WorldWideScience

Sample records for acetolactate synthase inhibitor

  1. Resistência de amendoim-bravo aos herbicidas inibidores da enzima acetolactato sintase Wild poinsettia resistance to acetolactate synthase inhibitor herbicides

    Directory of Open Access Journals (Sweden)

    Ribas A. Vidal

    1999-12-01

    Full Text Available O controle contínuo de plantas daninhas através da aplicação de herbicidas que apresentam atividade em um único local de ação nas plantas favorece a seleção de biótipos resistentes a estes herbicidas, em certas espécies vegetais. Quatro experimentos foram conduzidos em condições casa-de-vegetação, na Faculdade de Agronomia da Universidade Federal do Rio Grande do Sul, com os objetivos de avaliar a ocorrência de resistência aos herbicidas inibidores da enzima acetolactato sintase (ALS em vários biótipos de leiteiro ou amendoim-bravo (Euphorbia heterophylla EPHHL e avaliar a ocorrência de resistência múltipla a herbicidas com atividade em outros locais de ação. Biótipo oriundo de Passo Fundo foi resistente ao imazethapyr, enquanto biótipo oriundo de Porto Alegre foi suscetível. O biótipo de Passo Fundo apresentou resistência cruzada aos herbicidas imidazolinonas: imazapyr, imazaquin e imazethapyr; sulfoniluréias: chlorimuron, nicosulfuron e metsulfuron; e sulfonanilida: flumetsulan. Este biótipo não foi resistente aos herbicidas com os seguintes mecanismos de ação: inibidores de EPSPs, mimetizadores de auxina, inibidores dos fotossistemas I e II e inibidores de PROTOX. A confirmação de resistência aos inibidores de ALS em biótipos oriundos de Nãome-Toque, Passo Fundo e Rio Pardo sugere ampla dispersão no Rio Grande do Sul de resistência de E. heterophylla aos herbicidas deste mecanismo de ação.The continuous weed control with herbicides of only one site of action selects biotypes resistant to these herbicides. Four experiments were conducted in greenhouse of UFRGS, Brazil, to confirm the occurence of wild poinsettia (Euphorbia heterophylla biotypes resistance to herbicides inhibitors of acetholactate synthase (ALS, and to determine whether there was cross resistance to herbicides with other site of action. A biotype from Passo Fundo -RS was resistant to imazethapyr, whereas a biotype from Porto Alegre -RS

  2. Lack of Cross-Resistance of Imazaquin-Resistant Xanthium strumarium Acetolactate Synthase to Flumetsulam and Chlorimuron.

    Science.gov (United States)

    Schmitzer, P. R.; Eilers, R. J.; Cseke, C.

    1993-09-01

    Acetolactate synthase (ALS) was isolated from a field population of cocklebur (Xanthium strumarium) that developed resistance to the herbicide Scepter following three consecutive years of application. The active ingredient of Scepter, imazaquin, gave an inhibitor concentration required to produce 50% inhibition of the enzyme activity that was more than 300 times greater for the resistant enzyme than for the wild-type cocklebur ALS. Tests with flumetsulam and chlorimuron show that the resistant ALS was not cross-resistant to these two other classes of ALS inhibitors. PMID:12231935

  3. Activity of Acetolactate Synthase from Maize (Zea mays L. ) as Influenced by Chlorsulfuron and Tribenuron-methyl

    Institute of Scientific and Technical Information of China (English)

    FAN Zhi-jin; CHEN Jun-peng; HU Ji-ye; QIAN Chuan-fan; LI Zheng-ming

    2003-01-01

    Study on relative sensitivity of maize (Zea mays L. ) Nongda108 and Nongda3138 to sulfonylurea herbicide chlorsulfuron and tribenuron-methyl using maize taproot length by sand bioassy indicated that, Nongda3138 had higher tolerance to chlorsulfuron and tribenuron-methyl than Nongda108 did. Chlorsulfuron had stronger growth inhibition to maize Nongda108 and Nongda3138 than tribenuron-methyl did. Study on target enzyme of sulfonylurea herbicide acetolactate synthase (ALS) showed that, chlorsulfuron and tribenuron-methyl inhibited ALS in vitro strongly, and non-competitively. In the same concentration of inhibitors,chlorsuifuron had stronger ALS activity inhibition than tribenuron-methyl did. Lower level of chlorsulfuron and tribenuron-methyl has no ALS activity inhibition in vivo, the ALS inhibition only occurred in the condition of high concentration of chlorsulfuron and tribenuron-methyl in vivo.

  4. Role of a Highly Conserved and Catalytically Important Glutamate-49 in the Enterococcus faecalis Acetolactate Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Miyoung; Lee, Sangchoon; Cho, Junehaeng; Ryu, Seong Eon; Yoon, Moonyoung [Hanyang Univ., Seoul (Korea, Republic of); Koo, Bonsung [Rural Development Administration, Suwon (Korea, Republic of)

    2013-02-15

    Acetolactate synthase (ALS) is a thiamine diphosphate (ThDP)-dependent enzyme that catalyzes the decarboxylation of pyruvate and then condenses the hydroxyethyl moiety with another molecule of pyruvate to give 2-acetolactate (AL). AL is a key metabolic intermediate in various metabolic pathways of microorganisms. In addition, AL can be converted to acetoin, an important physiological metabolite that is excreted by many microorganisms. There are two types of ALSs reported in the literature, anabolic aceto-hydroxyacid synthase (AHAS) and catabolic ALSs (cALS). The anabolic AHAS is primarily found in plants, fungi, and bacteria, is involved in the biosynthesis of branched-chain amino acids (BCAAs), and contains flavin adenine dinucleotide (FAD), whereas the cALS is found only in some bacteria and is involved in the butanediol fermentation pathway. Both of the enzymes are ThDP-dependent and require a divalent metal ion for catalytic activity. Despite the similarities of the reactions catalyzed, the cALS can be distinguished from anabolic AHAS by a low optimal pH of about 6.0, FAD-independent functionality, a genetic location within the butanediol operon, and lack of a regulatory subunit. It is noteworthy that the structural and functional features of AHAS have been extensively studied, in contrast to those of cALS, for which only limited information is available. To date, the only crystal structure of cALS reported is from Klebsiella pneumonia, which revealed that the overall structure of K. pneumonia ALS is similar to that of AHAS except for the FAD binding region found in AHAS.

  5. Tribenuron-Methyl Induces Male Sterility through Anther-Specific Inhibition of Acetolactate Synthase Leading to Autophagic Cell Death.

    Science.gov (United States)

    Zhao, Lun; Jing, Xue; Chen, Li; Liu, Yingjun; Su, Yanan; Liu, Tingting; Gao, Changbin; Yi, Bin; Wen, Jing; Ma, Chaozhi; Tu, Jinxing; Zou, Jitao; Fu, Tingdong; Shen, Jinxiong

    2015-12-01

    Tribenuron-methyl (TM) is a powerful sulfonylurea herbicide that inhibits branched-chain amino acid (BCAA) biosynthesis by targeting the catalytic subunit (CSR1) of acetolactate synthase (ALS). Selective induction of male sterility by foliar spraying of TM at low doses has been widely used for hybrid seed production in rapeseed (Brassica napus); however, the underlying mechanism remains unknown. Here, we report greater TM accumulation and subsequent stronger ALS inhibition and BCAA starvation in anthers than in leaves and stems after TM application. Constitutive or anther-specific expression of csr1-1D (a CSR1 mutant) eliminated anther-selective ALS inhibition and reversed the TM-induced male sterile phenotype in both rapeseed and Arabidopsis. The results of TM daub-stem experiments, combined with the observations of little TM accumulation in anthers and reversion of TM-induced male sterility by targeted expression of the TM metabolism gene Bel in either the mesophyll or phloem, suggested that foliar-sprayed TM was polar-transported to anthers mainly through the mesophyll and phloem. Microscopy and immunoblotting revealed that autophagy, a bulk degradation process induced during cell death, was elevated in TM-induced male sterile anthers and by anther-specific knockdown of ALS. Moreover, TM-induced pollen abortion was significantly inhibited by the autophagy inhibitor 3-MA. These data suggested that TM was polar-transported to anthers, resulting in BCAA starvation via anther-specific ALS inhibition and, ultimately, autophagic cell death in anthers. PMID:26362932

  6. Identification of cofactor and herbicide binding domains in acetolactate synthase by bromopyruvate modification

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyk, D.E.; Schloss, J.V.

    1987-05-01

    Bromopyruvate is an affinity label for acetolactate synthase isozyme II from Salmonella typhimurium (ALSII). The concentration of bromopyruvate giving half-maximal inactivation is 0.1 mM, and the maximal rate of inactivation is 0.56 hr/sup -1/. Inactivation with (/sup 14/C)bromopyruvate is associated with the incorporation of 4 molecules of reagent per active site lost. Two cysteinyl residues are modified extremely rapidly, with no loss of enzymatic activity, as judged by quenching the reaction with thiol after its initial phase. Inactivation is a consequence of the additional two moles of reagent incorporated per mole of protomer. The additional incorporation is divided between one major and two minor sites of modification. Substantial protection against inactivation is afforded by FAD, with virtually complete protection provided by a mixture of FAD and thiamine pyrophosphate (TPP). The major site of modification, protected by FAD, is cysteinyl residue number67, based upon amino acid sequence analysis of the purified tryptic peptide that encompasses this site. The remaining site of modification, protected by TPP, is associated with cysteinyl residue number44. Both sites of modification are afforded protection by the sulfonylurea herbicide sulfometuron methyl (SM). Although inactivation by bromopyruvate exhibits rate saturation, indicating binding as a prerequisite to inactivation, neither pyruvate nor ..cap alpha..-ketobutyrate prevent modification of the enzyme by bromopyruvate. Thus, it would appear that the bromopyruvate binding site is not the site normally occupied by substrate.

  7. Mutant acetolactate synthase (ALS) gene as a selectable marker for Agrobacterium-mediated transformation of soybean

    Institute of Scientific and Technical Information of China (English)

    Chen Shiyun; Zhang Yong

    2006-01-01

    Soybean is one of the crops most difficult to be manipulated in vitro. Although several soybean transformation systems with different selectable marker genes have been reported, e.g. antibiotic (kanamycin or hygromycin) resistant genes and herbicide ( glufosinate, glyphosate) resistant selectable marker genes, all the selectable markers used were from bacteria origin. To find suitable selectable marker gene from plant origin for soybean transformation, a mutant acetolactate synthase (ALS) gene from Arabidopsis thaliana was tested for Agrobacterium-mediated soybean embryo axis transformation with the herbicide Arsenal as the selective agent. Transgenic soybean plants were obtained after the herbicide selection and the To transgenic lines showed resistance to the herbicide at a concentration of 100 g/ha. ALS enzyme assay of To transgenic line also showed higher activity compared to the wild type control plant.PCR analysis of the T1 transgenic lines confirmed the integration and segregation of the transgene. Taken together, our results showed that the mutant ALS gene is a suitable selectable marker for soybean transformation.

  8. Resistência de Bidens subalternans aos herbicidas inibidores da enzima acetolactato sintase utilizados na cultura da soja Resistance of Bidens subalternans to the acetolactate synthase inhibitor herbicides used in soybean crop

    Directory of Open Access Journals (Sweden)

    G.A. Gelmini

    2002-08-01

    Full Text Available O uso contínuo e prolongado de produtos com o mesmo mecanismo de ação pode provocar a manifestação de biótipos resistentes. Para verificar possíveis novos casos de resistência, bem como alternativas para prevenção e manejo, foram coletadas sementes de Bidens subalternans na região de São Gabriel D' Oeste-MS, em plantas que sobreviveram a tratamentos em que inibidores da ALS foram sistematicamente utilizados. Em experimento conduzido em vasos em casa de vegetação, o biótipo com histórico de resistente foi comparado ao suscetível quando submetido aos diversos herbicidas com diferentes mecanismos de ação usados em pós-emergência, os quais foram aplicados nas doses de zero, uma, duas, quatro e oito vezes a recomendada. Decorridos 20 dias, foram avaliadas a porcentagem de controle e a produção da fitomassa verde, visando estabelecimento de curvas de dose-resposta e obtenção dos fatores de resistência. O biótipo oriundo de área com histórico de aplicações repetidas de inibidores da ALS apresentou elevado nível de resistência aos herbicidas chlorimuron-ethyl e imazethapyr, demonstrando ser portador de resistência cruzada aos inibidores da ALS dos grupos das sulfoniluréias e imidazolinonas. Entretanto, esse biótipo foi eficientemente controlado pelos herbicidas fomesafen, lactofen, bentazon, glufosinato de amônio e glyphosate.The continuous and prolonged use of products with the same mechanism of action can provoke the manifestation of resistant biotypes. In horder to verify possible new cases, as well as alternatives for prevention and control, seeds of Bidens subalternans were collected at São Gabriel D' Oeste (MS region at plants that survived continuous treatments which sistematically ALS inhibitors. Through an experiment performed in pots inside a greenhouse, a resistant biotype was compared to a susceptible one when submitted to herbicides with different mechanisms of action and applied at post emergence

  9. Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas.

    Science.gov (United States)

    Scarabel, Laura; Pernin, Fanny; Délye, Christophe

    2015-09-01

    Non-target-site resistance (NTSR) to herbicides is a major issue for the chemical control of weeds. Whilst predominant in grass weeds, NTSR remains largely uninvestigated in dicot weeds. We investigated the occurrence, inheritance and genetic control of NTSR to acetolactate synthase (ALS) inhibitors in Papaver rhoeas (corn poppy) using progenies from plants with potential NTSR to the imidazolinone herbicide imazamox. NTSR to imazamox was inherited from parents over two successive generations. NTSR to tritosulfuron (a sulfonylurea) was observed in F1 generations and inherited in F2 generations. NTSR to florasulam (a triazolopyrimidine) emerged in F2 generations. Our findings suggest NTSR was polygenic and gradually built-up by accumulation over generations of loci with moderate individual effects in single plants. We also demonstrated that ALS alleles conferring herbicide resistance can co-exist with NTSR loci in P. rhoeas plants. Previous research focussed on TSR in P. rhoeas, which most likely caused underestimation of NTSR significance in this species. This may also apply to other dicot species. From our data, resistance to ALS inhibitors in P. rhoeas appears complex, and involves well-known mutant ALS alleles and a set of unknown NTSR loci that confer resistance to ALS inhibitors from different chemical families. PMID:26259184

  10. Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas.

    Science.gov (United States)

    Scarabel, Laura; Pernin, Fanny; Délye, Christophe

    2015-09-01

    Non-target-site resistance (NTSR) to herbicides is a major issue for the chemical control of weeds. Whilst predominant in grass weeds, NTSR remains largely uninvestigated in dicot weeds. We investigated the occurrence, inheritance and genetic control of NTSR to acetolactate synthase (ALS) inhibitors in Papaver rhoeas (corn poppy) using progenies from plants with potential NTSR to the imidazolinone herbicide imazamox. NTSR to imazamox was inherited from parents over two successive generations. NTSR to tritosulfuron (a sulfonylurea) was observed in F1 generations and inherited in F2 generations. NTSR to florasulam (a triazolopyrimidine) emerged in F2 generations. Our findings suggest NTSR was polygenic and gradually built-up by accumulation over generations of loci with moderate individual effects in single plants. We also demonstrated that ALS alleles conferring herbicide resistance can co-exist with NTSR loci in P. rhoeas plants. Previous research focussed on TSR in P. rhoeas, which most likely caused underestimation of NTSR significance in this species. This may also apply to other dicot species. From our data, resistance to ALS inhibitors in P. rhoeas appears complex, and involves well-known mutant ALS alleles and a set of unknown NTSR loci that confer resistance to ALS inhibitors from different chemical families.

  11. Agrobacterium mediated transfer of a mutant Arabidopsis acetolactate synthase gene confers resistance to chlorsulfuron in chicory (Cichorium intybus L.).

    Science.gov (United States)

    Vermeulen, A; Vaucheret, H; Pautot, V; Chupeau, Y

    1992-06-01

    Leaf discs of C. intybus were inoculated with an Agrobacterium tumefaciens strain harboring a neomycin phosphotransferase (neo) gene for kanamycin resistance and a mutant acetolactate synthase gene (csr1-1) from Arabidopsis thaliana conferring resistance to sulfonylurea herbicides. A regeneration medium was optimized which permitted an efficient shoot regeneration from leaf discs. Transgenic shoots were selected on rooting medium containing 100 mg/l kanamycin sulfate. Integration of the csr1-1 gene into genomic DNA of kanamycin resistant chicory plants was confirmed by Southern blot hybridizations. Analysis of the selfed progenies (S1 and S2) of two independent transformed clones showed that kanamycin and chlorsulfuron resistances were inherited as dominant Mendelian traits. The method described here for producing transformed plants will allow new opportunities for chicory breeding. PMID:24203132

  12. A double mutant allele, csr1-4, of Arabidopsis thaliana encodes an acetolactate synthase with altered kinetics.

    Science.gov (United States)

    Mourad, G; Williams, D; King, J

    1995-01-01

    A comparison is made of the kinetic characteristics of acetolactate synthase (EC 4.1.3.18) in extracts from Columbia wild type and four near-isogenic, herbicide-resistant mutants of Arabidopsis thaliana (L.) Heynh. The mutants used were the chlorsulfuron-resistant GH50 (csr1-1), the imazapyr-resistant GH90 (csr1-2), the triazolopyrimidine-resistant Tzp5 (csr1-3) and the multiherbicide-resistant, double mutant GM4.8 (csr1-4), derived from csr1-1 and csr1-2 by intragenic recombination (G. Mourad et al. 1994, Mol. Gen. Genet. 243, 178-184). Kmapp and Vmax values for the substrate pyruvate were unaffected by any of the mutations giving rise to herbicide resistance. Feedback inhibition by L-valine (L-Val), L-leucine (L-Leu) and L-isoleucine (L-Ile) of acetolactate synthase extracted from wild type and mutants fitted a mixed competitive pattern most closely. Ki values for L-Val, L-Leu and L-Ile inhibition were not significantly different from wild type in extracts from csr1-1, csr1-2, and csr1-3. Ki values were significantly higher than wild type by two- and five-fold, respectively, for csr1-4 with L-Val and L-Leu but not L-Ile. GM4.8 (csr1-4) plants were also highly resistant in their growth to added L-Val and L-Leu.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7767237

  13. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance.

    Science.gov (United States)

    Duhoux, Arnaud; Carrère, Sébastien; Gouzy, Jérôme; Bonin, Ludovic; Délye, Christophe

    2015-03-01

    Non-target-site resistance (NTSR) to herbicides that disrupts agricultural weed control is a worldwide concern for food security. NTSR is considered a polygenic adaptive trait driven by differential gene regulation in resistant plants. Little is known about its genetic determinism, which precludes NTSR diagnosis and evolutionary studies. We used Illumina RNA-sequencing to investigate transcriptomic differences between plants from the global major weed rye-grass sensitive or resistant to the acetolactate-synthase (ALS) inhibiting herbicide pyroxsulam. Plants were collected before and along a time-course after herbicide application. De novo transcriptome assembly yielded a resource (LOLbase) including 92,381 contigs representing potentially active transcripts that were assigned putative annotations. Early effects of ALS inhibition consistent with the literature were observed in resistant and sensitive plants, proving LOLbase data were relevant to study herbicide response. Comparison of resistant and sensitive plants identified 30 candidate NTSR contigs. Further validation using 212 plants resistant or sensitive to pyroxsulam and/or to the ALS inhibitors iodosulfuron + mesosulfuron confirmed four contigs (two cytochromes P450, one glycosyl-transferase and one glutathione-S-transferase) were NTSR markers which combined expression levels could reliably identify resistant plants. This work confirmed that NTSR is driven by differential gene expression and involves different mechanisms. It provided tools and foundation for subsequent NTSR investigations.

  14. Downy Brome (Bromus tectorum L. and Broadleaf Weed Control in Winter Wheat with Acetolactate Synthase-Inhibiting Herbicides

    Directory of Open Access Journals (Sweden)

    Patrick W. Geier

    2013-04-01

    Full Text Available A study was conducted for three seasons in northwest Kansas, USA to evaluate acetolactate synthase (ALS-inhibiting herbicides for downy brome (Bromus tectorum L. and winter annual broadleaf weed control in winter wheat. Herbicides included pyroxsulam at 18.4 g ai ha−1, propoxycarbazone-Na at 44 g ai ha−1, premixed propoxycarbazone-Na & mesosulfuron-methyl at 27 g ai ha−1, and sulfosulfuron at 35 g ai ha−1. The herbicides were applied postemergence in fall and spring seasons. Averaged over time of application, no herbicide controlled downy brome more than 78% in any year. When downy brome densities were high, control was less than 60%. Pyroxsulam controlled downy brome greater than or similar to other herbicides tested. Flixweed (Descurainia sophia L., blue mustard [Chorispora tenella (Pallas DC.], and henbit (Lamium amplexicaule L. control did not differ among herbicide treatments. All herbicides tested controlled flixweed and blue mustard at least 87% and 94%, respectively. However, none of the herbicides controlled henbit more than 73%. Fall herbicide applications improved weed control compared to early spring applications; improvement ranged from 3% to 31% depending on the weed species. Henbit control was greatly decreased by delaying herbicide applications until spring compared to fall applications (49% vs. 80% control. Herbicide injury was observed in only two instances. The injury was ≤13% with no difference between herbicides and the injury did not impact final plant height or grain yield.

  15. Effect of four classes of herbicides on growth and acetolactate-synthase activity in several variants of Arabidopsis thaliana.

    Science.gov (United States)

    Mourad, G; King, J

    1992-11-01

    We have isolated a triazolopyrimidine-resistant mutant csrl-2, of Arabidopsis thaliana (L.) Heynh. Here, we compare csrl-2 with the previously isolated mutants csrl and csr1-1, and with wild-type Arabidopsis for responses to members of four classes of herbicides, namely, sulfonylureas, triazolopyrimidines, imidazolinones, and pyrimidyl-oxy-benzoates. Two separable herbicide binding sites have been identified previously on the protein of acetolactate synthase (ALS). Here, the mutation giving rise to csrl, originating in a coding sequence towards the 5' end of the ALS gene, and that in csrl-2, affected the inhibitory action on growth and ALS activity of sulfonylurea and triazolopyrimidine herbicides but not that of the imidazolinones or pyrimidyl-oxybenzoates. The other mutation, in csrl-1, originating in a coding sequence towards the 3' end of the ALS gene, affected the inhibitory action of imidazolinones and pyrimidyl-oxy-benzoates but not that of the sulfonylureas or triazolopyrimidines. Additional, stimulatory effects of some of these herbicides on growth of seedlings was unrelated to their effect on their primary target, ALS. The conclusion from these observations is that one of the two previously identified herbicide-binding sites may bind sulfonylureas and triazolopyrimidines while the other may bind imidazolinones and pyrimidyl-oxy-benzoates within a herbicide-binding domain on the ALS enzyme. Such a comparative study using near-isogenic mutants from the same species allows not only the further definition of the domain of herbicide binding on ALS but also could aid investigation of the relationship between herbicide-, substrate-, and allosteric-binding sites on this enzyme.This research was supported by an Operating Grant from the Natural Sciences and Engineering Research Council of Canada to J.K. PMID:24178380

  16. Non-target-site resistance to ALS inhibitors in waterhemp (Amaranthus tuberculatus)

    Science.gov (United States)

    A waterhemp population (MCR) previously characterized as resistant to 4-hyroxyphenylpyruvate dioxygenase (HPPD) and photosystem II (PSII) inhibitors was found to have two different resistance responses to acetolactate synthase (ALS) inhibitors. Plants from the MCR population exhibiting high resistan...

  17. Expression of flavonoid 3',5'-hydroxylase and acetolactate synthase genes in transgenic carnation: assessing the safety of a nonfood plant.

    Science.gov (United States)

    Chandler, Stephen F; Senior, Michael; Nakamura, Noriko; Tsuda, Shinzo; Tanaka, Yoshikazu

    2013-12-01

    For 16 years, genetically modified flowers of carnation ( Dianthus caryophyllus ) have been sold to the floristry industry. The transgenic carnation carries a herbicide tolerance gene (a mutant gene encoding acetolactate synthase (ALS)) and has been modified to produce delphinidin-based anthocyanins in flowers, which conventionally bred carnation cannot produce. The modified flower color has been achieved by introduction of a gene encoding flavonoid 3',5'-hydroxylase (F3'5'H). Transgenic carnation flowers are produced in South America and are primarily distributed to North America, Europe, and Japan. Although a nonfood crop, the release of the genetically modified carnation varieties required an environmental risk impact assessment and an assessment of the potential for any increased risk of harm to human or animal health compared to conventionally bred carnation. The results of the health safety assessment and the experimental studies that accompanied them are described in this review. The conclusion from the assessments has been that the release of genetically modified carnation varieties which express F3'5'H and ALS genes and which accumulate delphinidin-based anthocyanins do not pose an increased risk of harm to human or animal health.

  18. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    Science.gov (United States)

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism. PMID:24827744

  19. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, P.M.; Eoyang, L.

    1987-06-01

    Acetohyroxyacid synthease I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo(2-/sup 14/C)pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of /sup 14/C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. The authors confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site.

  20. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis

    International Nuclear Information System (INIS)

    Acetohyroxyacid synthease I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2-14C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of 14C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. The authors confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site

  1. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis.

    OpenAIRE

    Silverman, P M; Eoyang, L

    1987-01-01

    Acetohydroxyacid synthase I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2-14C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a ...

  2. A Cellular Model for Screening Neuronal Nitric Oxide Synthase Inhibitors

    OpenAIRE

    Fang, Jianguo; Silverman, Richard B.

    2009-01-01

    Nitric oxide synthase (NOS) inhibitors are potential drug candidates because it has been well demonstrated that excessive production of NO critically contributes to a range of diseases. Most inhibitors have been screened in vitro using recombinant enzymes, leading to the discovery of a variety of potent compounds. To make inhibition studies more physiologically relevant and bridge the gap between the in vitro assay and in vivo studies, we report here a cellular model for screening NOS inhibit...

  3. Inhibitors of nitric oxide synthase in inflammatory arthritis.

    Science.gov (United States)

    Boughton-Smith, N K; Tinker, A C

    1998-07-01

    There is considerable evidence that excessive nitric oxide (NO) synthesized from L-arginine by inducible nitric oxide synthase (iNOS) plays an important pathological role in inflammatory arthritis. Since NO synthesized by constitutive isoforms of NOS has a physiological role, a great deal of activity has been directed at identifying inhibitors of NOS that are selective for the induced isoform. The major chemical areas that have been described so far in the search for such selective iNOS inhibitors and the activity of some of these compounds in animal models of arthritis are reviewed. PMID:18465556

  4. Fatty acid synthase inhibitors isolated from Punica granatum L

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, He-Zhong [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, (China); Ma, Qing-Yun; Liang, Wen-Juan; Huang, Sheng-Zhuo; Dai, Hao-Fu; Wang, Peng-Cheng; Zhao, You-Xing, E-mail: zhaoyx1011@163.com [Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou (China); Fan, Hui-Jin; Ma, Xiao-Feng, E-mail: maxiaofeng@gucas.ac.cn [College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing (China)

    2012-05-15

    The aim of this work is the isolation of fatty acid synthase (FAS) inhibitors from the ethyl acetate extracts of fruit peels of Punica granatum L. Bioassay-guided chemical investigation of the fruit peels resulted in the isolation of seventeen compounds mainly including triterpenoids and phenolic compounds, from which one new oleanane-type triterpene (punicaone) along with fourteen known compounds were isolated for the first time from this plant. Seven isolates were evaluated for inhibitory activities of FAS and two compounds showed to be active. Particularly, flavogallonic acid exhibited strong FAS inhibitory activity with IC{sub 50} value of 10.3 {mu}mol L{sup -1}. (author)

  5. Fatty acid synthase inhibitors isolated from Punica granatum L

    International Nuclear Information System (INIS)

    The aim of this work is the isolation of fatty acid synthase (FAS) inhibitors from the ethyl acetate extracts of fruit peels of Punica granatum L. Bioassay-guided chemical investigation of the fruit peels resulted in the isolation of seventeen compounds mainly including triterpenoids and phenolic compounds, from which one new oleanane-type triterpene (punicaone) along with fourteen known compounds were isolated for the first time from this plant. Seven isolates were evaluated for inhibitory activities of FAS and two compounds showed to be active. Particularly, flavogallonic acid exhibited strong FAS inhibitory activity with IC50 value of 10.3 μmol L-1. (author)

  6. Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications.

    Science.gov (United States)

    Zhang, Wei; Chen, Chao; Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered to be ideal alternatives to non-biodegradable synthetic plastics. However, study of PhaCs has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty, along with lack of a crystal structure, has become the main hurdle to understanding and engineering PhaCs for economical PHA production. Here we report the synthesis of two carbadethia CoA analogues--sT-CH2-CoA (26 a) and sTet-CH2-CoA (26 b)--as well as sT-aldehyde (saturated trimer aldehyde, 29), as new PhaC inhibitors. Study of these analogues with PhaECAv revealed that 26 a/b and 29 are competitive and mixed inhibitors, respectively. Both the CoA moiety and extension of PHA chain will increase binding affinity; this is consistent with our docking study. Estimation of the Kic values of 26 a and 26 b predicts that a CoA analogue incorporating an octameric hydroxybutanoate (HB) chain might facilitate the formation of a kinetically well-behaved synthase.

  7. Resistência cruzada da losna-branca (Parthenium hysterophorus aos herbicidas inibidores da enzima acetolactato sintase Ragweed parthenium (Parthenium hysterophorus cross-resistance to acetolactate synthase inhibiting herbicides

    Directory of Open Access Journals (Sweden)

    D.L.P. Gazziero

    2006-01-01

    reas com problemas de resistência.Weed control using herbicide application is a common agricultural practice. However, the application of the same herbicide or herbicides with the same mechanism of action, for consecutive years, in the same area, can result in the selection of herbicide resistant biotypes. The aim of this work was to confirm the resistance of a ragweed (Parthenium hysterophorus biotype to acetolactate synthase (ALS inhibiting herbicides. The plants were collected on a farm in Mandaguari, north of Parana State, Brazil. Plants with suspicious resistance were treated with several herbicides and rates and compared with those of a susceptible population. The herbicide treatments were established considering the recommended rates, double and four times higher than the recommended rate as follows: cloransulam-methyl 0.0, 33.6, 67.2 and 134.4 g a.i. ha-1 plus adjuvant 0.2% v/v, chlorimuron-ethyl 0.0, 20.0, 40.0 and 80.0 g a.i., imazethapyr 0.0, 100.0, 200.0 and 400.0 g a.i. ha-1, iodosulfuron-methyl-sodium plus foramsulfuron 0.0, 3.0 + 45.0 ga.i. ha-1 (150.0 g c.p. ha-1, 6.0 + 90.0 g a.i. ha-1 (300.0 g c.p. ha-1 and 12.0 + 180.0 g a.i. ha¹ (600.0 g c.p. ha-1. In addition, a treatment with 2,4-D (536.0 g a.e. ha¹ was applied. Resistant plant dose-response curves presented lower values when compared to the susceptible population, in all rates and herbicides studied. The ragweed biotype was confirmed as resistant to the ALS inhibiting herbicides. Cross-resistance was observed with herbicides belonging to the chemical groups of imidazolinones (imazethapyr, triazolopyrimidines (cloransulam-methyl, sulfonylureas (chlorimuron-ethyl and iodosulfuron-methyl-sodium plus foramsulfuron. 2,4-D has a different mechanism of action, presenting high values of control, and thus being a management alternative in areas with ragweed resistant population.

  8. A new motif for inhibitors of geranylgeranyl diphosphate synthase.

    Science.gov (United States)

    Foust, Benjamin J; Allen, Cheryl; Holstein, Sarah A; Wiemer, David F

    2016-08-15

    The enzyme geranylgeranyl diphosphate synthase (GGDPS) is believed to receive the substrate farnesyl diphosphate through one lipophilic channel and release the product geranylgeranyl diphosphate through another. Bisphosphonates with two isoprenoid chains positioned on the α-carbon have proven to be effective inhibitors of this enzyme. Now a new motif has been prepared with one isoprenoid chain on the α-carbon, a second included as a phosphonate ester, and the potential for a third at the α-carbon. The pivaloyloxymethyl prodrugs of several compounds based on this motif have been prepared and the resulting compounds have been tested for their ability to disrupt protein geranylgeranylation and induce cytotoxicity in myeloma cells. The initial biological studies reveal activity consistent with GGDPS inhibition, and demonstrate a structure-function relationship which is dependent on the nature of the alkyl group at the α-carbon. PMID:27338660

  9. Use of nitric oxide synthase inhibitors for the treatment of inflammatory disease and pain.

    Science.gov (United States)

    Cheshire, D R

    2001-07-01

    This article reviews the recent literature on selective inhibitors of nitric oxide synthase (NOS) between 1999 and the first quarter of 2001. The introduction highlights the major therapeutic objectives for NOS inhibitors, including rheumatoid arthritis (RA), osteoarthritis (OA) and pain. The review attempts to cover the structural diversity of small molecule NOS inhibitors currently being explored in the pharmaceutical and academic communities. PMID:15995936

  10. Biochemistry: Acetohydroxyacid Synthase

    Directory of Open Access Journals (Sweden)

    Pham Ngoc Chien

    2010-02-01

    Full Text Available Acetohydroxyacid synthase (AHAS, EC 2.2.1.6; formerly known as acetolactate synthase, ALS is a thiamin-and FAD-dependent enzyme which catalyses the first common step in the biosynthesis of the branched-chain amino acids (BCAA isoleucine, leucine and valine. The enzyme is inhibited by several commercial herbicides and has been studied over the last 20 to 30 years. A short introductory note about acetohydroxyacid synthase has been provided.

  11. Nitric oxide synthase inhibitors containing the carboxamidine group or its isosteres

    Science.gov (United States)

    Proskuryakov, Sergei Ya; Konoplyannikov, Anatoly G.; Skvortzov, Valery G.; Mandrugin, Andrey A.; Fedoseev, Vladimir M.

    2005-09-01

    The review summarises structures, activities and selectivity of NO-synthase (NOS) inhibitors belonging to various classes of chemical compounds. Linear, cyclic and heterocyclic structures containing guanidine, amidine and/or isothiourea fragments are considered. The structure-activity relationships for these inhibitors were analysed in relation to their action on the inducible NOS isoform. This analysis can provide the basis for the synthesis of new more efficient compounds.

  12. 7-Nitro indazole, an inhibitor of neuronal nitric oxide synthase, attenuates pilocarpine-induced seizures

    NARCIS (Netherlands)

    R. van Leeuwen (Redmer); R. de Vries (René); E. Dzoljic (Eleonora)

    1995-01-01

    textabstract7-Nitro indazole (25–100 mg/kg i.p.), an inhibitor of neuronal nitric oxide (NO) synthase, attenuated the severity of pilocarpine (300 mg/kg i.p.)-induced seizures in mice. This indicates that the decreased neuroexcitability of the central nervous system (CNS) following administration of

  13. Fatty Acid Synthase Inhibitor C75 Ameliorates Experimental Colitis

    OpenAIRE

    Matsuo, Shingo; Yang, Weng-Lang; Aziz, Monowar; Kameoka, Shingo; Wang, Ping

    2013-01-01

    Abnormalities of lipid metabolism through overexpression of fatty acid synthase (FASN), which catalyzes the formation of long-chain fatty acids, are associated with the development of inflammatory bowel disease (IBD). C75 is a synthetic α-methylene-γ-butyrolactone compound that inhibits FASN activity. We hypothesized that C75 treatment could effectively reduce the severity of experimental colitis. Male C57BL/6 mice were fed 4% dextran sodium sulfate (DSS) for 7 d. C75 (5 mg/kg body weight) or...

  14. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase.

    Science.gov (United States)

    Chung, Jiwoung; Goo, Eunhye; Yu, Sangheon; Choi, Okhee; Lee, Jeehyun; Kim, Jinwoo; Kim, Hongsup; Igarashi, Jun; Suga, Hiroaki; Moon, Jae Sun; Hwang, Ingyu; Rhee, Sangkee

    2011-07-19

    Quorum sensing (QS) controls certain behaviors of bacteria in response to population density. In gram-negative bacteria, QS is often mediated by N-acyl-L-homoserine lactones (acyl-HSLs). Because QS influences the virulence of many pathogenic bacteria, synthetic inhibitors of acyl-HSL synthases might be useful therapeutically for controlling pathogens. However, rational design of a potent QS antagonist has been thwarted by the lack of information concerning the binding interactions between acyl-HSL synthases and their ligands. In the gram-negative bacterium Burkholderia glumae, QS controls virulence, motility, and protein secretion and is mediated by the binding of N-octanoyl-L-HSL (C8-HSL) to its cognate receptor, TofR. C8-HSL is synthesized by the acyl-HSL synthase TofI. In this study, we characterized two previously unknown QS inhibitors identified in a focused library of acyl-HSL analogs. Our functional and X-ray crystal structure analyses show that the first inhibitor, J8-C8, binds to TofI, occupying the binding site for the acyl chain of the TofI cognate substrate, acylated acyl-carrier protein. Moreover, the reaction byproduct, 5'-methylthioadenosine, independently binds to the binding site for a second substrate, S-adenosyl-L-methionine. Closer inspection of the mode of J8-C8 binding to TofI provides a likely molecular basis for the various substrate specificities of acyl-HSL synthases. The second inhibitor, E9C-3oxoC6, competitively inhibits C8-HSL binding to TofR. Our analysis of the binding of an inhibitor and a reaction byproduct to an acyl-HSL synthase may facilitate the design of a new class of QS-inhibiting therapeutic agents.

  15. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review.

    Science.gov (United States)

    Zhang, Jia-Sui; Lei, Jie-Ping; Wei, Guo-Qing; Chen, Hui; Ma, Chao-Ying; Jiang, He-Zhong

    2016-09-01

    Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors.

  16. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review.

    Science.gov (United States)

    Zhang, Jia-Sui; Lei, Jie-Ping; Wei, Guo-Qing; Chen, Hui; Ma, Chao-Ying; Jiang, He-Zhong

    2016-09-01

    Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors. PMID:26864638

  17. CJ-15,183, a new inhibitor of squalene synthase produced by a fungus, Aspergillus aculeatus.

    Science.gov (United States)

    Watanabe, S; Hirai, H; Ishiguro, M; Kambara, T; Kojima, Y; Matsunaga, T; Nishida, H; Suzuki, Y; Sugiura, A; Harwood, H J; Huang, L H; Kojima, N

    2001-11-01

    A new squalene synthase (SSase) inhibitor, CJ-15,183 (I) was isolated from the fermentation broth of a fungus, Aspergillus aculeatus CL38916. The compound potently inhibited rat liver and Candida albicans microsomal SSases and also inhibited the human enzyme. It also showed antifungal activities against filamentous fungi and a yeast. The structure was determined to be an aliphatic tetracarboxylic acid compound consisting of an alkyl gamma-lactone, malic acid and isocitric acid moieties by spectroscopic studies.

  18. Synthesis and biological evaluation of 2,4-diaminopteridine derivatives as nitric oxide synthase inhibitor

    Institute of Scientific and Technical Information of China (English)

    Fei Ma; Gang Lü; Wei Fen Zhou; Qiu Juan Wang; Yi Hua Zhang; Qi Zheng Yao

    2009-01-01

    A series of novel 2,4-diamino-pteridines(9a-1)were synthesized and evaluated as inhibitors of inducible nitric oxide synthase (iNOS)in vitro.It was found that 9a,9d,9e,9h,9i and 91 showed potent inhibitory activities similar to that of methotrexate(MTX),while the activities of 9b,9c,9f,9g,9j and 9k ale stronger than MTX.

  19. Discovery and Characterization of a Class of Pyrazole Inhibitors of Bacterial Undecaprenyl Pyrophosphate Synthase.

    Science.gov (United States)

    Concha, Nestor; Huang, Jianzhong; Bai, Xiaopeng; Benowitz, Andrew; Brady, Pat; Grady, LaShadric C; Kryn, Luz Helena; Holmes, David; Ingraham, Karen; Jin, Qi; Pothier Kaushansky, Laura; McCloskey, Lynn; Messer, Jeffrey A; O'Keefe, Heather; Patel, Amish; Satz, Alexander L; Sinnamon, Robert H; Schneck, Jessica; Skinner, Steve R; Summerfield, Jennifer; Taylor, Amy; Taylor, J David; Evindar, Ghotas; Stavenger, Robert A

    2016-08-11

    Undecaprenyl pyrophosphate synthase (UppS) is an essential enzyme in bacterial cell wall synthesis. Here we report the discovery of Staphylococcus aureus UppS inhibitors from an Encoded Library Technology screen and demonstrate binding to the hydrophobic substrate site through cocrystallography studies. The use of bacterial strains with regulated uppS expression and inhibitor resistant mutant studies confirmed that the whole cell activity was the result of UppS inhibition, validating UppS as a druggable antibacterial target. PMID:27379833

  20. Structural study and thermodynamic characterization of inhibitor binding to lumazine synthase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Morgunova, Ekaterina [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden); Illarionov, Boris; Saller, Sabine [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Popov, Aleksander [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX 09 (France); Sambaiah, Thota [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Bacher, Adelbert [Chemistry Department, Technical University of Munich, 85747 Garching (Germany); Cushman, Mark [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Fischer, Markus [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Ladenstein, Rudolf, E-mail: rudolf.ladenstein@ki.se [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden)

    2010-09-01

    Crystallographic studies of lumazine synthase, the penultimate enzyme of the riboflavin-biosynthetic pathway in B. anthracis, provide a structural framework for the design of antibiotic inhibitors, together with calorimetric and kinetic investigations of inhibitor binding. The crystal structure of lumazine synthase from Bacillus anthracis was solved by molecular replacement and refined to R{sub cryst} = 23.7% (R{sub free} = 28.4%) at a resolution of 3.5 Å. The structure reveals the icosahedral symmetry of the enzyme and specific features of the active site that are unique in comparison with previously determined orthologues. The application of isothermal titration calorimetry in combination with enzyme kinetics showed that three designed pyrimidine derivatives bind to lumazine synthase with micromolar dissociation constants and competitively inhibit the catalytic reaction. Structure-based modelling suggested the binding modes of the inhibitors in the active site and allowed an estimation of the possible contacts formed upon binding. The results provide a structural framework for the design of antibiotics active against B. anthracis.

  1. Inhibitors of the sphingomyelin cycle: Sphingomyelin synthases and sphingomyelinases.

    Science.gov (United States)

    Adada, Mohamad; Luberto, Chiara; Canals, Daniel

    2016-05-01

    Sphingolipids are a class of bioactive lipids, which are key modulators of an increasing number of physiologic and pathophysiologic processes that include cell cycle, apoptosis, angiogenesis, stress and inflammatory responses. Sphingomyelin is an important structural component of biological membranes, and one of the end-points in the synthesis of sphingolipids. Mainly synthetized in the Golgi apparatus, sphingomyelin is transported to all other biological membranes. Upon stimulation, sphingomyelin can be hydrolyzed to ceramide by 5 different sphingomyelinases. The diversity and cellular topology of ceramide allow it to exert multiple biologies. Furthermore, ceramide can be metabolized to many other bioactive sphingolipids. Ceramide, coming from sphingomyelin or other complex sphingolipids, can be hydrolyzed to sphingosine, which can easily change cellular localization. In turn, sphingosine can be recycled to ceramide and to sphingomyelin in the endoplasmic reticulum, completing the sphingomyelin cycle. Our understanding of the roles of various sphingolipids in the regulation of different cellular processes has come from studying the enzymes that regulate these sphingolipids, and their manipulation. The use of pharmacologic inhibitors has been critical for their study, as well as being promising bullets for disease treatment. Some of these diseases involving the sphingomyelin cycle include cancer, inflammation, atherosclerosis, diabetes and some rare diseases such as Niemann-Pick disease. This review will focus on the enzymes involved in the sphingomyelin cycle, their history, and their involvement in pathophysiological processes. Finally, it will describe in details all the small molecules that are being used to inhibit these enzymes and their use in therapeutics. PMID:26200918

  2. Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry

    Science.gov (United States)

    McMillan, Kirk; Adler, Marc; Auld, Douglas S.; Baldwin, John J.; Blasko, Eric; Browne, Leslie J.; Chelsky, Daniel; Davey, David; Dolle, Ronald E.; Eagen, Keith A.; Erickson, Shawn; Feldman, Richard I.; Glaser, Charles B.; Mallari, Cornell; Morrissey, Michael M.; Ohlmeyer, Michael H. J.; Pan, Gonghua; Parkinson, John F.; Phillips, Gary B.; Polokoff, Mark A.; Sigal, Nolan H.; Vergona, Ronald; Whitlow, Marc; Young, Tish A.; Devlin, James J.

    2000-01-01

    Potent and selective inhibitors of inducible nitric oxide synthase (iNOS) (EC 1.14.13.39) were identified in an encoded combinatorial chemical library that blocked human iNOS dimerization, and thereby NO production. In a cell-based iNOS assay (A-172 astrocytoma cells) the inhibitors had low-nanomolar IC50 values and thus were >1,000-fold more potent than the substrate-based direct iNOS inhibitors 1400W and N-methyl-l-arginine. Biochemical studies confirmed that inhibitors caused accumulation of iNOS monomers in mouse macrophage RAW 264.7 cells. High affinity (Kd ≈ 3 nM) of inhibitors for isolated iNOS monomers was confirmed by using a radioligand binding assay. Inhibitors were >1,000-fold selective for iNOS versus endothelial NOS dimerization in a cell-based assay. The crystal structure of inhibitor bound to the monomeric iNOS oxygenase domain revealed inhibitor–heme coordination and substantial perturbation of the substrate binding site and the dimerization interface, indicating that this small molecule acts by allosterically disrupting protein–protein interactions at the dimer interface. These results provide a mechanism-based approach to highly selective iNOS inhibition. Inhibitors were active in vivo, with ED50 values of <2 mg/kg in a rat model of endotoxin-induced systemic iNOS induction. Thus, this class of dimerization inhibitors has broad therapeutic potential in iNOS-mediated pathologies. PMID:10677491

  3. Heme-Coordinating Inhibitors of Neuronal Nitric Oxide Synthase. Iron-Thioether Coordination is Stabilized by Hydrophobic Contacts Without Increased Inhibitor Potency

    OpenAIRE

    Martell, Jeffrey D.; Li, Huiying; Doukov, Tzanko; Martásek, Pavel; Roman, Linda J.; Soltis, Michael; Poulos, Thomas L.; Silverman, Richard B.

    2010-01-01

    The heme-thioether ligand interaction often occurs between heme iron and native methionine ligands, but thioether-based heme-coordinating (type II) inhibitors are uncommon due to the difficulty in stabilizing the Fe-S bond. Here, a thioether-based inhibitor (3) of neuronal nitric oxide synthase (nNOS) was designed, and its binding was characterized by spectrophotometry and crystallography. A crystal structure of inhibitor 3 coordinated to heme iron was obtained, representing, to our knowledge...

  4. Thiolactomycin-Based Inhibitors of Bacterial β-Ketoacyl-ACP Synthases with in Vivo Activity.

    Science.gov (United States)

    Bommineni, Gopal R; Kapilashrami, Kanishk; Cummings, Jason E; Lu, Yang; Knudson, Susan E; Gu, Chendi; Walker, Stephen G; Slayden, Richard A; Tonge, Peter J

    2016-06-01

    β-Ketoacyl-ACP synthases (KAS) are key enzymes involved in the type II bacterial fatty acid biosynthesis (FASII) pathway and are putative targets for antibacterial discovery. Several natural product KAS inhibitors have previously been reported, including thiolactomycin (TLM), which is produced by Nocardia spp. Here we describe the synthesis and characterization of optically pure 5R-thiolactomycin (TLM) analogues that show improved whole cell activity against bacterial strains including methicillin-resistant Staphylococcus aureus (MRSA) and priority pathogens such as Francisella tularensis and Burkholderia pseudomallei. In addition, we identify TLM analogues with in vivo efficacy against MRSA and Klebsiella pneumoniae in animal models of infection. PMID:27187871

  5. Structure-Based Inhibitors Exhibit Differential Activities against Helicobacter pylori and Escherichia coli Undecaprenyl Pyrophosphate Synthases

    Directory of Open Access Journals (Sweden)

    Chih-Jung Kuo

    2008-01-01

    Full Text Available Helicobacter pylori colonizes the human gastric epithelium and causes diseases such as gastritis, peptic ulcers, and stomach cancer. Undecaprenyl pyrophosphate synthase (UPPS, which catalyzes consecutive condensation reactions of farnesyl pyrophosphate with eight isopentenyl pyrophosphate to form lipid carrier for bacterial peptidoglycan biosynthesis, represents a potential target for developing new antibiotics. In this study, we solved the crystal structure of H. pylori UPPS and performed virtual screening of inhibitors from a library of 58,635 compounds. Two hits were found to exhibit differential activities against Helicobacter pylori and Escherichia coli UPPS, giving the possibility of developing antibiotics specially targeting pathogenic H. pylori without killing the intestinal E. coli.

  6. Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin.

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Wu

    Full Text Available ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy.

  7. N-Substituted acetamidines and 2-methylimidazole derivatives as selective inhibitors of neuronal nitric oxide synthase.

    Science.gov (United States)

    Maccallini, Cristina; Patruno, Antonia; Lannutti, Fabio; Ammazzalorso, Alessandra; De Filippis, Barbara; Fantacuzzi, Marialuigia; Franceschelli, Sara; Giampietro, Letizia; Masella, Simona; Felaco, Mario; Re, Nazzareno; Amoroso, Rosa

    2010-11-15

    A series of N-substituted acetamidines and 2-methylimidazole derivatives structurally related to W1400 were synthesized and evaluated as Nitric Oxide Synthase (NOS) inhibitors. Analogs with sterically hindering isopropyl and phenyl substituents on the benzylic carbon connecting the aromatic core of W1400 to the acetamidine nitrogen, showed good inhibitory potency for nNOS (IC(50)=0.2 and 0.3 μM) and selectivity over eNOS (500 and 1166) and to a lesser extent over iNOS (50 and 100). A molecular modeling study allowed to shed light on the effects of the structural modifications on the selectivity of the designed inhibitors toward the different NOS isoforms. PMID:20933416

  8. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil

    Science.gov (United States)

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-03-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery.

  9. [Hematopoietic prostaglandin D synthase inhibitors for the treatment of duchenne muscular dystrophy].

    Science.gov (United States)

    Kamauchi, Shinya; Urade, Yoshihiro

    2011-11-01

    Duchenne muscular dystrophy (DMD) is a severe X-linked muscle disease, characterized by progressive skeletal muscle atrophy and weakness. DMD is caused by mutations in the dystrophin gene, which encodes for the cytoskeletal protein dystrophin. DMD is one of the most common types of muscular dystrophies, affecting approximately 1 in 3,500 boys. There is no complete cure for this disease. Clinical trials for gene transfer therapy as a treatment for DMD have been performed but mainly in animal models. Hematopoietic prostaglandin (PG) D synthase (H-PGDS) was found to be induced in grouped necrotic muscle fibers of DMD patients and animal models, mdx mice, and DMD dogs. We found an orally active H-PGDS inhibitor (HQL-79) and determined the 3D structure of the inhibitor-human H-PGDS complex by X-ray crystallography. Oral administration of HQL-79 markedly suppressed prostaglandin D2 (PGD2) production, reduced necrotic muscle volume, and improved muscle strength in mdx dystrophic mice. Based on the high-resolution 3D structures of the inhibitor-H-PGDS complex, we designed alternative H-PGDS inhibitors, which were 100- to 3000-times more potent than HQL-79, as assessed by in vitro and in vivo analyses. We used these novel inhibitors for the treatment of DMD dogs and confirmed that oral administration of these inhibitors prevented skeletal muscle atrophy and weakness by decreasing PGD2 production. These results indicate that PGD2, synthesized by H-PGDS, is involved in the expansion of muscle necrosis in DMD. Thus, inhibition of H-PGDS by using inhibitors is a novel therapy for DMD. PMID:22068479

  10. A Small-Molecule Screening Platform for the Discovery of Inhibitors of Undecaprenyl Diphosphate Synthase.

    Science.gov (United States)

    Czarny, Tomasz L; Brown, Eric D

    2016-07-01

    The bacterial cell wall has long been a celebrated target for antibacterial drug discovery due to its critical nature in bacteria and absence in mammalian systems. At the heart of the cell wall biosynthetic pathway lies undecaprenyl phosphate (Und-P), the lipid-linked carrier upon which the bacterial cell wall is built. This study exploits recent insights into the link between late-stage wall teichoic acid inhibition and Und-P production, in Gram-positive organisms, to develop a cell-based small-molecule screening platform that enriches for inhibitors of undecaprenyl diphosphate synthase (UppS). Screening a chemical collection of 142,000 small molecules resulted in the identification of 6 new inhibitors of UppS. To date, inhibitors of UppS have generally shown off-target effects on membrane potential due to their physical-chemical characteristics. We demonstrate that MAC-0547630, one of the six inhibitors identified, exhibits selective, nanomolar inhibition against UppS without off-target effects on membrane potential. Such characteristics make it a unique chemical probe for exploring the inhibition of UppS in bacterial cell systems. PMID:27626101

  11. Inhibitors of Glycogen Synthase Kinase 3 with Exquisite Kinome-Wide Selectivity and Their Functional Effects.

    Science.gov (United States)

    Wagner, Florence F; Bishop, Joshua A; Gale, Jennifer P; Shi, Xi; Walk, Michelle; Ketterman, Joshua; Patnaik, Debasis; Barker, Doug; Walpita, Deepika; Campbell, Arthur J; Nguyen, Shannon; Lewis, Michael; Ross, Linda; Weïwer, Michel; An, W Frank; Germain, Andrew R; Nag, Partha P; Metkar, Shailesh; Kaya, Taner; Dandapani, Sivaraman; Olson, David E; Barbe, Anne-Laure; Lazzaro, Fanny; Sacher, Joshua R; Cheah, Jaime H; Fei, David; Perez, Jose; Munoz, Benito; Palmer, Michelle; Stegmaier, Kimberly; Schreiber, Stuart L; Scolnick, Edward; Zhang, Yan-Ling; Haggarty, Stephen J; Holson, Edward B; Pan, Jen Q

    2016-07-15

    The mood stabilizer lithium, the first-line treatment for bipolar disorder, is hypothesized to exert its effects through direct inhibition of glycogen synthase kinase 3 (GSK3) and indirectly by increasing GSK3's inhibitory serine phosphorylation. GSK3 comprises two highly similar paralogs, GSK3α and GSK3β, which are key regulatory kinases in the canonical Wnt pathway. GSK3 stands as a nodal target within this pathway and is an attractive therapeutic target for multiple indications. Despite being an active field of research for the past 20 years, many GSK3 inhibitors demonstrate either poor to moderate selectivity versus the broader human kinome or physicochemical properties unsuitable for use in in vitro systems or in vivo models. A nonconventional analysis of data from a GSK3β inhibitor high-throughput screening campaign, which excluded known GSK3 inhibitor chemotypes, led to the discovery of a novel pyrazolo-tetrahydroquinolinone scaffold with unparalleled kinome-wide selectivity for the GSK3 kinases. Taking advantage of an uncommon tridentate interaction with the hinge region of GSK3, we developed highly selective and potent GSK3 inhibitors, BRD1652 and BRD0209, which demonstrated in vivo efficacy in a dopaminergic signaling paradigm modeling mood-related disorders. These new chemical probes open the way for exclusive analyses of the function of GSK3 kinases in multiple signaling pathways involved in many prevalent disorders. PMID:27128528

  12. Recent Advances in the Development of Undecaprenyl Pyrophosphate Synthase Inhibitors as Potential Antibacterials.

    Science.gov (United States)

    Jukic, Marko; Rozman, Kaja; Gobec, Stanislav

    2016-01-01

    Expanding antibiotic use in clinical practice and emergence of bacterial resistance are fueling research efforts for the development of novel antibacterials. Underexploited or completely novel mechanistic approaches and biological targets are of especial interest. Undecaprenyl pyrophosphate synthase (UppS) is an essential enzyme in the biosynthesis of the bacterial cell wall. Although UppS is a validated target, no selective inhibitors occur in materia medica. Nevertheless, several native substrate analogues have been reported and used in enzyme kinetics studies or as pharmacological probes. The majority of small-molecule UppS inhibitors belong to the well-known class of bisphosphonates that are primarily used for treatment of bone resorption disorders. The most potent compound of this class has an IC50 of 0.59 µM. Inherently, the selectivity and suitability of such compounds for antimicrobial drug design can be questioned. Therefore, highthroughput and virtual screenings for non-bisphosphonate inhibitors were performed, and nanomolar inhibitors of UppS were identified, some with antimicrobial activities towards clinically relevant strains. The reported scaffolds belong to tetramic and tetronic acids with IC50 in the 100-nM range, and to dihydropyridines with IC50 down to 40 nM, all with antibacterial activity. Aryl-diketo acids are also potent inhibitors with MRSA antimicrobial activity, with the allosteric inhibitor methylisoxazole-4-carboxamide (IC50, 50 nM) active on several pathogenic Streptococcus pneumoniae strains. Clomiphene is a well-known oestrogen receptor modulator, and it has been reported to inhibit UppS. Although conclusions on the structure activity relationships cannot be drawn from all these data, these compound series represent an important contribution to the field of antibiotics. PMID:26718796

  13. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

    Science.gov (United States)

    Liu, Ziyi; Cao, Zongxian; Jourdan, Tony; Erdelyi, Katalin; Godlewski, Grzegorz; Szanda, Gergő; Liu, Jie; Park, Joshua K.; Mukhopadhyay, Bani; Rosenberg, Avi Z.; Liow, Jeih-San; Lorenz, Robin G.; Pacher, Pal; Innis, Robert B.; Kunos, George

    2016-01-01

    Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1−/− but not in nos2−/− mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis.

  14. Influence of nitric oxide synthase inhibitor on gerbil behavior after hyperbaric oxygen-induced convulsion

    Institute of Scientific and Technical Information of China (English)

    Jianguang Zhou; Changyun Liu; Yiqun Fang; Yingqi Zhou; Erli Xu; Jingchang Liu

    2008-01-01

    BACKGROUND: Studies have reported that nitric oxide synthase (NOS) inhibitor can prolong the latency of hyperbaric oxygen-induced convulsion (HBOC). However, there are very few reports addressing the influence of NOS inhibitor on mental behavior.OBJECTIVE: To investigate behavioral changes after HBOC in gerbils, as well as the influence of NOS inhibitor.DESIGN, TIME AND SETTING: Randomized experiments were performed in the Laboratory of Hyperbaric Pressure and Diving Physiology, Naval Medical Research Institute of Chinese PLA (Shanghai,China) from March 2005 to June 2007.MATERIALS: Forty male gerbils were randomly divided into five groups: HBOC, saline control, NOS inhibitor, pressure control, and normal control. Each group contained eight animals.METHODS: In the HBOC group, once depression induction ended, animals were removed from the chamber five minutes after the first appearance of generalized convulsion induced by 0.5 MPa hyperbaric oxygen. Ten minutes before entering the chamber, saline control and NOS inhibitor animals were intraperitoneally injected with 1 mL saline and 20 mg/kg NG-nitro-L-arginine, respectively. The pressure control group was only exposed to 0.5 MPa. The remaining procedures in these three groups were identical to the HBOC group. The normal control group received no intervention.MAIN OUTCOME MEASURES: Open field test scores in gerbils prior to HBOC, as well as immediately,24 hours, and 72 hours after decompression ended.RESULTS: HBOC was not detected in either the normal control or the pressure control group, and there were no significant differences in opcn field test scores prior to and after HBOC (P > 0.05). HBOC occurred in the HBOC, saline control, and NOS inhibitor groups, with significant differences in open field test scores after decompression ended compared to normal control and pressure control groups (P < 0.05-0.01).Compared to the HBOC and saline control groups, the NOS inhibitor group exhibited a significantly lower score in

  15. Pharmacology and clinical pharmacology of methylarginines used as inhibitors of nitric oxide synthases.

    Science.gov (United States)

    Kittel, Anja; Maas, Renke

    2014-01-01

    The methylarginines asymmetric dimethylarginine (ADMA) and monomethylarginine (L-NMMA) are endogenously formed inhibitors of nitric oxide synthases (NOS), which have extensively been investigated as risk markers and used as pharmacological tools to study the L-arginine-nitric oxide (NO) pathway in vitro and in vivo. It is the aim of the present review to summarize the clinical and experimental data on the pharmacological properties that are of relevance when planning and conducting experiments and clinical studies involving methylarginines. Key pharmacodynamic and pharmacokinetic data including IC50 values of ADMA and L-NMMA for NOS isoforms and transport proteins, as well as metabolism by dimethylarginine dimethylaminohydrolases (DDAH1 and DDAH2) and alanine-glyoxylate aminotransferase 2 (AGXT2) are discussed.

  16. Effect of nitric oxide synthase inhibitor on proteoglycan metabolism in repaired articular cartilage in rabbits

    Institute of Scientific and Technical Information of China (English)

    孙炜; 金大地; 王吉兴; 秦立赟; 刘晓霞

    2003-01-01

    Objective: To study the effect of nitric oxide synthase inhibitor, S-methyl thiocarbamate (SMT), on proteoglycan metabolism in repaired articular cartilage in rabbits. Methods: Twenty-four male New Zealand white rabbits, aged 8 months and weighing 2.5 kg±0.2 kg, were used in this study. Cartilage defects in full thickness were created on the intercondylar articular surface of bilateral femurs of all the rabbits. Then the rabbits were randomly divided into 3 groups (n=8 in each group). The defects in one group were filled with fibrin glue impregnated with recombinant human bone morphogenetic protein-2 (rhBMP-2, BMP group), in one group with fibrin glue impregnated with rhBMP-2 and hypodermic injection with SMT (SMT group) and in the other group with nothing (control group). All the animals were killed at one year postoperatively. The tissue sections were stained with safranine O-fast green and analyzed by Quantiment 500 system to determine the content of glycosaminoglycan through measuring the percentage of safranine O-stained area, the thickness of cartilages and the mean gray scale (average stain intensity). Radiolabelled sodium sulphate (Na235SO4) was used to assess the proteoglycan synthesis. Results: At one year postoperatively, the percentage of safranine O-stained area, the mean gray scale and the cartilage thickness of the repaired tissues in SMT group were significantly higher than those of BMP group (P<0.01) and the control group (P<0.05). Result of incorporation of Na235SO4 showed that the proteoglycan synthesis in SMT group was higher than those of BMP group and the control group (P<0.01). Conclusions: SMT, a nitric oxide synthase inhibitor, can significantly increase the content of glycosaminoglycan and proteoglycan synthesis, and computer-based image analysis is a reliable method for evaluating proteoglycan metabolism.

  17. Effects of the inducible nitric oxide synthase inhibitor aminoguanidine in two different rat models of schizophrenia.

    Science.gov (United States)

    Lafioniatis, Anastasios; Orfanidou, Martha A; Papadopoulou, Evangelia S; Pitsikas, Nikolaos

    2016-08-01

    Several lines evidence indicate that the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine and the mixed dopamine (DA) D1/D2 receptor agonist apomorphine induce schizophrenia-like symptoms in rodents, including memory impairments and social withdrawal. Nitric oxide (NO) has been proposed to act as an intracellular messenger in the brain and its overproduction is associated with schizophrenia. The current study was designed to investigate the ability of the inducible NO synthase (iNOS) inhibitor aminoguanidine (AG) to counteract schizophrenia-like behavioural deficits produced by ketamine and apomorphine in rats. The efficacy of AG to antagonize extinction of recognition memory, ketamine and apomorphine-induced recognition memory impairments was tested utilizing the novel object recognition task (NORT). Further, the efficacy of AG to attenuate ketamine-induced social withdrawal was examined in the social interaction test. AG (25 and 50mg/kg) antagonized extinction of recognition memory and reversed ketamine (3mg/kg) and apomorphine (1mg/kg)-induced recognition memory deficits. In contrast, AG (50 and 100mg/kg) did not counteract the ketamine (8mg/kg)-induced social isolation. The present data show that the iNOS inhibitor AG counteracted extinction of recognition memory and reversed recognition memory deficits produced by dysfunction of the glutamatergic and the dopaminergic (DAergic) system in rats. Therefore, AG may be efficacious in attenuating memory impairments often observed in schizophrenia patients. PMID:27132765

  18. Study on Inhibitors of Methionine Synthase Ⅷ: Synthesis of 2,5-Diamino-4-oxo-6- (3-butenyl) pyrimidine

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Li; WANG Hong-Tao; WANG Xiao-Wei; MA Xiao-Yan; LIU Jun-Yi; R.J. Griff; B.T. Golding

    2003-01-01

    @@ Cobalamin-dependent methionine synthase plays a crucial role in folate metabolism and such would appear to be an excellent target for rational antifolate drug design. However, to date, no anticancer agents directed at this enzyme are available, but the enzyme is efficiently and specifically inhibited by N2O and this has proven invaluable for evaluating the biochemical consequence of enzyme inhibition and for mechanistic studies. [1,2] 2,5-Diamino-4-oxo-6-(3-butenyl) pyrimidine, a key intermediate in synthetic inhibitors of methionine synthase, was first synthesized using γbutenyl-β-ketoester and guanidine carbonate (Scheme 1). [3

  19. Dynamic ligand-based pharmacophore modeling and virtual screening to identify mycobacterial cyclopropane synthase inhibitors

    Indian Academy of Sciences (India)

    CHINMAYEE CHOUDHURY; U DEVA PRIYAKUMAR; G NARAHARI SASTRY

    2016-05-01

    Multidrug resistance in Mycobacterium tuberculosis (M. Tb) and its coexistence with HIV arethe biggest therapeutic challenges in anti-M. Tb drug discovery. The current study reports a Virtual Screening(VS) strategy to identify potential inhibitors of Mycobacterial cyclopropane synthase (CmaA1), an importantM. Tb target considering the above challenges. Five ligand-based pharmacophore models were generatedfrom 40 different conformations of the cofactors of CmaA1 taken from molecular dynamics (MD) simulationstrajectories of CmaA1. The screening abilities of these models were validated by screening 23 inhibitors and1398 non-inhibitors of CmaA1. A VS protocol was designed with four levels of screening i.e., ligand-basedpharmacophore screening, structure-based pharmacophore screening, docking and absorption, distribution,metabolism, excretion and the toxicity (ADMET) filters. In an attempt towards repurposing the existing drugsto inhibit CmaA1, 6,429 drugs reported in DrugBank were considered for screening. To find compounds thatinhibit multiple targets of M. Tb as well as HIV, we also chose 701 and 11,109 compounds showing activitybelow 1 μM range on M. Tb and HIV cell lines, respectively, collected from ChEMBL database. Thus, a totalof 18,239 compounds were screened against CmaA1, and 12 compounds were identified as potential hits forCmaA1 at the end of the fourth step. Detailed analysis of the structures revealed these compounds to interactwith key active site residues of CmaA1.

  20. Identification of a Glycogen Synthase Kinase-3[beta] Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice

    Energy Technology Data Exchange (ETDEWEB)

    Kozikowski, Alan P.; Gunosewoyo, Hendra; Guo, Songpo; Gaisina, Irina N.; Walter, Richard L.; Ketcherside, Ariel; McClung, Colleen A.; Mesecar, Andrew D.; Caldarone, Barbara (Psychogenics); (Purdue); (UIC); (UTSMC)

    2012-05-02

    Bipolar disorder is characterized by a cycle of mania and depression, which affects approximately 5 million people in the United States. Current treatment regimes include the so-called 'mood-stabilizing drugs', such as lithium and valproate that are relatively dated drugs with various known side effects. Glycogen synthase kinase-3{beta} (GSK-3{beta}) plays a central role in regulating circadian rhythms, and lithium is known to be a direct inhibitor of GSK-3{beta}. We designed a series of second generation benzofuran-3-yl-(indol-3-yl)maleimides containing a piperidine ring that possess IC{sub 50} values in the range of 4 to 680 nM against human GSK-3{beta}. One of these compounds exhibits reasonable kinase selectivity and promising preliminary absorption, distribution, metabolism, and excretion (ADME) data. The administration of this compound at doses of 10 to 25 mg kg{sup -1} resulted in the attenuation of hyperactivity in amphetamine/chlordiazepoxide-induced manic-like mice together with enhancement of prepulse inhibition, similar to the effects found for valproate (400 mg kg{sup -1}) and the antipsychotic haloperidol (1 mg kg{sup -1}). We also tested this compound in mice carrying a mutation in the central transcriptional activator of molecular rhythms, the CLOCK gene, and found that the same compound attenuates locomotor hyperactivity in response to novelty. This study further demonstrates the use of inhibitors of GSK-3{beta} in the treatment of manic episodes of bipolar/mood disorders, thus further validating GSK-3{beta} as a relevant therapeutic target in the identification of new therapies for bipolar patients.

  1. Glucose-Modulated Mitochondria Adaptation in Tumor Cells: A Focus on ATP Synthase and Inhibitor Factor 1

    Directory of Open Access Journals (Sweden)

    Irene Mavelli

    2012-02-01

    Full Text Available Warburg’s hypothesis has been challenged by a number of studies showing that oxidative phosphorylation is repressed in some tumors, rather than being inactive per se. Thus, treatments able to shift energy metabolism by activating mitochondrial pathways have been suggested as an intriguing basis for the optimization of antitumor strategies. In this study, HepG2 hepatocarcinoma cells were cultivated with different metabolic substrates under conditions mimicking “positive” (activation/biogenesis or “negative” (silencing mitochondrial adaptation. In addition to the expected up-regulation of mitochondrial biogenesis, glucose deprivation caused an increase in phosphorylating respiration and a rise in the expression levels of the ATP synthase β subunit and Inhibitor Factor 1 (IF1. Hyperglycemia, on the other hand, led to a markedly decreased level of the transcriptional coactivator PGC-α suggesting down-regulation of mitochondrial biogenesis, although no change in mitochondrial mass and no impairment of phosphorylating respiration were observed. Moreover, a reduction in mitochondrial networking and in ATP synthase dimer stability was produced. No effect on β-ATP synthase expression was elicited. Notably, hyperglycemia caused an increase in IF1 expression levels, but it did not alter the amount of IF1 associated with ATP synthase. These results point to a new role of IF1 in relation to high glucose utilization by tumor cells, in addition to its well known effect upon mitochondrial ATP synthase regulation.

  2. A New Route for the Synthesis of Thymidylate Synthase Inhibitor Raltitrexed

    Institute of Scientific and Technical Information of China (English)

    CAO Sheng-Li; WAN Rong; FENG Yu-Ping

    2003-01-01

    @@ Raltitrexed (8), a new quinazoline-based inhibitor of thymidylate synthase (TS), has been registered widely for the first-line treatment of advanced colorectal cancer. [1,2] As reported in the literature, [3,4] it can be prepared from 2-thiophenecarboxylic acid via 7 steps in 3% overall yield, but n-BuLi and the low temperature at - 78 ℃ was needed for the introduction of 5-carboxyl group into thiophene ring through lithiation of 2-(N-Boc-N-methylamino) thiophene followed by the addition of CO2. Here we wish to report a new route for the synthesis of Raltitrexed which was obtained from 2,5-thiophenedicarboxylic acid via 6 steps in 18.2% overall yield (Scheme 1). The mild conditions utilized in the synthetic route avoid the use of n-BuLi, NaH and the experimental conditions of low temperature at - 78 ℃ and strictly free of water, and are suitable for the large-scale preparation.

  3. Biophysical Investigation of the Mode of Inhibition of Tetramic Acids, the Allosteric Inhibitors of Undecaprenyl Pyrophosphate Synthase

    OpenAIRE

    Lee, Lac V.; Granda, Brian; Dean, Karl; Tao, Jianshi; Liu, Eugene; Zhang, Rui; Peukert, Stefan; Wattanasin, Sompong; XIE, XIAOLING; Ryder, Neil S.; Tommasi, Ruben; Deng, Gejing

    2010-01-01

    Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation of eight molecules of isopentenyl pyrophosphate (IPP) with farnesyl pyrophosphate (FPP) to generate the C55 undecaprenyl pyrophosphate (UPP). It has been demonstrated that tetramic acids (TAs) are selective and potent inhibitors of UPPS, but the mode of inhibition was unclear. In this work, we used a fluorescent FPP probe to study possible TA binding at the FPP binding site. A photosensitive TA analogue was desi...

  4. The Study of Pyridazine Compounds on Prostanoids: Inhibitors of COX, cAMP Phosphodiesterase, and TXA2 Synthase

    Directory of Open Access Journals (Sweden)

    Mohammad Asif

    2014-01-01

    Full Text Available The pyridazine moiety is an important structural feature of various pharmacological active compounds. Synthetic pyridazine compounds have been reported as effective antiprostaglandins (PGs, 5-lipoxygenase (5-LOX, and antiplatelet agents, that is, inhibitors of prostaglandin or cyclooxygenase (COX-I & COX-II enzyme, platelet cAMP phosphodiesterase, and thromboxane A2 (TXA2 synthase. These compounds are selective and nonselective COX inhibitors and showed analgesic, anti-inflammatory, and antipyretic activity. Pyridazine compounds with antiplatelet agents inhibited TXA2 enzyme. Pyridazines also exhibited antirheumatoid activity. These pyridazine compounds hold considerable interest relative to the preparation of organic intermediates and other anticipated biologically active compounds.

  5. Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents.

    Science.gov (United States)

    Ji, Qinggang; Ge, Zhiqiang; Ge, Zhixing; Chen, Kaizhi; Wu, Hualong; Liu, Xiaofei; Huang, Yanrong; Yuan, Lvjiang; Yang, Xiaolan; Liao, Fei

    2016-01-27

    A series of novel phosphoramidate derivatives of coumarin have been designed and synthesized as chitin synthase (CHS) inhibitors. All the synthesized compounds have been screened for their chitin synthase inhibition activity and antimicrobial activity in vitro. The bioactive assay manifested that most of the target compounds exhibited good efficacy against CHS and a variety of clinically important fungal pathogens. In particular, compound 7t with IC50 of 0.08 mM against CHS displayed stronger efficiency than the reference Polyoxin B with IC50 of 0.16 mM. In addition, the apparent Ki values of compound 7t was 0.096 mM while the Km of Chitin synthase prepared from Candida tropicalis was 3.86 mM for UDP-N-acetylglucosamine, and the result of the Ki showed that the compounds was a non-competitive inhibitor of the CHS. As far as the antifungal activity is concerned, compounds 7o, 7r and 7t were highly active against Aspergillus flavus with MIC values in the range of 1 μg/mL to 2 μg/Ml while the results of antibacterial screening showed that these compounds have negligible actions to the tested bacteria. These results indicated that the design of these compounds as antifungal agents was rational.

  6. Molecular docking analysis of selected Clinacanthus nutans constituents as xanthine oxidase, nitric oxide synthase, human neutrophil elastase, matrix metalloproteinase 2, matrix metalloproteinase 9 and squalene synthase inhibitors

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Narayanaswamy

    2016-01-01

    Full Text Available Background: Clinacanthus nutans (Burm. f. Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO, nitric oxide synthase (NOS, human neutrophil elastase (HNE, matrix metalloproteinase (MMP 2 and 9, and squalene synthase (SQS using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET, and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0 toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS.

  7. Selective Nitric Oxide Synthase Inhibitor 7-Nitroindazole Protects against Cocaine-Induced Oxidative Stress in Rat Brain

    OpenAIRE

    Vessela Vitcheva; Rumyana Simeonova; Magdalena Kondeva-Burdina; Mitka Mitcheva

    2015-01-01

    One of the mechanisms involved in the development of addiction, as well as in brain toxicity, is the oxidative stress. The aim of the current study was to investigate the effects of 7-nitroindazole (7-NI), a selective inhibitor of neuronal nitric oxide synthase (nNOS), on cocaine withdrawal and neurotoxicity in male Wistar rats. The animals were divided into four groups: control; group treated with cocaine (15 mg/kg−1, i.p., 7 days); group treated with 7-NI (25 mg/kg−1, i.p., 7 days); and a c...

  8. Discovery and in Vivo Evaluation of Potent Dual CYP11B2 (Aldosterone Synthase) and CYP11B1 Inhibitors.

    Science.gov (United States)

    Meredith, Erik L; Ksander, Gary; Monovich, Lauren G; Papillon, Julien P N; Liu, Qian; Miranda, Karl; Morris, Patrick; Rao, Chang; Burgis, Robin; Capparelli, Michael; Hu, Qi-Ying; Singh, Alok; Rigel, Dean F; Jeng, Arco Y; Beil, Michael; Fu, Fumin; Hu, Chii-Whei; LaSala, Daniel

    2013-12-12

    Aldosterone is a key signaling component of the renin-angiotensin-aldosterone system and as such has been shown to contribute to cardiovascular pathology such as hypertension and heart failure. Aldosterone synthase (CYP11B2) is responsible for the final three steps of aldosterone synthesis and thus is a viable therapeutic target. A series of imidazole derived inhibitors, including clinical candidate 7n, have been identified through design and structure-activity relationship studies both in vitro and in vivo. Compound 7n was also found to be a potent inhibitor of 11β-hydroxylase (CYP11B1), which is responsible for cortisol production. Inhibition of CYP11B1 is being evaluated in the clinic for potential treatment of hypercortisol diseases such as Cushing's syndrome. PMID:24900631

  9. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  10. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    International Nuclear Information System (INIS)

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  11. L-NAME, a nitric oxide synthase inhibitor, as a potential countermeasure to post-suspension hypotension in rats

    Science.gov (United States)

    Bayorh, M. A.; Socci, R. R.; Watts, S.; Wang, M.; Eatman, D.; Emmett, N.; Thierry-Palmer, M.

    2001-01-01

    A large number of astronauts returning from spaceflight experience orthostatic hypotension. This hypotension may be due to overproduction of vasodilatory mediators, such as nitric oxide (NO) and prostaglandins. To evaluate the role of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) as a countermeasure against the post-suspension reduction in mean arterial pressure (MAP), we assessed the cardiovascular responses and vascular reactivity to 7-day 30 degrees tail-suspension and a subsequent 6 hr post-suspension period in conscious rats. After a pre-suspension reading, direct MAP and heart rate (HR) were measured daily and every 2 hrs post-suspension. The NO synthase inhibitor L-NAME (20 mg/kg, i.v.), or saline, were administered after the 7th day reading prior to release from suspension and at 2 and 4 hrs post-suspension. At 6 hrs post-suspension, vascular reactivity was assessed. While MAP did not change during the suspension period, it was reduced post-suspension. Heart rate was not significantly altered. L-NAME administration reversed the post-suspension reduction in MAP. In addition, the baroreflex sensitivity for heart rate was modified by L-NAME. Thus, the post-suspension reduction in MAP may be due to overproduction of NO and altered baroreflex activity.

  12. Substrate channeling: alpha-ketobutyrate inhibition of acetohydroxy acid synthase in Salmonella typhimurium.

    OpenAIRE

    Shaw, K J; Berg, C M

    1980-01-01

    Excess alpha-ketobutyrate inhibited the growth of Salmonella typhimurium LT2 by inhibiting the acetohydroxy acid synthase-catalyzed synthesis of alpha-acetolactate (a valine precursor). As a result, cells were starved for valine, and both ilvB (encoding acetohydroxy acid synthase I) and ilvGEDA (ilvG encodes acetohydroxy acid synthase II) were derepressed. The addition of valine reversed the effects of alpha-ketobutyrate.

  13. Nitric oxide synthase inhibitor improves de novo and long-term L-DOPA-induced dyskinesia in hemiparkinsonian rats

    Directory of Open Access Journals (Sweden)

    Fernando Eduardo Padovan-Neto

    2011-06-01

    Full Text Available Inhibitors of neuronal and endothelial nitric oxide synthase decrease l-3,4-dihidroxifenilalanine (L-DOPA-induced dyskinesias in rodents. The mechanism of nitric oxide inhibitor action is unknown. The aims of the present study were to investigate the decrease of L-DOPA-induced abnormal involuntary movements in 6-hydroxydopamine (6-OHDA-lesioned rats by nitric oxide inhibitors following either acute or chronic treatment. The primary findings of this study were that NG-nitro-L-Arginine, an inhibitor of endothelial and neuronal nitric oxide synthase, attenuated abnormal involuntary movements induced by chronic and acute L-DOPA. In contrast, rotational behavior was attenuated only after chronic L-DOPA. L-DOPA improved stepping test performance, and its chronic administration did not alter open field behavior. Our results indicated a correlation between apomorphine-induced rotation and the decrease in the number of adjusting steps performed with the contralateral forepaw in the 6-OHDA-lesioned rats.The 6-OHDA lesion and the L-DOPA treatment induced a bilateral increase (1.5 times in the nNOS protein and nNOS mRNA in the striatum and in the frontal cortex. There was a parallel increase, bilaterally, of the FosB/ΔFosB, primarily in the ipsilateral striatum. The exception was in the contralateral striatum and the ipsilateral frontal cortex, where chronic L-DOPA treatment induced an increase of approximately 10 times the nNOS mRNA. Our results provided further evidence of an anti-dyskinetic effect of NOS inhibitor. The effect appeared under L-DOPA acute and chronic treatment. The L-DOPA treatment also revealed an over-expression of the neuronal NOS in the frontal cortex and striatum. Our results corroborated findings that L-DOPA-induced rotation differs between acute and chronic treatment. The effect of the NOS inhibitor conceivably relied on the L-DOPA structural modifications in the parkinsonian brain. Taken together, these data provided a rationale

  14. Three-dimensional structures of Plasmodium falciparum spermidine synthase with bound inhibitors suggest new strategies for drug design

    Energy Technology Data Exchange (ETDEWEB)

    Sprenger, Janina [Lund University, SE-221 00 Lund (Sweden); Lund University, SE-221 84 Lund (Sweden); Svensson, Bo [Lund University, SE-221 00 Lund (Sweden); SARomics Biostructures AB, Box 724, SE-220 07 Lund (Sweden); Hålander, Jenny [Lund University, SE-221 00 Lund (Sweden); Carey, Jannette [Princeton University, Princeton, New Jersey (United States); Persson, Lo [Lund University, SE-221 84 Lund (Sweden); Al-Karadaghi, Salam, E-mail: salam.al-karadaghi@biochemistry.lu.se [Lund University, SE-221 00 Lund (Sweden)

    2015-03-01

    In this work, X-ray crystallography was used to examine ligand complexes of spermidine synthase from the malaria parasite Plasmodium falciparum (PfSpdS). The enzymes of the polyamine-biosynthesis pathway have been proposed to be promising drug targets in the treatment of malaria. Spermidine synthase (SpdS; putrescine aminopropyltransferase) catalyzes the transfer of the aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine, leading to the formation of spermidine and 5′-methylthioadenosine (MTA). In this work, X-ray crystallography was used to examine ligand complexes of SpdS from the malaria parasite Plasmodium falciparum (PfSpdS). Five crystal structures were determined of PfSpdS in complex with MTA and the substrate putrescine, with MTA and spermidine, which was obtained as a result of the enzymatic reaction taking place within the crystals, with dcAdoMet and the inhibitor 4-methylaniline, with MTA and 4-aminomethylaniline, and with a compound predicted in earlier in silico screening to bind to the active site of the enzyme, benzimidazol-(2-yl)pentan-1-amine (BIPA). In contrast to the other inhibitors tested, the complex with BIPA was obtained without any ligand bound to the dcAdoMet-binding site of the enzyme. The complexes with the aniline compounds and BIPA revealed a new mode of ligand binding to PfSpdS. The observed binding mode of the ligands, and the interplay between the two substrate-binding sites and the flexible gatekeeper loop, can be used in the design of new approaches in the search for new inhibitors of SpdS.

  15. Nitric oxide synthase inhibitors can antagonize neurogenic and calcitonin gene-related peptide induced dilation of dural meningeal vessels

    Science.gov (United States)

    Akerman, S; Williamson, D J; Kaube, H; Goadsby, P J

    2002-01-01

    The detailed pathophysiology of migraine is beginning to be understood and is likely to involve activation of trigeminovascular afferents. Clinically effective anti-migraine compounds are believed to have actions that include peripheral inhibition of calcitonin gene-related peptide (CGRP) release from trigeminal neurones, or preventing dural vessel dilation, or both. CGRP antagonists can block both neurogenic and CGRP-induced dural vessel dilation. Nitric oxide (NO) can induce headache in migraine patients and often triggers a delayed migraine. The initial headache is thought to be caused via a direct action of the NO–cGMP pathway that causes vasodilation by vascular smooth muscle relaxation, while the delayed headache is likely to be a result of triggering trigeminovascular activation. Nitric oxide synthase (NOS) inhibitors are effective in the treatment of acute migraine. The present studies used intravital microscopy to examine the effects of specific NOS inhibitors on neurogenic dural vasodilation (NDV) and CGRP-induced dilation. The non-specific and neuronal NOS (nNOS) inhibitors were able to partially inhibit NDV, while the non-specific and endothelial NOS (eNOS) inhibitors were able to partially inhibit the CGRP induced dilation. There was no effect of the inducible NOS (iNOS) inhibitor. The data suggest that the delayed headache response triggered by NO donors in humans may be due, in part, to increased nNOS activity in the trigeminal system that causes CGRP release and dural vessel dilation. Further, eNOS activity in the endothelium causes NO production and smooth muscle relaxation by direct activation of the NO–cGMP pathway, and may be involved in the initial headache response. PMID:12183331

  16. Synthesis of benzimidazole based thiadiazole and carbohydrazide conjugates as glycogen synthase kinase-3β inhibitors with anti-depressant activity.

    Science.gov (United States)

    Khan, Imran; Tantray, Mushtaq A; Hamid, Hinna; Alam, Mohammad Sarwar; Kalam, Abul; Dhulap, Abhijeet

    2016-08-15

    A series of benzimidazole based thiadiazole and carbohydrazide conjugates have been synthesized and evaluated for inhibition of glycogen synthase kinase-3β and anti-depressant effect. Compounds 4f, 4j, 5b, 5g and 5i were found to be the most potent inhibitors of GSK-3β in vitro amongst the twenty-five benzimidazole based thiadiazole and carbohydrazide conjugates synthesized. Compound 5i was also found to exhibit significant antidepressant activity in vivo at 50mg/kg, when compared to fluoxetine, a known antidepressant drug. The molecular docking studies revealed multiple hydrogen bond interactions by the synthesized compounds with various amino acid residues, viz, ASP-133, LYS-183, PRO-136, VAL-135, TYR-134, or LYS-60 at the GSK-3β receptor site. PMID:27406796

  17. Synthesis and enzymatic evaluation of 2- and 4-aminothiazole-based inhibitors of neuronal nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Graham R. Lawton

    2009-06-01

    Full Text Available Highly potent and selective inhibitors of neuronal nitric oxide synthase (nNOS possessing a 2-aminopyridine group were recently designed and synthesized in our laboratory and were shown to have significant in vivo efficacy. In this work, analogs of our lead compound possessing 2- and 4-aminothiazole rings in place of the aminopyridine were synthesized. The less basic aminothiazole rings will be less protonated at physiological pH than the aminopyridine ring, and so the molecule will carry a lower net charge. This could lead to an increased ability to cross the blood-brain barrier thereby increasing the in vivo potency of these compounds. The 2-aminothiazole-based compound was less potent than the 2-aminopyridine-based analogue. 4-Aminothiazoles were unstable in water, undergoing tautomerization and hydrolysis to give inactive thiazolones.

  18. Characterization of 3,3-dimethyl substituted N-aryl piperidines as potent microsomal prostaglandin E synthase-1 inhibitors.

    Science.gov (United States)

    Kuklish, Steven L; Antonysamy, Stephen; Bhattachar, Shobha N; Chandrasekhar, Srinivasan; Fisher, Matthew J; Fretland, Adrian J; Gooding, Karen; Harvey, Anita; Hughes, Norman E; Luz, John G; Manninen, Peter R; McGee, James E; Navarro, Antonio; Norman, Bryan H; Partridge, Katherine M; Quimby, Steven J; Schiffler, Matthew A; Sloan, Ashley V; Warshawsky, Alan M; York, Jeremy S; Yu, Xiao-Peng

    2016-10-01

    Here we report on novel, potent 3,3-dimethyl substituted N-aryl piperidine inhibitors of microsomal prostaglandin E synthases-1(mPGES-1). Example 14 potently inhibited PGE2 synthesis in an ex vivo human whole blood (HWB) assay with an IC50 of 7nM. In addition, 14 had no activity in human COX-1 or COX-2 assays at 30μM, and failed to inhibit human mPGES-2 at 62.5μM in a microsomal prep assay. These data are consistent with selective mPGES-1-mediated reduction of PGE2. In dog, 14 had oral bioavailability (74%), clearance (3.62mL/(min*kg)) and volume of distribution (Vd,ss=1.6L/kg) values within our target ranges. For these reasons, 14 was selected for further study. PMID:27554445

  19. Concentrations of Nitric Oxide in Rat Brain Tissues after Diffuse Brain Injury and Neuroprotection by the Selective Inducible Nitric Oxide Synthase Inhibitor Aminoguanidine

    Institute of Scientific and Technical Information of China (English)

    Yi-bao Wang; Shao-wu Ou; Guang-yu Li; Yun-hui Liu

    2005-01-01

    @@ To investigate the effects of nitric oxide (NO) and the selective inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (AG) on trauma, we explored the concentrations of nitric oxide in rat brain tissues at different time stamps after diffuse brain injury (DBI) with or without AG treatment.

  20. Structure-based virtual screening of hypothetical inhibitors of the enzyme longiborneol synthase-a potential target to reduce Fusarium head blight disease.

    Science.gov (United States)

    Bresso, E; Leroux, V; Urban, M; Hammond-Kosack, K E; Maigret, B; Martins, N F

    2016-07-01

    Fusarium head blight (FHB) is one of the most destructive diseases of wheat and other cereals worldwide. During infection, the Fusarium fungi produce mycotoxins that represent a high risk to human and animal health. Developing small-molecule inhibitors to specifically reduce mycotoxin levels would be highly beneficial since current treatments unspecifically target the Fusarium pathogen. Culmorin possesses a well-known important synergistically virulence role among mycotoxins, and longiborneol synthase appears to be a key enzyme for its synthesis, thus making longiborneol synthase a particularly interesting target. This study aims to discover potent and less toxic agrochemicals against FHB. These compounds would hamper culmorin synthesis by inhibiting longiborneol synthase. In order to select starting molecules for further investigation, we have conducted a structure-based virtual screening investigation. A longiborneol synthase structural model is first built using homology modeling, followed by molecular dynamics simulations that provided the required input for a protein-ligand ensemble docking procedure. From this strategy, the three most interesting compounds (hits) were selected among the 25 top-ranked docked compounds from a library of 15,000 drug-like compounds. These putative inhibitors of longiborneol synthase provide a sound starting point for further studies involving molecular modeling coupled to biochemical experiments. This process could eventually lead to the development of novel approaches to reduce mycotoxin contamination in harvested grain. PMID:27324634

  1. Intracellular quantitative detection of human thymidylate synthase engagement with an unconventional inhibitor using tetracysteine-diarsenical-probe technology.

    Science.gov (United States)

    Ponterini, Glauco; Martello, Andrea; Pavesi, Giorgia; Lauriola, Angela; Luciani, Rosaria; Santucci, Matteo; Pelà, Michela; Gozzi, Gaia; Pacifico, Salvatore; Guerrini, Remo; Marverti, Gaetano; Costi, Maria Paola; D'Arca, Domenico

    2016-01-01

    Demonstrating a candidate drug's interaction with its target protein in live cells is of pivotal relevance to the successful outcome of the drug discovery process. Although thymidylate synthase (hTS) is an important anticancer target protein, the efficacy of the few anti-hTS drugs currently used in clinical practice is limited by the development of resistance. Hence, there is an intense search for new, unconventional anti-hTS drugs; there are approximately 1600 ongoing clinical trials involving hTS-targeting drugs, both alone and in combination protocols. We recently discovered new, unconventional peptidic inhibitors of hTS that are active against cancer cells and do not result in the overexpression of hTS, which is a known molecular source of resistance. Here, we propose an adaptation of the recently proposed tetracysteine-arsenic-binding-motif technology to detect and quantitatively characterize the engagement of hTS with one such peptidic inhibitor in cell lysates. This new model can be developed into a test for high-throughput screening studies of intracellular target-protein/small-molecule binding. PMID:27250901

  2. Glycogen Synthase Kinase 3 Inhibitors in the Next Horizon for Alzheimer's Disease Treatment

    Directory of Open Access Journals (Sweden)

    Ana Martinez

    2011-01-01

    Full Text Available Glycogen synthase kinase 3 (GSK-3, a proline/serine protein kinase ubiquitously expressed and involved in many cellular signaling pathways, plays a key role in the pathogenesis of Alzheimer's disease (AD being probably the link between β-amyloid and tau pathology. A great effort has recently been done in the discovery and development of different new molecules, of synthetic and natural origin, able to inhibit this enzyme, and several kinetics mechanisms of binding have been described. The small molecule called tideglusib belonging to the thiadiazolidindione family is currently on phase IIb clinical trials for AD. The potential risks and benefits of this new kind of disease modifying drugs for the future therapy of AD are discussed in this paper.

  3. Inhibitor of fatty acid synthase induced apoptosis in human colonic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Pei Lin Huang; Zhen Sheng Dai; Yue Lin Jin; Shi Neng Zhu; Shi Lun Lu

    2000-01-01

    @@INTRODUCTION The treatment of human epithelial malignancies is limited by drug resistance and toxic and side effects,which results in the failure in the treatment of majority of advanced cancer victims. To seek for a new, and specific antineoplastic therapy will provide hope for tumor treatment. Although disordered intermediary metabolism in cancer cells has been known for many years, much of the work focused on abnormal glucose catabolism. At the same time, little attention has been paid to fatty acid synthasis in tumor tissues, dispite of the significance of fatty acid synthase (FAS) in some clinical human ovarian[1], breast[2], colorectal[3],and prostatic cancers[4,5]. Tumor cells which express high levels of fatty acid synthesizing enzymes use endogeneously synthesized fatty acids for membrance biosynthesis and appear to export large amounts of lipid. In contrast, normal cells preferentially utilize diary lipid.

  4. Ozagrel hydrochloride, a selective thromboxane A2 synthase inhibitor, alleviates liver injury induced by acetaminophen overdose in mice

    Directory of Open Access Journals (Sweden)

    Tomishima Yoshiro

    2013-01-01

    Full Text Available Abstract Background Overdosed acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP causes severe liver injury. We examined the effects of ozagrel, a selective thromboxane A2 (TXA2 synthase inhibitor, on liver injury induced by APAP overdose in mice. Methods Hepatotoxicity was induced to ICR male mice by an intraperitoneal injection with APAP (330 mg/kg. The effects of ozagrel (200 mg/kg treatment 30 min after the APAP injection were evaluated with mortality, serum alanine aminotransferase (ALT levels and hepatic changes, including histopathology, DNA fragmentation, mRNA expression and total glutathione contents. The impact of ozagrel (0.001-1 mg/mL on cytochrome P450 2E1 (CYP2E1 activity in mouse hepatic microsome was examined. RLC-16 cells, a rat hepatocytes cell line, were exposed to 0.25 mM N-acetyl-p-benzoquinone imine (NAPQI, a hepatotoxic metabolite of APAP. In this model, the cytoprotective effects of ozagrel (1–100 muM were evaluated by the WST-1 cell viability assay. Results Ozagel treatment significantly attenuated higher mortality, elevated serum alanine aminotransferase levels, excessive hepatic centrilobular necrosis, hemorrhaging and DNA fragmentation, as well as increase in plasma 2,3-dinor thromboxane B2 levels induced by APAP injection. Ozagrel also inhibited the hepatic expression of cell death-related mRNAs induced by APAP, such as jun oncogene, FBJ osteosarcoma oncogene (fos and C/EBP homologous protein (chop, but did not suppress B-cell lymphoma 2-like protein11 (bim expression and hepatic total glutathione depletion. These results show ozagrel can inhibit not all hepatic changes but can reduce the hepatic necrosis. Ozagrel had little impact on CYP2E1 activity involving the NAPQI production. In addition, ozagrel significantly attenuated cell injury induced by NAPQI in RLC-16. Conclusions We demonstrate that the TXA2 synthase inhibitor, ozagrel, dramatically alleviates liver injury induced by APAP in mice, and suggest

  5. Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies.

    Science.gov (United States)

    Li, Xing-Cong; Joshi, Alpana S; ElSohly, Hala N; Khan, Shabana I; Jacob, Melissa R; Zhang, Zhizheng; Khan, Ikhlas A; Ferreira, Daneel; Walker, Larry A; Broedel, Sheldon E; Raulli, Robert E; Cihlar, Ronald L

    2002-12-01

    Fatty acid synthase (FAS) has been identified as a potential antifungal target. FAS prepared from Saccharomyces cerevisiae was employed for bioactivity-guided fractionation of Chlorophora tinctoria,Paspalum conjugatum, Symphonia globulifera, Buchenavia parviflora, and Miconia pilgeriana. Thirteen compounds (1-13), including three new natural products (1, 4, 12), were isolated and their structures identified by spectroscopic interpretation. They represented five chemotypes, namely, isoflavones, flavones, biflavonoids, hydrolyzable tannin-related derivatives, and triterpenoids. 3'-Formylgenistein (1) and ellagic acid 4-O-alpha-l-rhamnopyranoside (9) were the most potent compounds against FAS, with IC(50) values of 2.3 and 7.5 microg/mL, respectively. Furthermore, 43 (14-56) analogues of the five chemotypes from our natural product repository and commercial sources were tested for their FAS inhibitory activity. Structure-activity relationships for some chemotypes were investigated. All these compounds were further evaluated for antifungal activity against Candida albicans and Cryptococcus neoformans. Although there were several antifungal compounds in the set, correlation between the FAS inhibitory activity and antifungal activity could not be defined. PMID:12502337

  6. Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase.

    Science.gov (United States)

    Choudhury, Chinmayee; Priyakumar, U Deva; Sastry, G Narahari

    2015-04-27

    The therapeutic challenges in the treatment of tuberculosis demand multidisciplinary approaches for the identification of potential drug targets as well as fast and accurate techniques to screen huge chemical libraries. Mycobacterial cyclopropane synthase (CmaA1) has been shown to be essential for the survival of the bacteria due to its critical role in the synthesis of mycolic acids. The present study proposes pharmacophore models based on the structure of CmaA1 taking into account its various states in the cyclopropanation process, and their dynamic nature as assessed using molecular dynamics (MD) simulations. The qualities of these pharmacophore models were validated by mapping 23 molecules that have been previously reported to exhibit inhibitory activities on CmaA1. Additionally, 1398 compounds that have been shown to be inactive for tuberculosis were collected from the ChEMBL database and were screened against the models for validation. The models were further validated by comparing the results from pharmacophore mapping with the results obtained from docking these molecules with the respective protein structures. The best models are suggested by validating all the models based on their screening abilities and by comparing with docking results. The models generated from the MD trajectories were found to perform better than the one generated based on the crystal structure demonstrating the importance of incorporating receptor flexibility in drug design.

  7. Impaired learning in rats in a 14-unit T-maze by 7-nitroindazole, a neuronal nitric oxide synthase inhibitor, is attenuated by the nitric oxide donor, molsidomine.

    Science.gov (United States)

    Meyer, R C; Spangler, E L; Patel, N; London, E D; Ingram, D K

    1998-01-01

    In previous experiments, it was demonstrated that systemic or central administration of the nitric oxide synthase (NO synthase) inhibitor, NG-nitro-L-arginine (N-Arg), produced dose-dependent learning impairments in rats in a 14-unit T-maze; and that sodium nitroprusside, a NO donor, could attenuate the impairment. Since N-Arg is not specific for neuronal NO synthase and produces hypertension, it is possible that effects on the cardiovasculature may have contributed to the impaired maze performance. In the present experiment, we have investigated the maze performance of 3-4 months old male Fischer-344 rats following treatment with 7-nitroindazole, a NO synthase inhibitor that is selective for neuronal NO synthase and does not produce hypertension. In addition, we examined the effects of the NO donor, molsidomine, which is much longer acting than sodium nitroprusside. Rats were pretrained to avoid footshock in a straight runway and received training in a 14-unit T-maze 24 h later. In an initial dose-response study, rats received intraperitoneal (i.p.) injections of either 7-nitroindazole (25, 50, or 65 mg/kg) or peanut oil 30 min prior to maze training. 7-nitroindazole produced significant, dose-dependent maze acquisition deficits, with 65 mg/kg producing the greatest learning impairment. This dose of 7-nitroindazole had no significant effect on systolic blood pressure. Following the dose-response study, rats were given i.p. injections of either 7-nitroindazole (70 mg/kg) plus saline, 7-nitroindazole (70 mg/kg) plus the NO donor, molsidomine (2 or 4 mg/kg), or peanut oil plus saline as controls. Both doses of molsidomine significantly attenuated the learning deficit induced by 7-nitroindazole relative to controls. These findings represent the first evidence that impaired learning produced by inhibition of neuronal NO synthase can be overcome by systemic administration of a NO donor. PMID:9489851

  8. Identification of inhibitors against Mycobacterium tuberculosis thiamin phosphate synthase, an important target for the development of anti-TB drugs.

    Directory of Open Access Journals (Sweden)

    Garima Khare

    Full Text Available Tuberculosis (TB continues to pose a serious challenge to human health afflicting a large number of people throughout the world. In spite of the availability of drugs for the treatment of TB, the non-compliance to 6-9 months long chemotherapeutic regimens often results in the emergence of multidrug resistant strains of Mycobacterium tuberculosis adding to the precariousness of the situation. This has necessitated the development of more effective drugs. Thiamin biosynthesis, an important metabolic pathway of M. tuberculosis, is shown to be essential for the intracellular growth of this pathogen and hence, it is believed that inhibition of this pathway would severely affect the growth of M. tuberculosis. In this study, a comparative homology model of M. tuberculosis thiamin phosphate synthase (MtTPS was generated and employed for virtual screening of NCI diversity set II to select potential inhibitors. The best 39 compounds based on the docking results were evaluated for their potential to inhibit the MtTPS activity. Seven compounds inhibited MtTPS activity with IC(50 values ranging from 20-100 µg/ml and two of these exhibited weak inhibition of M. tuberculosis growth with MIC(99 values being 125 µg/ml and 162.5 µg/ml while one compound was identified as a very potent inhibitor of M. tuberculosis growth with an MIC(99 value of 6 µg/ml. This study establishes MtTPS as a novel drug target against M. tuberculosis leading to the identification of new lead molecules for the development of antitubercular drugs. Further optimization of these lead compounds could result in more potent therapeutic molecules against Tuberculosis.

  9. Identification of inhibitors against Mycobacterium tuberculosis thiamin phosphate synthase, an important target for the development of anti-TB drugs.

    Science.gov (United States)

    Khare, Garima; Kar, Ritika; Tyagi, Anil K

    2011-01-01

    Tuberculosis (TB) continues to pose a serious challenge to human health afflicting a large number of people throughout the world. In spite of the availability of drugs for the treatment of TB, the non-compliance to 6-9 months long chemotherapeutic regimens often results in the emergence of multidrug resistant strains of Mycobacterium tuberculosis adding to the precariousness of the situation. This has necessitated the development of more effective drugs. Thiamin biosynthesis, an important metabolic pathway of M. tuberculosis, is shown to be essential for the intracellular growth of this pathogen and hence, it is believed that inhibition of this pathway would severely affect the growth of M. tuberculosis. In this study, a comparative homology model of M. tuberculosis thiamin phosphate synthase (MtTPS) was generated and employed for virtual screening of NCI diversity set II to select potential inhibitors. The best 39 compounds based on the docking results were evaluated for their potential to inhibit the MtTPS activity. Seven compounds inhibited MtTPS activity with IC(50) values ranging from 20-100 µg/ml and two of these exhibited weak inhibition of M. tuberculosis growth with MIC(99) values being 125 µg/ml and 162.5 µg/ml while one compound was identified as a very potent inhibitor of M. tuberculosis growth with an MIC(99) value of 6 µg/ml. This study establishes MtTPS as a novel drug target against M. tuberculosis leading to the identification of new lead molecules for the development of antitubercular drugs. Further optimization of these lead compounds could result in more potent therapeutic molecules against Tuberculosis. PMID:21818324

  10. Aspirin protected against endothelial damage induced by LDL:role of endogenous NO synthase inhibitors in rats

    Institute of Scientific and Technical Information of China (English)

    Sheng DENG; Pan-yue DENG; Jun-lin JIANG; Feng YE; Jing YU; Tian-lun YANG; Han-wu DENG; Yuan-jian LI

    2004-01-01

    AIM: To study the protective effect of aspirin on damages of the endothelium induced by low-density lipoprotein (LDL), and whether the protective effect of aspirin is related to reduction of nitric oxide synthase inhibitor level.METHODS: Vascular endothelial injury was induced by a single injection of native LDL (4 mg/kg) in rats. Vasodilator responses to acetylcholine (Ach) in the isolated aortic rings were determined, and serum concentrations of asymmetric dimethylarginine (ADMA), malondialdehyde (MDA), tumour necrosis factor-α(TNF-α), and the activity of dimethylaminohydrolase (DDAH) were measured. RESULTS: A single injection of LDL (4 mg/kg)significantly decreased vasodilator responses to Ach, increased the serum level of ADMA, MDA, and TNF-α, and decreased DDAH activity. Aspirin (30 or 100 mg/kg) markedly reduced the inhibition of vasodilator responses to Ach by LDL, and the protective effect of aspirin at the lower dose was greater compared with high-dose aspirin group. Aspirin inhibited the increased level of MDA and TNF-α induced by LDL. Aspirin at the dose of 30 mg/kg,but not at higher dose (100 mg/kg), significantly reduced the concentration of ADMA and increased the activity of DDAH. CONCLUSION: Aspirin at the lower dose (30 mg/kg) protects the endothelium against damages elicited by LDL in vivo, and the protective effect of aspirin on endothelium is related to reduction of ADMA concentration by increasing DDAH activity.

  11. Selective Nitric Oxide Synthase Inhibitor 7-Nitroindazole Protects against Cocaine-Induced Oxidative Stress in Rat Brain

    Directory of Open Access Journals (Sweden)

    Vessela Vitcheva

    2015-01-01

    Full Text Available One of the mechanisms involved in the development of addiction, as well as in brain toxicity, is the oxidative stress. The aim of the current study was to investigate the effects of 7-nitroindazole (7-NI, a selective inhibitor of neuronal nitric oxide synthase (nNOS, on cocaine withdrawal and neurotoxicity in male Wistar rats. The animals were divided into four groups: control; group treated with cocaine (15 mg/kg−1, i.p., 7 days; group treated with 7-NI (25 mg/kg−1, i.p., 7 days; and a combination group (7-NI + cocaine. Cocaine repeated treatment resulted in development of physical dependence, judged by withdrawal symptoms (decreased locomotion, increased salivation and breathing rate, accompanied by an increased nNOS activity and oxidative stress. The latter was discerned by an increased formation of malondialdehyde (MDA, depletion of reduced glutathione (GSH levels, and impairment of the enzymatic antioxidant defense system measured in whole brain. In synaptosomes, isolated from cocaine-treated rats, mitochondrial activity and GSH levels were also decreased. 7-NI administered along with cocaine not only attenuated the withdrawal, due to its nNOS inhibition, but also reversed both the GSH levels and antioxidant enzyme activities near control levels.

  12. Selective Nitric Oxide Synthase Inhibitor 7-Nitroindazole Protects against Cocaine-Induced Oxidative Stress in Rat Brain.

    Science.gov (United States)

    Vitcheva, Vessela; Simeonova, Rumyana; Kondeva-Burdina, Magdalena; Mitcheva, Mitka

    2015-01-01

    One of the mechanisms involved in the development of addiction, as well as in brain toxicity, is the oxidative stress. The aim of the current study was to investigate the effects of 7-nitroindazole (7-NI), a selective inhibitor of neuronal nitric oxide synthase (nNOS), on cocaine withdrawal and neurotoxicity in male Wistar rats. The animals were divided into four groups: control; group treated with cocaine (15 mg/kg(-1), i.p., 7 days); group treated with 7-NI (25 mg/kg(-1), i.p., 7 days); and a combination group (7-NI + cocaine). Cocaine repeated treatment resulted in development of physical dependence, judged by withdrawal symptoms (decreased locomotion, increased salivation and breathing rate), accompanied by an increased nNOS activity and oxidative stress. The latter was discerned by an increased formation of malondialdehyde (MDA), depletion of reduced glutathione (GSH) levels, and impairment of the enzymatic antioxidant defense system measured in whole brain. In synaptosomes, isolated from cocaine-treated rats, mitochondrial activity and GSH levels were also decreased. 7-NI administered along with cocaine not only attenuated the withdrawal, due to its nNOS inhibition, but also reversed both the GSH levels and antioxidant enzyme activities near control levels. PMID:26576217

  13. The use of aminoguanidine, a selective inducible nitric oxide synthase inhibitor, to evaluate the role of nitric oxide on periapical healing

    OpenAIRE

    Ali Reza Farhad; Seyed Mohammad Razavi; Parnian Alavi Nejad

    2011-01-01

    Background: Nitric oxide (NO) is one of the many chemical mediators involved in inflammatory processes. In addition to periapical inflammation, NO can have a role in periapical healing. The purpose of this study was to evaluate the effect of aminoguanidine (AG) as a selective inhibitor of inducible nitric oxide synthase (iNOS) on the degree of healing response of periapical lesions of the canine teeth of cats. Methods: In this interventional experimental study, the root canals of 48 cat c...

  14. Effect of simvastatin on endothelium-dependent vasorelaxation and endogenous nitric oxide synthase inhibitor

    Institute of Scientific and Technical Information of China (English)

    Jun-lin JIANG; De-jian JIANG; Yu-hai TANG; Nian-sheng LI; Han-wu DENG; Yuan-jian LI

    2004-01-01

    AIM: To investigate the effect of simvastatin on endothelium-dependent vasorelaxation and endogenous nitric oxide synthesis inhibitor asymmetric dimethylarginine (ADMA) in rats and cultured ECV304 cells. METHODS: Endothelial injury was induced by a single injection of low density lipoprotein (LDL) (4 mg/kg, 48 h) in rats or incubation with LDL (300 mg/L) or oxidative-modified LDL (100 mg/L) in cultured ECV304 cells, and vasodilator responses to acetylcholine (ACh) in the aortic rings and the level of ADMA, nitrite/nitrate (NO) and tumor necrosis factoralpha (TNF-α) in the serum or cultured medium were determined. And the adhesion of the monocytes to endothelial cells and the activity of dimethylarginine dimethylaminohydrolase (DDAH) in the cultured ECV304 cells were measured. RESULTS: A single injection of LDL decreased endothelium-dependent relaxation to ACh, markedly increased the serum level of endogenous ADMA and TNF-α, and reduced serum level of NO. Pretreatment with simvastatin (30 or 60 mg/kg) markedly attenuated inhibition of vasodilator responses to ACh, the increased level of TNF-α and the decreased level of NO by LDL, but no effect on serum concentration of endogenous ADMA. In cultured ECV304 cells, LDL or ox-LDL markedly increased the level of ADMA and TNF-α and potentiated the adhesion of monocytes to endothelial cells, concomitantly with a significantly decrease in the activity of DDAH and serum level of NO. Pretreatment with simvastatin (0.1, 0.5, or 2.5 μmol/L) markedly decreased the level of TNFo and the adhesion of monocytes to endothelial cells, but did not affect the concentration of endogenous ADMA and the activity of DDAH. CONCLUSION: Simvastatin protect the vascular endothelium against the damages induced by LDL or ox-LDL in rats or cultured ECV304 cells, and the beneficial effects of simvastatin may be related to the reduction of inflammatory cytokine TNF-o level.

  15. Studies on the Compounds of d4T Combined with Nitric Oxide Donors and Nitric Oxide Synthase Inhibitors and their Anti-HIV and AIDS Activity

    Institute of Scientific and Technical Information of China (English)

    KWALE MOLIME GUITREMBI Blaise(Central African); YAO Qi-zheng

    2004-01-01

    Stavudine, a potent anti-HIV and AiDS-related complex, is one of the Nucleoside Analogue Reverse Transcriptase Inhibitors (NARTIs). It is phosphorylated intracellularly and then inhibits the viral reverse transcriptase by acting as a false substrate. Modifications made on the hydrogen labile at the 5'-position on the sugar is an interesting template for the elaboration of new potent anti-HIV and AIDS drugs. The expected advantages of the modified stavudine prodrugs can be multiple: synergistic drug activities, enhancement of stavudine intracellular uptake, increase of stavudine brain delivery, and bypass of the first stavudine phosphorylation step into the cells. Nitric oxide synthase inhibitors of stavudine and nitric oxide donors of stavudine may hold significant promise for the treatment of HIV and AIDS.

  16. Effects of terahertz radiation at atmospheric oxygen frequency of 129 GHz on blood nitrite concentrations under conditions of different types of stress against the background of administration of nonselective inhibitor of constitutive NO-synthases.

    Science.gov (United States)

    Kirichuk, V F; Tsymbal, A A

    2012-02-01

    We studied the effect of terahertz radiation at atmospheric oxygen frequency 129 GHz on blood nitrite concentration in different types of experimental stress against the background of administration of nonselective inhibitor of constitutive NO-synthases. Normalizing effects of radiation on blood nitrite dynamics in animals with acute stress was shown after 15-min exposure and in animals with chronic stress after 30-min exposure. No positive effect of terahertz radiation was observed on altered blood nitrite concentration in male rats after preliminary administration of nonselective constitutive NO-synthase isoform inhibitor L-NAME. PMID:22803105

  17. Catechol-based substrates of chalcone synthase as a scaffold for novel inhibitors of PqsD.

    OpenAIRE

    Allegretta, Giuseppe; Weidel, Elisabeth; Empting, Martin; Hartmann, Rolf W.

    2015-01-01

    A new strategy for treating Pseudomonas aeruginosa infections could be disrupting the Pseudomonas Quinolone Signal (PQS) quorum sensing (QS) system. The goal is to impair communication among the cells and, hence, reduce the expression of virulence factors and the formation of biofilms. PqsD is an essential enzyme for the synthesis of PQS and shares some features with chalcone synthase (CHS2), an enzyme expressed in Medicago sativa. Both proteins are quite similar concerning the size of the ac...

  18. In Vitro and In Vivo Activities of E5700 and ER-119884, Two Novel Orally Active Squalene Synthase Inhibitors, against Trypanosoma cruzi

    Science.gov (United States)

    Urbina, Julio A.; Concepcion, Juan Luis; Caldera, Aura; Payares, Gilberto; Sanoja, Cristina; Otomo, Takeshi; Hiyoshi, Hironobu

    2004-01-01

    Chagas' disease is a serious public health problem in Latin America, and no treatment is available for the prevalent chronic stage. Its causative agent, Trypanosoma cruzi, requires specific endogenous sterols for survival, and we have recently demonstrated that squalene synthase (SQS) is a promising target for antiparasitic chemotherapy. E5700 and ER-119884 are quinuclidine-based inhibitors of mammalian SQS that are currently in development as cholesterol- and triglyceride-lowering agents in humans. These compounds were found to be potent noncompetitive or mixed-type inhibitors of T. cruzi SQS with Ki values in the low nanomolar to subnanomolar range in the absence or presence of 20 μM inorganic pyrophosphate. The antiproliferative 50% inhibitory concentrations of the compounds against extracellular epimastigotes and intracellular amastigotes were ca. 10 nM and 0.4 to 1.6 nM, respectively, with no effects on host cells. When treated with these compounds at the MIC, all of the parasite's sterols disappeared from the parasite cells. In vivo studies indicated that E5700 was able to provide full protection against death and completely arrested the development of parasitemia when given at a concentration of 50 mg/kg of body weight/day for 30 days, while ER-119884 provided only partial protection. This is the first report of an orally active SQS inhibitor that is capable of providing complete protection against fulminant, acute Chagas' disease. PMID:15215084

  19. Screening of inhibitors of glycogen synthase kinase-3β from traditional Chinese medicines using enzyme-immobilized magnetic beads combined with high-performance liquid chromatography.

    Science.gov (United States)

    Li, Yunfang; Xu, Jia; Chen, Yu; Mei, Zhinan; Xiao, Yuxiu

    2015-12-18

    Glycogen synthase kinase-3β (GSK-3β) was immobilized on magnetic beads (MBs) by affinity method for the first time. The enzyme-immobilized MBs were coupled with high-performance liquid chromatography-ultraviolet (HPLC-UV) technique to establish a cost-effective and reliable method for screening of inhibitors of GSK-3β. A peptide substrate of GSK-3β containing a tyrosine residue was employed since it can be sensitively detected by UV detector at 214nm. The substrate and its phosphorylated product were separated by baseline within 10min. The enzyme activity was determined by the quantification of peak area of the product. Parameters including enzyme immobilization, enzyme reaction and the performance of immobilized-enzyme were investigated. The immobilized enzyme can be reused for 10 times and remain stable for 4 days at 4°C. The inhibitory activities of extracts of 15 traditional Chinese medicines (TCMs) were screened. As a result, three of them including Euonymus fortunei, Amygdalus communis and Garcinia xanthochymus were found possessing high inhibitory activities (inhibition rate >90%). From G. xanthochymus, a new inhibitor of GSK-3β, fukugetin, was discovered with an IC50 value of 3.18±0.07μM. Enzyme kinetics and molecular docking experiments further revealed the inhibitory mechanism, indicating fukugetin was a non-ATP competitive inhibitor interacting with the phosphate recognizing substrate binding site of GSK-3β. PMID:26610618

  20. Structure of N-acetyl-L-glutamate synthase/kinase from Maricaulis maris with the allosteric inhibitor L-arginine bound.

    Science.gov (United States)

    Zhao, Gengxiang; Haskins, Nantaporn; Jin, Zhongmin; M Allewell, Norma; Tuchman, Mendel; Shi, Dashuang

    2013-08-01

    Maricaulis maris N-acetylglutamate synthase/kinase (mmNAGS/K) catalyzes the first two steps in L-arginine biosynthesis and has a high degree of sequence and structural homology to human N-acetylglutamate synthase, a regulator of the urea cycle. The synthase activity of both mmNAGS/K and human NAGS are regulated by L-arginine, although L-arginine is an allosteric inhibitor of mmNAGS/K, but an activator of human NAGS. To investigate the mechanism of allosteric inhibition of mmNAGS/K by L-arginine, we have determined the structure of the mmNAGS/K complexed with L-arginine at 2.8 Å resolution. In contrast to the structure of mmNAGS/K in the absence of L-arginine where there are conformational differences between the four subunits in the asymmetric unit, all four subunits in the L-arginine liganded structure have very similar conformations. In this conformation, the AcCoA binding site in the N-acetyltransferase (NAT) domain is blocked by a loop from the amino acid kinase (AAK) domain, as a result of a domain rotation that occurs when L-arginine binds. This structural change provides an explanation for the allosteric inhibition of mmNAGS/K and related enzymes by L-arginine. The allosterically regulated mechanism for mmNAGS/K differs significantly from that for Neisseria gonorrhoeae NAGS (ngNAGS). To define the active site, several residues near the putative active site were mutated and their activities determined. These experiments identify roles for Lys356, Arg386, Asn391 and Tyr397 in the catalytic mechanism. PMID:23850694

  1. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Petri, Marcelo H. [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Tellier, Céline; Michiels, Carine [NARILIS, URBC, University of Namur, Namur (Belgium); Ellertsen, Ingvill [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Dogné, Jean-Michel [Department of Pharmacy, Namur Thrombosis and Hemostasis Center, University of Namur, Namur (Belgium); Bäck, Magnus, E-mail: Magnus.Back@ki.se [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden)

    2013-11-15

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.

  2. Feeding the nitric oxide synthase inhibitor L-N(omega)nitroarginine elevates serum very low density lipoprotein and hepatic triglyceride synthesis in rats.

    Science.gov (United States)

    Goto, T; Ohnomi, S; Khedara, A; Kato, N; Ogawa, H; Yanagita, T

    1999-05-01

    This study was conducted to study the influence of dietary L-N(omega)nitroarginine (L-NNA), a nitric oxide (NO) synthase inhibitor, on serum lipids and lipoproteins and on the activities of enzymes related to lipid metabolism in rats. Feeding rats a diet containing 0.2 g/kg L-NNA for 5 weeks elevated serum concentrations of triglyceride, cholesterol, phospholipid, and free fatty acid and reduced serum nitrate (an oxidation product of NO). The elevation in serum triglyceride was mainly due to the elevation in very low density lipoprotein (VLDL) triglyceride. Contents of cholesterol and phospholipid in the VLDL fraction also were elevated by L-NNA. L-NNA treatment caused significantly higher activity of hepatic microsomal phosphatidate phosphohydrolase (the rate-limiting enzyme in triglyceride synthesis) and lower activity of hepatic carnitine palmitoyltransferase (the rate-limiting enzyme in fatty acid oxidation). Activities of hepatic enzymes responsible for fatty acid synthesis such as glucose-6-phosphate dehydrogenase, malic enzyme, and fatty acid synthase were unaffected by L-NNA. The activity of hepatic microsomal phosphocholine cytidyltransferase (the rate-limiting enzyme in phosphatidylcholine synthesis) was reduced significantly by L-NNA. Our results suggest that lower NO production caused the elevations in hepatic triglyceride synthesis by higher esterification of fatty acid and lower fatty acid oxidation, leading to an enrichment of VLDL triglyceride. PMID:15539300

  3. The effect of nitric oxide synthase inhibitors nitro-L-arginine and 7-nitroindazole on spatial learning and motor functions in Lurcher mutant and wild type mice.

    Science.gov (United States)

    Markvartová, V; Vozeh, F

    2008-01-01

    Nitric oxide (NO) is an intercellular messenger that, among other things, plays an important role in the nervous system as a gaseous neurotransmitter, modulating long-term potentiation (LTP) induction of synaptic transmission. LTP has been suggested to be the basis of memory formation. On the other hand NO also participates in excitotoxic processes which play an important role in many neuropathological states. The aim of this work was to observe the effect of two NO synthase (NOS) inhibitors (N omega-Nitro-L-arginine, NA; 7-nitroindazole, NI) on spontaneous behaviour, spatial learning and motor functions in Lurcher (+/Lc) and wild type (+/+) mice, derived from the B6CBA strain. Heterozygous Lurcher mutant mice represent a natural model of the olivocerebellar degeneration. They suffer from postnatal, practically total, extinction of cerebellar Purkinje cells (due to the excitotoxic apoptosis) and a partial decrease of granule cells and inferior olive neurons (ION) because of the lost target of their axons. +/+ animals are healthy littermates of +/Lc. NA is a nonselective NOS inhibitor which influences, except neuronal (n), also endothelial (e) NOS with an impact on blood pressure, NI is a selective nNOS inhibitor without any circulatory effect. The adult animals of both types (+/Lc; +/+) were influenced by acute administration of both inhibitors (25 mg/kg i.p. 30 min. before experiments) and newborns only by both acute and long-term administration of NI (1 month, starting from postnatal day 2, P2). Control solutions - saline or solvents of both NA and NI inhibitors--diluted 1M HCl and dimethyl sulfoxide (DMSO) respectively, were given at a relevant volume in the same way. The effect of both inhibitors and control solutions on motor functions was tested using four standard procedures (horizontal wire, slanting ladder, rotating cylinder, foot-bridge); in newborns at the age of 14 days. Spatial learning ability was examined in five-day long procedure in the Morris

  4. Minimal pharmacophoric elements and fragment hopping, an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide synthase inhibitors.

    Science.gov (United States)

    Ji, Haitao; Stanton, Benjamin Z; Igarashi, Jotaro; Li, Huiying; Martásek, Pavel; Roman, Linda J; Poulos, Thomas L; Silverman, Richard B

    2008-03-26

    Fragment hopping, a new fragment-based approach for de novo inhibitor design focusing on ligand diversity and isozyme selectivity, is described. The core of this approach is the derivation of the minimal pharmacophoric element for each pharmacophore. Sites for both ligand binding and isozyme selectivity are considered in deriving the minimal pharmacophoric elements. Five general-purpose libraries are established: the basic fragment library, the bioisostere library, the rules for metabolic stability, the toxicophore library, and the side chain library. These libraries are employed to generate focused fragment libraries to match the minimal pharmacophoric elements for each pharmacophore and then to link the fragment to the desired molecule. This method was successfully applied to neuronal nitric oxide synthase (nNOS), which is implicated in stroke and neurodegenerative diseases. Starting with the nitroarginine-containing dipeptide inhibitors we developed previously, a small organic molecule with a totally different chemical structure was designed, which showed nanomolar nNOS inhibitory potency and more than 1000-fold nNOS selectivity. The crystallographic analysis confirms that the small organic molecule with a constrained conformation can exactly mimic the mode of action of the dipeptide nNOS inhibitors. Therefore, a new peptidomimetic strategy, referred to as fragment hopping, which creates small organic molecules that mimic the biological function of peptides by a pharmacophore-driven strategy for fragment-based de novo design, has been established as a new type of fragment-based inhibitor design. As an open system, the newly established approach efficiently incorporates the concept of early "ADME/Tox" considerations and provides a basic platform for medicinal chemistry-driven efforts. PMID:18321097

  5. The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z

    Directory of Open Access Journals (Sweden)

    Weiss Ingrid M

    2007-11-01

    Full Text Available Abstract Background Chitin self-assembly provides a dynamic extracellular biomineralization interface. The insoluble matrix of larval shells of the marine bivalve mollusc Mytilus galloprovincialis consists of chitinous material that is distributed and structured in relation to characteristic shell features. Mollusc shell chitin is synthesized via a complex transmembrane chitin synthase with an intracellular myosin motor domain. Results Enzymatic mollusc chitin synthesis was investigated in vivo by using the small-molecule drug NikkomycinZ, a structural analogue to the sugar donor substrate UDP-N-acetyl-D-glucosamine (UDP-GlcNAc. The impact on mollusc shell formation was analyzed by binocular microscopy, polarized light video microscopy in vivo, and scanning electron microscopy data obtained from shell material formed in the presence of NikkomycinZ. The partial inhibition of chitin synthesis in vivo during larval development by NikkomycinZ (5 μM – 10 μM dramatically alters the structure and thus the functionality of the larval shell at various growth fronts, such as the bivalve hinge and the shell's edges. Conclusion Provided that NikkomycinZ mainly affects chitin synthesis in molluscs, the presented data suggest that the mollusc chitin synthase fulfils an important enzymatic role in the coordinated formation of larval bivalve shells. It can be speculated that chitin synthesis bears the potential to contribute via signal transduction pathways to the implementation of hierarchical patterns into chitin mineral-composites such as prismatic, nacre, and crossed-lamellar shell types.

  6. Structure-Based Design of Novel Pyrimido[4,5-c]pyridazine Derivatives as Dihydropteroate Synthase Inhibitors with Increased Affinity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ying; Hammoudeh, Dalia; Yun, Mi-Kyung; Qi, Jianjun; White, Stephen W.; Lee, Richard E. (Tennessee-HSC); (SJCH)

    2012-05-29

    Dihydropteroate synthase (DHPS) is the validated drug target for sulfonamide antimicrobial therapy. However, due to widespread drug resistance and poor tolerance, the use of sulfonamide antibiotics is now limited. The pterin binding pocket in DHPS is highly conserved and is distinct from the sulfonamide binding site. It therefore represents an attractive alternative target for the design of novel antibacterial agents. We previously carried out the structural characterization of a known pyridazine inhibitor in the Bacillus anthracis DHPS pterin site and identified a number of unfavorable interactions that appear to compromise binding. With this structural information, a series of 4,5-dioxo-1,4,5,6-tetrahydropyrimido[4,5-c]pyridazines were designed to improve binding affinity. Most importantly, the N-methyl ring substitution was removed to improve binding within the pterin pocket, and the length of the side chain carboxylic acid was optimized to fully engage the pyrophosphate binding site. These inhibitors were synthesized and evaluated by an enzyme activity assay, X-ray crystallography, isothermal calorimetry, and surface plasmon resonance to obtain a comprehensive understanding of the binding interactions from structural, kinetic, and thermodynamic perspectives. This study clearly demonstrates that compounds lacking the N-methyl substitution exhibit increased inhibition of DHPS, but the beneficial effects of optimizing the side chain length are less apparent.

  7. The use of aminoguanidine, a selective inducible nitric oxide synthase inhibitor, to evaluate the role of nitric oxide on periapical healing

    Science.gov (United States)

    Farhad, Ali Reza; Razavi, Seyed Mohammad; Nejad, Parnian Alavi

    2011-01-01

    Background: Nitric oxide (NO) is one of the many chemical mediators involved in inflammatory processes. In addition to periapical inflammation, NO can have a role in periapical healing. The purpose of this study was to evaluate the effect of aminoguanidine (AG) as a selective inhibitor of inducible nitric oxide synthase (iNOS) on the degree of healing response of periapical lesions of the canine teeth of cats. Methods: In this interventional experimental study, the root canals of 48 cat canine teeth were infected with cat dental plaque and sealed. After induction of periapical lesions, root canal therapy (RCT) was performed. On the day of RCT phase, the cats were administered either AG (experimental group) or normal saline (control group), which was continued on a daily basis until the day of sacrifice. Four canine teeth in one cat served as negative and positive controls. The animals were sacrificed 6 weeks after RCT. The healing response of the periapical zones was analyzed histologically. The mean scores of healing for the two groups were compared using Mann–Whitney U test. Results: The mean scores of healing for the AG group (2.45±0.508) were significantly higher than those of the control group (2±0.510) (P<0.05). Conclusion: The use of an iNOS selective inhibitor such as AG can accelerate the healing process in periapical lesions. PMID:22135691

  8. Long-lasting antidepressant action of ketamine, but not glycogen synthase kinase-3 inhibitor SB216763, in the chronic mild stress model of mice.

    Directory of Open Access Journals (Sweden)

    Xian-Cang Ma

    Full Text Available BACKGROUND: Clinical studies demonstrate that the N-methyl-D-aspartate (NMDA receptor antagonist, ketamine, induces rapid antidepressant effects in patients with refractive major depressive disorder and bipolar depression. This rapid onset of action makes ketamine a highly attractive drug for patients, particularly those who do not typically respond to therapy. A recent study suggested that glycogen synthase kinase (GSK-3 may underlie the rapid antidepressant action of ketamine, although the precise mechanisms are unclear. In this study, we examined the effects of ketamine and GSK-3 inhibitor SB216763 in the unpredictable, chronic mild stress (CMS mouse model of mice. METHODOLOGY/PRINCIPAL FINDINGS: Adult C57/B6 male mice were divided into 2 groups, a non-stressed control group and the unpredictable CMS (35 days group. Then, either vehicle, ketamine (10 mg/kg, or the established GSK-3 inhibitor, SB216763 (10 mg/kg, were administered into mice in the CMS group, while vehicle was administered to controls. In the open field test, there was no difference between the four groups (control+vehicle, CMS+vehicle, CMS+ketamine, CMS+SB216763. In the sucrose intake test, a 1% sucrose intake drop, seen in CMS mice, was significantly attenuated after a single dose of ketamine, but not SB216763. In the tail suspension test (TST and forced swimming test (FST, the increased immobility time seen in CMS mice was significantly attenuated by a single dose of ketamine, but not SB216763. Interestingly, the ketamine-induced increase in the sucrose intake test persisted for 8 days after a single dose of ketamine. Furthermore, a single administration of ketamine, but not SB216763, significantly attenuated the immobility time of the TST and FST in the control (non-stressed mice. CONCLUSIONS/SIGNIFICANCE: These findings suggest that a single administration of ketamine, but not GSK-3 inhibitor SB216763, produces a long-lasting antidepressant action in CMS model mice.

  9. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3

    Energy Technology Data Exchange (ETDEWEB)

    Ojo, Kayode K; Arakaki, Tracy L; Napuli, Alberto J; Inampudi, Krishna K; Keyloun, Katelyn R; Zhang, Li; Hol, Wim G.J.; Verlind, Christophe L.M.J.; Merritt, Ethan A; Van Voorhis, Wesley C [UWASH

    2012-04-24

    Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18_V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 Å resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3β (HsGSK-3β) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.

  10. Identification of novel membrane-associated prostaglandin E synthase-1 (mPGES-1) inhibitors with anti-influenza activities in vitro.

    Science.gov (United States)

    Park, Ji Hoon; Park, Eun Beul; Lee, Jae Yeol; Min, Ji-Young

    2016-01-22

    Influenza A virus (IAV) is a major public health concern that leads to high morbidity and mortality worldwide. Despite various vaccination programs and development of drugs targeting essential viral proteins, the emergence of drug-resistant variants has been frequently reported and the therapeutic options are limited. Because exaggerated inflammation is considered as an important factor in disease pathogenesis, immunomodulatory agents that effectively suppress cytokine responses are needed for the treatment of IAV infection. Membrane-associated prostaglandin E synthase-1 (mPGES-1) is an enzyme responsible for the production of prostaglandin E2 (PGE2) that is the best-characterized immune modulatory lipid in vitro and in vivo models of inflammation. In the present study, we tested the anti-influenza activities of mPGES-1 inhibitors, using a phenotype-based assay involving image analyses. Seven primary hits among 49 compounds targeting mPGES-1 exhibited anti-influenza activities against A/Puerto Rico/8/1934 (H1N1) in a dose-dependent manner. The most effective hit, MPO-0047, suppressed influenza-induced p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) activation. We also showed that mRNA levels of TNF-α, IL-8, CCL5/RANTES, and CXCL10/IP-10 were significantly reduced by the treatment of influenza-infected cells with MPO-0047. Exogenous PGE2 reversed the inhibitory effects of MPO-0047. Our results showed that this selective mPGES-1 inhibitor has anti-influenza effects by inhibiting PGE2 production, which suppresses the induction of pro-inflammatory genes. Taken together our data revealed that mPGES-1 inhibitor has the potential for further development as an influenza therapeutic agent. PMID:26673392

  11. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B

    DEFF Research Database (Denmark)

    Skov, Søren; Pedersen, Marianne Terndrup; Andresen, Lars;

    2005-01-01

    We show that histone deacetylase (HDAC) inhibitors lead to functional expression of MHC class I-related chain A and B (MICA/B) on cancer cells, making them potent targets for natural killer (NK) cell-mediated killing through a NK group 2, member D (NKG2D) restricted mechanism. Blocking either...... apoptosis or oxidative stress caused by HDAC inhibitor treatment did not affect MICA/B expression, suggesting involvement of a separate signal pathway not directly coupled to induction of cell death. HDAC inhibitor treatment induced glycogen synthase kinase-3 (GSK-3) activity and down-regulation of GSK-3...... by small interfering RNA or by different inhibitors showed that GSK-3 activity is essential for the induced MICA/B expression. We thus present evidence that cancer cells which survive the direct induction of cell death by HDAC inhibitors become targets for NKG2D-expressing cells like NK cells, gammadelta T...

  12. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  13. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    International Nuclear Information System (INIS)

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and

  14. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    International Nuclear Information System (INIS)

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS+ and cyclooxygenase-2+) and alternatively activated profibrotic (YM-1+ and galectin-3+) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute lung injury induced by

  15. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  16. Lapatinib, a dual EGFR and HER2 tyrosine kinase inhibitor, downregulates thymidylate synthase by inhibiting the nuclear translocation of EGFR and HER2.

    Directory of Open Access Journals (Sweden)

    Hwang-Phill Kim

    Full Text Available BACKGROUND: Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI has been shown to exert a synergistic antitumor effect when combined with fluoropyrimidine. This synergy may be attributable to the downregulation of thymidylate synthase (TS, which is frequently overexpressed in fluoropyrimidine-resistant cancer cells. However, the molecular mechanism underlying the downregulation of TS has yet to be clearly elucidated. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we demonstrate that lapatinib, a dual TKI of EGFR and HER2 downregulates TS via inhibition of the nuclear translocation of EGFR and HER2. From our cDNA microarray experiments, we determined that a variety of nucleotide synthesis-related genes, including TS, were downregulated with lapatinib, and this was apparent in HER2-amplified cells. Targeted and pharmacologic inhibition assays confirmed that the dual inhibition of EGFR and HER2 is required for the more effective reduction of TS as compared to what was observed with gefitinib or trasutuzumab alone. Additionally, we determined that co-transfected EGFR and HER2 activate the TS gene promoter more profoundly than do either EGFR or HER2 alone. The translocation of EGFR and HER2 into the nucleus and the subsequent activation of the TS promoter were inhibited by lapatinib. CONCLUSIONS AND SIGNIFICANCE: These results demonstrate that lapatinib inhibits the nuclear translocation of EGFR and HER2 and downregulates TS, thus sensitizing cancer cells to fluoropyrimidine.

  17. The neuronal nitric oxide synthase inhibitor NANT blocks acetaminophen toxicity and protein nitration in freshly isolated hepatocytes.

    Science.gov (United States)

    Banerjee, Sudip; Melnyk, Stepan B; Krager, Kimberly J; Aykin-Burns, Nukhet; Letzig, Lynda G; James, Laura P; Hinson, Jack A

    2015-12-01

    3-Nitrotyrosine (3NT) in liver proteins of mice treated with hepatotoxic doses of acetaminophen (APAP) has been postulated to be causative in toxicity. Nitration is by a reactive nitrogen species formed from nitric oxide (NO). The source of the NO is unclear. iNOS knockout mice were previously found to be equally susceptible to APAP toxicity as wildtype mice and iNOS inhibitors did not decrease toxicity in mice or in hepatocytes. In this work we examined the potential role of nNOS in APAP toxicity in hepatocytes using the specific nNOS inhibitor NANT (10 µM)(N-[(4S)-4-amino-5-[(2-aminoethyl)amino]pentyl]-N'-nitroguanidinetris (trifluoroacetate)). Primary hepatocytes (1 million/ml) from male B6C3F1 mice were incubated with APAP (1mM). Cells were removed and assayed spectrofluorometrically for reactive nitrogen and oxygen species using diaminofluorescein (DAF) and Mitosox red, respectively. Cytotoxicity was determined by LDH release into media. Glutathione (GSH, GSSG), 3NT, GSNO, acetaminophen-cysteine adducts, NAD, and NADH were measured by HPLC. APAP significantly increased cytotoxicity at 1.5-3.0 h. The increase was blocked by NANT. NANT did not alter APAP mediated GSH depletion or acetaminophen-cysteine adducts in proteins which indicated that NANT did not inhibit metabolism. APAP significantly increased spectroflurometric evidence of reactive nitrogen and oxygen formation at 0.5 and 1.0 h, respectively, and increased 3NT and GSNO at 1.5-3.0 h. These increases were blocked by NANT. APAP dramatically increased NADH from 0.5-3.0 h and this increase was blocked by NANT. Also, APAP decreased the Oxygen Consumption Rate (OCR), decreased ATP production, and caused a loss of mitochondrial membrane potential, which were all blocked by NANT.

  18. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy

    Directory of Open Access Journals (Sweden)

    Suborov Evgeny V

    2012-06-01

    Full Text Available Abstract Background Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI and enhanced generation of nitric oxide (NO. We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS, which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. Methods Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8 keeping VT and FiO2 unchanged, respiratory rate (RR 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8 and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8. We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI and the pulmonary vascular permeability index (PVPI. We measured plasma nitrite/nitrate (NOx levels and examined lung biopsies for lung injury score (LIS. Results Both the injuriously ventilated groups demonstrated a 2–3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. Conclusion Inhibition of nNOS improved gas exchange

  19. Inhibitors

    Science.gov (United States)

    ... wrong place in the body. Immune Tolerance Induction (ITI) Therapy: The goal of ITI therapy is to stop the inhibitor reaction from ... body to accept clotting factor concentrate treatments. With ITI therapy, people receive large amounts of clotting factor ...

  20. Acetohydroxy acid synthase I, a required enzyme for isoleucine and valine biosynthesis in Escherichia coli K-12 during growth on acetate as the sole carbon source.

    OpenAIRE

    Dailey, F E; Cronan, J E

    1986-01-01

    Escherichia coli K-12 has two acetohydroxy acid synthase (AHAS) isozymes (AHAS I and AHAS III). Both of these isozymes catalyze the synthesis of alpha-aceto-alpha-hydroxybutyrate and alpha-acetolactate, which are key intermediates of the isoleucine-valine biosynthetic pathway. Strains lacking either isozyme but not both activities have been previously shown to grow well in minimal media in the absence of isoleucine and valine on any of several commonly used carbon sources (e.g., glucose or su...

  1. First report of resistence to acetolactate synthase inhibiting herbicides in yellow nutsedge (Cyperus esculentus): confirmation and characterization

    Science.gov (United States)

    Yellow nutsedge is one of the most problematic sedges in Arkansas rice, requiring the frequent use of halosulfuron (sulfonylurea) for its control. In the summer of 2012, halosulfuron at 53 g ha-1(labeled field rate) failed to control yellow nutsedge. The level of resistance to halosulfuron was deter...

  2. The Nitric Oxide Synthase Inhibitor NG-Nitro-L-Arginine Methyl Ester Diminishes the Immunomodulatory Effects of Parental Arginine in Rats with Subacute Peritonitis.

    Science.gov (United States)

    Lo, Hui-Chen; Hung, Ching-Yi; Huang, Fu-Huan; Su, Tzu-Cheng; Lee, Chien-Hsing

    2016-01-01

    The combined treatment of parenteral arginine and the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) have been shown to improve liver function and systemic inflammation in subacute peritonitic rats. Here, we investigated the effects of single and combined parenteral arginine and L-NAME treatments on leukocyte and splenocyte immunity. Male Wistar rats were subjected to cecal punctures and were intravenously given total parenteral nutrition solutions with or without arginine and/or L-NAME supplementations for 7 days. Non-surgical and sham-operated rats with no cecal puncture were given a chow diet and parenteral nutrition, respectively. Parenteral feeding elevated the white blood cell numbers and subacute peritonitis augmented the parenteral nutrition-induced alterations in the loss of body weight gain, splenomegaly, and splenocyte decreases. Parenteral arginine significantly increased the B-leukocyte level, decreased the natural killer T (NKT)-leukocyte and splenocyte levels, alleviated the loss in body weight gain and total and cytotoxic T-splenocyte levels, and attenuated the increases in plasma nitrate/nitrite and interferon-gamma production by T-splenocytes. L-NAME infusion significantly decreased NKT-leukocyte level, tumor-necrosis factor (TNF)-alpha production by T-splenocytes and macrophages, and interferon-gamma production by T-leukocytes, monocytes, and T-splenocytes, as well as increased interleukin-6 production by T-leukocytes and monocytes and nitrate/nitrite production by T-leukocytes. Combined treatment significantly decreased plasma nitrate/nitrite, the NKT-leukocyte level, and TNF-alpha production by T-splenocytes. Parenteral arginine may attenuate immune impairment and L-NAME infusion may augment leukocyte proinflammatory response, eliminate splenocyte proinflammatory and T-helper 1 responses, and diminish arginine-induced immunomodulation in combined treatment in subacute peritonitic rats.

  3. Vascular hyporeactivity to angiotensin II induced by Escherichia coli endotoxin is reversed by Nω-Nitro-L-Arginine, an inhibitor of nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    L. A. RODRIGUES

    2009-01-01

    Full Text Available

    Septic shock or sepsis is reported to be one of the major causes of death when followed by systemic infectious trauma in humans and other mammals. Its development leads to a large drop in blood pressure and a reduction in vascular responsiveness to physiological vasoconstrictors which, if not contained, can lead to death. It is proposed that this vascular response is due to the action of bacterial cell wall products released into the bloodstream by the vascular endothelium and is considered a normal response of the body`s defenses against infection. A reduction in vascular reactivity to epinephrine and norepinephrine is observed under these conditions. In the present study in rats, the aim was to assess whether those effects of hypotension and hyporeactivity are also related to another endogenous vasoconstrictor, angiotensin II (AII. We evaluated the variation in the power of this vasoconstrictor over the mean arterial pressure in anesthetized rats, before and after the establishment of hypotension by Escherichia coli endotoxin (Etx. Our results show that in this model of septic shock, there is a reduction in vascular reactivity to AII and this reduction can be reversed by the inhibitor of nitric oxide synthase, Nω-Nitro-L-Arginine (NωNLA. Our results also suggest that other endogenous factors (not yet fully known are involved in the protection of rats against septic shock, in addition to the L-arginine NO pathway. Keywords: vascular hyporeactivity; NO; rat; angiotensin II; NωNLA Escherichia coli endotoxin.

  4. Resistance of a rodent malaria parasite to a thymidylate synthase inhibitor induces an apoptotic parasite death and imposes a huge cost of fitness.

    Directory of Open Access Journals (Sweden)

    Francis W Muregi

    Full Text Available BACKGROUND: The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. METHODOLOGY/PRINCIPAL FINDINGS: To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi relative to the wild-type (45.6%±8.4, translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. CONCLUSIONS/SIGNIFICANCE: The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite

  5. Effect of a nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester on invasion of human colorectal cancer cell line SL-174T

    Institute of Scientific and Technical Information of China (English)

    Li-Bo Yu; Xin-Shu Dong; Wen-Zhou Sun; Dong-Lu Zhao; Yue Yang

    2005-01-01

    AIM: To investigate the effect and mechanism of action of the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) on invasion and metastasis of human colorectal cancer cell line SL-174T.METHODS: Human colorectal cancer cell line SL-174T was cultured and treated separately with four different dosages of L-NAME for 72 h. Nitric oxide (NO) production was measured with Griess reagent. The effect of L-NAME on invasion and migration of SL-174T cells were evaluated by using Transwell chambers attached with polycarbonate filters and reconstituted basement membrane (Matrigel).RT-PCR was performed to determine the mRNA levels of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor metalloproteinase-2 (TIMP-2).RESULTS: L-NAME could significantly inhibit NO production of SL-174T in a dose-dependent manner. After being treated for 72 h with 0.2, 0.4, 0.8, and 1.0 mmol/L LNAME, respectively, the ability of the L-NAME treated SL174T cells to invade the reconstituted basement membrane decreased significantly (t = 8.056, P<0.05;t= 14.467, P<0.01;t= 27.785, P<0.01;and t= 29.405,P<0.01, respectively) and the inhibition rates were 10.29%,19.62%, 34.08%, and 42.23%, respectively. Moreover,L-NAME could inhibit migration of SL-174T cells, and the inhibition rates were 20.76%, 24.95%, 39.43%, and 46.85% for L-NAME at 0.2, 0.4, 0.8, and 1.0 mmol/L,respectively (t = 15.116, P<0.01). In addition, after treatment with L-NAME, expression of MMP-2 mRNA was significantly decreased (t = 71.238, P<0.01) and that of TIMP-2 mRNA was markedly increased (t = -13.020,P<O.01).CONCLUSION: L-NAME exerts anti-invasive and antimetastatic effects on SL-174T cell line via downregulating MMP-2 mRNA expression and upregulating TIMP-2 mRNA expression.

  6. "Zipped Synthesis" by Cross-Metathesis Provides a Cystathionine β-Synthase Inhibitor that Attenuates Cellular H2S Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model.

    Science.gov (United States)

    McCune, Christopher D; Chan, Su Jing; Beio, Matthew L; Shen, Weijun; Chung, Woo Jin; Szczesniak, Laura M; Chai, Chou; Koh, Shu Qing; Wong, Peter T-H; Berkowitz, David B

    2016-04-27

    The gaseous neuromodulator H2S is associated with neuronal cell death pursuant to cerebral ischemia. As cystathionine β-synthase (CBS) is the primary mediator of H2S biogenesis in the brain, it has emerged as a potential target for the treatment of stroke. Herein, a "zipped" approach by alkene cross-metathesis into CBS inhibitor candidate synthesis is demonstrated. The inhibitors are modeled after the pseudo-C 2-symmetric CBS product (l,l)-cystathionine. The "zipped" concept means only half of the inhibitor needs be constructed; the two halves are then fused by olefin cross-metathesis. Inhibitor design is also mechanism-based, exploiting the favorable kinetics associated with hydrazine-imine interchange as opposed to the usual imine-imine interchange. It is demonstrated that the most potent "zipped" inhibitor 6S reduces H2S production in SH-SY5Y cells overexpressing CBS, thereby reducing cell death. Most importantly, CBS inhibitor 6S dramatically reduces infarct volume (1 h post-stroke treatment; ∼70% reduction) in a rat transient middle cerebral artery occlusion model for ischemia. PMID:27163055

  7. “Zipped Synthesis” by Cross-Metathesis Provides a Cystathionine β-Synthase Inhibitor that Attenuates Cellular H2S Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model

    Science.gov (United States)

    2016-01-01

    The gaseous neuromodulator H2S is associated with neuronal cell death pursuant to cerebral ischemia. As cystathionine β-synthase (CBS) is the primary mediator of H2S biogenesis in the brain, it has emerged as a potential target for the treatment of stroke. Herein, a “zipped” approach by alkene cross-metathesis into CBS inhibitor candidate synthesis is demonstrated. The inhibitors are modeled after the pseudo-C2-symmetric CBS product (l,l)-cystathionine. The “zipped” concept means only half of the inhibitor needs be constructed; the two halves are then fused by olefin cross-metathesis. Inhibitor design is also mechanism-based, exploiting the favorable kinetics associated with hydrazine-imine interchange as opposed to the usual imine–imine interchange. It is demonstrated that the most potent “zipped” inhibitor 6S reduces H2S production in SH-SY5Y cells overexpressing CBS, thereby reducing cell death. Most importantly, CBS inhibitor 6S dramatically reduces infarct volume (1 h post-stroke treatment; ∼70% reduction) in a rat transient middle cerebral artery occlusion model for ischemia. PMID:27163055

  8. Long-term treatment with an aldosterone synthase inhibitor improves cardiac function and myocardial structure in rats with chronic heart failure

    Institute of Scientific and Technical Information of China (English)

    VirginieMELLIN; PaulMULDER; BenoitDiMEGLIO; JeanPaulHENRY; ChristianTHUILLEZ

    2004-01-01

    AIM: Aldosterone receptor antagonists reduce total and cardiovascular mortality in patients with chronic heart failure (CHF) under active angiotensin converting enzyme inhibition treatment,illustrating the deleterious involvement of aldosterone in the progression of CHF. The reduction of aldosterone synthesis through inhibition of aldosterone synthase is an alternative way to prevent the effects of aldosterone. However, whether chronic aldosterone synthase inhibition exerts beneficial effects in CHF

  9. 1400W, a highly selective inducible nitric oxide synthase inhibitor is a potential disease modifier in the rat kainate model of temporal lobe epilepsy.

    Science.gov (United States)

    Puttachary, Sreekanth; Sharma, Shaunik; Verma, Saurabh; Yang, Yang; Putra, Marson; Thippeswamy, Achala; Luo, Diou; Thippeswamy, Thimmasettappa

    2016-09-01

    Status epilepticus (SE) initiates epileptogenesis to transform normal brain to epileptic state which is characterized by spontaneous recurrent seizures (SRS). Prior to SRS, progressive changes occur in the brain soon after SE, for example, loss of blood-brain barrier (BBB) integrity, neuronal hyper-excitability (epileptiform spiking), neuroinflammation [reactive gliosis, high levels of reactive oxygen/nitrogen species (ROS/RNS)], neurodegeneration and synaptic re-organization. Our hypothesis was that modification of early epileptogenic events will alter the course of disease development and its progression. We tested the hypothesis in the rat kainate model of chronic epilepsy using a novel disease modifying drug, 1400W, a highly selective inhibitor of inducible nitric oxide synthase (iNOS/NOS-II). In an in vitro mouse brain slice model, using a multi-electrode array system, co-application of 1400W with kainate significantly suppressed kainate-induced epileptiform spiking. In the rats, in vivo, 4h after the induction of SE with kainate, 1400W (20mg/kg, i.p.) was administered twice daily for three days to target early events of epileptogenesis. The rats were subjected to continuous (24/7) video-EEG monitoring, remotely, for six months from epidurally implanted cortical electrodes. The 1400W treatment significantly reduced the epileptiform spike rate during the first 12-74h post-SE, which resulted in >90% reduction in SRS in long-term during the six month period when compared to the vehicle-treated control group (257±113 versus 19±10 episodes). Immunohistochemistry (IHC) of brain sections at seven days and six months revealed a significant reduction in; reactive astrogliosis and microgliosis (M1 type), extravascular serum albumin (a marker for BBB leakage) and neurodegeneration in the hippocampus, amygdala and entorhinal cortex in the 1400W-treated rats when compared to the vehicle control. In the seven day group, hippocampal Western blots revealed downregulation of

  10. Enhanced production of butanol and acetoin by heterologous expression of an acetolactate decarboxylase in Clostridium acetobutylicum.

    Science.gov (United States)

    Shen, Xiaoning; Liu, Dong; Liu, Jun; Wang, Yanyan; Xu, Jiahui; Yang, Zhengjiao; Guo, Ting; Niu, Huanqing; Ying, Hanjie

    2016-09-01

    Butanol is an important industrial chemical and an attractive transportation fuel. However, the deficiency of reducing equivalents NAD(P)H in butanol fermentation results in a large quantity of oxidation products, which is a major problem limiting the atom economy and economic viability of bio-butanol processes. Here, we integrated the butanol fermentation process with a NADH-generating, acetoin biosynthesis process to improve the butanol production. By overexpressing the α-acetolactate decarboxylase gene alsD from Bacillus subtilis in Clostridium acetobutylicum, acetoin yield was significantly increased at the cost of acetone. After optimization of fermentation conditions, butanol (12.9g/L), acetoin (6.5g/L), and ethanol (1.9g/L) were generated by the recombinant strain, with acetone no more than 1.8g/L. Thus, both mass yield and product value were greatly improved. This study demonstrates that reducing power compensation is effective to improve the atom economy of butanol fermentation, and provides a novel approach to improve the economic viability of bio-butanol production. PMID:27285575

  11. IL-1beta-Induced iNOS Expression, NO Release and Loss in Metabolic Cell Viability Are Resistant to Inhibitors of Ceramide Synthase and Sphingomyelinase in INS 832/13 Cells

    Directory of Open Access Journals (Sweden)

    Rajakrishnan Veluthakal

    2006-11-01

    Full Text Available Context Emerging evidence indicates regulatory roles for ceramide in the metabolic dysfunction of the islet beta cell. Recently, potential similarities between IL-1beta and ceramide on their effects on islet beta cell have been reported, including reduction in mitochondrial membrane potential and loss in metabolic cell viability.Objective Herein, we investigated whether IL-1beta-induced nitric oxide synthetase (iNOS expression, nitric oxide (NO release and loss in metabolic cell viability require ceramide biosynthesis either via the activation of sphingomyelinase or ceramide synthase.Setting Insulin-secreting INS 832/13 cells.Results We found that two structurally-distinct inhibitors of sphingomyelinase activation (e.g., 3-O-methylsphingomyelin or desipramine or ceramide biosynthesis inhib-itor (e.g., fumonisin failed to exert clear effects on IL-1beta-induced iNOS expression, NO release and loss in cell viability.Conclusions Taken together, our findings indicate that neither the sphingomyelinase nor the ceramide synthase activation is required for IL-1beta-induced metabolic abnormalities in insulin-secreting INS 832/13 cells.

  12. Pseudouridine synthases.

    Science.gov (United States)

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  13. Hit Optimization of 5-Substituted-N-(piperidin-4-ylmethyl)-1H-indazole-3-carboxamides: Potent Glycogen Synthase Kinase-3 (GSK-3) Inhibitors with in Vivo Activity in Model of Mood Disorders.

    Science.gov (United States)

    Furlotti, Guido; Alisi, Maria Alessandra; Cazzolla, Nicola; Dragone, Patrizia; Durando, Lucia; Magarò, Gabriele; Mancini, Francesca; Mangano, Giorgina; Ombrato, Rosella; Vitiello, Marco; Armirotti, Andrea; Capurro, Valeria; Lanfranco, Massimiliano; Ottonello, Giuliana; Summa, Maria; Reggiani, Angelo

    2015-11-25

    Novel treatments for bipolar disorder with improved efficacy and broader spectrum of activity are urgently needed. Glycogen synthase kinase 3β (GSK-3β) has been suggested to be a key player in the pathophysiology of bipolar disorder. A series of novel GSK-3β inhibitors having the common N-[(1-alkylpiperidin-4-yl)methyl]-1H-indazole-3-carboxamide scaffold were prepared taking advantage of an X-ray cocrystal structure of compound 5 with GSK-3β. We probed different substitutions at the indazole 5-position and at the piperidine-nitrogen to obtain potent ATP-competitive GSK-3β inhibitors with good cell activity. Among the compounds assessed in the in vivo PK experiments, 14i showed, after i.p. dosing, encouraging plasma PK profile and brain exposure, as well as efficacy in a mouse model of mania. Compound 14i was selected for further in vitro/in vivo pharmacological evaluation, in order to elucidate the use of ATP-competitive GSK-3β inhibitors as new tools in the development of new treatments for mood disorders. PMID:26486317

  14. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  15. Docking studies of flavonoid compounds as inhibitors of β-ketoacyl acyl carrier protein synthase I (Kas I) of Escherichia coli.

    Science.gov (United States)

    Sabbagh, Ghalia; Berakdar, Noura

    2015-09-01

    Escherichia coli is one of the most frequent causes of many common bacterial infections, including cholecystitis, bacteremia, cholangitis, urinary tract infection (UTI), traveler's diarrhea and other clinical infections such as neonatal meningitis and pneumonia. The fatty acid biosynthesis is essential for the bacterial viability and growth. There are three types of β-ketoacyl acyl carrier protein synthase (KAS) which are important for overcoming the bacterial resistance problem. β-ketoacyl acyl carrier protein synthase I (KAS I) is member of the condensing enzyme family, which is a key catalyst in bacterial fatty acid biosynthesis, and thus an attractive target for novel antibioticsis related to the elongation of unsaturated fatty acids in bacterial fatty acid synthesis and can be a good therapeutic target of designing novel antibiotics. In this report, we performed docking study of E. coli (KAS I) and 50 flavonoids. Out of these 50 flavonoids, there are two compounds, genistein and isorhamnetin, that showed the superior binding energy while fully satisfying the conditions of drug likeliness. The predicted binding energy of genistein and isorhamnetin toward KAS I are -135.76kcal/mol and -132.42kcal/mol, respectively. These energies favorably compare to the biding energy of known drugs thiolactomicin and cerulenin that are -90.26kcal/mol and -99.64kcal/mol, respectively. The method used was docking with the selected E. coli (KAS I-PDB ID-1FJ4) using iGemdock. This was also found to obey the Lipinski's guidelines of five and to show the drug likeliness and bioavailability. PMID:26292066

  16. Inducible nitric oxide synthase and inflammation.

    Science.gov (United States)

    Salvemini, D; Marino, M H

    1998-01-01

    Nitric oxide (NO), derived from L-arginine (L-Arg) by the enzyme nitric oxide synthase (NOS), is involved in acute and chronic inflammatory events. In view of the complexity associated with the inflammatory response, the dissection of possible mechanisms by which NO modulates this response will be profitable in designing novel and more efficacious NOS inhibitors. In this review we describe the consequences associated with the induction of inducible nitric oxide synthase (iNOS) and its therapeutic implications. PMID:15991919

  17. Advances in tetrahydropyrido[1,2-a]isoindolone (valmerins) series: Potent glycogen synthase kinase 3 and cyclin dependent kinase 5 inhibitors.

    Science.gov (United States)

    Boulahjar, Rajâa; Ouach, Aziz; Bourg, Stéphane; Bonnet, Pascal; Lozach, Olivier; Meijer, Laurent; Guguen-Guillouzo, Christiane; Le Guevel, Rémy; Lazar, Saïd; Akssira, Mohamed; Troin, Yves; Guillaumet, Gérald; Routier, Sylvain

    2015-08-28

    An efficient synthetic strategy was developed to modulate the structure of the tetrahydropyridine isoindolone (Valmerin) skeleton. A library of more than 30 novel final structures was generated. Biological activities on CDK5 and GSK3 as well as cellular effects on cancer cell lines were measured for each novel compound. Additionally docking studies were performed to support medicinal chemistry efforts. A strong GSK3/CDK5 dual inhibitor (38, IC50 GSK3/CDK5 32/84 nM) was obtained. A set of highly selective GSK3 inhibitors was synthesized by fine-tuning structural modifications (29 IC50 GSK3/CDK5 32/320 nM). Antiproliferative effects on cells were correlated with the in vitro kinase activities and the best effects were obtained with lung and colon cell lines. PMID:26142492

  18. Ternary complex structures of human farnesyl pyrophosphate synthase bound with a novel inhibitor and secondary ligands provide insights into the molecular details of the enzyme’s active site closure

    Directory of Open Access Journals (Sweden)

    Park Jaeok

    2012-12-01

    Full Text Available Abstract Background Human farnesyl pyrophosphate synthase (FPPS controls intracellular levels of farnesyl pyrophosphate, which is essential for various biological processes. Bisphosphonate inhibitors of human FPPS are valuable therapeutics for the treatment of bone-resorption disorders and have also demonstrated efficacy in multiple tumor types. Inhibition of human FPPS by bisphosphonates in vivo is thought to involve closing of the enzyme’s C-terminal tail induced by the binding of the second substrate isopentenyl pyrophosphate (IPP. This conformational change, which occurs through a yet unclear mechanism, seals off the enzyme’s active site from the solvent environment and is essential for catalysis. The crystal structure of human FPPS in complex with a novel bisphosphonate YS0470 and in the absence of a second substrate showed partial ordering of the tail in the closed conformation. Results We have determined crystal structures of human FPPS in ternary complex with YS0470 and the secondary ligands inorganic phosphate (Pi, inorganic pyrophosphate (PPi, and IPP. Binding of PPi or IPP to the enzyme-inhibitor complex, but not that of Pi, resulted in full ordering of the C-terminal tail, which is most notably characterized by the anchoring of the R351 side chain to the main frame of the enzyme. Isothermal titration calorimetry experiments demonstrated that PPi binds more tightly to the enzyme-inhibitor complex than IPP, and differential scanning fluorometry experiments confirmed that Pi binding does not induce the tail ordering. Structure analysis identified a cascade of conformational changes required for the C-terminal tail rigidification involving Y349, F238, and Q242. The residues K57 and N59 upon PPi/IPP binding undergo subtler conformational changes, which may initiate this cascade. Conclusions In human FPPS, Y349 functions as a safety switch that prevents any futile C-terminal closure and is locked in the “off” position in the

  19. New Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Inhibitors, Nalidixic Acid Linked to Isatin Schiff Bases via Certain l-Amino Acid Bridges

    Directory of Open Access Journals (Sweden)

    Ahmed M. Naglah

    2016-04-01

    Full Text Available A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a–c. The chemical structures of the new Schiff bases (5b and 5d–h were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 in the lipopolysaccharide (LPS-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%–42.2% ± 19.6% compared to the effect on COX-2 expression (<56.4% ± 3.1% inhibition at the same concentration (10 μM. The higher iNOS inhibition activity of the tested Schiff bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a–c, and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents.

  20. Highly Efficient Synthesis of Two Hyaluronan Trisaccharide Analogues for Potential Hyaluronic Acid Synthases Inhibitors%透明质酸三糖模拟物的高效合成

    Institute of Scientific and Technical Information of China (English)

    魏国华; 杜宇国; Khushi L. Matta

    2009-01-01

    The syntheses of two hyaluronan trisaccharide analogues, naphthyl 0-(3-methoxy-B-D-glucopy-ranosyluronic acid)-(1,3)-O-(2-acetamido-2-deoxy-B-D-glucopyranosyl)-(1,4)-0-B-D-glucopyranosyluronic acid and naphthyl O-(3-methoxy-2-acetamido-2-deoxy-B-D-glucopyranosyl)-(1,4)-O-(B-D-glucopyranosylu-ronic acid)-(1,3 )-O-2-acetamido-2-deoxy-B-D-glucopyranoside, were described. Construction of the target molecules was achieved through a combination of BF_3·Et_2O/toluene system and trichloroacetimidate glycosyia-tion methodology. This is the first report on the synthesis of the 3-methoxyl derivatives, which represent the smallest fragments that incorporate all the structural features of polymeric hyaluronan and can be used for potential hyaluronic acid synthases inhibitors.%设计合成了2个透明质酸(HA)模拟物1和2, 通过最小基团MeO的引入修饰, 模拟天然HA片段的特性, 用于透明质酸合成酶(HAS)催化机理与抑制剂的研究.

  1. [Heme oxygenase activity in the tissues of the vessels and heart of rats under co-administration of NO-synthase inhibitor and hemin chloride].

    Science.gov (United States)

    Kaliman, P A; Filimonenko, V P; Nikitchenko, I V

    2008-01-01

    The administration of hemin chloride in a dose of 1.5 mg/100 g of the body weight was found to cause accumulation of the total heme and TBA-reactive products in the rat blood serum and vessels. Pretreatment by N(omega)-nitro-L-arginine (0.5 h before hemin chloride administration) did not affect the dynamics of the total heme and TBA-reacting products accumulation. The increase of heme oxygenase activity was observed in the vessels after hemin chloride administration. This effect was strengthened by N(omega)-nitro-L-arginine pretreatment. The changes of heme oxygenase activity and the total heme level in heart were not observed at any periods studied. The increase of the TBA-reactive products level in the heart after exogenous hemin injection was accompanied by an increase of nitrites content and blocked by pretreatment of NOS inhibitor. The N(omega)-nitro-L-arginine alone caused the accumulation of the total heme, TBA-reacting products and the increase of heme oxygenase activity in the vessels. The role of heme and NO in regulation of the heme oxygenase activity is discussed. PMID:18819384

  2. Role of the anterior region of the third ventricle in the cardiovascular responses produced by systemic injection of a nitric oxide synthase inhibitor

    Science.gov (United States)

    Lewis, S. J.; Whalen, E. J.; Beltz, T. G.; Johnson, A. K.

    1999-01-01

    This study examined whether a prior electrolytic lesion of the tissue surrounding the anteroventral third ventricle (AV3V) would affect the increase in mean arterial blood pressure (MAP) and the fall in heart rate (HR) produced by systemic injection of the nitric oxide synthesis (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME; 25 micromol/kg, i.v.) in conscious rats. L-NAME produced a smaller increase in MAP in AV3V-lesion than in sham-lesion rats (+19+/-3 vs. +40+/-3 mmHg, respectively; P<0.05). In contrast, L-NAME produced similar falls in HR in the AV3V-lesion and sham-lesion rats (-103+/-15 vs. -97+/-8 bpm, respectively; P<0.05). These findings demonstrate that the L-NAME-induced pressor response is dependent upon the integrity of the AV3V region, whereas the L-NAME-induced bradycardia is not. Copyright 1999 Elsevier Science B. V.

  3. Nitric Oxide Synthase Inhibitors as Antidepressants

    DEFF Research Database (Denmark)

    Wegener, Gregers; Volke, Vallo

    2010-01-01

    been suggested to play major roles in the pathophysiology of mood and stress-related disorders. However, a few clinical and several pre-clinical studies, strongly suggest involvement of the nitric oxide (NO) signaling pathway in these disorders. Moreover, several of the conventional neurotransmitters...

  4. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  5. In Vivo Nitric Oxide Synthase Inhibitors Can Be Deprived of This Activity: Unexpected Influence of the Tetrachloroplatinate(II) Counteranion. Crystal Structures of Bis(S-Methyl-Isothiouronium)-N,N'-Bis(3-Guanidinopropyl)Piperazinium and Hexamidinium Tetrachloroplatinates(II) Salts.

    Science.gov (United States)

    Morgant, G; Viossat, B; Roch-Arveiller, M; Prognon, P; Giroud, J P; Lancelot, J C; Robba, M; Huy, D N

    1998-01-01

    The synthesis and crystal structures of bis(S-methylisothiouronium) (MSTUH)(+), N,N'-bis((3- guanidinopropyl)piperazinium (PipeC3GuaH4)(4+) and hexamidinium (HexaH2)(2+) tetrachloro platinate(ll) salts ( called hereafter PtMSTU, PtPipeC3Gua and PtHexa respectively ) were investigated. These compounds contain the "amidine" function ( - C(=NH)NH(2) ) in which the H atoms supplied by the acid have become attached to the imino group of each terminal amidino function. Moreover, in PtPipeC3Gua, the nitrogen atoms of the chair-piperazine moiety are also protonated. The influence of tetrachloroplatinate(ll) counteranion ( versus sulfate, nitrate and diisethionate ) in the in vivo nitrite inhibition by the (MSTUH)(+), (PipeC3GuaH4)(4+) and (HexaH2)(2+) cations was investigated. The three tetrachloroplatinate(ll) salts, unexpectedly, do not inhibit significantly the in vivo nitrite production in comparison with the other salts (sulfate, nitrate and diisethionate and their corresponding previous countercations) which exhibit NO synthase inhibition, especially bis(S-methylisothiouronium) sulfate, a selective and potent inducible NO synthase (iNOS) inhibitor commonly used as standard. PMID:18475834

  6. Synthesis and modifications of heterocyclic derivatives of D-arabinose: potential inhibitors of glucose-6-phosphate isomerase and glucosamine-6-phosphate synthase; Sintese e modificacoes de derivados heterociclicos de d-arabinose: potenciais inibidores de glicose-6-fosfato isomerase e de glicosamina-6-fosfato sintase

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Renato Marcio Ribeiro; Prado, Maria Auxiliadora Fontes; Alves, Ricardo Jose [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Produtos Farmaceuticos]. E-mail: ricardodylan@farmacia.ufmg.br

    2008-07-01

    The synthesis of -5-(D-arabino-1,2,3,4-tetrahydroxybutyl)tetrazole and -2-(d-arabino-1,2,3,4-tetra-acetoxybutyl)-5-methyl-1,3,4-oxadiazole from d-arabinose is described. Attempts at removing the protecting groups of the oxadiazole derivative were unsuccessful, leading to products resulting from the opening of the oxadiazole ring. The unprotected tetrazole derivative was selectively phosphorylated at the primary hydroxyl group with diethyl phosphoryl chloride. The resulting 5-[d-arabino-4-(diethylphosphoryloxy)-1,2,3-trihydroxybutyl]tetrazole is a protected form of a potential inhibitor of the enzymes glucose-6-phosphate isomerase and glucosamine synthase. (author)

  7. Improvement in the quality of hematopoietic prostaglandin D synthase crystals in a microgravity environment

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiroaki, E-mail: tanakah@confsci.co.jp [Confocal Science Inc. (Japan); Tsurumura, Toshiharu; Aritake, Kosuke [Osaka Bioscience Institute (Japan); Furubayashi, Naoki [Maruwa Foods and Biosciences Inc. (Japan); Takahashi, Sachiko; Yamanaka, Mari; Hirota, Erika [Confocal Science Inc. (Japan); Sano, Satoshi; Sato, Masaru; Kobayashi, Tomoyuki; Tanaka, Tetsuo [Japan Aerospace Exploration Agency (Japan); Inaka, Koji [Maruwa Foods and Biosciences Inc. (Japan); Urade, Yoshihiro [Osaka Bioscience Institute (Japan)

    2011-01-01

    Crystals of hematopoietic prostaglandin D synthase grown in microgravity show improved quality. Human hematopoietic prostaglandin synthase, one of the better therapeutic target enzymes for allergy and inflammation, was crystallized with 22 inhibitors and in three inhibitor-free conditions in microgravity. Most of the space-grown crystals showed better X-ray diffraction patterns than the terrestrially grown ones, indicating the advantage of a microgravity environment on protein crystallization, especially in the case of this protein.

  8. Evidence that nitric oxide synthase is involved in progesterone-induced acrosomal exocytosis in mouse spermatozoa.

    Science.gov (United States)

    Herrero, M B; Viggiano, J M; Pérez Martínez, S; de Gimeno, M F

    1997-01-01

    In a recent work, we detected nitric oxide synthase (NO synthase) in the acrosome and tail of mouse and human spermatozoa by an immunofluorescence technique. Also, NO-synthase inhibitors added during sperm capacitation in vitro reduced the percentage of oocytes fertilized in vitro, suggesting a role for NO synthase in sperm function. Therefore, in the present study the effect of three NO-synthase inhibitors, NG-nitro-L-arginine methyl ester (L-NAME), NG-nitro-D-arginine methyl ester (D-NAME) and L-NG-nitro-arginine (NO2-arg), and of a nitric oxide donor, spermine-NONOate, on the progesterone-induced acrosome reaction of mouse sperm was examined. NO-synthase inhibitors were added at 0, 60 or 90 min during capacitation; at 120 min, mouse epididymal spermatozoa were exposed to 15 microM progesterone for another 15 min. In another set of experiments, different concentrations of spermine-NONOate were added to capacitated spermatozoa for 15 min; in these experiments, progesterone was not included. NO2-arg and L-NAME blocked progesterone-induced exocytosis regardless of the time at which these inhibitors were added. Moreover, D-NAME did not inhibit exocytosis. In contrast, spermine-NONOate stimulated the acrosomal exocytosis in vitro directly. These results provide evidence that mouse sperm NO synthase participates in the progesterone-induced acrosome reaction in vitro and that nitric oxide induces this event.

  9. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  10. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  11. Tapentadol and nitric oxide synthase systems.

    Science.gov (United States)

    Bujalska-Zadrożny, Magdalena; Wolińska, Renata; Gąsińska, Emilia; Nagraba, Łukasz

    2015-04-01

    Tapentadol, a new analgesic drug with a dual mechanism of action (μ-opioid receptor agonism and norepinephrine reuptake inhibition), is indicated for the treatment of moderate to severe acute and chronic pain. In this paper, the possible additional involvement of the nitric oxide synthase (NOS) system in the antinociceptive activity of tapentadol was investigated using an unspecific inhibitor of NOS, L-NOArg, a relatively specific inhibitor of neuronal NOS, 7-NI, a relatively selective inhibitor of inducible NOS, L-NIL, and a potent inhibitor of endothelial NOS, L-NIO. Tapentadol (1-10 mg/kg, intraperitoneal) increased the threshold for mechanical (Randall-Selitto test) and thermal (tail-flick test) nociceptive stimuli in a dose-dependent manner. All four NOS inhibitors, administered intraperitoneally in the dose range 0.1-10 mg/kg, potentiated the analgesic action of tapentadol at a low dose of 2 mg/kg in both models of pain. We conclude that NOS systems participate in tapentadol analgesia. PMID:25485639

  12. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  13. AcEST: DK953876 [AcEST

    Lifescience Database Archive (English)

    Full Text Available U Acetolactate synthase OS=Amaranthus rudis... 277 5e-73 tr|Q6T859|Q6T859_CAMMC Acetolactate synthase OS=Camelina... microca... 276 6e-73 tr|Q6T858|Q6T858_CAMMC Acetolactate synthase OS=Camelina microca... 276 6e-73 tr|

  14. Human uroporphyrinogen III synthase: NMR-based mapping of the active site.

    Science.gov (United States)

    Cunha, Luis; Kuti, Miklos; Bishop, David F; Mezei, Mihaly; Zeng, Lei; Zhou, Ming-Ming; Desnick, Robert J

    2008-05-01

    Uroporphyrinogen III synthase (URO-synthase) catalyzes the cyclization and D-ring isomerization of hydroxymethylbilane (HMB) to uroporphyrinogen (URO'gen) III, the cyclic tetrapyrrole and physiologic precursor of heme, chlorophyl, and corrin. The deficient activity of human URO-synthase results in the autosomal recessive cutaneous disorder, congenital erythropoietic porphyria. Mapping of the structural determinants that specify catalysis and, potentially, protein-protein interactions is lacking. To map the active site and assess the enzyme's possible interaction in a complex with hydroxymethylbilane-synthase (HMB-synthase) and/or uroporphyrinogen-decarboxylase (URO-decarboxylase) by NMR, an efficient expression and purification procedure was developed for these cytosolic enzymes of heme biosynthesis that enabled preparation of special isotopically-labeled protein samples for NMR characterization. Using an 800 MHz instrument, assignment of the URO-synthase backbone (13)C(alpha) (100%), (1)H(alpha) (99.6%), and nonproline (1)H(N) and (15)N resonances (94%) was achieved as well as 85% of the side-chain (13)C and (1)H resonances. NMR analyses of URO-synthase titrated with competitive inhibitors N(D)-methyl-1-formylbilane (NMF-bilane) or URO'gen III, revealed resonance perturbations of specific residues lining the cleft between the two major domains of URO synthase that mapped the enzyme's active site. In silico docking of the URO-synthase crystal structure with NMF-bilane and URO'gen III was consistent with the perturbation results and provided a 3D model of the enzyme-inhibitor complex. The absence of chemical shift changes in the (15)N spectrum of URO-synthase mixed with the homogeneous HMB-synthase holoenzyme or URO-decarboxylase precluded occurrence of a stable cytosolic enzyme complex. PMID:18004775

  15. Triazolopyrimidines as a New Herbicidal Lead for Combating Weed Resistance Associated with Acetohydroxyacid Synthase Mutation.

    Science.gov (United States)

    Liu, Yu-Chao; Qu, Ren-Yu; Chen, Qiong; Yang, Jing-Fang; Cong-Wei, Niu; Zhen, Xi; Yang, Guang-Fu

    2016-06-22

    Acetohydroxyacid synthase (AHAS; also known as acetolactate synthase; EC 2.2.1.6, formerly EC 4.1.3.18) is the first common enzyme in the biosynthetic pathway leading to the branched-chain amino acids in plants and a wide range of microorganisms. Weed resistance to AHAS-inhibiting herbicides, increasing at an exponential rate, is becoming a global problem and leading to an urgent demand of developing novel compounds against both resistant and wild AHAS. In the present work, a series of novel 2-aroxyl-1,2,4-triazolopyrimidine derivatives (a total of 55) were designed and synthesized with the aim to discover an antiresistant lead compound. Fortunately, the screening results indicated that many of the newly synthesized compounds showed a better, even excellent, inhibition effect against both the wild-type Arabidopsis thaliana AHAS and P197L mutants. Among them, compounds 5-3 to 5-17, compounds 5-19 to 5-26, compounds 5-28 to 5-45, and compound 5-48 have the lower values of resistance factor (RF) and display a potential power to overcome resistance associated with the P197L mutation in the enzyme levels. Further greenhouse in vivo assay showed that compounds 5-15 and 5-20 displayed "moderate" to "good" herbicidal activity against both the wild type-and the resistant (P197L mutation) Descurainia sophia, even at a rate as low as 0.9375 (g of ai/ha). The above results indicated that these two compounds could be used as new leads for the future development of antiresistance herbicides. PMID:27265721

  16. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  17. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole;

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  18. Ectopic ATP synthase in endothelial cells: a novel cardiovascular therapeutic target.

    Science.gov (United States)

    Fu, Yi; Zhu, Yi

    2010-01-01

    Adenosine triphosphate (ATP) synthase produces ATP in cells and is found on the inner membrane of mitochondria or the cell plasma membrane (ectopic ATP synthase). Here, we summarize the functions of ectopic ATP synthase in vascular endothelial cells (ECs). Ectopic ATP synthase is involved in adenosine metabolism on the cell surface through its ATP generation or hydrolysis activity. The ATP/ADP generated by the enzyme on the plasma membrane can bind to P2X/P2Y receptors and activate the related signalling pathways to regulate endothelial function. The β-chain of ectopic ATP synthase on the EC surface can recruit inflammatory cells and activate cytotoxic activity to damage ECs and induce vascular inflammation. Angiostatin and other angiogenesis inhibitors can have anti-angiogenic functions by inhibiting ectopic ATP synthase on ECs. Moreover, ectopic ATP synthase on ECs is a receptor for apoA-I, the acceptor of cholesterol efflux, which implies that endothelial ectopic ATP synthase is involved in cholesterol metabolism. Coupling factor 6 (CF6), a part of ectopic ATP synthase, is released from ECs and can inhibit prostacyclin synthesis and promote nitric oxide (NO) degradation to enhance NO bioactivity. Because ATP/ADP generated by ectopic ATP synthase can induce NO production, substances such as CF6 can inhibit NO generation by inhibiting surface ATP/ADP production. Thus, the components of ectopic ATP synthase are associated with regulation of vascular tone. Through these functions, ectopic ATP synthase on ECs is considered a potential and novel therapeutic target for atherosclerosis, hypertension and lipid disorders. PMID:21247400

  19. Prenyldiphosphate synthases and gibberellin biosynthesis

    NARCIS (Netherlands)

    C.C.N. van Schie; M.A. Haring; R.C. Schuurink

    2013-01-01

    Gibberellins are derived from the diterpene precursor geranylgeranyl diphophosphate (GGPP). GGPP is converted to ent-kaurene, which contains the basic structure of gibberellins, in the plastids by the combined actions of copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Generally, ge

  20. Structure and Function of Microsomal Prostaglandin E Synthase-1

    OpenAIRE

    Pawelzik, Sven-Christian

    2010-01-01

    The glutathione-dependent enzyme microsomal prostaglandin E synthase-1 (MPGES1) plays a pivotal role in inflammatory diseases. MPGES1 is up-regulated by pro-inflammatory cytokines in concert with cyclooxygenase (COX) -2, and the concerted action of both enzymes leads to the production of induced prostaglandin E2 (PGE2), a potent lipid mediator of inflammation, pain, and fever. Non-steroidal anti-inflammatory drugs (NSAIDs) as well as COX-2 specific inhibitors (COXIBs) are widely u...

  1. Adenosine preconditioning attenuates hepatic reperfusion injury in the rat by preventing the down-regulation of endothelial nitric oxide synthase

    Science.gov (United States)

    Serracino-Inglott, Ferdinand; Virlos, Ioannis T; Habib, Nagy A; Williamson, Robin CN; Mathie, Robert T

    2002-01-01

    Background Previous work has suggested that in the liver, adenosine preconditioning is mediated by nitric oxide. Whether the endothelial isoform of nitric oxide synthase plays a part in this mechanism has however not yet been investigated. Methods Wistar rats were used (6 in each group) – Groups: (1) sham, (2) ischemia-reperfusion, (3) adenosine + ischemia-reperfusion, (4) endothelial isoform inhibitor + adenosine + ischemia-reperfusion. Results Using immunohistochemistry, this study has revealed a decrease in the expression of endothelial nitric oxide synthase following hepatic ischemia-reperfusion. This was prevented by adenosine pre-treatment. When an inhibitor of endothelial nitric oxide synthase was administered prior to adenosine pre-treatment, pre-conditioning did not occur despite normal expression of endothelial nitric oxide synthase. Conclusions These findings suggest that adenosine attenuates hepatic injury by preventing the downregulation of endothelial nitric oxide synthase that occurs during ischemia-reperfusion. PMID:12241560

  2. Cellulose synthase complexes: structure and regulation

    Directory of Open Access Journals (Sweden)

    Lei eLei

    2012-04-01

    Full Text Available This review is to update the most recent progress on characterization of the composition, regulation, and trafficking of cellulose synthase complexes. We will highlight proteins that interact with cellulose synthases, e.g. cellulose synthase-interactive protein 1 (CSI1. The potential regulation mechanisms by which cellulose synthase interact with cortical microtubules in primary cell walls will be discussed.

  3. 新型苯并硫氮杂(卓)酮类非ATP竞争GSK-3β抑制剂的设计、合成和活性评价%Design, Synthesis and in Vitro Test of Novel Non-ATP Competitive Glycogen Synthase Kinase-3β(GSK-3β)Inhibitors

    Institute of Scientific and Technical Information of China (English)

    黄朝辉; 胡海荣; 雷贾毅; 楚勇; 叶德泳

    2012-01-01

    OBJECTIVE To discover novel non-ATP competitive glycogen synthase kinase-3P(GSK-3P) inhibitors. METHODS A virtual screening was conducted by Autodock program, which docked the small drug-like molecules of Maybridge library at the non-ATP binding site of GSK-3β The target compounds had been designed based on the virtual screening result and successfully synthesized through Knoevenagel reaction, cyclization and Af-alkylation. The inhibition to GSK-3P was tested by in vitro enzamic test. RESULTS 5-benzyl-2-(furan-2-yl)-2,3-dihydrobenzo[b][l,4] thiazepin-4(5H)-one showed moderate inhibition to GSK-3P in vitro (IC50 47.69±2.38 μmol·L-1). CONCLUSION The discovered new active compound is structurally different to other inhibitors of GSK-3P and worthy of further study as a novel lead compound.%目的 寻找新型的非ATP竞争糖原合成酶激酶-3β(GSK-3β)抑制剂.方法 针对GSK-3β的非ATP结合的底物作用位点为靶点,采用Autodock程序对类药性小分子库Maybridge进行虚拟筛选寻找新型GSK-3β抑制剂.采用克脑文格尔反应,环合及N-烷基化反应制备目标化合物.采用体外酶抑制活性测试目标化合物的活性.结果 化合物2-(2-呋喃基)-5-苄基-2,3-二氢苯并[b][1,4]硫氮杂(卓)-4(5H)-酮对GSK-3β具有中等抑制活性(IC50 47.69±2.38 μmol·L-1).结论 活性化合物的结构与目前报道的其他GSK-3β抑制剂不同,可望作为新的先导化合物,值得进一步研究.

  4. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

    Science.gov (United States)

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng

    2016-01-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10–8~10–6 mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10–9 mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  5. Mechanism of Action and Inhibition of dehydrosqualene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    F Lin; C Liu; Y Liu; Y Zhang; K Wang; W Jeng; T Ko; R Cao; A Wang; E Oldfield

    2011-12-31

    'Head-to-head' terpene synthases catalyze the first committed steps in sterol and carotenoid biosynthesis: the condensation of two isoprenoid diphosphates to form cyclopropylcarbinyl diphosphates, followed by ring opening. Here, we report the structures of Staphylococcus aureus dehydrosqualene synthase (CrtM) complexed with its reaction intermediate, presqualene diphosphate (PSPP), the dehydrosqualene (DHS) product, as well as a series of inhibitors. The results indicate that, on initial diphosphate loss, the primary carbocation so formed bends down into the interior of the protein to react with C2,3 double bond in the prenyl acceptor to form PSPP, with the lower two-thirds of both PSPP chains occupying essentially the same positions as found in the two farnesyl chains in the substrates. The second-half reaction is then initiated by the PSPP diphosphate returning back to the Mg{sup 2+} cluster for ionization, with the resultant DHS so formed being trapped in a surface pocket. This mechanism is supported by the observation that cationic inhibitors (of interest as antiinfectives) bind with their positive charge located in the same region as the cyclopropyl carbinyl group; that S-thiolo-diphosphates only inhibit when in the allylic site; activity results on 11 mutants show that both DXXXD conserved domains are essential for PSPP ionization; and the observation that head-to-tail isoprenoid synthases as well as terpene cyclases have ionization and alkene-donor sites which spatially overlap those found in CrtM.

  6. Improvement in the quality of hematopoietic prostaglandin D synthase crystals in a microgravity environment.

    Science.gov (United States)

    Tanaka, Hiroaki; Tsurumura, Toshiharu; Aritake, Kosuke; Furubayashi, Naoki; Takahashi, Sachiko; Yamanaka, Mari; Hirota, Erika; Sano, Satoshi; Sato, Masaru; Kobayashi, Tomoyuki; Tanaka, Tetsuo; Inaka, Koji; Urade, Yoshihiro

    2011-01-01

    Human hematopoietic prostaglandin synthase, one of the better therapeutic target enzymes for allergy and inflammation, was crystallized with 22 inhibitors and in three inhibitor-free conditions in microgravity. Most of the space-grown crystals showed better X-ray diffraction patterns than the terrestrially grown ones, indicating the advantage of a microgravity environment on protein crystallization, especially in the case of this protein. PMID:21169700

  7. Improvement in the quality of hematopoietic prostaglandin D synthase crystals in a microgravity environment

    OpenAIRE

    Tanaka, Hiroaki; Tsurumura, Toshiharu; Aritake, Kosuke; Furubayashi, Naoki; Takahashi, Sachiko; Yamanaka, Mari; Hirota, Erika; Sano, Satoshi; Sato, Masaru; Kobayashi, Tomoyuki; Tanaka, Tetsuo; Inaka, Koji; Urade, Yoshihiro

    2010-01-01

    Human hematopoietic prostaglandin synthase, one of the better therapeutic target enzymes for allergy and inflammation, was crystallized with 22 inhibitors and in three inhibitor-free conditions in microgravity. Most of the space-grown crystals showed better X-ray diffraction patterns than the terrestrially grown ones, indicating the advantage of a microgravity environment on protein crystallization, especially in the case of this protein.

  8. Binding and inhibition of human spermidine synthase by decarboxylated S-adenosylhomocysteine

    Energy Technology Data Exchange (ETDEWEB)

    Še; #269; kut; #279; , Jolita; McCloskey, Diane E.; Thomas, H. Jeanette; Secrist III, John A.; Pegg, Anthony E.; Ealick, Steven E. (Cornell); (Southern Research); (UPENN-MED)

    2011-11-17

    Aminopropyltransferases are essential enzymes that form polyamines in eukaryotic and most prokaryotic cells. Spermidine synthase (SpdS) is one of the most well-studied enzymes in this biosynthetic pathway. The enzyme uses decarboxylated S-adenosylmethionine and a short-chain polyamine (putrescine) to make a medium-chain polyamine (spermidine) and 5'-deoxy-5'-methylthioadenosine as a byproduct. Here, we report a new spermidine synthase inhibitor, decarboxylated S-adenosylhomocysteine (dcSAH). The inhibitor was synthesized, and dose-dependent inhibition of human, Thermatoga maritima, and Plasmodium falciparum spermidine synthases, as well as functionally homologous human spermine synthase, was determined. The human SpdS/dcSAH complex structure was determined by X-ray crystallography at 2.0 {angstrom} resolution and showed consistent active site positioning and coordination with previously known structures. Isothermal calorimetry binding assays confirmed inhibitor binding to human SpdS with K{sub d} of 1.1 {+-} 0.3 {mu}M in the absence of putrescine and 3.2 {+-} 0.1 {mu}M in the presence of putrescine. These results indicate a potential for further inhibitor development based on the dcSAH scaffold.

  9. HYPOTHALAMIC BLOOD-FLOW REMAINS UNALTERED FOLLOWING CHRONIC NITRIC-OXIDE SYNTHASE BLOCKADE IN RATS

    NARCIS (Netherlands)

    BENYO, Z; SZABO, C; STUIVER, BT; BOHUS, B; SANDOR, P

    1995-01-01

    The effect of the chronic oral application of N-G-nitro-L-arginine methyl eater (L-NAME), a potent inhibitor of nitric oxide (NO) production, was studied on hypothalamic blood flow (HBF) and hypothalamic nitric oxide synthase (NOS) activity in rats. L-NAME was dissolved in the drinking water, in a c

  10. Chronic nitric oxide synthase inhibition exacerbates renal dysfunction in cirrhotic rats

    DEFF Research Database (Denmark)

    Graebe, Martin; Brond, Lone; Christensen, Sten;

    2004-01-01

    The present study investigated sodium balance and renal tubular function in cirrhotic rats with chronic blockade of the nitric oxide (NO) system. Rats were treated with the nonselective NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME) starting on the day of common bile duct ligatio...

  11. Apoptosis in rat gastric antrum: Evidence that regulation by food intake depends on nitric oxide synthase

    DEFF Research Database (Denmark)

    Cao, Bao-Hong; Mortensen, Kirsten; Tornehave, Ditte;

    2000-01-01

    of gastric endocrine cells. On starvation, the apoptotic index of the general epithelium and of the gastrin but not of the somatostatin, cells increased significantly. This was prevented by the nitric oxide synthase (NOS) inhibitor L-NAME but not by its inactive stereoisomer D-NAME. Immunoreactive neuronal...

  12. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    Science.gov (United States)

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  13. Microsomal prostaglandin E synthase-1 in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Marina eKorotkova

    2011-01-01

    Full Text Available Microsomal prostaglandin E synthase-1 (mPGES-1 is a well recognized target for the development of novel anti-inflammatory drugs that can reduce symptoms of inflammation in rheumatic diseases and other inflammatory conditions. In this review, we focus on mPGES-1 in rheumatic diseases with the aim to cover the most recent advances in the understanding of mPGES-1 in rheumatoid arthritis, osteoarthritis and inflammatory myopathies. Novel findings regarding regulation of mPGES1 cell expression as well as enzyme inhibitors are also summarized.

  14. Eucalyptus ESTs associated with resistance to herbicide inhibitors of aromatic and branched-chain amino acid synthesis

    Directory of Open Access Journals (Sweden)

    Edivaldo Domingues Velini

    2005-01-01

    Full Text Available Herbicides inhibit enzymatic systems of plants. Acetolactate synthase (ALS, EC = 4.1.3.18 and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, EC 2.5.1.19 are key enzymes for herbicide action. Hundreds of compounds inhibit ALS. This enzyme is highly variable, enabling the selective control of weeds in a number of crops. Glyphosate, the only commercial herbicide inhibiting EPSPS is widely used for non-selective control of weeds in many crops. Recently, transgenic crops resistant to glyphosate were developed and have been used by farmers. The aim of this study was the data mining of eucalypt expressed sequence tags (ESTs in the FORESTs Genome Project database (https://forests.esalq.usp.br related to these enzymes. Representative amino acid sequences from the NCBI database associated with ALS and EPSPS were blasted with ESTs from the FORESTs database using the tBLASTx option of the blast tool. The best blasting reads and clusters from FORESTs, represented as nucleotide sequences, were blasted back with the NCBI database to evaluate the level of similarity with available sequences from different species. One and seven clusters were identified as showing high similarity with EPSPS and ALS sequences from the literature, respectively. The alignment of EPSPS sequences allowed the identification of conserved regions that can be used to design specific primers for additional sequencings.

  15. 粘质沙雷氏菌α-乙酰乳酸脱羧酶基因的体外表达%Expression of Serratia marcescens α-Acetolactate Decarboxylase Gene in Escherichia coli and Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    王亚平; 周荣华; 饶犇; 马立新

    2013-01-01

    根据GenBank中α-乙酰乳酸脱羧酶的基因序列(slaA)设计引物,以粘质沙雷氏菌(Serratia marcescens)HU1基因组DNA为模板通过PCR扩增得到了目标基因,全长为780 bp.将该基因分别连接到大肠杆菌表达载体pET30a和毕赤酵母表达栽体pPICZαA上,构建表达质粒pET30a-slaA和pPICZαA-slaA,并在对应的宿主中进行了表达.结果表明,大肠杆菌和毕赤酵母的表达产物的最适温度和pH均分别为40℃和7,两者在不同pH下的稳定性也相似,只不过毕赤酵母的表达产物的热稳定性要略强于大肠杆菌的表达产物.%Serratia marcescens α-acetolactate decarboxylase gene in Escherichia coli and Pichia pastoris,repectively.Primers of α-acetolactate decarboxylase gene (slaA) were designed according to the gene sequence in GeneBank; and target gene was obtained by PCR amplification using S.marcescens MG1 genomic DNA as template,which was 780 bp.Then slaA gene was inserted into pET-30a,expression vector of E.coli,and pPICZαA,expression vector of P.pastoris,resulting in plasmids pET30a-slaA and pPICZoA-slaA.The two expression vectors were introduced into the corresponding hosts and the gene was successfully expressed.The results showed that the optimum temperature and pH of the enzyme produced by E.coli and P.pastoris were both about 40 ℃ and 7,respectively.The stability of the enzyme at different pH from E.coli and P.pastoris was also similar.However,the thermal stability of the enzyme produced by P.pastoris was slightly stronger than that from E.coii.

  16. AcEST: DK956652 [AcEST

    Lifescience Database Archive (English)

    Full Text Available tolactate synthase OS=Helianthus annuu... 171 3e-41 tr|B8QGD3|B8QGD3_KOCSC Acetolactate synthase OS=Kochia scoparia... OS=Helianthus annuu... 169 1e-40 tr|B8QGG3|B8QGG3_KOCSC Acetolactate synthase OS=Kochia scoparia ... 169 2e...-40 tr|B8QGG2|B8QGG2_KOCSC Acetolactate synthase OS=Kochia scoparia ... 169 2e-40 tr|B8QGF9|B8QGF9_KOCSC Ace...tolactate synthase OS=Kochia scoparia ... 169 2e-40 tr|B8QGF8|B8QGF8_KOCSC Acetolactate synthase OS=Kochia scoparia... ... 169 2e-40 tr|B8QGF7|B8QGF7_KOCSC Acetolactate synthase OS=Kochia scoparia

  17. Role of neuronal nitric oxide synthase and inducible nitric oxide synthase in intestinal injury in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Hui LU; Bing Zhu; Xin-Dong Xue

    2006-01-01

    AIM: To investigate the dynamic change and role of neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) in neonatal rat with intestinal injury and to define whether necrotizing enterocolitis (NEC) is associated with the levels of nitric oxide synthase (NOS) in the mucosa of the affected intestine tissue.METHODS: Wistar rats less than 24 h in age received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileum tissues were collected at 1, 3, 6, 12 and 24 h following LPS challenge for histological evaluation of NEC and for measurements of nNOS and iNOS. The correlation between the degree of intestinal injury and levels of NOS was determined.RESULTS: The LPS-injected pups showed a significant increase in injury scores versus the control. The expression of nNOS protein and mRNA was diminished after LPS injection. There was a negative significant correlation between the nNOS protein and the grade of median intestinal injury within 24 h. The expression of iNOS protein and mRNA was significantly increased in the peak of intestinal injury.CONCLUSION: nNOS and iNOS play different roles in LPS-induced intestinal injury. Caution should be exerted concerning potential therapeutic uses of NOS inhibitors in NEC.

  18. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture

    Science.gov (United States)

    2016-01-01

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D80DQFD and N218DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H218O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-2H2]FDP and (R)-[1-2H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were

  19. Effect of a selective inducible nitric oxide synthase inhibitor on cell growth in human colorectal cancer Lovo cell line%选择性诱生型一氧化氮合酶抑制剂对人结直肠癌Lovo细胞生长的影响

    Institute of Scientific and Technical Information of China (English)

    魏波; 卫洪波; 亓翠玲; 韩晓燕; 王天宝

    2008-01-01

    Objective To investigate the effect of a selective inducible nitric oxide synthase (iNOS) inhibitor, aminoguanidine (AG), on the proliferation and apoptosis of human colorectal cancer (CRC) Lovo cell line, and explore its possible mechanism. Methods MTT assay was used to detect the inhibition of Lovo cell growth by aminoguanidine. Apoptosis and cell cycle of Lovo cells were examined by flow cytometry (FCM). Morphologic change of Lovo cell treated by AG was observed with AO/EB staining. Results There were significant differences in 0.5 mmol/L and 1.0 mmol/L AG groups as compared to the control group (P<0.05). The absorbance (A) values of Lovo cells in each time point were significantly different (P<0.05). Growth of Lovo cells was inhibited by aminoguanidine in a dose-and time-dependent manner. FCM analysis showed that the cell ratio of G0/G1 phase increased with the increasing of the concentration of aminoguanidine, but the cell ratio of S-and G2/M phase decreased correspondingly (P<0.05). S phase fraction and proliferation index (PI)decreased remarkabely, and the apoptotic rate of Lovo cells increased. After AG treatment, AO/EB staining revealed some apoptotic morphological features such as cell shrinkage, nuclear condensation,DNA fragmentation, and formation of apoptosis bodies. Conclusions Aminoguanidine inhibits the proliferation and facilitates the apoptosis of human CRC Lovo cells. One of the mechanisms may be explained as blocking the progress of cell cycle of CRC Lovo cells by aminoguanidine.%目的 研究选择性诱生型一氧化氮合酶(iNOS)抑制剂氨基胍(AG)对人结直肠癌细胞株Lovo增殖与凋亡的影响,并对其作用机制进行初步探讨.方法 应用四唑盐(MTT)比色法检测AG对Lovo细胞增殖的抑制作用,流式细胞术检测分析不同浓度AG作用后Lovo细胞的凋亡率和细胞周期分布变化.并用丫啶橙结合溴化乙锭染色荧光显微镜观察凋亡细胞形态学改变.结果 AG 0.5 mmol

  20. AcEST: DK947077 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ora... 91 2e-17 tr|Q6T860|Q6T860_CAMMC Acetolactate synthase OS=Camelina microca... 90 5e-17 tr|Q6T859|Q6T85...9_CAMMC Acetolactate synthase OS=Camelina microca... 90 5e-17 tr|Q6T858|Q6T858_CAMMC Acetolactate synthase OS=Camelina...IVPHQEHVLPMIPSNGSFKDVITEGDGRRSY 651 >tr|Q6T860|Q6T860_CAMMC Acetolactate synthase OS=Camelina...668 >tr|Q6T859|Q6T859_CAMMC Acetolactate synthase OS=Camelina microcarpa PE=2 SV=...tr|Q6T858|Q6T858_CAMMC Acetolactate synthase OS=Camelina microcarpa GN=ALS2 PE=2 SV=1 Length = 665 Score = 9

  1. AcEST: DK963523 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 167 3e-40 tr|B8QGD3|B8QGD3_KOCSC Acetolactate synthase OS=Kochia scoparia ... 167 5e-40 tr|Q6T858|Q6T858_CA...G3|B8QGG3_KOCSC Acetolactate synthase OS=Kochia scoparia ... 165 2e-39 tr|B8QGG2|B8QGG2_KOCSC Acetolactate synthase OS=Kochia scopari...a ... 165 2e-39 tr|B8QGF9|B8QGF9_KOCSC Acetolactate synthase OS=Kochia scoparia ...... 165 2e-39 tr|B8QGF8|B8QGF8_KOCSC Acetolactate synthase OS=Kochia scoparia ... 165 2e-39 tr|B8QGF7|B8QGF7_KO...CSC Acetolactate synthase OS=Kochia scoparia ... 165 2e-39 tr|B8QGF5|B8QGF5_KOCSC

  2. Expression in Arabidopsis of a strawberry linalool synthase gene under the control of the inducible potato P12 promoter

    NARCIS (Netherlands)

    Yang, L.; Mercke, P.; Loon, van J.J.A.; Fang, Zhiyuan; Dicke, M.; Jongsma, M.A.

    2008-01-01

    To investigate the role of inducible linalool in Arabidopsis-insect interactions, the FaNES1 linalool synthase (LIS) cDNA from strawberry with plastid targeting and a synthetic intron (LIS') was placed under the control of the wound inducible proteinase inhibitor 2 (PI2) promoter from potato. The co

  3. AcEST: DK951162 [AcEST

    Lifescience Database Archive (English)

    Full Text Available .. 278 3e-73 tr|Q6T859|Q6T859_CAMMC Acetolactate synthase OS=Camelina microca... 276 6e-73 tr|A1Z0Y9|A1Z0Y9_...AMARU Acetolactate synthase OS=Amaranthus rudis... 276 6e-73 tr|Q6T858|Q6T858_CAMMC Acetolactate synthase OS=Camelina

  4. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium.

    Directory of Open Access Journals (Sweden)

    Roberta d'Emmanuele di Villa Bianca

    Full Text Available Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity.

  5. Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules

    NARCIS (Netherlands)

    Cai, G.; Faleri, C.; Casino, C.; Emons, A.M.C.; Cresti, M.

    2011-01-01

    Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tub

  6. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    Science.gov (United States)

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  7. Inducible nitric-oxide synthase attenuates vasopressin-dependent Ca2+ signaling in rat hepatocytes

    OpenAIRE

    Patel, S.; Gaspers, L. D.; Boucherie, S.; Memin, E.; Stellato, K. A.; Guillon, G; Combettes, L; Thomas, A P

    2002-01-01

    Increases in both Ca2+ and nitric oxide levels are vital for a variety of cellular processes; however, the interaction between these two crucial messengers is not fully understood. Here, we demonstrate that expression of inducible nitric-oxide synthase in hepatocytes, in response to inflammatory mediators, dramatically attenuates Ca2+ signaling by the inositol 1,4,5-trisphosphate-forming hormone, vasopressin. The inhibitory effects of induction were reversed by nitric oxide inhibitors and mim...

  8. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction

    Directory of Open Access Journals (Sweden)

    Ketabchi Farzaneh

    2012-01-01

    Full Text Available Abstract Background Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV optimizes gas exchange during local acute (0-30 min, as well as sustained (> 30 min hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. Method We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate, and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min and endothelial permeability. Results In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA, a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS, decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc. This increase disappeared after administration of 1400 W. Conclusion Hypercapnia with and without acidosis

  9. Selective inhibition of inducible nitric oxide synthase by derivatives of acetamidine.

    Science.gov (United States)

    Maccallini, Cristina; Patruno, Antonia; Ammazzalorso, Alessandra; De Filippis, Barbara; Fantacuzzi, Marialuigia; Franceschelli, Sara; Giampietro, Letizia; Masella, Simona; Tricca, Maria Luisa; Amoroso, Rosa

    2012-11-01

    A new series of phenyl- and heteryl acetamidines were synthesized and evaluated as inhibitors of nitric oxide synthases (NOS). While the N-substitution of the acetamidine moiety with different heterocycles appears to completely destroy the activity, linking the phenyl core preserves it. Moreover, it was observed a strong dependence of the phenylacetamidines potency of action from the length of the alkyl chain that connects the aromatic ring to the acetamidine moiety. PMID:22741778

  10. Effects of nitric oxide synthase inhibitor in two-week oral treatment on hyperdynamic circulatory state in cirrhotic rats%一氧化氮合酶抑制剂口服两周治疗对肝硬化大鼠高动力循环状态的影响

    Institute of Scientific and Technical Information of China (English)

    黄颖秋; 萧树东; 莫剑忠; 张德中

    2000-01-01

    To investigate the effects of low dosage of nitric oxide synthase (NOS) inhibitor Nc-nitro -L-arginine methyl ester ( L-NAME) in two-week treatment on the hyperdynamic circulatory state in rats with cirrhosis. METHODS: Cirrhosis model was induced in male SD rats by injection of 60 % CCL4 oily solution subcutaneously. Cirrhotic rats were treated with L-NAME ( 0.5 mg·kg-1·d-1) by gavage for two weeks. Mean arterial pressure ( AP ), portal pressure(PP), cardiac output ( CO ), cardiac index ( CI ), splanchnic vascular resistance ( SVR ), splanchnic blood flow(SBF) and serum nitrite levels were determined in L-NAME-treated, L-NAME-untreated cirrhotic rats and controls by using 57Co-labled microsphere technique and a fluorometric assay, respectively. RESULTS: Untreated cirrhotic rats had significantly lower MAP, SVR and higher PP, CO, CI, SBF and nitrite concentration than those of the controls (all,P< 0.01 ). In treated cirrhotic rats, L-NAME significantly attenuated the increase of CO, CI, SBF, nitrite concentration and the decrease of MAP and SVR. In treated cirrhotic rats, L-NAME induced a marked decrease of nitrite concentration than untreated cirrhotic rats[(1.471±0.907)μmol/L vs (4.204±1.253) μmol/L, P<0.01]. CONCLUSION: The endogenous NO may play an important role in the changes of hemodynamics pattern in cirrhosis, and hyperdynamic circulatory state in rats with cirrhosis can be ameliorated by oral two-week administration of lower dose of L-NAME.%目的:观察小剂量一氧化氮合酶(N0S)抑制剂N-硝基-L-精氨酸甲酯(L-NAME)连续2周治疗对肝硬化大鼠高动力循环状态的影响.方法:用60%四氯化碳油性溶液皮下注射SD大鼠制造肝硬化大鼠模型.对肝硬化大鼠,用L-NAME(0.5mg·kg·d-1)胃管内注入连续治疗2周.用57Co同位素微球技术分别测定L-NAME治疗组、未治疗组及正常对照组的平均动脉压(MAP)、门静脉压(PP)、心输出量(C0)、心脏指数(CI)、内脏血管阻力(SVR)及内脏

  11. A Molecular Dynamics Investigation of Mycobacterium tuberculosis Prenyl Synthases: Conformational Flexibility and Implications for Computer-aided Drug Discovery.

    Science.gov (United States)

    Kim, Meekyum Olivia; Feng, Xinxin; Feixas, Ferran; Zhu, Wei; Lindert, Steffen; Bogue, Shannon; Sinko, William; de Oliveira, César; Rao, Guodong; Oldfield, Eric; McCammon, James Andrew

    2015-06-01

    With the rise in antibiotic resistance, there is interest in discovering new drugs active against new targets. Here, we investigate the dynamic structures of three isoprenoid synthases from Mycobacterium tuberculosis using molecular dynamics (MD) methods with a view to discovering new drug leads. Two of the enzymes, cis-farnesyl diphosphate synthase (cis-FPPS) and cis-decaprenyl diphosphate synthase (cis-DPPS), are involved in bacterial cell wall biosynthesis, while the third, tuberculosinyl adenosine synthase (Rv3378c), is involved in virulence factor formation. The MD results for these three enzymes were then compared with previous results on undecaprenyl diphosphate synthase (UPPS) by means of active site volume fluctuation and principal component analyses. In addition, an analysis of the binding of prenyl diphosphates to cis-FPPS, cis-DPPS, and UPPS utilizing the new MD results is reported. We also screened libraries of inhibitors against cis-DPPS, finding ~1 μm inhibitors, and used the receiver operating characteristic-area under the curve (ROC-AUC) method to test the predictive power of X-ray and MD-derived cis-DPPS receptors. We found that one compound with potent M. tuberculosis cell growth inhibition activity was an IC(50) ~0.5- to 20-μm inhibitor (depending on substrate) of cis-DPPS, a ~660-nm inhibitor of Rv3378c as well as a 4.8-μm inhibitor of cis-FPPS, opening up the possibility of multitarget inhibition involving both cell wall biosynthesis and virulence factor formation. PMID:25352216

  12. Crystal structure of riboflavin synthase

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  13. Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline.

    Science.gov (United States)

    Preiss, Laura; Langer, Julian D; Yildiz, Özkan; Eckhardt-Strelau, Luise; Guillemont, Jérôme E G; Koul, Anil; Meier, Thomas

    2015-05-01

    Multidrug-resistant tuberculosis (MDR-TB) is more prevalent today than at any other time in human history. Bedaquiline (BDQ), a novel Mycobacterium-specific adenosine triphosphate (ATP) synthase inhibitor, is the first drug in the last 40 years to be approved for the treatment of MDR-TB. This bactericidal compound targets the membrane-embedded rotor (c-ring) of the mycobacterial ATP synthase, a key metabolic enzyme required for ATP generation. We report the x-ray crystal structures of a mycobacterial c9 ring without and with BDQ bound at 1.55- and 1.7-Å resolution, respectively. The structures and supporting functional assays reveal how BDQ specifically interacts with the rotor ring via numerous interactions and thereby completely covers the c-ring's ion-binding sites. This prevents the rotor ring from acting as an ion shuttle and stalls ATP synthase operation. The structures explain how diarylquinoline chemicals specifically inhibit the mycobacterial ATP synthase and thus enable structure-based drug design of next-generation ATP synthase inhibitors against Mycobacterium tuberculosis and other bacterial pathogens. PMID:26601184

  14. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Edwin R Lampugnani; Persson, Staffan

    2016-01-01

    ABSTRACT Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated ...

  15. Trichinella pseudospiralis vs. T. spiralis thymidylate synthase gene structure and T. pseudospiralis thymidylate synthase retrogene sequence

    OpenAIRE

    Jagielska, Elżbieta; Płucienniczak, Andrzej; Dąbrowska, Magdalena; Dowierciał, Anna; Rode, Wojciech

    2014-01-01

    Background Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T. pseudospiralis. Methods Based on the sequence of parasitic nematode Trichinella spiralis thymidylate synthase cDNA, PCR techniques were employed. Results Each of the respective gene...

  16. The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system.

    Science.gov (United States)

    Ladenstein, Rudolf; Fischer, Markus; Bacher, Adelbert

    2013-06-01

    The xylene ring of riboflavin (vitamin B2 ) is assembled from two molecules of 3,4-dihydroxy-2-butanone 4-phosphate by a mechanistically complex process that is jointly catalyzed by lumazine synthase and riboflavin synthase. In Bacillaceae, these enzymes form a structurally unique complex comprising an icosahedral shell of 60 lumazine synthase subunits and a core of three riboflavin synthase subunits, whereas many other bacteria have empty lumazine synthase capsids, fungi, Archaea and some eubacteria have pentameric lumazine synthases, and the riboflavin synthases of Archaea are paralogs of lumazine synthase. The structures of the molecular ensembles have been studied in considerable detail by X-ray crystallography, X-ray small-angle scattering and electron microscopy. However, certain mechanistic aspects remain unknown. Surprisingly, the quaternary structure of the icosahedral β subunit capsids undergoes drastic changes, resulting in formation of large, quasi-spherical capsids; this process is modulated by sequence mutations. The occurrence of large shells consisting of 180 or more lumazine synthase subunits has recently generated interest for protein engineering topics, particularly the construction of encapsulation systems.

  17. Nitric Oxide Synthases and Atrial Fibrillation

    OpenAIRE

    CynthiaAnnCarnes; ArunSridhar; SandorGyorke

    2012-01-01

    Oxidative stress has been implicated in the pathogenesis of atrial fibrillation. There are multiple systems in the myocardium which contribute to redox homeostasis, and loss of homeostasis can result in oxidative stress. Potential sources of oxidants include nitric oxide synthases, which normally produce nitric oxide in the heart. Two nitric oxide synthase isoforms (1 and 3) are normally expressed in the heart. During pathologies such as heart failure, there is induction of nitric oxide syn...

  18. Unique animal prenyltransferase with monoterpene synthase activity

    Science.gov (United States)

    Gilg, Anna B.; Tittiger, Claus; Blomquist, Gary J.

    2009-06-01

    Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

  19. UV-B induced transcript accumulation of DAHP synthase in suspension-cultured Catharanthus roseus cells

    Science.gov (United States)

    2010-01-01

    The enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15) catalyzes the first committed step in the shikimate pathway of tryptophan synthesis, an important precursor for the production of terpenoid indole alkaloids (TIAs). A full-length cDNA encoding nuclear coded chloroplast-specific DAHP synthase transcript was isolated from a Catharanthus roseus cDNA library. This had high sequence similarity with other members of plant DAHP synthase family. This transcript accumulated in suspension cultured C. roseus cells on ultraviolet (UV-B) irradiation. Pretreatment of C.roseus cells with variety of agents such as suramin, N-acetyl cysteine, and inhibitors of calcium fluxes and protein kinases and MAP kinase prevented this effect of UV-B irriadiation. These data further show that the essential components of the signaling pathway involved in accumulation DAHP synthase transcript in C. roseus cells include suramin-sensitive cell surface receptor, staurosporine-sensitive protein kinase and MAP kinase. PMID:20704760

  20. Critical aspartic acid residues in pseudouridine synthases.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  1. Molecular evolution of dihydrouridine synthases

    Directory of Open Access Journals (Sweden)

    Kasprzak Joanna M

    2012-06-01

    Full Text Available Abstract Background Dihydrouridine (D is a modified base found in conserved positions in the D-loop of tRNA in Bacteria, Eukaryota, and some Archaea. Despite the abundant occurrence of D, little is known about its biochemical roles in mediating tRNA function. It is assumed that D may destabilize the structure of tRNA and thus enhance its conformational flexibility. D is generated post-transcriptionally by the reduction of the 5,6-double bond of a uridine residue in RNA transcripts. The reaction is carried out by dihydrouridine synthases (DUS. DUS constitute a conserved family of enzymes encoded by the orthologous gene family COG0042. In protein sequence databases, members of COG0042 are typically annotated as “predicted TIM-barrel enzymes, possibly dehydrogenases, nifR3 family”. Results To elucidate sequence-structure-function relationships in the DUS family, a comprehensive bioinformatic analysis was carried out. We performed extensive database searches to identify all members of the currently known DUS family, followed by clustering analysis to subdivide it into subfamilies of closely related sequences. We analyzed phylogenetic distributions of all members of the DUS family and inferred the evolutionary tree, which suggested a scenario for the evolutionary origin of dihydrouridine-forming enzymes. For a human representative of the DUS family, the hDus2 protein suggested as a potential drug target in cancer, we generated a homology model. While this article was under review, a crystal structure of a DUS representative has been published, giving us an opportunity to validate the model. Conclusions We compared sequences and phylogenetic distributions of all members of the DUS family and inferred the phylogenetic tree, which provides a framework to study the functional differences among these proteins and suggests a scenario for the evolutionary origin of dihydrouridine formation. Our evolutionary and structural classification of the DUS

  2. Properties of phosphorylated thymidylate synthase.

    Science.gov (United States)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent. PMID:26315778

  3. Isolation of the GFA1 gene encoding glucosamine-6-phosphate synthase of Sporothrix schenckii and its expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sánchez-López, Juan Francisco; González-Ibarra, Joaquín; Álvarez-Vargas, Aurelio; Milewski, Slawomir; Villagómez-Castro, Julio César; Cano-Canchola, Carmen; López-Romero, Everardo

    2015-06-01

    Glucosamine-6-phosphate synthase (GlcN-6-P synthase) is an essential enzyme involved in cell wall biogenesis that has been proposed as a strategic target for antifungal chemotherapy. Here we describe the cloning and functional characterization of Sporothrix schenckii GFA1 gene which was isolated from a genomic library of the fungus. The gene encodes a predicted protein of 708 amino acids that is homologous to GlcN-6-P synthases from other sources. The recombinant enzyme restored glucosamine prototrophy of the Saccharomyces cerevisiae gfa1 null mutant. Purification and biochemical analysis of the recombinant enzyme revealed some differences from the wild type enzyme, such as improved stability and less sensitivity to UDP-GlcNAc. The sensitivity of the recombinant enzyme to the selective inhibitor FMDP [N(3)-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid] and other properties were similar to those previously reported for the wild type enzyme.

  4. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders.

    Science.gov (United States)

    Koeberle, Andreas; Werz, Oliver

    2015-11-01

    Prostaglandin (PG)E2 encompasses crucial roles in pain, fever, inflammation and diseases with inflammatory component, such as cancer, but is also essential for gastric, renal, cardiovascular and immune homeostasis. Cyclooxygenases (COX) convert arachidonic acid to the intermediate PGH2 which is isomerized to PGE2 by at least three different PGE2 synthases. Inhibitors of COX - non-steroidal anti-inflammatory drugs (NSAIDs) - are currently the only available therapeutics that target PGE2 biosynthesis. Due to adverse effects of COX inhibitors on the cardiovascular system (COX-2-selective), stomach and kidney (COX-1/2-unselective), novel pharmacological strategies are in demand. The inducible microsomal PGE2 synthase (mPGES)-1 is considered mainly responsible for the excessive PGE2 synthesis during inflammation and was suggested as promising drug target for suppressing PGE2 biosynthesis. However, 15 years after intensive research on the biology and pharmacology of mPGES-1, the therapeutic value of mPGES-1 as drug target is still vague and mPGES-1 inhibitors did not enter the market so far. This commentary will first shed light on the structure, mechanism and regulation of mPGES-1 and will then discuss its biological function and the consequence of its inhibition for the dynamic network of eicosanoids. Moreover, we (i) present current strategies for interfering with mPGES-1-mediated PGE2 synthesis, (ii) summarize bioanalytical approaches for mPGES-1 drug discovery and (iii) describe preclinical test systems for the characterization of mPGES-1 inhibitors. The pharmacological potential of selective mPGES-1 inhibitor classes as well as dual mPGES-1/5-lipoxygenase inhibitors is reviewed and pitfalls in their development, including species discrepancies and loss of in vivo activity, are discussed.

  5. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...... gene product had no PRPP synthase activity. In contrast, expression of five pairwise combinations of PRS genes resulted in the formation of active PRPP synthase. These combinations were PRS1 PRS2, PRS1 PRS3, and PRS1 PRS4, as well as PRS5 PRS2 and PRS5 PRS4. None of the remaining five possible pairwise...... combinations of PRS genes appeared to produce active enzyme. Extract of an E. coli strain containing a plasmid-borne PRS1 gene and a chromosome-borne PRS3 gene contained detectable PRPP synthase activity, whereas extracts of strains containing PRS1 PRS2, PRS1 PRS4, PRS5 PRS2, or PRS5 PRS4 contained...

  6. An investigation into eukaryotic pseudouridine synthases.

    Science.gov (United States)

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  7. Effects of glucocorticoid dexamethasone on serum nitric oxide synthase activity and nitric oxide levels in a rat model of lung disease-induced brain injury

    Institute of Scientific and Technical Information of China (English)

    Huajun Li; Ligang Jiang; Meng Xia; Haiping Li; Fanhua Meng; Wei Li; Lifeng Liu; Zhaohui Wang

    2011-01-01

    In this study, we investigated the effects of dexamethasone, pertussis toxin (a Gi protein inhibitor), and actinomycin (a transcription inhibitor) on serum nitric oxide synthase activity and nitric oxide content in a rat model of lung disease-induced brain injury. High-dose dexamethasone (13 mg/kg) and dexamethasone + actinomycin reduced lung water content, increased serum nitric oxide synthase activity and nitric oxide content, diminished inflammatory cell infiltration in pulmonary alveolar interstitium, attenuated meningeal vascular hyperemia, reduced glial cell infiltration, and decreased cerebral edema. These results demonstrate that high-dose glucocorticoid treatment can reduce the severity of lung disease-induced brain injury by increasing nitric oxide synthase activity and nitric oxide levels.

  8. A genomic approach to characterization of the Citrus terpene synthase gene family

    Directory of Open Access Journals (Sweden)

    Marcelo Carnier Dornelas

    2007-01-01

    Full Text Available Terpenes are a very large and structurally diverse group of secondary metabolites which are abundant in many essential oils, resins and floral scents. Additionally, some terpenes have roles as phytoalexins in plant-pathogen relationships, allelopathic inhibitors in plant-plant interactions, or as airborne molecules of plant-herbivore multitrophic signaling. Thus the elucidation of the biochemistry and molecular genetics of terpenoid biosynthesis has paramount importance in any crop species. With this aim, we searched the CitEST database for clusters of expressed sequence tags (ESTs coding for terpene synthases. Herein is a report on the identification and in silico characterization of 49 putative members of the terpene synthase family in diverse Citrus species. The expression patterns and the possible physiological roles of the identified sequences are also discussed.

  9. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  10. Práticas de manejo e a resistência de Euphorbia heterophylla aos inibidores da ALS e tolerância ao glyphosate no Rio Grande do Sul Management practices x Euphorbia heterophylla resistance to ALS-inhibitors and tolerance to glyphosate in Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    L. Vargas

    2013-06-01

    herbicide resistant biotypes also in acetolactate synthase (ALS-inhibitors. Thus, the objectives of this work were to evaluate wild poinsettia's sensitivity to the ALS-inhibiting herbicides and glyphosate; to investigate the distribution of resistant biotypes in the state of RS;and to determine the main agronomic factors associated with control failures. Seeds of wild poinsettia plants that survived glyphosate applications were collected from RR soybean fields located in 56 municipalities in the state of RS. On the occasion, the farmers were interviewed through a questionnaire aiming to collect information on the management of the area. Using the seeds collected, two experiments were conducted under greenhouse conditions. The first evaluated the response of 86 biotypes to glyphosate, applied at the rate of 2.160 g ha-1 while the second experiment evaluated the response of the herbicide imazethapyr to 73 biotypes, applied at a dose of 200 g a.i. ha‑1. The results show that all the wild poinsettia biotypes evaluated are susceptible to glyphosate, but some are resistant to ALS-inhibitors. The survey responses indicate that management practices such as the use of sub doses and/or intensive use of glyphosate, as well as lack of crop rotation favor failures in wild poinsettia control by glyphosate in soybean.

  11. Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress

    OpenAIRE

    Peng Yun-Li; Liu Yu-Ning; Liu Lei; Wang Xia; Jiang Chun-Lei; Wang Yun-Xia

    2012-01-01

    Abstract Background Experiences and inflammatory mediators are fundamental in the provocation of major depressive disorders (MDDs). We investigated the roles and mechanisms of inducible nitric oxide synthase (iNOS) in stress-induced depression. Methods We used a depressive-like state mouse model induced by unpredictable chronic mild stress (UCMS). Depressive-like behaviors were evaluated after 4 weeks of UCMS, in the presence and absence of the iNOS inhibitor N-(3-(aminomethyl)benzyl)acetamid...

  12. Molecular Modeling of the Three-Dimensional Structure of Human Sphingomyelin Synthase%Molecular Modeling of the Three-Dimensional Structure of Human Sphingomyelin Synthase

    Institute of Scientific and Technical Information of China (English)

    张亚; 林赋; 邓晓东; 王任小; 叶德泳

    2011-01-01

    Sphingomyelin synthase (SMS) produces sphingomyelin and diacylglycerol from ceramide and phosphatidyl- choline. It plays an important role in cell survival and apoptosis, inflammation, and lipid homeostasis, and therefore has been noticed in recent years as a novel potential drug target. In this study, we combined homology modeling, molecular docking, molecular dynamics simulation, and normal mode analysis to derive a three-dimensional struc- ture of human sphingomyelin synthase (hSMS 1) in complex with sphingomyelin. Our model provides a reasonable explanation on the catalytic mechanism of hSMS 1. It can also explain the high selectivity of hSMS 1 towards phos- phocholine and sphingomyelin as well as some other known experimental results about hSMS1. Moreover, we also derived a complex model of D609, the only known small-molecule inhibitor of hSMS 1 so far. Our hSMS 1 model may serve as a reasonable structural basis for the discovery of more effective small-molecule inhibitors of hSMS 1.

  13. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2014-10-01

    Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics.

  14. Inhibition of Glycogen Synthase Kinase-3β Improves Tolerance to Ischemia in Hypertrophied Hearts

    Science.gov (United States)

    Barillas, Rodrigo; Friehs, Ingeborg; Cao-Danh, Hung; Martinez, Joseph F.; del Nido, Pedro J.

    2012-01-01

    Background Hypertrophied myocardium is more susceptible to ischemia/reperfusion injury, in part owing to impaired insulin-mediated glucose uptake. Glycogen synthase kinase-3β (GSK-3β) is a key regulatory enzyme in glucose metabolism that, when activated, phosphorylates/inactivates target enzymes of the insulin signaling pathway. Glycogen synthase kinase-3β is regulated upstream by Akt-1. We sought to determine whether GSK-3β is activated in ischemic hypertrophied myocardium owing to impaired Akt-1 function, and whether inhibition with lithium (Li) or indirubin-3′-monoxime,5-iodo- (IMI), a specific inhibitor, improves post-ischemic myocardial recovery by improving glucose metabolism. Methods Pressure-overload hypertrophy was achieved by aortic banding in neonatal rabbits. At 6 weeks, isolated hypertrophied hearts underwent 30 minutes of normothermic ischemia and reperfusion with or without GSK-3β inhibitor (0.1 mM Li; 1 µM IMI) as cardioplegic additives. Cardiac function was measured before and after ischemia. Expression, activity of Akt-1 and GSK-3β, and lactate were determined at end-ischemia. Results Contractile function after ischemia was better preserved in hypertrophied hearts treated with GSK-3β inhibitors. Activity of Akt-1 was significantly impaired in hypertrophied myocardium at end-ischemia. Glycogen synthase kinase-3β enzymatic activity at end-ischemia was increased in hypertrophied hearts and was blocked by Li or IMI concomitant with significantly increased lactate production, indicating increased glycolysis. Conclusions Regulatory inhibition of GSK-3β by Akt-1 in hypertrophied hearts is impaired, leading to activation during ischemia. Inhibition of GSK-3β by Li or IMI improves tolerance to ischemia/reperfusion injury in hypertrophied myocardium. The likely protective mechanism is an increase in insulin-mediated glucose uptake, resulting in greater substrate availability for glycolysis during ischemia and early reperfusion. PMID:17588398

  15. The tomato terpene synthase gene family

    NARCIS (Netherlands)

    V. Falara; T.A. Akhtar; T.T.H. Nguyen; E.A. Spyropoulou; P.M. Bleeker; I. Schauvinhold; Y. Matsuba; M.E. Bonini; A.L. Schilmiller; R.L. Last; R.C. Schuurink; E. Pichersky

    2011-01-01

    Compounds of the terpenoid class play many roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of Solanum lycopersicum (cultivated tomato) contains 40 terpene synthase (TPS) genes, including 28

  16. Hyaluronan synthase in trabecular meshwork cells

    OpenAIRE

    Usui, T; Nakajima, F.; Ideta, R; Kaji, Y; Suzuki, Y; Araie, M.; Miyauchi, S; P. Heldin; Yamashita, H.

    2003-01-01

    Background/aims: Hyaluronan is present in the trabecular meshwork where it is involved in the pathophysiology of aqueous outflow environment. In this study, the expression and regulation of hyaluronan synthase (HAS), which is the enzyme synthesising hyaluronan, in trabecular meshwork cells were investigated.

  17. Activities and regulation of peptidoglycan synthases

    NARCIS (Netherlands)

    Egan, Alexander J F; Biboy, Jacob; van 't Veer, Inge; Breukink, Eefjan; Vollmer, Waldemar

    2015-01-01

    Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have b

  18. Inducible nitric oxide synthase in renal transplantation

    NARCIS (Netherlands)

    Joles, JA; Vos, IH; Grone, HJ; Rabelink, TJ

    2002-01-01

    The importance of the endothelial isoform of nitric oxide synthase (eNOS) has been well established. Endothelium-derived nitric oxide has been shown to be essential for vascular homeostasis and modulation of eNOS has thus become a target in prevention of cardiovascular disease. The role of the induc

  19. HDAC Inhibitors.

    Science.gov (United States)

    Olzscha, Heidi; Bekheet, Mina E; Sheikh, Semira; La Thangue, Nicholas B

    2016-01-01

    Lysine acetylation in proteins is one of the most abundant posttranslational modifications in eukaryotic cells. The dynamic homeostasis of lysine acetylation and deacetylation is dictated by the action of histone acetyltransferases (HAT) and histone deacetylases (HDAC). Important substrates for HATs and HDACs are histones, where lysine acetylation generally leads to an open and transcriptionally active chromatin conformation. Histone deacetylation forces the compaction of the chromatin with subsequent inhibition of transcription and reduced gene expression. Unbalanced HAT and HDAC activity, and therefore aberrant histone acetylation, has been shown to be involved in tumorigenesis and progression of malignancy in different types of cancer. Therefore, the development of HDAC inhibitors (HDIs) as therapeutic agents against cancer is of great interest. However, treatment with HDIs can also affect the acetylation status of many other non-histone proteins which play a role in different pathways including angiogenesis, cell cycle progression, autophagy and apoptosis. These effects have led HDIs to become anticancer agents, which can initiate apoptosis in tumor cells. Hematological malignancies in particular are responsive to HDIs, and four HDIs have already been approved as anticancer agents. There is a strong interest in finding adequate biomarkers to predict the response to HDI treatment. This chapter provides information on how to assess HDAC activity in vitro and determine the potency of HDIs on different HDACs. It also gives information on how to analyze cellular markers following HDI treatment and to analyze tissue biopsies from HDI-treated patients. Finally, a protocol is provided on how to detect HDI sensitivity determinants in human cells, based on a pRetroSuper shRNA screen upon HDI treatment. PMID:27246222

  20. Sevoflurane and nitric oxide synthase expression in rat cochlea

    Institute of Scientific and Technical Information of China (English)

    Yuantao Li; Qingzhong Hou; Mingguang Wu; Xiaolei Huang; Jun Cao; Yin Gu; Xiaofei Qi; Yawen Li

    2010-01-01

    Sevoflurane exhibits anesthetic action by inhibiting the auditory cortex,brain stem nitric oxide synthase activity,and reducing nitric oxide(NO),thereby interfering with the hearing process.However,the influence of sevoflurane on peripheric receptor(cochlea)NO remains poorly understood.Results from the present study showed that sevoflurane downregulated cochlear inducible NO synthase,endothelial NO synthase and neuronal NO synthase expression in a dose dependent manner.This suggests that sevoflurane can decrease cochlear NO synthase expression in a dose dependent manner.

  1. Effects of NOS inhibitor on dentate gyrus neurogenesis after diffuse brain injury in the adult rats

    Institute of Scientific and Technical Information of China (English)

    SunLi-Sha; XuJiang-ping

    2004-01-01

    Objective To investigate the effects of selective nitric oxide synthase (NOS) inhibitors on dentate gyrus neurogenesis after diffuse brain injury (DBI) in the adult rat brain. Methods Adult male SD rats were subjected to diffuse brain injury (DBI) model. By using systemic bromodeoxyuridine (BrdU) to label dividing cells, we compared the proliferation rate of

  2. 甲氨蝶呤与一氧化氮供体或一氧化氮合酶抑制剂组合物的合成%Synthesis of Methotrexates Combined with Nitric Oxide Donor or Nitric Oxide Synthase Inhibitor

    Institute of Scientific and Technical Information of China (English)

    姚其正; 张志祥; PFLEIDERER,Wolfgang; 郑国海; 徐进宜; 唐锋; 华维一

    2004-01-01

    一氧化氮(nitric oxide, NO)在肿瘤病理生理过程中产生多方面的生化作用,诸如引起的某些核苷酸碱基的羟基化,参与免疫系统清除肿瘤细胞,促进肿瘤细胞凋亡和调节血管生成等.在此基础上,首次提出将NO供体(NO donor)或一氧化氮合酶(nitric oxide synthase, NOS)抑制剂分别连接到甲氨蝶呤(methotrexate, MTX, MTX本身就是NOS抑制剂)的α或γ位羧基上的设想,设计并合成出:(1) MTX-NO供体(3-羟甲基-4-苯基-1,2,5-二唑-2-氧化物,属于Furoxan 衍生物,缩写为FU): 1a (MTX-α-FU), 2a (MTX-γ-FU);(2) MTX-NOS抑制剂(L-Nω-硝基精氨酸或L-Nω-硝基精氨酸甲酯): 1b (MTX-α-L-Nω-NO2-Arg), 2b (MTX-γ-L-Nω-NO2-Arg), 1c (MTX-α-L-Nω-NO2-Arg-OMe), 2c (MTX-γ-L-Nω-NO2-Arg-OMe).在生物活性测试中,我们选择耐MTX细胞株K-562(慢性粒细胞性白血病急性病变细胞株),进行抗肿瘤活性测试,得到以下结果:(1) 脂溶性差的MTX衍生物1b, 2b抗肿瘤活性低于MTX,其它1a, 2a; 1c, 2c均优于MTX;(2) 连接有NO供体的MTX明显增强了MTX衍生物的抗肿瘤活性;(3) MTX中谷氨酸γ位组合物抗肿瘤活性均高于相应的α位异构体的活性.以上初步结果,将对进一步研究NO抗肿瘤作用以及新的抗肿瘤药物设计提供新的思路,对肿瘤临床化疗也有一定的参考价值.

  3. Competition effects with mixed stands of wheat and kochia (Kochia scoparia biotypes resistant and susceptible to acetolactase synthase inhibitor herbicides Efeitos competitivos da mistura de stands de trigo e biotipos de kochia (Kochia scoparia resistentes e susceptíveis aos herbicidas inibidores da acetolactase sintase

    Directory of Open Access Journals (Sweden)

    P.J. Christoffoleti

    1994-08-01

    Full Text Available Greenhouse experiments were conducted to compare the competitive ability of sulfonylurea resistant and susceptible kochia (Kochia scoparia L. Schard compared to wheat. The results of several replacement series experiments indicate that wheat was the dominant competitor, and an average of one wheat plant reduced resistant kochia yield per plant equal to the effect of 4.8 resistant kochia or 5.4 susceptible kochia plants. Intraspeciflc competition was more important than interspecific competition for wheat, whereas the reverse was true for the resistant and susceptible kochia. The results of the niche differentiation index (NDI indicate that wheat and either resistant or susceptible kochia are only partly limited by the same resources. The resistant and susceptible kochia, however, are limited by the same resources.Experimentos foram instalados em condições de casa-de-vegetação com o objetivo de comparar a capacidade competitiva de biotipos resistentes e suscetíveis aos herbicidas inibidores da enzima acetolactase synthase da planta daninha kochia (Kochia scoparia L. Schard comparada com trigo. Os resultados de diversos experimentos, utilizando a metodologia chamada de substitutiva, indicaram que o trigo foi o competidor dominante, e em média uma planta de trigo reduziu o crescimento da planta de kochia resistente igual ao efeito de 4,8 plantas de kochia resistente ou 5,4 plantas de kochia suscetível. A competição chamada de intraespecífíca foi mais importante que a competição interespecífica para o trigo, porém o inverso foi verdadeiro para os biotípos resistentes e susceptíveis de kochia. Os resultados do índice de diferenciação ecológica indicaram que trigo e qualquer um dos dois biotípos de kochia estudados foram limitados apenas parcialmente pelos mesmos recursos de crescimento. No entanto, o crescimento dos biotípos resistentes e susceptíveis de kochia foram limitados pelos mesmos fatores de crescimento.

  4. Cellulose Synthases and Synthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Anne Endler; Staffan Persson

    2011-01-01

    Plant cell walls are complex structures composed of high-molecular-weight polysaccharides,proteins,and lignins. Among the wall polysaccharides,cellulose,a hydrogen-bonded β-1,4-linked glucan microfibril,is the main load-bearing wall component and a key precursor for industrial applications. Cellulose is synthesized by large multi-meric cellulose synthase (CesA) complexes,tracking along cortical microtubules at the plasma membrane. The only known components of these complexes are the cellulose synthase proteins. Recent studies have identified tentative interaction partners for the CesAs and shown that the migratory patterns of the CesA complexes depend on phosphorylation status. These advances may become good platforms for expanding our knowledge about cellulose synthesis in the near future. In addition,our current understanding of cellulose chain polymerization in the context of the CesA complex is discussed.

  5. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    Science.gov (United States)

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  6. The tomato terpene synthase gene family

    OpenAIRE

    Falara, V.; Akhtar, T.A.; NGUYEN, T. T. H.; Spyropoulou, E.A.; Bleeker, P.M.; Schauvinhold, I.; Matsuba, Y.; Bonini, M.E.; Schilmiller, A.L.; Last, R.L.; Schuurink, R. C.; Pichersky, E

    2011-01-01

    Compounds of the terpenoid class play many roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of Solanum lycopersicum (cultivated tomato) contains 40 terpene synthase (TPS) genes, including 28 which are functional or potentially functional. Of these 28 TPS genes, 25 were expressed in at least some parts of the plant. The enzymatic functions of eight of the TPS proteins were previously r...

  7. Nitric oxide synthase in the pineal gland

    OpenAIRE

    Lopez-Figueroa, M.O.; Moller, M.

    1996-01-01

    The recent discovery of nitric oxide (NO) as a biological messenger molecule with unique characteristics has opened a new field in pineal research. This free radical gas is synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine. The activation of adrenoreceptors in the membrane of the pinealocytes mediates the increase in NO through a mechanism that involves G proteins. In the pinealocyte, NO stimulates guanylyl cyclase resulting in an increased ...

  8. Building-block selectivity of polyketide synthases.

    Science.gov (United States)

    Liou, Grace F; Khosla, Chaitan

    2003-04-01

    For the past decade, polyketide synthases have presented an exciting paradigm for the controlled manipulation of complex natural product structure. These multifunctional enzymes catalyze the biosynthesis of polyketide natural products by stepwise condensation and modification of metabolically derived building blocks. In particular, regioselective modification of polyketide structure is possible by alterations in either intracellular acyl-CoA pools or, more commonly, by manipulation of acyl transferases that act as the primary gatekeepers for building blocks.

  9. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  10. Biochemical and Structural Basis for Inhibition of Enterococcus faecalis Hydroxymethylglutaryl-CoA Synthase, mvaS, by Hymeglusin

    Energy Technology Data Exchange (ETDEWEB)

    Skaff, D. Andrew; Ramyar, Kasra X.; McWhorter, William J.; Barta, Michael L.; Geisbrecht, Brian V.; Miziorko, Henry M. (UMKC)

    2012-07-25

    Hymeglusin (1233A, F244, L-659-699) is established as a specific {beta}-lactone inhibitor of eukaryotic hydroxymethylglutaryl-CoA synthase (HMGCS). Inhibition results from formation of a thioester adduct to the active site cysteine. In contrast, the effects of hymeglusin on bacterial HMG-CoA synthase, mvaS, have been minimally characterized. Hymeglusin blocks growth of Enterococcus faecalis. After removal of the inhibitor from culture media, a growth curve inflection point at 3.1 h is observed (vs 0.7 h for the uninhibited control). Upon hymeglusin inactivation of purified E. faecalis mvaS, the thioester adduct is more stable than that measured for human HMGCS. Hydroxylamine cleaves the thioester adduct; substantial enzyme activity is restored at a rate that is 8-fold faster for human HMGCS than for mvaS. Structural results explain these differences in enzyme-inhibitor thioester adduct stability and solvent accessibility. The E. faecalis mvaS-hymeglusin cocrystal structure (1.95 {angstrom}) reveals virtually complete occlusion of the bound inhibitor in a narrow tunnel that is largely sequestered from bulk solvent. In contrast, eukaryotic (Brassica juncea) HMGCS binds hymeglusin in a more solvent-exposed cavity.

  11. Reduced activity of ATP synthase in mitochondria causes cytoplasmic male sterility in chili pepper.

    Science.gov (United States)

    Li, Jinjie; Pandeya, Devendra; Jo, Yeong Deuk; Liu, Wing Yee; Kang, Byoung-Cheorl

    2013-04-01

    Cytoplasmic male sterility (CMS) is a maternally inherited trait characterized by the inability to produce functional pollen. The CMS-associated protein Orf507 (reported as Orf456 in previous researches) was previously identified as a candidate gene for mediating male sterility in pepper. Here, we performed yeast two-hybrid analysis to screen for interacting proteins, and found that the ATP synthase 6 kDa subunit containing a mitochondrial signal peptide (MtATP6) specifically interacted with Orf507. In addition, the two proteins were found to be interacted in vivo using bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. Further functional characterization of Orf507 revealed that the encoded protein is toxic to bacterial cells. Analysis of tissue-specific expression of ATP synthase 6 kDa showed that the transcription level was much lower in anthers of the CMS line than in their wild type counterparts. In CMS plants, ATP synthase activity and content were reduced by more than half compared to that of the normal plants. Taken together, it can be concluded that reduced ATP synthase activity and ATP content might have affected pollen development in CMS plants. Here, we hypothesize that Orf507 might cause MtATP6 to be nonfunctional by changing the latter's conformation or producing an inhibitor that prevents the normal functioning of MtATP6. Thus, further functional analysis of mitochondrial Orf507 will provide insights into the mechanisms underlying CMS in plants. PMID:23274393

  12. Modification of human U4 RNA requires U6 RNA and multiple pseudouridine synthases.

    Science.gov (United States)

    Zerby, D B; Patton, J R

    1997-12-01

    Small nuclear RNAs (snRNA), cofactors in the splicing of pre-mRNA, are highly modified. In this report the modification of human U4 RNA was studied using cell extracts and in vitro synthesized, and therefore unmodified, U4 RNA. The formation of pseudouridine (Psi) at positions 4, 72 and 79 in U4 RNA was dependent on an RNA-containing cofactor, since the activities in the extracts were micrococcal nuclease (MN) sensitive. Extracts were fractionated on glycerol gradients and there was a broad peak of reconstitution activity centered at 14 S. Reconstitution was not due to additional enzymatic activity, since the peak fraction was MN sensitive. Oligodeoxynucleotide-mediated RNase H digestion of U6 RNA in the extracts inhibited formation of Psi in U4 RNA. From glycerol gradient analysis we determined that exogenously added U4 RNA that is associated with U6 RNA (sedimentation velocity 16 S) was significantly higher in Psi content than U4 RNA not associated with U6 RNA (8 S). Competitive inhibitors of Psi synthases, 5-fluorouridine-containing (5-FU) wild-type and mutant U4 RNAs, were used to investigate formation of Psi in U4 RNA. Deletions and point mutations in these 5-FU-containing U4 RNAs affected their ability to inhibit Psi synthase in vitro. With the aid of these potent inhibitors it was determined that at least two separate activities modify the uridines at these positions.

  13. Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.

    Directory of Open Access Journals (Sweden)

    Gea Guerriero

    Full Text Available Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2 in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major

  14. Characterization of a Chitin Synthase Encoding Gene and Effect of Diflubenzuron in Soybean Aphid, Aphis Glycines

    Directory of Open Access Journals (Sweden)

    Raman Bansal, M. A. Rouf Mian, Omprakash Mittapalli, Andy P. Michel

    2012-01-01

    Full Text Available Chitin synthases are critical enzymes for synthesis of chitin and thus for subsequent growth and development in insects. We identified the cDNA of chitin synthase gene (CHS in Aphis glycines, the soybean aphid, which is a serious pest of soybean. The full-length cDNA of CHS in A. glycines (AyCHS was 5802 bp long with an open reading frame of 4704 bp that encoded for a 1567 amino acid residues protein. The predicted AyCHS protein had a molecular mass of 180.05 kDa and its amino acid sequence contained all the signature motifs (EDR, QRRRW and TWGTR of chitin synthases. The quantitative real-time PCR (qPCR analysis revealed that AyCHS was expressed in all major tissues (gut, fat body and integument; however, it had the highest expression in integument (~3.5 fold compared to gut. Interestingly, the expression of AyCHS in developing embryos was nearly 7 fold higher compared to adult integument, which probably is a reflection of embryonic molts in hemimetabolus insects. Expression analysis in different developmental stages of A. glycines revealed a consistent AyCHS expression in all stages. Further, through leaf dip bioassay, we tested the effect of diflubenzuron (DFB, Dimilin ®, a chitin-synthesis inhibitor, on A. glycines' survival, fecundity and body weight. When fed with soybean leaves previously dipped in 50 ppm DFB solution, A. glycines nymphs suffered significantly higher mortality compared to control. A. glycines nymphs feeding on diflubenzuron treated leaves showed a slightly enhanced expression (1.67 fold of AyCHS compared to nymphs on untreated leaves. We discussed the potential applications of the current study to develop novel management strategies using chitin-synthesis inhibitors and using RNAi by knocking down AyCHS expression.

  15. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    Science.gov (United States)

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  16. Inhibition of sphingomyelin synthase 1 affects ceramide accumulation and hydrogen peroxide-induced apoptosis in Neuro-2a cells.

    Science.gov (United States)

    Tu, Ranran; Yang, Wei; Hu, Zhiping

    2016-09-01

    Oxidative stress plays a key role in brain injury after cerebral ischemia-reperfusion, which contributes toward excessive apoptosis of nerve cells. Therefore, it would be beneficial to identify a therapy that could interfere with the progression of apoptosis and protect the brain from ischemia-reperfusion injury. As ceramide, a well-known second messenger of apoptosis, can be metabolized by sphingomyelin synthase 1 (SMS1), recent research has focused on the link between SMS1 and apoptosis in different cells. To investigate whether SMS1 is involved in the process of oxidative stress-induced apoptosis in neurons and to explore the possible underlying mechanism, we treated mouse neuroblastoma Neuro-2A (N2a) cells with hydrogen peroxide (H2O2). Incubation with H2O2 significantly upregulated the expression of SMS1, increased the intracellular levels of ceramide and sphingomyelin synthase activity, and induced apoptosis. Moreover, pretreatment of N2a cells with D609, an sphingomyelin synthase inhibitor, or SMS1-silencing RNA (siRNA) further increased ceramide and potentiated H2O2-induced apoptosis which could be reversed by SB203580 (a p38 inhibitor). Thus, our study has shown that SMS1 regulates ceramide levels in N2a cells and plays a potent protective role in this oxidative stress-induced apoptosis partly through the p38 pathway.

  17. Proton pump inhibitors

    Science.gov (United States)

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  18. Cellulose synthase interacting protein: A new factor in cellulose synthesis

    OpenAIRE

    Gu, Ying; Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the re...

  19. Marked Increase in Nitric Oxide Synthase mRNA in Rat Dorsal Root Ganglia after Peripheral Axotomy: In situ Hybridization and Functional Studies

    Science.gov (United States)

    Verge, Valerie M. K.; Xu, Zhang; Xu, Xiao-Jun; Wiesenfeld-Hallin, Zsuzsanna; Hokfelt, Tomas

    1992-12-01

    Using in situ hybridization, we studied nitric oxide (NO) synthase (EC 1.14.23.-) mRNA in lumbar dorsal root ganglia after peripheral transection of the sciatic nerve in rats. The effect of the NO synthase inhibitor N^ω-nitro-L-arginine methyl ester on the nociceptive flexor reflex was also studied in axotomized rats. Nerve section induced a dramatic increase in number of NO synthase mRNA-positive cells in the ipsilateral dorsal root ganglia. In some of these cells the peptides galanin and/or vasoactive intestinal polypeptide and/or neuropeptide Y were also strongly up-regulated. Intravenous administration of nitro-L-arginine methyl ester blocked spinal hyperexcitability at much lower dosages in axotomized than in normal animals. The results suggest involvement of NO in the function of lumbar sensory neurons, especially after axotomy, perhaps preferentially at peripheral sites.

  20. Clinical significance of Phosphatidyl Inositol Synthase overexpression in oral cancer

    International Nuclear Information System (INIS)

    We reported increased levels of Phosphatidyl Inositol synthase (PI synthase), (enzyme that catalyses phosphatidyl inositol (PI) synthesis-implicated in intracellular signaling and regulation of cell growth) in smokeless tobacco (ST) exposed oral cell cultures by differential display. This study determined the clinical significance of PI synthase overexpression in oral squamous cell carcinoma (OSCC) and premalignant lesions (leukoplakia), and identified the downstream signaling proteins in PI synthase pathway that are perturbed by smokeless tobacco (ST) exposure. Tissue microarray (TMA) Immunohistochemistry, Western blotting, Confocal laser scan microscopy, RT-PCR were performed to define the expression of PI synthase in clinical samples and in oral cell culture systems. Significant increase in PI synthase immunoreactivity was observed in premalignant lesions and OSCCs as compared to oral normal tissues (p = 0.000). Further, PI synthase expression was significantly associated with de-differentiation of OSCCs, (p = 0.005) and tobacco consumption (p = 0.03, OR = 9.0). Exposure of oral cell systems to smokeless tobacco (ST) in vitro confirmed increase in PI synthase, Phosphatidylinositol 3-kinase (PI3K) and cyclin D1 levels. Collectively, increased PI synthase expression was found to be an early event in oral cancer and a target for smokeless tobacco

  1. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    cellular compartments and suggest that NO may have specific actions in relation to its site of production. The localization of type I NO synthase in the vicinity of mitochondria supports a specific action of NO on mitochondrial respiration, whereas the localization of type III NO synthase in vascular......The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...

  2. Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage

    International Nuclear Information System (INIS)

    The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-Nω-nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N6-(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage. (author)

  3. Acute nitric oxide synthase inhibition and endothelin-1-dependent arterial pressure elevation

    Directory of Open Access Journals (Sweden)

    Robert eRapoport

    2014-04-01

    Full Text Available Key evidence that endogenous nitric oxide (NO inhibits the continuous, endothelin (ET-1-mediated drive to elevate arterial pressure includes demonstrations that ET-1 mediates a significant component of the pressure elevated by acute exposure to NO synthase (NOS inhibitors. This review examines the characteristics of this pressure elevation in order to elucidate potential mechanisms associated with the negative regulation of ET-1 by NO and, thereby, provide potential insight into the vascular pathophysiology underlying NO dysregulation. We surmise that the magnitude of the ET-1-dependent component of the NOS inhibitor-elevated pressure is 1 independent of underlying arterial pressure and other pressor pathways activated by the NOS inhibitors and 2 dependent on relatively higher NOS inhibitor dose, release of stored and de novo synthesized ET-1, and ETA receptor-mediated increased vascular resistance. Major implications of these conclusions include: 1 the marked variation of the ET-1-dependent component, i.e., from 0-100% of the pressure elevation, reflects the NO-ET-1 regulatory pathway. Thus, NOS inhibitor-mediated, ET-1-dependent pressure elevation in vascular pathophysiologies is an indicator of the level of compromised/enhanced function of this pathway; 2 NO is a more potent inhibitor of ET-1-mediated elevated arterial pressure than other pressor pathways, due in part to inhibition of intravascular pressure-independent release of ET-1. Thus, the ET-1-dependent component of pressure elevation in vascular pathophysiologies associated with NO dysregulation is of greater magnitude at higher levels of compromised NO.

  4. Sphingomyelin Synthases Regulate Protein Trafficking and Secretion

    OpenAIRE

    Subathra, Marimuthu; Qureshi, Asfia; Luberto, Chiara

    2011-01-01

    Sphingomyelin synthases (SMS1 and 2) represent a class of enzymes that transfer a phosphocholine moiety from phosphatidylcholine onto ceramide thus producing sphingomyelin and diacylglycerol (DAG). SMS1 localizes at the Golgi while SMS2 localizes both at the Golgi and the plasma membrane. Previous studies from our laboratory showed that modulation of SMS1 and, to a lesser extent, of SMS2 affected the formation of DAG at the Golgi apparatus. As a consequence, down-regulation of SMS1 and SMS2 r...

  5. Evolution and function of phytochelatin synthases.

    Science.gov (United States)

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  6. Torque generation mechanism of ATP synthase

    Science.gov (United States)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  7. p63 promotes cell survival through fatty acid synthase.

    Directory of Open Access Journals (Sweden)

    Venkata Sabbisetti

    Full Text Available There is increasing evidence that p63, and specifically DeltaNp63, plays a central role in both development and tumorigenesis by promoting epithelial cell survival. However, few studies have addressed the molecular mechanisms through which such important function is exerted. Fatty acid synthase (FASN, a key enzyme that synthesizes long-chain fatty acids and is involved in both embryogenesis and cancer, has been recently proposed as a direct target of p53 family members, including p63 and p73. Here we show that knockdown of either total or DeltaN-specific p63 isoforms in squamous cell carcinoma (SCC9 or immortalized prostate epithelial (iPrEC cells caused a decrease in cell viability by inducing apoptosis without affecting the cell cycle. p63 silencing significantly reduced both the expression and the activity of FASN. Importantly, stable overexpression of either FASN or myristoylated AKT (myr-AKT was able to partially rescue cells from cell death induced by p63 silencing. FASN induced AKT phosphorylation and a significant reduction in cell viability was observed when FASN-overexpressing SCC9 cells were treated with an AKT inhibitor after p63 knockdown, indicating that AKT plays a major role in FASN-mediated survival. Activated AKT did not cause any alteration in the FASN protein levels but induced its activity, suggesting that the rescue from apoptosis documented in the p63-silenced cells expressing myr-AKT cells may be partially mediated by FASN. Finally, we demonstrated that p63 and FASN expression are positively associated in clinical squamous cell carcinoma samples as well as in the developing prostate. Taken together, our findings demonstrate that FASN is a functionally relevant target of p63 and is required for mediating its pro-survival effects.

  8. Inducible nitric oxide synthase haplotype associated with migraine and aura.

    Science.gov (United States)

    de O S Mansur, Thiago; Gonçalves, Flavia M; Martins-Oliveira, Alisson; Speciali, Jose G; Dach, Fabiola; Lacchini, Riccardo; Tanus-Santos, Jose E

    2012-05-01

    Migraine is a complex neurological disorder with a clear neurogenic inflammatory component apparently including enhanced nitric oxide (NO) formation. Excessive NO amounts possibly contributing to migraine are derived from increased expression and activity of inducible NO synthase (iNOS). We tested the hypothesis that two functional, clinically relevant iNOS genetic polymorphisms (C(-1026)A-rs2779249 and G2087A-rs2297518) are associated with migraine with or without aura. We studied 142 healthy women without migraine (control group) and 200 women with migraine divided into two groups: 148 with migraine without aura (MWA) and 52 with aura (MA). Genotypes were determined by real-time polymerase chain reaction using the Taqman(®) allele discrimination assays. The PHASE 2.1 software was used to estimate the haplotypes. The A allele for the G2087A polymorphism was more commonly found in the MA group than in the MWA group (28 vs. 18%; P 0.05). The haplotype combining both A alleles for the two polymorphisms was more commonly found in the MA group than in the control group or in the MWA group (19 vs. 10 or 8%; P = 0.0245 or 0.0027, respectively). Our findings indicate that the G2087A and the C(-1026)A polymorphism in the iNOS gene affect the susceptibility to migraine with aura when their effects are combined within haplotypes, whereas the G2087A affects the susceptibility to aura in migraine patients. These finding may have therapeutic implications when examining the effects of selective iNOS inhibitors.

  9. The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex

    NARCIS (Netherlands)

    Vain, T.; Crowell, E.F.; Timpano, H.; Biot, E.; Desprez, T.; Mansoori Zangir, N.; Trindade, L.M.; Pagant, S.; Robert, S.; Hofte, H.; Gonneau, M.; Vernhettes, S.

    2014-01-01

    Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis

  10. Prostaglandin H synthase immunoreactivity in human gut. An immunohistochemical study

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Rumessen, J J; Qvortrup, Klaus

    1991-01-01

    Prostaglandins exhibit a variety of actions on intestinal smooth muscle depending upon the type, dose and muscle layer studied. As the cellular origin of prostaglandin H (PGH) synthase has not been established with certainty in the human gut wall, we studied the localization of PGH synthase...

  11. De novo fragment-based design of inhibitors of DXS guided by spin-diffusion-based NMR spectroscopy

    NARCIS (Netherlands)

    Masini, T.; Pilger, J.; Kroezen, B. S.; Illarionov, B.; Lottmann, P.; Fischer, M.; Griesinger, C.; Hirsch, A. K. H.

    2014-01-01

    We applied for the first time an innovative ligand-based NMR methodology (STI) to a medicinal-chemistry project aimed at the development of inhibitors for the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). DXS is the first enzyme of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway, presen

  12. Development of a scintillation proximity binding assay for high-throughput screening of hematopoietic prostaglandin D2 synthase.

    Science.gov (United States)

    Meleza, Cesar; Thomasson, Bobbie; Ramachandran, Chidambaram; O'Neill, Jason W; Michelsen, Klaus; Lo, Mei-Chu

    2016-10-15

    Prostaglandin D2 synthase (PGDS) catalyzes the isomerization of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2). PGD2 produced by hematopoietic prostaglandin D2 synthase (H-PGDS) in mast cells and Th2 cells is proposed to be a mediator of allergic and inflammatory responses. Consequently, inhibitors of H-PGDS represent potential therapeutic agents for the treatment of inflammatory diseases such as asthma. Due to the instability of the PGDS substrate PGH2, an in-vitro enzymatic assay is not feasible for large-scale screening of H-PGDS inhibitors. Herein, we report the development of a competition binding assay amenable to high-throughput screening (HTS) in a scintillation proximity assay (SPA) format. This assay was used to screen an in-house compound library of approximately 280,000 compounds for novel H-PGDS inhibitors. The hit rate of the H-PGDS primary screen was found to be 4%. This high hit rate suggests that the active site of H-PGDS can accommodate a large diversity of chemical scaffolds. For hit prioritization, these initial hits were rescreened at a lower concentration in SPA and tested in the LAD2 cell assay. 116 compounds were active in both assays with IC50s ranging from 6 to 807 nM in SPA and 82 nM to 10 μM in the LAD2 cell assay. PMID:27485270

  13. Structure and reaction mechanism of basil eugenol synthase.

    Directory of Open Access Journals (Sweden)

    Gordon V Louie

    Full Text Available Phenylpropenes, a large group of plant volatile compounds that serve in multiple roles in defense and pollinator attraction, contain a propenyl side chain. Eugenol synthase (EGS catalyzes the reductive displacement of acetate from the propenyl side chain of the substrate coniferyl acetate to produce the allyl-phenylpropene eugenol. We report here the structure determination of EGS from basil (Ocimum basilicum by protein x-ray crystallography. EGS is structurally related to the short-chain dehydrogenase/reductases (SDRs, and in particular, enzymes in the isoflavone-reductase-like subfamily. The structure of a ternary complex of EGS bound to the cofactor NADP(H and a mixed competitive inhibitor EMDF ((7S,8S-ethyl (7,8-methylene-dihydroferulate provides a detailed view of the binding interactions within the EGS active site and a starting point for mutagenic examination of the unusual reductive mechanism of EGS. The key interactions between EMDF and the EGS-holoenzyme include stacking of the phenyl ring of EMDF against the cofactor's nicotinamide ring and a water-mediated hydrogen-bonding interaction between the EMDF 4-hydroxy group and the side-chain amino moiety of a conserved lysine residue, Lys132. The C4 carbon of nicotinamide resides immediately adjacent to the site of hydride addition, the C7 carbon of cinnamyl acetate substrates. The inhibitor-bound EGS structure suggests a two-step reaction mechanism involving the formation of a quinone-methide prior to reduction. The formation of this intermediate is promoted by a hydrogen-bonding network that favors deprotonation of the substrate's 4-hydroxyl group and disfavors binding of the acetate moiety, akin to a push-pull catalytic mechanism. Notably, the catalytic involvement in EGS of the conserved Lys132 in preparing the phenolic substrate for quinone methide formation through the proton-relay network appears to be an adaptation of the analogous role in hydrogen bonding played by the equivalent

  14. Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum

    OpenAIRE

    Bitencourt, Tamires Aparecida; Komoto, Tatiana Takahasi; Massaroto, Bruna Gabriele; Miranda, Carlos Eduardo Saraiva; Beleboni, Rene Oliveira; Marins, Mozart; Fachin, Ana Lúcia

    2013-01-01

    Background Fatty acid synthase (FAS) is a promising antifungal target due to its marked structural differences between fungal and mammalian cells. The aim of this study was to evaluate the antifungal activity of flavonoids described in the scientific literature as FAS inhibitors (quercetin, trans-chalcone, ellagic acid, luteolin, galangin, and genistein) against the dermatophyte Trichophyton rubrum and their effects on fatty acid and ergosterol synthesis. Methods The antifungal activity of th...

  15. [Four cases of aldosterone synthase deficiency in childhood].

    Science.gov (United States)

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  16. Effect of polyamine biosynthetic inhibitors on alkaloids and organogenesis in tobacco callus cultures.

    Science.gov (United States)

    Tiburcio, A F; Kaur-Sawhney, R; Galston, A W

    1987-01-01

    We studied the effects of inhibitors of ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and spermidine synthase (Spd synthase) on organogenesis and the titers of polyamines (PA) and alkaloids in tobacco calli. DL-alpha-diffluromethylarginine (DFMA) and D-arginine (D-Arg), both inhibitors of ADC activity, were more effective than DL-alpha-difluromethylorinithine (DFMO), an inhibitor of ODC, in reducing titers of PA and the putrescine (Put)-derived alkaloids (nornicotine and nicotine). Dicyclohexylammonium sulfate (DCHA), an inhibitor of Spd synthase, was also more efficient than DFMO in reducing PA and alkaloid levels. Root organogenesis is inversely related to the titers of Put and alkaloids. Thus, DFMA and D-Arg, which strongly inhibit Put and alkaloid biosynthesis, markedly promote root organogenesis, while control callus with high Put and alkaloid content showed poor root organization. These results suggest that morphological differentiation is not required for activation of secondary metabolic pathways and support the view that ADC has a major role in the generation of Put going to the pyrrolidine ring of tobacco alkaloids.

  17. Pseudouridines and pseudouridine synthases of the ribosome.

    Science.gov (United States)

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  18. AcEST: DK951934 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ate synthase OS=Vitis vinifera G... 257 4e-67 tr|B8QGG4|B8QGG4_KOCSC Acetolactate synthase OS=Kochia scoparia... ... 256 9e-67 tr|B8QGG3|B8QGG3_KOCSC Acetolactate synthase OS=Kochia scoparia ... 256 9e-67 >tr|B8LK99|B8L

  19. Microsomal prostaglandin E synthase-1 protects against Fas-induced liver injury.

    Science.gov (United States)

    Yao, Lu; Chen, Weina; Han, Chang; Wu, Tong

    2016-06-01

    Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme for the synthesis of prostaglandin E2 (PGE2), a proproliferative and antiapoptotic lipid molecule important for tissue regeneration and injury repair. In this study, we developed transgenic (Tg) mice with targeted expression of mPGES-1 in the liver to assess Fas-induced hepatocyte apoptosis and acute liver injury. Compared with wild-type (WT) mice, the mPGES-1 Tg mice showed less liver hemorrhage, lower serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, less hepatic necrosis/apoptosis, and lower level of caspase cascade activation after intraperitoneal injection of the anti-Fas antibody Jo2. Western blotting analysis revealed increased expression and activation of the serine/threonine kinase Akt and associated antiapoptotic molecules in the liver tissues of Jo2-treated mPGES-1 Tg mice. Pretreatment with the mPGES-1 inhibitor (MF63) or the Akt inhibitor (Akt inhibitor V) restored the susceptibility of the mPGES-1 Tg mice to Fas-induced liver injury. Our findings provide novel evidence that mPGES-1 prevents Fas-induced liver injury through activation of Akt and related signaling and suggest that induction of mPGES-1 or treatment with PGE2 may represent important therapeutic strategy for the prevention and treatment of Fas-associated liver injuries. PMID:27102561

  20. Glycogen synthase kinase-3: A promising therapeutic target for Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Marjelo M. Mines

    2011-11-01

    Full Text Available Recent advances in understanding the pathophysiological mechanisms contributing to Fragile X Syndrome (FXS have increased optimism that drug interventions can provide significant therapeutic benefits. FXS results from inadequate expression of functional fragile X mental retardation protein (FMRP. FMRP may have several functions, but it is most well-established as an RNA-binding protein that regulates translation, and it is by this mechanism that FMRP is capable of affecting numerous cellular processes by selectively regulating protein levels. The multiple cellular functions regulated by FMRP suggest that multiple interventions may be required for reversing the effects of deficient FMRP. Evidence that inhibitors of glycogen synthase kinase-3 (GSK3 may contribute to the therapeutic treatment of FXS is reviewed here. In the mouse model of FXS, which lacks FMRP expression (FX mice, GSK3 is hyperactive in several brain regions. Furthermore, significant improvements in several FX-related phenotypes have been obtained in FX mice following the administration of lithium, and in some case other GSK3 inhibitors. These responses include normalization of heightened audiogenic seizure susceptibility and of hyperactive locomotor behavior, enhancement of passive avoidance learning retention and of sociability behaviors, and corrections of macroorchidism, neuronal spine density, and neural plasticity measured electrophysiologically as long term depression. A pilot clinical trial of lithium in FXS patients also found improvements in several measures of behavior. Taken together, these findings indicate that lithium and other inhibitors of GSK3 are promising candidate therapeutic agents for treating FXS.

  1. All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity[S

    OpenAIRE

    Ding, Tingbo; Kabir, Inamul; Li, Yue; Lou, Caixia; Yazdanyar, Amirfarbod; Xu, Jiachen; Dong, Jibin; Zhou, Hongwen; Park, Taesik; Boutjdir, Mohamed; Li, Zhiqiang; Jiang, Xian-Cheng

    2015-01-01

    Sphingomyelin synthase-related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To further examine SMSr function in vivo, we generated Smsr KO mice that were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of plasma, liver, and macrophages from the KO mice revealed only marginal changes in CPE and ceramide a...

  2. Cloning, expression, purification and bioinformatic analysis of 2-methylcitrate synthase from Mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    Kandasamy Eniyan; Urmi Bajpai

    2015-01-01

    Objective:To clone, express and purify2-methylcitrate synthase(Rv1131) gene of Mycobacterium tuberculosis(M. tuberculosis) and to study its structural characteristics using various bioinformatics tools.Methods:Rv1131 gene was amplified by polymerase chain reaction usingM. tuberculosisH37Rv genomicDNA and cloned into pGEM-T easy vector and sequenced. The gene was sub-cloned in pET28c vector, expressed inEscherichia coliBL21(E. coliBL21) (DE3) cells and the recombinant protein was identified byWestern blotting.The protein was purified usingNickel affinity chromatography and the structural characteristics like sub-cellular localization, presence of transmembrane helices and secondary structure of the protein were predicted by bioinformatics tools.Tertiary structure of the protein and phylogenetic analysis was also established byin silico analysis.Results:The expression of the recombinant protein (Rv1131) was confirmed by western blotting using anti-HIS antibodies and the protein was purified from the soluble fraction.In silicoanalysis showed that the protein contains no signal peptide and transmembrane helices.Active site prediction showed that the protein has histidine and aspartic acid residues at242,281 &332 positions respectively.Phylogenetic analysis showed 100% homology withmajor mycobacterial species.Secondary structure predicts2-methylcitrate synthase contain51.9% alpha-helix,8.7% extended strand and39.4% random coils.Tertiary structure of the protein was also established.Conclusions:The enzyme2-methylcitrate synthase from M. tuberculosisH37Rv has been successfully expressed and purified.The purified protein will further be utilized to develop assay methods for screening new inhibitors.

  3. Para-aminobenzoic acid (PABA synthase enhances thermotolerance of mushroom Agaricus bisporus.

    Directory of Open Access Journals (Sweden)

    Zhonglei Lu

    Full Text Available Most mushrooms are thermo-sensitive to temperatures over 23°C, which greatly restricts their agricultural cultivation. Understanding mushroom's innate heat-tolerance mechanisms may facilitate genetic improvements of their thermotolerance. Agaricus bisporus strain 02 is a relatively thermotolerant mushroom strain, while strain 8213 is quite thermo-sensitive. Here, we compared their responses at proteomic level to heat treatment at 33°C. We identified 73 proteins that are differentially expressed between 02 and 8213 or induced upon heat stress in strain 02 itself, 48 of which with a known identity. Among them, 4 proteins are constitutively more highly expressed in 02 than 8213; and they can be further upregulated in response to heat stress in 02, but not in 8213. One protein is encoded by the para-aminobenzoic acid (PABA synthase gene Pabs, which has been shown to scavenge the reactive oxygen species in vitro. Pabs mRNA and its chemical product PABA show similar heat stress induction pattern as PABA synthase protein and are more abundant in 02, indicating transcriptional level upregulation of Pabs upon heat stress. A specific inhibitor of PABA synthesis impaired thermotolerance of 02, while exogenous PABA or transgenic overexpression of 02 derived PABA synthase enhanced thermotolerance of 8213. Furthermore, compared to 8213, 02 accumulated less H2O2 but more defense-related proteins (e.g., HSPs and Chitinase under heat stress. Together, these results demonstrate a role of PABA in enhancing mushroom thermotolerance by removing H2O2 and elevating defense-related proteins.

  4. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae.

    Science.gov (United States)

    Samuelsson, T; Olsson, M

    1990-05-25

    A transfer RNA lacking modified nucleosides was produced by transcription in vitro of a cloned gene that encodes a Saccharomyces cerevisiae glycine tRNA. At least three different uridines (in nucleotide positions 13, 32, and 55) of this transcript tRNA are modified to pseudouridine by an extract of S. cerevisiae. Variants of the RNA substrate were also constructed that each had only one of these sites, thus allowing specific monitoring of pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis, enzymes producing this nucleoside were purified from an extract of S. cerevisiae. The activities corresponding to positions 13, 32, and 55 in the tRNA substrate could all be separated chromatographically, indicating that there is a separate enzyme for each of these sites. The enzyme specific for position 55 (denoted pseudouridine synthase 55) was purified approximately 4000-fold using a combination of DEAE-Sepharose, heparin-Sepharose, and hydroxylapatite.

  5. Endothelial nitric oxide synthase in the microcirculation.

    Science.gov (United States)

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  6. The nitric oxide synthase of mouse spermatozoa.

    Science.gov (United States)

    Herrero, M B; Goin, J C; Boquet, M; Canteros, M G; Franchi, A M; Perez Martinez, S; Polak, J M; Viggiano, J M; Gimeno, M A

    1997-07-01

    Nitric oxide synthase (NOS) was evidenced in mature mouse spermatozoa by means of biochemical techniques and Western blot. During 120 min of incubation, 10(7) spermatozoa synthesized 7 +/- 2 pmol of L-[14C]citrulline. Besides, L-citrulline formation depended on the incubation time and on the concentration of L-arginine present in the incubation medium. Different concentrations of N(G)-nitro-L-arginine methyl ester (L-NAME) but not aminoguanidine, inhibited L-[14C]citrulline formation. Western-blot analysis of solubilized sperm proteins revealed a unique band of M(r)=140 kDa with the neural, endothelial and inducible NOS antisera tested. These results provide evidence that mature mouse sperm contains a NOS isoform and that spermatozoa have the potential ability to synthesize NO, suggesting a role for endogenous NO on mammalian sperm function.

  7. Bacterial phytoene synthase: molecular cloning, expression, and characterization of Erwinia herbicola phytoene synthase.

    Science.gov (United States)

    Iwata-Reuyl, Dirk; Math, Shivanand K; Desai, Shrivallabh B; Poulter, C Dale

    2003-03-25

    Phytoene synthase (PSase) catalyzes the condensation of two molecules of geranylgeranyl diphosphate (GGPP) to give prephytoene diphosphate (PPPP) and the subsequent rearrangement of the cyclopropylcarbinyl intermediate to phytoene. These reactions constitute the first pathway specific step in carotenoid biosynthesis. The crtB gene encoding phytoene synthase was isolated from a plasmid containing the carotenoid gene cluster in Erwinia herbicola and cloned into an Escherichia coli expression system. Upon induction, recombinant phytoene synthase constituted 5-10% of total soluble protein. To facilitate purification of the recombinant enzyme, the structural gene for PSase was modified by site-directed mutagenesis to incorporate a C-terminal Glu-Glu-Phe (EEF) tripepetide to allow purification by immunoaffinity chromatography on an immobilized monoclonal anti-alpha-tubulin antibody YL1/2 column. Purified recombinant PSase-EEF gave a band at 34.5 kDa upon SDS-PAGE. Recombinant PSase-EEF was then purified to >90% homogeneity in two steps by ion-exchange and immunoaffinity chromatography. The enzyme required Mn(2+) for activity, had a pH optimum of 8.2, and was strongly stimulated by detergent. The concentration of GGPP needed for half-maximal activity was approximately 35 microM, and a significant inhibition of activity was seen at GGPP concentrations above 100 microM. The sole product of the reaction was 15,15'-Z-phytoene. PMID:12641468

  8. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    Science.gov (United States)

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  9. Role of cysteine residues in pseudouridine synthases of different families.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  10. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    Energy Technology Data Exchange (ETDEWEB)

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.; Edwards, Thomas E.; Leonard, Jess T.; Abendroth, Jan; Burris, Courtney A.; Bhandari, Janhavi; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J. (UWASH); (Emerald)

    2011-09-28

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.

  11. Inducible nitric-oxide synthase attenuates vasopressin-dependent Ca2+ signaling in rat hepatocytes.

    Science.gov (United States)

    Patel, Sandip; Gaspers, Lawrence D; Boucherie, Sylviane; Memin, Elisabeth; Stellato, Kerri Anne; Guillon, Gilles; Combettes, Laurent; Thomas, Andrew P

    2002-09-13

    Increases in both Ca(2+) and nitric oxide levels are vital for a variety of cellular processes; however, the interaction between these two crucial messengers is not fully understood. Here, we demonstrate that expression of inducible nitric-oxide synthase in hepatocytes, in response to inflammatory mediators, dramatically attenuates Ca(2+) signaling by the inositol 1,4,5-trisphosphate-forming hormone, vasopressin. The inhibitory effects of induction were reversed by nitric oxide inhibitors and mimicked by prolonged cyclic GMP elevation. Induction was without effect on Ca(2+) signals in response to AlF(4)(-) or inositol 1,4,5-trisphosphate, indicating that phospholipase C activation and release of Ca(2+) from inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores were not targets for nitric oxide inhibition. Vasopressin receptor levels, however, were dramatically reduced in induced cultures. Our data provide a possible mechanism for hepatocyte dysfunction during chronic inflammation. PMID:12097323

  12. Effects of Cerebral Ischemia in Mice Deficient in Neuronal Nitric Oxide Synthase

    Science.gov (United States)

    Huang, Zhihong; Huang, Paul L.; Panahian, Nariman; Dalkara, Turgay; Fishman, Mark C.; Moskowitz, Michael A.

    1994-09-01

    The proposal that nitric oxide (NO) or its reactant products mediate toxicity in brain remains controversial in part because of the use of nonselective agents that block NO formation in neuronal, glial, and vascular compartments. In mutant mice deficient in neuronal NO synthase (NOS) activity, infarct volumes decreased significantly 24 and 72 hours after middle cerebral artery occlusion, and the neurological deficits were less than those in normal mice. This result could not be accounted for by differences in blood flow or vascular anatomy. However, infarct size in the mutant became larger after endothelial NOS inhibition by nitro-L-arginine administration. Hence, neuronal NO production appears to exacerbate acute ischemic injury, whereas vascular NO protects after middle cerebral artery occlusion. The data emphasize the importance of developing selective inhibitors of the neuronal isoform.

  13. Extract of Meretrix meretrix Linnaeus induces angiogenesis in vitro and activates endothelial nitric oxide synthase

    Science.gov (United States)

    Liu, Ming; Wei, Jianteng; Wang, Hui; Ding, Lili; Zhang, Yuyan; Lin, Xiukun

    2012-09-01

    Meretrix meretrix Linnaeus has long been used as traditional Chinese medicine in oriental medicine. The angiogentic activity of the extract of M. meretrix was investigated in this study, using human umbilical vein endothelial cells (HUVECs). Extract of M. meretrix Linnaeus (AFG-25) was prepared with acetone and ethanol precipitation, and further separated by Sephadex G-25 column. The results show that AFG-25 promoted proliferation, migration, and capillary-like tube formation in HUVECs, and in the presence of eNOS inhibitor NMA, the tube formation induced by AFG-25 is inhibited significantly. Moreover, AFG-25 could also promote the activation of endothelial nitric oxide synthase (eNOS) and the resultant elevation of nitric oxide (NO) production. The results suggested that M. meretrix contains active ingredients with angiogentic activity and eNOS/NO signal pathway is in part involved in the proangiogenesis effect induced by AFG-25.

  14. The Pseudouridine Synthases Proceed through a Glycal Intermediate.

    Science.gov (United States)

    Veerareddygari, Govardhan Reddy; Singh, Sanjay K; Mueller, Eugene G

    2016-06-29

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2'. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases.

  15. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B;

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal...... and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant i...

  16. New evolution: Inhibitors of fatty acid synthase and fat-reducing study

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Obesity sweeps all over the world presently at an astonishing speed. The rate of the disease ascends in both the developed and developing countries. According to a recent report from the World Health Organization, it can be estimated that about 250 million adults are obese all over the world, and that at least 500 million adults are overweight[1]. In the United States, more than 10% of children are obese and more than 15% of children are overweight[2]. About 2%-7% annual medical expenses of the developed countries are used for obesity by conservative estimation[3].

  17. Bedaquiline – The first ATP synthase inhibitor against multi drug resistant tuberculosis

    OpenAIRE

    Lakshmanan, Mageshwaran; Xavier, Alphienes Stanley

    2013-01-01

    Increasing incidence of MDR-TB, long duration of treatment and co-infection with HIV are the significant problems in achieving the eradication of tuberculosis. Bedaquiline is an anti-tuberculosis drug with unique mechanism of action. It selectively inhibits the mycobacterial energy metabolism i.e. ATP synthesis and found to be effective against all states of Mycobacterium tuberculosis like active, dormant, replicating, non-replicating, intracellular and extracellular. Preclinical studies have...

  18. Isolation of a Tomato Protease that May Be Involved in Proteolysis of 1-Aminocyclopropane-1-Carboxylate Synthase

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng LI; Liang-Hu QU; Ning LI

    2005-01-01

    1-aminocyclopropane-1-carboxylate (ACC) synthase is a principal enzyme that catalyses the committed step in phytohormone ethylene biosynthesis. Previous evidence indicates that the hypervariable C-terminus of ACC synthase is most likely to be processed proteolytically in vivo. However, the protease responsible has not been identified thus far. In the present study, we detected proteolytic activity against ACC synthase (LeACS2) in tomato (Lycopersicon esculentum Mill.) fruit extract based on a newly established in vitro assay system. Purification of the protease through DEAE, gel filtration and MonoQ chromatography resulted in considerable enrichment of a 64-kDa protein species. Subsequent biochemical analysis of the purified tomato protease revealed that the optimal conditions for its proteolytic activity were at pH 8.0 and at 37 ℃. In addition, the protease activity was blocked completely by the metalloprotease inhibitor 1,10-phenanthroline. The present study represents the first report on the isolation of an ACC synthaseprocessing protease from plant tissues.

  19. Exogenous nitric oxide donors and inhibitors of its formation (the chemical aspects)

    Science.gov (United States)

    Granik, Vladimir G.; Ryabova, Svetlana Yu; Grigoriev, Nikita B.

    1997-08-01

    The published data on the biological role of nitric oxide formed in vivo by enzymatic oxidation of L-arginine are generalised. Special attention is given to exogenous nitric oxide donors, which can release NO in vitro and in vivo in oxidation, reduction, or hydrolytic cleavage. Also considered are the data on the chemical nature of inhibitors of NO-synthase responsible for nitric oxide formation from L-arginine. The bibliography includes 161 references.

  20. PC-PLC/sphingomyelin synthase activity plays a central role in the development of myogenic tone in murine resistance arteries.

    Science.gov (United States)

    Mauban, Joseph R H; Zacharia, Joseph; Fairfax, Seth; Wier, Withrow Gil

    2015-06-15

    Myogenic tone is an intrinsic property of the vasculature that contributes to blood pressure control and tissue perfusion. Earlier investigations assigned a key role in myogenic tone to phospholipase C (PLC) and its products, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Here, we used the PLC inhibitor, U-73122, and two other, specific inhibitors of PLC subtypes (PI-PLC and PC-PLC) to delineate the role of PLC in myogenic tone of pressurized murine mesenteric arteries. U-73122 inhibited depolarization-induced contractions (high external K(+) concentration), thus confirming reports of nonspecific actions of U-73122 and its limited utility for studies of myogenic tone. Edelfosine, a specific inhibitor of PI-PLC, did not affect depolarization-induced contractions but modulated myogenic tone. Because PI-PLC produces IP3, we investigated the effect of blocking IP3 receptor-mediated Ca(2+) release on myogenic tone. Incubation of arteries with xestospongin C did not affect tone, consistent with the virtual absence of Ca(2+) waves in arteries with myogenic tone. D-609, an inhibitor of PC-PLC and sphingomyelin synthase, strongly inhibited myogenic tone and had no effect on depolarization-induced contraction. D-609 appeared to act by lowering cytoplasmic Ca(2+) concentration to levels below those that activate contraction. Importantly, incubation of pressurized arteries with a membrane-permeable analog of DAG induced vasoconstriction. The results therefore mandate a reexamination of the signaling pathways activated by the Bayliss mechanism. Our results suggest that PI-PLC and IP3 are not required in maintaining myogenic tone, but DAG, produced by PC-PLC and/or SM synthase, is likely through multiple mechanisms to increase Ca(2+) entry and promote vasoconstriction.

  1. Computational design and selections for an engineered, thermostable terpene synthase

    OpenAIRE

    Diaz, JE; Lin, CS; Kunishiro, K; Feld, BK; Avrantinis, SK; Bronson, J.; J. Greaves; Saven, JG; Weiss, GA

    2011-01-01

    Terpenoids include structurally diverse antibiotics, flavorings, and fragrances. Engineering terpene synthases for control over the synthesis of such compounds represents a long sought goal. We report computational design, selections, and assays of a thermostable mutant of tobacco 5-epi-aristolochene synthase (TEAS) for the catalysis of carbocation cyclization reactions at elevated temperatures. Selection for thermostability included proteolytic digestion followed by capture of intact protein...

  2. Subcellular Targeting Domains of Sphingomyelin Synthase 1 and 2

    OpenAIRE

    Yeang Calvin; Ding Tingbo; Chirico William J; Jiang Xian-Cheng

    2011-01-01

    Abstract Sphingomyelin synthase (SMS) sits at the crossroads of sphingomyelin (SM), ceramide, diacylglycerol (DAG) metabolism. It utilizes ceramide and phosphatidylcholine as substrates to produce SM and DAG, thereby regulating lipid messengers which play a role in cell survival and apoptosis. Furthermore, its product SM has been implicated in atherogenic processes such as retention of lipoproteins in the blood vessel intima. There are two mammalian sphingomyelin synthases: SMS1 and SMS2. SMS...

  3. Targeted Disruption of the Methionine Synthase Gene in Mice

    OpenAIRE

    Swanson, Deborah A.; Liu, Mei-Lan; Baker, Priscilla J.; Garrett, Lisa; Stitzel, Michael; Wu, Jianmin; Harris, Michelle; Banerjee, Ruma; Shane, Barry; Brody, Lawrence C

    2001-01-01

    Alterations in homocysteine, methionine, folate, and/or B12 homeostasis have been associated with neural tube defects, cardiovascular disease, and cancer. Methionine synthase, one of only two mammalian enzymes known to require vitamin B12 as a cofactor, lies at the intersection of these metabolic pathways. This enzyme catalyzes the transfer of a methyl group from 5-methyl-tetrahydrofolate to homocysteine, generating tetrahydrofolate and methionine. Human patients with methionine synthase defi...

  4. Glycogen synthase kinase 3: more than a namesake

    OpenAIRE

    Rayasam, Geetha Vani; Tulasi, Vamshi Krishna; Sodhi, Reena; Davis, Joseph Alex; Ray, Abhijit

    2009-01-01

    Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, τ protein and β catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as...

  5. Genetic organization of the cellulose synthase operon in Acetobacter xylinum.

    OpenAIRE

    Wong, H C; Fear, A L; Calhoon, R D; Eichinger, G H; Mayer, R; Amikam, D; Benziman, M; Gelfand, D H; Meade, J H; Emerick, A W

    1990-01-01

    An operon encoding four proteins required for bacterial cellulose biosynthesis (bcs) in Acetobacter xylinum was isolated via genetic complementation with strains lacking cellulose synthase activity. Nucleotide sequence analysis indicated that the cellulose synthase operon is 9217 base pairs long and consists of four genes. The four genes--bcsA, bcsB, bcsC, and bcsD--appear to be translationally coupled and transcribed as a polycistronic mRNA with an initiation site 97 bases upstream of the co...

  6. Linking pseudouridine synthases to growth, development and cell competition.

    Science.gov (United States)

    Tortoriello, Giuseppe; de Celis, José F; Furia, Maria

    2010-08-01

    Eukaryotic pseudouridine synthases direct RNA pseudouridylation and bind H/ACA small nucleolar RNA (snoRNAs), which, in turn, may act as precursors of microRNA-like molecules. In humans, loss of pseudouridine synthase activity causes dyskeratosis congenita (DC), a complex systemic disorder characterized by cancer susceptibility, failures in ribosome biogenesis and telomere stability, and defects in stem cell formation. Considering the significant interest in deciphering the various molecular consequences of pseudouridine synthase failure, we performed a loss of function analysis of minifly (mfl), the pseudouridine synthase gene of Drosophila, in the wing disc, an advantageous model system for studies of cell growth and differentiation. In this organ, depletion of the mfl-encoded pseudouridine synthase causes a severe reduction in size by decreasing both the number and the size of wing cells. Reduction of cell number was mainly attributable to cell death rather than reduced proliferation, establishing that apoptosis plays a key role in the development of the loss of function mutant phenotype. Depletion of Mfl also causes a proliferative disadvantage in mosaic tissues that leads to the elimination of mutant cells by cell competition. Intriguingly, mfl silencing also triggered unexpected effects on wing patterning and cell differentiation, including deviations from normal lineage boundaries, mingling of cells of different compartments, and defects in the formation of the wing margin that closely mimic the phenotype of reduced Notch activity. These results suggest that a component of the pseudouridine synthase loss of function phenotype is caused by defects in Notch signalling.

  7. Homocystinuria due to cystathionine beta synthase deficiency

    Directory of Open Access Journals (Sweden)

    Rao T

    2008-01-01

    Full Text Available A two year-old male child presented with cutis marmorata congenita universalis, brittle hair, mild mental retardation, and finger spasms. Biochemical findings include increased levels of homocysteine in the blood-106.62 µmol/L (normal levels: 5.90-16µmol/L. Biochemical tests such as the silver nitroprusside and nitroprusside tests were positive suggesting homocystinuria. The patient was treated with oral pyridoxine therapy for three months. The child responded well to this therapy and the muscle spasms as well as skin manifestations such as cutis marmorata subsided. The treatment is being continued; the case is reported here because of its rarity. Homocysteinuria arising due to cystathionine beta-synthase (CBS deficiency is an autosomal recessive disorder of methionine metabolism that produces increased levels of urinary homocysteine and methionine It manifests itself in vascular, central nervous system, cutaneous, and connective tissue disturbances and phenotypically resembles Marfan′s syndrome. Skin manifestations include malar flush, thin hair, and cutis reticulata / marmorata.

  8. Inhibitors of Fatty Acid Synthesis Induce PPAR α -Regulated Fatty Acid β -Oxidative Genes: Synergistic Roles of L-FABP and Glucose

    OpenAIRE

    Huan Huang; McIntosh, Avery L.; Martin, Gregory G.; Petrescu, Anca D.; Landrock, Kerstin K.; Danilo Landrock; Kier, Ann B.; Friedhelm Schroeder

    2013-01-01

    While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone. Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome proliferator-activated receptor-α (PPARα) in the nucleus, was found to bind TOFA and its activated CoA th...

  9. Changes in the profile of NO synthases affect coronary blood flow autoregulation and myocardial contractile activity during restraint stress in rats.

    Science.gov (United States)

    Solodkov, A P; Lazuko, S S; Knyazev, E N; Nechaev, I N; Krainova, N A

    2014-12-01

    The efficiency of autoregulation of the coronary blood flow and contractile activity of the myocardium in the presence of inhibitors of constitutive and inducible NO synthases was studied in rats exposed to 6-h restraint stress. Intracoronary administration of S-methylisothiourea (10 μmol/liter), but not L-NAME (60 μmol/liter) fully prevented post-stress increase in the volume coronary blood flow rate, intensity of heart perfusion, and reduction of ventricular developed pressure at all levels of perfusion pressure. Real-time PCR showed 6-fold increased expression of inducible NO-synthase mRNA in the heart tissue against the background of unchanged expression of neuronal and endothelial NO synthases and 2-3-fold elevated content of transcripts of stress-inducible genes Hspa1a and Hspbp1. It was shown that the hypotension of coronary vessels and reduced contractile function of the myocardium are related to NO production by inducible NO synthase in endotheliocytes of coronary vessels and cardiomyocytes. PMID:25430647

  10. Análise comparativa do crescimento de biótipos de picão-preto (Bidens pilosa resistente e suscetível aos herbicidas inibidores da ALS Growth analysis of Bidens pilosa biotypes resistant and susceptible to ALS inhibitor herbicides

    Directory of Open Access Journals (Sweden)

    P.J. Christoffoleti

    2001-04-01

    , TCA, TCR e TAL maiores que o suscetível. Dessa forma, concluiu-se que o biótipo de Bidens pilosa resistente aos herbicidas inibidores da ALS apresenta a mesma eficiência de produção de biomassa no final do ciclo. É provável que, quando em competição entre si e com as culturas, possua a mesma competitividade, sendo a dominância numérica de um biótipo sobre o outro decorrente apenas da pressão de seleção causada pelo herbicida.The resistance of weed biotypes to acetolactate synthase (ALS inhibitor herbicides is due to this enzyme's lack of sensitivity to ALS inhibitor herbicides, which inhibit its catalytic activity. ALS insensitivity results from a structural change in the aminoacid sequence, exactly in the site of action of these herbicides. Eventually this modification in the enzyme may result in a reduced plant growth rate. Such reduction was also observed in biotypes resistant to Photosystem II inhibitor herbicides. The possibility of a lower growth rate of the resistant plant may directly affect biotype competitiveness, its population dynamics and, as a consequence, resistance management strategies. The objective of this research was to compare the growth rates of both resistant and susceptible Bidens pilosa biotypes to ALS inhibitor herbicides. The experiment was conducted in a greenhouse, using one plant per pot of 5 L capacity. Four plants per biotype were harvested weekly, starting 14 days after planting, and the leaf area and dry biomass were measured. The Richards function fitted to the data enabled the derivation of absolute growth rate, relative growth rate and net assimilation rate. The susceptible biotype had a higher biomass accumulation during the early stages, with both biotypes having the same size, afterwards. The higher net assimilation rate of the resistant biotype during the early stages of growth was balanced by its lower size during the first four weeks of growth. It was concluded that both biotypes have the same size, being very

  11. Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.).

    Science.gov (United States)

    Lahuta, Lesław B; Pluskota, Wioletta E; Stelmaszewska, Joanna; Szablińska, Joanna

    2014-09-01

    The exposition of 7-day-old pea seedlings to dehydration induced sudden changes in the concentration of monosaccharides and sucrose in epicotyl and roots tissues. During 24h of dehydration, the concentration of glucose and, to a lesser extent, fructose in seedling tissues decreased. The accumulation of sucrose was observed in roots after 4h and in epicotyls after 8h of stress. Epicotyls and roots also began to accumulate galactinol and raffinose after 8h of stress, when small changes in the water content of tissues occurred. The accumulation of galactinol and raffinose progressed parallel to water withdrawal from tissues, but after seedling rehydration both galactosides disappeared. The synthesis of galactinol and raffinose by an early induction (during the first hour of treatment) of galactinol synthase (PsGolS) and raffinose synthase (PsRS) gene expression as well as a later increase in the activity of both enzymes was noted. Signals possibly triggering the induction of PsGolS and PsRS gene expression and accumulation of galactinol and raffinose in seedlings are discussed.

  12. An insight into the sequential, structural and phylogenetic properties of banana 1-aminocyclopropane-1-carboxylate synthase 1 and study of its interaction with pyridoxal-5'-phosphate and aminoethoxyvinylglycine.

    Science.gov (United States)

    Choudhury, Swarup Roy; Singh, Sanjay Kumar; Roy, Sujit; Sengupta, Dibyendu N

    2010-06-01

    In banana, ethylene production for ripening is accompanied by a dramatic increase in 1-aminocyclopropane-1-carboxylate (ACC) content, transcript level of Musa acuminata ACC synthase 1 (MA-ACS1) and the enzymatic activity of ACC synthase 1 at the onset of the climacteric period. MA-ACS1 catalyses the conversion of S-adenosyl-L-methionine (SAM) to ACC, the key regulatory step in ethylene biosynthesis. Multiple sequence alignments of 1-aminocyclopropane-1-carboxylate synthase (ACS) amino acid sequences based on database searches have indicated that MA-ACS1 is a highly conserved protein across the plant kingdom. This report describes an in silico analysis to provide the first important insightful information about the sequential, structural and phylogenetic characteristics of MA-ACS1. The three-dimensional structure of MA-ACS1, constructed based on homology modelling, in combination with the available data enabled a comparative mechanistic analysis of MA-ACS1 to explain the catalytic roles of the conserved and non-conserved active site residues. We have further demonstrated that, as in apple and tomato, banana- ACS1 (MA-ACS1) forms a homodimer and a complex with cofactor pyridoxal-5'-phosphate (PLP) and inhibitor aminoethoxyvinylglycine (AVG). We have also predicted that the residues from the PLP-binding pocket, essential for ligand binding, are mostly conserved across the MA-ACS1 structure and the competitive inhibitor AVG binds at a location adjacent to PLP.

  13. An insight into the sequential, structural and phylogenetic properties of banana 1-aminocyclopropane-1-carboxylate synthase 1 and study of its interaction with pyridoxal-5'-phosphate and aminoethoxyvinylglycine

    Indian Academy of Sciences (India)

    Swarup Roy Choudhury; Sanjay Kumar Singh; Sujit Roy; Dibyendu N Sengupta

    2010-06-01

    In banana, ethylene production for ripening is accompanied by a dramatic increase in 1-aminocyclopropane-1-carboxylate (ACC) content, transcript level of Musa acuminata ACC synthase 1 (MA-ACS1) and the enzymatic activity of ACC synthase 1 at the onset of the climacteric period. MA-ACS1 catalyses the conversion of -adenosyl-L-methionine (SAM) to ACC, the key regulatory step in ethylene biosynthesis. Multiple sequence alignments of 1-aminocyclopropane-1-carboxylate synthase (ACS) amino acid sequences based on database searches have indicated that MA-ACS1 is a highly conserved protein across the plant kingdom. This report describes an in silico analysis to provide the first important insightful information about the sequential, structural and phylogenetic characteristics of MA-ACS1. The three-dimensional structure of MA-ACS1, constructed based on homology modelling, in combination with the available data enabled a comparative mechanistic analysis of MA-ACS1 to explain the catalytic roles of the conserved and non-conserved active site residues. We have further demonstrated that, as in apple and tomato, banana-ACS1 (MA-ACS1) forms a homodimer and a complex with cofactor pyridoxal-5′-phosphate (PLP) and inhibitor aminoethoxyvinylglycine (AVG). We have also predicted that the residues from the PLP-binding pocket, essential for ligand binding, are mostly conserved across the MA-ACS1 structure and the competitive inhibitor AVG binds at a location adjacent to PLP.

  14. Recent Developments of Protein Kinase Inhibitors as Potential AD Therapeutics

    Directory of Open Access Journals (Sweden)

    Andreas eHilgeroth

    2013-11-01

    Full Text Available Present AD therapies suffer from inefficient effects on AD symptoms like memory or cognition, especially in later states of the disease. Used acteylcholine esterase (ACE inhibitors or the NMDA receptor antagonist memantine address one target structure which is involved in a complex, multifactorial disease progression. So the benefit for patients is presently poor. A more close insight in the AD progression identified more suggested target structures for drug development. Strategies of AD drug development concentrate on novel target structures combined with the established ones dedicated for combined therapy regimes, preferably by the use of one drug which may address two target structures. Protein kinases have been identified as promising target structures because they are involved in AD progression pathways like pathophysiological tau protein phosphorylations and amyloid β toxicity. The review article will shortly view early inhibitors of single protein kinases like glycogen synthase kinase (gsk3 β and cyclin dependent kinase 5. Novel inhibitors will be discussed which address novel AD relevant protein kinases like dual-specifity tyrosine phosphorylation regulated kinase 1A (DYRK1A. Moreover, multitargeting inhibitors will be presented which target several protein kinases and those which are suspected in influencing other AD relevant processes. Such a multitargeting is the most promising strategy to effectively hamper the multifactorial disease progression and thus gives perspective hopes for a future better patient benefit.

  15. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage

    DEFF Research Database (Denmark)

    Bach, Anders*; Clausen, Bettina H; Møller, Magda;

    2012-01-01

    Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-d-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors...

  16. NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models

    DEFF Research Database (Denmark)

    Bhatt, Deepak K; Gupta, Saurabh; Jansen-Olesen, Inger;

    2013-01-01

    BackgroundNXN-188 is a combined neuronal nitric oxide synthase (nNOS) inhibitor and 5-hydroxytryptamine 1B/1D (5-HT(1B/1D)) receptor agonist. Using preclinical models, we evaluated whether these two unique therapeutic principles have a synergistic effect in attenuating stimulated calcitonin gene-...

  17. Molecular mechanism underlying the synergistic interaction between trifluorothymidine and the epidermal growth factor receptor inhibitor erlotinib in human colorectal cancer cell lines

    NARCIS (Netherlands)

    Bijnsdorp, Irene V.; Kruyt, Frank A. E.; Fukushima, Masakazu; Smid, Kees; Gokoel, Shanti; Peters, Godefridus J.

    2010-01-01

    The pyrimidine trifluorothymidine (TFT) inhibits thymidylate synthase (TS) and can be incorporated into the DNA. TFT, as part of TAS-102, is clinically evaluated in phase II studies as an oral chemotherapeutic agent. Erlotinib is a tyrosine kinase inhibitor of the epidermal growth factor receptor (E

  18. Neuronal nitric oxide synthase is an endogenous negative regulator of glucocorticoid receptor in the hippocampus.

    Science.gov (United States)

    Liu, Meng-ying; Zhu, Li-Juan; Zhou, Qi-Gang

    2013-07-01

    The hippocampus is rich in both glucocorticoid receptor (GR) and neuronal nitric oxide synthase (nNOS). But the relationship between the two molecules under physiological states remains unrevealed. Here, we report that nNOS knockout mice display increased GR expression in the hippocampus. Both systemic administration of 7-Nitroindazole (7-NI), a selective nNOS activity inhibitor, and selective infusion of 7-NI into the hippocampus resulted in an increase in GR expression in the hippocampus. Moreover, KCl exposure, which can induce overexpression of nNOS, resulted in a decrease in GR protein level in cultured hippocampal neurons. Moreover, blockade of nNOS activity in the hippocampus leads to decreased corticosterone (CORT, glucocorticoids in rodents) concentration in the plasma and reduced corticotrophin-releasing factor expression in the hypothalamus. The results indicate that nNOS is an endogenous inhibitor of GR in the hippocampus and that nNOS in the hippocampus may participate in the modulation of Hypothalamic-Pituitary-Adrenal axis activity via GR.

  19. Gene Therapy Inhibiting Neointimal Vascular Lesion: In vivo Transfer of Endothelial Cell Nitric Oxide Synthase Gene

    Science.gov (United States)

    von der Leyen, Heiko E.; Gibbons, Gary H.; Morishita, Ryuichi; Lewis, Neil P.; Zhang, Lunan; Nakajima, Masatoshi; Kaneda, Yasufumi; Cooke, John P.; Dzau, Victor J.

    1995-02-01

    It is postulated that vascular disease involves a disturbance in the homeostatic balance of factors regulating vascular tone and structure. Recent developments in gene transfer techniques have emerged as an exciting therapeutic option to treat vascular disease. Several studies have established the feasibility of direct in vivo gene transfer into the vasculature by using reporter genes such as β-galactosidase or luciferase. To date no study has documented therapeutic effects with in vivo gene transfer of a cDNA encoding a functional enzyme. This study tests the hypothesis that endothelium-derived nitric oxide is an endogenous inhibitor of vascular lesion formation. After denudation by balloon injury of the endothelium of rat carotid arteries, we restored endothelial cell nitric oxide synthase (ec-NOS) expression in the vessel wall by using the highly efficient Sendai virus/liposome in vivo gene transfer technique. ec-NOS gene transfection not only restored NO production to levels seen in normal untreated vessels but also increased vascular reactivity of the injured vessel. Neointima formation at day 14 after balloon injury was inhibited by 70%. These findings provide direct evidence that NO is an endogenous inhibitor of vascular lesion formation in vivo (by inhibiting smooth muscle cell proliferation and migration) and suggest the possibility of ec-NOS transfection as a potential therapeutic approach to treat neointimal hyperplasia.

  20. Inflammatory cytokines promote inducible nitric oxide synthase-mediated DNA damage in hamster gallbladder epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the link between chronic biliary inflammation and carcinogenesis using hamster gallbladder epithelial cells.METHODS: Gallbladder epithelial cells were isolated from hamsters and cultured with a mixture of inflammatory cytokines including interleukin-1β, interferon-γ, and tumor necrosis factor-α. Inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) generation, and DNA damage were evaluated.RESULTS: NO generation was increased significantly following cytokine stimulation, and suppressed by an iNOS inhibitor. iNOS mRNA expression was demonstrated in the gallbladder epithelial cells during exposure to inflammatory cytokines. Furthermore, NO-dependent DNA damage, estimated by the comet assay, was significantly increased by cytokines, and decreased to control levels by an iNOS inhibitor.CONCLUSION: Cytokine stimulation induced iNOS expression and NO generation in normal hamster gallbladder epithelial cells, which was sufficient to cause DNA damage. These results indicate that NO-mediated genotoxicity induced by inflammatory cytokines through activation of iNOS may be involved in the process of biliary carcinogenesis in response to chronic inflammation of the biliary tree.

  1. Comparing Drug Images and Repurposing Drugs with BioGPS and FLAPdock: The Thymidylate Synthase Case.

    Science.gov (United States)

    Siragusa, Lydia; Luciani, Rosaria; Borsari, Chiara; Ferrari, Stefania; Costi, Maria Paola; Cruciani, Gabriele; Spyrakis, Francesca

    2016-08-01

    Repurposing and repositioning drugs has become a frequently pursued and successful strategy in the current era, as new chemical entities are increasingly difficult to find and get approved. Herein we report an integrated BioGPS/FLAPdock pipeline for rapid and effective off-target identification and drug repurposing. Our method is based on the structural and chemical properties of protein binding sites, that is, the ligand image, encoded in the GRID molecular interaction fields (MIFs). Protein similarity is disclosed through the BioGPS algorithm by measuring the pockets' overlap according to which pockets are clustered. Co-crystallized and known ligands can be cross-docked among similar targets, selected for subsequent in vitro binding experiments, and possibly improved for inhibitory potency. We used human thymidylate synthase (TS) as a test case and searched the entire RCSB Protein Data Bank (PDB) for similar target pockets. We chose casein kinase IIα as a control and tested a series of its inhibitors against the TS template. Ellagic acid and apigenin were identified as TS inhibitors, and various flavonoids were selected and synthesized in a second-round selection. The compounds were demonstrated to be active in the low-micromolar range. PMID:27404817

  2. Characterisation of the tryptophan synthase alpha subunit in maize

    Directory of Open Access Journals (Sweden)

    Gierl Alfons

    2008-04-01

    Full Text Available Abstract Background In bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP by a tryptophan synthase αββα heterotetramer. Plants have evolved multiple α (TSA and β (TSB homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS complex in Arabidopsis. On the other hand maize (Zea mays expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB. Results In order to clarify, how tryptophan is synthesized in maize, two TSA homologs, hitherto uncharacterized ZmTSA and ZmTSAlike, were functionally analyzed. ZmTSA is localized in plastids, the major site of tryptophan biosynthesis in plants. It catalyzes the tryptophan synthase α-reaction (cleavage of IGP, and forms a tryptophan synthase complex with ZmTSB1 in vitro. The catalytic efficiency of the α-reaction is strongly enhanced upon complex formation. A 160 kD tryptophan synthase complex was partially purified from maize leaves and ZmTSA was identified as native α-subunit of this complex by mass spectrometry. ZmTSAlike, for which no in vitro activity was detected, is localized in the cytosol. ZmTSAlike, BX1, and IGL were not detectable in the native tryptophan synthase complex in leaves. Conclusion It was demonstrated in vivo and in vitro that maize forms a tryptophan synthase complex and ZmTSA functions as α-subunit in this complex.

  3. Arabidopsis transcriptional responses differentiating closely related chemicals (herbicides) and cross-species extrapolation to Brassica

    Science.gov (United States)

    Using whole genome Affymetrix ATH1 GeneChips we characterized the transcriptional response of Arabidopsis thaliana Columbia 24 hours after treatment with five different herbicides. Four of them (chloransulam, imazapyr, primisulfuron, sulfometuron) inhibit acetolactate synthase (A...

  4. Leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of prostaglandin and constitutive nitric oxide synthase pathways.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2008-04-01

    Leptin, a pleiotropic cytokine secreted by adipocytes but also identified in salivary glands and saliva, is recognized as an important element of oral mucosal defense. Here, we report that in sublingual salivary glands leptin protects the acinar cells of against ethanol cytotoxicity. We show that ethanol- induced cytotoxicity, characterized by a marked drop in the acinar cell capacity for NO production, arachidonic acid release and prostaglandin generation, was subject to suppression by leptin. The loss in countering capacity of leptin on the ethanol-induced cytotoxicity was attained with cyclooxygenase inhibitor, indomethacin and nitric oxide synthase (cNOS) inhibitor, L-NAME, as well as PP2, an inhibitor of Src kinase. Indomethacin, while not affecting leptin-induced arachidonic acid release, caused the inhibition in PGE2 generation, pretreatment with L-NAME led to the inhibition in NO production, whereas PP2 exerted the inhibitory effect on leptin-induced changes in NO, arachidonic acid, and PGE2. The leptin-induced changes in arachidonic acid release and PGE2 generation were blocked by ERK inhibitor, PD98059, but not by PI3K inhibitor, wortmannin. Further, leptin suppression of ethanol cytotoxicity was reflected in the increased Akt and cNOS phosphorylation that was sensitive to PP2. Moreover, the stimulatory effect of leptin on the acinar cell cNOS activity was inhibited not only by PP2, but also by Akt inhibitor, SH-5, while wortmannin had no effect. Our findings demonstrate that leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of MAPK/ERK and Akt that result in up-regulation of the respective prostaglandin and nitric oxide synthase pathways.

  5. Effects of polymorphisms of methionine synthase and methionine synthase reductase on total plasma homocysteine in the NHLBI Family Heart Study.

    Science.gov (United States)

    Jacques, Paul F; Bostom, Andrew G; Selhub, Jacob; Rich, Sharron; Ellison, R Curtis; Eckfeldt, John H; Gravel, Roy A; Rozen, Rima

    2003-01-01

    The metabolism of homocysteine requires contributions of several enzymes and vitamin cofactors. Earlier studies identified a common polymorphism of methylenetetrahydrofolate reductase that was associated with mild hyperhomocysteinemia. Common variants of two other enzymes involved in homocysteine metabolism, methionine synthase and methionine synthase reductase, have also been identified. Methionine synthase catalyzes the remethylation of homocysteine to form methionine and methionine synthase reductase is required for the reductive activation of the cobalamin-dependent methionine synthase. The methionine synthase gene (MTR) mutation is an A to G substitution, 2756A-->G, which converts an aspartate to a glycine codon. The methionine synthase reductase gene (MTRR) mutation is an A to G substitution, 66A-->G, that converts an isoleucine to a methionine residue. To determine if these polymorphisms were associated with mild hyperhomocysteinemia, we investigated subjects from two of the NHLBI Family Heart Study field centers, Framingham and Utah. Total plasma homocysteine concentrations were determined after an overnight fast and after a 4-h methionine load test. MTR and MTRR genotype data were available for 677 and 562 subjects, respectively. The geometric mean fasting homocysteine was unrelated to the MTR or MTRR genotype categories (AA, AG, GG). After a methionine load, a weak positive association was observed between change in homocysteine after a methionine load and the number of mutant MTR alleles (P-trend=0.04), but this association was not statistically significant according to the overall F-statistic (P=0.12). There was no significant interaction between MTR and MTRR genotype or between these genotypes and any of the vitamins with respect to homocysteine concentrations. This study provides no evidence that these common MTR and MTRR mutations are associated with alterations in plasma homocysteine. PMID:12482550

  6. Structural and thermodynamic basis of the inhibition of Leishmania major farnesyl diphosphate synthase by nitrogen-containing bisphosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Aripirala, Srinivas [Johns Hopkins University, 725 North Wolfe Street WBSB 605, Baltimore, MD 21210 (United States); Gonzalez-Pacanowska, Dolores [López-Neyra Institute of Parasitology and Biomedicine, 18001 Granada (Spain); Oldfield, Eric [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kaiser, Marcel [University of Basel, Petersplatz 1, CH-4003 Basel (Switzerland); Amzel, L. Mario, E-mail: mamzel@jhmi.edu [Johns Hopkins University School of Medicine, 725 N. Wolfe Street WBSB 604, Baltimore, MD 21205 (United States); Gabelli, Sandra B., E-mail: mamzel@jhmi.edu [Johns Hopkins University School of Medicine, 725 N. Wolfe Street WBSB 604, Baltimore, MD 21205 (United States); Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Johns Hopkins University, 725 North Wolfe Street WBSB 605, Baltimore, MD 21210 (United States)

    2014-03-01

    Structural insights into L. major farnesyl diphosphate synthase, a key enzyme in the mevalonate pathway, are described. Farnesyl diphosphate synthase (FPPS) is an essential enzyme involved in the biosynthesis of sterols (cholesterol in humans and ergosterol in yeasts, fungi and trypanosomatid parasites) as well as in protein prenylation. It is inhibited by bisphosphonates, a class of drugs used in humans to treat diverse bone-related diseases. The development of bisphosphonates as antiparasitic compounds targeting ergosterol biosynthesis has become an important route for therapeutic intervention. Here, the X-ray crystallographic structures of complexes of FPPS from Leishmania major (the causative agent of cutaneous leishmaniasis) with three bisphosphonates determined at resolutions of 1.8, 1.9 and 2.3 Å are reported. Two of the inhibitors, 1-(2-hydroxy-2,2-diphosphonoethyl)-3-phenylpyridinium (300B) and 3-butyl-1-(2,2-diphosphonoethyl)pyridinium (476A), co-crystallize with the homoallylic substrate isopentenyl diphosphate (IPP) and three Ca{sup 2+} ions. A third inhibitor, 3-fluoro-1-(2-hydroxy-2,2-diphosphonoethyl)pyridinium (46I), was found to bind two Mg{sup 2+} ions but not IPP. Calorimetric studies showed that binding of the inhibitors is entropically driven. Comparison of the structures of L. major FPPS (LmFPPS) and human FPPS provides new information for the design of bisphosphonates that will be more specific for inhibition of LmFPPS. The asymmetric structure of the LmFPPS–46I homodimer indicates that binding of the allylic substrate to both monomers of the dimer results in an asymmetric dimer with one open and one closed homoallylic site. It is proposed that IPP first binds to the open site, which then closes, opening the site on the other monomer, which closes after binding the second IPP, leading to the symmetric fully occupied FPPS dimer observed in other structures.

  7. Cholinesterase inhibitors from botanicals

    Directory of Open Access Journals (Sweden)

    Faiyaz Ahmed

    2013-01-01

    Full Text Available Alzheimer′s disease (AD is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh, appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE and butyrylcholinesterase (BChE. Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com are also presented and the scope for future research is discussed.

  8. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer.

    Science.gov (United States)

    Das, Anindita; Durrant, David; Salloum, Fadi N; Xi, Lei; Kukreja, Rakesh C

    2015-03-01

    The phosphodiesterase 5 (PDE5) inhibitors, including sildenafil (Viagra™), vardenafil (Levitra™), and tadalafil (Cialis™) have been developed for treatment of erectile dysfunction. Moreover, sildenafil and tadalafil are used for the management of pulmonary arterial hypertension in patients. Since our first report showing the cardioprotective effect of sildenafil in 2002, there has been tremendous growth of preclinical and clinical studies on the use of PDE5 inhibitors for cardiovascular diseases and cancer. Numerous animal studies have demonstrated that PDE5 inhibitors have powerful protective effect against myocardial ischemia/reperfusion (I/R) injury, doxorubicin cardiotoxicity, ischemic and diabetic cardiomyopathy, cardiac hypertrophy, Duchenne muscular dystrophy and the improvement of stem cell efficacy for myocardial repair. Mechanistically, PDE5 inhibitors protect the heart against I/R injury through increased expression of nitric oxide synthases, activation of protein kinase G (PKG), PKG-dependent hydrogen sulfide generation, and phosphorylation of glycogen synthase kinase-3β - a master switch immediately proximal to mitochondrial permeability transition pore and the end effector of cardioprotection. In addition, PDE5 inhibitors enhance the sensitivity of certain types of cancer to standard chemotherapeutic drugs, including doxorubicin. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular and anti-cancer benefits. Despite mixed results of these clinical trials, there is a continuing strong interest by basic scientists and clinical investigators in exploring their new clinical uses. It is our hope that future new mechanistic investigations and carefully designed clinical trials would help in reaping additional benefits of PDE5 inhibitors for cardiovascular disease and cancer in patients. PMID:25444755

  9. A large blood pressure-raising effect of nitric oxide synthase inhibition in humans

    Science.gov (United States)

    Sander, M.; Chavoshan, B.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    In experimental animals, systemic administration of nitric oxide synthase (NOS) inhibitors causes large increases in blood pressure that are in part sympathetically mediated. The aim of this study was to determine the extent to which these conclusions can be extrapolated to humans. In healthy normotensive humans, we measured blood pressure in response to two NOS inhibitors, NG-monomethyl-L-arginine (L-NMMA) and NG-nitro-L-arginine methyl ester (L-NAME), the latter of which recently became available for use in humans. The major new findings are 3-fold. First, L-NAME produced robust increases in blood pressure that were more than 2 times larger than those previously reported in humans with L-NMMA and approximated those seen in experimental animals. L-NAME (4 mg/kg) raised mean arterial pressure by 24+/-2 mm Hg (n=27, P<0.001), whereas in subjects who received both inhibitors, a 12-fold higher dose of L-NMMA (50 mg/kg) raised mean arterial pressure by 15+/-2 mm Hg (n=4, P<0.05 vs L-NAME). Second, the L-NAME-induced increases in blood pressure were caused specifically by NOS inhibition because they were reversed by L-arginine (200 mg/kg, n=12) but not D-arginine (200 mg/kg, n=6) and because NG-nitro-D-arginine methyl ester (4 mg/kg, n=5) had no effect on blood pressure. Third, in humans, there is an important sympathetic component to the blood pressure-raising effect of NOS inhibition. alpha-Adrenergic blockade with phentolamine (0.2 mg/kg, n=9) attenuated the L-NAME-induced increase in blood pressure by 40% (P<0.05). From these data, we conclude that pharmacological inhibition of NOS causes large increases in blood pressure that are in part sympathetically mediated in humans as well as experimental animals.

  10. Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death

    Directory of Open Access Journals (Sweden)

    Colpo Anna

    2010-10-01

    Full Text Available Abstract Background Glycogen Synthase Kinase-3 (GSK-3 α and β are two serine-threonine kinases controlling insulin, Wnt/β-catenin, NF-κB signaling and other cancer-associated transduction pathways. Recent evidence suggests that GSK-3 could function as growth-promoting kinases, especially in malignant cells. In this study, we have investigated GSK-3α and GSK-3β function in multiple myeloma (MM. Methods GSK-3 α and β expression and cellular localization were investigated by Western blot (WB and immunofluorescence analysis in a panel of MM cell lines and in freshly isolated plasma cells from patients. MM cell growth, viability and sensitivity to bortezomib was assessed upon treatment with GSK-3 specific inhibitors or transfection with siRNAs against GSK-3 α and β isoforms. Survival signaling pathways were studied with WB analysis. Results GSK-3α and GSK-3β were differently expressed and phosphorylated in MM cells. Inhibition of GSK-3 with the ATP-competitive, small chemical compounds SB216763 and SB415286 caused MM cell growth arrest and apoptosis through the activation of the intrinsic pathway. Importantly, the two inhibitors augmented the bortezomib-induced MM cell cytotoxicity. RNA interference experiments showed that the two GSK-3 isoforms have distinct roles: GSK-3β knock down decreased MM cell viability, while GSK-3α knock down was associated with a higher rate of bortezomib-induced cytotoxicity. GSK-3 inhibition caused accumulation of β-catenin and nuclear phospho-ERK1, 2. Moreover, GSK-3 inhibition and GSK-3α knockdown enhanced bortezomib-induced AKT and MCL-1 protein degradation. Interestingly, bortezomib caused a reduction of GSK-3 serine phosphorylation and its nuclear accumulation with a mechanism that resulted partly dependent on GSK-3 itself. Conclusions These data suggest that in MM cells GSK-3α and β i play distinct roles in cell survival and ii modulate the sensitivity to proteasome inhibitors.

  11. Response of Herbicide-Resistant Palmer Amaranth (Amaranthus palmeri Accessions to Drought Stress

    Directory of Open Access Journals (Sweden)

    Aman Chandi

    2013-01-01

    Full Text Available Palmer amaranth is a very problematic weed in several crops in the southern USA due to its competitive ability and resistance to herbicides representing different mechanisms of action. Variation in growth and subsequent interference of North Carolina Palmer amaranth accessions has not been examined. A greenhouse experiment determined response of 15 North Carolina Palmer amaranth accessions to drought stress beginning 15 days after seedling emergence (DAE for a duration of 3, 5, 7, and 9 days. Following exposure to drought, plants were grown under optimal moisture conditions until harvest at 30 DAE. Five accessions each of glyphosate-resistant (GR, acetolactate synthase inhibitor-resistant (ALSR, and acetolactate synthase inhibitor-susceptible and glyphosate-susceptible (ALSS/GS were compared. Variation in response to drought stress, based on height and dry weight reduction relative to nonstressed controls, was noted among accessions. Stress for 3 or more days affected height and dry weight. Height and dry weight of GR and ALSR accession groups were reduced less by drought than the ALSS/GS accession group. Results suggest a possible relationship between herbicide resistance and ability of Palmer amaranth to withstand drought stress and thus a possible competitive advantage for resistant accessions under limited moisture availability.

  12. Inhibition of ATP Synthase by Chlorinated Adenosine Analogue

    OpenAIRE

    Chen, Lisa S.; Nowak, Billie J.; Ayres, Mary L.; Krett, Nancy L.; Rosen, Steven T.; Zhang, Shuxing; Gandhi, Varsha

    2009-01-01

    8-Chloroadenosine (8-Cl-Ado) is a ribonucleoside analogue that is currently in clinical trial for chronic lymphocytic leukemia. Based on the decline in cellular ATP pool following 8-Cl-Ado treatment, we hypothesized that 8-Cl-ADP and 8-Cl-ATP may interfere with ATP synthase, a key enzyme in ATP production. Mitochondrial ATP synthase is composed of two major parts; FO intermembrane base and F1 domain, containing α and β subunits. Crystal structures of both α and β subunits that bind to the sub...

  13. Sunflower trypsin inhibitor-1.

    Science.gov (United States)

    Korsinczky, Michael L J; Schirra, Horst Joachim; Craik, David J

    2004-10-01

    SFTI-1 is a bicyclic 14 amino acid peptide that was originally isolated from the seeds of the sunflower Helianthus annuus. It is a potent inhibitor of trypsin, with a sub-nanomolar K(i) value and is homologous to the active site region of the well-known family of serine protease inhibitors known as the Bowman-Birk trypsin inhibitors. It has a cyclic backbone that is cross-braced by a single disulfide bridge and a network of hydrogen bonds that result in a well-defined structure. SFTI-1 is amenable to chemical synthesis, allowing for the creation of synthetic variants. Alterations to the structure such as linearising the backbone or removing the disulfide bridge do not reduce the potency of SFTI-1 significantly, and minimising the peptide to as few as nine residues results in only a small decrease in reactivity. The creation of linear variants of SFTI-1 also provides a tool for investigating putative linear precursor peptides. The mechanism of biosynthesis of SFTI-1 is not yet known but it seems likely that it is a gene-coded product that has arisen from a precursor protein that may be evolutionarily related to classic Bowman-Birk inhibitors. PMID:15544530

  14. Inhibitors of histone demethylases

    DEFF Research Database (Denmark)

    Lohse, Brian; Kristensen, Jesper L; Kristensen, Line H;

    2011-01-01

    Methylated lysines are important epigenetic marks. The enzymes involved in demethylation have recently been discovered and found to be involved in cancer development and progression. Despite the relative recent discovery of these enzymes a number of inhibitors have already appeared. Most of the i...

  15. Inhibitors of histone deacetylase

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to compounds of formula (I) or a pharmaceutically acceptable salt, hydrate, solvate, or prodrug thereof, wherein X1, X2, X3, X4, X5, W1, W2, W3, and W4 are as described. The present invention relates generally to inhibitors of histone deacetylase and to methods...

  16. An Unusual Chimeric Diterpene Synthase from Emericella variecolor and Its Functional Conversion into a Sesterterpene Synthase by Domain Swapping.

    Science.gov (United States)

    Qin, Bin; Matsuda, Yudai; Mori, Takahiro; Okada, Masahiro; Quan, Zhiyang; Mitsuhashi, Takaaki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-26

    Di- and sesterterpene synthases produce C20 and C25 isoprenoid scaffolds from geranylgeranyl pyrophosphate (GGPP) and geranylfarnesyl pyrophosphate (GFPP), respectively. By genome mining of the fungus Emericella variecolor, we identified a multitasking chimeric terpene synthase, EvVS, which has terpene cyclase (TC) and prenyltransferase (PT) domains. Heterologous gene expression in Aspergillus oryzae led to the isolation of variediene (1), a novel tricyclic diterpene hydrocarbon. Intriguingly, in vitro reaction with the enzyme afforded the new macrocyclic sesterterpene 2 as a minor product from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). The TC domain thus produces the diterpene 1 and the sesterterpene 2 from GGPP and GFPP, respectively. Notably, a domain swap of the PT domain of EvVS with that of another chimeric sesterterpene synthase, EvSS, successfully resulted in the production of 2 in vivo as well. Cyclization mechanisms for the production of these two compounds are proposed.

  17. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W. (UIUC); (Iowa State); (Penn)

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  18. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    OpenAIRE

    Igamberdiev, Abir U.; Kleczkowski, Leszek A.

    2015-01-01

    The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i) the supply of ADP and Mg2+, ...

  19. JAK Inhibitors AG-490 and WHI-P154 Decrease IFN-γ-Induced iNOS Expression and NO Production in Macrophages

    OpenAIRE

    Eeva Moilanen; Hannu Kankaanranta; Riina Nieminen; Outi Kärpänniemi; Riku Korhonen; Outi Sareila

    2006-01-01

    In inflammation, inducible nitric oxide synthase (iNOS) produces nitric oxide (NO), which modulates inflammatory processes. We investigated the effects of Janus kinase (JAK) inhibitors, AG-490 and WHI-P154, on iNOS expression and NO production in J774 murine macrophages stimulated with interferon-γ (IFN-γ). JAK inhibitors AG-490 and WHI-P154 decreased IFN-γ-induced nuclear levels of signal transducer and activator of transcription 1α (STAT1α). JAK inhibitors AG-490 and WHI-P154 decreased also...

  20. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    Science.gov (United States)

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  1. Sandalwood Fragrance Biosynthesis Involves Sesquiterpene Synthases of Both the Terpene Synthase (TPS)-a and TPS-b Subfamilies, including Santalene Synthases*

    OpenAIRE

    Christopher G Jones; Moniodis, Jessie; Zulak, Katherine G.; Scaffidi, Adrian; Plummer, Julie A.; Ghisalberti, Emilio L.; Barbour, Elizabeth L.; Bohlmann, Jörg

    2011-01-01

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). ...

  2. Biotin synthase exhibits burst kinetics and multiple turnovers in the absence of inhibition by products and product-related biomolecules.

    Science.gov (United States)

    Farrar, Christine E; Siu, Karen K W; Howell, P Lynne; Jarrett, Joseph T

    2010-11-23

    Biotin synthase (BS) is a member of the "SAM radical" superfamily of enzymes, which catalyze reactions in which the reversible or irreversible oxidation of various substrates is coupled to the reduction of the S-adenosyl-l-methionine (AdoMet) sulfonium to generate methionine and 5'-deoxyadenosine (dAH). Prior studies have demonstrated that these products are modest inhibitors of BS and other members of this enzyme family. In addition, the in vivo catalytic activity of Escherichia coli BS requires expression of 5'-methylthioadenosine/S-adenosyl-l-homocysteine nucleosidase, which hydrolyzes 5'-methylthioadenosine (MTA), S-adenosyl-l-homocysteine (AdoHcy), and dAH. In the present work, we confirm that dAH is a modest inhibitor of BS (K(i) = 20 μM) and show that cooperative binding of dAH with excess methionine results in a 3-fold enhancement of this inhibition. However, with regard to the other substrates of MTA/AdoHcy nucleosidase, we demonstrate that AdoHcy is a potent inhibitor of BS (K(i) ≤ 650 nM) while MTA is not an inhibitor. Inhibition by both dAH and AdoHcy likely accounts for the in vivo requirement for MTA/AdoHcy nucleosidase and may help to explain some of the experimental disparities between various laboratories studying BS. In addition, we examine possible inhibition by other AdoMet-related biomolecules present as common contaminants in commercial AdoMet preparations and/or generated during an assay, as well as by sinefungin, a natural product that is a known inhibitor of several AdoMet-dependent enzymes. Finally, we examine the catalytic activity of BS with highly purified AdoMet in the presence of MTAN to relieve product inhibition and present evidence suggesting that the enzyme is half-site active and capable of undergoing multiple turnovers in vitro.

  3. Trypanosoma brucei DHFR-TS Revisited: Characterisation of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase.

    Science.gov (United States)

    Gibson, Marc W; Dewar, Simon; Ong, Han B; Sienkiewicz, Natasha; Fairlamb, Alan H

    2016-05-01

    Bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA- Escherichia coli, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (Ki 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (Ki 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed. PMID:27175479

  4. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Halavaty, Andrei S. [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Kim, Youngchang [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Zhou, Min [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Onopriyenko, Olena; Skarina, Tatiana [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N. [Center for Structural Genomics of Infectious Diseases, (United States); J. Craig Venter Institute, Rockville, MD 20850 (United States); Joachimiak, Andrzej [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Savchenko, Alexei [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Anderson, Wayne F., E-mail: wf-anderson@northwestern.edu [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States)

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  5. Nitric oxide in the bovine oviduct: influence on contractile activity and nitric oxide synthase isoforms localization.

    Science.gov (United States)

    Yilmaz, O; Całka, J; Bukowski, R; Zalecki, M; Wasowicz, K; Jaroszewski, J J; Markiewicz, W; Bulbul, A; Ucar, M

    2012-04-15

    The oviducts of 64 Holstein cows in luteal (early I, early II and late) and follicular phases were evaluated to determine the protein expression and mRNA transcription of different nitric oxide synthase isoforms (eNOS, iNOS, nNOS) as well as the effect of nitric oxide (NO) on spontaneous contractility in vitro. The expression patterns of nitric oxide synthase (NOS) isoforms in isthmus and ampulla (n = 6 for each phase) were determined by immunohistochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. In the contractility studies, longitudinal and circular isolated strips of isthmus and ampulla (n = 10 for each phase) of oviducts located ipsilateral to the luteal structure or preovulatory follicle were treated as follows: a) L-arginine, an endogenous NO donor (10(-8) to 10(-3)m), b) N(ω)-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor (10(-5)m) and L-arginine (10(-3)m), c) methylene blue (MB), an inhibitor of soluble guanylate (10(-5)m) and L-arginine (10(-3)m) and d) sodium nitroprusside (SNP), an exogenous NO donor (10(-8) to 10(-4)m). Immunohistochemical evaluation revealed that endothelial NOS (eNOS) expression detected in epithelial layer of isthmus and ampulla was strong in early I luteal phase, moderate in follicular phase and weak in other phases. Neuronal NOS (nNOS) immunoreactivity was strong in isthmus and moderate in ampulla, and staining of nerve fibers was observed mostly in early I luteal and follicular phases. All eNOS, nNOS and inducible NOS (iNOS) isoforms were detected by RT-PCR. eNOS and iNOS proteins were evident, whereas nNOS was undetectable by Western blot analysis in the tissue examined. L-arginine applied alone or after L-NAME did not alter or increase the contractile tension of the strips in most tissues examined. However, L-arginine applied after MB increased contractile tension in the strips of ampulla and longitudinal isthmus from early I luteal phase and circular isthmus from

  6. Polyhydroyxalkanoate Synthase Fusions as a Strategy for Oriented Enzyme Immobilisation

    Directory of Open Access Journals (Sweden)

    David O. Hooks

    2014-06-01

    Full Text Available Polyhydroxyalkanoate (PHA is a carbon storage polymer produced by certain bacteria in unbalanced nutrient conditions. The PHA forms spherical inclusions surrounded by granule associate proteins including the PHA synthase (PhaC. Recently, the intracellular formation of PHA granules with covalently attached synthase from Ralstonia eutropha has been exploited as a novel strategy for oriented enzyme immobilisation. Fusing the enzyme of interest to PHA synthase results in a bifunctional protein able to produce PHA granules and immobilise the active enzyme of choice to the granule surface. Functionalised PHA granules can be isolated from the bacterial hosts, such as Escherichia coli, and maintain enzymatic activity in a wide variety of assay conditions. This approach to oriented enzyme immobilisation has produced higher enzyme activities and product levels than non-oriented immobilisation techniques such as protein inclusion based particles. Here, enzyme immobilisation via PHA synthase fusion is reviewed in terms of the genetic designs, the choices of enzymes, the control of enzyme orientations, as well as their current and potential applications.

  7. Preliminary crystallographic analysis of sugar cane phosphoribosylpyrophosphate synthase

    OpenAIRE

    Napolitano, H. B.; Sculaccio, S. A.; Thiemann, O H; G Oliva

    2004-01-01

    X-ray diffraction data have been collected from crystals of recombinant sugar cane phosphoribosylpyrophosphate synthase (PRS) and analysis has revealed its quaternary structure, localizing this PRS into the class of enzymes forming an hexameric oligomer of 223 kDa.

  8. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    Science.gov (United States)

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with reduced reagent usage, it allows further reduction in the use of radioactive isotopes and flammable organic solvents. The sesquiterpene synthases previously characterized were expressed in yeast, and the plant-derived Thapsia garganica kunzeaol synthase TgTPS2 was tested in this method. KM for TgTPS2 was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s−1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s−1 μM−1 for TgTPS2. The kinetic parameters were in agreement with previously published data. PMID:27721652

  9. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as the c

  10. A particular phenotype in a girl with aldosterone synthase deficiency.

    Science.gov (United States)

    Williams, Tracy A; Mulatero, Paolo; Bosio, Maurizio; Lewicka, Sabina; Palermo, Mario; Veglio, Franco; Armanini, Decio

    2004-07-01

    Aldosterone synthase deficiency (ASD) usually presents in infancy as a life-threatening electrolyte imbalance. A 4-wk-old child of unrelated parents was examined for failure to thrive and salt-wasting. Notable laboratory findings were hyperkalemia, high plasma renin, and low-normal aldosterone levels. Urinary metabolite ratios of corticosterone/18-hydroxycorticosterone and 18-hydroxycorticosterone/aldosterone were intermediate between ASD type I and type II. Sequence analysis of CYP11B2, the gene encoding aldosterone synthase (P450c11AS), revealed that the patient was a compound heterozygote carrying a previously described mutation located in exon 4 causing a premature stop codon (E255X) and a further, novel mutation in exon 5 that also causes a premature stop codon (Q272X). The patient's unaffected father was a heterozygous carrier of the E255X mutation, whereas the unaffected mother was a heterozygous carrier of the Q272X mutation. Therefore, the patient's CYP11B2 encodes two truncated forms of aldosterone synthase predicted to be inactive because they lack critical active site residues as well as the heme-binding site. This case of ASD is of particular interest because despite the apparent lack of aldosterone synthase activity, the patient displays low-normal aldosterone levels, thus raising the question of its source. PMID:15240589

  11. Absence of Pneumocystis dihydropteroate synthase mutants in Brittany, France.

    Science.gov (United States)

    Le Gal, Solène; Robert-Gangneux, Florence; Perrot, Maëla; Rouillé, Amélie; Virmaux, Michèle; Damiani, Céline; Totet, Anne; Gangneux, Jean-Pierre; Nevez, Gilles

    2013-05-01

    Archival Pneumocystis jirovecii specimens from 84 patients monitored at Rennes University Hospital (Rennes, France) were assayed at the dihydropteroate synthase (DHPS) locus. No patient was infected with mutants. The results provide additional data showing that P. jirovecii infections involving DHPS mutants do not represent a public health issue in Brittany, western France.

  12. Glycogen synthase kinase-3--a promising therapeutic target: Dr Hagit Eldar-Finkelman interviewed by Emma Quigley.

    Science.gov (United States)

    Eldar-Finkelman, Hagit

    2006-04-01

    Dr Hagit Eldar-Finkelman (Sackler School of Medicine, Israel) was interviewed by Emma Quigley (Commissioning Editor, Expert Opinion on Therapeutic Targets) on 16th February 2006. Born in Jerusalem, Dr Eldar-Finkelman received her BSc in Chemistry in 1984 and both her MSc in Physical Chemistry (1986) and PhD in Life Science (1993) from the Weizmann Institute of Science. She was a recipient of the British Council Award, which allowed her to conduct research in biological nuclear magnetic resonance at the University of Oxford in the laboratory of Professor George K Radda. Following postdoctoral work at the School of Medicine of the University of Washington with Nobel Laureate Professor Edwin G Krebs, she became an Assistant Professor in the Department of Medicine at Harvard Medical School. Dr Eldar-Finkelman joined the Sackler School of Medicine at Tel Aviv University in 1999. Dr Eldar-Finkelman's research focuses on the molecular mechanisms regulating the protein kinase glycogen synthase kinase-3 (GSK-3), and their implications in negative regulation of signalling pathways. In particular, her work aims to develop specific inhibitors for GSK-3 and to test their functions in vitro and in vivo, considering the concept that such inhibitors may be useful in insulin resistance and Type 2 diabetes. These studies provide a conceptual basis for development of GSK-3 inhibitors and may lead to design of small molecules for treatment of diabetes and or neurodegenerative disorders.

  13. Inhibition of small G proteins of the Rho family by statins or Clostridium difficile toxin B enhances cytokine-mediated induction of NO synthase II

    OpenAIRE

    Hausding, Michael; Witteck, Andrea; Rodriguez-Pascual, Fernando; von Eichel-Streiber, Christian; Förstermann, Ulrich; Kleinert, Hartmut

    2000-01-01

    In order to investigate the involvement of Ras and/or Rho proteins in the induction of the inducible isoform of nitric oxide synthase (NOS II) we used HMG-CoA reductase inhibitors (statins) and Clostridium difficile toxin B (TcdB) as pharmacological tools. Statins indirectly inhibit small G proteins by preventing their essential farnesylation (Ras) and/or geranylgeranylation (Rho). In contrast, TcdB is a glucosyltransferase and inactivates Rho-proteins directly.Human A549/8- and DLD-1 cells a...

  14. Impaired insulin activation and dephosphorylation of glycogen synthase in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Højlund, Kurt; Andersen, Nicoline Resen;

    2008-01-01

    CONTEXT: Insulin resistance is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). The molecular mechanisms underlying reduced insulin-mediated glycogen synthesis in skeletal muscle of patients with PCOS have not been established. SUBJECTS AND METHODS: We...... investigated protein content, activity, and phosphorylation of glycogen synthase (GS) and its major upstream inhibitor, GS kinase (GSK)-3 in skeletal muscle biopsies from 24 PCOS patients (before treatment) and 14 matched control subjects and 10 PCOS patients after 16 wk treatment with pioglitazone. All were...... metabolically characterized by euglycemic-hyperinsulinemic clamps and indirect calorimetry. RESULTS: Reduced insulin-mediated glucose disposal (P PCOS patients (P

  15. A new type of Na(+-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif.

    Directory of Open Access Journals (Sweden)

    Sarah Schulz

    Full Text Available The anaerobic bacterium Fusobacterium nucleatum uses glutamate decarboxylation to generate a transmembrane gradient of Na⁺. Here, we demonstrate that this ion-motive force is directly coupled to ATP synthesis, via an F₁F₀-ATP synthase with a novel Na⁺ recognition motif, shared by other human pathogens. Molecular modeling and free-energy simulations of the rotary element of the enzyme, the c-ring, indicate Na⁺ specificity in physiological settings. Consistently, activity measurements showed Na⁺ stimulation of the enzyme, either membrane-embedded or isolated, and ATP synthesis was sensitive to the Na⁺ ionophore monensin. Furthermore, Na⁺ has a protective effect against inhibitors targeting the ion-binding sites, both in the complete ATP synthase and the isolated c-ring. Definitive evidence of Na⁺ coupling is provided by two identical crystal structures of the c₁₁ ring, solved by X-ray crystallography at 2.2 and 2.6 Å resolution, at pH 5.3 and 8.7, respectively. Na⁺ ions occupy all binding sites, each coordinated by four amino acids and a water molecule. Intriguingly, two carboxylates instead of one mediate ion binding. Simulations and experiments demonstrate that this motif implies that a proton is concurrently bound to all sites, although Na⁺ alone drives the rotary mechanism. The structure thus reveals a new mode of ion coupling in ATP synthases and provides a basis for drug-design efforts against this opportunistic pathogen.

  16. Detailed characterization of the substrate specificity of mouse wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  17. Novel type III polyketide synthases from Aloe arborescens.

    Science.gov (United States)

    Mizuuchi, Yuusuke; Shi, She-Po; Wanibuchi, Kiyofumi; Kojima, Akiko; Morita, Hiroyuki; Noguchi, Hiroshi; Abe, Ikuro

    2009-04-01

    Aloe arborescens is a medicinal plant rich in aromatic polyketides, such as pharmaceutically important aloenin (hexaketide), aloesin (heptaketide) and barbaloin (octaketide). Three novel type III polyketide synthases (PKS3, PKS4 and PKS5) were cloned and sequenced from the aloe plant by cDNA library screening. The enzymes share 85-96% amino acid sequence identity with the previously reported pentaketide chromone synthase and octaketide synthase. Recombinant PKS4 and PKS5 expressed in Escherichia coli were functionally identical to octaketide synthase, catalyzing the sequential condensations of eight molecules of malonyl-CoA to produce octaketides SEK4/SEK4b. As in the case of octaketide synthase, the enzymes are possibly involved in the biosynthesis of the octaketide barbaloin. On the other hand, PKS3 is a multifunctional enzyme that produces a heptaketide aloesone (i.e. the aglycone of aloesin) as a major product from seven molecules of malonyl-CoA. In addition, PKS3 also afforded a hexaketide pyrone (i.e. the precursor of aloenin), a heptaketide 6-(2-acetyl-3,5-dihydroxybenzyl)-4-hydroxy-2-pyrone, a novel heptaketide 6-(2-(2,4-dihydroxy-6-methylphenyl)-2-oxoethyl)-4-hydroxy-2-pyrone and octaketides SEK4/SEK4b. This is the first demonstration of the enzymatic formation of the precursors of the pharmaceutically important aloesin and aloenin by a wild-type PKS obtained from A. arborescens. Interestingly, the aloesone-forming activity was maximum at 50 degrees C, and the novel heptaketide pyrone was non-enzymatically converted to aloesone. In PKS3, the active-site residue 207, which is crucial for controlling the polyketide chain length depending on the steric bulk of the side chain, is uniquely substituted with Ala. Site-directed mutagenesis demonstrated that the A207G mutant dominantly produced the octaketides SEK4/SEK4b, whereas the A207M mutant yielded a pentaketide 5,7-dihydroxy-2-methylchromone. PMID:19348024

  18. Phytochelatin synthase: of a protease a peptide polymerase made.

    Science.gov (United States)

    Rea, Philip A

    2012-05-01

    Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes.

  19. [JAK2 inhibitors].

    Science.gov (United States)

    Hernández Boluda, Juan Carlos; Gómez, Montse; Pérez, Ariadna

    2016-07-15

    Pharmacological inhibition of the kinase activity of JAK proteins can interfere with the signaling of immunomodulatory cytokines and block the constitutive activation of the JAK-STAT pathway that characterizes certain malignancies, including chronic myeloproliferative neoplasms. JAK inhibitors may, therefore, be useful to treat malignancies as well as inflammatory or immune disorders. Currently, the most significant advances have been made in the treatment of myelofibrosis, where these drugs may lead to a remarkable improvement in the control of hyperproliferative manifestations. However, available data suggest that this treatment is not curative of myelofibrosis. In general, JAK2 inhibition induces cytopaenias, with this being considered a class side-effect. By contrast, the extrahaematologic toxicity profile varies significantly among the different JAK inhibitors. At present, there are several clinical trials evaluating the combination of ruxolitinib with other drugs, in order to improve its therapeutic activity as well as reducing haematologic toxicity. PMID:27033437

  20. Alpha glucosidase inhibitors.

    Science.gov (United States)

    Kalra, Sanjay

    2014-04-01

    Alpha glucosidase inhibitors (AGIs) are a unique class of anti-diabetic drugs. Derived from bacteria, these oral drugs are enzyme inhibitors which do not have a pancreato -centred mechanism of action. Working to delay carbohydrate absorption in the gastrointestinal tract, they control postprandial hyperglycaemia and provide unquestioned cardiovascular benefit. Specially suited for a traditional Pakistani carbohydrate-rich diet, AGIs have been termed the 'untapped diamonds' of diabetology. The use of these oral antidiabetic drugs (OADs) that target pathophysiology in the early stages of type 2 diabetes, notably to reduce postprandial hyperglycaemia and hyperinsulinaemia will inevitably increase with time. This review describes the history of their development, mechanism of action, basic and clinical pharmacology, and suggests practical, evidence-based guidance for their optimal use. PMID:24864650

  1. Coagulation inhibitors in inflammation.

    Science.gov (United States)

    Esmon, C T

    2005-04-01

    Coagulation is triggered by inflammatory mediators in a number of ways. However, to prevent unwanted clot formation, several natural anticoagulant mechanisms exist, such as the antithrombin-heparin mechanism, the tissue factor pathway inhibitor mechanism and the protein C anticoagulant pathway. This review examines the ways in which these pathways are down-regulated by inflammation, thus limiting clot formation and decreasing the natural anti-inflammatory mechanisms that these pathways possess. PMID:15787615

  2. Osteocompatibility of Biofilm Inhibitors

    OpenAIRE

    Rawson, Monica; Haggard, Warren; Jennings, Jessica A.

    2014-01-01

    The demand for infection prevention therapies has led to the discovery of several biofilm inhibitors. These inhibiting signals are released by bacteria, fungi, or marine organisms to signal biofilm dispersal or disruption in Gram-positive, Gram-negative, and fungal microorganisms. The purpose of this study was to test the biocompatibility of five different naturally-produced biofilm chemical dispersal and inhibition signals with osteoblast-like cells: D-amino acids (D-AA), lysostaphin (LS), f...

  3. Silky bent grass resistance to herbicides: one year of monitoring in Belgium.

    Science.gov (United States)

    Henriet, F; Bodson, B; Morales, R Meza

    2013-01-01

    Silky bent grass (Apera spica-venti (L.) P. Beauv.) is a common weed of cereal crops widely spread in Northern and Easthern Europe (Germany, Czech Republic,...), Northern Asia, Siberia and Canada. Up to now, no resistant case has been detected in Belgium but some chemical weeding failures have been observed in Wallonia fields. During summer 2011, 37 seed samples of Apera spica-venti were collected in Wallonia and submitted to resistance tests in controlled conditions. Three modes of action were tested: acetyl coenzyme-A carboxylase inhibitors (pinoxaden and cycloxydim), acetolactate synthase inhibitors (mesosulfuron+iodosulfu-ron, pyroxsulam and sulfometuron) and photosynthesis inhibitors (isoproturon). One susceptible standard population was included in the test in order to validate it and to permit wild populations classification according to "R" rating system developed by Moss et al (2007). Most of populations were susceptible but some populations showed resistance to at least one of the three tested modes of action.

  4. Update on Aromatase Inhibitors

    Directory of Open Access Journals (Sweden)

    Seifert-Klauss V

    2015-01-01

    Full Text Available Aromatase inhibitors (AI block the last phase of estrogen production in many types of tissues which express the enzym aromatase, among them muscle, liver, adrenal, brain and fat. The enzyme catalyzes the last step of the biosynthesis of the estrogens, i. e. the aromatisation of testosterone to estradiol and of androstendion to estrone. Aromatase is localized in the membrane of the endoplasmatic reticulum and is also produced in the placenta and the gonads. Mutations in the gene CYP19A1, which codes for aromatase, can lead either to lack or excess of aromatase. Gene polymorphisms also influence the amount of bioavailable estrogen and bone density.br Indications: AI are approved for the treatment of postmenopausal women with hormone receptor positive breast cancer, both in the adjuvant setting as well as after recurrence and in progressive disease. In premenopausal and in perimenopausal women AI cause an increased sensitivity of the ovaries to follicle stimulating hormone (FSH and can thereby lead to a boosted estrogen answer – this effect is particularly pronounced in early perimenopausal women – so that these situations demand a combination with GnRH-analogue if AI treatment is to be initiated. Alternatively, tamoxifene may be used in premenopausal patients, with or without GnRH analogues. Treatment of premenopausal patients with hormone receptor positive breast cancer with aromatase inhibiting therapy alone constitutes an absolute contraindication. Aromatase inhibitors do not lead to estrogen receptor downregulation or block the receptor such as tamoxifene. An exceptional application is the application in reproductive medicine in women who do not have hormone receptor positive breast cancer: because of the higher sensitivity induced by AI-co-therapy, FSH-doses and -costs for assisted reproduction are reduced, and ovarian hyperstimulation syndrome (OHSS may be avoided. For premenopausal diseases which are said to be positively affected by

  5. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  6. Selective inhibition of human inducible nitric oxide synthase by S-alkyl-L-isothiocitrulline-containing dipeptides.

    Science.gov (United States)

    Park, J M; Higuchi, T; Kikuchi, K; Urano, Y; Hori, H; Nishino, T; Aoki, J; Inoue, K; Nagano, T

    2001-04-01

    The aim of this study was to investigate the structure-activity relationship of S-alkyl-L-isothiocitrulline-containing dipeptides towards three partially purified recombinant human nitric oxide synthase (NOS) isozymes, as well as the effects of these compounds on cytokine-induced NO production by human DLD-1 cells. In an in vitro assay, S-methyl-L-isothiocitrulline (L-MIT) was slightly selective for human neuronal NOS (nNOS) over the inducible (iNOS) or endothelial (eNOS) isozyme, but the combination of a hydrophobic L-amino acid (L-Phe, L-Leu or L-Trp) with L-MIT dramatically altered the inhibition pattern to give selective iNOS inhibitors. Introduction of a hydroxy, nitro, amino or methoxy group at the para position of the aromatic ring of L-MIT-L-Phe (MILF) decreased the selectivity and inhibitory potency. A longer or larger S-alkyl group also decreased the selectivity and potency. Dixon analysis showed that all of the dipeptides were competitive inhibitors of the three isoforms of human NOS. The enzymatic time course curves indicated that MILF was a slow binding inhibitor of human iNOS. These results suggest that the human NOS isozymes have different-sized cavities in the binding site near the position to which the C-terminal of L-arginine binds, and the cavity of iNOS is hydrophobic. Interestingly, L-MIT-D-Phe (MIDF) showed little inhibitory activity or selectivity, suggesting that the cavity of human iNOS is located in a well-defined direction from the alpha carbon atom. NO production in cytokine-stimulated human DLD-1 cells was measured with a fluorescent indicator, DAF-FM. MILF, L-MIT-L-Trp(-CHO) (MILW) and L-MIT-L-Tyr (MILY) showed more potent activity than L-MIT in this whole-cell assay. Thus, S-alkyl-L-isothiocitrulline-containing dipeptides are selective inhibitors of human iNOS, and work efficiently in cell-based assay. PMID:11309260

  7. Molecular Docking Analysis of Selected Clinacanthus nutans Constituents as Xanthine Oxidase, Nitric Oxide Synthase, Human Neutrophil Elastase, Matrix Metalloproteinase 2, Matrix Metalloproteinase 9 and Squalene Synthase Inhibitors

    OpenAIRE

    Radhakrishnan Narayanaswamy; Azizul Isha; Lam Kok Wai; Intan Safinar Ismail

    2016-01-01

    Background: Clinacanthus nutans (Burm. f.) Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (X...

  8. Expression in Arabidopsis of a Strawberry Linalool Synthase Gene Under the Control of the Inducible Potato P12 Promoter

    Institute of Scientific and Technical Information of China (English)

    YANG Li-mei; Per Mercke; Joop J A van Loon; FANG Zhi-yuan; Marcel Dicke; Maarten A Jongsma

    2008-01-01

    To investigate the role of inducible linalool in Arabidopsis-insect interactions, the FANESl linalool synthase (LIS) cDNA from strawberry with plastid targeting and a synthetic intron (LIS') was placed under the control of the wound inducible proteinase inhibitor 2 (PI2) promoter from potato. The construct pBin-PP12-LIS' was transformed to Arabidopsis thaliana ecotype Columbia O. Kanamycin resistant T0 seedlings were confirmed for the presence and transcription of the LIS' gene by PCR analysis on genomic DNA and by RT-PCR analysis on RNA. Genomic and RT-PCR products were sequenced to confirm correct splicing of the synthetic intron. The expression of active linalool synthase by the PP12-LIS' gene construct in the transgenic lines was assessed by measuring linalool emission using solid phase micro-extraction (SPME) GC-MS measurements after induction with methyl jasmonate. Among 30 tested independent T2 transgenic lines, 10 exhibited linalool production.Linalool expression could be induced by methyl jasmonate treatment, but not by diamondback moth larvae.

  9. The ubiquitin proteasome system and efficacy of proteasome inhibitors in diseases.

    Science.gov (United States)

    Chitra, Selvarajan; Nalini, Ganesan; Rajasekhar, Gopalakrishnan

    2012-06-01

    In eukaryotes the ubiquitin proteasome pathway plays an important role in cellular homeostasis and also it exerts a critical role in regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription and immune response. Defects in these pathways have been implicated in a number of human pathologies. Inhibition of the ubiquitin proteasome pathway by proteasome inhibitors may be a rational therapeutic approach for various diseases, such as cancer and inflammatory diseases. Many of the critical cytokine and chemokine mediators of the progression of rheumatoid arthritis are regulated by nuclear factor kappa B (NF-κB). In peptidoglycan/polysaccharide-induced polyarthritis, proteasome inhibitors limit the overall inflammation, reduce NF-κB activation, decrease cellular adhesion molecule expression, inhibit nitric oxide synthase, attenuate circulating levels of proinflammatory cytokine interleukin-6 and reduce the arthritis index and swelling in the joints of the animals. Since proteasome inhibitors exhibit anti-inflammatory and anti proliferative effects, diseases characterized by both of these processes such as rheumatoid arthritis might also represent clinical opportunities for such drugs. The regulation of the proteasomal complex by proteasome inhibitors also has implications and potential benefits for the treatment of rheumatoid arthritis. This review summarizes the ubiquitin proteasome pathway, the structure of 26S proteasomes and types of proteasome inhibitors, with their actions, and clinical applications of proteasome inhibitors in various diseases. PMID:22709487

  10. A Novel N-Acetylglutamate Synthase Architecture Revealed by the Crystal Structure of the Bifunctional Enzyme from Maricaulis maris

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Dashuang; Li, Yongdong; Cabrera-Luque, Juan; Jin, Zhongmin; Yu, Xiaolin; Zhao, Gengxiang; Haskins, Nantaporn; Allewell, Norma M.; Tuchman, Mendel (Maryland); (GWU); (Georgia)

    2012-05-24

    Novel bifunctional N-acetylglutamate synthase/kinases (NAGS/K) that catalyze the first two steps of arginine biosynthesis and are homologous to vertebrate N-acetylglutamate synthase (NAGS), an essential cofactor-producing enzyme in the urea cycle, were identified in Maricaulis maris and several other bacteria. Arginine is an allosteric inhibitor of NAGS but not NAGK activity. The crystal structure of M. maris NAGS/K (mmNAGS/K) at 2.7 {angstrom} resolution indicates that it is a tetramer, in contrast to the hexameric structure of Neisseria gonorrhoeae NAGS. The quaternary structure of crystalline NAGS/K from Xanthomonas campestris (xcNAGS/K) is similar, and cross-linking experiments indicate that both mmNAGS/K and xcNAGS are tetramers in solution. Each subunit has an amino acid kinase (AAK) domain, which is likely responsible for N-acetylglutamate kinase (NAGK) activity and has a putative arginine binding site, and an N-acetyltransferase (NAT) domain that contains the putative NAGS active site. These structures and sequence comparisons suggest that the linker residue 291 may determine whether arginine acts as an allosteric inhibitor or activator in homologous enzymes in microorganisms and vertebrates. In addition, the angle of rotation between AAK and NAT domains varies among crystal forms and subunits within the tetramer. A rotation of 26{sup o} is sufficient to close the predicted AcCoA binding site, thus reducing enzymatic activity. Since mmNAGS/K has the highest degree of sequence homology to vertebrate NAGS of NAGS and NAGK enzymes whose structures have been determined, the mmNAGS/K structure was used to develop a structural model of human NAGS that is fully consistent with the functional effects of the 14 missense mutations that were identified in NAGS-deficient patients.

  11. Structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in catalysis of the intramolecular isomerization.

    Science.gov (United States)

    Wang, Yung Lin; Chow, Sih Yao; Lin, Yi Ting; Hsieh, Yu Chiao; Lee, Guan Chiun; Liaw, Shwu Huey

    2014-12-01

    Trehalose synthase catalyzes the simple conversion of the inexpensive maltose into trehalose with a side reaction of hydrolysis. Here, the crystal structures of the wild type and the N253A mutant of Deinococcus radiodurans trehalose synthase (DrTS) in complex with the inhibitor Tris are reported. DrTS consists of a catalytic (β/α)8 barrel, subdomain B, a C-terminal β domain and two TS-unique subdomains (S7 and S8). The C-terminal domain and S8 contribute the majority of the dimeric interface. DrTS shares high structural homology with sucrose hydrolase, amylosucrase and sucrose isomerase in complex with sucrose, in particular a virtually identical active-site architecture and a similar substrate-induced rotation of subdomain B. The inhibitor Tris was bound and mimics a sugar at the -1 subsite. A maltose was modelled into the active site, and subsequent mutational analysis suggested that Tyr213, Glu320 and Glu324 are essential within the +1 subsite for the TS activity. In addition, the interaction networks between subdomains B and S7 seal the active-site entrance. Disruption of such networks through the replacement of Arg148 and Asn253 with alanine resulted in a decrease in isomerase activity by 8-9-fold and an increased hydrolase activity by 1.5-1.8-fold. The N253A structure showed a small pore created for water entry. Therefore, our DrTS-Tris may represent a substrate-induced closed conformation that will facilitate intramolecular isomerization and minimize disaccharide hydrolysis.

  12. Specific MAPK inhibitors prevent hyperglycemia-induced renal diseases in type 1 diabetic mouse model.

    Science.gov (United States)

    Hong, Zhe; Hong, Zongyuan; Wu, Denglong; Nie, Hezhongrong

    2016-08-01

    Mitogen-activated protein kinase (MAPK) and renin-angiotensin system (RAS) play critical roles in the process of renal diseases, but their interaction has not been comprehensively discussed. In the present studies, we investigated the renoprotective effects of MPAK inhibitors on renal diseases in type 1 diabetic mouse model, and clarify the crosstalk among MAPK signaling. Type 1 diabetic mouse model was established in male C57BL/6 J mice, and treated with or without 10 mg/kg MAPK blockers, including ERK inhibitor PD98059, p38 inhibitor SB203850, and JNK inhibitor SP600125 for four weeks. Hyperglycemia induced renal injuries, but treating them with MAPK inhibitors significantly decreased glomerular volume and glycogen in renal tissues. Although slightly changed body weight and fasting blood glucose levels, MAPK inhibitors attenuated blood urea nitrogen, urea protein, and microalbuminuria. Administration also reduced the diabetes-induced RAS activation, including angiotensin II converting enzyme (c) and Ang II, which contributed to its renal protective effects in the diabetic mice. In addition, the anti-RAS of MAPK inhibitor treatment markedly reduced gene expression of tumor necrosis factor-α, interleukin-6, and inducible nitric oxide synthase, fibrotic accumulation, and transforming growth factor-β1 levels in renal tissues. Furthermore, chemical inhibitors and genetic siRNA results identified the crosstalk among the three MAPK signaling, and proved JNK signaling played a critical role in MAPK-mediated ACE pathway in hyperglycemia state. Collectively, these results support the therapeutic effects of MAPK-specific inhibitors, especially JNK inactivation, on hyperglycemia-induced renal damages. PMID:27389030

  13. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues.

    Science.gov (United States)

    Shrivastava, Priyanka; Navratna, Vikas; Silla, Yumnam; Dewangan, Rikeshwer P; Pramanik, Atreyi; Chaudhary, Sarika; Rayasam, GeethaVani; Kumar, Anuradha; Gopal, Balasubramanian; Ramachandran, Srinivasan

    2016-01-01

    The Mycobacterium tuberculosis dihydrodipicolinate synthase (Mtb-dapA) is an essential gene. Mtb-DapA catalyzes the aldol condensation between pyruvate and L-aspartate-beta-semialdehyde (ASA) to yield dihydrodipicolinate. In this work we tested the inhibitory effects of structural analogues of pyruvate on recombinant Mtb-DapA (Mtb-rDapA) using a coupled assay with recombinant dihydrodipicolinate reductase (Mtb-rDapB). Alpha-ketopimelic acid (α-KPA) showed maximum inhibition of 88% and IC50 of 21 μM in the presence of pyruvate (500 μM) and ASA (400 μM). Competition experiments with pyruvate and ASA revealed competition of α-KPA with pyruvate. Liquid chromatography-mass spectrometry (LC-MS) data with multiple reaction monitoring (MRM) showed that the relative abundance peak of final product, 2,3,4,5-tetrahydrodipicolinate, was decreased by 50%. Thermal shift assays showed 1 °C Tm shift of Mtb-rDapA upon binding α-KPA. The 2.4 Å crystal structure of Mtb-rDapA-α-KPA complex showed the interaction of critical residues at the active site with α-KPA. Molecular dynamics simulations over 500 ns of pyruvate docked to Mtb-DapA and of α-KPA-bound Mtb-rDapA revealed formation of hydrogen bonds with pyruvate throughout in contrast to α-KPA. Molecular descriptors analysis showed that ligands with polar surface area of 91.7 Å(2) are likely inhibitors. In summary, α-hydroxypimelic acid and other analogues could be explored further as inhibitors of Mtb-DapA. PMID:27501775

  14. Packed red blood cells are an abundant and proximate potential source of nitric oxide synthase inhibition.

    Directory of Open Access Journals (Sweden)

    Charles F Zwemer

    Full Text Available We determined, for packed red blood cells (PRBC and fresh frozen plasma, the maximum content, and ability to release the endogenous nitric oxide synthase (NOS inhibitors asymmetric dimethylarginine (ADMA and monomethylarginine (LNMMA.ADMA and LNMMA are near equipotent NOS inhibitors forming blood's total NOS inhibitory content. The balance between removal from, and addition to plasma determines their free concentrations. Removal from plasma is by well-characterized specific hydrolases while formation is restricted to posttranslational protein methylation. When released into plasma they can readily enter endothelial cells and inhibit NOS. Fresh rat and human whole blood contain substantial protein incorporated ADMA however; the maximum content of ADMA and LNMMA in PRBC and fresh frozen plasma has not been determined.We measured total (free and protein incorporated ADMA and LNMMA content in PRBCs and fresh frozen plasma, as well as their incubation induced release, using HPLC with fluorescence detection. We tested the hypothesis that PRBC and fresh frozen plasma contain substantial inhibitory methylarginines that can be released chemically by complete in vitro acid hydrolysis or physiologically at 37°C by enzymatic blood proteolysis.In vitro strong-acid-hydrolysis revealed a large PRBC reservoir of ADMA (54.5 ± 9.7 µM and LNMMA (58.9 ± 28.9 μM that persisted over 42-d at 6° or -80°C. In vitro 5h incubation at 37°C nearly doubled free ADMA and LNMMNA concentration from PRBCs while no change was detected in fresh frozen plasma.The compelling physiological ramifications are that regardless of storage age, 1 PRBCs can rapidly release pathologically relevant quantities of ADMA and LNMMA when incubated and 2 PRBCs have a protein-incorporated inhibitory methylarginines reservoir 100 times that of normal free inhibitory methylarginines in blood and thus could represent a clinically relevant and proximate risk for iatrogenic NOS inhibition upon

  15. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels

    Science.gov (United States)

    Berkowitz, Dan E.; White, Ron; Li, Dechun; Minhas, Khalid M.; Cernetich, Amy; Kim, Soonyul; Burke, Sean; Shoukas, Artin A.; Nyhan, Daniel; Champion, Hunter C.; Hare, Joshua M.

    2003-01-01

    BACKGROUND: Although abnormal L-arginine NO signaling contributes to endothelial dysfunction in the aging cardiovascular system, the biochemical mechanisms remain controversial. L-arginine, the NO synthase (NOS) precursor, is also a substrate for arginase. We tested the hypotheses that arginase reciprocally regulates NOS by modulating L-arginine bioavailability and that arginase is upregulated in aging vasculature, contributing to depressed endothelial function. METHODS AND RESULTS: Inhibition of arginase with (S)-(2-boronoethyl)-L-cysteine, HCl (BEC) produced vasodilation in aortic rings from young (Y) adult rats (maximum effect, 46.4+/-9.4% at 10(-5) mol/L, P<0.01). Similar vasorelaxation was elicited with the additional arginase inhibitors N-hydroxy-nor-L-arginine (nor-NOHA) and difluoromethylornithine (DFMO). This effect required intact endothelium and was prevented by 1H-oxadiazole quinoxalin-1-one (P<0.05 and P<0.001, respectively), a soluble guanylyl cyclase inhibitor. DFMO-elicited vasodilation was greater in old (O) compared with Y rat aortic rings (60+/-6% versus 39+/-6%, P<0.05). In addition, BEC restored depressed L-arginine (10(-4) mol/L)-dependent vasorelaxant responses in O rings to those of Y. Arginase activity and expression were increased in O rings, whereas NOS activity and cyclic GMP levels were decreased. BEC and DFMO suppressed arginase activity and restored NOS activity and cyclic GMP levels in O vessels to those of Y. CONCLUSIONS: These findings demonstrate that arginase modulates NOS activity, likely by regulating intracellular L-arginine availability. Arginase upregulation contributes to endothelial dysfunction of aging and may therefore be a therapeutic target.

  16. Effects of nitric oxide synthase inhibition on sympathetically-mediated tachycardia

    Science.gov (United States)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aim of the present study was to determine whether inhibition of nitric oxide (NO) synthesis directly alters the tachycardia produced by sympathetically-derived norepinephrine. The NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 50 micromol/kg, i.v.), produced a marked rise in mean arterial blood pressure. This pressor response was associated with a fall in heart rate which involved the withdrawal of cardiac sympathetic nerve activity. The NO-donor, sodium nitroprusside (5 microg/kg, i.v.), produced a pronounced fall in mean arterial blood pressure but only a minor increase in heart rate. The beta-adrenoceptor agonist, isoproterenol (0.5 micromol/kg, i.v.), and the membrane-permeable cAMP analogue, 8-(4-chlorophenylthiol)-cAMP (10 micromol/kg, i.v.), produced falls in mean arterial blood pressure and pronounced increases in heart rate. The indirectly acting sympathomimetic agent, tyramine (0.5 mg/kg, i.v.), produced a pressor response and a tachycardia. The effects of sodium nitroprusside, tyramine, isoproterenol and 8-(4-chlorophenylthiol)-cAMP on mean arterial blood pressure were not markedly affected by L-NAME. However, the tachycardia produced by these agents was considerably exaggerated in the presence of this NO synthesis inhibitor. These findings suggest that L-NAME potentiates the tachycardia produced by sympathetically-derived norepinephrine. The increased responsiveness to norepinephrine may involve (i) a rapid up-regulation of cardiac beta1-adrenoceptors and cAMP signaling in cardiac pacemaker cells due to the loss of the inhibitory influence of cardiac NO, and (ii) the up-regulation of beta1-adrenoceptor-mediated signal transduction processes in response to the L-NAME-induced withdrawal of cardiac sympathetic nerve activity.

  17. Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington's disease.

    Science.gov (United States)

    Fernández-Nogales, Marta; Hernández, Félix; Miguez, Andrés; Alberch, Jordi; Ginés, Silvia; Pérez-Navarro, Esther; Lucas, José J

    2015-09-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by brain atrophy particularly in striatum leading to personality changes, chorea and dementia. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase in the crossroad of many signaling pathways that is highly pleiotropic as it phosphorylates more than hundred substrates including structural, metabolic, and signaling proteins. Increased GSK-3 activity is believed to contribute to the pathogenesis of neurodegenerative diseases like Alzheimer's disease and GSK-3 inhibitors have been postulated as therapeutic agents for neurodegeneration. Regarding HD, GSK-3 inhibitors have shown beneficial effects in cell and invertebrate animal models but no evident efficacy in mouse models. Intriguingly, those studies were performed without interrogating GSK-3 level and activity in HD brain. Here we aim to explore the level and also the enzymatic activity of GSK-3 in the striatum and other less affected brain regions of HD patients and of the R6/1 mouse model to then elucidate the possible contribution of its alteration to HD pathogenesis by genetic manipulation in mice. We report a dramatic decrease in GSK-3 levels and activity in striatum and cortex of HD patients with similar results in the mouse model. Correction of the GSK-3 deficit in HD mice, by combining with transgenic mice with conditional GSK-3 expression, resulted in amelioration of their brain atrophy and behavioral motor and learning deficits. Thus, our results demonstrate that decreased brain GSK-3 contributes to HD neurological phenotype and open new therapeutic opportunities based on increasing GSK-3 activity or attenuating the harmful consequences of its decrease. PMID:26082469

  18. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice.

    Science.gov (United States)

    Hong, Yet Hoi; Frugier, Tony; Zhang, Xinmei; Murphy, Robyn M; Lynch, Gordon S; Betik, Andrew C; Rattigan, Stephen; McConell, Glenn K

    2015-05-01

    Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.

  19. Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2012-02-01

    BACKGROUND: Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. METHODS: PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. RESULTS: PGIS expression was reduced\\/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. CONCLUSIONS: PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC.

  20. Glycogen synthase kinase 3 phosphorylates RBL2/p130 during quiescence.

    Science.gov (United States)

    Litovchick, Larisa; Chestukhin, Anton; DeCaprio, James A

    2004-10-01

    Phosphorylation of the retinoblastoma-related or pocket proteins RB1/pRb, RBL1/p107, and RBL2/p130 regulates cell cycle progression and exit. While all pocket proteins are phosphorylated by cyclin-dependent kinases (CDKs) during the G1/S-phase transition, p130 is also specifically phosphorylated in G0-arrested cells. We have previously identified several phosphorylated residues that match the consensus site for glycogen synthase kinase 3 (GSK3) in the G0 form of p130. Using small-molecule inhibitors of GSK3, site-specific mutants of p130, and phospho-specific antibodies, we demonstrate here that GSK3 phosphorylates p130 during G0. Phosphorylation of p130 by GSK3 contributes to the stability of p130 but does not affect its ability to interact with E2F4 or cyclins. Regulation of p130 by GSK3 provides a novel link between growth factor signaling and regulation of the cell cycle progression and exit. PMID:15456871

  1. Role of inducible nitric oxide synthase pathway on methotrexate-induced intestinal mucositis in rodents

    Directory of Open Access Journals (Sweden)

    Siqueira Francisco JWS

    2011-08-01

    Full Text Available Abstract Background Methotrexate treatment has been associated to intestinal epithelial damage. Studies have suggested an important role of nitric oxide in such injury. The aim of this study was to investigate the role of nitric oxide (NO, specifically iNOS on the pathogenesis of methotrexate (MTX-induced intestinal mucositis. Methods Intestinal mucositis was carried out by three subcutaneous MTX injections (2.5 mg/kg in Wistar rats and in inducible nitric oxide synthase knock-out (iNOS-/- and wild-type (iNOS+/+ mice. Rats were treated intraperitoneally with the NOS inhibitors aminoguanidine (AG; 10 mg/Kg or L-NAME (20 mg/Kg, one hour before MTX injection and daily until sacrifice, on the fifth day. The jejunum was harvested to investigate the expression of Ki67, iNOS and nitrotyrosine by immunohistochemistry and cell death by TUNEL. The neutrophil activity by myeloperoxidase (MPO assay was performed in the three small intestine segments. Results AG and L-NAME significantly reduced villus and crypt damages, inflammatory alterations, cell death, MPO activity, and nitrotyrosine immunostaining due to MTX challenge. The treatment with AG, but not L-NAME, prevented the inhibitory effect of MTX on cell proliferation. MTX induced increased expression of iNOS detected by immunohistochemistry. MTX did not cause significant inflammation in the iNOS-/- mice. Conclusion These results suggest an important role of NO, via activation of iNOS, in the pathogenesis of intestinal mucositis.

  2. Crystal Structure and Functional Analysis of Homocitrate Synthase, an Essential Enzyme in Lysine Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Scott, Erin M.; Couture, Jean-François; Pillus, Lorraine; Trievel, Raymond C.; (Michigan); (UCSD)

    2010-01-12

    Homocitrate synthase (HCS) catalyzes the first and committed step in lysine biosynthesis in many fungi and certain Archaea and is a potential target for antifungal drugs. Here we report the crystal structure of the HCS apoenzyme from Schizosaccharomyces pombe and two distinct structures of the enzyme in complex with the substrate 2-oxoglutarate (2-OG). The structures reveal that HCS forms an intertwined homodimer stabilized by domain-swapping between the N- and C-terminal domains of each monomer. The N-terminal catalytic domain is composed of a TIM barrel fold in which 2-OG binds via hydrogen bonds and coordination to the active site divalent metal ion, whereas the C-terminal domain is composed of mixed {alpha}/{beta} topology. In the structures of the HCS apoenzyme and one of the 2-OG binary complexes, a lid motif from the C-terminal domain occludes the entrance to the active site of the neighboring monomer, whereas in the second 2-OG complex the lid is disordered, suggesting that it regulates substrate access to the active site through its apparent flexibility. Mutations of the active site residues involved in 2-OG binding or implicated in acid-base catalysis impair or abolish activity in vitro and in vivo. Together, these results yield new insights into the structure and catalytic mechanism of HCSs and furnish a platform for developing HCS-selective inhibitors.

  3. [Role of nitric oxide synthase in the etiopathogenesis of hypertrophic pyloric stenosis in infants

    Science.gov (United States)

    Barbosa, I M; Ferrante, S M; Mandarim-De-Lacerda, C A

    2001-01-01

    OBJECTIVE: To experimentally reproduce, in rats, the findings corresponding to the histopathology of infantile hypertrophic pyloric stenosis (IHPS), using nitric oxide synthase (NOS) inhibitor (L-NAME). METHODS: L-NAME was administered to pregnant rats (L-NAME group), from the 14th gestational day on in order to reproduce the model of NOS inhibition in the production of IHPS. This group was then compared to control animals. After birth, all the animals in the L-NAME group were maintained under NOS inhibition until the 42nd day of life, when they were sacrificed. The control animals, which did not receive any kind of drug, were also sacrificed on the 42nd day of life. The animals and their internal organs were analyzed and weighed. The pyloric region was technically prepared and observed through light microscopy. RESULTS: The L-NAME group presented lower body and intestinal weight and higher gastric weight than the control group. Light microscopy revealed hypertrophy of the circular smooth muscle layer of the pyloric muscle in L-NAME animals. CONCLUSIONS: This work reproduced an experimental model of an IHPS study, confirming the effect of NOS blockade on the pyloric musculature. PMID:14647863

  4. Nitric oxide synthase protects the heart against ischemia-reperfusion injury in rabbits.

    Science.gov (United States)

    Hoshida, S; Yamashita, N; Igarashi, J; Nishida, M; Hori, M; Kamada, T; Kuzuya, T; Tada, M

    1995-07-01

    The role of nitric oxide (NO) in myocardial ischemia-reperfusion injury is still controversial. To determine the role of NO in the propagation of myocardial injury in a coronary artery occlusion-reperfusion model, we examined the effect of a competitive NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), with and without L-arginine, on the size of the infarct resulting from coronary artery occlusion (30 min) followed by reperfusion (48 hr) in rabbits. L-NAME (300 micrograms/kg, as a bolus, and 100 micrograms/kg/min, i.v.) with and without L-arginine (30 mg/kg, as a bolus, and 10 mg/kg/min, i.v.) was administered immediately before coronary occlusion to 60 min after reperfusion. The infarct size in the L-NAME-treated rabbits (75.1% +/- 5.0%, n = 7), assessed as a percentage of infarcted region/ischemic region, was significantly larger than that of control rabbits (51.2% +/- 7.4%, n = 7; P pressure products, as an index of myocardial oxygen consumption, were comparable in all the groups.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7542338

  5. Arginase activity in mitochondria - An interfering factor in nitric oxide synthase activity assays

    International Nuclear Information System (INIS)

    Previously, in tightly controlled studies, using three independent, yet complementary techniques, we refuted the claim that a mitochondrial nitric oxide synthase (mtNOS) isoform exists within pure, rat liver mitochondria (MT). Of those techniques, the NOS-catalyzed [14C]-L-arginine to [14C]-L-citrulline conversion assay (NOS assay) with MT samples indicated a weak, radioactive signal that was NOS-independent . Aliquots of samples from the NOS assays were then extracted with acetone, separated by high performance thin-layer chromatography (HPTLC) and exposed to autoradiography. Results obtained from these samples showed no radioactive band for L-citrulline. However, a fast-migrating, diffuse, radioactive band was observed in the TLC lanes loaded with MT samples. In this manuscript, we identify and confirm that this radioactive signal in MT samples is due to the arginase-catalyzed conversion of [14C]-L-arginine to [14C]-urea. The current results, in addition to reconfirming the absence of NOS activity in rat liver MT, also show the need to include arginase inhibitors in studies using MT samples in order to avoid confounding results when using NOS activity assays.

  6. Potent Inhibitory Effect of Chinese Dietary Spices on Fatty Acid Synthase.

    Science.gov (United States)

    Jiang, Bing; Liang, Yan; Sun, Xuebing; Liu, Xiaoxin; Tian, Weixi; Ma, Xiaofeng

    2015-09-01

    Dietary spices have been adopted in cooking since ancient times to enhance flavor and also as food preservatives and disease remedies. In China, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their functions. Fatty acid synthase (FAS) has been recognized as a remedy target, and its inhibitors might be applied in disease treatment. The present work was designed to assess the inhibitory activities on FAS of spices extracts in Chinese menu. The in vitro inhibitory activities on FAS of 22 extracts of spices were assessed by spectrophotometrically monitoring oxidation of NADPH at 340 nm. Results showed that 20 spices extracts (90.9 %) exhibited inhibitory activities on FAS, with half inhibition concentration (IC(50)) values ranging from 1.72 to 810.7 μg/ml. Among them, seven spices showed strong inhibitory effect with IC(50) values lower than 10 μg/ml. These findings suggest that a large proportion of the dietary spices studied possess promising inhibitory activities on FAS, and subsequently might be applied in the treatment of obesity and obesity-related human diseases.

  7. Species differences in alternative substrate utilization by the antibacterial target undecaprenyl pyrophosphate synthase.

    Science.gov (United States)

    Dodbele, Samantha; Martinez, Christina D; Troutman, Jerry M

    2014-08-01

    Undecaprenyl pyrophosphate synthase (UPPS) is a critical enzyme required for the biosynthesis of polysaccharides essential for bacterial survival. In this report, we have tested the substrate selectivity of UPPS derived from the mammalian symbiont Bacteroides fragilis, the human pathogen Vibrio vulnificus, and the typically benign but opportunistic pathogen Escherichia coli. An anthranilamide-containing substrate, 2-amideanilinogeranyl diphosphate (2AA-GPP), was an effective substrate for only the B. fragilis UPPS protein, yet replacing the amide with a nitrile [2-nitrileanilinogeranyl diphosphate (2CNA-GPP)] led to a compound that was fully functional for UPPS from all three target organisms. These fluorescent substrate analogues were also found to undergo increases in fluorescence upon isoprenoid chain elongation, and this increase in fluorescence can be utilized to monitor the activity and inhibition of UPPS in 96-well plate assays. The fluorescence of 2CNA-GPP increased by a factor of 2.5-fold upon chain elongation, while that of 2AA-GPP increased only 1.2-fold. The 2CNA-GPP compound was therefore more versatile for screening the activity of UPPS from multiple species of bacteria and underwent a larger increase in fluorescence that improved its ability to detect increases in chain length. Overall, this work describes the development of new assay methods for UPPS and demonstrates the difference in substrate utilization between forms of UPPS from different species, which has major implications for UPPS inhibitor development, assay construction, and the development of polysaccharide biosynthesis probes. PMID:25020247

  8. Enthalpy versus entropy-driven binding of bisphosphonates to farnesyl diphosphate synthase.

    Science.gov (United States)

    Yin, Fenglin; Cao, Rong; Goddard, Amanda; Zhang, Yonghui; Oldfield, Eric

    2006-03-22

    We report the results of an ITC (isothermal titration calorimetry) investigation of the binding of six bisphosphonates to the enzyme farnesyl diphosphate synthase (FPPS; EC 2.5.1.10) from Trypanosoma brucei. The bisphosphonates investigated were zoledronate, risedronate, ibandronate, pamidronate, 2-phenyl-1-hydroxyethane-1,1-bisphosphonate, and 1-(2,2-bisphosphonoethyl)-3-iodo pyridinium. At pH = 7.4, both risedronate and the phenylethane bisphosphonate bind in an enthalpy-driven manner (DeltaH approximately -9 to 10 kcal mol-1), but the other four bisphosphonates bind in an entropy-driven manner (DeltaS varying from 31.2 to 55.1 cal K-1 mol-1). However, at pH = 8.5, zoledronate binding switches from entropy to enthalpy-driven. The DeltaG results are highly correlated with FPPS inhibition results obtained using a radiochemical assay (R2 = 0.85, N = 11, P enthalpy-driven, with the enhanced activity of the basic side chain containing species being attributable to their becoming protonated in the active site. Given the large size of the bisphosphonate market and the potential importance of the development of these compounds for cancer immunotherapy and anti-parasitic chemotherapy, these results are of broad general interest in the context of the development of new, potent, and selective FPPS inhibitors.

  9. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action

    Science.gov (United States)

    Eldar-Finkelman, Hagit; Krebs, Edwin G.

    1997-01-01

    The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an “unregulated” mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance. PMID:9275179

  10. Nitric oxide synthase inhibition reduces muscle inflammation and necrosis in modified muscle use

    Science.gov (United States)

    Pizza, F. X.; Hernandez, I. J.; Tidball, J. G.

    1998-01-01

    The objective of this study was to determine the role of nitric oxide in muscle inflammation, fiber necrosis, and apoptosis of inflammatory cells in vivo. The effects of nitric oxide synthase (NOS) inhibition on the concentrations of neutrophils, ED1+ and ED2+ macrophages, apoptotic inflammatory cells, and necrotic muscle fibers in rats subjected to 10 days of hindlimb unloading and 2 days of reloading were determined. Administration of NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) significantly reduced the concentrations of neutrophils, ED1+ and ED2+ macrophages, and necrotic fibers in soleus muscle relative to water-treated controls. The concentration of apoptotic inflammatory cells was also significantly lower for L-NAME-treated animals compared with water-treated controls. However, the proportion of the inflammatory cell population that was apoptotic did not differ between L-NAME-treated and control animals, suggesting that L-NAME treatment did not decrease inflammatory cell populations by increasing the frequency of apoptosis. Thus, nitric oxide or one of its intermediates promotes muscle inflammation and fiber necrosis during modified muscle use and plays no more than a minor role in the resolution of muscle inflammation by inducing apoptosis of inflammatory cells.

  11. Role of inducible nitric oxide synthase in the pathogenesis of experimental leptospirosis.

    Science.gov (United States)

    Prêtre, Gabriela; Olivera, Noelia; Cédola, Maia; Haase, Santiago; Alberdi, Lucrecia; Brihuega, Bibiana; Gómez, Ricardo M

    2011-09-01

    Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is a radical effector molecule of the innate immune system that can directly inhibit pathogen replication. In order to study subsequent iNOS kidney expression in experimental leptospirosis, Golden Syrian hamsters and C3H/HeJ mice were infected intraperitoneally with 10(2) or 10(7) virulent Leptospira interrogans serovar Copenhageni (LIC) strain Fiocruz L1-130. Results showed increased levels of iNOS mRNA and protein in kidneys of infected animals when compared to that in mock-infected animals. To get a deeper insight into the role of iNOS in experimental leptospirosis, both subject species were treated or not treated with 4-aminopyridine (4-AP, 0.3mg/kg), an iNOS inhibitor. Treatment of infected hamsters with 4-AP accelerated the mortality rate to 100% by one day and increased the mortality rate from 20 to 60% in mice at 14 days post-infection. In kidney tissues, 4-AP treatment increased the bacterial burden, as demonstrated through leptospiral DNA quantification by real-time PCR, and aggravated tubulointerstitial nephritis. In addition, iNOS inhibition reduced the specific humoral response against LIC when compared to that in untreated infected animals. According to these results, iNOS expression and the resulting NO have an important role in leptospirosis.

  12. Indazole, Pyrazole, and Oxazole Derivatives Targeting Nitric Oxide Synthases and Carbonic Anhydrases.

    Science.gov (United States)

    Maccallini, Cristina; Di Matteo, Mauro; Vullo, Daniela; Ammazzalorso, Alessandra; Carradori, Simone; De Filippis, Barbara; Fantacuzzi, Marialuigia; Giampietro, Letizia; Pandolfi, Assunta; Supuran, Claudiu T; Amoroso, Rosa

    2016-08-19

    Nitric oxide (NO) is an essential endogenous mediator with a physiological role in the central nervous system as neurotransmitter and neuromodulator. A growing number of studies have demonstrated that abnormal nitrergic signaling is a crucial event in the development of neurodegeneration. In particular, the uncontrolled production of NO by neuronal nitric oxide synthase (nNOS) is observed in several neurodegenerative diseases. Moreover, it is well recognized that specific isoforms of human carbonic anhydrase (hCA) physiologically modulate crucial pathways of signal processing and that low expression of CA affects cognition, leading to mental retardation, Alzheimer's disease, and aging-related cognitive impairments. In light of this, dual agents that are able to target both NOS (inhibition) and CA (activation) could be useful drug candidates for the treatment of Alzheimer's disease, aging, and other neurodegenerative diseases. In the present work, we show the design, synthesis, and in vitro biological evaluation of new nitrogen-based heterocyclic compounds. Among the tested molecules, 2-amino-3-(4-hydroxyphenyl)-N-(1H-indazol-5-yl)propanamide hydrochloride (10 b) was revealed to be a potent dual agent, able to act as a selective nNOS inhibitor and activator of the hCA I isoform. PMID:27377568

  13. Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine β-synthase.

    Science.gov (United States)

    Vicente, João B; Malagrinò, Francesca; Arese, Marzia; Forte, Elena; Sarti, Paolo; Giuffrè, Alessandro

    2016-08-01

    Merely considered as a toxic gas in the past, hydrogen sulfide (H2S) is currently viewed as the third 'gasotransmitter' in addition to nitric oxide (NO) and carbon monoxide (CO), playing a key signalling role in human (patho)physiology. H2S can either act as a substrate or, similarly to CO and NO, an inhibitor of mitochondrial respiration, in the latter case by targeting cytochrome c oxidase (CcOX). The impact of H(2)S on mitochondrial energy metabolism crucially depends on the bioavailability of this gaseous molecule and its interplay with the other two gasotransmitters. The H(2)S-producing human enzyme cystathionine β-synthase (CBS), sustaining cellular bioenergetics in colorectal cancer cells, plays a role in the interplay between gasotransmitters. The enzyme was indeed recently shown to be negatively modulated by physiological concentrations of CO and NO, particularly in the presence of its allosteric activator S-adenosyl-l-methionine (AdoMet). These newly discovered regulatory mechanisms are herein reviewed. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.

  14. Glycogen Synthase Kinase 3β Inhibition as a Therapeutic Approach in the Treatment of Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Liang Ma

    2013-08-01

    Full Text Available Alternative strategies beyond current chemotherapy and radiation therapy regimens are needed in the treatment of advanced stage and recurrent endometrial cancers. There is considerable promise for biologic agents targeting the extracellular signal-regulated kinase (ERK pathway for treatment of these cancers. Many downstream substrates of the ERK signaling pathway, such as glycogen synthase kinase 3β (GSK3β, and their roles in endometrial carcinogenesis have not yet been investigated. In this study, we tested the importance of GSK3β inhibition in endometrial cancer cell lines and in vivo models. Inhibition of GSK3β by either lithium chloride (LiCl or specific GSK3β inhibitor VIII showed cytostatic and cytotoxic effects on multiple endometrial cancer cell lines, with little effect on the immortalized normal endometrial cell line. Flow cytometry and immunofluorescence revealed a G2/M cell cycle arrest in both type I (AN3CA, KLE, and RL952 and type II (ARK1 endometrial cancer cell lines. In addition, LiCl pre-treatment sensitized AN3CA cells to the chemotherapy agent paclitaxel. Administration of LiCl to AN3CA tumor-bearing mice resulted in partial or complete regression of some tumors. Thus, GSK3β activity is associated with endometrial cancer tumorigenesis and its pharmacologic inhibition reduces cell proliferation and tumor growth.

  15. Constitutive nitric oxide synthase-mediated caspase-3 S-nitrosylation in ghrelin protection against Porphyromonas gingivalis-induced salivary gland acinar cell apoptosis.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2010-06-01

    Recent advances in identifying the salivary constituents capable of influencing the oral mucosal inflammatory responses have brought to focus the importance of a peptide hormone, ghrelin. Here, we report on the involvement of ghrelin in controlling the apoptotic processes induced in sublingual salivary gland acinar cells by the lipopolysaccharide (LPS) of a periodontopathic bacterium, Porphyromonas gingivalis. We show that the countering effect of ghrelin on the LPS-induced acinar cell apoptosis was associated with the increase in constitutive nitric oxide synthase (cNOS) activity, and the reduction in caspase-3 and inducible nitric oxide synthase (iNOS). The loss in countering effect of ghrelin on the LPS-induced changes in apoptosis and caspase-3 activity was attained with Src kinase inhibitor, PP2, as well as Akt inhibitor, SH-5, and cNOS inhibitor, L-NAME, but not the iNOS inhibitor, 1400W. The effect of ghrelin on the LPS-induced changes in cNOS activity, moreover, was reflected in the increased cNOS phosphorylation that was sensitive to PP2 as well as SH-5. Furthermore, the ghrelin-induced up-regulation in cNOS activity was associated with the increase in caspase-3 S-nitrosylation that was susceptible to the blockage by SH-5 and L-NAME. The findings point to the involvement of ghrelin in Src/Akt kinase-mediated cNOS activation and the apoptogenic signal inhibition through the NO-induced caspase-3 S-nitrosylation.

  16. Phosphorylation of thymidylate synthase affects slow-binding inhibition by 5-fluoro-dUMP and N(4)-hydroxy-dCMP.

    Science.gov (United States)

    Ludwiczak, Jan; Maj, Piotr; Wilk, Piotr; Frączyk, Tomasz; Ruman, Tomasz; Kierdaszuk, Borys; Jarmuła, Adam; Rode, Wojciech

    2016-04-01

    Endogenous thymidylate synthases, isolated from tissues or cultured cells of the same specific origin, have been reported to show differing slow-binding inhibition patterns. These were reflected by biphasic or linear dependence of the inactivation rate on time and accompanied by differing inhibition parameters. Considering its importance for chemotherapeutic drug resistance, the possible effect of thymidylate synthase inhibition by post-translational modification was tested, e.g. phosphorylation, by comparing sensitivities to inhibition by two slow-binding inhibitors, 5-fluoro-dUMP and N(4)-hydroxy-dCMP, of two fractions of purified recombinant mouse enzyme preparations, phosphorylated and non-phosphorylated, separated by metal oxide/hydroxide affinity chromatography on Al(OH)3 beads. The modification, found to concern histidine residues and influence kinetic properties by lowering Vmax, altered both the pattern of dependence of the inactivation rate on time from linear to biphasic, as well as slow-binding inhibition parameters, with each inhibitor studied. Being present on only one subunit of at least a great majority of phosphorylated enzyme molecules, it probably introduced dimer asymmetry, causing the altered time dependence of the inactivation rate pattern (biphasic with the phosphorylated enzyme) and resulting in asymmetric binding of each inhibitor studied. The latter is reflected by the ternary complexes, stable under denaturing conditions, formed by only the non-phosphorylated subunit of the phosphorylated enzyme with each of the two inhibitors and N(5,10)-methylenetetrahydrofolate. Inhibition of the phosphorylated enzyme by N(4)-hydroxy-dCMP was found to be strongly dependent on [Mg(2+)], cations demonstrated previously to also influence the activity of endogenous mouse TS isolated from tumour cells.

  17. Insulin resistance is associated with reduced fasting and insulin-stimulated glycogen synthase phosphatase activity in human skeletal muscle.

    OpenAIRE

    Kida, Y; Esposito-Del Puente, A; Bogardus, C; Mott, D M

    1990-01-01

    Insulin-stimulated glycogen synthase activity in human skeletal muscle correlates with insulin-mediated glucose disposal rate (M) and is reduced in insulin-resistant subjects. We have previously reported reduced insulin-stimulated glycogen synthase activity associated with reduced fasting glycogen synthase phosphatase activity in skeletal muscle of insulin-resistant Pima Indians. In this study we investigated the time course for insulin stimulation of glycogen synthase and synthase phosphatas...

  18. Defining the Product Chemical Space of Monoterpenoid Synthases.

    Science.gov (United States)

    Tian, Boxue; Poulter, C Dale; Jacobson, Matthew P

    2016-08-01

    Terpenoid synthases create diverse carbon skeletons by catalyzing complex carbocation rearrangements, making them particularly challenging for enzyme function prediction. To begin to address this challenge, we have developed a computational approach for the systematic enumeration of terpenoid carbocations. Application of this approach allows us to systematically define a nearly complete chemical space for the potential carbon skeletons of products from monoterpenoid synthases. Specifically, 18758 carbocations were generated, which we cluster into 74 cyclic skeletons. Five of the 74 skeletons are found in known natural products; some of the others are plausible for new functions, either in nature or engineered. This work systematizes the description of function for this class of enzymes, and provides a basis for predicting functions of uncharacterized enzymes. To our knowledge, this is the first computational study to explore the complete product chemical space of this important class of enzymes. PMID:27517297

  19. In vitro biochemical characterization of all barley endosperm starch synthases

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian;

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS...... classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes....... Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results...

  20. Neisseria meningitidis expresses a single 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase that is inhibited primarily by phenylalanine.

    Science.gov (United States)

    Cross, Penelope J; Pietersma, Amy L; Allison, Timothy M; Wilson-Coutts, Sarah M; Cochrane, Fiona C; Parker, Emily J

    2013-08-01

    Neisseria meningitidis is the causative agent of meningitis and meningococcal septicemia is a major cause of disease worldwide, resulting in brain damage and hearing loss, and can be fatal in a large proportion of cases. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first reaction in the shikimate pathway leading to the biosynthesis of aromatic metabolites including the aromatic acids l-Trp, l-Phe, and l-Tyr. This pathway is absent in humans, meaning that enzymes of the pathway are considered as potential candidates for therapeutic intervention. As the entry point, feedback inhibition of DAH7PS by pathway end products is a key mechanism for the control of pathway flux. The structure of the single DAH7PS expressed by N. meningitidis was determined at 2.0 Å resolution. In contrast to the other DAH7PS enzymes, which are inhibited only by a single aromatic amino acid, the N. meningitidis DAH7PS was inhibited by all three aromatic amino acids, showing greatest sensitivity to l-Phe. An N. meningitidis enzyme variant, in which a single Ser residue at the bottom of the inhibitor-binding cavity was substituted to Gly, altered inhibitor specificity from l-Phe to l-Tyr. Comparison of the crystal structures of both unbound and Tyr-bound forms and the small angle X-ray scattering profiles reveal that N. meningtidis DAH7PS undergoes no significant conformational change on inhibitor binding. These observations are consistent with an allosteric response arising from changes in protein motion rather than conformation, and suggest ligands that modulate protein dynamics may be effective inhibitors of this enzyme.

  1. Role of nitric oxide synthases in early blood-brain barrier disruption following transient focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Zheng Jiang

    Full Text Available The role of nitric oxide synthases (NOSs in early blood-brain barrier (BBB disruption was determined using a new mouse model of transient focal cerebral ischemia. Ischemia was induced by ligating the middle cerebral artery (MCA at its M2 segment and reperfusion was induced by releasing the ligation. The diameter alteration of the MCA, arterial anastomoses and collateral arteries were imaged and measured in real time. BBB disruption was assessed by Evans Blue (EB and sodium fluorescein (Na-F extravasation at 3 hours of reperfusion. The reperfusion produced an extensive vasodilation and a sustained hyperemia. Although expression of NOSs was not altered at 3 hours of reperfusion, L-NAME (a non-specific NOS inhibitor abolished reperfusion-induced vasodilation/hyperemia and significantly reduced EB and Na-F extravasation. L-NIO (an endothelial NOS (eNOS inhibitor significantly attenuated cerebral vasodilation but not BBB disruption, whereas L-NPA and 7-NI (neuronal NOS (nNOS inhibitors significantly reduced BBB disruption but not cerebral vasodilation. In contrast, aminoguanidine (AG (an inducible NOS (iNOS inhibitor had less effect on either cerebral vasodilation or BBB disruption. On the other hand, papaverine (PV not only increased the vasodilation/hyperemia but also significantly reduced BBB disruption. Combined treatment with L-NAME and PV preserved the vasodilation/hyperemia and significantly reduced BBB disruption. Our findings suggest that nNOS may play a major role in early BBB disruption following transient focal cerebral ischemia via a hyperemia-independent mechanism.

  2. Structure and Mechanism of Human UDP-xylose Synthase

    OpenAIRE

    Eixelsberger, Thomas; Sykora, Sabine; Egger, Sigrid; Brunsteiner, Michael; Kavanagh, Kathryn L; Oppermann, Udo; Brecker, Lothar; Nidetzky, Bernd

    2012-01-01

    UDP-xylose synthase (UXS) catalyzes decarboxylation of UDP-d-glucuronic acid to UDP-xylose. In mammals, UDP-xylose serves to initiate glycosaminoglycan synthesis on the protein core of extracellular matrix proteoglycans. Lack of UXS activity leads to a defective extracellular matrix, resulting in strong interference with cell signaling pathways. We present comprehensive structural and mechanistic characterization of the human form of UXS. The 1.26-Å crystal structure of the enzyme bound with ...

  3. Use of linalool synthase in genetic engineering of scent production

    Energy Technology Data Exchange (ETDEWEB)

    Pichersky, Eran (Chelsea, MI)

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.

  4. Use of linalool synthase in genetic engineering of scent production

    Energy Technology Data Exchange (ETDEWEB)

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  5. The Domain Responsible for Sphingomyelin Synthase (SMS) Activity

    OpenAIRE

    Yeang, Calvin; Varsheny, Shweta; Wang, Renxiao; ZHANG, YA; Ye, Deyong; Jiang, Xian-Cheng

    2008-01-01

    Sphingomyelin synthase (SMS) sits at the crossroads of sphingomyelin (SM), ceramide, diacylglycerol (DAG) metabolism. It utilizes ceramide and phosphatidylcholine as substrates to produce SM and DAG, thereby regulating lipid messengers which play a role in cell survival and apoptosis. There are two isoforms of the enzyme, SMS1 and SMS2. Both SMS1 and SMS2 contain two histidines and one aspartic acid which are evolutionary conserved within the lipid phosphate phosphatase superfamily. In this s...

  6. Conservation and Role of Electrostatics in Thymidylate Synthase

    OpenAIRE

    Divita Garg; Stephane Skouloubris; Julien Briffotaux; Hannu Myllykallio; Wade, Rebecca C.

    2015-01-01

    International audience Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs fr...

  7. Identification of a family of animal sphingomyelin synthases

    OpenAIRE

    Huitema, K.R.; van den Dikkenberg, J.; Brouwers, J.F.H.M.; Holthuis, J.C.M.

    2003-01-01

    Sphingomyelin (SM) is a major component of animal plasma membranes. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, yielding diacylglycerol as a side product. This reaction is catalysed by SM synthase, an enzyme whose biological potential can be judged from the roles of diacylglycerol and ceramide as anti- and proapoptotic stimuli, respectively. SM synthesis occurs in the lumen of the Golgi as well as on the cell surface. As no gene for SM syntha...

  8. Structure and Mechanistic Implications of a Tryptophan Synthase Quinonoid Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Barends,T.; Domratcheva, T.; Kulik, V.; Blumenstein, L.; Niks, D.; Dunn, M.; Schlichting, I.

    2008-01-01

    Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Whereas structures of other PLP-bound reaction intermediates have been determined, a high-quality structure of a quinonoid species has not been reported. We present the crystal structure of the indoline quinonoid intermediate of tryptophan synthase (see figure) and discuss its implications for the enzymatic mechanism and allosteric regulation.

  9. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    expression analysis and proteomics have pointed to abnormalities in mitochondrial oxidative phosphorylation and cellular stress in muscle of type 2 diabetic subjects, and recent work suggests that impaired mitochondrial activity is another early defect in the pathogenesis of type 2 diabetes. This review...... will discuss the latest advances in the understanding of the molecular mechanisms underlying insulin resistance in human skeletal muscle in type 2 diabetes with focus on possible links between impaired glycogen synthase activity and mitochondrial dysfunction....

  10. Dihydrodipicolinate synthase in opaque and floury maize mutants

    NARCIS (Netherlands)

    Varisi, V.A.; Medici, L.O.; Meer, van der I.M.; Lea, P.J.; Azevedo, J.L.

    2007-01-01

    Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) was isolated and studied in four high-lysine maize mutants (Oh43o1, Oh43o2, Oh43fl1 and Oh43fl2). The activity of DHDPS was analyzed at 16, 20, and 24 DAP and characterized in the presence of the amino acids, lysine, S-(2-aminoethyl)-l-cysteine (AEC)

  11. Isolation and expression of the Pneumocystis carinii thymidylate synthase gene

    DEFF Research Database (Denmark)

    Edman, U; Edman, J C; Lundgren, B;

    1989-01-01

    The thymidylate synthase (TS) gene from Pneumocystis carinii has been isolated from complementary and genomic DNA libraries and expressed in Escherichia coli. The coding sequence of TS is 891 nucleotides, encoding a 297-amino acid protein of Mr 34,269. The deduced amino acid sequence is similar t...... into plasmid vectors under control of the lac and tac promoters. These constructs direct the synthesis of catalytically active enzyme to the extent of 2% of total soluble protein....

  12. Unexpected link between polyketide synthase and calcium carbonate biomineralization

    OpenAIRE

    Hojo, Motoki; Omi, Ai; Hamanaka, Gen; Shindo, Kazutoshi; Shimada, Atsuko; Kondo, Mariko; Narita, Takanori; Kiyomoto, Masato; Katsuyama, Yohei; Ohnishi, Yasuo; Irie, Naoki; Takeda, Hiroyuki

    2015-01-01

    Introduction Calcium carbonate biominerals participate in diverse physiological functions. Despite intensive studies, little is known about how mineralization is initiated in organisms. Results We analyzed the medaka spontaneous mutant, ha, defective in otolith (calcareous ear stone) formation. ha lacks a trigger for otolith mineralization, and the causative gene was found to encode polyketide synthase (pks), a multifunctional enzyme mainly found in bacteria, fungi, and plant. Subsequent expe...

  13. Phylogenetic analysis of uroporphyrinogen III synthase (UROS) gene

    OpenAIRE

    Shaik, Abjal Pasha; Alsaeed, Abbas H; Sultana, Asma

    2012-01-01

    The uroporphyrinogen III synthase (UROS) enzyme (also known as hydroxymethylbilane hydrolyase) catalyzes the cyclization of hydroxymethylbilane to uroporphyrinogen III during heme biosynthesis. A deficiency of this enzyme is associated with the very rare Gunther's disease or congenital erythropoietic porphyria, an autosomal recessive inborn error of metabolism. The current study investigated the possible role of UROS (Homo sapiens [EC: 4.2.1.75; 265 aa; 1371 bp mRNA; Entrez Pubmed ref NP_0003...

  14. Purification and activity evaluation of methionine synthase%蛋氨酸合酶活性筛选体系的建立

    Institute of Scientific and Technical Information of China (English)

    郭莹; 李超; 张志丽; 田超; 王孝伟; 刘俊义

    2012-01-01

    钴胺素依赖的蛋氨酸合酶催化N5-甲基四氢叶酸转移甲基至同型半胱氨酸生成蛋氨酸和四氢叶酸,直接参与蛋氨酸循环、叶酸循环及含硫氨基酸代谢,与DNA、蛋白质合成及生物甲基化有密切关系.本研究采用蛋白层析技术,将大鼠肝匀浆经超声破碎和高速离心处理后,依次经过DE-52批处理、Q Sepharose Fast Flow离子交换层析和CHT陶瓷羟基磷灰石吸附柱层析进行纯化,并对纯化产物进行了SDS-PAGE和Western blotting 鉴定.采用分光光度法测定蛋氨酸合酶的活性,对纯化酶的酶促反应动力学进行了研究,确定了最佳反应条件,动力学结果显示蛋氨酸合酶的双底物酶促反应的机制为乒乓机制.研究表明,采用层析技术纯化得到的蛋氨酸合酶适用于以其为靶点的化合物高通量筛选.%Methionine synthase (MS, EC2.1.1.13), a key enzyme in the folate metabolism area catalyzing methyl transfer from N5-methyltetrahydrofolate to homocysteine to give tetrahydrofolate and methionine, takes a core position in folate cycle, one-carbon-unit transfer and sculpture amino acid pathways. Cobalamin-dependent methionine synthase was purified from rat liver. The enzyme was purified 609-fold to near homogeneity by batch chromatography on DE-52, anion-exchange chromatography on Q Sepharose Fast Flow and CHT-I hydroxyapatite column and was identified by SDS-PAGE and Western blotting. The enzyme activity was determined by spectrophotometric assay. In addition, the influencing factor and optimal reaction condition were performed. The steady state kinetic of rat liver methionine synthase was similar to that of other mammalian cobalamin-dependent methionine synthase which employed a Ping-Pong mechanism. The result indicated that cobalamin-dependent methionine synthase purified from rat liver is suitable for screening and studying methionine synthase specific inhibitors.

  15. Inhibitors of lysosomal cysteine proteases

    Directory of Open Access Journals (Sweden)

    Lyanna O. L.

    2011-04-01

    Full Text Available The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic analogs.

  16. Molecular similarity of MDR inhibitors

    OpenAIRE

    Simon Gibbons; Mire Zloh

    2004-01-01

    Abstract: The molecular similarity of multidrug resistance (MDR) inhibitors was evaluated using the point centred atom charge approach in an attempt to find some common features of structurally unrelated inhibitors. A series of inhibitors of bacterial MDR were studied and there is a high similarity between these in terms of their shape, presence and orientation of aromatic ring moieties. A comparison of the lipophilic properties of these molecules has also been conducted suggesting that this ...

  17. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues.

    Directory of Open Access Journals (Sweden)

    Hyun Jo Koo

    Full Text Available The essential oils of ginger (Zingiber officinale and turmeric (Curcuma longa contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+-germacrene D synthase and (S-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (--caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+-α-turmerone and (+-β-turmerone, are produced from (--α-zingiberene and (--β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase.

  18. From bacterial to human dihydrouridine synthase: automated structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Fiona, E-mail: fiona.whelan@york.ac.uk; Jenkins, Huw T., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Griffiths, Samuel C. [University of Oxford, Headington, Oxford OX3 7BN (United Kingdom); Byrne, Robert T. [Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich (Germany); Dodson, Eleanor J.; Antson, Alfred A., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-06-30

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.

  19. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance

    Science.gov (United States)

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles. PMID:27462341

  20. Rotation and structure of FoF1-ATP synthase.

    Science.gov (United States)

    Okuno, Daichi; Iino, Ryota; Noji, Hiroyuki

    2011-06-01

    F(o)F(1)-ATP synthase is one of the most ubiquitous enzymes; it is found widely in the biological world, including the plasma membrane of bacteria, inner membrane of mitochondria and thylakoid membrane of chloroplasts. However, this enzyme has a unique mechanism of action: it is composed of two mechanical rotary motors, each driven by ATP hydrolysis or proton flux down the membrane potential of protons. The two molecular motors interconvert the chemical energy of ATP hydrolysis and proton electrochemical potential via the mechanical rotation of the rotary shaft. This unique energy transmission mechanism is not found in other biological systems. Although there are other similar man-made systems like hydroelectric generators, F(o)F(1)-ATP synthase operates on the nanometre scale and works with extremely high efficiency. Therefore, this enzyme has attracted significant attention in a wide variety of fields from bioenergetics and biophysics to chemistry, physics and nanoscience. This review summarizes the latest findings about the two motors of F(o)F(1)-ATP synthase as well as a brief historical background. PMID:21524994

  1. [Progress and application prospects of glutamine synthase in plants].

    Science.gov (United States)

    Feng, Wanjun; Xing, Guofang; Niu, Xulong; Dou, Chen; Han, Yuanhuai

    2015-09-01

    Nitrogen is one of the most important nutrient elements for plants and a major limiting factor in plant growth and crop productivity. Glutamine synthase (GS) is a key enzyme involved in the nitrogen assimilation and recycling in plants. So far, members of the glutamine synthase gene family have been characterized in many plants such as Arabidopsis, rice, wheat, and maize. Reports show that GS are involved in the growth and development of plants, in particular its role in seed production. However, the outcome has generally been inconsistent, which are probably derived from the transcriptional and post-translational regulation of GS genes. In this review, we outlined studies on GS gene classification, QTL mapping, the relationship between GS genes and plant growth with nitrogen and the distribution characters, the biological functions of GS genes, as well as expression control at different regulation levels. In addition, we summarized the application prospects of glutamine synthetase genes in enhancing plant growth and yield by improving the nitrogen use efficiency. The prospects were presented on the improvement of nitrogen utility efficiency in crops and plant nitrogen status diagnosis on the basis of glutamine synthase gene regulation. PMID:26955708

  2. Phytochelatin synthase activity as a marker of metal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Zitka, Ondrej; Krystofova, Olga; Sobrova, Pavlina [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Adam, Vojtech [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Zehnalek, Josef; Beklova, Miroslava [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kizek, Rene, E-mail: kizek@sci.muni.cz [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic)

    2011-08-30

    Highlights: {yields} New tool for determination of phytochelatin synthase activity. {yields} The optimization of experimental condition for determination of the enzyme activity. {yields} First evaluation of K{sub m} for the enzyme. {yields} The effects of cadmium (II) not only on the activity of the enzyme but also on K{sub m}. -- Abstract: The synthesis of phytochelatins is catalyzed by {gamma}-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO{sub 3}){sub 2} for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35 {sup o}C for 30 min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270 fkat) in treated cells was more than seven times higher in comparison to control ones. K{sub m} for PCS was estimated as 2.3 mM.

  3. The pseudouridine synthases: revisiting a mechanism that seemed settled.

    Science.gov (United States)

    Spedaliere, Christopher J; Ginter, Joy M; Johnston, Murray V; Mueller, Eugene G

    2004-10-13

    RNA containing 5-fluorouridine, [f 5U]RNA, has been used as a mechanistic probe for the pseudouridine synthases, which convert uridine in RNA to its C-glycoside isomer, pseudouridine. Hydrated products of f 5U were attributed to ester hydrolysis of a covalent complex between an essential aspartic acid residue and f 5U, and the results were construed as strong support for a mechanism involving Michael addition by the aspartic acid residue. Labeling studies with [18O]water are now reported that rule out such ester hydrolysis in one pseudouridine synthase, TruB. The aspartic acid residue does not become labeled, and the hydroxyl group in the hydrated product of f 5U derives directly from solvent. The hydrated product, therefore, cannot be construed to support Michael addition during the conversion of uridine to pseudouridine, but the results do not rule out such a mechanism. A hypothesis is offered for the seemingly disparate behavior of different pseudouridine synthases toward [f 5U]RNA.

  4. The structural basis of Erwinia rhapontici isomaltulose synthase.

    Science.gov (United States)

    Xu, Zheng; Li, Sha; Li, Jie; Li, Yan; Feng, Xiaohai; Wang, Renxiao; Xu, Hong; Zhou, Jiahai

    2013-01-01

    Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonasmesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop(330-339) in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations.

  5. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance.

    Science.gov (United States)

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles. PMID:27462341

  6. ACE INHIBITORS: A COMPREHENSIVE REVIEW

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Arora* and Ashish Chauhan

    2013-02-01

    Full Text Available Hypertension is a chronic increase in blood pressure, characterized as primary and secondary hypertension. The disorder is associated with various risk factors like obesity, diabetes, age, lack of exercise etc. Hypertension is being treated since ancient times by Ayurvedic, Chinese and Unani medicine. Now various allopathic drugs are available which include diuretics, calcium channel blockers, α-blockers, β-blockers, vasodilators, central sympatholytics and ACE-inhibitors. Non-pharmacological treatments include weight reduction, dietary sodium reduction, increased potassium intake and reduction in alcohol consumption. ACE-inhibitors are widely used in the treatment of hypertension by inhibiting the angiotensin converting enzyme responsible for the conversion of angiotensin I to angiotensin II (responsible for vasoconstriction. Various structure activity relationship studies led to the synthesis of ACE-inhibitors, some are under clinical development. This comprehensive review gives various guidelines on classification of hypertension, hypertension therapy including ancient, pharmacological, non-pharmacological therapies, pharmacoeconomics, historical perspectives of ACE, renin, renin angiotensin system (circulating vs local RAS, mechanism of ACE inhibitors, and development of ACE inhibitors. Review also emphasizes on the recent advancements on ACE inhibitors including drugs in clinical trials, computational studies on ACE-inhibitors, peptidomimetics, dual, natural, multi-functional ACE inhibitors, and conformational requirements for ACE-inhibitors.

  7. Effects of leflunomide on hyaluronan synthases (HAS): NF-kappa B-independent suppression of IL-1-induced HAS1 transcription by leflunomide.

    Science.gov (United States)

    Stuhlmeier, Karl M

    2005-06-01

    Despite evidence that points to unfettered hyaluronic acid (HA) production as a culprit in the progression of rheumatic disorders, little is known about differences in regulation and biological functions of the three hyaluronan synthase (HAS) genes. Testing the effects of drugs with proven anti-inflammatory effects could help to clarify biological functions of these genes. In this study, we demonstrate that leflunomide suppresses HA release in fibroblast-like synoviocytes (FLS) in a dose-dependent manner. We further demonstrate that leflunomide suppresses HA synthase activity, as determined by (14)C-glucuronic acid incorporation assays. Additional experiments revealed that in FLS, leflunomide specifically blocked the induction of HAS1. HAS2 and HAS3, genes that are, in contrast to HAS1, constitutively expressed in FLS, are not significantly affected. Leflunomide can function as a NF-kappaB inhibitor. However, EMSA experiments demonstrate that at the concentrations used, leflunomide neither interferes with IL-1beta- nor with PMA-induced NF-kappaB translocation. Furthermore, reconstituting the pyrimidine synthase pathway did not lead to the restoration of IL-1beta-induced HAS1 activation. More importantly, two tyrosine kinase inhibitors mimicked the effect of leflunomide in that both blocked IL-1beta-induced HAS1 activation without affecting HAS2 or HAS3. These data point at HAS1 activation as the possible cause for unfettered HA production in rheumatoid arthritis and might explain, at least in part, the beneficial effects of leflunomide treatment. These findings also support the concept that IL-1beta-induced HAS1 activation depends on the activation of tyrosine kinases, and indicate that leflunomide blocks HA release by suppressing tyrosine kinases rather than through inhibition of NF-kappaB translocation.

  8. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP) pathway enzyme expression in Catharanthus roseus.

    Science.gov (United States)

    Han, Mei; Heppel, Simon C; Su, Tao; Bogs, Jochen; Zu, Yuangang; An, Zhigang; Rausch, Thomas

    2013-01-01

    In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA) formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS), a new (type I) DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS) and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR)), respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms), DXR, and hydroxymethylbutenyl diphosphate synthase (HDS) were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation.

  9. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP pathway enzyme expression in Catharanthus roseus.

    Directory of Open Access Journals (Sweden)

    Mei Han

    Full Text Available In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS, a new (type I DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR, respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms, DXR, and hydroxymethylbutenyl diphosphate synthase (HDS were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation.

  10. Enzyme Inhibitor Studies Reveal Complex Control of Methyl-D-Erythritol 4-Phosphate (MEP) Pathway Enzyme Expression in Catharanthus roseus

    Science.gov (United States)

    Han, Mei; Heppel, Simon C.; Su, Tao; Bogs, Jochen; Zu, Yuangang; An, Zhigang; Rausch, Thomas

    2013-01-01

    In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA) formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS), a new (type I) DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS) and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR)), respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms), DXR, and hydroxymethylbutenyl diphosphate synthase (HDS) were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation. PMID:23650515

  11. Comparative study of Chalcone synthase promoters across plant families

    Directory of Open Access Journals (Sweden)

    Francisco Buitrago

    2009-10-01

    Full Text Available Estudio comparativo de promotores de la Chalcón Sintasa en diferentes familias de plantas In the post – genomic era the understanding of gene regulation has become a challenge and a research priority. In this research, we performed a comparative study of the regulator sequences of the chalcone synthase gene across plant families. Twenty-two sequences of chalcone synthase promoters were compared considering three regulator Cis elements: G-Box, H-Box and TATA Box. Our results show that these Cis elements are conserved among species and even at the family level. However, in some species all of the Cis elements were not found, showing that the expression and regulation of these promoters via the Cis elements can be variable. Additionally, a comparison between promoters from a species with a chalcone synthase multigene family showed that the duplicate genes are variable in the composition of the Cis elements, suggesting that these genes could be expressing in different ways. Key Words: Promoter; Chalcone synthase; Cis elements; Floral expression. Resumen En la era post-genómica, el entendimiento de la regulación génica se ha convertido en un reto y una prioridad de investigación. En este trabajo realizamos un estudio comparativo de las secuencias reguladoras del gen de la chalcón sintetasa de varias familias botánicas. Veintidós secuencias de promotores de Chalcone Synthase fueron comparados teniendo en cuenta tres elementos Cis reguladores: Caja-G, Caja-H y Caja-TATA, que podrían estar actuando como una sola unidad cooperativa. Nuestra comparación muestra que estos elementos puede que se conserven en algunas especies e inclusive que se conserven a nivel de familia. Sin embargo, en algunas especies no todos los elementos Cis fueron encontrados, mostrando que no todas las especies se regulan bajo los mismos parámetros. Adicionalmente, una comparación entre promotores de una misma especie con una familia de multigenes Chs, mostró que los

  12. Discovery of Inhibitors for the Ether Lipid-Generating Enzyme AGPS as Anti-Cancer Agents.

    Science.gov (United States)

    Piano, Valentina; Benjamin, Daniel I; Valente, Sergio; Nenci, Simone; Marrocco, Biagina; Mai, Antonello; Aliverti, Alessandro; Nomura, Daniel K; Mattevi, Andrea

    2015-11-20

    Dysregulated ether lipid metabolism is an important hallmark of cancer cells. Previous studies have reported that lowering ether lipid levels by genetic ablation of the ether lipid-generating enzyme alkyl-glycerone phosphate synthase (AGPS) lowers key structural and oncogenic ether lipid levels and alters fatty acid, glycerophospholipid, and eicosanoid metabolism to impair cancer pathogenicity, indicating that AGPS may be a potential therapeutic target for cancer. In this study, we have performed a small-molecule screen to identify candidate AGPS inhibitors. We have identified several lead AGPS inhibitors and have structurally characterized their interactions with the enzyme and show that these inhibitors bind to distinct portions of the active site. We further show that the lead AGPS inhibitor 1a selectively lowers ether lipid levels in several types of human cancer cells and impairs their cellular survival and migration. We provide here the first report of in situ-active pharmacological tools for inhibiting AGPS, which may provide chemical scaffolds for future AGPS inhibitor development for cancer therapy.

  13. Delineation of an in vivo inhibitor for Aspergillus glutamate dehydrogenase.

    Science.gov (United States)

    Choudhury, Rajarshi; Noor, Shahid; Varadarajalu, Lakshmi Prabha; Punekar, Narayan S

    2008-01-01

    NADP-glutamate dehydrogenase (NADP-GDH) along with glutamine synthetase plays a pivotal role in ammonium assimilation. Specific inhibitors were valuable in defining the importance of glutamine synthetase in nitrogen metabolism. Selective in vivo inhibition of NADP-GDH has so far been an elusive desideratum. Isophthalate, a potent in vitro inhibitor of Aspergillus niger NADP-GDH [Noor S, Punekar NS. Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon-nitrogen interface. Microbiology 2005;151:1409-19], was evaluated for its efficacy in vivo. Dimethyl ester of isophthalate (DMIP), but not isophthalate, inhibited A. niger growth on agar as well as in liquid culture. This was ascribed to the inability of isophthalate to enter fungal mycelia. Subsequent to DMIP addition however, intracellular isophthalate could be demonstrated. Apart from NAD-GDH, no other enzyme including NAD-glutamate synthase was inhibited by isophthalate. A cross-over at NADP-GDH step of metabolism was observed as a direct consequence of isophthalate (formed in vivo from DMIP) inhibiting this enzyme. Addition of ammonium to DMIP-treated A. niger mycelia resulted in intensive vacuolation, retraction of cytoplasm and autolysis. Taken together, these results implicate glutamate dehydrogenase and NADP-GDH in particular, as a key target of in vivo isophthalate inhibition during ammonium assimilation. PMID:22578865

  14. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids

    Science.gov (United States)

    Limbourg, Florian P.; Huang, Zhihong; Plumier, Jean-Christophe; Simoncini, Tommaso; Fujioka, Masayuki; Tuckermann, Jan; Schütz, Günther; Moskowitz, Michael A.; Liao, James K.

    2002-01-01

    Many cellular responses to corticosteroids involve the transcriptional modulation of target genes by the glucocorticoid receptor (GR). A rapid, non-nuclear effect of GR was found to mediate neuroprotection. High-dose corticosteroids (20 mg/kg intraperitoneally), given within 2 hours of transient cerebral ischemia, acutely increased endothelial nitric oxide synthase (eNOS) activity, augmented regional cerebral blood flow (CBF) by 40% to 50%, and reduced cerebral infarct size by 32%. These neuroprotective effects of corticosteroids were abolished by the GR antagonist RU486 and by inhibition of phosphatidylinositol 3-kinase (PI3K), and were absent in eNOS–/– mice. To determine the mechanism by which GR activated eNOS, we measured the effect of corticosteroids on PI3K and the protein kinase Akt. In a ligand-dependent manner, GR activated PI3K and Akt in vitro and in vivo caused NO-dependent vasodilation, which was blocked by cotreatment with RU486 or the PI3K inhibitor LY294002 but not by transcriptional inhibitors. Indeed, a mutant GR, which cannot dimerize and bind to DNA, still activated PI3K and Akt in response to corticosteroids. These findings indicate that non-nuclear GR rapidly activates eNOS through the PI3K/Akt pathway and suggest that this mechanism mediates the acute neuroprotective effects of corticosteroids through augmentation of CBF. PMID:12464678

  15. An Update of Microsomal Prostaglandin E Synthase-1 and PGE2 Receptors in Cardiovascular Health and Diseases.

    Science.gov (United States)

    Yang, Guangrui; Chen, Lihong

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs), especially cyclooxygenase-2 (COX-2) selective inhibitors, are among the most widely used drugs to treat pain and inflammation. However, clinical trials have revealed that these inhibitors predisposed patients to a significantly increased cardiovascular risk, consisting of thrombosis, hypertension, myocardial infarction, heart failure, and sudden cardiac death. Thus, microsomal prostaglandin E (PGE) synthase-1 (mPGES-1), the key terminal enzyme involved in the synthesis of inflammatory prostaglandin E2 (PGE2), and the four PGE2 receptors (EP1-4) have gained much attention as alternative targets for the development of novel analgesics. The cardiovascular consequences of targeting mPGES-1 and the PGE2 receptors are substantially studied. Inhibition of mPGES-1 has displayed a relatively innocuous or preferable cardiovascular profile. The modulation of the four EP receptors in cardiovascular system is diversely reported as well. In this review, we highlight the most recent advances from our and other studies on the regulation of PGE2, particularly mPGES-1 and the four PGE2 receptors, in cardiovascular function, with a particular emphasis on blood pressure regulation, atherosclerosis, thrombosis, and myocardial infarction. This might lead to new avenues to improve cardiovascular disease management strategies and to seek optimized anti-inflammatory therapeutic options. PMID:27594972

  16. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    International Nuclear Information System (INIS)

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  17. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    Energy Technology Data Exchange (ETDEWEB)

    Manceur, Aziza P. [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Tseng, Michael [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Holowacz, Tamara [Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Witterick, Ian [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Department of Otolaryngology, Head and Neck Surgery, University of Toronto, ON (Canada); Weksberg, Rosanna [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); McCurdy, Richard D. [The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); Warsh, Jerry J. [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Audet, Julie, E-mail: julie.audet@utoronto.ca [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada)

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  18. Salmonella typhimurium mutants defective in acetohydroxy acid synthases I and II.

    OpenAIRE

    Shaw, K J; Berg, C M; Sobol, T J

    1980-01-01

    An analysis of transposon-induced mutants shows that Salmonella typhimurium possesses two major isozymes of acetohydroxy acid synthase, the enzymes which mediate the first common step in isoleucine and valine biosynthesis. A third (minor) acetohydroxy acid synthase is present, but its significance in isoleucine and valine synthesis may be negligible. Mutants defective in acetohydroxy acid synthase II (ilvG::Tn10) require isoleucine, alpha-ketobutyrate, or threonine for growth, a mutant defect...

  19. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host

    OpenAIRE

    YAMADA, YUUKI; Arima, Shiho; Nagamitsu, Tohru; Johmoto, Kohei; Uekusa, Hidehiro; Eguchi, Tadashi; Shin’ya, Kazuo; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Mining of bacterial genome data has revealed numerous presumptive terpene synthases. Heterologous expression of several putative terpene synthase genes in an engineered Streptomyces host has revealed 13 newly discovered terpenes whose GC-MS and NMR data did not match any known compounds in the spectroscopic databases. Each of the genes encoding the corresponding terpene synthases were silent in their parent microorganisms. Heterologous expression and detailed NMR spectroscopic analysis allowe...

  20. UV-B induced transcript accumulation of DAHP synthase in suspension-cultured Catharanthus roseus cells

    OpenAIRE

    Ramani, Shilpa; Patil, Nandadevi; Jayabaskaran, Chelliah

    2010-01-01

    The enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15) catalyzes the first committed step in the shikimate pathway of tryptophan synthesis, an important precursor for the production of terpenoid indole alkaloids (TIAs). A full-length cDNA encoding nuclear coded chloroplast-specific DAHP synthase transcript was isolated from a Catharanthus roseus cDNA library. This had high sequence similarity with other members of plant DAHP synthase family. This transcript accum...

  1. Structure and Mechanism of the Diterpene Cyclase ent-Copalyl Diphosphate Synthase

    Science.gov (United States)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-01-01

    The structure of ent-copalyl diphosphate synthase (CPS) reveals three α-helical domains (α, β, γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in CPS but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions. PMID:21602811

  2. Selection criteria for corrosion inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Webb, L.; Boivin, J. [Cormetrics, Calgary, AB (Canada)

    2008-07-01

    The use of a corrosion inhibitor is the primary method to control internal corrosion of pipelines and to reduce costly failures. This presentation discussed the selection criteria for corrosion inhibitors. The selection process requires a detailed analysis of system chemistry; modeling flow regime; and laboratory testing protocols that challenge the inhibitor under conditions analogous to the field. The nature of corrosion inhibitors and inhibitor requirements were described. Physical factors were also presented. These included viscosity and pour point; stability; density; effect on elastomers and other materials; emulsion tendency; foaming tendency; gunking; polymerization/sludging; and reaction with gases and liquids. Other topics that were discussed included compatibility; solubility; partitioning; environmental effects; and selection requirements. Film tenacity was described in terms of corrosivity; water chemistry; and flow. The presentation concluded with a discussion of performance testing and wheel testing. figs.

  3. Stabilization and enhanced reactivity of actinorhodin polyketide synthase minimal complex in polymer-nucleotide coacervate droplets.

    Science.gov (United States)

    Crosby, John; Treadwell, Tom; Hammerton, Michelle; Vasilakis, Konstantinos; Crump, Matthew P; Williams, David S; Mann, Stephen

    2012-12-18

    Compartmentalization of the minimal complex of actinorhodin polyketide synthase in coacervate liquid droplets produces enhanced yields of shunt polyketides under conditions of low and high ionic strength.

  4. Adhesion Development and the Expression of Endothelial Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    David M. Svinarich

    2001-01-01

    Full Text Available Objective: This study was conducted to determine whether nitric oxide (NO, a potent vasodilator and inhibitor of thrombus formation, is involved in the formation and maintenance of adhesions.

  5. Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development.

    Science.gov (United States)

    Murphy, Rhys B; Tommasi, Sara; Lewis, Benjamin C; Mangoni, Arduino A

    2016-01-01

    Dimethylarginine dimethylaminohydrolase (DDAH) is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA) and monomethyl arginine (l-NMMA), with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the DDAH family of enzymes as a potential therapeutic target in the regulation of nitric oxide (NO) production, mediated via its biochemical interaction with the nitric oxide synthase (NOS) family of enzymes. Increased DDAH expression and NO production have been linked to multiple pathological conditions, specifically, cancer, neurodegenerative disorders, and septic shock. As such, the discovery, chemical synthesis, and development of DDAH inhibitors as potential drug candidates represent a growing field of interest. This review article summarizes the current knowledge on DDAH inhibition and the derived pharmacokinetic parameters of the main DDAH inhibitors reported in the literature. Furthermore, current methods of development and chemical synthetic pathways are discussed. PMID:27187323

  6. Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development.

    Science.gov (United States)

    Murphy, Rhys B; Tommasi, Sara; Lewis, Benjamin C; Mangoni, Arduino A

    2016-01-01

    Dimethylarginine dimethylaminohydrolase (DDAH) is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA) and monomethyl arginine (l-NMMA), with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the DDAH family of enzymes as a potential therapeutic target in the regulation of nitric oxide (NO) production, mediated via its biochemical interaction with the nitric oxide synthase (NOS) family of enzymes. Increased DDAH expression and NO production have been linked to multiple pathological conditions, specifically, cancer, neurodegenerative disorders, and septic shock. As such, the discovery, chemical synthesis, and development of DDAH inhibitors as potential drug candidates represent a growing field of interest. This review article summarizes the current knowledge on DDAH inhibition and the derived pharmacokinetic parameters of the main DDAH inhibitors reported in the literature. Furthermore, current methods of development and chemical synthetic pathways are discussed.

  7. Functional Inducible Nitric Oxide Synthase Gene Variants Associate With Hypertension

    OpenAIRE

    Nikkari, Seppo T; Määttä, Kirsi M.; Kunnas, Tarja A.

    2015-01-01

    Abstract Increased inducible nitric oxide synthase (iNOS) activity and expression has been associated with hypertension, but less is known whether the 2 known functional polymorphic sites in the iNOS gene (g.–1026 C/A (rs2779249), g.2087 G/A (rs2297518)) affect susceptibility to hypertension. The objective of this study was to investigate the association between the genetic variants of iNOS and diagnosed hypertension in a Finnish cohort. This study included 320 hypertensive cases and 439 heal...

  8. Isolation and characterization of galactinol synthases from hybrid poplar

    OpenAIRE

    Unda, Faride; Canam, Thomas; Preston, Lindsay; Mansfield, Shawn D

    2011-01-01

    The raffinose family of oligosaccharides (RFOs) serve as transport carbohydrates in the phloem, storage compounds in sink tissues, and putative biological agents to combat both abiotic and biotic stress in several plant species. To investigate further the functional roles of this class of compounds in trees, two cDNAs encoding galactinol synthase (GolS, EC 2.4.1.123), which catalyses the first step in the biosynthesis of RFOs, were identified and cloned from hybrid poplar (Populus alba×grandi...

  9. Modelling the evolution of the archaeal tryptophan synthase

    OpenAIRE

    Merkl Rainer

    2007-01-01

    Abstract Background Microorganisms and plants are able to produce tryptophan. Enzymes catalysing the last seven steps of tryptophan biosynthesis are encoded in the canonical trp operon. Among the trp genes are most frequently trpA and trpB, which code for the alpha and beta subunit of tryptophan synthase. In several prokaryotic genomes, two variants of trpB (named trpB1 or trpB2) occur in different combinations. The evolutionary history of these trpB genes is under debate. Results In order to...

  10. Development of novel arginase inhibitors for therapy of endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Jochen eSteppan

    2013-09-01

    Full Text Available Endothelial dysfunction and resulting vascular pathology have been identified as an early hallmark of multiple diseases, including diabetes mellitus. One of the major contributors to endothelial dysfunction is a decrease in nitric oxide (NO bioavailability, impaired NO signaling and an increase in the amount of reactive oxygen species (ROS. In the endothelium NO is produced by eNOS (endothelial nitric oxide synthase, for which L-arginine is a substrate. Arginase, an enzyme critical in the urea cycle also metabolizes L-arginine, thereby directly competing with eNOS for their common substrate and constraining its bioavailability for eNOS, thereby compromising NO production. Arginase expression and activity is upregulated in many cardiovascular diseases including ischemia reperfusion injury, hypertension, atherosclerosis, and diabetes mellitus. More importantly, since the 1990s, specific arginase inhibitors such as N-hydroxy-guanidinium or N-hydroxy-nor-L-arginine, and boronic acid derivatives, such as, 2(S-amino-6-boronohexanoic acid, and S-(2-boronoethyl-L-cysteine (BEC, that can bridge the binuclear manganese cluster of arginase have been developed. These highly potent and specific inhibitors can now be used to probe arginase function and thereby modulate the redox milieu of the cell by changing the balance between NO and ROS. Inspired by this success, drug discovery programs have recently led to the identification of α-α-disubstituted amino acid based arginase inhibitors (such as (R-2-amino-6-borono-2-(2-(piperidin-1-ylethylhexanoic acid, that are currently under early investigation as therapeutics. Finally, some investigators concentrate on identification of plant derived compounds with arginase inhibitory capability, such as piceatannol-3'-O-β-D-glucopyranoside (PG. All of these synthesized or naturally derived small molecules may represent novel therapeutics for vascular disease particularly that associated with diabetes.

  11. Glycogen Synthase Kinase-3 regulates IGFBP-1 gene transcription through the Thymine-rich Insulin Response Element

    Directory of Open Access Journals (Sweden)

    Marquez Rodolfo

    2004-09-01

    Full Text Available Abstract Background Hepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK, glucose-6-phosphatase (G6Pase and insulin-like growth factor binding protein-1 (IGFBP-1, is rapidly and completely inhibited by insulin. This inhibition is mediated through the regulation of a DNA element present in each of these gene promoters, that we call the Thymine-rich Insulin Response Element (TIRE. The insulin signalling pathway that results in the inhibition of these gene promoters requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase. However, the molecules that connect PI 3-kinase to these gene promoters are not yet fully defined. Glycogen Synthase Kinase 3 (GSK-3 is inhibited following activation of PI 3-kinase. We have shown previously that inhibitors of GSK-3 reduce the activity of two TIRE-containing gene promoters (PEPCK and G6Pase, whose products are required for gluconeogenesis. Results In this report we demonstrate that in H4IIE-C3 cells, four distinct classes of GSK-3 inhibitor mimic the effect of insulin on a third TIRE-containing gene, IGFBP-1. We identify the TIRE as the minimum requirement for inhibition by these agents, and demonstrate that the target of GSK-3 is unlikely to be the postulated TIRE-binding protein FOXO-1. Importantly, overexpression of GSK-3 in cells reduces the insulin regulation of TIRE activity as well as endogenous IGFBP-1 expression. Conclusions These results implicate GSK-3 as an intermediate in the pathway from the insulin receptor to the TIRE. Indeed, this is the first demonstration of an absolute requirement for GSK-3 inhibition in insulin regulation of gene transcription. These data support the potential use of GSK-3 inhibitors in the treatment of insulin resistant states such as Type 2 diabetes mellitus, but suggest that it will be important to identify all TIRE-containing genes to assess potential side effects of these agents.

  12. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    Directory of Open Access Journals (Sweden)

    Kawamukai Makoto

    2004-11-01

    Full Text Available Abstract Background Isopentenyl diphosphate (IPP, a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  13. Role of Polymorphisms of Inducible Nitric Oxide Synthase and Endothelial Nitric Oxide Synthase in Idiopathic Environmental Intolerances

    OpenAIRE

    Chiara De Luca; Agnese Gugliandolo; Carlo Calabrò; Monica Currò; Riccardo Ientile; Desanka Raskovic; Ludmila Korkina; Daniela Caccamo

    2015-01-01

    Oxidative stress and inflammation play a pathogenetic role in idiopathic environmental intolerances (IEI), namely, multiple chemical sensitivity (MCS), fibromyalgia (FM), and chronic fatigue syndrome (CFS). Given the reported association of nitric oxide synthase (NOS) gene polymorphisms with inflammatory disorders, we aimed to investigate the distribution of NOS2A −2.5 kb (CCTTT) n as well as Ser608Leu and NOS3 −786T>C variants and their correlation with nitrite/nitrate levels, in a study coh...

  14. Aminomethylenediphosphonate: A Potent Type-Specific Inhibitor of Both Plant and Phototrophic Bacterial H+-Pyrophosphatases.

    Science.gov (United States)

    Zhen, R. G.; Baykov, A. A.; Bakuleva, N. P.; Rea, P. A.

    1994-01-01

    The suitability of different pyrophosphate (PPi) analogs as inhibitors of the vacuolar H+-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) of tonoplast vesicles isolated from etiolated hypocotyls of Vigna radiata was investigated. Five 1,1-diphosphonates and imidodiphosphate were tested for their effects on substrate hydrolysis by the V-PPase at a substrate concentration corresponding to the Km of the enzyme. The order of inhibitory potency (apparent inhibition constants, Kiapp values, [mu]M, in parentheses) of the compounds examined was aminomethylenediphosphonate (1.8) > hydroxymethylenediphosphonate (5.7) [almost equal to] ethane-1-hydroxy-1,1-diphosphonate (6.5) > imidodiphosphate (12) > methylenediphosphonate (68) > dichloromethylenediphosphonate (>500). The specificity of three of these compounds, aminomethylenediphosphonate, imidodiphosphate, and methylenediphosphonate, was determined by comparing their effects on the V-PPase and vacuolar H+-ATPase from Vigna, plasma membrane H+-ATPase from Beta vulgaris, H+-PPi synthase of chromatophores prepared from Rhodospirillum rubrum, soluble PPase from Saccharomyces cerevisiae, alkaline phosphatase from bovine intestinal mucosa, and nonspecific monophosphoesterase from Vigna at a PPi concentration equivalent to 10 times the Km of the V-PPase. Although all three PPi analogs inhibited the plant V-PPase and bacterial H+-PPi synthase with qualitatively similar kinetics, whether substrate hydrolysis or PPi-dependent H+-translocation was measured, neither the vacuolar H+-ATPase nor plasma membrane H+-ATPase nor any of the non-V-PPase-related PPi hydrolases were markedly inhibited under these conditions. It is concluded that 1, 1-diphosphonates, in general, and aminomethylenediphosphonate, in particular, are potent type-specific inhibitors of the V-PPase and its putative bacterial homolog, the H+-PPi synthase of Rhodospirillum. PMID:12232069

  15. Eugenol synthase genes in floral scent variation in Gymnadenia species.

    Science.gov (United States)

    Gupta, Alok K; Schauvinhold, Ines; Pichersky, Eran; Schiestl, Florian P

    2014-12-01

    Floral signaling, especially through floral scent, is often highly complex, and little is known about the molecular mechanisms and evolutionary causes of this complexity. In this study, we focused on the evolution of "floral scent genes" and the associated changes in their functions in three closely related orchid species of the genus Gymnadenia. We developed a benchmark repertoire of 2,571 expressed sequence tags (ESTs) in Gymnadenia odoratissima. For the functional characterization and evolutionary analysis, we focused on eugenol synthase, as eugenol is a widespread and important scent compound. We obtained complete coding complementary DNAs (cDNAs) of two copies of putative eugenol synthase genes in each of the three species. The proteins encoded by these cDNAs were characterized by expression and testing for activity in Escherichia coli. While G. odoratissima and Gymnadenia conopsea enzymes were found to catalyze the formation of eugenol only, the Gymnadenia densiflora proteins synthesize eugenol, as well as a smaller amount of isoeugenol. Finally, we showed that the eugenol and isoeugenol producing gene copies of G. densiflora are evolutionarily derived from the ancestral genes of the other species producing only eugenol. The evolutionary switch from production of one to two compounds evolved under relaxed purifying selection. In conclusion, our study shows the molecular bases of eugenol and isoeugenol production and suggests that an evolutionary transition in a single gene can lead to an increased complexity in floral scent emitted by plants.

  16. Cloning and Identification of Methionine Synthase Gene from Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Lan HUANG; Dong-Yang LI; Shao-Xiao WANG; Shi-Ming ZHANG; Jun-Hui CHEN; Xiang-Fu WU

    2005-01-01

    Methionine synthase (MS) is grouped into two classes. Class One MS (MetH) and Class Two MS (MetE) share no homology and differ in their catalytic model. Based on the conserved sequences of metE genes from different organisms, a segment of the metE gene was first cloned from Pichia pastoris genomic DNA by PCR, and its 5' and 3' regions were further cloned by 5'- and 3'-rapid amplification of cDNA ends (RACE), respectively. The assembled sequence reveals an open reading frame encoding a polypeptide of 768 residues, and the deduced product shares 76% identity with MetE of Saccharomyces cerevisiae. P. pastoris methionine synthase (PpMetE) consists of two domains common to MetEs. The active site is located in the C-terminal domain, in which the residues involved in the interaction of zinc with substrates are conserved. Homologous expression of PpMetE in P. pastoris was achieved, and the heterologous expression of PpMetE in the S. cerevisiae strain XJB3-1D that is MetE-defective restored the growth of the mutant on methionine-free minimal media. The gene sequence has been submitted to GenBank/EMBL/DDBJ under accession No. AY601648.

  17. Preliminary crystallographic analysis of sugar cane phosphoribosylpyrophosphate synthase

    International Nuclear Information System (INIS)

    X-ray diffraction data have been collected from crystals of recombinant sugar cane phosphoribosylpyrophosphate synthase (PRS) and analysis has revealed its quaternary structure, localizing this PRS into the class of enzymes forming an hexameric oligomer of 223 kDa. Phosphoribosylpyrophosphate synthases (PRS; EC 2.7.6.1) are enzymes that are of central importance in several metabolic pathways in all cells. The sugar cane PRS enzyme contains 328 amino acids with a molecular weight of 36.6 kDa and represents the first plant PRS to be crystallized, as well as the first phosphate-independent PRS to be studied in molecular detail. Sugar cane PRS was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. Using X-ray diffraction experiments it was determined that the crystals belong to the orthorhombic system, with space group P21212 and unit-cell parameters a = 213.2, b = 152.6, c = 149.3 Å. The crystals diffract to a maximum resolution of 3.3 Å and a complete data set to 3.5 Å resolution was collected and analysed

  18. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  19. Tryptophan synthase of Phaeophyceae originated from the secondary host nucleus

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yalan; CHI Shan; WU Shuangxiu; LIU Cui; YU Jun; WANG Xumin; CHEN Shengping; LIU Tao

    2014-01-01

    Tryptophan synthase (TS, EC 4.2.1.20) catalyzes the last two steps of L-tryptophan biosynthesis. In pro-karyotes, tryptophan synthase is a multi-enzyme complex, and it consists ofαandβsubunit which forms anα-ββ-αcomplex. In fungi and diatoms, TS is a bifunctional enzyme. Because of the limited genomic and transcriptomic data of algae, there are few studies on TS evolution of algae. Here we analyzed the data of the 1000 Plants Project (1KP), and focused on red algae and brown algae. We found out that the TS of Phaeophy-ceae were fusion genes, which probably originated from the secondary host nucleus, and that the TS of Rho-dophyta contained two genes, TSA and TSB, which both display a possible cyanobacterial origin at the time of primary endosymbiosis. In addition, there were two types of TSB genes (TSB1 and TSB2). Through the multiple sequence alignment of TSB proteins, we found several residues conserved in TSB1 but variable in TSB2 which connect withαsubunit. The phenomenon may suggest that the TSB2 sequences of Rhodophyta cannot form stable complex with TSA.

  20. The crystal structure of human GDP-L-fucose synthase.

    Science.gov (United States)

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  1. In Vitro Biochemical Characterization of All Barley Endosperm Starch Synthases

    Directory of Open Access Journals (Sweden)

    Jose Antonio Cuesta-Seijo

    2016-01-01

    Full Text Available Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs. While the overall starch synthase (SS reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates.

  2. Polyketide synthases from poison hemlock (Conium maculatum L.).

    Science.gov (United States)

    Hotti, Hannu; Seppänen-Laakso, Tuulikki; Arvas, Mikko; Teeri, Teemu H; Rischer, Heiko

    2015-11-01

    Coniine is a toxic alkaloid, the biosynthesis of which is not well understood. A possible route, supported by evidence from labelling experiments, involves a polyketide formed by the condensation of one acetyl-CoA and three malonyl-CoAs catalysed by a polyketide synthase (PKS). We isolated PKS genes or their fragments from poison hemlock (Conium maculatum L.) by using random amplification of cDNA ends (RACE) and transcriptome analysis, and characterized three full-length enzymes by feeding different starter-CoAs in vitro. On the basis of our in vitro experiments, two of the three characterized PKS genes in poison hemlock encode chalcone synthases (CPKS1 and CPKS2), and one encodes a novel type of PKS (CPKS5). We show that CPKS5 kinetically favours butyryl-CoA as a starter-CoA in vitro. Our results suggest that CPKS5 is responsible for the initiation of coniine biosynthesis by catalysing the synthesis of the carbon backbone from one butyryl-CoA and two malonyl-CoAs. PMID:26260860

  3. Crystallographic and kinetic study of riboflavin synthase from Brucella abortus, a chemotherapeutic target with an enhanced intrinsic flexibility

    Energy Technology Data Exchange (ETDEWEB)

    Serer, María I.; Bonomi, Hernán R. [IIBBA–CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires (Argentina); Guimarães, Beatriz G. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette CEDEX (France); Rossi, Rolando C. [Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires (Argentina); Goldbaum, Fernando A.; Klinke, Sebastián, E-mail: sklinke@leloir.org.ar [IIBBA–CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires (Argentina)

    2014-05-01

    This work reports crystal structures of trimeric riboflavin synthase from the pathogen B. abortus both as the apo protein and in complex with several ligands of interest. It is shown that ligand binding drives the assembly of the unique active site of the trimer, and these findings are complemented by a detailed kinetic study on this enzyme, in which marked inhibition by substrate and product was observed. Riboflavin synthase (RS) catalyzes the last step of riboflavin biosynthesis in microorganisms and plants, which corresponds to the dismutation of two molecules of 6,7-dimethyl-8-ribityllumazine to yield one molecule of riboflavin and one molecule of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. Owing to the absence of this enzyme in animals and the fact that most pathogenic bacteria show a strict dependence on riboflavin biosynthesis, RS has been proposed as a potential target for antimicrobial drug development. Eubacterial, fungal and plant RSs assemble as homotrimers lacking C{sub 3} symmetry. Each monomer can bind two substrate molecules, yet there is only one active site for the whole enzyme, which is located at the interface between two neighbouring chains. This work reports the crystallographic structure of RS from the pathogenic bacterium Brucella abortus (the aetiological agent of the disease brucellosis) in its apo form, in complex with riboflavin and in complex with two different product analogues, being the first time that the structure of an intact RS trimer with bound ligands has been solved. These crystal models support the hypothesis of enhanced flexibility in the particle and also highlight the role of the ligands in assembling the unique active site. Kinetic and binding studies were also performed to complement these findings. The structural and biochemical information generated may be useful for the rational design of novel RS inhibitors with antimicrobial activity.

  4. Niacinamide therapy for osteoarthritis--does it inhibit nitric oxide synthase induction by interleukin 1 in chondrocytes?

    Science.gov (United States)

    McCarty, M F; Russell, A L

    1999-10-01

    Fifty years ago, Kaufman reported that high-dose niacinamide was beneficial in osteoarthritis (OA) and rheumatoid arthritis. A recent double-blind study confirms the efficacy of niacinamide in OA. It may be feasible to interpret this finding in the context of evidence that synovium-generated interleukin-1 (IL-1), by inducing nitric oxide (NO) synthase and thereby inhibiting chondrocyte synthesis of aggrecan and type II collagen, is crucial to the pathogenesis of OA. Niacinamide and other inhibitors of ADP-ribosylation have been shown to suppress cytokine-mediated induction of NO synthase in a number of types of cells; it is therefore reasonable to speculate that niacinamide will have a comparable effect in IL-1-exposed chondrocytes, blunting the anti-anabolic impact of IL-1. The chondroprotective antibiotic doxycycline may have a similar mechanism of action. Other nutrients reported to be useful in OA may likewise intervene in the activity or synthesis of IL-1. Supplemental glucosamine can be expected to stimulate synovial synthesis of hyaluronic acid; hyaluronic acid suppresses the anti-catabolic effect of IL-1 in chondrocyte cell cultures, and has documented therapeutic efficacy when injected intra-articularly. S-adenosylmethionine (SAM), another proven therapy for OA, upregulates the proteoglycan synthesis of chondrocytes, perhaps because it functions physiologically as a signal of sulfur availability. IL-1 is likely to decrease SAM levels in chondrocytes; supplemental SAM may compensate for this deficit. Adequate selenium nutrition may down-regulate cytokine signaling, and ample intakes of fish oil can be expected to decrease synovial IL-1 production; these nutrients should receive further evaluation in OA. These considerations suggest that non-toxic nutritional regimens, by intervening at multiple points in the signal transduction pathways that promote the synthesis and mediate the activity of IL-1, may provide a substantially superior alternative to NSAIDs

  5. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    Science.gov (United States)

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro.

  6. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    Science.gov (United States)

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro. PMID:27559295

  7. An active site–tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jesse R.; Donini, Stefano; Kappock, T. Joseph, E-mail: kappock@purdue.edu [Purdue University, 175 South University Street, West Lafayette, IN 47907-2063 (United States)

    2015-09-23

    Citrate synthase from the thermophilic euryarchaeon T. acidophilum fused to a hexahistidine tag was purified and biochemically characterized. The structure of the unliganded enzyme at 2.2 Å resolution contains tail–active site contacts in half of the active sites. Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that ‘close’ the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an ‘open’ structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site–tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS.

  8. Methylation and Gene Expression Responses to Ethanol Feeding and Betaine Supplementation in the Cystathionine Beta Synthase-Deficient Mouse

    Science.gov (United States)

    Medici, Valentina; Schroeder, Diane I.; Woods, Rima; LaSalle, Janine M.; Geng, Yongzhi; Shibata, Noreene M.; Peerson, Janet; Hodzic, Emir; Dayal, Sanjana; Tsukamoto, Hidekazu; Kharbanda, Kusum K.; Tillman, Brittany; French, Samuel W.; Halsted, Charles H.

    2014-01-01

    Background Alcoholic steatohepatitis (ASH) is caused in part by the effects of ethanol on hepatic methionine metabolism. Methods To investigate the phenotypic and epigenetic consequences of altered methionine metabolism in this disease, we studied the effects of 4-wk intragastric ethanol feeding with and without the methyl donor betaine in cystathionine beta synthase (CβS) heterozygous C57BL/6J mice. Results The histopathology of early ASH was induced by ethanol feeding and prevented by betaine supplementation, while ethanol feeding reduced and betaine supplementation maintained the hepatic methylation ratio of the universal methyl donor S-adenosylmethionine (SAM) to the methyltransferase inhibitor S-adenosylhomocysteine (SAH). MethylC-Seq genomic sequencing of heterozygous liver samples from each diet group found 2–4% reduced methylation in gene bodies but not promoter regions of all autosomes of ethanol fed mice, each of which were normalized in samples from mice fed the betaine supplemented diet. The transcript levels of inducible nitric oxide synthase (Nos2) and DNA methyltransferase 1 (Dnmt1) were increased, while those of peroxisome proliferator receptor-a (Pparα) were reduced in ethanol fed mice, and each was normalized in mice fed the betaine supplemented diet. DNA pyrosequencing of CβS heterozygous samples found reduced methylation in a gene body of Nos2 by ethanol feeding that was restored by betaine supplementation, and was correlated inversely with its expression and positively with SAM: SAH ratios. Conclusions The present studies have demonstrated relationships among ethanol induction of ASH with aberrant methionine metabolism that was associated with gene body DNA hypomethylation in all autosomes and was prevented by betaine supplementation. The data imply that ethanol-induced changes in selected gene transcript levels and hypomethylation in gene bodies during the induction of ASH is a result of altered methionine metabolism that can be reversed

  9. Identification of an abundant 56 kDa protein implicated in food allergy as granule-bound starch synthase.

    Science.gov (United States)

    Krishnan, Hari B; Chen, Ming-Hsuan

    2013-06-01

    Rice, the staple food of south and east Asian counties, is considered to be hypoallergenic. However, several clinical studies have documented rice-induced allergy in sensitive patients. Rice proteins with molecular weights of 14-16, 26, 33, and 56 kDa have been identified as allergens. Recently, it was documented that the 56 kDa rice allergen was responsible for rice-induced anaphylaxis. The 14-16 kDa allergens have been identified as α-amylase inhibitors; the 26 kDa protein has been identified as α-globulin; and the 33 kDa protein has been identified as glyoxalase I. However, the identity of the 56 kDa rice allergen has not yet been determined. In this study, we demonstrate that serum from patients allergic to maize shows IgE binding to a 56 kDa protein that was present in both maize and rice but not in the oil seeds soybean and peanut. The 56 kDa IgE-binding protein was abundant in the rice endosperm. We have purified this protein from rice endosperm and demonstrated its reactivity to IgE antibodies from the serum of maize-allergic patients. The purified protein was subjected to matrix-assisted laser desorption ionization-time of flight-tandem mass spectrometry analysis, resulting in identification of this rice allergen as granule-bound starch synthase, a product of the Waxy gene. Immunoblot analysis using protein extracts from a waxy mutant of rice revealed the absence of the 56 kDa IgE-binding protein. Our results demonstrate that the 56 kDa rice allergen is granule-bound starch synthase and raise the possibility of using waxy mutants of rice as a potential source of the hypoallergenic diet for patients sensitized to the 56 kDa rice allergen.

  10. An active site–tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    International Nuclear Information System (INIS)

    Citrate synthase from the thermophilic euryarchaeon T. acidophilum fused to a hexahistidine tag was purified and biochemically characterized. The structure of the unliganded enzyme at 2.2 Å resolution contains tail–active site contacts in half of the active sites. Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that ‘close’ the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an ‘open’ structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site–tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS

  11. Synthesis of Lysine Methyltransferase Inhibitors

    Directory of Open Access Journals (Sweden)

    Tao eYe

    2015-07-01

    Full Text Available Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  12. Impact of nutrient excess and endothelial nitric oxide synthase on the plasma metabolite profile in mice

    Directory of Open Access Journals (Sweden)

    Brian E Sansbury

    2014-11-01

    Full Text Available An increase in calorie consumption is associated with the recent rise in obesity prevalence. However, our current understanding of the effects of nutrient excess on major metabolic pathways appears insufficient to develop safe and effective metabolic interventions to prevent obesity. Hence, we sought to identify systemic metabolic changes caused by nutrient excess and to determine how endothelial nitric oxide synthase (eNOS—which has anti-obesogenic properties—affects systemic metabolism by measuring plasma metabolites. Wild-type (WT and eNOS transgenic (eNOS-TG mice were placed on low fat or high fat diets for six weeks, and plasma metabolites were measured using an unbiased metabolomic approach. High fat feeding in WT mice led to significant increases in fat mass, which was associated with significantly lower plasma levels of 1,5-anhydroglucitol, lysophospholipids, 3-dehydrocarnitine, and bile acids, as well as branched chain amino acids (BCAAs and their metabolites. Plasma levels of several lipids including sphingomyelins, stearoylcarnitine, dihomo-linoleate and metabolites associated with oxidative stress were increased by high fat diet. In comparison with low fat-fed WT mice, eNOS-TG mice showed lower levels of several free fatty acids, but in contrast, the levels of bile acids, amino acids, and BCAA catabolites were increased. When placed on a high fat diet, eNOS overexpressing mice showed remarkably higher levels of plasma bile acids and elevated levels of plasma BCAAs and their catabolites compared with WT mice. Treatment with GW4064, an inhibitor of bile acid synthesis, decreased plasma bile acid levels but was not sufficient to reverse the anti-obesogenic effects of eNOS overexpression. These findings reveal unique metabolic changes in response to high fat diet and eNOS overexpression and suggest that the anti-obesity effects of eNOS are likely independent of changes in the bile acid pool.

  13. In vitro selected peptides bind with thymidylate synthase mRNA and inhibit its translation

    Institute of Scientific and Technical Information of China (English)

    YAN; Song; NIU; RongLi; WANG; Zheng; LIN; XiuKun

    2007-01-01

    Thymidylate synthase (TS), an essential enzyme for catalyzing the biosynthesis of thymidylate, is a critical therapeutic target in cancer therapy. Recent studies have shown that TS functions as an RNA-binding protein by interacting with two different sequences on its own mRNA, thus, repressing translational efficiency. In this study, peptides binding TS RNA with high affinity were isolated using mRNA display from a large peptide library (>1013 different sequences). The randomized library was subjected up to twelve rounds of in vitro selection and amplification. Comparing the amino acid composition of the selected peptides (12th round, R12) with those from the initial random library (round zero, R0), the basic and aromatic residues in the selected peptides were enriched significantly, suggesting that these peptide regions might be important in the peptide-TS mRNA interaction. Categorizing the amino acids at each random position based on their physicochemical properties and comparing the distributions with those of the initial random pool, an obvious basic charge characteristic was found at positions 1, 12, 17 and 18, suggesting that basic side chains participate in RNA binding. Secondary structure prediction showed that the selected peptides of R12 pool represented a helical propensity compared with R0 pool, and the regions were rich in basic residues. The electrophoretic gel mobility shift and in vitro translation assays showed that the peptides selected using mRNA display could bind TS RNA specifically and inhibit the translation of TS mRNA. Our results suggested that the identified peptides could be used as new TS inhibitors and developed to a novel class of anticancer agents.

  14. Nuclear glycogen synthase kinase-3 {beta} (GSK-3) in Rhipicephalus (Boophilus) microplus tick embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Mentzingen, Leticia; Andrade, Josiana G. de; Logullo, Carlos [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ (Brazil). Centro de Biociencias e Biotecnologia. Lab. de Quimica e Funcao de Proteinas e Peptideos (LQFPP); Andrade, Caroline P. de; Vaz Junior, Itabajara [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Centro de Biotecnologia

    2008-07-01

    Full text: Glycogen synthase kinase-3 (GSK3) is recognized as a key component of a large number of cellular processes and diseases. Several mechanisms play a part in controlling the actions of GSK3, including phosphorylation, protein complex formation, and subcellular distribution. Recent observations point to functions for phosphorylases several transcription factors in the nucleus. Also, GSK3b participate of the canonical W nt signalling pathway, which has been studied intensively in embryonic and cancer cells. Like in many other signaling pathways, most components in W nt signal transduction were highly conserved during the evolution. More than 40 proteins have been reported to be phosphorylated by GSK3, including over a dozen transcription factors. Although the mechanisms regulating GSK3 are not fully understood, precise control appears to be achieved by a combination of phosphorylation, localization, and interactions with GSK3-binding proteins. Although GSK3 is traditionally considered a cytosolic protein, it is also present in nuclei. Nuclear GSK3 is particularly interesting because of the many transcription factors that it regulates enabling GSK3 to influence many signaling pathways that converge on these transcription factors, thereby regulating the expression of many genes. Our group identified that GSK-3 {beta} could be detected in different stage eggs of R. micro plus. In this work we detected the GSK-3 in isolated nuclear fraction from the egg homogenates of R. micro plus by western-blot analysis, using anti-GSK- 3 {beta} antibodies. The enzyme activity was also detected radiochemically throughout embryogenesis in same fraction. The GSK-3 activity was inhibiting by using SB 216763 (selective molecule inhibitors of GSK-3). Taken together our results suggest that GSK-3 {beta} isoform probably is involved in gene transcription factors during R. micro plus embryo development.

  15. Effect of cigarette smoke extract on nitric oxide synthase in pulmonary artery endothelial cells.

    Science.gov (United States)

    Su, Y; Han, W; Giraldo, C; De Li, Y; Block, E R

    1998-11-01

    Cigarette smoking is associated with impaired endothelium-dependent vasodilation and reduced nitric oxide (NO) in the exhaled air of smokers. To explore the mechanism for the impairment of NO-mediated vasodilation, we studied the effect of cigarette smoke extract (CSE) on NO synthase (eNOS) activity and content in pulmonary artery endothelial cells (PAEC). Incubation of PAEC with CSE resulted in a time- and dose-dependent decrease in eNOS activity. The inhibitory effect of CSE on eNOS activity was not reversible. Both gas-phase and particulate-phase extracts of CSE contributed to the inhibition of eNOS activity. The protein kinase c (PKC) inhibitors staurosporine and chelerythrine did not affect the CSE-induced inhibition of eNOS activity. Catalase, superoxide dismutase (SOD), vitamin C, vitamin E, glutathione, and dithiothreitol (DTT) also did not prevent the CSE-induced inhibition of eNOS activity, and incubation of PAEC with 3 mM nicotine did not change the activity of eNOS. Treatment of PAEC with CSE also caused a nonreversible, time-dependent decrease in eNOS protein content detected by Western blot analysis, and in eNOS messenger RNA (mRNA) detected by Northern blot analysis. Treatment of PAEC with CSE had no effect on cell protein or glutathione contents or on lactate dehydrogenase (LDH) release. These results indicate that exposure to CSE causes an irreversible inhibition of eNOS activity in PAEC, and suggest that the decreased activity is secondary to reduced eNOS protein mass and mRNA. The decrease in eNOS activity may contribute to the high risk of pulmonary and cardiovascular disease in cigarette smokers. PMID:9806747

  16. Endothelial nitric oxide synthase tagSNPs influence the effects of enalapril in essential hypertension.

    Science.gov (United States)

    Oliveira-Paula, Gustavo H; Lacchini, Riccardo; Luizon, Marcelo R; Fontana, Vanessa; Silva, Pamela S; Biagi, Celso; Tanus-Santos, Jose E

    2016-05-01

    The antihypertensive effects of angiotensin-converting enzyme inhibitors (ACEi) are associated with up-regulation of endothelial nitric oxide synthase (NOS3) activity. This mechanism may explain how polymorphisms in NOS3 gene affect the antihypertensive responses to ACEi. While clinically relevant NOS3 polymorphisms were previously shown to affect the antihypertensive responses to enalapril, no study has tested the hypothesis that NOS3 tagSNPs influence the antihypertensive effects of this drug. We examined whether the NOS3 tagSNPs rs3918226, rs3918188, and rs743506, and their haplotypes, affect the antihypertensive responses to enalapril in 101 patients with essential hypertension. Subjects were prospectively treated only with enalapril for 8 weeks. Genotypes were determined by Taqman(®) allele discrimination assay and real-time polymerase chain reaction (PCR) and haplotype frequencies were estimated. We compared the effects of NOS3 tagSNPs on changes in blood pressure after enalapril treatment. To confirm our findings, multiple linear regression analysis was performed adjusting for age, gender, ethnicity, and alcohol consumption. We found that hypertensive patients carrying the AA genotype for the tagSNP rs3918188 showed lower decreases in blood pressure in response to enalapril. Moreover, the TCA haplotype was associated with improved decreases in blood pressure in response to enalapril compared with the CAG haplotype. Adjustment for covariates in multiple linear regression analysis did not change these effects. In addition, when patients were stratified according to the dose of enalapril used, we found that the carries of the T allele for the functional tagSNP rs3918226 showed more intense decreases in blood pressure in response to enalapril 20 mg/day. Our findings suggest that NOS3 tagSNPs influence the effects of enalapril in essential hypertension.

  17. Glycogen synthase kinase-3 in the etiology and treatment of mood disorders

    Directory of Open Access Journals (Sweden)

    Richard Scott Jope

    2011-08-01

    Full Text Available The mood disorders major depressive disorder and bipolar disorder are prevalent, are inadequately treated, and little is known about their etiologies. A better understanding of the causes of mood disorders would benefit from improved animal models of mood disorders, which now rely on behavioral measurements. This review considers the limitations in relating measures of rodent behaviors to mood disorders, and the evidence from behavioral assessments indicating that glycogen synthase kinase-3 (GSK3 dysregulation promotes mood disorders and is a potential target for treating mood disorders. The classical mood stabilizer lithium was identified by studying animal behaviors and later was discovered to be an inhibitor of GSK3. Several mood-relevant behavioral effects of lithium in rodents have been identified, and most have now been shown to be due to its inhibition of GSK3. An extensive variety of pharmacological and molecular approaches for manipulating GSK3 are discussed, the results of which strongly support the proposal that inhibition of GSK3 reduces both depression-like and manic-like behaviors. Studies in human postmortem brain and peripheral cells also have identified correlations between alterations in GSK3 and mood disorders. Evidence is reviewed that depression may be associated with impaired inhibitory control of GSK3, and mania by hyper-stimulation of GSK3. Taken together, these studies provide substantial support for the hypothesis that inhibition of GSK3 activity is therapeutic for mood disorders. Future research should identify the causes of dysregulated GSK3 in mood disorders and the actions of GSK3 that contribute to these diseases.

  18. Endothelial nitric oxide synthase tagSNPs influence the effects of enalapril in essential hypertension.

    Science.gov (United States)

    Oliveira-Paula, Gustavo H; Lacchini, Riccardo; Luizon, Marcelo R; Fontana, Vanessa; Silva, Pamela S; Biagi, Celso; Tanus-Santos, Jose E

    2016-05-01

    The antihypertensive effects of angiotensin-converting enzyme inhibitors (ACEi) are associated with up-regulation of endothelial nitric oxide synthase (NOS3) activity. This mechanism may explain how polymorphisms in NOS3 gene affect the antihypertensive responses to ACEi. While clinically relevant NOS3 polymorphisms were previously shown to affect the antihypertensive responses to enalapril, no study has tested the hypothesis that NOS3 tagSNPs influence the antihypertensive effects of this drug. We examined whether the NOS3 tagSNPs rs3918226, rs3918188, and rs743506, and their haplotypes, affect the antihypertensive responses to enalapril in 101 patients with essential hypertension. Subjects were prospectively treated only with enalapril for 8 weeks. Genotypes were determined by Taqman(®) allele discrimination assay and real-time polymerase chain reaction (PCR) and haplotype frequencies were estimated. We compared the effects of NOS3 tagSNPs on changes in blood pressure after enalapril treatment. To confirm our findings, multiple linear regression analysis was performed adjusting for age, gender, ethnicity, and alcohol consumption. We found that hypertensive patients carrying the AA genotype for the tagSNP rs3918188 showed lower decreases in blood pressure in response to enalapril. Moreover, the TCA haplotype was associated with improved decreases in blood pressure in response to enalapril compared with the CAG haplotype. Adjustment for covariates in multiple linear regression analysis did not change these effects. In addition, when patients were stratified according to the dose of enalapril used, we found that the carries of the T allele for the functional tagSNP rs3918226 showed more intense decreases in blood pressure in response to enalapril 20 mg/day. Our findings suggest that NOS3 tagSNPs influence the effects of enalapril in essential hypertension. PMID:27060232

  19. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Li DING; Jin ZHANG

    2012-01-01

    To investigate the effects of glucagon-like peptide-1 (GLP-1) on endothelial NO synthase (eNOS) in human umbilical vein endothelial cells (HUVECs),and elucidate whether GLP-1 receptor (GLP-1R) and GLP-1(9-36) are involved in these effects.Methods:HUVECs were used.The activity of eNOS was measured with NOS assay kit.Phosphorylated and total eNOS proteins were detected using Western blot analysis.The level of eNOS mRNA was quantified with real-time RT-PCR.Results:Incubation of HUVECs with GLP-1 (50-5000 pmol/L) for 30 min significantly increased the activity of eNOS.Incubation of HUVECs with GLP-1 (500-5000 pmol/L) for 5 or 10 min increased eNOS phosphorylated at ser-1177.Incubation with GLP-1 (5000 pmol/L) for 48 h elevated the level of eNOS protein,did not affect the level of eNOS mRNA.GLP-1R agonists exenatide and GLP-1(9-36) at the concentration of 5000 pmol/L increased the activity,phosphorylation and protein level of eNOS.GLP-1R antagonist exendin(9-39) or DPP-4 inhibitor sitagliptin,which abolished GLP-1(9-36) formation,at the concentration of 5000 pmol/L partially blocked the effects of GLP-1 on eNOS.Conclusion:GLP-1 upregulated the activity and protein expression of eNOS in HUVECs through the GLP-1R-dependent and GLP-1(9-36)-related pathways.GLP-1 may prevent or delay the formation of atherosclerosis in diabetes mellitus by improving the function of eNOS.

  20. Participation of neuronal nitric oxide synthase in experimental neuropathic pain induced by sciatic nerve transection

    Directory of Open Access Journals (Sweden)

    M. Chacur

    2010-04-01

    Full Text Available Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO. In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT. Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test and allodynia (von Frey hair test. Control animals did not present any alteration (sham-animals. The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL, blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30 in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%. Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%, reaching the greatest increase (60% 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.

  1. Oxidized phospholipids induce ceramide accumulation in RAW 264.7 macrophages: role of ceramide synthases.

    Directory of Open Access Journals (Sweden)

    Lingaraju M Halasiddappa

    Full Text Available Oxidized phospholipids (OxPLs, including 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC and 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine (POVPC are among several biologically active derivatives that are generated during oxidation of low-density lipoproteins (LDLs. These OxPLs are factors contributing to pro-atherogenic effects of oxidized LDLs (OxLDLs, including inflammation, proliferation and death of vascular cells. OxLDL also elicits formation of the lipid messenger ceramide (Cer which plays a pivotal role in apoptotic signaling pathways. Here we report that both PGPC and POVPC are cytotoxic to cultured macrophages and induce apoptosis in these cells which is associated with increased cellular ceramide levels after several hours. In addition, exposure of RAW 264.7 cells to POVPC and PGPC under the same conditions resulted in a significant increase in ceramide synthase activity, whereas, acid or neutral sphingomyelinase activities were not affected. PGPC is not only more toxic than POVPC, but also a more potent inducer of ceramide formation by activating a limited subset of CerS isoforms. The stimulated CerS activities are in line with the C16-, C22-, and C24:0-Cer species that are generated under the influence of the OxPL. Fumonisin B1, a specific inhibitor of CerS, suppressed OxPL-induced ceramide generation, demonstrating that OxPL-induced CerS activity in macrophages is responsible for the accumulation of ceramide. OxLDL elicits the same cellular ceramide and CerS effects. Thus, it is concluded that PGPC and POVPC are active components that contribute to the capacity of this lipoprotein to elevate ceramide levels in macrophages.

  2. Acid sphingomyelinase gene knockout ameliorates hyperhomocysteinemic glomerular injury in mice lacking cystathionine-β-synthase.

    Directory of Open Access Journals (Sweden)

    Krishna M Boini

    Full Text Available Acid sphingomyelinase (ASM has been implicated in the development of hyperhomocysteinemia (hHcys-induced glomerular oxidative stress and injury. However, it remains unknown whether genetically engineering of ASM gene produces beneficial or detrimental action on hHcys-induced glomerular injury. The present study generated and characterized the mice lacking cystathionine β-synthase (Cbs and Asm mouse gene by cross breeding Cbs(+/- and Asm(+/- mice. Given that the homozygotes of Cbs(-/-/Asm(-/- mice could not survive for 3 weeks. Cbs(+/-/Asm(+/+, Cbs(+/-/Asm(+/- and Cbs(+/-/Asm(-/- as well as their Cbs wild type littermates were used to study the role of Asm(-/- under a background of Cbs(+/- with hHcys. HPLC analysis revealed that plasma Hcys level was significantly elevated in Cbs heterozygous (Cbs(+/- mice with different copies of Asm gene compared to Cbs(+/+ mice with different Asm gene copies. Cbs(+/-/Asm(+/+ mice had significantly increased renal Asm activity, ceramide production and O(2.(- level compared to Cbs(+/+/Asm(+/+, while Cbs(+/-/Asm(-/- mice showed significantly reduced renal Asm activity, ceramide production and O(2.(- level due to increased plasma Hcys levels. Confocal microscopy demonstrated that colocalization of podocin with ceramide was much lower in Cbs(+/-/Asm(-/- mice compared to Cbs(+/-/Asm(+/+ mice, which was accompanied by a reduced glomerular damage index, albuminuria and proteinuria in Cbs(+/-/Asm(-/- mice. Immunofluorescent analyses of the podocin, nephrin and desmin expression also illustrated less podocyte damages in the glomeruli from Cbs(+/-/Asm(-/- mice compared to Cbs(+/-/Asm(+/+ mice. In in vitro studies of podocytes, hHcys-enhanced O(2.(- production, desmin expression, and ceramide production as well as decreases in VEGF level and podocin expression in podocytes were substantially attenuated by prior treatment with amitriptyline, an Asm inhibitor. In conclusion, Asm gene knockout or corresponding enzyme

  3. Structure of the dimeric form of CTP synthase from Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Lauritsen, Iben; Willemoës, Martin; Jensen, Kaj Frank;

    2011-01-01

    CTP synthase catalyzes the last committed step in de novo pyrimidine-nucleotide biosynthesis. Active CTP synthase is a tetrameric enzyme composed of a dimer of dimers. The tetramer is favoured in the presence of the substrate nucleotides ATP and UTP; when saturated with nucleotide, the tetramer c...

  4. Insights into the subunit in-teractions of the chloroplast ATP synthase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Subunit interactions of the chloroplast F0F1- ATP synthase were studied using the yeast two-hybrid system. The coding sequences of all the nine subunits of spinach chloroplast ATP synthase were cloned in two-hybrid vectors. The vectors were transformed into the yeast strains HF7c and SFY526 by various pairwise combinations, and the protein interactions were analyzed by measuring the yeast growth on minimal SD medium without serine, lucine and histidine. Interactions of γ Subunit with wild type or two truncated mutants of γ sununit, △εN21 and △εC45, which lose their abilities to inhibit the ATP hydrolysis, were also detected by in vitro and in vivo binding assay. The present results are largely accordant to the common structure model of F0F1-ATP synthase. Different from that in the E. Coli F0F1-ATP synthase, the δ subunit of chloroplast ATP syn- thase could interact with β,γ,ε and all the CF0 subunits in the two-hybrid system. These results suggested that though the chloroplast ATP synthase shares the similar structure and composition of subunits with the enzyme from E. Coli, it may be different in the subunit interactions and con- formational change during catalysis between these two sources of ATP synthase. Based on the present results and our knowledge of structure model of E. Coli ATP synthase, a deduced structure model of chloroplast ATP synthase was proposed.

  5. Selectivity of the surface binding site (SBS) on barley starch synthase I

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cuesta-Seijo, Jose A.; Palcic, Monica;

    2014-01-01

    Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was ...

  6. Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli.

    Science.gov (United States)

    Del Campo, M; Kaya, Y; Ofengand, J

    2001-11-01

    There are 10 known putative pseudouridine synthase genes in Escherichia coli. The products of six have been previously assigned, one to formation of the single pseudouridine in 16S RNA, three to the formation of seven pseudouridines in 23S RNA, and three to the formation of three pseudouridines in tRNA (one synthase makes pseudouridine in 23S RNA and tRNA). Here we show that the remaining four putative synthase genes make bona fide pseudouridine synthases and identify which pseudouridines they make. RluB (formerly YciL) and RluE (formerly YmfC) make pseudouridine2605 and pseudouridine2457, respectively, in 23S RNA. RluF (formerly YjbC) makes the newly discovered pseudouridine2604 in 23S RNA, and TruC (formerly YqcB) makes pseudouridine65 in tRNA(Ile1) and tRNA(Asp). Deletion of each of these synthase genes individually had no effect on exponential growth in rich media at 25 degrees C, 37 degrees C, or 42 degrees C. A strain lacking RluB and RluF also showed no growth defect under these conditions. Mutation of a conserved aspartate in a common sequence motif, previously shown to be essential for the other six E. coli pseudouridine synthases and several yeast pseudouridine synthases, also caused a loss of in vivo activity in all four of the synthases studied in this work.

  7. Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specifity.

    NARCIS (Netherlands)

    Tamer, el M.K.; Lucker, J.; Bosch, D.; Verhoeven, H.A.; Verstappen, F.W.A.; Schwab, W.; Tunen, van A.J.; Voragen, A.G.J.; Maagd, de R.A.; Bouwmeester, H.J.

    2003-01-01

    Monoterpene cyclases are the key enzymes in the monoterpene biosynthetic pathway, as they catalyze the cyclization of the ubiquitous geranyl diphosphate (GDP) to the specific monoterpene skeletons. From Citrus limon, four monoterpene synthase-encoding cDNAs for a P-pinene synthase named Cl(-)betaPIN

  8. [Pharmacology of bone resorption inhibitor].

    Science.gov (United States)

    Menuki, Kunitaka; Sakai, Akinori

    2015-10-01

    Currently, bone resorption inhibitor is mainly used for osteoporosis. A number of these agents have been developed. These pharmacological action are various. Bisphosphonate inhibit functions of the osteoclasts by inducing apoptosis. On the one hand, RANK-ligand inhibitor and selective estrogen receptor modulator inhibit formation of osteoclasts. It is important to understand these pharmacological action for the selection of the appropriate medicine. PMID:26529923

  9. Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function.

    Science.gov (United States)

    Kampranis, Sotirios C; Ioannidis, Daphne; Purvis, Alan; Mahrez, Walid; Ninga, Ederina; Katerelos, Nikolaos A; Anssour, Samir; Dunwell, Jim M; Degenhardt, Jörg; Makris, Antonios M; Goodenough, Peter W; Johnson, Christopher B

    2007-06-01

    Terpene synthases are responsible for the biosynthesis of the complex chemical defense arsenal of plants and microorganisms. How do these enzymes, which all appear to share a common terpene synthase fold, specify the many different products made almost entirely from one of only three substrates? Elucidation of the structure of 1,8-cineole synthase from Salvia fruticosa (Sf-CinS1) combined with analysis of functional and phylogenetic relationships of enzymes within Salvia species identified active-site residues responsible for product specificity. Thus, Sf-CinS1 was successfully converted to a sabinene synthase with a minimum number of rationally predicted substitutions, while identification of the Asn side chain essential for water activation introduced 1,8-cineole and alpha-terpineol activity to Salvia pomifera sabinene synthase. A major contribution to product specificity in Sf-CinS1 appears to come from a local deformation within one of the helices forming the active site. This deformation is observed in all other mono- or sesquiterpene structures available, pointing to a conserved mechanism. Moreover, a single amino acid substitution enlarged the active-site cavity enough to accommodate the larger farnesyl pyrophosphate substrate and led to the efficient synthesis of sesquiterpenes, while alternate single substitutions of this critical amino acid yielded five additional terpene synthases. PMID:17557809

  10. Expression, crystallization and structure elucidation of γ-terpinene synthase from Thymus vulgaris.

    Science.gov (United States)

    Rudolph, Kristin; Parthier, Christoph; Egerer-Sieber, Claudia; Geiger, Daniel; Muller, Yves A; Kreis, Wolfgang; Müller-Uri, Frieder

    2016-01-01

    The biosynthesis of γ-terpinene, a precursor of the phenolic isomers thymol and carvacrol found in the essential oil from Thymus sp., is attributed to the activitiy of γ-terpinene synthase (TPS). Purified γ-terpinene synthase from T. vulgaris (TvTPS), the Thymus species that is the most widely spread and of the greatest economical importance, is able to catalyze the enzymatic conversion of geranyl diphosphate (GPP) to γ-terpinene. The crystal structure of recombinantly expressed and purified TvTPS is reported at 1.65 Å resolution, confirming the dimeric structure of the enzyme. The putative active site of TvTPS is deduced from its pronounced structural similarity to enzymes from other species of the Lamiaceae family involved in terpenoid biosynthesis: to (+)-bornyl diphosphate synthase and 1,8-cineole synthase from Salvia sp. and to (4S)-limonene synthase from Mentha spicata. PMID:26750479

  11. Reactivation of latent tuberculosis by an inhibitor of inducible nitric oxide synthase in an aerosol murine model

    Science.gov (United States)

    Botha, Tania; Ryffel, Bernhard

    2002-01-01

    Exposure to Mycobacterium tuberculosis results in clinical tuberculosis only in a small percentage of healthy individuals. In most instances the bacilli are controlled by the immune system and survive in a latent state within granuloma. Immunosuppression, however, may result in reactivation of infection, resulting in clinical disease. Using a low-dose aerosol infection (30 colony-forming units) in mice, we describe a short-duration model for studying spontaneous and drug-induced reactivation of anti-tuberculous drug-treated, latent tuberculosis infection. Although a 4-week treatment with rifampicin and isoniazid reduced the number of bacilli to undetectable levels, the infection spontaneously reactivated following therapy. By contrast, an 8-week treatment period induced a state of latent infection, requiring immunosuppression to reactivate infection. Finally, a 12-week treatment period eliminated the bacilli completely and aminoguanidine did not induce reactivation of infection. In view of the fact that therapy in the selected protocol reduces the mycobacterial load to undetectable levels, the data suggest that an 8-week treatment period is necessary and sufficient to mount protective immunity in mice. PMID:12423311

  12. Urease Inhibitor Drug Treatment for Urea Cycle Disorders

    Science.gov (United States)

    2016-08-23

    Ornithine Transcarbamylase Deficiency; Argininosuccinate Synthetase Deficiency (Citrullinemia); Argininosuccinic Acid Lyase Deficiency (Argininosuccinic Aciduria); Carbamyl-Phosphate Synthase I Deficiency

  13. Regulation of glycogen synthase kinase-3{beta} (GSK-3{beta}) after ionizing radiation; Regulation der Glykogen Synthase Kinase-3{beta} (GSK-3{beta}) nach ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, K.A.

    2006-12-15

    Glycogen Synthase Kinase-3{beta} (GSK-3{beta}) phosphorylates the Mdm2 protein in the central domain. This phosphorylation is absolutely required for p53 degradation. Ionizing radiation inactivates GSK-3{beta} by phosphorylation at serine 9 and in consequence prevents Mdm2 mediated p53 degradation. During the work for my PhD I identified Akt/PKB as the kinase that phosphorylates GSK-3{beta} at serine 9 after ionizing radiation. Ionizing radiation leads to phosphorylation of Akt/PKB at threonine 308 and serine 473. The PI3 Kinase inhibitor LY294002 completely abolished Akt/PKB serine 473 phosphorylation and prevented the induction of GSK-3{beta} serine 9 phosphorylation after ionizing radiation. Interestingly, the most significant activation of Akt/PKB after ionizing radiation occurred in the nucleus while cytoplasmic Akt/PKB was only weakly activated after radiation. By using siRNA, I showed that Akt1/PKBa, but not Akt2/PKB{beta}, is required for phosphorylation of GSK- 3{beta} at serine 9 after ionizing radiation. Phosphorylation and activation of Akt/PKB after ionizing radiation depends on the DNA dependent protein kinase (DNA-PK), a member of the PI3 Kinase family, that is activated by free DNA ends. Both, in cells from SCID mice and after knockdown of the catalytic subunit of DNA-PK by siRNA in osteosarcoma cells, phosphorylation of Akt/PKB at serine 473 and of GSK-3{beta} at serine 9 was completely abolished. Consistent with the principle that phosphorylation of GSK-3 at serine 9 contributes to p53 stabilization after radiation, the accumulation of p53 in response to ionizing radiation was largely prevented by downregulation of DNA-PK. From these results I conclude, that ionizing radiation induces a signaling cascade that leads to Akt1/PKBa activation mediated by DNA-PK dependent phosphorylation of serine 473. After activation Akt1/PKBa phosphorylates and inhibits GSK-3{beta} in the nucleus. The resulting hypophosphorylated form of Mdm2 protein is no longer

  14. Interaction between DAHP synthase and chorismate mutase endows new regulation on DAHP synthase activity in Corynebacterium glutamicum.

    Science.gov (United States)

    Li, Pan-Pan; Li, De-Feng; Liu, Di; Liu, Yi-Ming; Liu, Chang; Liu, Shuang-Jiang

    2013-12-01

    Previous research on Corynebacterium glutamicum revealed that 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DSCg, formerly DS2098) interacts with chorismate mutase (CMCg, formerly CM0819). In this study, we investigated the interaction by means of structure-guided mutation and enzymatic assays. Our results show that the interaction imparted a new mechanism for regulation of DAHP activity: In the absence of CMCg, DSCg activity was not regulated by prephenate, whereas in the presence of CMCg, prephenate markedly inhibited DSCg activity. Prephenate competed with the substrate phosphoenolpyruvate, and the inhibition constant (K i) was determined to be 0.945 mM. Modeling based on the structure of the complex formed between DAHP synthase and chorismate mutase of Mycobacterium tuberculosis predicted the interaction surfaces of the putative DSCg-CMCg complex. The amino acid residues and structural domains that contributed to the interaction surfaces were experimentally identified to be the (212)SPAGARYE(219) sequence of DSCg and the (60)SGGTR(64) loop and C-terminus ((97)RGKLG(101)) of CMCg. PMID:23467831

  15. A new member of the chalcone synthase (CHS family in sugarcane

    Directory of Open Access Journals (Sweden)

    Contessotto Miriam G.G.

    2001-01-01

    Full Text Available Sequences from the sugarcane expressed sequence tag (SUCEST database were analyzed based on their identities to genes encoding chalcone-synthase-like enzymes. The sorghum (Sorghum bicolor chalcone-synthase (CHS, EC 2.3.1.74 protein sequence (gi|12229613 was used to search the SUCEST database for clusters of sequencing reads that were most similar to chalcone synthase. We found 121 reads with homology to sorghum chalcone synthase, which we were then able to sort into 14 clusters which themselves were divided into two groups (group 1 and group 2 based on the similarity of their deduced amino acid sequences. Clusters in group 1 were more similar to the sorghum enzyme than those in group 2, having the consensus sequence of the active site of chalcone and stilbene synthase. Analysis of gene expression (based on the number of reads from a specific library present in each group indicated that most of the group 1 reads were from sugarcane flower and root libraries. Group 2 clusters were more similar to the amino acid sequence of an uncharacterized pathogen-induced protein (PI1, gi|9855801 from the S. bicolor expressed sequence tag (EST database. The group 2 clusters sequences and PI1 proteins are 90% identical, having two amino acid changes at the chalcone and stilbene synthase consensi but conserving the cysteine residue at the active site. The PI1 EST has not been previously associated with chalcone synthase and has a different consensus sequence from the previously described chalcone synthase of sorghum. Most of the group 2 reads were from libraries prepared from sugarcane roots and plants infected with Herbaspirillum rubrisubalbicans and Gluconacetobacter diazotroficans. Our results indicate that we have identified a sugarcane chalcone synthase similar to the pathogen-induced PI1 protein found in the sorghum cDNA libraries, and it appears that both proteins represent new members of the chalcone and stilbene synthase super-family.

  16. Discovery and structural characterization of an allosteric inhibitor of bacterial cis-prenyltransferase.

    Science.gov (United States)

    Danley, Dennis E; Baima, Eric T; Mansour, Mahmoud; Fennell, Kimberly F; Chrunyk, Boris A; Mueller, John P; Liu, Shenping; Qiu, Xiayang

    2015-01-01

    Undecaprenyl pyrophosphate synthase (UPPs) is an essential enzyme in a key bacterial cell wall synthesis pathway. It catalyzes the consecutive condensations of isopentenyl pyrophosphate (IPP) groups on to a trans-farnesyl pyrophosphate (FPP) to produce a C55 isoprenoid, undecaprenyl pyrophosphate (UPP). Here we report the discovery and co-crystal structures of a drug-like UPPs inhibitor in complex with Streptococcus pneumoniae UPPs, with and without substrate FPP, at resolutions of 2.2 and 2.1 Å, respectively. The UPPs inhibitor has a low molecular weight (355 Da), but displays potent inhibition of UPP synthesis in vitro (IC50 50 nM) that translates into excellent whole cell antimicrobial activity against pathogenic strains of Streptococcal species (MIC90 0.4 µg mL(-1) ). Interestingly, the inhibitor does not compete with the substrates but rather binds at a site adjacent to the FPP binding site and interacts with the tail of the substrate. Based on the structures, an allosteric inhibition mechanism of UPPs is proposed for this inhibitor. This inhibition mechanism is supported by biochemical and biophysical experiments, and provides a basis for the development of novel antibiotics targeting Streptococcus pneumoniae. PMID:25287857

  17. Ximelagatran: direct thrombin inhibitor

    Directory of Open Access Journals (Sweden)

    Shir-Jing Ho

    2006-03-01

    -major orthopedic surgery. It has also been shown to be more effective than aspirin alone for prevention of recurrent major cardiovascular events in patients with recent myocardial infarction.Keywords: Ximelagatran, direct thrombin inhibitor, oral anticoagulants, thromboprophylaxis

  18. Atorvastatin enhance efficacy of mesenchymal stem cells treatment for swine myocardial infarction via activation of nitric oxide synthase.

    Directory of Open Access Journals (Sweden)

    Lei Song

    Full Text Available BACKGROUND: In a swine model of acute myocardial infarction (AMI, Statins can enhance the therapeutic efficacy of mesenchymal stem cell (MSCs transplantation. However, the mechanisms remain unclear. This study aims at assessing whether atorvastatin (Ator facilitates the effects of MSCs through activation of nitric oxide synthase (NOS, especially endothelial nitric oxide synthase (eNOS, which is known to protect against ischemic injury. METHODS AND RESULTS: 42 miniswines were randomized into six groups (n = 7/group: Sham operation; AMI control; Ator only; MSC only, Ator+MSCs and Ator+MSCs+NG-nitrol-L-arginine (L-NNA, an inhibitor of NOS. In an open-heart surgery, swine coronary artery ligation and reperfusion model were established, and autologous bone-marrow MSCs were injected intramyocardium. Four weeks after transplantation, compared with the control group, Ator+MSCs animals exhibited decreased defect areas of both "perfusion" defined by Single-Photon Emission Computed Tomography (-6.2±1.8% vs. 2.0±5.1%, P = 0.0001 and "metabolism" defined by Positron Emission Tomography (-3.00±1.41% vs. 4.20±4.09%, P = 0.0004; Ejection fraction by Magnetic Resonance Imaging increased substantially (14.22±12.8% vs. 1.64±2.64%, P = 0.019. In addition, indices of inflammation, fibrosis, and apoptosis were reduced and survivals of MSCs or MSC-derived cells were increased in Ator+MSCs animals. In Ator or MSCs alone group, perfusion, metabolism, inflammation, fibrosis or apoptosis were reduced but there were no benefits in terms of heart function and cell survival. Furthermore, the above benefits of Ator+MSCs treatment could be partially blocked by L-NNA. CONCLUSIONS: Atorvastatin facilitates survival of implanted MSCs, improves function and morphology of infarcted hearts, mediated by activation of eNOS and alleviated by NOS inhibitor. The data reveal the cellular and molecular mechanism for anti-AMI therapy with a combination of statin and

  19. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase.

    Science.gov (United States)

    Kim, Jong Hun; Auger, Cyril; Kurita, Ikuko; Anselm, Eric; Rivoarilala, Lalainasoa Odile; Lee, Hyong Joo; Lee, Ki Won; Schini-Kerth, Valérie B

    2013-11-30

    This study examined the ability of Aronia melanocarpa (chokeberry) juice, a rich source of polyphenols, to cause NO-mediated endothelium-dependent relaxations of isolated coronary arteries and, if so, to determine the underlying mechanism and the active polyphenols. A. melanocarpa juice caused potent endothelium-dependent relaxations in porcine coronary artery rings. Relaxations to A. melanocarpa juice were minimally affected by inhibition of the formation of vasoactive prostanoids and endothelium-derived hyperpolarizing factor-mediated responses, and markedly reduced by N(ω)-nitro-l-arginine (endothelial NO synthase (eNOS) inhibitor), membrane permeant analogs of superoxide dismutase and catalase, PP2 (Src kinase inhibitor), and wortmannin (PI3-kinase inhibitor). In cultured endothelial cells, A. melanocarpa juice increased the formation of NO as assessed by electron paramagnetic resonance spectroscopy using the spin trap iron(II)diethyldithiocarbamate, and reactive oxygen species using dihydroethidium. These responses were associated with the redox-sensitive phosphorylation of Src, Akt and eNOS. A. melanocarpa juice-derived fractions containing conjugated cyanidins and chlorogenic acids induced the phosphorylation of Akt and eNOS. The present findings indicate that A. melanocarpa juice is a potent stimulator of the endothelial formation of NO in coronary arteries; this effect involves the phosphorylation of eNOS via the redox-sensitive activation of the Src/PI3-kinase/Akt pathway mostly by conjugated cyanidins and chlorogenic acids.

  20. Fatty acid biosynthesis in Pseudomonas aeruginosa is initiated by the FabY class of β-ketoacyl acyl carrier protein synthases.

    Science.gov (United States)

    Yuan, Yanqiu; Sachdeva, Meena; Leeds, Jennifer A; Meredith, Timothy C

    2012-10-01

    The prototypical type II fatty acid synthesis (FAS) pathway in bacteria utilizes two distinct classes of β-ketoacyl synthase (KAS) domains to assemble long-chain fatty acids, the KASIII domain for initiation and the KASI/II domain for elongation. The central role of FAS in bacterial viability and virulence has stimulated significant effort toward developing KAS inhibitors, particularly against the KASIII domain of the β-acetoacetyl-acyl carrier protein (ACP) synthase FabH. Herein, we show that the opportunistic pathogen Pseudomonas aeruginosa does not utilize a FabH ortholog but rather a new class of divergent KAS I/II enzymes to initiate the FAS pathway. When a P. aeruginosa cosmid library was used to rescue growth in a fabH downregulated strain of Escherichia coli, a single unannotated open reading frame, PA5174, complemented fabH depletion. While deletion of all four KASIII domain-encoding genes in the same P. aeruginosa strain resulted in a wild-type growth phenotype, deletion of PA5174 alone specifically attenuated growth due to a defect in de novo FAS. Siderophore secretion and quorum-sensing signaling, particularly in the rhl and Pseudomonas quinolone signal (PQS) systems, was significantly muted in the absence of PA5174. The defect could be repaired by intergeneric complementation with E. coli fabH. Characterization of recombinant PA5174 confirmed a preference for short-chain acyl coenzyme A (acyl-CoA) substrates, supporting the identification of PA5174 as the predominant enzyme catalyzing the condensation of acetyl coenzyme A with malonyl-ACP in P. aeruginosa. The identification of the functional role for PA5174 in FAS defines the new FabY class of β-ketoacyl synthase KASI/II domain condensation enzymes.

  1. Identification of sucrose synthase as an actin-binding protein

    Science.gov (United States)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  2. Noncovalent Intermediate of Thymidylate Synthase: Fact or Fiction?

    Science.gov (United States)

    Kholodar, Svetlana A; Kohen, Amnon

    2016-07-01

    Thymidylate synthase is an attractive target for antibiotic and anticancer drugs due to its essential role in the de novo biosynthesis of the DNA nucleotide thymine. The enzymatic reaction is initiated by a nucleophilic activation of the substrate via formation of a covalent bond to an active site cysteine. The traditionally accepted mechanism is then followed by a series of covalently bound intermediates, where that bond is only cleaved upon product release. Recent computational and experimental studies suggest that the covalent bond between the protein and substrate is actually quite labile. Importantly, these findings predict the existence of a noncovalently bound bisubstrate intermediate, not previously anticipated, which could be the target of a novel class of drugs inhibiting DNA biosynthesis. Here we report the synthesis of the proposed intermediate and findings supporting its chemical and kinetic competence. These findings substantiate the predicted nontraditional mechanism and the potential of this intermediate as a new drug lead. PMID:27327197

  3. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M. Brett; Ferreira, Antonio M.; Lee, Richard E.; Bashford, Donald; White, Stephen W. (SJCH)

    2013-04-08

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S{sub N}1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  4. The Interplay between Myc and CTP Synthase in Drosophila.

    Science.gov (United States)

    Aughey, Gabriel N; Grice, Stuart J; Liu, Ji-Long

    2016-02-01

    CTP synthase (CTPsyn) is essential for the biosynthesis of pyrimidine nucleotides. It has been shown that CTPsyn is incorporated into a novel cytoplasmic structure which has been termed the cytoophidium. Here, we report that Myc regulates cytoophidium formation during Drosophila oogenesis. We have found that Myc protein levels correlate with cytoophidium abundance in follicle epithelia. Reducing Myc levels results in cytoophidium loss and small nuclear size in follicle cells, while overexpression of Myc increases the length of cytoophidia and the nuclear size of follicle cells. Ectopic expression of Myc induces cytoophidium formation in late stage follicle cells. Furthermore, knock-down of CTPsyn is sufficient to suppress the overgrowth phenotype induced by Myc overexpression, suggesting CTPsyn acts downstream of Myc and is required for Myc-mediated cell size control. Taken together, our data suggest a functional link between Myc, a renowned oncogene, and the essential nucleotide biosynthetic enzyme CTPsyn. PMID:26889675

  5. A plant type III polyketide synthase that produces pentaketide chromone.

    Science.gov (United States)

    Abe, Ikuro; Utsumi, Yoriko; Oguro, Satoshi; Morita, Hiroyuki; Sano, Yukie; Noguchi, Hiroshi

    2005-02-01

    A novel plant-specific type III polyketide synthase (PKS) that catalyzes formation of a pentaketide chromone, 5,7-dihydroxy-2-methylchromone, from five molecules of malonyl-CoA, was cloned and sequenced from aloe (Aloe arborescens). Site-directed mutagenesis revealed that Met207 (corresponding to Thr197 in CHS) determines the polyketide chain length and the product specificity of the enzyme; remarkably, replacement of a single amino acid residue, Met207, with Gly yielded a mutant enzyme that efficiently produces aromatic octaketides, SEK4 and SEK4b, the products of the minimal PKS for actinorhodin (act from Streptomyces coelicolor), from eight molecules of malonyl-CoA. This provided new insights into the catalytic functions and specificities of the CHS-superfamily type III PKS enzymes. PMID:15686354

  6. Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering.

    Science.gov (United States)

    Zerbe, Philipp; Bohlmann, Jörg

    2015-07-01

    Plants produce thousands of diterpenoid natural products; some of which are of significant industrial value as biobased pharmaceuticals (taxol), fragrances (sclareol), food additives (steviosides), and commodity chemicals (diterpene resin acids). In nature, diterpene synthase (diTPS) enzymes are essential for generating diverse diterpene hydrocarbon scaffolds. While some diTPSs also form oxygenated compounds, more commonly, oxygenation is achieved by cytochrome P450-dependent mono-oxygenases. Recent genome-, transcriptome-, and metabolome-guided gene discovery and enzyme characterization identified novel diTPS functions that form the core of complex modular pathway systems. Insights into diterpene metabolism may translate into the development of new bioengineered microbial and plant-based production systems.

  7. Microbial inhibitors of cysteine proteases.

    Science.gov (United States)

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted. PMID:27048482

  8. New insight into the catalytic properties of rice sucrose synthase.

    Science.gov (United States)

    Huang, Yu-Chiao; Hsiang, Erh-Chieh; Yang, Chien-Chih; Wang, Ai-Yu

    2016-01-01

    Sucrose synthase (SuS), which catalyzes the reversible conversion of sucrose and uridine diphosphate (UDP) into fructose and UDP-glucose, is a key enzyme in sucrose metabolism in higher plants. SuS belongs to family 4 of the glycosyltransferases (GT4) and contains an E-X7-E motif that is conserved in members of GT4 and two other GT families. To gain insight into the roles of this motif in rice sucrose synthase 3 (RSuS3), the two conserved glutamate residues (E678 and E686) in this motif and a phenylalanine residue (F680) that resides between the two glutamate residues were changed by site-directed mutagenesis. All mutant proteins maintained their tetrameric conformation. The mutants E686D and F680Y retained partial enzymatic activity and the mutants E678D, E678Q, F680S, and E686Q were inactive. Substrate binding assays indicated that UDP and fructose, respectively, were the leading substrates in the sucrose degradation and synthesis reactions of RSuS3. Mutations on E678, F680, and E686 affected the binding of fructose, but not of UDP. The results indicated that E678, F680, and E686 in the E-X7-E motif of RSuS3 are essential for the activity of the enzyme and the sequential binding of substrates. The sequential binding of the substrates implied that the reaction catalyzed by RSuS can be controlled by the availability of fructose and UDP, depending on the metabolic status of a tissue.

  9. Differential behaviour of four plant polysaccharide synthases in the presence of organic solvents.

    Science.gov (United States)

    Kerry, M E; Gregory, A C; Bolwell, G P

    2001-08-01

    The behaviour of four membrane-bound glycosyl transferases involved in cell wall polysaccharide synthesis has been studied in relation to the effects of a graded series of organic solvents on their activity and type of product formed. Relative enzyme inhibition observed for some solvents was in direct relationship to the hydrophilicity of the product. This was in the order of arabinan synthase > callose synthase> xylan synthase > beta-1,4-glucan synthase. The former two were always inhibited, the xylan synthase rather less so. However, the beta-1,4-glucan synthase showed significant increases in substrate incorporation in the presence of solvents. A graded series of primary alcohols were much more effective in enhancing activity than acetone, ethyl acetate and dimethyl formamide. In the presence of the most effective solvent, methanol, there was considerable activation of beta-1,4-glucan production. This reciprocal nature of the behaviour of the beta-1,4- and beta-1,3-glucan synthases in organic solvent is supportive of recent molecular data that the two types of glucans are catalysed by separate enzyme systems. However, the results reported here do not totally negate the proposition that either enzyme is capable of synthesising the other linkage in minor amounts in vitro. PMID:11430978

  10. De novo fragment-based design of inhibitors of DXS guided by spin-diffusion-based NMR spectroscopy.

    OpenAIRE

    Masini, T.; Pilger, J.; Kroezen, B.; Illarionov, B.; Lottmann, P.; Fischer, M.; Griesinger, C.; Hirsch, A.

    2014-01-01

    We applied for the first time an innovative ligand-based NMR methodology (STI) to a medicinal-chemistry project aimed at the development of inhibitors for the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). DXS is the first enzyme of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway, present in most bacteria (and not in humans) and responsible for the synthesis of the essential isoprenoid precursors. We designed de novo a first generation of fragments, using Deinococcus radiodurans D...

  11. A Geranylfarnesyl Diphosphate Synthase Provides the Precursor for Sesterterpenoid (C25) Formation in the Glandular Trichomes of the Mint Species Leucosceptrum canum.

    Science.gov (United States)

    Liu, Yan; Luo, Shi-Hong; Schmidt, Axel; Wang, Guo-Dong; Sun, Gui-Ling; Grant, Marcus; Kuang, Ce; Yang, Min-Jie; Jing, Shu-Xi; Li, Chun-Huan; Schneider, Bernd; Gershenzon, Jonathan; Li, Sheng-Hong

    2016-03-01

    Plant sesterterpenoids, an important class of terpenoids, are widely distributed in various plants, including food crops. However, little is known about their biosynthesis. Here, we cloned and functionally characterized a plant geranylfarnesyl diphosphate synthase (Lc-GFDPS), the enzyme producing the C25 prenyl diphosphate precursor to all sesterterpenoids, from the glandular trichomes of the woody plant Leucosceptrum canum. GFDPS catalyzed the formation of GFDP after expression in Escherichia coli. Overexpressing GFDPS in Arabidopsis thaliana also gave an extract catalyzing GFDP formation. GFDPS was strongly expressed in glandular trichomes, and its transcript profile was completely in accordance with the sesterterpenoid accumulation pattern. GFDPS is localized to the plastids, and inhibitor studies indicated its use of isoprenyl diphosphate substrates supplied by the 2-C-methyl-D-erythritol 4-phosphate pathway. Application of a jasmonate defense hormone induced GFDPS transcript and sesterterpenoid accumulation, while reducing feeding and growth of the generalist insect Spodoptera exigua, suggesting that these C25 terpenoids play a defensive role. Phylogenetic analysis suggested that GFDPS probably evolved from plant geranylgeranyl diphosphate synthase under the influence of positive selection. The isolation of GFDPS provides a model for investigating sesterterpenoid formation in other species and a tool for manipulating the formation of this group in plants and other organisms.

  12. A dodecylamine derivative of cyanocobalamin potently inhibits the activities of cobalamin-dependent methylmalonyl-CoA mutase and methionine synthase of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Tomohiro Bito

    2014-01-01

    Full Text Available In this study, we showed that cyanocobalamin dodecylamine, a ribose 5′-carbamate derivative of cyanocobalamin, was absorbed and accumulated to significant levels by Caenorhabditis elegans and was not further metabolized. The levels of methylmalonic acid and homocysteine, which serve as indicators of cobalamin deficiency, were significantly increased in C. elegans treated with the dodecylamine derivative, indicating severe cobalamin deficiency. Kinetic studies show that the affinity of the cyanocobalamin dodecylamine derivative was greater for two cobalamin-dependent enzymes, methylmalonyl-CoA mutase and methionine synthase, compared with their respective coenzymes, suggesting that the dodecylamine derivative inactivated these enzymes. The dodecylamine derivative did not affect the levels of mRNAs encoding these enzymes or those of other proteins involved in intercellular cobalamin metabolism, including methylmalonyl-CoA mutase (mmcm-1, methylmalonic acidemia cobalamin A complementation group (mmaa-1, methylmalonic aciduria cblC type (cblc-1, and methionine synthase reductase (mtrr-1. In contrast, the level of the mRNAs encoding cob(Ialamin adenosyltransferase (mmab-1 was increased significantly and identical to that of cobalamin-deficient C. elegans. These results indicate that the cyanocobalamin-dodecylamine derivative acts as a potent inhibitor of cobalamin-dependent enzymes and induces severe cobalamin deficiency in C. elegans.

  13. Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells

    Directory of Open Access Journals (Sweden)

    Bronislaw L. Slomiany

    2010-01-01

    Full Text Available Oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis, and its key virulence factor, LPS, are characterized by a massive rise in epithelial cell apoptosis and the disturbances in NO signaling pathways. Here, we report that the LPS-induced enhancement in rat sublingual salivary gland acinar cell apoptosis and NO generation was associated with the suppression in constitutive nitric oxide synthase (cNOS activity and a marked increase in the activity of inducible nitric oxide synthase (iNOS. We demonstrate that the detrimental effect of the LPS on cNOS was manifested by the enzyme protein S-nitrosylation, that was susceptible to inhibition by iNOS inhibitor, 1400 W. Further, we show that a peptide hormone, ghrelin, countered the LPS-induced changes in apoptosis and cNOS activity. This effect of ghrelin was reflected in the decrease in cNOS S-nitrosylation and the increase in phosphorylation. Our findings imply that P. gingivalis-induced disturbances in the acinar cell NO signaling pathways result from upregulation in iNOS-derived NO that causes cNOS S-nitrosylation that interferes with its activation through phosphorylation. We also show that ghrelin protection against P. gingivalis-induced disturbances involves cNOS activation associated with a decrease in its S-nitrosylation and the increase in phosphorylation.

  14. Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells.

    Science.gov (United States)

    Slomiany, Bronislaw L; Slomiany, Amalia

    2010-01-01

    Oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis, and its key virulence factor, LPS, are characterized by a massive rise in epithelial cell apoptosis and the disturbances in NO signaling pathways. Here, we report that the LPS-induced enhancement in rat sublingual salivary gland acinar cell apoptosis and NO generation was associated with the suppression in constitutive nitric oxide synthase (cNOS) activity and a marked increase in the activity of inducible nitric oxide synthase (iNOS). We demonstrate that the detrimental effect of the LPS on cNOS was manifested by the enzyme protein S-nitrosylation, that was susceptible to inhibition by iNOS inhibitor, 1400 W. Further, we show that a peptide hormone, ghrelin, countered the LPS-induced changes in apoptosis and cNOS activity. This effect of ghrelin was reflected in the decrease in cNOS S-nitrosylation and the increase in phosphorylation. Our findings imply that P. gingivalis-induced disturbances in the acinar cell NO signaling pathways result from upregulation in iNOS-derived NO that causes cNOS S-nitrosylation that interferes with its activation through phosphorylation. We also show that ghrelin protection against P. gingivalis-induced disturbances involves cNOS activation associated with a decrease in its S-nitrosylation and the increase in phosphorylation.

  15. A Geranylfarnesyl Diphosphate Synthase Provides the Precursor for Sesterterpenoid (C25) Formation in the Glandular Trichomes of the Mint Species Leucosceptrum canum.

    Science.gov (United States)

    Liu, Yan; Luo, Shi-Hong; Schmidt, Axel; Wang, Guo-Dong; Sun, Gui-Ling; Grant, Marcus; Kuang, Ce; Yang, Min-Jie; Jing, Shu-Xi; Li, Chun-Huan; Schneider, Bernd; Gershenzon, Jonathan; Li, Sheng-Hong

    2016-03-01

    Plant sesterterpenoids, an important class of terpenoids, are widely distributed in various plants, including food crops. However, little is known about their biosynthesis. Here, we cloned and functionally characterized a plant geranylfarnesyl diphosphate synthase (Lc-GFDPS), the enzyme producing the C25 prenyl diphosphate precursor to all sesterterpenoids, from the glandular trichomes of the woody plant Leucosceptrum canum. GFDPS catalyzed the formation of GFDP after expression in Escherichia coli. Overexpressing GFDPS in Arabidopsis thaliana also gave an extract catalyzing GFDP formation. GFDPS was strongly expressed in glandular trichomes, and its transcript profile was completely in accordance with the sesterterpenoid accumulation pattern. GFDPS is localized to the plastids, and inhibitor studies indicated its use of isoprenyl diphosphate substrates supplied by the 2-C-methyl-D-erythritol 4-phosphate pathway. Application of a jasmonate defense hormone induced GFDPS transcript and sesterterpenoid accumulation, while reducing feeding and growth of the generalist insect Spodoptera exigua, suggesting that these C25 terpenoids play a defensive role. Phylogenetic analysis suggested that GFDPS probably evolved from plant geranylgeranyl diphosphate synthase under the influence of positive selection. The isolation of GFDPS provides a model for investigating sesterterpenoid formation in other species and a tool for manipulating the formation of this group in plants and other organisms. PMID:26941091

  16. Exposure to Diflubenzuron Results in an Up-Regulation of a Chitin Synthase 1 Gene in Citrus Red Mite, Panonychus citri (Acari: Tetranychidae

    Directory of Open Access Journals (Sweden)

    Wen-Kai Xia

    2014-02-01

    Full Text Available Chitin synthase synthesizes chitin, which is critical for the arthropod exoskeleton. In this study, we cloned the cDNA sequences of a chitin synthase 1 gene, PcCHS1, in the citrus red mite, Panonychus citri (McGregor, which is one of the most economically important pests of citrus worldwide. The full-length cDNA of PcCHS1 contains an open reading frame of 4605 bp of nucleotides, which encodes a protein of 1535 amino acid residues with a predicted molecular mass of 175.0 kDa. A phylogenetic analysis showed that PcCHS1 was most closely related to CHS1 from Tetranychus urticae. During P. citri development, PcCHS1 was constantly expressed in all stages but highly expressed in the egg stage (114.8-fold higher than in the adult. When larvae were exposed to diflubenzuron (DFB for 6 h, the mite had a significantly high mortality rate, and the mRNA expression levels of PcCHS1 were significantly enhanced. These results indicate a promising use of DFB to control P. citri, by possibly acting as an inhibitor in chitin synthesis as indicated by the up-regulation of PcCHS1 after exposure to DFB.

  17. Exposure to diflubenzuron results in an up-regulation of a chitin synthase 1 gene in citrus red mite, Panonychus citri (Acari: Tetranychidae).

    Science.gov (United States)

    Xia, Wen-Kai; Ding, Tian-Bo; Niu, Jin-Zhi; Liao, Chong-Yu; Zhong, Rui; Yang, Wen-Jia; Liu, Bin; Dou, Wei; Wang, Jin-Jun

    2014-01-01

    Chitin synthase synthesizes chitin, which is critical for the arthropod exoskeleton. In this study, we cloned the cDNA sequences of a chitin synthase 1 gene, PcCHS1, in the citrus red mite, Panonychus citri (McGregor), which is one of the most economically important pests of citrus worldwide. The full-length cDNA of PcCHS1 contains an open reading frame of 4605 bp of nucleotides, which encodes a protein of 1535 amino acid residues with a predicted molecular mass of 175.0 kDa. A phylogenetic analysis showed that PcCHS1 was most closely related to CHS1 from Tetranychus urticae. During P. citri development, PcCHS1 was constantly expressed in all stages but highly expressed in the egg stage (114.8-fold higher than in the adult). When larvae were exposed to diflubenzuron (DFB) for 6 h, the mite had a significantly high mortality rate, and the mRNA expression levels of PcCHS1 were significantly enhanced. These results indicate a promising use of DFB to control P. citri, by possibly acting as an inhibitor in chitin synthesis as indicated by the up-regulation of PcCHS1 after exposure to DFB. PMID:24590130

  18. Diverse inhibitors of aflatoxin biosynthesis.

    Science.gov (United States)

    Holmes, Robert A; Boston, Rebecca S; Payne, Gary A

    2008-03-01

    Pre-harvest and post-harvest contamination of maize, peanuts, cotton, and tree nuts by members of the genus Aspergillus and subsequent contamination with the mycotoxin aflatoxin pose a widespread food safety problem for which effective and inexpensive control strategies are lacking. Since the discovery of aflatoxin as a potently carcinogenic food contaminant, extensive research has been focused on identifying compounds that inhibit its biosynthesis. Numerous diverse compounds and extracts containing activity inhibitory to aflatoxin biosynthesis have been reported. Only recently, however, have tools been available to investigate the molecular mechanisms by which these inhibitors affect aflatoxin biosynthesis. Many inhibitors are plant-derived and a few may be amenable to pathway engineering for tissue-specific expression in susceptible host plants as a defense against aflatoxin contamination. Other compounds show promise as protectants during crop storage. Finally, inhibitors with different modes of action could be used in comparative transcriptional and metabolomic profiling experiments to identify regulatory networks controlling aflatoxin biosynthesis.

  19. Corrosion inhibitors from expired drugs.

    Science.gov (United States)

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%.

  20. Characterization of three novel isoprenyl diphosphate synthases from the terpenoid rich mango fruit.

    Science.gov (United States)

    Kulkarni, Ram; Pandit, Sagar; Chidley, Hemangi; Nagel, Raimund; Schmidt, Axel; Gershenzon, Jonathan; Pujari, Keshav; Giri, Ashok; Gupta, Vidya

    2013-10-01

    Mango (cv. Alphonso) is popular due to its highly attractive, terpenoid-rich flavor. Although Alphonso is clonally propagated, its fruit-flavor composition varies when plants are grown in different geo-climatic zones. Isoprenyl diphosphate synthases catalyze important branch-point reactions in terpenoid biosynthesis, providing precursors for common terpenoids such as volatile terpenes, sterols and carotenoids. Two geranyl diphosphate synthases and a farnesyl diphosphate synthase were isolated from Alphonso fruits, cloned for recombinant expression and found to produce the respective products. Although, one of the geranyl diphosphate synthases showed high sequence similarity to the geranylgeranyl diphosphate synthases, it did not exhibit geranylgeranyl diphosphate synthesizing activity. When modeled, this geranyl diphosphate synthase and farnesyl diphosphate synthase structures were found to be homologous with the reference structures, having all the catalytic side chains appropriately oriented. The optimum temperature for both the geranyl diphosphate synthases was 40 °C and that for farnesyl diphosphate synthase was 25 °C. This finding correlated well with the dominance of monoterpenes in comparison to sesquiterpenes in the fruits of Alphonso mango in which the mesocarp temperature is higher during ripening than development. The absence of activity of these enzymes with the divalent metal ion other than Mg(2+) indicated their adaptation to the Mg(2+) rich mesocarp. The typical expression pattern of these genes through the ripening stages of fruits from different cultivation localities depicting the highest transcript levels of these genes in the stage preceding the maximum terpene accumulation indicated the involvement of these genes in the biosynthesis of volatile terpenes. PMID:23911730