Selective Notch 1 knockdown also reversed the injury-induced inhibition of pro-apoptotic Bax expression while decreasing injury-induced anti-apoptotic Bcl-XL expression to sham-operated control levels. In parallel experiments, proliferative cyclin levels, as measured by PCNA expression, were reversed to sham-operated control levels following selective Notch 1 knockdown.These results suggest that injury-induced arterial remodeling can be successfully inhibited by localized perivascular delivery of Notch 1 siRNA.

  13. In-site interaction evaluation of Tn density by inhibition/competition assays

    Energy Technology Data Exchange (ETDEWEB)

    Robles, Ana [Radiopharmacy Department, Nuclear Research Center, Faculty of Sciences, University of the Republic, Montevideo (Uruguay)], E-mail: anamar@cin.edu.uy; Medeiros, Andrea [Biochemistry Department, Faculty of Medicine, University of the Republic, Montevideo (Uruguay); Berois, Nora [Laboratory of Glycobiology and Tumor Immunology, Pasteur Institute of Montevideo (Uruguay); Balter, Henia S. [Radiopharmacy Department, Nuclear Research Center, Faculty of Sciences, University of the Republic, Montevideo (Uruguay); Pauwels, Ernest K. [University Medical Center Leiden, Department of Radiology, Leiden (Netherlands); Osinaga, Eduardo [Laboratory of Glycobiology and Tumor Immunology, Pasteur Institute of Montevideo (Uruguay); Department of Immunobiology, Faculty of Medicine, University of the Republic, Montevideo (Uruguay)

    2010-05-15

    The tumor-associated structure N-acetyl-galactosamine-O-Ser/Thr (Tn antigen), which is overexpressed in various tumor cell types, notably of the breast, ovary and colon, is an interesting determinant that is useful for cancer diagnosis and follow-up. The aim of this research was to study different assay strategies in order to determine the most sensitive system for further application in epitope characterization and binding assessment. The tetrameric isolectin obtained from Vicia villosa seeds (VVLB{sub 4}) shows high affinity for the tumor-associated structure. A monoclonal antibody against VVLB{sub 4}, MabVV{sub 34}, was generated, and the interaction between MabVV{sub 34} and VVLB{sub 4} was studied by means of binding and inhibition assays. Several synthetic peptides (10 amino acid sequences) designed from the amino acid sequence of VVLB{sub 4} and obtained from trypsin digestion were tested to determine which amino acids were involved in the interaction between MabVV{sub 34} and VVLB{sub 4}. The further unraveling of this epitope was investigated by inhibition using designed synthetic peptides as well as mixtures mimicking variable density effect. Under the experimental circumstances, MabVV{sub 34} was able to inhibit the binding of VVLB{sub 4} to Tn. Two of the four peptide sequences assayed showed better inhibition properties. Finally, mixtures containing these selected sequences allowed the evaluation of binding and inhibition as a function of Tn density. We conclude that the present study facilitates the further development of a specific Tn marker and may contribute to the development of Tn-like radiolabelled peptides or Tn-specific radiolabelled fragments providing a highly selective tool for cancer diagnosis and treatment. This strategy may contribute to characterize the new generation of radiopharmaceuticals for diagnosis and therapy based on biomolecules like antibodies, fragments or peptides, whose application is directly guided by their specific

  14. In vitro inhibition of phenolsulphotransferase by food and drink constituents.

    Science.gov (United States)

    Gibb, C; Glover, V; Sandler, M

    1987-07-15

    Several natural and synthetic food and drink constituents were tested in vitro for their inhibitory actions on phenolsulphotransferase P and M (PST P, PST M) and monoamine oxidase A and B (MAO A, MAO B). Cyanidin 3-rutinoside, a simple anthocyanin, (+)-catechin, a flavanol, and carmoisine, a synthetic food colorant, were found to be particularly potent, reversible inhibitors of PST P. All inhibited this enzyme by 100% at a concentration of 5 microM and had an IC50 in the microM range. The effects of these compounds on PST M and MAO A and B were less pronounced. There was a considerable difference in the inhibitory ability of different purified anthocyanins but all were selective for PST P. Several other phenolic food colorants were also found to be specific inhibitors of PST P, though less potent in their actions. Tartrazine, a non-phenolic food colorant, had little effect. The phenolic extracts from two red wines were also found selectively to inhibit PST P in vitro, suggesting that it is within this fraction that these inhibitors are to be found. PST is an important enzyme involved in the inactivation of a wide range of exogenous and endogenous phenols. If such a degree of inhibition were to occur in vivo, potentially toxic concentrations of some phenolic substrates might result.

  15. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage.

    Science.gov (United States)

    Chen, Chung-Yi; Yen, Ching-Yu; Wang, Hui-Ru; Yang, Hui-Ping; Tang, Jen-Yang; Huang, Hurng-Wern; Hsu, Shih-Hsien; Chang, Hsueh-Wei

    2016-11-05

    The development of drugs that selectively kill oral cancer cells but are less harmful to normal cells still provide several challenges. In this study, the antioral cancer effects of tenuifolide B (TFB), extracted from the stem of the plant Cinnamomum tenuifolium are evaluated in terms of their effects on cancer cell viability, cell cycle analysis, apoptosis, oxidative stress, and DNA damage. Cell viability of oral cancer cells (Ca9-22 and CAL 27) was found to be significantly inhibited by TFB in a dose-responsive manner in terms of ATP assay, yielding IC 50 = 4.67 and 7.05 μM (24 h), but are less lethal to normal oral cells (HGF-1). Dose-responsive increases in subG1 populations as well as the intensities of flow cytometry-based annexin V/propidium iodide (PI) analysis and pancaspase activity suggested that apoptosis was inducible by TFB in these two types of oral cancer cells. Pretreatment with the apoptosis inhibitor (Z-VAD-FMK) reduced the annexin V intensity of these two TFB-treated oral cancer cells, suggesting that TFB induced apoptosis-mediated cell death to oral cancer cells. Cleaved-poly (ADP-ribose) polymerase (PARP) and cleaved-caspases 3, 8, and 9 were upregulated in these two TFB-treated oral cancer cells over time but less harmful for normal oral HGF-1 cells. Dose-responsive and time-dependent increases in reactive oxygen species (ROS) and decreases in mitochondrial membrane potential (MitoMP) in these two TFB-treated oral cancer cells suggest that TFB may generate oxidative stress as measured by flow cytometry. N -acetylcysteine (NAC) pretreatment reduced the TFB-induced ROS generation and further validated that ROS was relevant to TFB-induced cell death. Both flow cytometry and Western blotting demonstrated that the DNA double strand marker γH2AX dose-responsively increased in TFB-treated Ca9-22 cells and time-dependently increased in two TFB-treated oral cancer cells. Taken together, we infer that TFB can selectively inhibit cell proliferation of

  16. Discovery and antiplatelet activity of a selective PI3Kβ inhibitor (MIPS-9922).

    Science.gov (United States)

    Zheng, Zhaohua; Pinson, Jo-Anne; Mountford, Simon J; Orive, Stephanie; Schoenwaelder, Simone M; Shackleford, David; Powell, Andrew; Nelson, Erin M; Hamilton, Justin R; Jackson, Shaun P; Jennings, Ian G; Thompson, Philip E

    2016-10-21

    A series of amino-substituted triazines were developed and examined for PI3Kβ inhibition and anti-platelet function. Structural adaptations of a morpholine ring of the prototype pan-PI3K inhibitor ZSTK474 yielded PI3Kβ selective compounds, where the selectivity largely derives from an interaction with the non-conserved Asp862 residue, as shown by site directed mutagenesis. The most PI3Kβ selective inhibitor from the series was studied in detail through a series of in vitro and in vivo functional studies. MIPS-9922, 10 potently inhibited ADP-induced washed platelet aggregation. It also inhibited integrin αIIbβ3 activation and αIIbβ3 dependent platelet adhesion to immobilized vWF under high shear. It prevented arterial thrombus formation in the in vivo electrolytic mouse model of thrombosis without inducing prolonged bleeding or excess blood loss. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Formation and Inhibition of Nε-(Carboxymethyllysine in Saccharide-Lysine Model Systems during Microwave Heating

    Directory of Open Access Journals (Sweden)

    Bing Li

    2012-10-01

    Full Text Available  Nε-(carboxymethyl lysine (CML is the most abundant advanced glycation end product (AGE, and frequently selected as an AGEs marker in laboratory studies. In this paper, the formation and inhibition of Nε-(carboxymethyllysine in saccharide-lysine model systems during microwave heating have been studied. The microwave heating treatment significantly promoted the formation of CML during Maillard reactions, which was related to the reaction temperature, time and type of saccharide. The order of CML formation for different saccharides was lactose > glucose > sucrose. Then, the inhibition effect on CML by five inhibitors was further examined. According to the results, ascorbic acid and tocopherol did not affect inhibition of CML, in contrast, thiamin, rutin and quercetin inhibited CML formation, and the inhibitory effects were concentration dependent.

  18. Reduction of mouse atherosclerosis by urokinase inhibition or with a limited-spectrum matrix metalloproteinase inhibitor

    DEFF Research Database (Denmark)

    Hu, Jie Hong; Touch, Phanith; Zhang, Jingwan

    2015-01-01

    -accelerated atherosclerosis) to investigate whether systemic inhibition of proteolytic activity of uPA or a subset of MMPs can reduce protease-induced atherosclerosis and aortic dilation. METHODS AND RESULTS: SR-uPA mice were fed a high-fat diet for 10 weeks and treated either with an antibody inhibiting mouse uPA (mU1...... surface lesion coverage. Several lines of evidence identified MMP-13 as a mediator of uPA-induced aortic MMP activity. CONCLUSIONS: Pharmacological inhibition of either uPA or selected MMPs decreased atherosclerosis in SR-uPA mice. uPA inhibition decreased aortic dilation. Differential effects of both...... agents on aortic root vs. distal aortic atherosclerosis suggest prevention of atherosclerosis progression vs. initiation. Systemic inhibition of uPA or a subset of MMPs shows promise for treating atherosclerosis....

  19. Atomoxetine restores the response inhibition network in Parkinson's disease.

    Science.gov (United States)

    Rae, Charlotte L; Nombela, Cristina; Rodríguez, Patricia Vázquez; Ye, Zheng; Hughes, Laura E; Jones, P Simon; Ham, Timothy; Rittman, Timothy; Coyle-Gilchrist, Ian; Regenthal, Ralf; Sahakian, Barbara J; Barker, Roger A; Robbins, Trevor W; Rowe, James B

    2016-08-01

    Parkinson's disease impairs the inhibition of responses, and whilst impulsivity is mild for some patients, severe impulse control disorders affect ∼10% of cases. Based on preclinical models we proposed that noradrenergic denervation contributes to the impairment of response inhibition, via changes in the prefrontal cortex and its subcortical connections. Previous work in Parkinson's disease found that the selective noradrenaline reuptake inhibitor atomoxetine could improve response inhibition, gambling decisions and reflection impulsivity. Here we tested the hypotheses that atomoxetine can restore functional brain networks for response inhibition in Parkinson's disease, and that both structural and functional connectivity determine the behavioural effect. In a randomized, double-blind placebo-controlled crossover study, 19 patients with mild-to-moderate idiopathic Parkinson's disease underwent functional magnetic resonance imaging during a stop-signal task, while on their usual dopaminergic therapy. Patients received 40 mg atomoxetine or placebo, orally. This regimen anticipates that noradrenergic therapies for behavioural symptoms would be adjunctive to, not a replacement for, dopaminergic therapy. Twenty matched control participants provided normative data. Arterial spin labelling identified no significant changes in regional perfusion. We assessed functional interactions between key frontal and subcortical brain areas for response inhibition, by comparing 20 dynamic causal models of the response inhibition network, inverted to the functional magnetic resonance imaging data and compared using random effects model selection. We found that the normal interaction between pre-supplementary motor cortex and the inferior frontal gyrus was absent in Parkinson's disease patients on placebo (despite dopaminergic therapy), but this connection was restored by atomoxetine. The behavioural change in response inhibition (improvement indicated by reduced stop-signal reaction

  20. The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.

    Science.gov (United States)

    Murphy-Baum, Benjamin L; Taylor, W Rowland

    2015-09-30

    Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the

  1. Biased small-molecule ligands for selective inhibition of HIV-1 cell entry via CCR5

    DEFF Research Database (Denmark)

    Berg, Christian; Spiess, Katja; von Lüttichau, Hans Rudolf

    2016-01-01

    Since the discovery of HIV's use of CCR5 as the primary coreceptor in fusion, the focus on developing small-molecule receptor antagonists for inhibition hereof has only resulted in one single drug, Maraviroc. We therefore investigated the possibility of using small-molecule CCR5 agonists as HIV-1...

  2. Atomoxetine restores the response inhibition network in Parkinson’s disease

    Science.gov (United States)

    Rae, Charlotte L.; Nombela, Cristina; Rodríguez, Patricia Vázquez; Ye, Zheng; Hughes, Laura E.; Jones, P. Simon; Ham, Timothy; Rittman, Timothy; Coyle-Gilchrist, Ian; Regenthal, Ralf; Sahakian, Barbara J.; Barker, Roger A.; Robbins, Trevor W.

    2016-01-01

    Abstract Parkinson’s disease impairs the inhibition of responses, and whilst impulsivity is mild for some patients, severe impulse control disorders affect ∼10% of cases. Based on preclinical models we proposed that noradrenergic denervation contributes to the impairment of response inhibition, via changes in the prefrontal cortex and its subcortical connections. Previous work in Parkinson’s disease found that the selective noradrenaline reuptake inhibitor atomoxetine could improve response inhibition, gambling decisions and reflection impulsivity. Here we tested the hypotheses that atomoxetine can restore functional brain networks for response inhibition in Parkinson’s disease, and that both structural and functional connectivity determine the behavioural effect. In a randomized, double-blind placebo-controlled crossover study, 19 patients with mild-to-moderate idiopathic Parkinson’s disease underwent functional magnetic resonance imaging during a stop-signal task, while on their usual dopaminergic therapy. Patients received 40 mg atomoxetine or placebo, orally. This regimen anticipates that noradrenergic therapies for behavioural symptoms would be adjunctive to, not a replacement for, dopaminergic therapy. Twenty matched control participants provided normative data. Arterial spin labelling identified no significant changes in regional perfusion. We assessed functional interactions between key frontal and subcortical brain areas for response inhibition, by comparing 20 dynamic causal models of the response inhibition network, inverted to the functional magnetic resonance imaging data and compared using random effects model selection. We found that the normal interaction between pre-supplementary motor cortex and the inferior frontal gyrus was absent in Parkinson’s disease patients on placebo (despite dopaminergic therapy), but this connection was restored by atomoxetine. The behavioural change in response inhibition (improvement indicated by reduced

  3. Celecoxib inhibits osteoblast maturation by suppressing the expression of Wnt target genes

    Directory of Open Access Journals (Sweden)

    Akihiro Nagano

    2017-01-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs have been shown to impair bone healing. We previously reported that in colon cancer cells, celecoxib, a COX-2-selective NSAID, inhibited the canonical Wnt/β-catenin signaling pathway. Since this pathway also plays an important role in osteoblast growth and differentiation, we examined the effect of celecoxib on maturation of osteoblast-like cell line MC3T3-E1. Celecoxib induced degradation of transcription factor 7-like 2, a key transcription factor of the canonical Wnt pathway. Subsequently, we analyzed the effect of celecoxib on two osteoblast differentiation markers; runt-related transcription factor 2 (RUNX2 and alkaline phosphatase (ALP, both of which are the products of the canonical Wnt pathway target genes. Celecoxib inhibited the expression of both RUNX2 and ALP by suppressing their promoter activity. Consistent with these observations, celecoxib also strongly inhibited osteoblast-mediated mineralization. These results suggest that celecoxib inhibits osteoblast maturation by suppressing Wnt target genes, and this could be the mechanism that NSAIDs inhibit bone formation and fracture healing.

  4. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    Achievement of efficient enzymatic degradation of cellulose to glucose is one of the main prerequisites and one of the main challenges in the biological conversion of lignocellulosic biomass to liquid fuels and other valuable products. The specific inhibitory interferences by cellobiose and glucose...... on enzyme-catalyzed cellulose hydrolysis reactions impose significant limitations on the efficiency of lignocellulose conversion especially at high-biomass dry matter conditions. To provide the base for selecting the optimal reactor conditions, this paper reviews the reaction kinetics, mechanisms......, and significance of this product inhibition, notably the cellobiose and glucose inhibition, on enzymatic cellulose hydrolysis. Particular emphasis is put on the distinct complexity of cellulose as a substrate, the multi-enzymatic nature of the cellulolytic degradation, and the particular features of cellulase...

  5. Synchronisation hubs in the visual cortex may arise from strong rhythmic inhibition during gamma oscillations.

    Science.gov (United States)

    Folias, Stefanos E; Yu, Shan; Snyder, Abigail; Nikolić, Danko; Rubin, Jonathan E

    2013-09-01

    Neurons in the visual cortex exhibit heterogeneity in feature selectivity and the tendency to generate action potentials synchronously with other nearby neurons. By examining visual responses from cat area 17 we found that, during gamma oscillations, there was a positive correlation between each unit's sharpness of orientation tuning, strength of oscillations, and propensity towards synchronisation with other units. Using a computational model, we demonstrated that heterogeneity in the strength of rhythmic inhibitory inputs can account for the correlations between these three properties. Neurons subject to strong inhibition tend to oscillate strongly in response to both optimal and suboptimal stimuli and synchronise promiscuously with other neurons, even if they have different orientation preferences. Moreover, these strongly inhibited neurons can exhibit sharp orientation selectivity provided that the inhibition they receive is broadly tuned relative to their excitatory inputs. These results predict that the strength and orientation tuning of synaptic inhibition are heterogeneous across area 17 neurons, which could have important implications for these neurons' sensory processing capabilities. Furthermore, although our experimental recordings were conducted in the visual cortex, our model and simulation results can apply more generally to any brain region with analogous neuron types in which heterogeneity in the strength of rhythmic inhibition can arise during gamma oscillations. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Herb-drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7.

    Science.gov (United States)

    Ma, Hai-Ying; Sun, Dong-Xue; Cao, Yun-Feng; Ai, Chun-Zhi; Qu, Yan-Qing; Hu, Cui-Min; Jiang, Changtao; Dong, Pei-Pei; Sun, Xiao-Yu; Hong, Mo; Tanaka, Naoki; Gonzalez, Frank J; Ma, Xiao-Chi; Fang, Zhong-Ze

    2014-05-15

    Herb-drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (Ki) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (Ki) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb-drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Inhibition by AA861 of prostaglandin E2 production by activated peritoneal macrophages of rat

    Energy Technology Data Exchange (ETDEWEB)

    Ohuchi, K; Watanabe, M; Taniguchi, J; Tsurufuji, S; Levine, L

    1983-10-01

    Prostaglandin E2 production by rat peritoneal activated macrophages was inhibited by AA861 which had been reported as a selective inhibitor of 5-lipoxygenase from guinea pig peritoneal leukocytes. At a dose of 3.06 microM, prostaglandin E2 production was decreased to 27% of control. No inhibition of the release of (3H)arachidonic acid from the prelabeled macrophages was observed at the dose.

  8. Sigma receptor ligand N,N'-di-(ortho-tolyl)guanidine inhibits release of acetylcholine in the guinea pig ileum.

    Science.gov (United States)

    Cambell, B G; Keana, J F; Weber, E

    1991-11-26

    The inhibition of stimulated contractions of the guinea pig ileum longitudinal muscle/myenteric plexus preparation by sigma receptor ligands has been previously described. In this study, the stimulated release of [3H]acetylcholine from cholinergic nerve terminals in this same preparation was monitored in the presence and absence of sigma receptor ligands. N,N'-Di-(orthotolyl)guanidine (DTG) and other compounds selective for the sigma receptor inhibited stimulated [3H]acetylcholine release. These results suggest that their inhibition of stimulated contractions in this preparation was mediated by inhibition of acetylcholine release.

  9. Phage display selection of fully human antibody fragments to inhibit growth-promoting effects of glycine-extended gastrin 17 on human colorectal cancer cells.

    Science.gov (United States)

    Khajeh, Shirin; Tohidkia, Mohammad Reza; Aghanejad, Ayuob; Mehdipour, Tayebeh; Fathi, Farzaneh; Omidi, Yadollah

    2018-06-09

    Glycine-extended gastrin 17 (G17-Gly), a dominant processing intermediate of gastrin gene, has been implicated in the development or maintenance of colorectal cancers (CRCs). Hence, neutralizing G17-Gly activity by antibody entities can provide a potential therapeutic strategy in the patients with CRCs. To this end, we isolated fully human antibody fragments from a phage antibody library through biopanning against different epitopes of G17-Gly in order to obtain the highest possible antibody diversity. ELISA screening and sequence analysis identified 2 scFvs and 4 V L antibody fragments. Kinetic analysis of the antibody fragments by SPR revealed K D values to be in the nanomolar range (87.9-334 nM). The selected anti-G17-Gly antibody fragments were analyzed for growth inhibition and apoptotic assays in a CRC cell line, HCT-116, which is well-characterized for expressing gastrin intermediate species but not amidated gastrin. The antibody fragments exhibited significant inhibition of HCT-116 cells proliferation ranging from 36.5 to 73% of controls. Further, Annexin V/PI staining indicated that apoptosis rates of scFv H8 and V L G8 treated cells were 45.8 and 63%, respectively. Based on these results, we for the first time, demonstrated the isolation of anti-G17-Gly human scFv and V L antibodies with potential therapeutic applications in G17-Gly-responsive tumors.

  10. Comparison of the effectiveness of Basta, Bialaphos and Glufosinate Ammonium for selecting Transformed Oil Palm Tissues

    International Nuclear Information System (INIS)

    A Rahman Nurfahisza; Md Aman Rafiqah; Ghulam Kadir Ahmad Parveez; Omar Abdul Rashid

    2016-01-01

    One of the important requirements for producing transgenic plants is the ability to isolate true transformed cells and regenerate into complete plants without chimera and escapes. Therefore, an efficient selection process is essential. In this study, three different selection agents, namely Basta, bialaphos and glufosinate ammonium were evaluated on embryogenic calli and embryoids, for their effectiveness on selecting transformed oil palm tissues. Un transformed tissues were used in this study as the minimal concentrations which inhibit the growth of the tissues would be the optimum concentrations for selecting the transformed cells. Based on this study, the growth of embryogenic calli was shown to be fully inhibited at 10 mg litre -1 of Basta. Meanwhile, only 3 mg litre -1 of bialaphos and glufosinate ammonium are needed to inhibit the embryogenic calli. For oil palm embryo id cultures, the minimal concentration for Basta was determined at 20 mg litre -1 as compared to 5 mg litre -1 for bialaphos and glufosinate ammonium. This result indicated that a higher concentration of Basta is needed to completely inhibit the growth of oil palm tissues as compared to bialaphos and glufosinate ammonium. Furthermore, these observations revealed that embryogenic calli are more sensitive to the three selection agents as compared to embryoids. The information gained from this study will be used as a guideline to increase the efficiency for selecting transformed oil palm cells and producing transgenic oil palm. (author)

  11. Delta-9 tetrahydrocannabinol (THC) inhibits lytic replication of gamma oncogenic herpesviruses in vitro.

    Science.gov (United States)

    Medveczky, Maria M; Sherwood, Tracy A; Klein, Thomas W; Friedman, Herman; Medveczky, Peter G

    2004-09-15

    The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC), has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV) and Epstein-Barr virus (EBV) replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS) of monkeys, murine gamma herpesvirus 68 (MHV 68), and herpes simplex type 1 (HSV-1) was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC. These studies may also provide the foundation for the development

  12. The structure of XIAP BIR2: understanding the selectivity of the BIR domains

    Energy Technology Data Exchange (ETDEWEB)

    Lukacs, Christine, E-mail: cmlukacs230@gmail.com; Belunis, Charles; Crowther, Robert; Danho, Waleed; Gao, Lin; Goggin, Barry; Janson, Cheryl A.; Li, Shirley; Remiszewski, Stacy; Schutt, Andrew [Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States); Thakur, Manish K.; Singh, Saroj K.; Swaminathan, Srinivasan; Pandey, Rajat; Tyagi, Rajiv; Gosu, Ramachandraiah; Kamath, Ajith V. [Jubilant Biosys Ltd, Bangalore (India); Kuglstatter, Andreas, E-mail: cmlukacs230@gmail.com [Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States)

    2013-09-01

    The high-resolution crystal structures of apo and peptide-bound XIAP BIR2 are presented and compared with BIR3 structures to understand their selectivity. This crystal system can be used to determine the structures of BIR2–inhibitor complexes. XIAP, a member of the inhibitor of apoptosis family of proteins, is a critical regulator of apoptosis. Inhibition of the BIR domain–caspase interaction is a promising approach towards treating cancer. Previous work has been directed towards inhibiting the BIR3–caspase-9 interaction, which blocks the intrinsic apoptotic pathway; selectively inhibiting the BIR2–caspase-3 interaction would also block the extrinsic pathway. The BIR2 domain of XIAP has successfully been crystallized; peptides and small-molecule inhibitors can be soaked into these crystals, which diffract to high resolution. Here, the BIR2 apo crystal structure and the structures of five BIR2–tetrapeptide complexes are described. The structural flexibility observed on comparing these structures, along with a comparison with XIAP BIR3, affords an understanding of the structural elements that drive selectivity between BIR2 and BIR3 and which can be used to design BIR2-selective inhibitors.

  13. The importance of ignoring: Alpha oscillations protect selectivity

    OpenAIRE

    Payne, Lisa; Sekuler, Robert

    2014-01-01

    Selective attention is often thought to entail an enhancement of some task-relevant stimulus or attribute. We discuss the perspective that ignoring irrelevant, distracting information plays a complementary role in information processing. Cortical oscillations within the alpha (8–14 Hz) frequency band have emerged as a marker of sensory suppression. This suppression is linked to selective attention for visual, auditory, somatic, and verbal stimuli. Inhibiting processing of irrelevant input mak...

  14. A competitive trade-off limits the selective advantage of increased antibiotic production.

    Science.gov (United States)

    Gerardin, Ylaine; Springer, Michael; Kishony, Roy

    2016-09-26

    In structured environments, antibiotic-producing microorganisms can gain a selective advantage by inhibiting nearby competing species 1 . However, despite their genetic potential 2,3 , natural isolates often make only small amounts of antibiotics, and laboratory evolution can lead to loss rather than enhancement of antibiotic production 4 . Here, we show that, due to competition with antibiotic-resistant cheater cells, increased levels of antibiotic production can actually decrease the selective advantage to producers. Competing fluorescently labelled Escherichia coli colicin producers with non-producing resistant and sensitive strains on solid media, we found that although producer colonies can greatly benefit from the inhibition of nearby sensitive colonies, this benefit is shared with resistant colonies growing in their vicinity. A simple model, which accounts for such local competitive and inhibitory interactions, suggests that the advantage of producers varies non-monotonically with the amount of production. Indeed, experimentally varying the amount of production shows a peak in selection for producers, reflecting a trade-off between benefit gained by inhibiting sensitive competitors and loss due to an increased contribution to resistant cheater colonies. These results help explain the low level of antibiotic production observed for natural species and can help direct laboratory evolution experiments selecting for increased or novel production of antibiotics.

  15. Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design

    Science.gov (United States)

    Lättig, Jens; Böhl, Markus; Fischer, Petra; Tischer, Sandra; Tietböhl, Claudia; Menschikowski, Mario; Gutzeit, Herwig O.; Metz, Peter; Pisabarro, M. Teresa

    2007-08-01

    The human secretory phospholipase A2 group IIA (PLA2-IIA) is a lipolytic enzyme. Its inhibition leads to a decrease in eicosanoids levels and, thereby, to reduced inflammation. Therefore, PLA2-IIA is of high pharmacological interest in treatment of chronic diseases such as asthma and rheumatoid arthritis. Quercetin and naringenin, amongst other flavonoids, are known for their anti-inflammatory activity by modulation of enzymes of the arachidonic acid cascade. However, the mechanism by which flavonoids inhibit Phospholipase A2 (PLA2) remained unclear so far. Flavonoids are widely produced in plant tissues and, thereby, suitable targets for pharmaceutical extractions and chemical syntheses. Our work focuses on understanding the binding modes of flavonoids to PLA2, their inhibition mechanism and the rationale to modify them to obtain potent and specific inhibitors. Our computational and experimental studies focused on a set of 24 compounds including natural flavonoids and naringenin-based derivatives. Experimental results on PLA2-inhibition showed good inhibitory activity for quercetin, kaempferol, and galangin, but relatively poor for naringenin. Several naringenin derivatives were synthesized and tested for affinity and inhibitory activity improvement. 6-(1,1-dimethylallyl)naringenin revealed comparable PLA2 inhibition to quercetin-like compounds. We characterized the binding mode of these compounds and the determinants for their affinity, selectivity, and inhibitory potency. Based on our results, we suggest C(6) as the most promising position of the flavonoid scaffold to introduce chemical modifications to improve affinity, selectivity, and inhibition of PLA2-IIA by flavonoids.

  16. Formation of distinct inclusion bodies by inhibition of ubiquitin-proteasome and autophagy-lysosome pathways

    International Nuclear Information System (INIS)

    Lee, Junho; Yang, Kyu-Hwan; Joe, Cheol O.; Kang, Seok-Seong

    2011-01-01

    Research highlights: → Distinct inclusion bodies are developed by inhibition of UPP and ALP. → The inclusion bodies differ in morphology, localization and formation process. → The inclusion bodies are distinguishable by the localization of TSC2. → Inhibition of both UPP and ALP simultaneously induces those inclusion bodies. -- Abstract: Accumulation of misfolded proteins is caused by the impairment of protein quality control systems, such as ubiquitin-proteasome pathway (UPP) and autophagy-lysosome pathway (ALP). In this study, the formation of inclusion bodies was examined after the blockade of UPP and/or ALP in A549 cells. UPP inhibition induced a single and large inclusion body localized in microtubule-organizing center. Interestingly, however, ALP inhibition generated dispersed small inclusion bodies in the cytoplasm. Tuberous sclerosis complex 2 was selectively accumulated in the inclusion bodies of UPP-inhibited cells, but not those of ALP-inhibited cells. Blockade of transcription and translation entirely inhibited the formation of inclusion body induced by UPP inhibition, but partially by ALP inhibition. Moreover, the simultaneous inhibition of two protein catabolic pathways independently developed two distinct inclusion bodies within a single cell. These findings clearly demonstrated that dysfunction of each catabolic pathway induced formation and accumulation of unique inclusion bodies on the basis of morphology, localization and formation process in A549 cells.

  17. Synovial and systemic pharmacokinetics (PK) of triamcinolone acetonide (TA) following intra-articular (IA) injection of an extended-release microsphere-based formulation (FX006) or standard crystalline suspension in patients with knee osteoarthritis (OA).

    Science.gov (United States)

    Kraus, V B; Conaghan, P G; Aazami, H A; Mehra, P; Kivitz, A J; Lufkin, J; Hauben, J; Johnson, J R; Bodick, N

    2018-01-01

    Intra-articular (IA) corticosteroids relieve osteoarthritis (OA) pain, but rapid absorption into systemic circulation may limit efficacy and produce untoward effects. We compared the pharmacokinetics (PK) of IA triamcinolone acetonide (TA) delivered as an extended-release, microsphere-based formulation (FX006) vs a crystalline suspension (TAcs) in knee OA patients. This Phase 2 open-label study sequentially enrolled 81 patients who received a single IA injection of FX006 (5 mL, 32 mg delivered dose, N = 63) or TAcs (1 mL, 40 mg, N = 18). Synovial fluid (SF) aspiration was attempted in each patient at baseline and one post-IA-injection visit (FX006: Week 1, Week 6, Week 12, Week 16 or Week 20; TAcs: Week 6). Blood was collected at baseline and multiple post-injection times. TA concentrations (validated LC-MS/MS, geometric means (GMs)), PK (non-compartmental analysis models), and adverse events (AEs) were assessed. SF TA concentrations following FX006 were quantifiable through Week 12 (pg/mL: 231,328.9 at Week 1; 3590.0 at Week 6; 290.6 at Week 12); post-TAcs, only two of eight patients had quantifiable SF TA at Week 6 (7.7 pg/mL). Following FX006, plasma TA gradually increased to peak (836.4 pg/mL) over 24 h and slowly declined to IA injection prolonged SF joint residency, diminished peak plasma levels, and thus reduced systemic TA exposure relative to TAcs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The Effect of Perceptual Load on Attention-Induced Motion Blindness: The Efficiency of Selective Inhibition

    Science.gov (United States)

    Hay, Julia L.; Milders, Maarten M.; Sahraie, Arash; Niedeggen, Michael

    2006-01-01

    Recent visual marking studies have shown that the carry-over of distractor inhibition can impair the ability of singletons to capture attention if the singleton and distractors share features. The current study extends this finding to first-order motion targets and distractors, clearly separated in time by a visual cue (the letter X). Target…

  19. Independent causal contributions of alpha- and beta-band oscillations during movement selection

    NARCIS (Netherlands)

    Brinkman, L.; Stolk, A.; Marshall, T.R.; Esterer, S.; Sharp, P.; Dijkerman, H.C.; Lange, F.P. de; Toni, I.

    2016-01-01

    To select a movement, specific neuronal populations controlling particular features of that movement need to be activated, whereas other populations are downregulated. The selective (dis)inhibition of cortical sensorimotor populations is governed by rhythmic neural activity in the alpha (8-12 Hz)

  20. Dysfunctional GABAergic inhibition in the prefrontal cortex leading to "psychotic" hyperactivation

    Directory of Open Access Journals (Sweden)

    Tanaka Shoji

    2008-04-01

    Full Text Available Abstract Background The GABAergic system in the brain seems to be dysfunctional in various psychiatric disorders. Many studies have suggested so far that, in schizophrenia patients, GABAergic inhibition is selectively but consistently reduced in the prefrontal cortex (PFC. Results This study used a computational model of the PFC to investigate the dynamics of the PFC circuit with and without chandelier cells and other GABAergic interneurons. The inhibition by GABAergic interneurons other than chandelier cells effectively regulated the PFC activity with rather low or modest levels of dopaminergic neurotransmission. This activity of the PFC is associated with normal cognitive functions and has an inverted-U shaped profile of dopaminergic modulation. In contrast, the chandelier cell-type inhibition affected only the PFC circuit dynamics in hyperdopaminergic conditions. Reduction of chandelier cell-type inhibition resulted in bistable dynamics of the PFC circuit, in which the upper stable state is associated with a hyperactive mode. When both types of inhibition were reduced, this hyperactive mode and the conventional inverted-U mode merged. Conclusion The results of our simulation suggest that, in schizophrenia, a reduction of GABAergic inhibition increases vulnerability to psychosis by (i producing the hyperactive mode of the PFC with hyperdopaminergic neurotransmission by dysfunctional chandelier cells and (ii increasing the probability of the transition to the hyperactive mode from the conventional inverted-U mode by dysfunctional GABAergic interneurons.

  1. Antiangiogenic and Antitumor Effects of Src Inhibition in Ovarian Carcinoma

    Science.gov (United States)

    Han, Liz Y.; Landen, Charles N.; Trevino, Jose G.; Halder, Jyotsnabaran; Lin, Yvonne G.; Kamat, Aparna A.; Kim, Tae-Jin; Merritt, William M.; Coleman, Robert L.; Gershenson, David M.; Shakespeare, William C.; Wang, Yihan; Sundaramoorth, Raji; Metcalf, Chester A.; Dalgarno, David C.; Sawyer, Tomi K.; Gallick, Gary E.; Sood, Anil K.

    2011-01-01

    Src, a nonreceptor tyrosine kinase, is a key mediator for multiple signaling pathways that regulate critical cellular functions and is often aberrantly activated in a number of solid tumors, including ovarian carcinoma. The purpose of this study was to determine the role of activated Src inhibition on tumor growth in an orthotopic murine model of ovarian carcinoma. In vitro studies on HeyA8 and SKOV3ip1 cell lines revealed that Src inhibition by the Src-selective inhibitor, AP23846, occurred within 1 hour and responded in a dose-dependent manner. Furthermore, Src inhibition enhanced the cytotoxicity of docetaxel in both chemosensitive and chemoresistant ovarian cancer cell lines, HeyA8 and HeyA8-MDR, respectively. In vivo, Src inhibition by AP23994, an orally bioavailable analogue of AP23846, significantly decreased tumor burden in HeyA8 (P = 0.02), SKOV3ip1 (P = 0.01), as well as HeyA8-MDR (P < 0.03) relative to the untreated controls. However, the greatest effect on tumor reduction was observed in combination therapy with docetaxel (P < 0.001, P = 0.002, and P = 0.01, for the above models, respectively). Proliferating cell nuclear antigen staining showed that Src inhibition alone (P = 0.02) and in combination with docetaxel (P = 0.007) significantly reduced tumor proliferation. In addition, Src inhibition alone and in combination with docetaxel significantly down-regulated tumoral production of vascular endothelial growth factor and interleukin 8, whereas combination therapy decreased the microvessel density (P = 0.02) and significantly affected vascular permeability (P < 0.05). In summary, Src inhibition with AP23994 has potent antiangiogenic effects and significantly reduces tumor burden in preclinical ovarian cancer models. Thus, Src inhibition may be an attractive therapeutic approach for patients with ovarian carcinoma. PMID:16951177

  2. Non-antibiotic selection systems for soybean somatic embryos: the lysine analog aminoethyl-cysteine as a selection agent

    Directory of Open Access Journals (Sweden)

    Kwanyuen Prachuab

    2009-11-01

    Full Text Available Abstract Background In soybean somatic embryo transformation, the standard selection agent currently used is hygromycin. It may be preferable to avoid use of antibiotic resistance genes in foods. The objective of these experiments was to develop a selection system for producing transgenic soybean somatic embryos without the use of antibiotics such as hygromycin. Results When tested against different alternate selection agents our studies show that 0.16 μg/mL glufosinate, 40 mg/L isopropylamine-glyphosate, 0.5 mg/mL (S-(2 aminoethyl-L-cysteine (AEC and the acetolactate synthase (ALS inhibitors Exceed® and Synchrony® both at 150 μg/mL inhibited soybean somatic embryo growth. Even at the concentration of 2 mg/mL, lysine+threonine (LT were poor selection agents. The use of AEC may be preferable since it is a natural compound. Unlike the plant enzyme, dihydrodipicolinate synthase (DHPS from E. coli is not feed-back inhibited by physiological concentrations of lysine. The dapA gene which codes for E. coli DHPS was expressed in soybean somatic embryos under the control of the CaMV 35S promoter. Following introduction of the construct into embryogenic tissue of soybean, transgenic events were recovered by incubating the tissue in liquid medium containing AEC at a concentration of 5 mM. Only transgenic soybeans were able to grow at this concentration of AEC; no escapes were observed. Conclusion Genetically engineered soybeans expressing a lysine insensitive DHPS gene can be selected with the non-antibiotic selection agent AEC. We also report here the inhibitory effects of glufosinate, (isopropylamine-glyphosate (Roundup®, AEC and the ALS inhibitors Exceed® and Synchrony® against different tissues of soybean

  3. JSI-124 inhibits IgE production in an IgE B cell line

    International Nuclear Information System (INIS)

    Cui, Lulu; Bi, Jiacheng; Yan, Dehong; Ye, Xiufeng; Zheng, Mingxing; Yu, Guang; Wan, Xiaochun

    2017-01-01

    IgE is a key effector molecule in atopic diseases; however, the regulation mechanisms of IgE production in IgE B cells remain poorly understood. In the present study, we demonstrate that JSI-124 (cucurbitacin I), a selective STAT3 inhibitor, selectively inhibits production of IgE by a human IgE B cell line, CRL-8033 cells, while does not affect the IgG production by IgG B cell lines. In the aspect of molecular mechanism, we found that Igλ, but not Ighe, gene expression was suppressed by JSI-124. The above effects of JSI-124 were not mediated by affecting cellular proliferation or apoptosis. Furthermore, multiple B cell differentiation-related genes expression was not significantly affected by JSI-124. Taken together, we demonstrate a potential strategy of therapeutically suppressing IgE production without affecting IgG production in atopic patients. - Highlights: • JSI-124 inhibits IgE production in an IgE B cell line, CRL-8033 cells. • JSI-124 does not affect IgG production by IgG B cell lines. • JSI-124 inhibits IgE production mainly by suppressing transcription of Igλ.

  4. Monoamine Oxidase Inhibitory Constituents of Propolis: Kinetics and Mechanism of Inhibition of Recombinant Human MAO-A and MAO-B

    Directory of Open Access Journals (Sweden)

    Narayan D. Chaurasiya

    2014-11-01

    Full Text Available Propolis is the resinous material that bees gather from leaf buds, flowers and vegetables. Propolis extracts contain constituents with a broad spectra of pharmacological properties and are important ingredients of popular dietary supplements. Propolis extracts were evaluated in vitro for inhibition of recombinant human monoamine oxidase (MAO-A and MAO-B. The dichloromethane extract of propolis showed potent inhibition of human MAO-A and MAO-B. Further fractionation identified the most active fractions as rich in flavonoids. Galangin and apigenin were identified as the principal MAO-inhibitory constituents. Inhibition of MAO-A by galangin was about 36 times more selective than MAO-B, while apigenin selectivity for MAO-A vs. MAO-B was about 1.7 fold. Apigenin inhibited MAO-B significantly more potently than galangin. Galangin and apigenin were further evaluated for kinetic characteristics and the mechanism for the enzymes’ inhibition. Binding of galangin and apigenin with MAO-A and -B was not time-dependent and was reversible, as suggested by enzyme-inhibitor binding and dissociation-dialysis assay. The inhibition kinetics studies suggested that galangin and apigenin inhibited MAO-A and -B by a competitive mechanism. Presence of prominent MAO inhibitory constituents in propolis products suggests their potential for eliciting pharmacological effects that might be useful in depression or other neurological disorders. The results may also have important implications in drug-dietary supplement interactions.

  5. Development of an in vitro cytochrome P450 cocktail inhibition assay for assessing the inhibition risk of drugs of abuse.

    Science.gov (United States)

    Dinger, Julia; Meyer, Markus R; Maurer, Hans H

    2014-10-01

    Drugs of abuse are not tested for cytochrome P450 (CYP) inhibition potential before distribution. Therefore, a cocktail assay should be developed for testing the inhibition potential for all relevant CYPs. The following CYP test substrates and selective inhibitors were incubated in pooled human liver microsomes: phenacetin (alpha-naphthoflavone for CYP1A2), coumarin (tranylcypromine, CYP2A6), bupropion (sertraline, CYP2B6), amodiaquine (trimethoprim, CYP2C8), diclofenac (sulfaphenazole, CYP2C9), omeprazole (fluconazole, CYP2C19), dextromethorphan (quinidine, CYP2D6), chlorzoxazone (clomethiazole, CYP2E1), testosterone (verapamil, CYP3A). Samples were analyzed after protein precipitation using a Thermo Fisher Q-Exactive LC-high-resolution-MS/MS. The IC50 values were calculated by plotting the concentration of the formed metabolite, relative to the control sample, over the logarithm of the inhibitor concentration. They were determined either for single substrate or the cocktail incubation. Unfortunately, the cocktail assay had to be split because of interferences during incubation caused by substrates or metabolites, but the mixture of both incubates could be analyzed in one analytical run. The IC50 values determined in the single substrate or both cocktail incubations were comparable among themselves and with published data. In conclusion, the new inhibition cocktail assay was reproducible and applicable for testing the inhibition potential of drugs of abuse as exemplified for 2,5-dimethoxy-4-iodo-amfetamine (DOI). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Low Concentrations of Metformin Selectively Inhibit CD133+ Cell Proliferation in Pancreatic Cancer and Have Anticancer Action

    Science.gov (United States)

    Li, Xiangsheng; Shi, Pengfei; Liu, Tao; Wang, Chunyou

    2013-01-01

    Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States. The prognosis remains dismal with little advance in treatment. Metformin is a drug widely used for the treatment of type II diabetes. Recent epidemiologic data revealed that oral administration of metformin is associated with a reduced risk of pancreatic cancer, suggesting its potential as a novel drug for this disease. Many studies have demonstrated the in vitro anticancer action of metformin, but the typically used concentrations were much higher than the in vivo plasma and tissue concentrations achieved with recommended therapeutic doses of metformin, and low concentrations of metformin had little effect on the proliferation of pancreatic cancer cells. We examined the effect of low concentrations of metformin on different subpopulations of pancreatic cancer cells and found that these selectively inhibited the proliferation of CD133+ but not CD24+CD44+ESA+ cells. We also examined the effect of low concentrations of metformin on cell invasion and in vivo tumor formation, demonstrating in vitro and in vivo anticancer action. Metformin was associated with a reduction of phospho-Erk and phospho-mTOR independent of Akt and AMPK phosphorylation. CD133+ pancreatic cancer cells are considered to be cancer stem cells that contribute to recurrence, metastasis and resistance to adjuvant therapies in pancreatic cancer. Our results provide a basis for combination of metformin with current therapies to improve the prognosis of this disease. PMID:23667692

  7. Evidence of dopaminergic processing of executive inhibition.

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    Full Text Available Inhibition of unwanted response is an important function of the executive system. Since the inhibitory system is impaired in patients with dysregulated dopamine system, we examined dopamine neurotransmission in the human brain during processing of a task of executive inhibition. The experiment used a recently developed dynamic molecular imaging technique to detect and map dopamine released during performance of a modified Eriksen's flanker task. In this study, young healthy volunteers received an intravenous injection of a dopamine receptor ligand ((11C-raclopride after they were positioned in the PET camera. After the injection, volunteers performed the flanker task under Congruent and Incongruent conditions in a single scan session. They were required to inhibit competing options to select an appropriate response in the Incongruent but not in the Congruent condition. The PET data were dynamically acquired during the experiment and analyzed using two variants of the simplified reference region model. The analysis included estimation of a number of receptor kinetic parameters before and after initiation of the Incongruent condition. We found increase in the rate of ligand displacement (from receptor sites and decrease in the ligand binding potential in the Incongruent condition, suggesting dopamine release during task performance. These changes were observed in small areas of the putamen and caudate bilaterally but were most significant on the dorsal aspect of the body of left caudate. The results provide evidence of dopaminergic processing of executive inhibition and demonstrate that neurochemical changes associated with cognitive processing can be detected and mapped in a single scan session using dynamic molecular imaging.

  8. Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi*

    Science.gov (United States)

    Klayman, Lauren M.; Wedegaertner, Philip B.

    2017-01-01

    Heterotrimeric G proteins signal at a variety of endomembrane locations, in addition to their canonical function at the cytoplasmic surface of the plasma membrane (PM), where they are activated by cell surface G protein-coupled receptors. Here we focus on βγ signaling at the Golgi, where βγ activates a signaling cascade, ultimately resulting in vesicle fission from the trans-Golgi network (TGN). To develop a novel molecular tool for inhibiting endogenous βγ in a spatial-temporal manner, we take advantage of a lipid association mutant of the widely used βγ inhibitor GRK2ct (GRK2ct-KERE) and the FRB/FKBP heterodimerization system. We show that GRK2ct-KERE cannot inhibit βγ function when expressed in cells, but recruitment to a specific membrane location recovers the ability of GRK2ct-KERE to inhibit βγ signaling. PM-recruited GRK2ct-KERE inhibits lysophosphatidic acid-induced phosphorylation of Akt, whereas Golgi-recruited GRK2ct-KERE inhibits cargo transport from the TGN to the PM. Moreover, we show that Golgi-recruited GRK2ct-KERE inhibits model basolaterally targeted but not apically targeted cargo delivery, for both PM-destined and secretory cargo, providing the first evidence of selectivity in terms of cargo transport regulated by βγ. Last, we show that Golgi fragmentation induced by ilimaquinone and nocodazole is blocked by βγ inhibition, demonstrating that βγ is a key regulator of multiple pathways that impact Golgi morphology. Thus, we have developed a new molecular tool, recruitable GRK2ct-KERE, to modulate βγ signaling at specific subcellular locations, and we demonstrate novel cargo selectivity for βγ regulation of TGN to PM transport and a novel role for βγ in mediating Golgi fragmentation. PMID:27994056

  9. Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi.

    Science.gov (United States)

    Klayman, Lauren M; Wedegaertner, Philip B

    2017-02-03

    Heterotrimeric G proteins signal at a variety of endomembrane locations, in addition to their canonical function at the cytoplasmic surface of the plasma membrane (PM), where they are activated by cell surface G protein-coupled receptors. Here we focus on βγ signaling at the Golgi, where βγ activates a signaling cascade, ultimately resulting in vesicle fission from the trans-Golgi network (TGN). To develop a novel molecular tool for inhibiting endogenous βγ in a spatial-temporal manner, we take advantage of a lipid association mutant of the widely used βγ inhibitor GRK2ct (GRK2ct-KERE) and the FRB/FKBP heterodimerization system. We show that GRK2ct-KERE cannot inhibit βγ function when expressed in cells, but recruitment to a specific membrane location recovers the ability of GRK2ct-KERE to inhibit βγ signaling. PM-recruited GRK2ct-KERE inhibits lysophosphatidic acid-induced phosphorylation of Akt, whereas Golgi-recruited GRK2ct-KERE inhibits cargo transport from the TGN to the PM. Moreover, we show that Golgi-recruited GRK2ct-KERE inhibits model basolaterally targeted but not apically targeted cargo delivery, for both PM-destined and secretory cargo, providing the first evidence of selectivity in terms of cargo transport regulated by βγ. Last, we show that Golgi fragmentation induced by ilimaquinone and nocodazole is blocked by βγ inhibition, demonstrating that βγ is a key regulator of multiple pathways that impact Golgi morphology. Thus, we have developed a new molecular tool, recruitable GRK2ct-KERE, to modulate βγ signaling at specific subcellular locations, and we demonstrate novel cargo selectivity for βγ regulation of TGN to PM transport and a novel role for βγ in mediating Golgi fragmentation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. [Non-selective and selective non-steroidal anti-inflammatory drugs, administration in pregnancy and breast feeding].

    Science.gov (United States)

    Fardet, Laurence; Nizard, Jacky; Généreau, Thierry

    2002-09-28

    THE FACTS: Non steroidal anti-inflammatory drugs (NSAI), except aspirin, are classically contraindicated during pregnancy. Nevertheless, they are widely used, in particular by the obstetricians. During pregnancy, the potential toxicity of these drugs is double, maternal and fetal. The maternal toxicity is comparable to that, already known in adults, with however, some particularities at the time of labor and delivery. The fetal toxicity is mainly renal and cardiovascular, with the NSAI responsible for oligoamniosis and premature closure of the arterial canal of the fetus. On the other hand, the use of these molecules during breast-feeding does not seem source of adverse events, notably in the newborn. THE VARIOUS MOLECULES: Among the family of non-selective non-steroidal anti-inflammatories, indications and adverse events of the various molecules differ considerably. Moreover, whereas the majority of these molecules are non-selective, i.e. inhibiting the two isoforms of cyclooxygenase, new therapeutics, specifically inhibiting cyclooxygenase-2, are now available. Few studies have been published concerning their prescription during pregnancy and breast-feeding and their maternal and fetal side effects remain ignored by most of the practitioners.

  11. Preliminary histopathological study of intra-articular injection of a novel highly cross-linked hyaluronic acid in a rabbit model of knee osteoarthritis.

    Science.gov (United States)

    Iannitti, Tommaso; Elhensheri, Mohamed; Bingöl, Ali O; Palmieri, Beniamino

    2013-04-01

    Osteoarthritis is a degenerative joint disease mostly occurring in the knee and commonly seen in middle-aged and elderly adults. Intra-articular injection of hyaluronic acid has been widely used for treatment of knee osteoarthritis. The aim of this study was to evaluate the efficacy of intra-articular injection of a novel highly cross-linked hyaluronic acid, alone or in combination with ropivacaine hydrochloride and triamcinolone acetonide, on knee articular cartilage in a rabbit model of collagenase-induced knee osteoarthritis. After induction of experimental osteoarthritis by intra-articular injection of collagenase, adult New Zealand white rabbits (n = 12) were divided into 3 groups. Group 1 (control group) received 0.3 ml phosphate buffered saline into the right knee joint. Group 2 received 0.3 ml cross-linked hyaluronic acid (33 mg/ml) into the right knee joint. Group 3 received a mixture of 0.15 ml cross-linked hyaluronic acid (33 mg/ml), 0.05 ml ropivacaine hydrochloride 1 % and 0.1 ml triamcinolone acetonide (10 mg/ml) into the right knee joint. Intra-articular injections were given 4 weeks after first collagenase injection and were administered once a week for 3 weeks. Gross pathology and histological evaluation of rabbits' knee joints were performed after 16 weeks following initial collagenase injection. Histological analysis of sections of right knee joints at lesion sites showed a significant decrease in Mankin's score in groups treated with hyaluronic acid alone or in combination with ropivacaine hydrochloride and triamcinolone acetonide versus control group (p hyaluronic acid, alone or in combination with ropivacaine hydrochloride and triamcinolone acetonide, produces a significant improvement in knee articular cartilage degeneration in a rabbit model of collagenase-induced osteoarthritis.

  12. beta-Aminoalcohols as Potential Reactivators of Aged Sarin-/Soman-Inhibited Acetylcholinesterase

    Science.gov (United States)

    2017-02-08

    The calculations suggest that the designed b-aminoalcohol can selectively reactivate aged sarin-/soman-inhibited AChE. Fur - thermore, unlike existing...Kolossv#ry, K. F. Wong, F. Paesani, J. Vanicek, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, L. Yang, C. Tan , J. Mongan, V. Hornak, G. Cui, D. H

  13. No prolongation of skin allograft survival by immunoproteasome inhibition in mice.

    Science.gov (United States)

    Mundt, Sarah; Basler, Michael; Sawitzki, Birgit; Groettrup, Marcus

    2017-08-01

    The immunoproteasome, a distinct class of proteasomes, which is inducible under inflammatory conditions and constitutively expressed in monocytes and lymphocytes, is known to shape the antigenic repertoire presented on major histocompatibility complex (MHC) class I molecules. Moreover, inhibition of the immunoproteasome subunit LMP7 ameliorates clinical symptoms of autoimmune diseases in vivo and was shown to suppress the development of T helper cell (Th) 1 and Th17 cells and to promote regulatory T-cell (Treg) generation independently of its function in antigen processing. Since Th1 and Th17 cells are detrimental and Treg cells are critical for transplant acceptance, we investigated the influence of the LMP7-selective inhibitor ONX 0914 in a mixed lymphocyte reaction (MLR) in vitro as well as on allograft rejection in a MHC-disparate (C57BL/6 to BALB/c) and a multiple minor histocompatibility antigen (miHA)-disparate (B10.Br to C3H) model of skin transplantation in vivo. Although we observed reduced allo-specific IL-17 production of T cells in vitro, we found that selective inhibition of LMP7 had neither an influence on allograft survival in an MHC-mismatch model nor in a multiple minor mismatch skin transplantation model. We conclude that inhibition of the immunoproteasome is not effective in prolonging skin allograft survival in skin allotransplantation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Corrosion Inhibition in the Secondary Cooling System of ETRR-2, Egypt

    International Nuclear Information System (INIS)

    Aly, A.H.; Gad, M.M.A.; Abdel-Karim, R.; Abdel-Salam, O.F.

    2003-01-01

    The second Egyptian research reactor (ETRR-2) is a light water type of 22 MW thermal power. Proper cooling water treatment is necessary to set the water chemical characteristics within a specified window to avoid or minimize corrosion problems, scale formation, fouling, and microbiological contamination. Selection of a proper and economic corrosion inhibitor is of great importance. This selection depends, among other factors, on the availability as well as cost. The corrosion behaviour of water of ETRR-2 site and its inhibition by different inhibitors was studied in a special test rig designed for this purpose. Sodium salts of polyphosphate, phosphate, molybdate, and tungstate were used to treat and qualify the cooling water. Results showed that the corrosion resistance of the test material depends on both type and concentration of the applied inhibitor. Using 30-ppm tungstate, molybdate, and phosphate (as anodic inhibitors) reduced the corrosion rate, and inhibitor efficiencies of about 97% 86%, and 68% were achieved respectively. Accordingly, sodium tungstate could be ranked as the best anodic inhibitor used followed by molybdate. Sodium phosphate could be ranked as the least efficient one. Adding the same concentration of sodium polyphosphate (as a cathodic inhibitor) yields almost the same inhibition efficiency as tungstate type. However, at higher concentration(40 ppm), an inhibition efficiency of 100% was obtained, Which corresponds to almost zero-corrosion rate

  15. Selective medium for the isolation of Bacteroides gingivalis.

    OpenAIRE

    Hunt, D E; Jones, J V; Dowell, V R

    1986-01-01

    Bacteroides gingivalis has been implicated in various forms of periodontal disease and may be responsible for other diseases in humans. The role of B. gingivalis in disease has been difficult to assess, because it is inhibited by most selective media commonly used by clinical laboratories to aid in isolating gram-negative, nonsporeforming anaerobes. We have developed a new medium, Bacteroides gingivalis agar, which contains bacitracin, colistin, and nalidixic acid as selective agents. This me...

  16. Review and update of intraocular therapy in noninfectious uveitis.

    Science.gov (United States)

    Sallam, Ahmed; Taylor, Simon R J; Lightman, Sue

    2011-11-01

    To review new clinically relevant data regarding the intraocular treatment of noninfectious uveitis. Triamcinolone acetonide, the most commonly used intravitreal corticosteroid for treatment of uveitis and uveitic macular oedema has a limited duration of action and is associated with a high risk of corticosteroid-induced intraocular pressure (IOP) rise and cataract. Recent advances have led to the development of sustained-release corticosteroid devices using different corticosteroids such as dexamethasone and fluocinolone acetonide. Treatment options for patients who have previously exhibited corticosteroid hypertensive response have also expanded through the use of new noncorticosteroid intravitreal therapeutics such as methotrexate and antivascular endothelial growth factor (anti-VEGF) agents. Ozurdex dexamethasone implant appears to have a better safety profile, and a slightly long-lasting effect than triamcinolone acetonide. The Retisert implant allows the release of corticosteroids at a constant rate for 2.5 years, but it requires surgical placement and its use is associated with a very high risk of cataract and requirement for IOP-lowering surgery. For patients who are steroid responders, methotrexate may offer a better alternative to corticosteroid treatment than anti-VEGF agents, but controlled trials are required to confirm this.

  17. Global inhibition of reactive oxygen species (ROS inhibits paclitaxel-induced painful peripheral neuropathy.

    Directory of Open Access Journals (Sweden)

    Mehmet Fidanboylu

    Full Text Available Paclitaxel (Taxol® is a widely used chemotherapeutic agent that has a major dose limiting side-effect of painful peripheral neuropathy. Currently there is no effective therapy for the prevention or treatment of chemotherapy-induced painful peripheral neuropathies. Evidence for mitochondrial dysfunction during paclitaxel-induced pain was previously indicated with the presence of swollen and vacuolated neuronal mitochondria. As mitochondria are a major source of reactive oxygen species (ROS, the aim of this study was to examine whether pharmacological inhibition of ROS could reverse established paclitaxel-induced pain or prevent the development of paclitaxel-induced pain. Using a rat model of paclitaxel-induced pain (intraperitoneal 2 mg/kg paclitaxel on days 0, 2, 4 & 6, the effects of a non-specific ROS scavenger, N-tert-Butyl-α-phenylnitrone (PBN and a superoxide selective scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL were compared. Systemic 100 mg/kg PBN administration markedly inhibited established paclitaxel-induced mechanical hypersensitivity to von Frey 8 g and 15 g stimulation and cold hypersensitivity to plantar acetone application. Daily systemic administration of 50 mg/kg PBN (days -1 to 13 completely prevented mechanical hypersensitivity to von Frey 4 g and 8 g stimulation and significantly attenuated mechanical hypersensitivity to von Frey 15 g. Systemic 100 mg/kg TEMPOL had no effect on established paclitaxel-induced mechanical or cold hypersensitivity. High dose (250 mg/kg systemic TEMPOL significantly inhibited mechanical hypersensitivity to von Frey 8 g & 15 g, but to a lesser extent than PBN. Daily systemic administration of 100 mg/kg TEMPOL (day -1 to 12 did not affect the development of paclitaxel-induced mechanical hypersensitivity. These data suggest that ROS play a causal role in the development and maintenance of paclitaxel-induced pain, but such effects cannot be attributed to superoxide radicals

  18. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hai-Ying [The Fourth Affiliated Hospital of China Medical University, Shenyang 110032 (China); Sun, Dong-Xue [School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016 (China); Cao, Yun-Feng [The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Ai, Chun-Zhi [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Qu, Yan-Qing [Thyroid Surgery, Yantaishan Hospital, Yantai, Shandong (China); Hu, Cui-Min [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057 (United States); Jiang, Changtao [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); Dong, Pei-Pei [Academy of Integrative Medicine, Dalian Medical University, Dalian 116044 (China); Sun, Xiao-Yu; Hong, Mo [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Tanaka, Naoki; Gonzalez, Frank J. [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); others, and

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.

  19. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    International Nuclear Information System (INIS)

    Ma, Hai-Ying; Sun, Dong-Xue; Cao, Yun-Feng; Ai, Chun-Zhi; Qu, Yan-Qing; Hu, Cui-Min; Jiang, Changtao; Dong, Pei-Pei; Sun, Xiao-Yu; Hong, Mo; Tanaka, Naoki; Gonzalez, Frank J.

    2014-01-01

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K i ) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K i ) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors

  20. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hai-Ying, E-mail: cmu4h-mhy@126.com [The Fourth Affiliated Hospital of China Medical University, Shenyang 110032 (China); Sun, Dong-Xue [School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016 (China); Cao, Yun-Feng [The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Ai, Chun-Zhi [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Qu, Yan-Qing [Thyroid Surgery, Yantaishan Hospital, Yantai, Shandong (China); Hu, Cui-Min [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057 (United States); Jiang, Changtao [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); Dong, Pei-Pei [Academy of Integrative Medicine, Dalian Medical University, Dalian 116044 (China); Sun, Xiao-Yu; Hong, Mo [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Tanaka, Naoki; Gonzalez, Frank J. [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); and others

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.

  1. Establishment of a luciferase assay-based screening system: Fumitremorgin C selectively inhibits cellular proliferation of immortalized astrocytes expressing an active form of AKT

    International Nuclear Information System (INIS)

    Wang Lei; Sasai, Ken; Akagi, Tsuyoshi; Tanaka, Shinya

    2008-01-01

    The AKT pathway is frequently activated in glioblastoma, and as such, inhibitors of this pathway could prove very useful as anti-glioblastoma therapies. Here we established immortalized astrocytes expressing Renilla luciferase as well as those expressing both an active form of AKT and firefly luciferase. Since both luciferase activities represent the numbers of corresponding cell lines, novel inhibitors of the AKT pathway can be identified by treating co-cultures containing the two types of luciferase-expressing cells with individual compounds. Indeed, such a screening system succeeded in identifying fumitremorgin C as an efficient inhibitor of the AKT pathway, which was further confirmed by the ability of fumitremorgin C to selectively inhibit the growth of immortalized astrocytes expressing an active form of AKT. The present study proposes a broadly applicable approach for identifying therapeutic agents that target the pathways and/or molecules responsible for cancer development

  2. Growth inhibition of selected microorganisms by an association of dairy starter cultures and probiotics

    Directory of Open Access Journals (Sweden)

    Beniamino T. Cenci-Goga

    2015-05-01

    Full Text Available Several growth curves for selected pathogens and hygiene indicators alone and vs selected dairy starter cultures (LAB and commercial probiotics have been performed. All strains for LAB and commercial probiotics were inoculated as pure cultures into skim milk to get an initial cocci:bacilli:enterocci ratio of 2:1:1 and a concentration of approximately 107 cfu mL–1 until challenge vs selected pathogens and hygiene indicators. Selected pathogens came from the collection of the Laboratorio di Ispezione degli Alimenti di O.A. or were reference strains (Escherichia coli, CSH26 K12, Staphylococcus aureus 27R, Salmonella Derby 27, Pseudomonas fluorescens ATCC 13525, Listeria innocua ATCC 33090. Each strain was inoculated into skim milk to get an initial concentration of approximately 106 cfu mL–1. Growth curves in skim milk for the following challenges were studied: i sterility control; ii association LAB; iii association of LAB vs each selected pathogen or hygiene indicator; iv selected pathogen or hygiene indicator alone. The challenges were carried out in BHI broth and in skim milk at 37°C. The highest reduction was observed in milk but in general the association of LAB and the probiotic was able to limit the growth of pathogens and hygiene indicators.

  3. Human GIP(3-30)NH inhibits G protein-dependent as well as G protein-independent signaling and is selective for the GIP receptor with high-affinity binding to primate but not rodent GIP receptors

    DEFF Research Database (Denmark)

    Gabe, Maria Buur Nordskov; Sparre-Ulrich, Alexander Hovard; Pedersen, Mie Fabricius

    2018-01-01

    using human125I-GIP(3-30)NH2. The selectivity of human GIP(3-30)NH2was examined by testing for agonistic and antagonistic properties on 62 human GPCRs. Human GIP(3-30)NH2inhibited GIP(1-42)-induced cAMP and β-arrestin 1 and 2 recruitment on the human GIPR and Schild plot analysis showed competitive...... in transfected cells as well as in human adipocytes....

  4. Chinese medicinal formula Fufang Xueshuantong capsule could inhibit the activity of angiotensin converting enzyme

    Science.gov (United States)

    Sheng, Shujing; Wang, Yonggang; Long, Chaofeng; Su, Weiwei; Rong, Xia

    2014-01-01

    Fufang Xueshuantong (FXST) capsule, a Chinese medicinal formula composed of four herbals – Panax notoginseng, Radix Astragali, Radix Salvia Miltiorrhizae and Radix Scrophulariaceae, has been used to treat cardiovascular diseases for many years, but the pharmacological mechanisms underlying its effects has not been clarified. This study investigates if a connection between FXST and angiotensin converting enzyme (ACE) might be an explanation for its pharmacological effects. ACE inhibition assay was performed on FXST capsule, 50% ethanol extracts from the four herbals and three selected saponins most abundant in P. notoginseng (Ginsenoside Rg1, Ginsenoside Rb1 and Notoginsenoside R1) using a biochemical test. Reversed-phase high-performance liquid chromatography of liberated hippuric acid from the ACE assay was conducted to determine the inhibitory effect. As a result, FXST and extracts from P. notoginseng showed a significant and dose-dependent inhibition on ACE activity with the IC50 values of 115 μg/ml and 179 μg/ml, respectively. But extracts from the other three herbals and the three selected saponins had no significant effect on ACE inhibition. Compared to other reported plant extracts, FXST could be considered as an effective ACE inhibitor. The inhibition of ACE activity supports the traditional use of FXST on blood circulation and the inhibitory property of FXST is mainly caused by P. notoginseng. PMID:26019516

  5. Virtual Screening Models for Prediction of HIV-1 RT Associated RNase H Inhibition

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Kongsted, Jacob

    2013-01-01

    The increasing resistance to current therapeutic agents for HIV drug regiment remains a major problem for effective acquired immune deficiency syndrome (AIDS) therapy. Many potential inhibitors have today been developed which inhibits key cellular pathways in the HIV cycle. Inhibition of HIV-1...... databases. The methods used here include machine-learning algorithms (e.g. support vector machine, random forest and kappa nearest neighbor), shape similarity (rapid overlay of chemical structures), pharmacophore, molecular interaction fields-based fingerprints for ligands and protein (FLAP) and flexible...... for identifying structurally diverse and selective RNase H inhibitors from large chemical databases. In addition, pharmacophore models suggest that the inter-distance between hydrogen bond acceptors play a key role in inhibition of the RNase H domain through metal chelation....

  6. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi, E-mail: kumamote@cc.saga-u.ac.jp

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  7. Potent inhibition of human neutrophil activations by bractelactone, a novel chalcone from Fissistigma bracteolatum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yang-Chang [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan (China); Sureshbabu, Munisamy; Fang, Yao-Ching; Wu, Yi-Hsiu [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Lan, Yu-Hsuan [School of Pharmacy, China Medical University, Taichung 404, Taiwan (China); Chang, Fang-Rong [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Ya-Wen [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China)

    2013-02-01

    Fissistigma bracteolatum is widely used in traditional medicine to treat inflammatory diseases. However, its active components and mechanisms of action remain unclear. In this study, (3Z)-6,7-dihydroxy-4-methoxy-3-(phenylmethylidene)-5-(3-phenylpropanoyl) -1-benzofuran-2(3H) (bractelactone), a novel chalcone from F. bracteolatum, showed potent inhibitory effects against superoxide anion (O{sub 2}{sup ·−}) production, elastase release, and CD11b expression in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced human neutrophils. However, bractelactone showed only weak inhibition of phorbol myristate acetate-caused O{sub 2}{sup ·−} production. The peak cytosolic calcium concentration ([Ca{sup 2+}]{sub i}) was unaltered by bractelactone in FMLP-induced neutrophils, but the decay time of [Ca{sup 2+}]{sub i} was significantly shortened. In a calcium-free solution, changes in [Ca{sup 2+}]{sub i} caused by the addition of extracellular Ca{sup 2+} were inhibited by bractelactone in FMLP-activated cells. In addition, bractelactone did not alter the phosphorylation of p38 MAPK, ERK, JNK, or AKT or the concentration of cAMP. These results suggest that bractelactone selectively inhibits store-operated calcium entry (SOCE). In agreement with this concept, bractelactone suppressed sustained [Ca{sup 2+}]{sub i} changes in thapsigargin-activated neutrophils. Furthermore, bractelactone did not alter FMLP-induced formation of inositol 1,4,5-triphosphate. Taken together, our results demonstrate that the anti-inflammatory effects of bractelactone, an active ingredient of F. bracteolatum, in human neutrophils are through the selective inhibition of SOCE. Highlights: ► Bractelactone isolated from Fissistigma bracteolatum. ► Bractelactone inhibited FMLP-induced human neutrophil activations. ► Bractelactone had no effect on IP3 formation. ► Bractelactone did not alter MAPKs, AKT, and cAMP pathways. ► Bractelactone inhibited store-operated calcium entry.

  8. Outstanding Anti-inflammatory Potential of Selected Asteraceae Species through the Potent Dual Inhibition of Cyclooxygenase-1 and 5-Lipoxygenase.

    Science.gov (United States)

    Chagas-Paula, Daniela Aparecida; Oliveira, Tiago Branquinho; Faleiro, Danniela Príscylla Vasconcelos; Oliveira, Rejane Barbosa; Costa, Fernando Batista Da

    2015-09-01

    Cyclooxygenase and 5-lipoxygenase are enzymes that catalyze important inflammatory pathways, suggesting that dual cyclooxygenase/lipoxygenase inhibitors should be more efficacious as anti-inflammatory medicines with lower side effects than the currently available nonsteroidal anti-inflammatory drugs. Many plants from the family Asteraceae have anti-inflammatory activities, which could be exerted by inhibiting the cyclooxygenase-1 and 5-lipoxygenase enzymes. Nevertheless, only a small number of compounds from this family have been directly evaluated for their ability to inhibit the enzymes in cell-free assays. Therefore, this study systematically evaluated 57 Asteraceae extracts in vitro in enzyme activity experiments to determine whether any of these extracts exhibit dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The chemical profiles of the extracts were obtained by the high-performance liquid chromatography-ultraviolet-diode array detector method, and their major constituents were dereplicated. Of the 57 tested extracts, 13 (26.6 %, IC50 range from 0.03-36.2 µg/mL) of them displayed dual inhibition. Extracts from known anti-inflammatory herbs, food plants, and previously uninvestigated species are among the most active. Additionally, the extract action was found to be specific with IC50 values close to or below those of the standard inhibitors. Thus, the active extracts and active substances of these species are potent inhibitors acting through the mechanism of dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The extracts were prepared for this study using nontoxic extraction solvents (EtOH-H2O), requiring only a small amount of plant material to carry out the bioassays and the phytochemical analyses. In summary, this study demonstrated the potential of the investigated species as dual inhibitors, revealing their potential as pharmaceuticals or nutraceuticals. Georg Thieme Verlag KG Stuttgart · New York.

  9. Understanding Selective Downregulation of c-Myc Expression through Inhibition of General Transcription Regulators in Multiple Myeloma

    Science.gov (United States)

    2015-06-01

    We next tested whether BET bromodomain inhibition mitigated the acti- vation of proadhesion pathways in aortic endothelium, which oc- curs during the...tinuum of activity as Myc flickers on and off of weakly bound, weakly expressed promoters, but stays longer or more frequently at high output promoters

  10. Proactive modulation of long-interval intracortical inhibition during response inhibition

    Science.gov (United States)

    Cowie, Matthew J.; MacDonald, Hayley J.; Cirillo, John

    2016-01-01

    Daily activities often require sudden cancellation of preplanned movement, termed response inhibition. When only a subcomponent of a whole response must be suppressed (required here on Partial trials), the ensuing component is markedly delayed. The neural mechanisms underlying partial response inhibition remain unclear. We hypothesized that Partial trials would be associated with nonselective corticomotor suppression and that GABAB receptor-mediated inhibition within primary motor cortex might be responsible for the nonselective corticomotor suppression contributing to Partial trial response delays. Sixteen right-handed participants performed a bimanual anticipatory response inhibition task while single- and paired-pulse transcranial magnetic stimulation was delivered to elicit motor evoked potentials in the left first dorsal interosseous muscle. Lift times, amplitude of motor evoked potentials, and long-interval intracortical inhibition were examined across the different trial types (Go, Stop-Left, Stop-Right, Stop-Both). Go trials produced a tight distribution of lift times around the target, whereas those during Partial trials (Stop-Left and Stop-Right) were substantially delayed. The modulation of motor evoked potential amplitude during Stop-Right trials reflected anticipation, suppression, and subsequent reinitiation of movement. Importantly, suppression was present across all Stop trial types, indicative of a “default” nonselective inhibitory process. Compared with blocks containing only Go trials, inhibition increased when Stop trials were introduced but did not differ between trial types. The amount of inhibition was positively correlated with lift times during Stop-Right trials. Tonic levels of inhibition appear to be proactively modulated by task context and influence the speed at which unimanual responses occur after a nonselective “brake” is applied. PMID:27281744

  11. Short-Term Depression, Temporal Summation, and Onset Inhibition Shape Interval Tuning in Midbrain Neurons

    Science.gov (United States)

    Baker, Christa A.

    2014-01-01

    A variety of synaptic mechanisms can contribute to single-neuron selectivity for temporal intervals in sensory stimuli. However, it remains unknown how these mechanisms interact to establish single-neuron sensitivity to temporal patterns of sensory stimulation in vivo. Here we address this question in a circuit that allows us to control the precise temporal patterns of synaptic input to interval-tuned neurons in behaviorally relevant ways. We obtained in vivo intracellular recordings under multiple levels of current clamp from midbrain neurons in the mormyrid weakly electric fish Brienomyrus brachyistius during stimulation with electrosensory pulse trains. To reveal the excitatory and inhibitory inputs onto interval-tuned neurons, we then estimated the synaptic conductances underlying responses. We found short-term depression in excitatory and inhibitory pathways onto all interval-tuned neurons. Short-interval selectivity was associated with excitation that depressed less than inhibition at short intervals, as well as temporally summating excitation. Long-interval selectivity was associated with long-lasting onset inhibition. We investigated tuning after separately nullifying the contributions of temporal summation and depression, and found the greatest diversity of interval selectivity among neurons when both mechanisms were at play. Furthermore, eliminating the effects of depression decreased sensitivity to directional changes in interval. These findings demonstrate that variation in depression and summation of excitation and inhibition helps to establish tuning to behaviorally relevant intervals in communication signals, and that depression contributes to neural coding of interval sequences. This work reveals for the first time how the interplay between short-term plasticity and temporal summation mediates the decoding of temporal sequences in awake, behaving animals. PMID:25339741

  12. Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel

    International Nuclear Information System (INIS)

    Oguzie, Emeka E.

    2008-01-01

    Corrosion inhibition of mild steel in 2 M HCl and 1 M H 2 SO 4 by extracts of selected plants was investigated using a gasometric technique at temperatures of 30 and 60 deg. C. The studied plants materials include leaf extracts Occimum viridis (OV), Telferia occidentalis (TO), Azadirachta indica (AI) and Hibiscus sabdariffa (HS) as well as extracts from the seeds of Garcinia kola (GK). The results indicate that all the extracts inhibited the corrosion process in both acid media by virtue of adsorption and inhibition efficiency improved with concentration. Synergistic effects increased the inhibition efficiency in the presence of halide additives. Inhibition mechanisms were deduced from the temperature dependence of the inhibition efficiency as well as from assessment of kinetic and activation parameters that govern the processes. Comparative analysis of the inhibitor adsorption behaviour in 2 M HCl and 1 M H 2 SO 4 as well as the effects of temperature and halide additives suggest that both protonated and molecular species could be responsible for the inhibiting action of the extracts

  13. Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Oguzie, Emeka E. [Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology, PMB 1526, Owerri (Nigeria)], E-mail: oguziemeka@yahoo.com

    2008-11-15

    Corrosion inhibition of mild steel in 2 M HCl and 1 M H{sub 2}SO{sub 4} by extracts of selected plants was investigated using a gasometric technique at temperatures of 30 and 60 deg. C. The studied plants materials include leaf extracts Occimum viridis (OV), Telferia occidentalis (TO), Azadirachta indica (AI) and Hibiscus sabdariffa (HS) as well as extracts from the seeds of Garcinia kola (GK). The results indicate that all the extracts inhibited the corrosion process in both acid media by virtue of adsorption and inhibition efficiency improved with concentration. Synergistic effects increased the inhibition efficiency in the presence of halide additives. Inhibition mechanisms were deduced from the temperature dependence of the inhibition efficiency as well as from assessment of kinetic and activation parameters that govern the processes. Comparative analysis of the inhibitor adsorption behaviour in 2 M HCl and 1 M H{sub 2}SO{sub 4} as well as the effects of temperature and halide additives suggest that both protonated and molecular species could be responsible for the inhibiting action of the extracts.

  14. Sexual selection and magic traits in speciation with gene flow

    Directory of Open Access Journals (Sweden)

    Maria R. SERVEDIO, Michael KOPP

    2012-06-01

    Full Text Available The extent to which sexual selection is involved in speciation with gene flow remains an open question and the subject of much research. Here, we propose that some insight can be gained from considering the concept of magic traits (i.e., traits involved in both reproductive isolation and ecological divergence. Both magic traits and other, “non-magic”, traits can contribute to speciation via a number of specific mechanisms. We argue that many of these mechanisms are likely to differ widely in the extent to which they involve sexual selection. Furthermore, in some cases where sexual selection is present, it may be prone to inhibit rather than drive speciation. Finally, there are a priori reasons to believe that certain categories of traits are much more effective than others in driving speciation. The combination of these points suggests a classification of traits that may shed light on the broader role of sexual selection in speciation with gene flow. In particular, we suggest that sexual selection can act as a driver of speciation in some scenarios, but may play a negligible role in potentially common categories of magic traits, and may be likely to inhibit speciation in common categories of non-magic traits [Current Zoology 58 (3: 507–513, 2012].

  15. Mechanism of action and selective toxicity of ascamycin, a nucleoside antibiotic.

    OpenAIRE

    Osada, H; Isono, K

    1985-01-01

    An unidentified Streptomyces sp. produces two nucleoside antibiotics, ascamycin and its dealanyl derivative. In contrast to the broad antibacterial activity of dealanylascamycin against various gram-negative and gram-positive bacteria, ascamycin showed selective toxicity against Xanthomonas citri and X. oryzae. Both ascamycin and dealanylascamycin inhibited the protein synthesis of X. citri, but only dealanylascamycin inhibited that of Escherichia coli. In cell-free systems from E. coli and X...

  16. Intra-Articular, Single-Shot Hylan G-F 20 Hyaluronic Acid Injection Compared with Corticosteroid in Knee Osteoarthritis: A Double-Blind, Randomized Controlled Trial.

    Science.gov (United States)

    Tammachote, Nattapol; Kanitnate, Supakit; Yakumpor, Thanasak; Panichkul, Phonthakorn

    2016-06-01

    The treatment of knee osteoarthritis with hyaluronic acid or corticosteroid injection has been widely used. The purpose of this study was to compare the efficacy of hyaluronic acid (hylan G-F 20) with triamcinolone acetonide as a single intra-articular injection for knee osteoarthritis. This study was a prospective, randomized, double-blind clinical trial. Participants with symptomatic knee osteoarthritis were recruited. They were randomized to receive a single-shot, intra-articular injection of either 6 mL of hylan G-F 20 or 6 mL of a solution comprising 1 mL of 40-mg triamcinolone acetonide and 5 mL of 1% lidocaine with epinephrine. The primary outcomes were knee pain severity, knee function, and range of motion at 6 months. Ninety-nine patients were assessed before injection and underwent a 6-month follow-up. Patients and evaluators were blinded. Multilevel regression models were used to estimate differences between the groups. At the 6-month follow-up, compared with patients who took hylan G-F 20, patients who took triamcinolone acetonide had similar improvement in knee pain, knee function, and range of motion. The difference in mean outcome scores between groups was, with regard to knee pain, a visual analog scale (VAS) score of 3 points (95% confidence interval [95% CI], -6 to 11 points); with regard to knee function, a modified Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score of 0 points (95% CI, -8 to 6 points); and, with regard to range of motion, flexion of -1° (95% CI, -5° to 2°) and extension of 0° (95% CI, -0.5° to 0.5°). However, patients who took triamcinolone acetonide had better pain improvement from 24 hours until 1 week after injection; the mean difference between groups with regard to the VAS score was 12 points (95% CI, 5 to 20 points; p = 0.002) at 24 hours and 9 points (95% CI, 1 to 15 points; p = 0.018) at 1 week. At 2 weeks after injection, patients who took triamcinolone acetonide also had better knee

  17. Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hao; Dranchak, Patricia; Li, Zhiru; MacArthur, Ryan; Munson, Matthew S.; Mehzabeen, Nurjahan; Baird, Nathan J.; Battalie, Kevin P.; Ross, David; Lovell, Scott; Carlow, Clotilde K.S.; Suga, Hiroaki; Inglese, James (U of Tokyo); (NEB); (Kansas); (NIH); (NIST); (HHMI)

    2017-04-03

    Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movement of phosphatase and transferase domains creating a solvent inaccessible cavity. Here we identify alternate ligand binding regions using nematode iPGM to select and enrich lariat-like ligands from an mRNA-display macrocyclic peptide library containing >1012 members. Functional analysis of the ligands, named ipglycermides, demonstrates sub-nanomolar inhibition of iPGM with complete selectivity over dPGM. The crystal structure of an iPGM macrocyclic peptide complex illuminated an allosteric, locked-open inhibition mechanism placing the cyclic peptide at the bi-domain interface. This binding mode aligns the pendant lariat cysteine thiolate for coordination with the iPGM transition metal ion cluster. The extended charged, hydrophilic binding surface interaction rationalizes the persistent challenges these enzymes have presented to small-molecule screening efforts highlighting the important roles of macrocyclic peptides in expanding chemical diversity for ligand discovery.

  18. Relationship between self-reported childhood behavioral inhibition and lifetime anxiety disorders in a clinical sample.

    Science.gov (United States)

    Gladstone, Gemma L; Parker, Gordon B; Mitchell, Phillip B; Wilhelm, Kay A; Malhi, Gin S

    2005-01-01

    To examine the association between an early inhibited temperament and lifetime anxiety disorders, we studied a sample of patients with major depression who were not selected on the basis of comorbid axis I anxiety disorders. One-hundred eighty-nine adults (range = 17-68 years) referred to a tertiary depression unit underwent structured diagnostic interviews for depression and anxiety and completed two self-report measures of behavioral inhibition, the retrospective measure of behavioural inhibition (RMBI) [Gladstone and Parker, 2005] and the adult measure of behavioural inhibition (AMBI) [Gladstone and Parker, 2005]. Patients' scores were classified into "low," "moderate," or "high" inhibition. While groups did not differ in terms of depression severity, there were differences across groups in clinically diagnosed nonmelancholic status and age of onset of first episode. Those reporting a high degree of childhood inhibition were significantly more likely to qualify for a diagnosis of social phobia, and this association was independent of their scores on the AMBI. Findings are discussed in light of the existing risk-factor literature and support the hypothesis that an early inhibited temperament may be a significant precursor to later anxiety, especially social anxiety disorder. Copyright 2005 Wiley-Liss, Inc.

  19. Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation

    Energy Technology Data Exchange (ETDEWEB)

    Umar, Sadiq; Hedaya, Omar; Singh, Anil K.; Ahmed, Salahuddin, E-mail: salah.ahmed@wsu.edu

    2015-09-15

    Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine produced by monocytes/macrophage that plays a pathological role in rheumatoid arthritis (RA). In this study, we investigate the effect of thymoquinone (TQ), a phytochemical found in Nigella sativa, in regulating TNF-α-induced RA synovial fibroblast (RA-FLS) activation. Treatment with TQ (1–5 μM) had no marked effect on the viability of human RA-FLS. Pre-treatment of TQ inhibited TNF-α-induced interleukin-6 (IL-6) and IL-8 production and ICAM-1, VCAM-1, and cadherin-11 (Cad-11) expression in RA-FLS (p < 0.01). Evaluation of the signaling events showed that TQ inhibited TNF-α-induced phospho-p38 and phospho-JNK expression, but had no inhibitory effect on NF-κB pathway, in RA-FLS (p < 0.05; n = 4). Interestingly, we observed that selective down-regulation of TNF-α-induced phospho-p38 and phospho-JNK activation by TQ is elicited through inhibition of apoptosis-regulated signaling kinase 1 (ASK1). Furthermore, TNF-α selectively induced phosphorylation of ASK1 at Thr845 residue in RA-FLS, which was inhibited by TQ pretreatment in a dose dependent manner (p < 0.01). Pre-treatment of RA-FLS with ASK1 inhibitor (TC ASK10), blocked TNF-α induced expression of ICAM-1, VCAM-1, and Cad-11. Our results suggest that TNF-α-induced ASK1-p38/JNK pathway is an important mediator of cytokine synthesis and enhanced expression of adhesion molecule in RA-FLS and TQ, by selectively inhibiting this pathway, may have a potential therapeutic value in regulating tissue destruction observed in RA. - Highlights: • Evolving evidence suggests that ASK1 plays a central role in rheumatic arthritis (RA). • TNF-α activates ASK1, which regulate downstream signaling through JNK/p38 activation in RA-FLS. • ASK1 may be used as a potential therapeutic target in RA. • Thymoquinone was able to selectively inhibit TNF-α-induced phosphorylation of ASK1 in RA-FLS. • Thymoquinone might serve as a potential small

  20. Inhibition of RNA Helicases of ssRNA+ Virus Belonging to Flaviviridae, Coronaviridae and Picornaviridae Families

    Directory of Open Access Journals (Sweden)

    Irene Briguglio

    2011-01-01

    Full Text Available Many viral pathogens encode the motor proteins named RNA helicases which display various functions in genome replication. General strategies to design specific and selective drugs targeting helicase for the treatment of viral infections could act via one or more of the following mechanisms: inhibition of the NTPase activity, by interferences with ATP binding and therefore by limiting the energy required for the unwinding and translocation, or by allosteric mechanism and therefore by stabilizing the conformation of the enzyme in low helicase activity state; inhibition of nucleic acids binding to the helicase; inhibition of coupling of ATP hydrolysis to unwinding; inhibition of unwinding by sterically blocking helicase translocation. Recently, by in vitro screening studies, it has been reported that several benzotriazole, imidazole, imidazodiazepine, phenothiazine, quinoline, anthracycline, triphenylmethane, tropolone, pyrrole, acridone, small peptide, and Bananin derivatives are endowed with helicase inhibition of pathogen viruses belonging to Flaviviridae, Coronaviridae, and Picornaviridae families.

  1. Delta-9 tetrahydrocannabinol (THC inhibits lytic replication of gamma oncogenic herpesviruses in vitro

    Directory of Open Access Journals (Sweden)

    Friedman Herman

    2004-09-01

    Full Text Available Abstract Background The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC, has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Methods Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV and Epstein-Barr virus (EBV replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS of monkeys, murine gamma herpesvirus 68 (MHV 68, and herpes simplex type 1 (HSV-1 was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Results Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. Conclusions THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC

  2. The effects of methylphenidate on prepulse inhibition during attended and ignored prestimuli among boys with attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Hawk, Larry W; Yartz, Andrew R; Pelham, William E; Lock, Thomas M

    2003-01-01

    The present study investigated attentional modification of prepulse inhibition of startle among boys with and without attention-deficit hyperactivity disorder (ADHD). Two hypotheses were tested: (1) whether ADHD is associated with diminished prepulse inhibition during attended prestimuli, but not ignored prestimuli, and (2) whether methylphenidate selectively increases prepulse inhibition to attended prestimuli among boys with ADHD. Participants were 17 boys with ADHD and 14 controls. Participants completed a tone discrimination task in each of two sessions separated by 1 week. ADHD boys were administered methylphenidate (0.3 mg/kg) in one session and placebo in the other session in a randomized, double-blind fashion. During each series of 72 tones (75 dB; half 1200-Hz, half 400-Hz), participants were paid to attend to one pitch and ignore the other. Bilateral eyeblink electromyogram startle responses were recorded in response to acoustic probes (50-ms, 102-dB white noise) presented following the onset of two-thirds of tones, and during one-third of intertrial intervals. Relative to controls, boys with ADHD exhibited diminished prepulse inhibition 120 ms after onset of attended but not ignored prestimuli following placebo administration. Methylphenidate selectively increased prepulse inhibition to attended prestimuli at 120 ms among boys with ADHD to a level comparable to that of controls, who did not receive methylphenidate. These data are consistent with the hypothesis that ADHD involves diminished selective attention and suggest that methylphenidate ameliorates the symptoms of ADHD, at least in part, by altering an early attentional mechanism.

  3. Peptide Extracts from Cultures of Certain Lactobacilli Inhibit Helicobacter pylori.

    Science.gov (United States)

    De Vuyst, Luc; Vincent, Pascal; Makras, Eleftherios; Leroy, Frédéric; Pot, Bruno

    2010-03-01

    Helicobacter pylori inhibition by probiotic lactobacilli has been observed in vitro and in vivo. Carefully selected probiotic Lactobacillus strains could therefore play an important role in the treatment of H. pylori infection and eradication. However, the underlying mechanism for this inhibition is not clear. The aim of this study was to examine if peptide extracts, containing bacteriocins or other antibacterial peptides, from six Lactobacillus cultures (Lactobacillus acidophilus La1, Lactobacillus amylovorus DCE 471, Lactobacillus casei YIT 9029, Lactobacillus gasseri K7, Lactobacillus johnsonii La1, and Lactobacillus rhamnosus GG) contribute to the inhibition of H. pylori. Peptide extracts from cultures of Lact. amylovorus DCE 471 and Lact. johnsonii La1 were most active, reducing the viability of H. pylori ATCC 43504 with more than 2 log units within 4 h of incubation (P < 0.001). The four other extracts were less or not active. When six clinical isolates of H. pylori were tested for their susceptibility towards five inhibitory peptide extracts, similar observations were made. Again, the peptide extracts from Lact. amylovorus DCE 471 and Lact. johnsonii La1 were the most inhibitory, while the three other extracts resulted in a much lower inhibition of H. pylori. Protease-treated extracts were inactive towards H. pylori, confirming the proteinaceous nature of the inhibitory substance.

  4. Loss of Balance between Striatal Feedforward Inhibition and Corticostriatal Excitation Leads to Tremor.

    Science.gov (United States)

    Oran, Yael; Bar-Gad, Izhar

    2018-02-14

    Fast-spiking interneurons (FSIs) exert powerful inhibitory control over the striatum and are hypothesized to balance the massive excitatory cortical and thalamic input to this structure. We recorded neuronal activity in the dorsolateral striatum and globus pallidus (GP) concurrently with the detailed movement kinematics of freely behaving female rats before and after selective inhibition of FSI activity using IEM-1460 microinjections. The inhibition led to the appearance of episodic rest tremor in the body part that depended on the somatotopic location of the injection within the striatum. The tremor was accompanied by coherent oscillations in the local field potential (LFP). Individual neuron activity patterns became oscillatory and coherent in the tremor frequency. Striatal neurons, but not GP neurons, displayed additional temporal, nonoscillatory correlations. The subsequent reduction in the corticostriatal input following muscimol injection to the corresponding somatotopic location in the primary motor cortex led to disruption of the tremor and a reduction of the LFP oscillations and individual neuron's phase-locked activity. The breakdown of the normal balance of excitation and inhibition in the striatum has been shown previously to be related to different motor abnormalities. Our results further indicate that the balance between excitatory corticostriatal input and feedforward FSI inhibition is sufficient to break down the striatal decorrelation process and generate oscillations resulting in rest tremor typical of multiple basal ganglia disorders. SIGNIFICANCE STATEMENT Fast-spiking interneurons (FSIs) play a key role in normal striatal processing by exerting powerful inhibitory control over the network. FSI malfunctions have been associated with abnormal processing of information within the striatum that leads to multiple movement disorders. Here, we study the changes in neuronal activity and movement kinematics following selective inhibition of these

  5. The effects of glucocorticoids on the inhibition of emotional information: A dose-response study.

    Science.gov (United States)

    Taylor, Véronique A; Ellenbogen, Mark A; Washburn, Dustin; Joober, Ridha

    2011-01-01

    There is evidence that cortisol influences cognitive and affective processes such as selective attention and memory for emotional events, yet the effects of glucocorticoids on attentional inhibition in humans remain unknown. Consequently, this double-blind study examined dose-dependent effects of exogenous glucocorticoids on the inhibition of emotional information. Sixty-three university students (14 male, 49 female) ingested either a placebo pill or hydrocortisone (10mg or 40mg), and completed a negative priming task assessing the inhibition of pictures depicting angry, sad, and happy faces. The 10mg, but not the 40mg hydrocortisone dose elicited increased inhibition for angry faces relative to placebo. Thus, moderate glucocorticoid elevations may have adaptive effects on emotional information processing, whereas high glucocorticoid elevations appear to attenuate this effect, consistent with the view that there are dose-dependent effects of glucocorticoids on cognition. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Selective inhibition of the demethylation at C-14 in ergosterol biosynthesis by the fungicide, Denmert (S-1358)

    International Nuclear Information System (INIS)

    Kato, Toshiro; Kawase, Yasuo

    1976-01-01

    A direct evidence of the inhibitory effect in a cell-free system of S. cerevisiae was experimentally studied, and the site of action of Denmert (S-n-butyl S'-p-tert-butylbenzyl N-3-pyridyldithiocarbon-imidate) in sterol biosynthesis was examined. 14 C-labeled lanosterol and 14-desmethyl-lanosterol were biosynthetically prepared. DL-mevalonate-2- 14 C was incubated with yeast cell-free homogenates for 3 hr at 28 deg C while being shaked vigorously in atmospheric oxygen. The resultant 14 C-labeled sterol was extracted and chromatographed on a silicic acid-Hyflo Super Cel column. 4,4-dimethyl sterol thus obtained was acetylated with acetic anhydride and pyridine. The separation of lanosteryl acetate and 14-desmethyl lanosteryl acetate was accomplished on alumina thin-layer plates. After the saponification of each steryl acetate, the quantity of the sterol was assessed by gas chromatography with cholesterol as an internal standard. The incubation of the 14 C-labeled sterol was achieved under the same conditions as those for the DL-mevalonate-2- 14 C except the addition of the substrate which was dispersed in 0.1M phosphate buffer. Denmert inhibited the conversion of 14 C-labeled lanosterol to 4-desmethyl sterol, while the conversion of 14 C-labeled 14-desmethyl lanosterol to 4-desmethyl sterol was hardly affected by the fungicide. Therefore, Denmert is a potent selective inhibitor of the demethylation at the C-14 position in ergosterol biosynthesis. The fungicide, triarimol, exhibited the same effect on sterol biosynthesis as that of Denmert. (Iwakiri, K.)

  7. Evaluation of Lactobacillus strains for selected probiotic properties.

    Science.gov (United States)

    Turková, Kristýna; Mavrič, Anja; Narat, Mojca; Rittich, Bohuslav; Spanová, Alena; Rogelj, Irena; Matijašić, Bojana Bogovič

    2013-07-01

    Eleven strains of Lactobacillus collected in the Culture Collection of Dairy Microorganisms (CCDM) were evaluated for selected probiotic properties such as survival in gastrointestinal fluids, antimicrobial activity, and competition with non-toxigenic Escherichia coli O157:H7 for adhesion on Caco-2 cells. The viable count of lactobacilli was reduced during 3-h incubation in gastric fluid followed by 3-h incubation in intestinal fluid. All strains showed antimicrobial activity and the three most effective strains inhibited the growth of at least 16 indicator strains. Antimicrobial metabolites of seven strains active against Lactobacillus and Clostridium indicator strains were found to be sensitive to proteinase K and trypsin, which indicates their proteinaceous nature. The degree of competitive inhibition of non-toxigenic E. coli O157:H7 adhesion on the surface of Caco-2 cells was strain-dependent. A significant decrease (P strains were selected for additional studies of antimicrobial activity, i.e., Lactobacillus gasseri CCDM 215, Lactobacillus acidophilus CCDM 149, and Lactobacillus helveticus CCDM 82.

  8. Metformin selectively targets redox control of complex I energy transduction

    Directory of Open Access Journals (Sweden)

    Amy R. Cameron

    2018-04-01

    Full Text Available Many guanide-containing drugs are antihyperglycaemic but most exhibit toxicity, to the extent that only the biguanide metformin has enjoyed sustained clinical use. Here, we have isolated unique mitochondrial redox control properties of metformin that are likely to account for this difference. In primary hepatocytes and H4IIE hepatoma cells we found that antihyperglycaemic diguanides DG5-DG10 and the biguanide phenformin were up to 1000-fold more potent than metformin on cell signalling responses, gluconeogenic promoter expression and hepatocyte glucose production. Each drug inhibited cellular oxygen consumption similarly but there were marked differences in other respects. All diguanides and phenformin but not metformin inhibited NADH oxidation in submitochondrial particles, indicative of complex I inhibition, which also corresponded closely with dehydrogenase activity in living cells measured by WST-1. Consistent with these findings, in isolated mitochondria, DG8 but not metformin caused the NADH/NAD+ couple to become more reduced over time and mitochondrial deterioration ensued, suggesting direct inhibition of complex I and mitochondrial toxicity of DG8. In contrast, metformin exerted a selective oxidation of the mitochondrial NADH/NAD+ couple, without triggering mitochondrial deterioration. Together, our results suggest that metformin suppresses energy transduction by selectively inducing a state in complex I where redox and proton transfer domains are no longer efficiently coupled. Keywords: Diabetes, Metformin, Mitochondria, NADH, NAD+

  9. [Kinetic study on inhibition effects of dansyl-L-phenylalanine and L-phenylalanine on calf intestinal alkaline phosphatase].

    Science.gov (United States)

    Li, Li-Na; Wu, Yu-Qing; Buchet, René

    2009-10-01

    To evaluate the inhibition effect of dansyl-L-phenylalanine on calf intestinal alkaline phosphatase (CIAP), UV-Vis spectrophotometric method was employed. It was found that dansyl-L-phenylalanine can selectively inhibit CIAP. The kinetic inhibition processes of dansyl-L-phenylalanine and L-phenylalanine were comparatively studied. The authors' finding elucidates that at the optimized alkaline pH of alkaline phosphatase (pH 10.4) and 37 degrees C, dansyl-L-phenylalanine can inhibit alkaline phosphatase activity of CIAP efficiently and specifically, similar as L-phenylalanine. Both inhibition types were uncompetitive inhibition resulting from the double reciprocal curve fitting of upsilon versus substrate concentrations, and the inhibition constants Ki of both inhibitors were determined to be 2.3 and 1.1 mmol L(-1) respectively, both of which were at millimolar level. The investigation of the inhibition effect of dansyl modified L-phenylalanine on calf intestinal alkaline phosphatase not only helped get insight into the detailed inhibition mechanism of L-phenylalanine on tissue specific alkaline phosphatase, such as in the case of intestinal alkaline phosphatase, but also provided the possibility to employ fluorescence spectroscopy by labeling the specific inhibitors of alkaline phosphatase with chromophoric groups.

  10. Centchroman regulates breast cancer angiogenesis via inhibition of HIF-1α/VEGFR2 signalling axis.

    Science.gov (United States)

    Dewangan, Jayant; Kaushik, Shweta; Rath, Srikanta Kumar; Balapure, Anil K

    2018-01-15

    Angiogenesis is a recognized hallmark of cancer which promotes cancer cell progression and metastasis. Inhibition of angiogenesis to attenuate cancer growth is becoming desirable strategy for breast cancer management. The present study is aimed to investigate the antiangiogenic efficacy of a novel selective estrogen receptor modulator Centchroman (CC) on human breast cancer cells. Effect of CC on cell viability was evaluated using Sulforhodamine B assay. Endothelial cell proliferation, wound healing, Boyden chamber cell invasion, tube formation and chorioallantoic membrane (CAM) assays were performed to assess the effect of CC on migration, invasion and angiogenesis. Apoptosis, reactive oxygen species generation, caspase-3/7 and intracellular calcium ion level were measured through flow cytometry. Expression levels of HIF-1α, VEGF, VEGFR2, AKT and ERK were assessed by western blot analysis. CC selectively induces apoptosis in human breast cancer cells without affecting non-tumorigenic breast epithelial cells MCF-10A. Moreover, it inhibits migratory, invasive and mammosphere forming potential of breast cancer. Furthermore, CC also inhibited VEGF-induced migration, invasion and tube formation of HUVECs in vitro. CC effectively inhibited neovasculature formation in chicken CAM. Western blot analysis demonstrated that CC inhibited expression of HIF-1α and its downstream target VEGF. Interestingly, CC also suppressed VEGFR2 phosphorylation and consequently attenuated AKT and ERK phosphorylation. Our findings suggest that CC downregulates VEGF-induced angiogenesis by modulating HIF-1α/VEGFR2 pathway and recommend it (CC) as a potential therapeutic drug for breast cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Effects of corticosteroid on the expressions of neuropeptide and cytokine mRNA and on tenocyte viability in lateral epicondylitis

    Directory of Open Access Journals (Sweden)

    Han Soo

    2012-10-01

    Full Text Available Abstract Background The purpose of this study was to determine the reaction mechanism of corticosteroid by analyzing the expression patterns of neuropeptides (substance P (SP, calcitonin gene related peptide (CGRP and of cytokines (interleukin (IL-1α, tumor growth factor (TGF-β after corticosteroid treatment in lateral epicondylitis. In addition, we also investigated whether corticosteroid influenced tenocyte viability. Methods The corticosteroid triamcinolone acetonide (TAA was applied to cultured tenocytes of lateral epicondylitis, and the changes in the mRNA expressions of neuropeptides and cytokines and tenocyte viabilities were analyzed at seven time points. Quantitative real-time polymerase chain reaction and an MTT assay were used. Results The expression of SP mRNA was maximally inhibited by TAA at 24 hours but recovered at 72 hours, and the expressions of CGRP mRNA and IL-1α mRNA were inhibited at 24 and 3 hours, respectively. The expression of TGF-β mRNA was not significant. Tenocyte viability was significantly reduced by TAA at 24 hours. Conclusions We postulate that the reaction mechanism predominantly responsible for symptomatic relief after a corticosteroid injection involves the inhibitions of neuropeptides and cytokines, such as, CGRP and IL-1α. However the tenocyte viability was compromised by a corticosteroid.

  12. Selective inhibition of Erwinia amylovora by the herbicidally active germination-arrest factor (GAF) produced by Pseudomonas bacteria.

    Science.gov (United States)

    Halgren, A; Azevedo, M; Mills, D; Armstrong, D; Thimmaiah, M; McPhail, K; Banowetz, G

    2011-10-01

     The germination-arrest factor (GAF) produced by Pseudomonas fluorescens WH6, and identified as 4-formylaminooxyvinylglycine, specifically inhibits the germination of a wide range of grassy weeds. This study was undertaken to determine whether GAF has antimicrobial activity in addition to its inhibitory effects on grass seed germination. Culture filtrate from Ps. fluorescens WH6 had little or no effect on 17 species of bacteria grown in Petri dish lawns, but the in vitro growth of Erwinia amylovora, the causal agent of the disease of orchard crops known as fire blight, was strongly inhibited by the filtrate. The anti-Erwinia activity of WH6 culture filtrate was shown to be due to its GAF content, and a commercially available oxyvinylglycine, 4-aminoethoxyvinylglycine (AVG), exhibited anti-Erwinia activity similar to that of GAF. The effects of GAF on Erwinia were reversed by particular amino acids. The biological properties of GAF include a rather specific antimicrobial activity against Erw. amylovora. This may be a general property of oxyvinylglycines as AVG exhibited similar activity. The ability of particular amino acids to reverse GAF inhibition is consistent with a potential effect of this compound on the activity of aminotransferases. The results presented here demonstrate a novel antimicrobial activity of oxyvinylglycines and suggest that GAF and/or GAF-producing bacteria may have potential for the control of fire blight. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology. No claim to US Government works.

  13. Different protein kinase C isoenzymes mediate inhibition of cardiac rapidly activating delayed rectifier K+ current by different G-protein coupled receptors.

    Science.gov (United States)

    Liu, Xueli; Wang, Yuhong; Zhang, Hua; Shen, Li; Xu, Yanfang

    2017-12-01

    Elevated angiotensin II (Ang II) and sympathetic activity contributes to a high risk of ventricular arrhythmias in heart disease. The rapidly activating delayed rectifier K + current (I Kr ) carried by the hERG channels plays a critical role in cardiac repolarization, and decreased I Kr is involved in increased cardiac arrhythmogenicity. Stimulation of α 1A -adrenoreceptors or angiotensin II AT 1 receptors is known to inhibit I Kr via PKC. Here, we have identified the PKC isoenzymes mediating the inhibition of I Kr by activation of these two different GPCRs. The whole-cell patch-clamp technique was used to record I Kr in guinea pig cardiomyocytes and HEK293 cells co-transfected with hERG and α 1A -adrenoreceptor or AT 1 receptor genes. A broad spectrum PKC inhibitor Gö6983 (not inhibiting PKCε), a selective cPKC inhibitor Gö6976 and a PKCα-specific inhibitor peptide, blocked the inhibition of I Kr by the α 1A -adrenoreceptor agonist A61603. However, these inhibitors did not affect the reduction of I Kr by activation of AT 1 receptors, whereas the PKCε-selective inhibitor peptide did block the effect. The effects of angiotensin II and the PKCε activator peptide were inhibited in mutant hERG channels in which 17 of the 18 PKC phosphorylation sites were deleted, whereas a deletion of the N-terminus of the hERG channels selectively prevented the inhibition elicited by A61603 and the cPKC activator peptide. Our results indicated that inhibition of I Kr by activation of α 1A -adrenoreceptors or AT 1 receptors were mediated by PKCα and PKCε isoforms respectively, through different molecular mechanisms. © 2017 The British Pharmacological Society.

  14. Putative therapeutic targets for symptom subtypes of adult ADHD: D4 receptor agonism and COMT inhibition improve attention and response inhibition in a novel translational animal model.

    Science.gov (United States)

    Tomlinson, Anneka; Grayson, Ben; Marsh, Samuel; Hayward, Andrew; Marshall, Kay M; Neill, Joanna C

    2015-04-01

    Prefrontal cortical dopamine plays an important role in cognitive control, specifically in attention and response inhibition; the core deficits in ADHD. We have previously shown that methylphenidate and atomoxetine differentially improve these deficits dependent on baseline performance. The present study extends this work to investigate the effects of putative therapeutic targets in our model. A selective dopamine D4 receptor agonist (A-412997) and the catechol-O-methyl-transferase (COMT) inhibitor; tolcapone, were investigated in the combined subtype of adult ADHD (ADHD-C). Adult female rats were trained to criterion in the 5C-CPT (5-Choice Continuous Performance Task) and then separated into subgroups according to baseline levels of sustained attention, vigilance, and response disinhibition. The subgroups included: high-attentive (HA) and low-attentive with high response disinhibition (ADHD-C). The ADHD-C subgroup was selected to represent the combined subtype of adult ADHD. Effects of tolcapone (3.0, 10.0, 15.0mg/kg) and A-412997 (0.1, 0.3, 1.0µmol/kg) were tested by increasing the variable inter-trial-interval (ITI) duration in the 5C-CPT. Tolcapone (15mg/kg) significantly increased sustained attention, vigilance and response inhibition in ADHD-C animals, and impaired attention in HA animals. A-412997 (1.0µmol/kg) significantly increased vigilance and response inhibition in ADHD-C animals only, with no effect in HA animals. This is the first study to use the translational 5C-CPT to model the adult ADHD-C subtype in rats and to study new targets in this model. Both tolcapone and A-412997 increased vigilance and response inhibition in the ADHD-C subgroup. D4 and COMT are emerging as important potential therapeutic targets in adult ADHD that warrant further investigation. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  15. Intraglomerular inhibition maintains mitral cell response contrast across input frequencies.

    Science.gov (United States)

    Shao, Zuoyi; Puche, Adam C; Shipley, Michael T

    2013-11-01

    Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MTCs) and external tufted cells (ETCs); ETCs provide additional feed-forward excitation to MTCs. Both are strongly regulated by intraglomerular inhibition that can last up to 1 s and, when blocked, dramatically increases ON-evoked MC spiking. Intraglomerular inhibition thus limits the magnitude and duration of MC spike responses to sensory input. In vivo, sensory input is repetitive, dictated by sniffing rates from 1 to 8 Hz, potentially summing intraglomerular inhibition. To investigate this, we recorded MTC responses to 1- to 8-Hz ON stimulation in slices. Inhibitory postsynaptic current area (charge) following each ON stimulation was unchanged from 1 to 5 Hz and modestly paired-pulse attenuated at 8 Hz, suggesting there is no summation and only limited decrement at the highest input frequencies. Next, we investigated frequency independence of intraglomerular inhibition on MC spiking. MCs respond to single ON shocks with an initial spike burst followed by reduced spiking decaying to baseline. Upon repetitive ON stimulation peak spiking is identical across input frequencies but the ratio of peak-to-minimum rate before the stimulus (max-min) diminishes from 30:1 at 1 Hz to 15:1 at 8 Hz. When intraglomerular inhibition is selectively blocked, peak spike rate is unchanged but trough spiking increases markedly decreasing max-min firing ratios from 30:1 at 1 Hz to 2:1 at 8 Hz. Together, these results suggest intraglomerular inhibition is relatively frequency independent and can "sharpen" MC responses to input across the range of frequencies. This suggests that glomerular circuits can maintain "contrast" in MC encoding during sniff-sampled inputs.

  16. Piroxicam inhibits NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B subunit: an in silico study elucidating a novel mechanism of action of the drug.

    Science.gov (United States)

    Mazumder, Muhammed Khairujjaman; Borah, Anupom

    2014-12-01

    Hyperactivation of GluN2B subunit containing N-methyl-d-aspartate receptors (NMDARs) significantly contributes to the development of several neurodegenerative diseases through a process called excitotoxicity. NMDARs are voltage-gated Ca2+ channels which when activated lead to excessive influx of Ca2+ into neurons thereby exacerbating several calcium-dependent pathways that cause oxidative stress and apoptosis. Several drugs are presently in use to counter the NMDAR-mediated excitotoxic events among which Ifenprodil and its derivatives are GluN2B selective allosteric antagonists. Certain non-steroidal anti-inflammatory drugs (NSAIDs) have also been reported to inhibit NMDARs and the resultant pathologies. Meanwhile, Piroxicam, which is a NSAID, has been reported to be protective in cerebral ischemia-induced neurodegeneration through various pathways. Since Piroxicam has more number of interacting groups as compared to other NSAIDs and also has structural similarities with Ifenprodil, we thought it prudent that Piroxicam may inhibit NMDARs similar to Ifenprodil. By using molecular docking as a tool, we validated the hypothesis and hereby report for the first time that Piroxicam can inhibit GluN2B containing NMDARs through allosteric mode similar to the well known selective antagonist--Ifenprodil; and thus can be a therapeutic drug for the prevention of excitotoxic neurodegeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Synthesis of the C8’-epimeric thymine pyranosyl amino acid core of amipurimycin

    Directory of Open Access Journals (Sweden)

    Pramod R. Markad

    2016-08-01

    Full Text Available The C8’-epimeric pyranosyl amino acid core 2 of amipurimycin was synthesized from D-glucose derived alcohol 3 in 13 steps and 14% overall yield. Thus, the Sharpless asymmetric epoxidation of allyl alcohol 7 followed by trimethyl borate mediated regio-selective oxirane ring opening with azide, afforded azido diol 10. The acid-catalyzed 1,2-acetonide ring opening in 10 concomitantly led to the formation of the pyranose ring skeleton to give 2,7-dioxabicyclo[3.2.1]octane 12. Functional group manipulation in 12 gave 21 that on stereoselective β-glycosylation afforded the pyranosyl thymine nucleoside 2 – a core of amipurimycin.

  18. Inhibition of Fungal Pathogens across Genotypes and Temperatures by Amphibian Skin Bacteria

    Directory of Open Access Journals (Sweden)

    Carly R. Muletz-Wolz

    2017-08-01

    Full Text Available Symbiotic bacteria may dampen the impacts of infectious diseases on hosts by inhibiting pathogen growth. However, our understanding of the generality of pathogen inhibition by different bacterial taxa across pathogen genotypes and environmental conditions is limited. Bacterial inhibitory properties are of particular interest for the amphibian-killing fungal pathogens (Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, for which probiotic applications as conservation strategies have been proposed. We quantified the inhibition strength of five putatively B. dendrobatidis-inhibitory bacteria isolated from woodland salamander skin against six Batrachochytrium genotypes at two temperatures (12 and 18°C. We selected six genotypes from across the Batrachochytrium phylogeny: B. salamandrivorans, B. dendrobatidis-Brazil and four genotypes of the B. dendrobatidis Global Panzootic Lineage (GPL1: JEL647, JEL404; GPL2: SRS810, JEL423. We performed 96-well plate challenge assays in a full factorial design. We detected a Batrachochytrium genotype by temperature interaction on bacterial inhibition score for all bacteria, indicating that bacteria vary in ability to inhibit Batrachochytrium depending on pathogen genotype and temperature. Acinetobacter rhizosphaerae moderately inhibited B. salamandrivorans at both temperatures (μ = 46–53%, but not any B. dendrobatidis genotypes. Chryseobacterium sp. inhibited three Batrachochytrium genotypes at both temperatures (μ = 5–71%. Pseudomonas sp. strain 1 inhibited all Batrachochytrium genotypes at 12°C and four Batrachochytrium genotypes at 18°C (μ = 5–100%. Pseudomonas sp. strain 2 and Stenotrophomonas sp. moderately to strongly inhibited all six Batrachochytrium genotypes at both temperatures (μ = 57–100%. All bacteria consistently inhibited B. salamandrivorans. Using cluster analysis of inhibition scores, we found that more closely related Batrachochytrium genotypes grouped together

  19. Ticlopidine in Its Prodrug Form Is a Selective Inhibitor of Human NTPDase1

    Directory of Open Access Journals (Sweden)

    Joanna Lecka

    2014-01-01

    Full Text Available Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, like other ectonucleotidases, controls extracellular nucleotide levels and consequently their (pathophysiological responses such as in thrombosis, inflammation, and cancer. Selective NTPDase1 inhibitors would therefore be very useful. We previously observed that ticlopidine in its prodrug form, which does not affect P2 receptor activity, inhibited the recombinant form of human NTPDase1 (Ki=14 μM. Here we tested whether ticlopidine can be used as a selective inhibitor of NTPDase1. We confirmed that ticlopidine inhibits NTPDase1 in different forms and in different assays. The ADPase activity of intact HUVEC as well as of COS-7 cells transfected with human NTPDase1 was strongly inhibited by 100 µM ticlopidine, 99 and 86%, respectively. Ticlopidine (100 µM completely inhibited the ATPase activity of NTPDase1 in situ as shown by enzyme histochemistry with human liver and pancreas sections. Ticlopidine also inhibited the activity of rat and mouse NTPDase1 and of potato apyrase. At 100 µM ticlopidine did not affect the activity of human NTPDase2, NTPDase3, and NTPDase8, nor of NPP1 and NPP3. Weak inhibition (10–20% of NTPDase3 and -8 was observed at 1 mM ticlopidine. These results show that ticlopidine is a specific inhibitor of NTPDase1 that can be used in enzymatic and histochemistry assays.

  20. Interferon-γ Inhibits Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Bethany A Rhein

    Full Text Available Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  1. Interferon-γ Inhibits Ebola Virus Infection.

    Science.gov (United States)

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  2. Structure-activity relationship of 9-methylstreptimidone, a compound that induces apoptosis selectively in adult T-cell leukemia cells.

    Science.gov (United States)

    Takeiri, Masatoshi; Ota, Eisuke; Nishiyama, Shigeru; Kiyota, Hiromasa; Umezawa, Kazuo

    2012-01-01

    We previously reported that 9-methylstreptimidone, a piperidine compound isolated from a culture filtrate of Streptomyces, induces apoptosis selectively in adult T-cell leukemia cells. It was screened for a compound that inhibits LPS-induced NF-kappaB and NO production in mouse macrophages. However, 9-methystreptimidone is poorly obtained from the producing microorganism and difficult to synthesize. Therefore, in the present research, we studied the structure-activity relationship to look for new selective inhibitors. We found that the structure of the unsaturated hydrophobic portion of 9-methylstreptimidone was essential for the inhibition of LPS-induced NO production. Among the 9-methylstreptimidone-related compounds tested, (+/-)-4,alpha-diepi-streptovitacin A inhibited NO production in macrophage-like cells as potently as 9-methylstreptimidone and without cellular toxicity. Moreover, this compound selectively induced apoptosis in adult T-cell leukemia MT-1 cells.

  3. Selectivity Profiling and Biological Activity of Novel β-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors.

    Directory of Open Access Journals (Sweden)

    Katharina Rüben

    Full Text Available DYRK1A is a pleiotropic protein kinase with diverse functions in cellular regulation, including cell cycle control, neuronal differentiation, and synaptic transmission. Enhanced activity and overexpression of DYRK1A have been linked to altered brain development and function in Down syndrome and neurodegenerative diseases such as Alzheimer's disease. The β-carboline alkaloid harmine is a high affinity inhibitor of DYRK1A but suffers from the drawback of inhibiting monoamine oxidase A (MAO-A with even higher potency. Here we characterized a series of novel harmine analogs with minimal or absent MAO-A inhibitory activity. We identified several inhibitors with submicromolar potencies for DYRK1A and selectivity for DYRK1A and DYRK1B over the related kinases DYRK2 and HIPK2. An optimized inhibitor, AnnH75, inhibited CLK1, CLK4, and haspin/GSG2 as the only off-targets in a panel of 300 protein kinases. In cellular assays, AnnH75 dose-dependently reduced the phosphorylation of three known DYRK1A substrates (SF3B1, SEPT4, and tau without negative effects on cell viability. AnnH75 inhibited the cotranslational tyrosine autophosphorylation of DYRK1A and threonine phosphorylation of an exogenous substrate protein with similar potency. In conclusion, we have characterized an optimized β-carboline inhibitor as a highly selective chemical probe that complies with desirable properties of drug-like molecules and is suitable to interrogate the function of DYRK1A in biological studies.

  4. Selective serotonergic excitation of callosal projection neurons

    Directory of Open Access Journals (Sweden)

    Daniel eAvesar

    2012-03-01

    Full Text Available Serotonin (5-HT acting as a neurotransmitter in the cerebral cortex is critical for cognitive function, yet how 5-HT regulates information processing in cortical circuits is not well understood. We tested the serotonergic responsiveness of layer 5 pyramidal neurons (L5PNs of the mouse medial prefrontal cortex (mPFC, and found 3 distinct response types: long-lasting 5-HT1A (1A receptor-dependent inhibitory responses (84% of L5PNs, 5-HT2A (2A receptor-dependent excitatory responses (9%, and biphasic responses in which 2A-dependent excitation followed brief inhibition (5%. Relative to 5-HT-inhibited neurons, those excited by 5-HT had physiological properties characteristic of callosal/commissural (COM neurons that project to the contralateral cortex. We tested whether serotonergic responses in cortical pyramidal neurons are correlated with their axonal projection pattern using retrograde fluorescent labeling of COM and corticopontine-projecting (CPn neurons. 5-HT generated excitatory or biphasic responses in all 5-HT-responsive layer 5 COM neurons. Conversely, CPn neurons were universally inhibited by 5-HT. Serotonergic excitation of COM neurons was blocked by the 2A antagonist MDL 11939, while serotonergic inhibition of CPn neurons was blocked by the 1A antagonist WAY 100635, confirming a role for these two receptor subtypes in regulating pyramidal neuron activity. Selective serotonergic excitation of COM neurons was not layer-specific, as COM neurons in layer 2/3 were also selectively excited by 5-HT relative to their non-labeled pyramidal neuron neighbors. Because neocortical 2A receptors are implicated in the etiology and pathophysiology of schizophrenia, we propose that COM neurons may represent a novel cellular target for intervention in psychiatric disease.

  5. Phenyl Ring-Substituted Lobelane Analogs: Inhibition of [3H]Dopamine Uptake at the Vesicular Monoamine Transporter-2

    OpenAIRE

    Nickell, Justin R.; Zheng, Guangrong; Deaciuc, Agripina G.; Crooks, Peter A.; Dwoskin, Linda P.

    2011-01-01

    Lobeline attenuates the behavioral effects of methamphetamine via inhibition of the vesicular monoamine transporter (VMAT2). To increase selectivity for VMAT2, chemically defunctionalized lobeline analogs, including lobelane, were designed to eliminate nicotinic acetylcholine receptor affinity. The current study evaluated the ability of lobelane analogs to inhibit [3H]dihydrotetrabenazine (DTBZ) binding to VMAT2 and [3H]dopamine (DA) uptake into isolated synaptic vesicles and determined the m...

  6. Developing selective histone deacetylases (HDACs) inhibitors through ebselen and analogs.

    Science.gov (United States)

    Wang, Yuren; Wallach, Jason; Duane, Stephanie; Wang, Yuan; Wu, Jianghong; Wang, Jeffrey; Adejare, Adeboye; Ma, Haiching

    2017-01-01

    Histone deacetylases (HDACs) are key regulators of gene expression in cells and have been investigated as important therapeutic targets for cancer and other diseases. Different subtypes of HDACs appear to play disparate roles in the cells and are associated with specific diseases. Therefore, substantial effort has been made to develop subtype-selective HDAC inhibitors. In an effort to discover existing scaffolds with HDAC inhibitory activity, we screened a drug library approved by the US Food and Drug Administration and a National Institutes of Health Clinical Collection compound library in HDAC enzymatic assays. Ebselen, a clinical safe compound, was identified as a weak inhibitor of several HDACs, including HDAC1, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, and HDAC9 with half maximal inhibitory concentrations approximately single digit of µM. Two ebselen analogs, ebselen oxide and ebsulfur (a diselenide analog of ebselen), also inhibited these HDACs, however with improved potencies on HDAC8. Benzisothiazol, the core structure of ebsulfur, specifically inhibited HDAC6 at a single digit of µM but had no inhibition on other HDACs. Further efforts on structure-activity relationship based on the core structure of ebsulfur led to the discovery of a novel class of potent and selective HDAC6 inhibitors with RBC-2008 as the lead compound with single-digit nM potency. This class of histone deacetylase inhibitor features a novel pharmacophore with an ebsulfur scaffold selectively targeting HDAC6. Consistent with its inhibition on HDAC6, RBC-2008 significantly increased the acetylation levels of α-tubulin in PC-3 cells. Furthermore, treatment with these compounds led to cell death of multiple tumor cell lines in a dose-dependent manner. These results demonstrated that ebselen and ebsulfur analogs are inhibitors of HDACs, supporting further preclinical development of this class of compounds for potential therapeutic applications.

  7. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans.

    Science.gov (United States)

    Graham, Mark J; Lee, Richard G; Bell, Thomas A; Fu, Wuxia; Mullick, Adam E; Alexander, Veronica J; Singleton, Walter; Viney, Nick; Geary, Richard; Su, John; Baker, Brenda F; Burkey, Jennifer; Crooke, Stanley T; Crooke, Rosanne M

    2013-05-24

    Elevated plasma triglyceride levels have been recognized as a risk factor for the development of coronary heart disease. Apolipoprotein C-III (apoC-III) represents both an independent risk factor and a key regulatory factor of plasma triglyceride concentrations. Furthermore, elevated apoC-III levels have been associated with metabolic syndrome and type 2 diabetes mellitus. To date, no selective apoC-III therapeutic agent has been evaluated in the clinic. To test the hypothesis that selective inhibition of apoC-III with antisense drugs in preclinical models and in healthy volunteers would reduce plasma apoC-III and triglyceride levels. Rodent- and human-specific second-generation antisense oligonucleotides were identified and evaluated in preclinical models, including rats, mice, human apoC-III transgenic mice, and nonhuman primates. We demonstrated the selective reduction of both apoC-III and triglyceride in all preclinical pharmacological evaluations. We also showed that inhibition of apoC-III was well tolerated and not associated with increased liver triglyceride deposition or hepatotoxicity. A double-blind, placebo-controlled, phase I clinical study was performed in healthy subjects. Administration of the human apoC-III antisense drug resulted in dose-dependent reductions in plasma apoC-III, concomitant lowering of triglyceride levels, and produced no clinically meaningful signals in the safety evaluations. Antisense inhibition of apoC-III in preclinical models and in a phase I clinical trial with healthy subjects produced potent, selective reductions in plasma apoC-III and triglyceride, 2 known risk factors for cardiovascular disease. This compelling pharmacological profile supports further clinical investigations in hypertriglyceridemic subjects.

  8. Synaptic Basis for Differential Orientation Selectivity between Complex and Simple Cells in Mouse Visual Cortex.

    Science.gov (United States)

    Li, Ya-tang; Liu, Bao-hua; Chou, Xiao-lin; Zhang, Li I; Tao, Huizhong W

    2015-08-05

    In the primary visual cortex (V1), orientation-selective neurons can be categorized into simple and complex cells primarily based on their receptive field (RF) structures. In mouse V1, although previous studies have examined the excitatory/inhibitory interplay underlying orientation selectivity (OS) of simple cells, the synaptic bases for that of complex cells have remained obscure. Here, by combining in vivo loose-patch and whole-cell recordings, we found that complex cells, identified by their overlapping on/off subfields, had significantly weaker OS than simple cells at both spiking and subthreshold membrane potential response levels. Voltage-clamp recordings further revealed that although excitatory inputs to complex and simple cells exhibited a similar degree of OS, inhibition in complex cells was more narrowly tuned than excitation, whereas in simple cells inhibition was more broadly tuned than excitation. The differential inhibitory tuning can primarily account for the difference in OS between complex and simple cells. Interestingly, the differential synaptic tuning correlated well with the spatial organization of synaptic input: the inhibitory visual RF in complex cells was more elongated in shape than its excitatory counterpart and also was more elongated than that in simple cells. Together, our results demonstrate that OS of complex and simple cells is differentially shaped by cortical inhibition based on its orientation tuning profile relative to excitation, which is contributed at least partially by the spatial organization of RFs of presynaptic inhibitory neurons. Simple and complex cells, two classes of principal neurons in the primary visual cortex (V1), are generally thought to be equally selective for orientation. In mouse V1, we report that complex cells, identified by their overlapping on/off subfields, has significantly weaker orientation selectivity (OS) than simple cells. This can be primarily attributed to the differential tuning selectivity

  9. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.; Szklarz, Marta; Knapp, Stefan; Tesmer, John J.G. [Michigan; (Oxford)

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.

  10. Comparison the Executive Functions of Inhibition and Problem Solving in Adolescents with and Without Substance Abuse

    Directory of Open Access Journals (Sweden)

    Tahereh masoomi mofrad

    2015-03-01

    Full Text Available Executive functions are self-regulated functions and show the ability to inhibition, self-changing, planning, organization, using the working memory, solving problems and targeting for homework and school activities. This study compares the executive functions of inhibition and problem solving in adolescents with and without substance abuse. In this causal-comparative study, 15 adolescents with substance abuse and 15 normal adolescents were selected which matched each other with the same age, sex and education. The research tools were Wisconsin Card, was used for assessing the inhibition executive functions, and Heppner and Petersen Questionnaires for problem solving. The results showed that there were statistically significant differences between groups between average score of inhibition executive functions and solving problem (except trend– avoid component. There were not statistically significant differences in the average score of inhibition executive functions and solving problem according to age, sex and education. It is concluded that the drug addicts are weaker than those without substance abuse based on the inhibition executive function and problem solving. These findings can be used for the prevention program.

  11. Class I HDAC inhibition is a novel pathway for regulating astrocytic apoE secretion.

    Science.gov (United States)

    Dresselhaus, Erica; Duerr, James M; Vincent, Fabien; Sylvain, Emily K; Beyna, Mercedes; Lanyon, Lorraine F; LaChapelle, Erik; Pettersson, Martin; Bales, Kelly R; Ramaswamy, Gayathri

    2018-01-01

    Despite the important role of apolipoprotein E (apoE) secretion from astrocytes in brain lipid metabolism and the strong association of apoE4, one of the human apoE isoforms, with sporadic and late onset forms of Alzheimer's disease (AD) little is known about the regulation of astrocytic apoE. Utilizing annotated chemical libraries and a phenotypic screening strategy that measured apoE secretion from a human astrocytoma cell line, inhibition of pan class I histone deacetylases (HDACs) was identified as a mechanism to increase apoE secretion. Knocking down select HDAC family members alone or in combination revealed that inhibition of the class I HDAC family was responsible for enhancing apoE secretion. Knocking down LXRα and LXRβ genes revealed that the increase in astrocytic apoE in response to HDAC inhibition occurred via an LXR-independent pathway. Collectively, these data suggest that pan class I HDAC inhibition is a novel pathway for regulating astrocytic apoE secretion.

  12. Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium.

    Science.gov (United States)

    Wrighton, David C; Muench, Stephen P; Lippiat, Jonathan D

    2015-09-01

    The Slo3 (KCa 5.1) channel is a major component of mammalian KSper (sperm potassium conductance) channels and inhibition of these channels by quinine and barium alters sperm motility. The aim of this investigation was to determine the mechanism by which these drugs inhibit Slo3 channels. Mouse (m) Slo3 (KCa 5.1) channels or mutant forms were expressed in Xenopus oocytes and currents recorded with 2-electrode voltage-clamp. Gain-of-function mSlo3 mutations were used to explore the state-dependence of the inhibition. The interaction between quinidine and mSlo3 channels was modelled by in silico docking. Several drugs known to block KSper also affected mSlo3 channels with similar levels of inhibition. The inhibition induced by extracellular barium was prevented by increasing the extracellular potassium concentration. R196Q and F304Y mutations in the mSlo3 voltage sensor and pore, respectively, both increased channel activity. The F304Y mutation did not alter the effects of barium, but increased the potency of inhibition by both quinine and quinidine approximately 10-fold; this effect was not observed with the R196Q mutation. Block of mSlo3 channels by quinine, quinidine and barium is not state-dependent. Barium inhibits mSlo3 outside the cell by interacting with the selectivity filter, whereas quinine and quinidine act from the inside, by binding in a hydrophobic pocket formed by the S6 segment of each subunit. Furthermore, we propose that the Slo3 channel activation gate lies deep within the pore between F304 in the S6 segment and the selectivity filter. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  13. A study of antioxidant activity, enzymatic inhibition and in vitro toxicity of selected traditional sudanese plants with anti-diabetic potential

    Science.gov (United States)

    2014-01-01

    Background Diabetes mellitus is a chronic metabolic disease with life-threatening complications. Despite the enormous progress in conventional medicine and pharmaceutical industry, herbal-based medicines are still a common practice for the treatment of diabetes. This study evaluated ethanolic and aqueous extracts of selected Sudanese plants that are traditionally used to treat diabetes. Methods Extraction was carried out according to method described by Sukhdev et. al. and the extracts were tested for their glycogen phosphorylase inhibition, Brine shrimp lethality and antioxidant activity using (DPPH) radical scavenging activity and iron chelating activity. Extracts prepared from the leaves of Ambrosia maritima, fruits of Foeniculum vulgare and Ammi visnaga, exudates of Acacia Senegal, and seeds of Sesamum indicum and Nigella sativa. Results Nigella sativa ethanolic extract showed no toxicity on Brine shrimp Lethality Test, while its aqueous extract was toxic. All other extracts were highly toxic and ethanolic extracts of Foeniculum vulgare exhibited the highest toxicity. All plant extracts with exception of Acacia senegal revealed significant antioxidant activity in DPPH free radical scavenging assay. Conclusions These results highly agree with the ethnobotanical uses of these plants as antidiabetic. This study endorses further studies on plants investigated, to determine their potential for type 2 diabetes management. Moreover isolation and identification of active compounds are highly recommended. PMID:24885334

  14. Estrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon.

    OpenAIRE

    Alzamora, Rodrigo; O'Mahony, Fiona; Harvey, Brian J

    2011-01-01

    Excessive Cl(-) secretion is the driving force for secretory diarrhea. 17β-Estradiol has been shown to inhibit Cl(-) secretion in rat distal colon through a nongenomic pathway. We examined whether 17β-estradiol inhibits Cl(-) secretion in an animal model of secretory diarrhea and the downstream effectors involved. The effect of 17β-estradiol on cholera toxin and heat-stable enterotoxin induced Cl(-) secretion in rat colonic mucosal sheets was studied by current-voltage clamping. Selective per...

  15. Glycine-containing selective medium for isolation of Legionellaceae from environmental specimens.

    OpenAIRE

    Wadowsky, R M; Yee, R B

    1981-01-01

    Glycine, at a final concentration of 0.3%, has been shown to be an excellent selective agent for the isolation of Legionellaceae. Stock cultures of Legionella pneumophila were not inhibited on buffered charcoal-yeast extract agar containing the amino acid. Among the other Legionellaceae tested, only one of two strains of L. dumoffii and two of six strains of L. micdadei were appreciably inhibited. This medium permitted the isolation of L. pneumophila from environmental specimens with marked i...

  16. GABA-A Receptors Mediate Tonic Inhibition and Neurosteroid Sensitivity in the Brain.

    Science.gov (United States)

    Reddy, Doodipala Samba

    2018-01-01

    Neurosteroids like allopregnanolone (AP) are positive allosteric modulators of synaptic and extrasynaptic GABA-A receptors. AP and related neurosteroids exhibit a greater potency for δ-containing extrasynaptic receptors. The δGABA-A receptors, which are expressed extrasynaptically in the dentate gyrus and other regions, contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. Levels of endogenous neurosteroids fluctuate with ovarian cycle. Natural and synthetic neurosteroids maximally potentiate tonic inhibition in the hippocampus and provide robust protection against a variety of limbic seizures and status epilepticus. Recently, a consensus neurosteroid pharmacophore model has been proposed at extrasynaptic δGABA-A receptors based on structure-activity relationship for functional activation of tonic currents and seizure protection. Aside from anticonvulsant actions, neurosteroids have been found to be powerful anxiolytic and anesthetic agents. Neurosteroids and Zn 2+ have preferential affinity for δ-containing receptors. Thus, Zn 2+ can prevent neurosteroid activation of extrasynaptic δGABA-A receptor-mediated tonic inhibition. Recently, we demonstrated that Zn 2+ selectively inhibits extrasynaptic δGABA-A receptors and thereby fully prevents AP activation of tonic inhibition and seizure protection. We confirmed that neurosteroids exhibit greater sensitivity at extrasynaptic δGABA-A receptors. Overall, extrasynaptic GABA-A receptors are primary mediators of tonic inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurological disorders. © 2018 Elsevier Inc. All rights reserved.

  17. INHIBITION IN SPEAKING PERFORMANCE

    OpenAIRE

    Humaera, Isna

    2015-01-01

    The most common problem encountered by the learner in the languageacquisition process is learner inhibition. Inhibition refers to a temperamentaltendency to display wariness, fearfulness, or restrain in response tounfamiliar people, objects, and situations. There are some factors that causeinhibition, such as lack of motivation, shyness, self-confidence, self-esteem,and language ego. There are also levels of inhibition, it refers to kinds ofinhibition and caused of inhibition itself. Teacher ...

  18. Inhibition of cisplatin-induced vomiting by selective 5-hydroxytryptamine M-receptor antagonism.

    OpenAIRE

    Miner, W. D.; Sanger, G. J.

    1986-01-01

    MDL 72222, the selective 5-hydroxytryptamine (5-HT) M-receptor antagonist, prevented or reduced cisplatin-induced emesis in ferrets. It is suggested that cisplatin-induced, and possibly other cytotoxic drug-induced vomiting may involve a 5-HT M-receptor mechanism.

  19. Noncompetitive inhibition of indolethylamine-N-methyltransferase by N,N-dimethyltryptamine and N,N-dimethylaminopropyltryptamine.

    Science.gov (United States)

    Chu, Uyen B; Vorperian, Sevahn K; Satyshur, Kenneth; Eickstaedt, Kelsey; Cozzi, Nicholas V; Mavlyutov, Timur; Hajipour, Abdol R; Ruoho, Arnold E

    2014-05-13

    Indolethylamine-N-methyltransferase (INMT) is a Class 1 transmethylation enzyme known for its production of N,N-dimethyltryptamine (DMT), a hallucinogen with affinity for various serotonergic, adrenergic, histaminergic, dopaminergic, and sigma-1 receptors. DMT is produced via the action of INMT on the endogenous substrates tryptamine and S-adenosyl-l-methionine (SAM). The biological, biochemical, and selective small molecule regulation of INMT enzyme activity remain largely unknown. Kinetic mechanisms for inhibition of rabbit lung INMT (rabINMT) by the product, DMT, and by a new novel tryptamine derivative were determined. After Michaelis-Menten and Lineweaver-Burk analyses had been applied to study inhibition, DMT was found to be a mixed competitive and noncompetitive inhibitor when measured against tryptamine. The novel tryptamine derivative, N-[2-(1H-indol-3-yl)ethyl]-N',N'-dimethylpropane-1,3-diamine (propyl dimethyl amino tryptamine or PDAT), was shown to inhibit rabINMT by a pure noncompetitive mechanism when measured against tryptamine with a Ki of 84 μM. No inhibition by PDAT was observed at 2 mM when it was tested against structurally similar Class 1 methyltransferases, such as human phenylethanolamine-N-methyltransferase (hPNMT) and human nicotinamide-N-methyltransferase (hNNMT), indicating selectivity for INMT. The demonstration of noncompetitive mechanisms for INMT inhibition implies the presence of an inhibitory allosteric site. In silico analyses using the computer modeling software Autodock and the rabINMT sequence threaded onto the human INMT (hINMT) structure (Protein Data Bank entry 2A14 ) identified an N-terminal helix-loop-helix non-active site binding region of the enzyme. The energies for binding of DMT and PDAT to this region of rabINMT, as determined by Autodock, were -6.34 and -7.58 kcal/mol, respectively. Assessment of the allosteric control of INMT may illuminate new biochemical pathway(s) underlying the biology of INMT.

  20. Antagonistic Activity of Lactobacillus reuteri Strains on the Adhesion Characteristics of Selected Pathogens.

    Science.gov (United States)

    Singh, Tejinder P; Kaur, Gurpreet; Kapila, Suman; Malik, Ravinder K

    2017-01-01

    Adhesion ability of probiotics is the key factor that decides their colonization in the gastrointestinal tract and potential to inhibit pathogens. Therefore, adhesion ability can be considered as a key determinant for probiotic efficacy. Presents study documents the antagonistic activity of viable/untreated, Lithium chloride (LiCl) treated or heat-killed forms of eight probiotic Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. All strains investigated were able to adhere to Caco-2 cells. L. reuteri strains tested were able to inhibit and displace ( P strain L. reuteri LR6 showed the strongest adhesion and pathogen inhibition ability among the eight L. reuteri strains tested. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting the involvement of various mechanisms. The adhesion and antagonistic potential of the probiotic strains were significantly decreased upon exposure to 5 M LiCl, showing that surface molecules, proteinaceous in nature, are involved. The heat-killed forms of the probiotic L. reuteri strains also inhibited the attachment of selected pathogens to Caco-2 cells. In conclusion, in vitro assays showed that L. reuteri strains, as viable or heat-killed forms, are adherent to Caco-2 cells and are highly antagonistic to pathogens tested in which surface associated proteins play an important role.

  1. Stressing the ubiquitin-proteasome system without 20S proteolytic inhibition selectively kills cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Ravi K Anchoori

    Full Text Available Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate, and for specific signaling pathways, notably HPV E6-targeted degradation of p53 and PDZ proteins. Natural compounds with antioxidant properties including flavonoids and triterpenoids hold promise as anticancer agents by interfering with ubiquitin-dependent protein degradation. An increasing body of evidence indicates that their α-β unsaturated carbonyl system is the molecular determinant for inhibition of ubiquitin-mediated protein degradation up-stream of the catalytic sites of the 20S proteasome. Herein we report the identification and characterization of a new class of chalcone-based, potent and cell permeable chemical inhibitors of ubiquitin-dependent protein degradation, and a lead compound RAMB1. RAMB1 inhibits ubiquitin-dependent protein degradation without compromising the catalytic activities of the 20S proteasome, a mechanism distinct from that of Bortezomib. Treatment of cervical cancer cells with RAMB1 triggers unfolded protein responses, including aggresome formation and Hsp90 stabilization, and increases p53 steady state levels. RAMB1 treatment results in activation of lysosomal-dependent degradation pathways as a mechanism to compensate for increasing levels of poly-ubiquitin enriched toxic aggregates. Importantly, RAMB1 synergistically triggers cell death of cervical cancer cells when combined with the lysosome inhibitor Chloroquine.

  2. Cold injury, blood-brain barrier changes, and leukotriene synthesis: Inhibition by phenidone

    International Nuclear Information System (INIS)

    Robichaud, L.J.; Marcoux, F.W.

    1990-01-01

    Transcranial cold injury in rats and guinea pigs induced cerebral extravasation of albumin labeled with Evans blue dye or 125 I, respective indicators of the area and amount of blood-brain barrier (BBB) disruption. Radioimmunoassay of brain extracts showed that cold injury induced leukotriene (LT)C4 in rat and guinea pig brains 15 min after injury. In guinea pigs, the LT synthesis inhibitor phenidone (30 mg/kg, i.p.) completely blocked cold-induced LTC4 in brain. Phenidone (30 and 100 mg/kg) also inhibited cerebral tissue accumulation of 125 I-albumin and dye in rats and guinea pigs. Phenidone is reported to show antioxidant properties and selective lipoxygenase inhibition of arachidonic acid metabolism compared to cyclooxygenase inhibitors, meclofenamate sodium, and other nonsteroidal anti-inflammatory agents. Since several oxygen and hydroxyl radical scavengers and the cyclooxygenase inhibitor, meclofenamate sodium, did not inhibit protein extravasation, the findings support a role for LT as a mediator of cold-induced changes in BBB permeability in rats and guinea pigs and suggest that the inhibitory effects of phenidone on BBB permeability may be due to inhibition of LT production

  3. Inhibition of lactation.

    Science.gov (United States)

    Llewellyn-Jones, D

    1975-01-01

    The mechanism and hormonal regulation of lactation is explained and illustrated with a schematic representation. Circulating estrogen above a critical amount seems to be the inhibitory factor controlling lactation during pregnancy. Once delivery occurs, the level of estrogen falls, that of prolactin rises, and lactation begins. Nonsuckling can be used to inhibit lactation. Estrogens can also be used to inhibit lactation more quickly and with less pain. The reported association between estrogens and puerperal thromboembolism cannot be considered conclusive due to defects in the reporting studies. There is no reason not to use estrogens in lactation inhibition except for women over 35 who experienced a surgical delivery. Alternative therapy is available for these women. The recently-developed drug, brom-ergocryptine, may replace other methods of lactation inhibition.

  4. Non-selective beta-blockers may reduce risk of hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Thiele, Maja; Albillos, Agustín; Abazi, Rozeta

    2015-01-01

    BACKGROUND & AIMS: Non-selective beta-blockers (NSBB) are used in patients with cirrhosis and oesophageal varices. Experimental data suggest that NSBB inhibit angiogenesis and reduce bacterial translocation, which may prevent hepatocellular carcinoma (HCC). We therefore assessed the effect of NSBB...

  5. Discovery of PF-04620110, a Potent, Selective, and Orally Bioavailable Inhibitor of DGAT-1.

    Science.gov (United States)

    Dow, Robert L; Li, Jian-Cheng; Pence, Michael P; Gibbs, E Michael; LaPerle, Jennifer L; Litchfield, John; Piotrowski, David W; Munchhof, Michael J; Manion, Tara B; Zavadoski, William J; Walker, Gregory S; McPherson, R Kirk; Tapley, Susan; Sugarman, Eliot; Guzman-Perez, Angel; DaSilva-Jardine, Paul

    2011-05-12

    Acyl-CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final committed step in the biosynthesis of triglycerides. DGAT-1 knockout mice have been shown to be resistant to diet-induced obesity and have increased insulin sensitivity. Thus, inhibition of DGAT-1 may represent an attractive target for the treatment of obesity or type II diabetes. Herein, we report the discovery and characterization of a potent and selective DGAT-1 inhibitor PF-04620110 (3). Compound 3 inhibits DGAT-1 with an IC50 of 19 nM and shows high selectivity versus a broad panel of off-target pharmacologic end points. In vivo DGAT-1 inhibition has been demonstrated through reduction of plasma triglyceride levels in rodents at doses of ≥0.1 mg/kg following a lipid challenge. On the basis of this pharmacologic and pharmacokinetic profile, compound 3 has been advanced to human clinical studies.

  6. A novel selective prostaglandin E2 synthesis inhibitor relieves pyrexia and arthritis in Guinea pigs inflammatory models

    Directory of Open Access Journals (Sweden)

    Ryusuke Sugita

    2016-02-01

    Full Text Available Prostaglandin E2 (PGE2, one of the terminal products in the cyclooxygenase pathway, plays an important role in various inflammatory responses. To determine whether selective inhibition of PGE2 may relieve these inflammatory symptoms, we synthesized a selective PGE2 synthesis inhibitor, compound A [1-(6-fluoro-5,7-dimethyl-1,3-benzothiazol-2-yl-N-[(1S,2R-2-(hydroxymethylcyclohexyl]piperidine-4-carboxamide], then investigated the effects on pyrexia, arthritis and inflammatory pain in guinea pigs. In LPS-stimulated guinea pig macrophages, compound A selectively inhibited inducible PGE2 biosynthesis in a dose-dependent manner whereas enhanced the formation of thromboxane B2 (TXB2. Compound A suppressed yeast-evoked PGE2 production selectively and enhanced the production of TXB2 and 6-keto PGF1α in vivo. In addition, compound A relieved yeast-induced pyrexia and also suppressed paw swelling in an adjuvant-induced arthritis model. The effect on gastrointestinal (GI ulcer formation was also evaluated and compound A showed a lower GI adverse effect than indomethacin. However, compound A failed to relieve yeast-induced thermal hyperalgesia. These results suggest that selective inhibition of PGE2 synthesis may have anti-pyretic and anti-inflammatory properties without GI side effect, but lack the analgesic efficacy.

  7. An Ectosteric Inhibitor of Cathepsin K Inhibits Bone Resorption in Ovariectomized Mice

    DEFF Research Database (Denmark)

    Panwar, Preety; Xue, Liming; Søe, Kent

    2017-01-01

    The potent cathepsin K (CatK) inhibitor, Tanshinone IIA sulfonic sodium (T06), was tested for its in vitro and in vivo antiresorptive activities. T06 binds in an ectosteric site of CatK remote from its active site and selectively inhibits collagen degradation with an IC50 value of 2.7±0.2μM (CatK...

  8. Effective Inhibition of Bone Morphogenetic Protein Function by Highly Specific Llama-Derived Antibodies.

    Science.gov (United States)

    Calpe, Silvia; Wagner, Koen; El Khattabi, Mohamed; Rutten, Lucy; Zimberlin, Cheryl; Dolk, Edward; Verrips, C Theo; Medema, Jan Paul; Spits, Hergen; Krishnadath, Kausilia K

    2015-11-01

    Bone morphogenetic proteins (BMP) have important but distinct roles in tissue homeostasis and disease, including carcinogenesis and tumor progression. A large number of BMP inhibitors are available to study BMP function; however, as most of these antagonists are promiscuous, evaluating specific effects of individual BMPs is not feasible. Because the oncogenic role of the different BMPs varies for each neoplasm, highly selective BMP inhibitors are required. Here, we describe the generation of three types of llama-derived heavy chain variable domains (VHH) that selectively bind to either BMP4, to BMP2 and 4, or to BMP2, 4, 5, and 6. These generated VHHs have high affinity to their targets and are able to inhibit BMP signaling. Epitope binning and docking modeling have shed light into the basis for their BMP specificity. As opposed to the wide structural reach of natural inhibitors, these small molecules target the grooves and pockets of BMPs involved in receptor binding. In organoid experiments, specific inhibition of BMP4 does not affect the activation of normal stem cells. Furthermore, in vitro inhibition of cancer-derived BMP4 noncanonical signals results in an increase of chemosensitivity in a colorectal cancer cell line. Therefore, because of their high specificity and low off-target effects, these VHHs could represent a therapeutic alternative for BMP4(+) malignancies. ©2015 American Association for Cancer Research.

  9. Antibacterial and antagonistic activity of selected traditional ...

    African Journals Online (AJOL)

    S.pneumonia was found to be the most susceptible bacteria for the methanol extract of the root of Ricinus communis with inhibition zones of 20mm and MIC of 25 mg/mL. However; S.tphyrium was the most resistant to all extracts of the selected plants with no inh bition zone. The methanol extracts of all plants were most ...

  10. Structural Basis for Selective Small Molecule Kinase Inhibition of Activated c-Met

    Energy Technology Data Exchange (ETDEWEB)

    Rickert, Keith W.; Patel, Sangita B.; Allison, Timothy J.; Byrne, Noel J.; Darke, Paul L.; Ford, Rachael E.; Guerin, David J.; Hall, Dawn L.; Kornienko, Maria; Lu, Jun; Munshi, Sanjeev K.; Reid, John C.; Shipman, Jennifer M.; Stanton, Elizabeth F.; Wilson, Kevin J.; Young, Jonathon R.; Soisson, Stephen M.; Lumb, Kevin J. (Merck)

    2012-03-15

    The receptor tyrosine kinase c-Met is implicated in oncogenesis and is the target for several small molecule and biologic agents in clinical trials for the treatment of cancer. Binding of the hepatocyte growth factor to the cell surface receptor of c-Met induces activation via autophosphorylation of the kinase domain. Here we describe the structural basis of c-Met activation upon autophosphorylation and the selective small molecule inhibiton of autophosphorylated c-Met. MK-2461 is a potent c-Met inhibitor that is selective for the phosphorylated state of the enzyme. Compound 1 is an MK-2461 analog with a 20-fold enthalpy-driven preference for the autophosphorylated over unphosphorylated c-Met kinase domain. The crystal structure of the unbound kinase domain phosphorylated at Tyr-1234 and Tyr-1235 shows that activation loop phosphorylation leads to the ejection and disorder of the activation loop and rearrangement of helix {alpha}C and the G loop to generate a viable active site. Helix {alpha}C adopts a orientation different from that seen in activation loop mutants. The crystal structure of the complex formed by the autophosphorylated c-Met kinase domain and compound 1 reveals a significant induced fit conformational change of the G loop and ordering of the activation loop, explaining the selectivity of compound 1 for the autophosphorylated state. The results highlight the role of structural plasticity within the kinase domain in imparting the specificity of ligand binding and provide the framework for structure-guided design of activated c-Met inhibitors.

  11. Cerebral monoamine oxidase A inhibition in tobacco smokers confirmed with PET and [11C]Befloxatone

    International Nuclear Information System (INIS)

    Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch.; Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch.; Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch.; Berlin, I.; Gregoire, M.C.; Bottlaender, M.; Roumenov, D.; Dolle, F.; Bourgeois, S.; Artiges, E.; Trichard, Ch.

    2009-01-01

    The inhibition of cerebral monoamine oxidases (MAOs) by cigarette smoke components could participate to the tobacco addiction. However, the actual extent of this inhibition in vivo in smokers is still poorly known. We investigated cerebral MAO-A availability in 7 tobacco-dependent subjects and 6 healthy nonsmokers, using positron emission tomography (PET) and the MAO-A selective radioligand [ 11 C]befloxatone. In comparison to nonsmokers, smokers showed a significant overall reduction of [ 11 C]befloxatone binding potential (BP) in cortical areas (average reduction, -60%) and a similar trend in caudate and thalamus (-40%). Our findings confirm a widespread inhibition of cerebral MAO-A in smokers. This mechanism may contribute to tobacco addiction and for a possible mood-modulating effect of tobacco. (authors)

  12. Application of two-dimensional binary fingerprinting methods for the design of selective Tankyrase I inhibitors.

    Science.gov (United States)

    Muddukrishna, B S; Pai, Vasudev; Lobo, Richard; Pai, Aravinda

    2017-11-22

    In the present study, five important binary fingerprinting techniques were used to model novel flavones for the selective inhibition of Tankyrase I. From the fingerprints used: the fingerprint atom pairs resulted in a statistically significant 2D QSAR model using a kernel-based partial least square regression method. This model indicates that the presence of electron-donating groups positively contributes to activity, whereas the presence of electron withdrawing groups negatively contributes to activity. This model could be used to develop more potent as well as selective analogues for the inhibition of Tankyrase I. Schematic representation of 2D QSAR work flow.

  13. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    Science.gov (United States)

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  14. HIPdb: a database of experimentally validated HIV inhibiting peptides.

    Science.gov (United States)

    Qureshi, Abid; Thakur, Nishant; Kumar, Manoj

    2013-01-01

    Besides antiretroviral drugs, peptides have also demonstrated potential to inhibit the Human immunodeficiency virus (HIV). For example, T20 has been discovered to effectively block the HIV entry and was approved by the FDA as a novel anti-HIV peptide (AHP). We have collated all experimental information on AHPs at a single platform. HIPdb is a manually curated database of experimentally verified HIV inhibiting peptides targeting various steps or proteins involved in the life cycle of HIV e.g. fusion, integration, reverse transcription etc. This database provides experimental information of 981 peptides. These are of varying length obtained from natural as well as synthetic sources and tested on different cell lines. Important fields included are peptide sequence, length, source, target, cell line, inhibition/IC(50), assay and reference. The database provides user friendly browse, search, sort and filter options. It also contains useful services like BLAST and 'Map' for alignment with user provided sequences. In addition, predicted structure and physicochemical properties of the peptides are also included. HIPdb database is freely available at http://crdd.osdd.net/servers/hipdb. Comprehensive information of this database will be helpful in selecting/designing effective anti-HIV peptides. Thus it may prove a useful resource to researchers for peptide based therapeutics development.

  15. Dissociating the influence of response selection and task anticipation on corticospinal suppression during response preparation.

    Science.gov (United States)

    Duque, Julie; Labruna, Ludovica; Cazares, Christian; Ivry, Richard B

    2014-12-01

    Motor behavior requires selecting between potential actions. The role of inhibition in response selection has frequently been examined in tasks in which participants are engaged in some advance preparation prior to the presentation of an imperative signal. Under such conditions, inhibition could be related to processes associated with response selection, or to more general inhibitory processes that are engaged in high states of anticipation. In Experiment 1, we manipulated the degree of anticipatory preparation. Participants performed a choice reaction time task that required choosing between a movement of the left or right index finger, and used transcranial magnetic stimulation (TMS) to elicit motor evoked potentials (MEPs) in the left hand agonist. In high anticipation blocks, a non-informative cue (e.g., fixation marker) preceded the imperative; in low anticipation blocks, there was no cue and participants were required to divide their attention between two tasks to further reduce anticipation. MEPs were substantially reduced before the imperative signal in high anticipation blocks. In contrast, in low anticipation blocks, MEPs remained unchanged before the imperative signal but showed a marked suppression right after the onset of the imperative. This effect occurred regardless of whether the imperative had signalled a left or right hand response. After this initial inhibition, left MEPs increased when the left hand was selected and remained suppressed when the right hand was selected. We obtained similar results in Experiment 2 except that the persistent left MEP suppression when the left hand was not selected was attenuated when the alternative response involved a non-homologous effector (right foot). These results indicate that, even in the absence of an anticipatory period, inhibitory mechanisms are engaged during response selection, possibly to prevent the occurrence of premature and inappropriate responses during a competitive selection process. Copyright

  16. Dissociating the Influence of Response Selection and Task Anticipation on Corticospinal Suppression During Response Preparation

    Science.gov (United States)

    Duque, Julie; Labruna, Ludovica; Cazares, Christian; Ivry, Richard B.

    2014-01-01

    Motor behavior requires selecting between potential actions. The role of inhibition in response selection has frequently been examined in tasks in which participants are engaged in some advance preparation prior to the presentation of an imperative signal. Under such conditions, inhibition could be related to processes associated with response selection, or to more general inhibitory processes that are engaged in high states of anticipation. In Experiment 1, we manipulated the degree of anticipatory preparation. Participants performed a choice reaction time task that required choosing between a movement of the left or right index finger, and used transcranial magnetic stimulation (TMS) to elicit motor evoked potentials (MEPs) in the left hand agonist. In high anticipation blocks, a non-informative cue (e.g., fixation marker) preceded the imperative; in low anticipation blocks, there was no cue and participants were required to divide their attention between two tasks to further reduce anticipation. MEPs were substantially reduced before the imperative signal in high anticipation blocks. In contrast, in low anticipation blocks, MEPs remained unchanged before the imperative signal but showed a marked suppression right after the onset of the imperative. This effect occurred regardless of whether the imperative had signaled a left or right hand response. After this initial inhibition, left MEPs increased when the left hand was selected and remained suppressed when the right hand was selected. We obtained similar results in Experiment 2 except that the persistent left MEP suppression when the left hand was not selected was attenuated when the alternative response involved a non-homologous effector (right foot). These results indicate that, even in the absence of an anticipatory period, inhibitory mechanisms are engaged during response selection, possibly to prevent the occurrence of premature and inappropriate responses during a competitive selection process. PMID

  17. Selected Tea and Tea Pomace Extracts Inhibit Intestinal α-Glucosidase Activity in Vitro and Postprandial Hyperglycemia in Vivo

    Directory of Open Access Journals (Sweden)

    Jungbae Oh

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a metabolic disorder characterized by postprandial hyperglycemia, which is an early defect of T2DM and thus a primary target for anti-diabetic drugs. A therapeutic approach is to inhibit intestinal α-glucosidase, the key enzyme for dietary carbohydrate digestion, resulting in delayed rate of glucose absorption. Although tea extracts have been reported to have anti-diabetic effects, the potential bioactivity of tea pomace, the main bio waste of tea beverage processing, is largely unknown. We evaluated the anti-diabetic effects of three selected tea water extracts (TWE and tea pomace extracts (TPE by determining the relative potency of extracts on rat intestinal α-glucosidase activity in vitro as well as hypoglycemic effects in vivo. Green, oolong, and black tea bags were extracted in hot water and the remaining tea pomace were dried and further extracted in 70% ethanol. The extracts were determined for intestinal rat α-glucosidases activity, radical scavenging activity, and total phenolic content. The postprandial glucose-lowering effects of TWE and TPE of green and black tea were assessed in male Sprague-Dawley (SD rats and compared to acarbose, a known pharmacological α-glucosidase inhibitor. The IC50 values of all three tea extracts against mammalian α-glucosidase were lower or similar in TPE groups than those of TWE groups. TWE and TPE of green tea exhibited the highest inhibitory effects against α-glucosidase activity with the IC50 of 2.04 ± 0.31 and 1.95 ± 0.37 mg/mL respectively. Among the specific enzymes tested, the IC50 values for TWE (0.16 ± 0.01 mg/mL and TPE (0.13 ± 0.01 mg/mL of green tea against sucrase activity were the lowest compared to those on maltase and glucoamylase activities. In the animal study, the blood glucose level at 30 min after oral intake (0.5 g/kg body wt of TPE and TWE of both green and black tea was significantly reduced compared to the control in sucrose-loaded SD

  18. The neural markers of an imminent failure of response inhibition.

    Science.gov (United States)

    Bengson, Jesse J; Mangun, George R; Mazaheri, Ali

    2012-01-16

    In his novel Ulysses, James Joyce wrote that mistakes are the "…portals of discovery". The present study investigated the pre-stimulus oscillatory EEG signatures of selective attention and motor preparation that predicted failures of overt response inhibition. We employed a trial-by-trial spatial cueing task using a go/no-go response paradigm with bilateral target stimuli. Subjects were required to covertly attend to the spatial location cued on each trial and respond to most of the number targets (go trials) at that location while withholding responses for one designated number (no-go trials). We analyzed the post-cue/pre-target spectral patterns comparing no-go trials in which a response occurred in error (False Alarms, FA) with trials in which participants correctly withheld a response (Correct Rejections, CR). We found that cue-induced occipital alpha (8-12 Hz) lateralization and inter-frequency anti-correlations between the motor beta (18-24 Hz) and pre-frontal theta (3-5 Hz) bands each independently predicted subsequent failures of response inhibition. Based on these findings, we infer that independent perceptual and motor mechanisms operate in parallel to contribute to failures of response inhibition. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Augmented growth inhibition of B16-BL6 melanoma by combined treatment with a selective matrix metalloproteinase inhibitor, MMI-166, and cytotoxic agents.

    Science.gov (United States)

    Hojo, Kanji; Maki, Hideo; Sawada, Takuko Yamada; Maekawa, Ryuji; Yoshioka, Takayuki

    2002-01-01

    MMI-166 is a selective matrix metalloproteinase (MMP) inhibitor. The purpose of this study was to evaluate the antitumor efficacy of the combined treatment of MMI-166 with paclitaxel or carboplatin. Mice bearing B16-BL6 melanoma were treated p.o. with MMI-166 from 1 day after tumor inoculation. The mice were administered i.v. with either paclitaxel or carboplatin at the maximum tolerated dose (MTD). MMI-166 monotherapy inhibited in vivo growth of the B16-BL6 tumor to an extent similar to that of paclitaxel or carboplatin monotherapy. When MMI-166 was combined with paclitaxel or carboplatin, the antitumor efficacy was significantly (p B16-BL6 tumor cells nor does it augment the cytotoxicity of paclitaxel or carboplatin. These results indicate that augmented antitumor activity of the combination treatment was not simply due to the augmentation of direct cytotoxic activity, but was rather an additive effect of the antitumor activities of different mechanisms. They suggest the effectiveness of a combination therapy of MMI-166 with paclitaxel or carboplatin in clinical therapy.

  20. BET Bromodomain Inhibition Releases the Mediator Complex from Select cis-Regulatory Elements.

    Science.gov (United States)

    Bhagwat, Anand S; Roe, Jae-Seok; Mok, Beverly Y L; Hohmann, Anja F; Shi, Junwei; Vakoc, Christopher R

    2016-04-19

    The bromodomain and extraterminal (BET) protein BRD4 can physically interact with the Mediator complex, but the relevance of this association to the therapeutic effects of BET inhibitors in cancer is unclear. Here, we show that BET inhibition causes a rapid release of Mediator from a subset of cis-regulatory elements in the genome of acute myeloid leukemia (AML) cells. These sites of Mediator eviction were highly correlated with transcriptional suppression of neighboring genes, which are enriched for targets of the transcription factor MYB and for functions related to leukemogenesis. A shRNA screen of Mediator in AML cells identified the MED12, MED13, MED23, and MED24 subunits as performing a similar regulatory function to BRD4 in this context, including a shared role in sustaining a block in myeloid maturation. These findings suggest that the interaction between BRD4 and Mediator has functional importance for gene-specific transcriptional activation and for AML maintenance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. GlcNAc-1-P-transferase–tunicamycin complex structure reveals basis for inhibition of N-glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jiho; Mashalidis, Ellene H.; Kuk, Alvin C. Y.; Yamamoto, Kazuki; Kaeser, Benjamin; Ichikawa, Satoshi; Lee, Seok-Yong

    2018-02-19

    N-linked glycosylation is a predominant post-translational modification of protein in eukaryotes, and its dysregulation is the etiology of several human disorders. The enzyme UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (GlcNAc-1-P-transferase or GPT) catalyzes the first and committed step of N-linked glycosylation in the endoplasmic reticulum membrane, and it is the target of the natural product tunicamycin. Tunicamycin has potent antibacterial activity, inhibiting the bacterial cell wall synthesis enzyme MraY, but its usefulness as an antibiotic is limited by off-target inhibition of human GPT. Our understanding of how tunicamycin inhibits N-linked glycosylation and efforts to selectively target MraY are hampered by a lack of structural information. Here we present crystal structures of human GPT in complex with tunicamycin. In conclusion, structural and functional analyses reveal the difference between GPT and MraY in their mechanisms of inhibition by tunicamycin. We demonstrate that this difference could be exploited to design MraY-specific inhibitors as potential antibiotics.

  2. Alkaloids from sponge, scaffolds for the inhibition of human immunodeficiency virus (hiv)

    KAUST Repository

    O'Rourke, Aubrie

    2016-05-06

    Anti-viral compounds with low cytotoxicity are identified from screening of products found in Red Sea sponges, including the sponge Stylissa carteri. The identified compounds can be brominated pyrrole-2- aminoimidazole alkaloids and derivatives thereof. Specific examples of identified compounds include oroidin, hymenialdisine, and debromohymenialdisine, as well as derivatives thereof. The compounds also can be useful scaffolds or pharmacores for further chemical modification and derivatization. Selected compounds, particularly oroidin, show selective anti-viral HIV-1 activity coupled with reduced cytotoxicity. The compounds can function as HIV reverse-transcriptase inhibitors, and molecular modeling can be used to confirm inhibition.

  3. Arisugacins A and B, novel and selective acetylcholinesterase inhibitors from Penicillium sp. FO-4259. I. Screening, taxonomy, fermentation, isolation and biological activity.

    Science.gov (United States)

    Kuno, F; Otoguro, K; Shiomi, K; Iwai, Y; Omura, S

    1996-08-01

    An in vitro screening method for selective acetylcholinesterase (AChE) inhibitors was established. Inhibitory activity of AChE and butyrylcholinesterase (BuChE) was measured and the culture broths of microorganisms that showed selective inhibition against AChE were characterized. By using this method, a strain producing the novel and selective inhibitors of AChE, arisugacins A and B, was picked out among over seven thousand microorganisms tested. Arisugacins were obtained as white powders from the culture broth together with three known compounds, territrems B and C and cyclopenin that also showed selective inhibition against AChE. Arisugacins and territrems are members of the meroterpenoid compounds. They showed potent inhibitory activities against AChE with IC50 values in range of 1.0 approximately 25.8 nM. Furthermore, they showed greater than 2,000-fold more potent inhibition against AChE than BuChE.

  4. Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability.

    Science.gov (United States)

    Rey-Mermet, Alodie; Gade, Miriam; Oberauer, Klaus

    2018-04-01

    Inhibition is often conceptualized as a unitary construct reflecting the ability to ignore and suppress irrelevant information. At the same time, it has been subdivided into inhibition of prepotent responses (i.e., the ability to stop dominant responses) and resistance to distracter interference (i.e., the ability to ignore distracting information). The present study investigated the unity and diversity of inhibition as a psychometric construct, and tested the hypothesis of an inhibition deficit in older age. We measured inhibition in young and old adults with 11 established laboratory tasks: antisaccade, stop-signal, color Stroop, number Stroop, arrow flanker, letter flanker, Simon, global-local, positive and negative compatibility tasks, and n-2 repetition costs in task switching. In both age groups, the inhibition measures from individual tasks had good reliabilities, but correlated only weakly among each other. Structural equation modeling identified a 2-factor model with factors for inhibition of prepotent responses and resistance to distracter interference. Older adults scored worse in the inhibition of prepotent response, but better in the resistance to distracter interference. However, the model had low explanatory power. Together, these findings call into question inhibition as a psychometric construct and the hypothesis of an inhibition deficit in older age. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Effective DNA Inhibitors of Cathepsin G by In Vitro Selection

    Science.gov (United States)

    Gatto, Barbara; Vianini, Elena; Lucatello, Lorena; Sissi, Claudia; Moltrasio, Danilo; Pescador, Rodolfo; Porta, Roberto; Palumbo, Manlio

    2008-01-01

    Cathepsin G (CatG) is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions. PMID:19325843

  6. Effective DNA Inhibitors of Cathepsin G by In Vitro Selection

    Directory of Open Access Journals (Sweden)

    Manlio Palumbo

    2008-06-01

    Full Text Available Cathepsin G (CatG is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions.

  7. Ebselen: Mechanisms of Glutamate Dehydrogenase and Glutaminase Enzyme Inhibition.

    Science.gov (United States)

    Yu, Yan; Jin, Yanhong; Zhou, Jie; Ruan, Haoqiang; Zhao, Han; Lu, Shiying; Zhang, Yue; Li, Di; Ji, Xiaoyun; Ruan, Benfang Helen

    2017-12-15

    Ebselen modulates target proteins through redox reactions with selenocysteine/cysteine residues, or through binding to the zinc finger domains. However, a recent contradiction in ebselen inhibition of kidney type glutaminase (KGA) stimulated our interest in investigating its inhibition mechanism with glutamate dehydrogenase (GDH), KGA, thioredoxin reductase (TrxR), and glutathione S-transferase. Fluorescein- or biotin-labeled ebselen derivatives were synthesized for mechanistic analyses. Biomolecular interaction analyses showed that only GDH, KGA, and TrxR proteins can bind to the ebselen derivative, and the binding to GDH and KGA could be competed off by glutamine or glutamate. From the gel shift assays, the fluorescein-labeled ebselen derivative could co-migrate with hexameric GDH and monomeric/dimeric TrxR in a dose-dependent manner; it also co-migrated with KGA but disrupted the tetrameric form of the KGA enzyme at a high compound concentration. Further proteomic analysis demonstrated that the ebselen derivative could cross-link with proteins through a specific cysteine at the active site of GDH and TrxR proteins, but for KGA protein, the binding site is at the N-terminal appendix domain outside of the catalytic domain, which might explain why ebselen is not a potent KGA enzyme inhibitor in functional assays. In conclusion, ebselen could inhibit enzyme activity by binding to the catalytic domain or disruption of the protein complex. In addition, ebselen is a relatively potent selective GDH inhibitor that might provide potential therapeutic opportunities for hyperinsulinism-hyperammonemia syndrome patients who have the mutational loss of GTP inhibition.

  8. Piperlongumine inhibits LMP1/MYC-dependent mouse B-lymphoma cells

    International Nuclear Information System (INIS)

    Han, Seong-Su; Tompkins, Van S.; Son, Dong-Ju; Kamberos, Natalie L.; Stunz, Laura L.; Halwani, Ahmad; Bishop, Gail A.; Janz, Siegfried

    2013-01-01

    Highlights: •Mouse model of human Burkitt lymphoma revealed cancer inhibition by PL. •Treatment with PL led to apoptosis of malignant but not normal B cells. •PL inhibited LMP1–NF-κB–Myc-dependent target genes including p21-encoding Cdkn1a. •PL holds promise for new interventions approaches to hematologic malignancies. -- Abstract: Piperlongumine (PL), isolated from the fruit of Long pepper, Piper longum, is a cancer-inhibiting compound that selectively kills tumor cells while sparing their normal counterparts. Here we evaluated the efficacy with which PL suppresses malignant B cells derived from a newly developed, double-transgenic mouse model of human endemic Burkitt lymphoma (BL), designated mCD40-LMP1/iMyc Eμ . PL inhibited tumor cell proliferation in a concentration-dependent manner and induced apoptosis of neoplastic but not normal B cells. Treatment with PL resulted in downregulation of EBV-encoded LMP1, cellular Myc, constitutive NF-κB activity, and a host of LMP1-Myc-NF-κB-regulated target genes including Aurka, Bcat1, Bub1b, Ccnb1, Chek1, Fancd2, Tfrc and Xrcc6. Of note, p21 Cip1 -encoding Cdkn1a was suppressed independent of changes in Trp53 mRNA levels and p53 DNA-binding activity. Considering the central role of the LMP1–NF-κB–Myc axis in B-lineage neoplasia, these findings further our understanding of the mechanisms by which PL inhibits B-lymphoma and provide a preclinical rationale for the inclusion of PL in new interventions in blood cancers

  9. Piperlongumine inhibits LMP1/MYC-dependent mouse B-lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong-Su; Tompkins, Van S. [Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Son, Dong-Ju [Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Kamberos, Natalie L. [Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Stunz, Laura L. [Deparment of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Iowa City VAMC, Iowa City, IA (United States); Halwani, Ahmad [Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Bishop, Gail A. [Deparment of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Iowa City VAMC, Iowa City, IA (United States); Janz, Siegfried, E-mail: siegfried-janz@uiowa.edu [Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA (United States)

    2013-07-12

    Highlights: •Mouse model of human Burkitt lymphoma revealed cancer inhibition by PL. •Treatment with PL led to apoptosis of malignant but not normal B cells. •PL inhibited LMP1–NF-κB–Myc-dependent target genes including p21-encoding Cdkn1a. •PL holds promise for new interventions approaches to hematologic malignancies. -- Abstract: Piperlongumine (PL), isolated from the fruit of Long pepper, Piper longum, is a cancer-inhibiting compound that selectively kills tumor cells while sparing their normal counterparts. Here we evaluated the efficacy with which PL suppresses malignant B cells derived from a newly developed, double-transgenic mouse model of human endemic Burkitt lymphoma (BL), designated mCD40-LMP1/iMyc{sup Eμ}. PL inhibited tumor cell proliferation in a concentration-dependent manner and induced apoptosis of neoplastic but not normal B cells. Treatment with PL resulted in downregulation of EBV-encoded LMP1, cellular Myc, constitutive NF-κB activity, and a host of LMP1-Myc-NF-κB-regulated target genes including Aurka, Bcat1, Bub1b, Ccnb1, Chek1, Fancd2, Tfrc and Xrcc6. Of note, p21{sup Cip1}-encoding Cdkn1a was suppressed independent of changes in Trp53 mRNA levels and p53 DNA-binding activity. Considering the central role of the LMP1–NF-κB–Myc axis in B-lineage neoplasia, these findings further our understanding of the mechanisms by which PL inhibits B-lymphoma and provide a preclinical rationale for the inclusion of PL in new interventions in blood cancers.

  10. Selective cyclooxygenase-1 inhibition improves collateral vascular reactivity in biliary cirrhotic rats

    Directory of Open Access Journals (Sweden)

    Ching-Chih Chang

    2013-10-01

    Conclusion: There was no significant hemodynamic change and renal toxicity after acute administration of COX inhibitor in the FBDL-induced cirrhotic rats. Preincubation of selective COX-1, but not COX-2, inhibitor could enhance collateral vascular response to AVP, indicating that COX-1 plays a major role in the collateral vascular reactivity.

  11. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication

    Directory of Open Access Journals (Sweden)

    Rafik Shaikh

    2014-10-01

    Full Text Available The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb. A. Juss. (Miliaceae, Tinospora cordifolia (Willd. Miers. (Menispermaceae, Lavandula bipinnata (L. O. Ktze. (Lamiaceae, and Helicteres isora L. (Sterculiaceae extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21±0.24%, HL-60 (30.25±1.36%, HEP-3B (25.36±1.78%, and PN-15 (29.21±0.52%. Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2 more than (COX-1, which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%. The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH, hydroxyl (OH, and superoxide radical (SOR scavenging agents. High-performance thin layer chromatography (HPTLC fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents.

  12. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication.

    Science.gov (United States)

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-10-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 ± 0.24%), HL-60 (30.25 ± 1.36%), HEP-3B (25.36 ± 1.78%), and PN-15 (29.21 ± 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents.

  13. Potent inhibition of tau fibrillization with a multivalent ligand

    International Nuclear Information System (INIS)

    Honson, Nicolette S.; Jensen, Jordan R.; Darby, Michael V.; Kuret, Jeff

    2007-01-01

    Small-molecule inhibitors of tau fibrillization are under investigation as tools for interrogating the tau aggregation pathway and as potential therapeutic agents for Alzheimer's disease. Established inhibitors include thiacarbocyanine dyes, which can inhibit recombinant tau fibrillization in the presence of anionic surfactant aggregation inducers. In an effort to increase inhibitory potency, a cyclic bis-thiacarbocyanine molecule containing two thiacarbocyanine moieties was synthesized and characterized with respect to tau fibrillization inhibitory activity by electron microscopy and ligand aggregation state by absorbance spectroscopy. Results showed that the inhibitory activity of the bis-thiacarbocyanine was qualitatively similar to a monomeric cyanine dye, but was more potent with 50% inhibition achieved at ∼80 nM concentration. At all concentrations tested in aqueous solution, the bis-thiacarbocyanine collapsed to form a closed clamshell structure. However, the presence of tau protein selectively stabilized the open conformation. These results suggest that the inhibitory activity of bis-thiacarbocyanine results from multivalency, and reveal a route to more potent tau aggregation inhibitors

  14. Protein kinase activity associated with the corticosteroid binder IB

    International Nuclear Information System (INIS)

    Vujicic, M.; Djordjevic-Markovic, R.; Radic, O.; Krstic, M.; Kanazir, D.

    1997-01-01

    The physiological effects elicited by glucocorticoids are mediated via glucocorticoid receptors (GR). Analysis of specific glucocorticoid binding to radioactively labelled [ 3 H] triamcinolone acetonide in rat liver cytosol and analysis by ion exchange chromatography have revealed the presence of two distinct molecular species. The major form, designated as binder II appears to correspond to the well characterized glucocorticoid receptor by virtue of its size, charge, steroid binding characteristics and ability to bind to DNA.The second form, designated as corticosteroid binder IB, is a minor binding component in the liver. The binder IB differs from the binder II receptor by virtue of its lower molecular weight and its elution in the pre gradient of DEAE-Sephadex A-50 column which retains the un activated binder II receptor complexes. We examined the kinase activity of partially purified corticosteroid binder IB. Using (γ 3 2 P) ATP we detected kinase activity associated with the IB fraction from the rat liver. This kinase phosphorylate mixed histones and and dose not phosphorylate IB protein in vitro. The kinase activity is completely inhibited by the addition of Mg 2 + ions and is partially inhibited by the addition of Ca 2 +ions. (author)

  15. Cardiovirus Leader proteins bind exportins: Implications for virus replication and nucleocytoplasmic trafficking inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Ciomperlik, Jessica J. [Institute for Molecular Virology and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 (United States); Basta, Holly A. [Department of Biology, Rocky Mountain College, Billings, MT (United States); Palmenberg, Ann C., E-mail: acpalmen@wisc.edu [Institute for Molecular Virology and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-01-15

    Cardiovirus Leader proteins (L{sub X}) inhibit cellular nucleocytoplasmic trafficking by directing host kinases to phosphorylate Phe/Gly-containing nuclear pore proteins (Nups). Resolution of the Mengovirus L{sub M} structure bound to Ran GTPase, suggested this complex would further recruit specific exportins (karyopherins), which in turn mediate kinase selection. Pull-down experiments and recombinant complex reconstitution now confirm that Crm1 and CAS exportins form stable dimeric complexes with encephalomyocarditis virus L{sub E}, and also larger complexes with L{sub E}:Ran. shRNA knockdown studies support this idea. Similar activities could be demonstrated for recombinant L{sub S} and L{sub T} from Theiloviruses. When mutations were introduced to alter the L{sub E} zinc finger domain, acidic domain, or dual phosphorylation sites, there was reduced exportin selection. These regions are not involved in Ran interactions, so the Ran and Crm1 binding sites on L{sub E} must be non-overlapping. The involvement of exportins in this mechanism is important to viral replication and the observation of trafficking inhibition by L{sub E}.

  16. Saw palmetto ethanol extract inhibits adipocyte differentiation.

    Science.gov (United States)

    Villaverde, Nicole; Galvis, Adriana; Marcano, Adriana; Priestap, Horacio A; Bennett, Bradley C; Barbieri, M Alejandro

    2013-07-01

    The fruits of saw palmetto have been used for the treatment of a variety of urinary and reproductive system problems. In this study we investigated whether the fruit extracts affect in vitro adipogenesis. Saw palmetto ethanol extract inhibited the lipid droplet accumulation by induction media in a dose-dependent manner, and it also attenuated the protein expressions of C-EBPα and PPARγ. Phosphorylation of Erk1/2 and Akt1 were also decreased by saw palmetto ethanol extract. This report suggests that saw palmetto extracts selectively affect the adipocyte differentiation through the modulation of several key factors that play a critical role during adipogenesis.

  17. New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate.

    Science.gov (United States)

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-03

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24- phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents.

  18. Spray pyrolytically grown NiAlOx cermets for solar thermal selective ...

    Indian Academy of Sciences (India)

    of the selected sample showed a mixture of nickel and nickel oxide phases with the strong presence of ... ings appear rough, porous, and absorb solar energy; coatings with low ..... inhibited by depositing a protection layer and using a suitable.

  19. Propeptide-mediated inhibition of cognate gingipain proteinases.

    Directory of Open Access Journals (Sweden)

    N Laila Huq

    Full Text Available Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis. The organism's cell-surface cysteine proteinases, the Arg-specific proteinases (RgpA, RgpB and the Lys-specific proteinase (Kgp, which are known as gingipains have been implicated as major virulence factors. All three gingipain precursors contain a propeptide of around 200 amino acids in length that is removed during maturation. The aim of this study was to characterize the inhibitory potential of the Kgp and RgpB propeptides against the mature cognate enzymes. Mature Kgp was obtained from P. gingivalis mutant ECR368, which produces a recombinant Kgp with an ABM1 motif deleted from the catalytic domain (rKgp that enables the otherwise membrane bound enzyme to dissociate from adhesins and be released. Mature RgpB was obtained from P. gingivalis HG66. Recombinant propeptides of Kgp and RgpB were produced in Escherichia coli and purified using nickel-affinity chromatography. The Kgp and RgpB propeptides displayed non-competitive inhibition kinetics with K(i values of 2.04 µM and 12 nM, respectively. Both propeptides exhibited selectivity towards their cognate proteinase. The specificity of both propeptides was demonstrated by their inability to inhibit caspase-3, a closely related cysteine protease, and papain that also has a relatively long propeptide. Both propeptides at 100 mg/L caused a 50% reduction of P. gingivalis growth in a protein-based medium. In summary, this study demonstrates that gingipain propeptides are capable of inhibiting their mature cognate proteinases.

  20. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    Science.gov (United States)

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  1. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  2. Cerebral monoamine oxidase A inhibition in tobacco smokers confirmed with PET and [{sup 11}C]Befloxatone

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch. [INSERM U797, Research Unit ' Neuroimaging and Psychiatry' , Orsay (France); Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch. [CEA, ' Neuroimaging and Psychiatry, U797 Unit, Hospital Department Frederic Joliot and Neurospin (France); Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch. [Paris sud University - Paris Descartes University, UMR U797 (France); Berlin, I. [Service de Pharmacologie, Hopital Pitie-Salpetriere - Universite Paris6 - INSERM U677, Paris (France); Gregoire, M.C.; Bottlaender, M.; Roumenov, D.; Dolle, F.; Bourgeois, S. [CEA, DSV, I2BM, Service Hospitalier Frederic Joliot, Orsay (France); Artiges, E.; Trichard, Ch. [Psychiatry Department, Orsay Hospital, Orsay (France)

    2009-07-01

    The inhibition of cerebral monoamine oxidases (MAOs) by cigarette smoke components could participate to the tobacco addiction. However, the actual extent of this inhibition in vivo in smokers is still poorly known. We investigated cerebral MAO-A availability in 7 tobacco-dependent subjects and 6 healthy nonsmokers, using positron emission tomography (PET) and the MAO-A selective radioligand [{sup 11}C]befloxatone. In comparison to nonsmokers, smokers showed a significant overall reduction of [{sup 11}C]befloxatone binding potential (BP) in cortical areas (average reduction, -60%) and a similar trend in caudate and thalamus (-40%). Our findings confirm a widespread inhibition of cerebral MAO-A in smokers. This mechanism may contribute to tobacco addiction and for a possible mood-modulating effect of tobacco. (authors)

  3. Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice.

    Science.gov (United States)

    Ghosh, Sudeshna; Kinsey, Steven G; Liu, Qing-Song; Hruba, Lenka; McMahon, Lance R; Grim, Travis W; Merritt, Christina R; Wise, Laura E; Abdullah, Rehab A; Selley, Dana E; Sim-Selley, Laura J; Cravatt, Benjamin F; Lichtman, Aron H

    2015-08-01

    Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-​3-​pyridinyl-​4-​[[3-​[[5-​(trifluoromethyl)-​2-​pyridinyl]oxy]phenyl]methyl]-​1-​piperidinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Δ(9)-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition

  4. PP2A contributes to endothelial death in high glucose: inhibition by benfotiamine.

    Science.gov (United States)

    Du, Y; Kowluru, A; Kern, T S

    2010-12-01

    Endothelial death is critical in diabetic vascular diseases, but regulating factors have been only partially elucidated. Phosphatases play important regulatory roles in cell metabolism, but have not previously been implicated in hyperglycemia-induced cell death. We investigated the role of the phosphatase, type 2A protein phosphatase (PP2A), in hyperglycemia-induced changes in signaling and death in bovine aortic endothelial cells (BAEC). We explored also the influence of benfotiamine on this phosphatase. Activation of PP2A was assessed in BAEC by the extent of methylation and measurement of activity, and the enzyme was inhibited using selective pharmacological (okadaic acid, sodium fostriecin) and molecular (small interfering RNA) approaches. BAECs cultured in 30 mM glucose significantly increased PP2A methylation and activity, and PP2A inhibitors blocked these abnormalities. PP2A activity was increased also in aorta and retina from diabetic rats. NF-κB activity and cell death in BAEC were significantly increased in 30 mM glucose and inhibited by PP2A inhibition. NF-κB played a role in the hyperglycemia-induced death of BAEC, since blocking its translocation with SN50 also inhibited cell death. Inhibition of PP2A blocked the hyperglycemia-induced dephosphorylation of NF-κB and Bad, thus favoring cell survival. Incubation of benfotiamine with BAEC inhibited the high glucose-induced activation of PP2A and NF-κB and cell death, as well as several other metabolic defects, which likewise were inhibited by inhibitors of PP2A. Activation of PP2A contributes to endothelial cell death in high glucose, and beneficial actions of benfotiamine are due, at least in part, to inhibition of PP2A activation.

  5. Computational insight into small molecule inhibition of cyclophilins.

    Science.gov (United States)

    Sambasivarao, Somisetti V; Acevedo, Orlando

    2011-02-28

    Cyclophilins (Cyp) are a family of cellular enzymes possessing peptidyl-prolyl isomerase activity, which catalyze the cis-trans interconversion of proline-containing peptide bonds. The two most abundant family members, CypA and CypB, have been identified as valid drug targets for a wide range of diseases, including HCV, HIV, and multiple cancers. However, the development of small molecule inhibitors that possess nM potency and high specificity for a particular Cyp is difficult given the complete conservation of all active site residues between the enzymes. Monte Carlo statistical sampling coupled to free energy perturbation theory (MC/FEP) calculations have been carried out to elucidate the origin of the experimentally observed nM inhibition of CypA by acylurea-based derivatives and the >200-fold in vitro selectivity between CypA and CypB from aryl 1-indanylketone-based μM inhibitors. The computed free-energies of binding were in close accord with those derived from experiments. Binding affinity values for the inhibitors were determined to be dependent upon the stabilization strength of the nonbonded interactions provided toward two catalytic residues: Arg55 and Asn102 in CypA and the analogous Arg63 and Asn110 residues in CypB. Fine-tuning of the hydrophobic interactions allowed for enhanced potency among derivatives. The aryl 1-indanylketones are predicted to differentiate between the cyclophilins by using distinct binding motifs that exploit subtle differences in the active site arrangements. Ideas for the development of new selective compounds with the potential for advancement to low-nanomolar inhibition are presented.

  6. Poly(neutral red) based hydrogen peroxide biosensor for chromium determination by inhibition measurements.

    Science.gov (United States)

    Attar, Aisha; Emilia Ghica, M; Amine, Aziz; Brett, Christopher M A

    2014-08-30

    Amperometric hydrogen peroxide enzyme inhibition biosensors based on horseradish peroxidase (HRP) immobilised on electropolymerised neutral red (NR) or directly on the surface of carbon film electrodes (CFE) have been successfully applied to the determination of toxic Cr(III) and Cr(VI). Parameters influencing the performance of the biosensor including the enzyme immobilisation method, the amount of hydrogen peroxide, applied potential and electrolyte pH were optimised. The inhibition of horseradish peroxidase by the chromium species was studied under the optimised conditions. Results from the quantitative analysis of chromium ions are discussed in terms of detection limit, linear range and sensitivity. The HRP kinetic interactions reveal mixed binding of Cr(III) with I50=3.8μM and inhibition binding constant Ki=11.3μM at HRP/PNR/CFE biosensors and uncompetitive binding of Cr(VI) with I50=3.9μM and Ki=0.78μM at HRP/CFE biosensors in the presence of H2O2 substrate. Interferences from other heavy metal ions were studied and the inhibition show very good selectivity towards Cr(III) and Cr(VI). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone.

    Science.gov (United States)

    Jin, Xia; McGrath, Michael S; Xu, Hua

    2015-11-01

    Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11.

    Science.gov (United States)

    Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D; David, Michael

    2012-11-01

    In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination.

  9. Hibiscus sabdariffa (Roselle) Extracts and Wine: Phytochemical Profile, Physicochemical Properties, and Carbohydrase Inhibition.

    Science.gov (United States)

    Ifie, Idolo; Marshall, Lisa J; Ho, Peter; Williamson, Gary

    2016-06-22

    Three varieties of Hibiscus sabdariffa were analyzed for their phytochemical content and inhibitory potential on carbohydrate-digesting enzymes as a basis for selecting a variety for wine production. The dark red variety was chosen as it was highest in phenolic content and an aqueous extract partially inhibited α-glucosidase (maltase), with delphinidin 3-O-sambubioside, cyanidin 3-O-sambubioside, and 3-O-caffeoylquinic acid accounting for 65% of this activity. None of the varieties significantly inhibited α-amylase. Regarding Hibiscus sabdariffa wine, the effect of fermentation temperature (20 and 30 °C) on the physicochemical, phytochemical, and aroma composition was monitored over 40 days. The main change in phytochemical composition observed was the hydrolysis of 3-O-caffeolquinic acid and the concomitant increase of caffeic acid irrespective of fermentation temperature. Wine fermented at 20 °C was slightly more active for α-glucosidase inhibition with more fruity aromas (ethyl octanoate), but there were more flowery notes (2-phenylethanol) at 30 °C.

  10. Structure-Based Design of a Novel Series of Potent, Selective Inhibitors of the Class I Phosphatidylinositol 3-Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Adrian L.; D’Angelo, Noel D.; Bo, Yunxin Y.; Booker, Shon K.; Cee, Victor J.; Herberich, Brad; Hong, Fang-Tsao; Jackson, Claire L.M.; Lanman, Brian A.; Liu, Longbin; Nishimura, Nobuko; Pettus, Liping H.; Reed, Anthony B.; Tadesse, Seifu; Tamayo, Nuria A.; Wurz, Ryan P.; Yang, Kevin; Andrews, Kristin L.; Whittington, Douglas A.; McCarter, John D.; Miguel, Tisha San; Zalameda, Leeanne; Jiang, Jian; Subramanian, Raju; Mullady, Erin L.; Caenepeel, Sean; Freeman, Daniel J.; Wang, Ling; Zhang, Nancy; Wu, Tian; Hughes, Paul E.; Norman, Mark H. (Amgen)

    2012-09-17

    A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.

  11. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Gundala, Sushma Reddy; Yang, Chunhua [Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Mukkavilli, Rao [Advinus Therapeutics, Karnataka (India); Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice [Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Reid, Michelle D. [Department of Pathology, Emory University School of Medicine, Atlanta, GA (United States); Aneja, Ritu, E-mail: raneja@gsu.edu [Department of Biology, Georgia State University, Atlanta, GA 30303 (United States)

    2014-10-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ∼ 72% upon daily oral administration of 150 mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. - Highlights: • HC perturbs cell-cycle progression by induction of reactive oxygen species (ROS). • HC mediated cytotoxicity by ROS-induced DNA damage leading to

  12. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis

    International Nuclear Information System (INIS)

    Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao; Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice; Reid, Michelle D.; Aneja, Ritu

    2014-01-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ∼ 72% upon daily oral administration of 150 mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. - Highlights: • HC perturbs cell-cycle progression by induction of reactive oxygen species (ROS). • HC mediated cytotoxicity by ROS-induced DNA damage leading to

  13. The Protective Effects of Κ-Opioid Receptor Stimulation in Hypoxic Pulmonary Hypertension Involve Inhibition of Autophagy Through the AMPK-MTOR Pathway

    Directory of Open Access Journals (Sweden)

    Yaguang Zhou

    2017-12-01

    Full Text Available Background/Aims: In a previous study, we showed that κ-opioid receptor stimulation with the selective agonist U50,488H ameliorated hypoxic pulmonary hypertension (HPH. However, the roles that pulmonary arterial smooth muscle cell (PASMC proliferation, apoptosis, and autophagy play in κ-opioid receptor-mediated protection against HPH are still unknown. The goal of the present study was to investigate the role of autophagy in U50,488H-induced HPH protection and the underlying mechanisms. Methods: Rats were exposed to 10% oxygen for three weeks to induce HPH. After hypoxia, the mean pulmonary arterial pressure (mPAP and the right ventricular pressure (RVP were measured. Cell viability was monitored using the Cell Counting Kit-8 (CCK-8 assay. Cell apoptosis was detected by flow cytometry and Western blot. Autophagy was assessed by means of the mRFP-GFP-LC3 adenovirus transfection assay and by Western blot. Results: Inhibition of autophagy by the administration of chloroquine prevented the development of HPH in the rat model, as evidenced by significantly reduced mPAP and RVP, as well as decreased autophagy. U50,488H mimicked the effects of chloroquine, and the effects of U50,488H were blocked by nor-BNI, a selective κ-opioid receptor antagonist. In vitro experiments showed that the inhibition of autophagy by chloroquine was associated with decreased proliferation and increased apoptosis of PASMCs. Under hypoxia, U50,488H also significantly inhibited autophagy, reduced proliferation and increased apoptosis of PASMCs. These effects of U50,488H were blocked by nor-BNI. Moreover, exposure to hypoxic conditions significantly increased AMPK phosphorylation and reduced mTOR phosphorylation, and these effects were abrogated by U50,488H. The effects of U50,488H on PASMC autophagy were inhibited by AICAR, a selective AMPK agonist, or by rapamycin, a selective mTOR inhibitor. Conclusion: Our data provide evidence for the first time that κ-opioid receptor

  14. The Influence of Emotional Inhibition on Intrusive Thoughts in a Non-Clinical Sample

    Directory of Open Access Journals (Sweden)

    Zahra Salehzadeh Einabad

    2017-06-01

    Full Text Available Background Given the studies insisting on the impacts of cultural issues on the emotion regulation strategies in eastern cultures and lack of study on the effects of emotional inhibition in our culture, this research aimed to investigate the influences of emotional inhibition on intrusive thoughts in non-clinical sample. Methods A quasi-experimental design was adopted with 45 participants that were randomly assigned to 2 groups (emotional inhibition and control groups. Participants which were selected according to cluster sampling answered to some questionnaires, including depression, general health, and emotion regulation. Then, a clip and a related instruction were presented for each group. They were asked to perform according to instruction after watching movie and tick on a paper whenever the thoughts of movie come to their mind. Data were analyzed using t test in SPSS-23. Results There are not significant differences between groups in terms of mood, emotion regulation, depression, and general health in the pre-test. Similarly, results indicated that there is not a significant differences between groups. Conclusions This research showed that the usefulness of emotional inhibition depends on the culture. In fact, in Eastern cultures, using emotion regulation strategies such as suppression and emotional inhibition are common so that avoidance is a short term and useful emotion regulation mechanism.

  15. Inhibition of epithelial Na+ transport by atriopeptin, protein kinase c, and pertussis toxin

    International Nuclear Information System (INIS)

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A.

    1987-01-01

    The authors have recently shown the selective inhibition of an amiloride-sensitive, conductive pathway for Na + by atrial natriuretic peptide and 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) in the renal epithelial cell line, LLC-PK i . Using 22 Na + fluxes, they further investigated the modulation of Na + transport by atrial natriuretic peptide and by agents that increase cGMP production, activate protein kinase c, or modulate guanine nucleotide regulatory protein function. Sodium nitroprusside increases intracellular cGMP concentrations without affecting cAMP concentrations and completely inhibits amiloride-sensitive Na + uptake in a time- and concentration-dependent manner. Oleoyl 2-acetylglycerol and phorbol 12-myristate 13-acetate, activators of protein kinase c, inhibit Na + uptake by 93 ± 13 and 51 ± 10%, respectively. Prolonged incubation with phorbol ester results in the downregulation of protein kinase c activity and reduces the inhibitory effect of atrial natriuretic peptide, suggesting that the action of this peptide involves stimulation of protein kinase c. Pertussis toxin, which induces the ADP-ribosylation of a 41-kDa guanine nucleotide regulatory protein in LLC-PK i cells, inhibits 22 Na + influx to the same extent as amiloride. Thus, increasing cGMP, activating protein kinase c, and ADP-ribosylating a guanine nucleotide regulatory protein all inhibit Na + uptake. These events may be sequentially involved in the action of atrial natriuretic peptide

  16. Behavioral inhibition and obsessive-compulsive disorder.

    Science.gov (United States)

    Coles, Meredith E; Schofield, Casey A; Pietrefesa, Ashley S

    2006-01-01

    Behavioral inhibition is frequently cited as a vulnerability factor for development of anxiety. However, few studies have examined the unique relationship between behavioral inhibition and obsessive-compulsive disorder (OCD). Therefore, the current study addressed the relationship between behavioral inhibition and OCD in a number of ways. In a large unselected student sample, frequency of current OC symptoms was significantly correlated with retrospective self-reports of total levels of childhood behavioral inhibition. In addition, frequency of current OC symptoms was also significantly correlated with both social and nonsocial components of behavioral inhibition. Further, there was evidence for a unique relationship between behavioral inhibition and OC symptoms beyond the relationship of behavioral inhibition and social anxiety. In addition, results showed that reports of childhood levels of behavioral inhibition significantly predicted levels of OCD symptoms in adulthood. Finally, preliminary evidence suggested that behavioral inhibition may be more strongly associated with some types of OC symptoms than others, and that overprotective parenting may moderate the impact of behavioral inhibition on OC symptoms. The current findings suggest the utility of additional research examining the role of behavioral inhibition in the etiology of OCD.

  17. Supratarsal injection of triamcinolone for severe vernal keratoconjunctivitis in children

    Directory of Open Access Journals (Sweden)

    Alexandre Xavier da Costa

    Full Text Available ABSTRACT Purpose: To evaluate the use of supratarsal injection of triamcinolone acetonide in severe vernal keratoconjunctivitis (VKC in children. Methods: Patients included in this open clinical trial were those with severe VKC-associated with keratitis, gelatinous limbal infiltrates, and/or giant papillae, with a history of recurrence and resistance to conventional topical antiallergic agents. Patients were treated with a supratarsal injection of 20 mg triamcinolone acetonide. Results: Analysis included 27 injections in 23 eyes of 17 patients with severe allergic keratoconjunctivitis. Mean age was 12.3 (range: 7-19 years. Mean follow-up time was 39.3 months (SD=19.21. In the 17 patients, the disease was successfully controlled for an average of 3.6 months (range: 1-16, during which allergy symptoms and signs were significantly improved, with complete resolution of lid edema and conjunctival chemosis, significant decline of pannus and keratitis, and reduction of giant papillae size. Conclusion: Treatment of severe, acute VKC in children with supratarsal injection of 20 mg triamcinolone acetonide showed satisfactory results and was well tolerated by patients; it may therefore constitute a safe option for severe and challenging cases. While full disease remission was not achieved, a significant improvement was found in ocular allergy symptoms and signs, with a reduction in the frequency of acute recurrences.

  18. The Process and Strategy for Developing Selective Histone Deacetylase 3 Inhibitors

    NARCIS (Netherlands)

    Cao, Fangyuan; Zwinderman, Martijn R H; Dekker, Frank J

    2018-01-01

    Histone deacetylases (HDACs) are epigenetic drug targets that have gained major scientific attention. Inhibition of these important regulatory enzymes is used to treat cancer, and has the potential to treat a host of other diseases. However, currently marketed HDAC inhibitors lack selectivity for

  19. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  20. Reduced short interval cortical inhibition correlates with atomoxetine response in children with attention-deficit hyperactivity disorder (ADHD).

    Science.gov (United States)

    Chen, Tina H; Wu, Steve W; Welge, Jeffrey A; Dixon, Stephan G; Shahana, Nasrin; Huddleston, David A; Sarvis, Adam R; Sallee, Floyd R; Gilbert, Donald L

    2014-12-01

    Clinical trials in children with attention-deficit hyperactivity disorder (ADHD) show variability in behavioral responses to the selective norepinephrine reuptake inhibitor atomoxetine. The objective of this study was to determine whether transcranial magnetic stimulation-evoked short interval cortical inhibition might be a biomarker predicting, or correlating with, clinical atomoxetine response. At baseline and after 4 weeks of atomoxetine treatment in 7- to 12-year-old children with ADHD, transcranial magnetic stimulation short interval cortical inhibition was measured, blinded to clinical improvement. Primary analysis was by multivariate analysis of covariance. Baseline short interval cortical inhibition did not predict clinical responses. However, paradoxically, after 4 weeks of atomoxetine, mean short interval cortical inhibition was reduced 31.9% in responders and increased 6.1% in nonresponders (analysis of covariance t 41 = 2.88; P = .0063). Percentage reductions in short interval cortical inhibition correlated with reductions in the ADHD Rating Scale (r = 0.50; P = .0005). In children ages 7 to 12 years with ADHD treated with atomoxetine, improvements in clinical symptoms are correlated with reductions in motor cortex short interval cortical inhibition. © The Author(s) 2014.

  1. Response Inhibition Function of Obsessive-Compulsive Patients with Obsessive-Compulsive Personality Disorder

    Directory of Open Access Journals (Sweden)

    Hui Lei

    2017-06-01

    Full Text Available Objective: To explore the effect of comorbid obsessive-compulsive personality disorder (OCPD on response inhibition functions in patients with obsessive-compulsive disorder (OCD. Methods: Forty-five obsessive-compulsive patients with obsessive-compulsive personality disorder (OCD + OCPD, 42 obsessive-compulsive patients without obsessive-compulsive personality disorder (OCD - OCPD and 54 healthy volunteers were selected for the stop-signal task. Results: Obsessive-compulsive patients with obsessive-compulsive personality disorder had a higher score of depression and anxiety and more severe obsessive-compulsive symptoms than that of obsessive-compulsive patients without obsessive-compulsive personality disorder. The two groups of obsessive-compulsive patients of had a greater stop-signal reaction time (SSRT during the inhibition process than the healthy volunteers of the control group (OCD + OCPD: 221.45 ± 31.78; OCD - OCPD: 218.36 ± 31.78; Controls: 199.29 ± 22.80; p < 0.05. However, no significant difference was found between the two groups of obsessive-compulsive patients. Conclusion: The findings show that the comorbid obsessive-compulsive personality disorder has no effect on response inhibition function of obsessive-compulsive patients.

  2. Improving response inhibition systems in frontotemporal dementia with citalopram.

    Science.gov (United States)

    Hughes, Laura E; Rittman, Timothy; Regenthal, Ralf; Robbins, Trevor W; Rowe, James B

    2015-07-01

    Disinhibition is a cardinal feature of the behavioural variant of frontotemporal dementia, presenting as impulsive and impetuous behaviours that are often difficult to manage. The options for symptomatic treatments are limited, but a potential target for therapy is the restoration of serotonergic function, which is both deficient in behavioural variant frontotemporal dementia and closely associated with inhibitory control. Based on preclinical studies and psychopharmacological interventions in other disorders, we predicted that inhibition would be associated with the right inferior frontal gyrus and dependent on serotonin. Using magnetoencephalography and electroencephalography of a Go-NoGo paradigm, we investigated the neural basis of behavioural disinhibition in behavioural variant frontotemporal dementia and the effect of selective serotonin reuptake inhibition on the neural systems for response inhibition. In a randomized double-blinded placebo-controlled crossover design study, 12 patients received either a single 30 mg dose of citalopram or placebo. Twenty age-matched healthy controls underwent the same magnetoencephalography/electroencephalography protocol on one session without citalopram, providing normative data for this task. In the control group, successful NoGo trials evoked two established indices of successful response inhibition: the NoGo-N2 and NoGo-P3. Both of these components were significantly attenuated by behavioural variant frontotemporal dementia. Cortical sources associated with successful inhibition in control subjects were identified in the right inferior frontal gyrus and anterior temporal lobe, which have been strongly associated with behavioural inhibition in imaging and lesion studies. These sources were impaired by behavioural variant frontotemporal dementia. Critically, citalopram enhanced the NoGo-P3 signal in patients, relative to placebo treatment, and increased the evoked response in the right inferior frontal gyrus. Voxel

  3. Naftopidil inhibits 5-hydroxytryptamine-induced bladder contraction in rats.

    Science.gov (United States)

    Sakai, Takumi; Kasahara, Ken-ichi; Tomita, Ken-ichi; Ikegaki, Ichiro; Kuriyama, Hiroshi

    2013-01-30

    Naftopidil is an α(1D) and α(1A) subtype-selective α(1)-adrenoceptor antagonist that has been used to treat lower urinary tract symptoms of benign prostatic hyperplasia. In this study, we investigated the effects of naftopidil on 5-hydroxytryptamine (5-HT)-induced rat bladder contraction (10(-8)-10(-4) M). Naftopidil (0.3, 1, and 3 μM) inhibited 5-HT-induced bladder contraction in a concentration-dependent manner. On the other hand, other α(1)-adrenoceptor antagonists, tamsulosin, silodosin or prazosin, did not inhibit 5-HT-induced bladder contraction. The 5-HT-induced bladder contraction was inhibited by both ketanserin and 4-(4-fluoronaphthalen-1-yl)-6-propan-2-ylpyrimidin-2-amine (RS127445), serotonin 5-HT(2A) and 5-HT(2B) receptor antagonists, respectively. In addition, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and α-methyl-5-HT, 5-HT(2A) and 5-HT(2) receptor agonists, respectively, induced bladder contraction. The 5-HT-induced bladder contraction was not inhibited by N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-yl-cyclohexanecarboxamide (WAY-100635), [1-[2[(methylsulfonyl)amino]ethyl]-4-piperidinyl]methyl-1-methyl-1H-indole-3-carboxylate (GR113808) or (R)-3-[2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidine-1-sulphonyl]phenol (SB269970), 5-HT(1A), 5-HT(4) and 5-HT(7) receptor antagonists, respectively. Naftopidil inhibited both the 5-HT(2A) and 5-HT(2) receptor agonists-induced bladder contractions. Naftopidil binds to the human 5-HT(2A) and 5-HT(2B) receptors with pKi values of 6.55 and 7.82, respectively. These results suggest that naftopidil inhibits 5-HT-induced bladder contraction via blockade of the 5-HT(2A) and 5-HT(2B) receptors in rats. Furthermore, 5-HT-induced bladder contraction was enhanced in bladder strips obtained from bladder outlet obstructed rats, with this contraction inhibited by naftopidil. The beneficial effects of naftopidil on storage symptoms such as urinary frequency and nocturia in patients with benign

  4. Endophytic Fungi Associated With Turmeric (Curcuma longa L. Can Inhibit Histamine-Forming Bacteria in Fish

    Directory of Open Access Journals (Sweden)

    Eris Septiana

    2017-01-01

    Full Text Available Turmeric (Curcuma longa L. is a medicinal plant that is commonly used as spice and preservative. Many types of endophytic fungi have been reported as being associated with medicinal plants and able to synthesize secondary metabolites. In this study, endophytic fungi were isolated from all plant parts of turmeric plants. Identification of the endophytic fungi was done using morphological characteristics and sequencing of the internal transcribed spacer (ITS region of ribosomal DNA. The dual culture method was used for screening antibacterial activity of the endophytic fungi against Morganella morganii, a common histamine-producing bacteria. The disc diffusion method was used to test the ability of water fractions of selected endophytic fungi to inhibit M. morganii growth. Two-dimensional thin layer chromatography was used to determine the fungal extract inhibition activity on histamine formation. In total, 11 endophytic fungi were successfully isolated and identified as Arthrobotrys foliicola, Cochliobolus kusanoi, Daldinia eschscholzii, Fusarium oxysporum, Fusarium proliferatum, Fusarium solani, Fusarium verticillioides, Phanerochaete chrysosporium, and Phaeosphaeria ammophilae. Five isolates showed inhibition activity against M. morganii in the dual culture tests. Based on the disc diffusion assay, A. foliicola and F. verticillioides inhibited the growth of M. morganii as a histamine-producing bacteria, and inhibiting histamine formation in fish. The best effects in inhibiting growth of the histamine-producing bacteria and histamine formation inhibition in fish were produced with F. verticillioides water fraction at 0°C incubation.

  5. Identification of constrained peptides that bind to and preferentially inhibit the activity of the hepatitis C viral RNA-dependent RNA polymerase

    International Nuclear Information System (INIS)

    Amin, Anthony; Zaccardi, Joe; Mullen, Stanley; Olland, Stephane; Orlowski, Mark; Feld, Boris; Labonte, Patrick; Mak, Paul

    2003-01-01

    A class of disulfide constrained peptides containing a core motif FPWG was identified from a screen of phage displayed library using the HCV RNA-dependent RNA polymerase (NS5B) as a bait. Surface plasmon resonance studies showed that three highly purified synthetic constrained peptides bound to immobilized NS5B with estimated K d values ranging from 30 to 60 μM. In addition, these peptides inhibited the NS5B activity in vitro with IC 50 ranging from 6 to 48 μM, whereas in contrast they had no inhibitory effect on the enzymatic activities of calf thymus polymerase α, human polymerase β, RSV polymerase, and HIV reverse transcriptase in vitro. Two peptides demonstrated conformation-dependent inhibition since their synthetic linear versions were not inhibitory in the NS5B assay. A constrained peptide with the minimum core motif FPWG retained selective inhibition of NS5B activity with an IC 50 of 50 μM. Alanine scan analyses of a representative constrained peptide, FPWGNTW, indicated that residues F1 and W7 were critical for the inhibitory effect of this peptide, although residues P2 and N5 had some measurable inhibitory effect as well. Further analyses of the mechanism of inhibition indicated that these peptides inhibited the formation of preelongation complexes required for the elongation reaction. However, once the preelongation complex was formed, its activity was refractory to peptide inhibition. Furthermore, the constrained peptide FPWGNTW inhibited de novo initiated RNA synthesis by NS5B from a poly(rC) template. These data indicate that the peptides confer selective inhibition of NS5B activity by binding to the enzyme and perturbing an early step preceding the processive elongation step of RNA synthesis

  6. Studies on collagen-tannic acid-collagenase ternary system: Inhibition of collagenase against collagenolytic degradation of extracellular matrix component of collagen.

    Science.gov (United States)

    Krishnamoorthy, Ganesan; Sehgal, Praveen Kumar; Mandal, Asit Baran; Sadulla, Sayeed

    2012-06-01

    We report the detailed studies on the inhibitory effect of tannic acid (TA) on Clostridium histolyticum collagenase (ChC) activity against degradation of extracellular matrix component of collagen. The TA treated collagen exhibited 64% resistance against collagenolytic hydrolysis by ChC, whereas direct interaction of TA with ChC exhibited 99% inhibition against degradation of collagen and the inhibition was found to be concentration dependant. The kinetic inhibition of ChC has been deduced from the extent of hydrolysis of N-[3-(2-furyl) acryloyl]-Leu-Gly-Pro-Ala (FALGPA). This data provides a selective competitive mode of inhibition on ChC activity seems to be influenced strongly by the nature and structure of TA. TA showed inhibitor activity against the ChC by molecular docking method. This result demonstrated that TA containing digalloyl radical possess the ability to inhibit the ChC. The inhibition of ChC in gaining new insight into the mechanism of stabilization of collagen by TA is discussed.

  7. Fragment-based design of symmetrical bis-benzimidazoles as selective inhibitors of the trimethoprim-resistant, type II R67 dihydrofolate reductase.

    Science.gov (United States)

    Bastien, Dominic; Ebert, Maximilian C C J C; Forge, Delphine; Toulouse, Jacynthe; Kadnikova, Natalia; Perron, Florent; Mayence, Annie; Huang, Tien L; Vanden Eynde, Jean Jacques; Pelletier, Joelle N

    2012-04-12

    The continuously increasing use of trimethoprim as a common antibiotic for medical use and for prophylactic application in terrestrial and aquatic animal farming has increased its prevalence in the environment. This has been accompanied by increased drug resistance, generally in the form of alterations in the drug target, dihydrofolate reductase (DHFR). The most highly resistant variants of DHFR are known as type II DHFR, among which R67 DHFR is the most broadly studied variant. We report the first attempt at designing specific inhibitors to this emerging drug target by fragment-based design. The detection of inhibition in R67 DHFR was accompanied by parallel monitoring of the human DHFR, as an assessment of compound selectivity. By those means, small aromatic molecules of 150-250 g/mol (fragments) inhibiting R67 DHFR selectively in the low millimolar range were identified. More complex, symmetrical bis-benzimidazoles and a bis-carboxyphenyl were then assayed as fragment-based leads, which procured selective inhibition of the target in the low micromolar range (K(i) = 2-4 μM). The putative mode of inhibition is discussed according to molecular modeling supported by in vitro tests. © 2012 American Chemical Society

  8. Anandamide inhibits adhesion and migration of breast cancer cells

    International Nuclear Information System (INIS)

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo; Bifulco, Maurizio

    2006-01-01

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB 1 receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB 1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB 1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB 1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo

  9. The effect of antibrowning agents on inhibition of potato browning, volatile organic compound profile, and microbial inhibition.

    Science.gov (United States)

    Mosneaguta, Ruslan; Alvarez, Valente; Barringer, Sheryl A

    2012-11-01

    Burbank and Norkotah potato slices were dipped into 3% sodium acid sulfate (SAS), citric acid (CA), sodium erythorbate (SE), malic acid (MA), sodium acid pyrophosphate (SAPP), or a combination of SAS-CA-SE. Browning by polyphenol oxidase (PPO) obtained from potato extract with 0.04 to 0.016 g/mL of antibrowning solutions at pH 2.0 to 6.9 were measured by UV-Vis spectroscopy. The color of slices dipped in antibrowning solutions at pHs 2 to 7 and stored at 4 °C for 15 d was measured every 5 d by colorimeter. Headspace analysis of volatiles in raw and cooked potato samples was performed by selected ion flow tube mass spectrometer (SIFT-MS) and soft independent modelling by class analogy (SIMCA) analysis of the calculated odor activity values (OAV) determined interclass distances. Microbial growth was measured at 15 d. At unadjusted pHs (1.1 to 7.1), the PPO browning of the control and samples with SAPP was not significantly different, SAS, CA, and MA produced some inhibition and SE and SAS-CA-SE prevented browning. At pH 5 to 7, only SE and SAS-CA-SE were effective browning inhibitors. Based on the color of potato slices, SE was the most effective at pH 2 to 7, but SAS was most effective at unadjusted pH. Cooking increased volatile levels in the treated potatoes and decreased differences between volatile profiles. Differences between cooked samples may not be noticeable by the consumer because volatiles with high discriminating powers have low OAVs. SAS, CA, and SAS-CA-SE treatments inhibited microbial growth but SAPP, control, and SE did not, most likely due to pH. Antibrowning agents inhibit polyphenol oxidase, increasing shelf life and consumer acceptability of processed raw potato products by preserving the color. Their effectiveness was shown to be mainly due to a pH effect, except SE, which was not pH dependent. MA, CA, and SAS-CA-SE are better acidulants for inhibition of color change as well as growth of spoilage bacteria, yeast, and mold than SAPP, the

  10. CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients.

    Science.gov (United States)

    Pardanani, A; Lasho, T; Smith, G; Burns, C J; Fantino, E; Tefferi, A

    2009-08-01

    Somatic mutations in Janus kinase 2 (JAK2), including JAK2V617F, result in dysregulated JAK-signal transducer and activator transcription (STAT) signaling, which is implicated in myeloproliferative neoplasm (MPN) pathogenesis. CYT387 is an ATP-competitive small molecule that potently inhibits JAK1/JAK2 kinases (IC(50)=11 and 18 nM, respectively), with significantly less activity against other kinases, including JAK3 (IC(50)=155 nM). CYT387 inhibits growth of Ba/F3-JAK2V617F and human erythroleukemia (HEL) cells (IC(50) approximately 1500 nM) or Ba/F3-MPLW515L cells (IC(50)=200 nM), but has considerably less activity against BCR-ABL harboring K562 cells (IC=58 000 nM). Cell lines harboring mutated JAK2 alleles (CHRF-288-11 or Ba/F3-TEL-JAK2) were inhibited more potently than the corresponding pair harboring mutated JAK3 alleles (CMK or Ba/F3-TEL-JAK3), and STAT-5 phosphorylation was inhibited in HEL cells with an IC(50)=400 nM. Furthermore, CYT387 selectively suppressed the in vitro growth of erythroid colonies harboring JAK2V617F from polycythemia vera (PV) patients, an effect that was attenuated by exogenous erythropoietin. Overall, our data indicate that the JAK1/JAK2 selective inhibitor CYT387 has potential for efficacious treatment of MPN harboring mutated JAK2 and MPL alleles.

  11. Development of poly(aspartic acid-co-malic acid) composites for calcium carbonate and sulphate scale inhibition.

    Science.gov (United States)

    Mithil Kumar, N; Gupta, Sanjay Kumar; Jagadeesh, Dani; Kanny, K; Bux, F

    2015-01-01

    Polyaspartic acid (PSI) is suitable for the inhibition of inorganic scale deposition. To enhance its scale inhibition efficiency, PSI was modified by reacting aspartic acid with malic acid (MA) using thermal polycondensation polymerization. This reaction resulted in poly(aspartic acid-co-malic acid) (PSI-co-MA) dual polymer. The structural, chemical and thermal properties of the dual polymers were analysed by using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and gel permeation chromatography. The effectiveness of six different molar ratios of PSI-co-MA dual polymer for calcium carbonate and calcium sulphate scale inhibition at laboratory scale batch experiments was evaluated with synthetic brine solution at selected doses of polymer at 65-70°C by the static scale test method. The performance of PSI-co-MA dual polymer for the inhibition of calcium carbonate and calcium sulphate precipitation was compared with that of a PSI single polymer. The PSI-co-MA exhibited excellent ability to control inorganic minerals, with approximately 85.36% calcium carbonate inhibition and 100% calcium sulphate inhibition at a level of 10 mg/L PSI-co-MA, respectively. Therefore, it may be reasonably concluded that PSI-co-MA is a highly effective scale inhibitor for cooling water treatment applications.

  12. Substrate- and Cofactor-independent Inhibition of Histone Demethylase KDM4C

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Lohse, Brian; Rand, Kasper Dyrberg

    2014-01-01

    Inhibition of histone demethylases has within recent years advanced into a new strategy for treating cancer and other diseases. Targeting specific histone demethylases can be challenging as the active sites of KDM1A-B and KDM-4A-D histone demethylases, respectively, are highly conserved. Most...... inhibitors developed up-to-date target either the cofactor- or substrate-binding sites of these enzymes, resulting in a lack of selectivity and off-target effects. This study describes the discovery of the first peptide-based inhibitors of KDM4 histone demethylases that do not share the histone peptide...... sequence, or inhibit through substrate competition. Through screening of DNA-encoded peptide libraries against KDM1 and -4 histone demethylases by phage display, two cyclic peptides targeting the histone demethylase KDM4C were identified and developed as inhibitors by amino acid replacement, truncation...

  13. Response inhibition and cognitive appraisal in clients with acute stress disorder and posttraumatic stress disorder.

    Science.gov (United States)

    Abolghasemi, Abass; Bakhshian, Fereshteh; Narimani, Mohammad

    2013-08-01

    The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals. This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms. The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder.

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 6 ... friendly deprotection of acetonides and cleavage of acetals and ketones has been ... Department of Organic Chemistry, Indian Association for the Cultivation of Science, ...

  15. Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making.

    Science.gov (United States)

    Orsini, Caitlin A; Hernandez, Caesar M; Singhal, Sarthak; Kelly, Kyle B; Frazier, Charles J; Bizon, Jennifer L; Setlow, Barry

    2017-11-29

    Decision making is a multifaceted process, consisting of several distinct phases that likely require different cognitive operations. Previous work showed that the basolateral amygdala (BLA) is a critical substrate for decision making involving risk of punishment; however, it is unclear how the BLA is recruited at different stages of the decision process. To this end, the current study used optogenetics to inhibit the BLA during specific task phases in a model of risky decision making (risky decision-making task) in which rats choose between a small, "safe" reward and a large reward accompanied by varying probabilities of footshock punishment. Male Long-Evans rats received intra-BLA microinjections of viral vectors carrying either halorhodopsin (eNpHR3.0-mCherry) or mCherry alone (control) followed by optic fiber implants and were trained in the risky decision-making task. Laser delivery during the task occurred during intertrial interval, deliberation, or reward outcome phases, the latter of which was further divided into the three possible outcomes (small, safe; large, unpunished; large, punished). Inhibition of the BLA selectively during the deliberation phase decreased choice of the large, risky outcome (decreased risky choice). In contrast, BLA inhibition selectively during delivery of the large, punished outcome increased risky choice. Inhibition had no effect during the other phases, nor did laser delivery affect performance in control rats. Collectively, these data indicate that the BLA can either inhibit or promote choice of risky options, depending on the phase of the decision process in which it is active. SIGNIFICANCE STATEMENT To date, most behavioral neuroscience research on neural mechanisms of decision making has used techniques that preclude assessment of distinct phases of the decision process. Here we show that optogenetic inhibition of the BLA has opposite effects on choice behavior in a rat model of risky decision making, depending on the phase

  16. Antioxidant and Acetylcholinesterase Inhibiting Activity of Several Aqueous Tea Infusions in vitro

    Directory of Open Access Journals (Sweden)

    Višnja Katalinić

    2008-01-01

    Full Text Available A study of antioxidant activity and acetylcholineste ase (AChE inhibitory activity of aqueous tea infusions prepared from walnut (Juglans regia L., peppermint (Mentha×piperita L., strawberry (Fragaria×ananassa L., lemon balm (Melissa officinalis L., sage (Salvia officinalis L., and immortelle (Helichrysum arenarium (L. Moench. is presented here. Chemical composition of selected aqueous tea infusions was determined by high-performance liquid chromatography with photodiode-array method (HPLC-PDA, and the following phenolic compounds were identified as dominant: rosmarinic acid, gallic acid (not identified in walnut and sage, caffeic acid (in sage and peppermint, neochlorogenic acid, 3-p-coumaroylquinic acid and quercetin 3-galactoside (in walnut and luteolin 7-O-glucoside (in sage. Antioxidant activity of the selected aqueous tea infusions was measured using low-density lipoprotein (LDL oxidation method, 2,2'-diphenyl-1-picrylhydrazyl (DPPH radical scavenging test, β-carotene bleaching method, and Rancimat method (induction period of lard oxidation. Strawberry and lemon balm aqueous infusions completely inhibited LDL oxidation at the concentration of 0.005 g/L in the reacting system. Very long prolongation of the lag phase was achieved with peppermint and sage aqueous infusions. All tested infusions in the concentration range of 0.05–2.85 g/L showed very pronounced effect of DPPH scavenging activity (90–100 % as well as the inhibition of β-carotene bleaching (89–100 %. In pure lipid medium, used in Rancimat method, sage and immortelle at the concentration of 0.16 % (by mass had the highest ability to inhibit lipid peroxidation process. Screening of the AChE inhibitory activity by Ellman´s method showed that the strongest inhibition was obtained with walnut and strawberry aqueous infusions at the concentration of 1.36 g/L in the reacting system. The presented results suggest that natural antioxidants could be useful and merit further

  17. Review of the inhibition of biological activities of food-related selected toxins by natural compounds.

    Science.gov (United States)

    Friedman, Mendel; Rasooly, Reuven

    2013-04-23

    There is a need to develop food-compatible conditions to alter the structures of fungal, bacterial, and plant toxins, thus transforming toxins to nontoxic molecules. The term 'chemical genetics' has been used to describe this approach. This overview attempts to survey and consolidate the widely scattered literature on the inhibition by natural compounds and plant extracts of the biological (toxicological) activity of the following food-related toxins: aflatoxin B1, fumonisins, and ochratoxin A produced by fungi; cholera toxin produced by Vibrio cholerae bacteria; Shiga toxins produced by E. coli bacteria; staphylococcal enterotoxins produced by Staphylococcus aureus bacteria; ricin produced by seeds of the castor plant Ricinus communis; and the glycoalkaloid α-chaconine synthesized in potato tubers and leaves. The reduction of biological activity has been achieved by one or more of the following approaches: inhibition of the release of the toxin into the environment, especially food; an alteration of the structural integrity of the toxin molecules; changes in the optimum microenvironment, especially pH, for toxin activity; and protection against adverse effects of the toxins in cells, animals, and humans (chemoprevention). The results show that food-compatible and safe compounds with anti-toxin properties can be used to reduce the toxic potential of these toxins. Practical applications and research needs are suggested that may further facilitate reducing the toxic burden of the diet. Researchers are challenged to (a) apply the available methods without adversely affecting the nutritional quality, safety, and sensory attributes of animal feed and human food and (b) educate food producers and processors and the public about available approaches to mitigating the undesirable effects of natural toxins that may present in the diet.

  18. Low concentrations of metformin selectively inhibit CD133⁺ cell proliferation in pancreatic cancer and have anticancer action.

    Directory of Open Access Journals (Sweden)

    Shanmiao Gou

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States. The prognosis remains dismal with little advance in treatment. Metformin is a drug widely used for the treatment of type II diabetes. Recent epidemiologic data revealed that oral administration of metformin is associated with a reduced risk of pancreatic cancer, suggesting its potential as a novel drug for this disease. Many studies have demonstrated the in vitro anticancer action of metformin, but the typically used concentrations were much higher than the in vivo plasma and tissue concentrations achieved with recommended therapeutic doses of metformin, and low concentrations of metformin had little effect on the proliferation of pancreatic cancer cells. We examined the effect of low concentrations of metformin on different subpopulations of pancreatic cancer cells and found that these selectively inhibited the proliferation of CD133⁺ but not CD24⁺CD44⁺ESA⁺ cells. We also examined the effect of low concentrations of metformin on cell invasion and in vivo tumor formation, demonstrating in vitro and in vivo anticancer action. Metformin was associated with a reduction of phospho-Erk and phospho-mTOR independent of Akt and AMPK phosphorylation. CD133⁺ pancreatic cancer cells are considered to be cancer stem cells that contribute to recurrence, metastasis and resistance to adjuvant therapies in pancreatic cancer. Our results provide a basis for combination of metformin with current therapies to improve the prognosis of this disease.

  19. Bacteriostatic effect of simvastatin on selected oral streptococci in vitro

    Directory of Open Access Journals (Sweden)

    Eugene J Whitaker

    2017-01-01

    Full Text Available Context and Objective: Simvastatin is a widely used cholesterol-lowering drug, which has been found to have a number of pleiotropic effects. The aim of this study was to evaluate the antimicrobial effectiveness of simvastatin against selected oral streptococci as determined by the minimum inhibitory concentration (MIC. Methods: Streptococcus mutans, Streptococcus sanguis, Streptococcus anginosus, and Streptococcus salivarius were the test microorganisms. The serial dilution method was used to determine the MIC of simvastatin against these organisms. The MIC was defined as the lowest concentration of simvastatin that completely inhibited growth of the test organisms. Results: The data indicate that simvastatin inhibits the growth of the test organisms, with MIC's ranging from 7.8 to 15.6 μg/ml. Conclusions: Simvastatin has MIC's against the selected bacteria that compare favorably with reported values for topical agents such as essential oil, chlorhexidine gluconate, and triclosan. The levels of simvastatin required to inhibit bacterial growth of oral bacteria exceed the reported levels of the drug found in plasma or crevicular fluid of patients who are treated with this cholesterol-lowering drug. However, clinical studies are warranted to investigate the potential use of simvastatin as a novel antiplaque agent that could be used in local drug delivery to the oral cavity of those patients who are prescribed this cholesterol-lowering drug.

  20. Inhibition of Klebsiella pneumoniae growth by selected Australian plants: natural approaches for the prevention and management of ankylosing spondylitis.

    Science.gov (United States)

    Winnett, V; Sirdaarta, J; White, A; Clarke, F M; Cock, I E

    2017-04-01

    A wide variety of herbal remedies are used in traditional Australian medicine to treat inflammatory disorders, including autoimmune inflammatory diseases. One hundred and six extracts from 40 native Australian plant species traditionally used for the treatment of inflammation and/or to inhibit bacterial growth were investigated for their ability to inhibit the growth of a microbial trigger for ankylosing spondylitis (K. pneumoniae). Eighty-six of the extracts (81.1%) inhibited the growth of K. pneumoniae. The D. leichardtii, Eucalyptus spp., K. flavescens, Leptospermum spp., M. quinquenervia, Petalostigma spp., P. angustifolium, S. spinescens, S. australe, S. forte and Tasmannia spp. extracts were effective K. pneumoniae growth inhibitors, with MIC values generally <1000 µg/mL. The T. lanceolata peppercorn extracts were the most potent growth inhibitors, with MIC values as low as 16 µg/mL. These extracts were examined by non-biased GC-MS headspace analysis and comparison with a compound database. A notable feature was the high relative abundance of the sesquiterpenoids polygodial, guaiol and caryophyllene oxide, and the monoterpenoids linalool, cineole and α-terpineol in the T. lanceolata peppercorn methanolic and aqueous extracts. The extracts with the most potent K. pneumoniae inhibitory activity (including the T. lanceolata peppercorn extracts) were nontoxic in the Artemia nauplii bioassay. The lack of toxicity and the growth inhibitory activity of these extracts against K. pneumoniae indicate their potential for both preventing the onset of ankylosing spondylitis and minimising its symptoms once the disease is established.