WorldWideScience

Sample records for acetobacter

  1. Acetobacter intermedius, sp. nov.

    Science.gov (United States)

    Boesch, C; Trcek, J; Sievers, M; Teuber, M

    1998-03-01

    Strains of a new species in the genus Acetobacter, for which we propose the name A. intermedius sp. nov., were isolated and characterized in pure culture from different sources (Kombucha beverage, cider vinegar, spirit vinegar) and different countries (Switzerland, Slovenia). The isolated strains grow in media with 3% acetic acid and 3% ethanol as does A. europaeus, do, however, not require acetic acid for growth. These characteristics phenotypically position A. intermedius between A. europaeus and A. xylinus, DNA-DNA hybridizations of A. intermedius-DNA with DNA of the type strains of Acetobacter europaeus, A. xylinus, A. aceti, A. hansenii, A. liquefaciens, A. methanolicus, A. pasteurianus, A. diazotrophicus, Gluconobacter oxydans and Escherichia coli HB 101 indicated less than 60% DNA similarity. The important features of the new species are described. Acetobacter intermedius strain TF2 (DSM11804) isolated from the liquid phase of a tea fungus beverage (Kombucha) is the type strain.

  2. The mechanism and localization of hexonate metabolism in Acetobacter suboxydans and acetobacter melanogenum

    NARCIS (Netherlands)

    Ley, J. de; Stouthamer, A.J.

    1959-01-01

    In our strain of Acetobacter suboxydans, three enzymes are present for the oxidation of gluconate: 1. (1) a soluble TPN-specific dehydrogenase, yielding 2-ketogluconate (2-ketogluconoreductase); 2. (2) a soluble TPN-specific dehydrogenase, yielding 5-ketogluconate (5-ketogluconoreductase); 3. (3

  3. Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations.

    Science.gov (United States)

    Sokollek, S J; Hertel, C; Hammes, W P

    1998-07-01

    Two strains of Acetobacter sp., LTH 2460T and LTH 2458T, have been isolated from running red wine and cider vinegar fermentations, respectively. Taxonomic characteristics of the isolates were investigated. Comparative analysis of the 165 rRNA sequences revealed > 99% similarity between strain LTH 2460T and the type strains of the related species Acetobacter europaeus and Acetobacter xylinus and between strain LTH 2458T and Acetobacter pasteurianus. On the other hand, low levels of DNA relatedness (< 34%) were determined in DNA-DNA similarity studies. This relatedness below the species level was consistent with specific physiological characteristics permitting clear identification of these strains within established species of acetic acid bacteria. Based on these results, the names Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov. are proposed for strains LTH 2460T and LTH 2458T, respectively. The phylogenetic positions of the new species are reflected by a 16S rRNA-based tree. Furthermore, a 16S rRNA-targeted oligonucleotide probe specific for A. oboediens was constructed.

  4. Characterization of rpoH in Acetobacter pasteurianus NBRC3283.

    Science.gov (United States)

    Okamoto-Kainuma, Akiko; Ishikawa, Morio; Nakamura, Hodaka; Fukazawa, Shun; Tanaka, Noriko; Yamagami, Keigo; Koizumi, Yukimichi

    2011-04-01

    The RpoH in Acetobacter pasteurianus NBRC3283 was characterized. It was revealed that the rpoH controls the expression of groEL, dnaKJ, grpE, and clpB to different extents. In addition, the rpoH disruption mutant became apt to be affected by heat, ethanol, and acetic acid, indicating its importance in acetic acid fermentation.

  5. Acetobacter lambici sp. nov., isolated from fermenting lambic beer.

    Science.gov (United States)

    Spitaels, Freek; Li, Leilei; Wieme, Anneleen; Balzarini, Tom; Cleenwerck, Ilse; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2014-04-01

    An acetic acid bacterium, strain LMG 27439(T), was isolated from fermenting lambic beer. The cells were Gram-stain-negative, motile rods, catalase-positive and oxidase-negative. Analysis of the 16S rRNA gene sequence revealed the strain was closely related to Acetobacter okinawensis (99.7 % 16S rRNA gene sequence similarity with the type strain of this species), A. ghanensis (99.6 %), A. syzygii (99.6 %), A. fabarum (99.4 %) and A. lovaniensis (99.2 %). DNA-DNA hybridization with the type strains of these species revealed moderate DNA-DNA hybridization values (31-45 %). Strain LMG 27439(T) was unable to grow on glycerol or methanol as the sole carbon source, on yeast extract with 10 % ethanol or on glucose-yeast extract medium at 37 °C. It did not produce acid from l-arabinose, d-galactose or d-mannose, nor did it produce 2-keto-d-gluconic acid, 5-keto-d-gluconic acid or 2,5-diketo-d-gluconic acid from d-glucose. It did not grow on ammonium as the sole nitrogen source and ethanol as the sole carbon source. These genotypic and phenotypic data distinguished strain LMG 27439(T) from established species of the genus Acetobacter, and therefore we propose this strain represents a novel species of the genus Acetobacter. The name Acetobacter lambici sp. nov. is proposed, with LMG 27439(T) ( = DSM 27328(T)) as the type strain.

  6. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Saad, Maged M; Chappuis, Marie-Louise; Boffa, Mauro; Perret, Xavier; Ortega Pérez, Ruben; Barja, François

    2012-03-16

    Acetic acid bacteria (AAB) are Gram-negative, strictly aerobic microorganisms that show a unique resistance to ethanol (EtOH) and acetic acid (AcH). Members of the Acetobacter and Gluconacetobacter genera are capable of transforming EtOH into AcH via the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes and are used for the industrial production of vinegar. Several mechanisms have been proposed to explain how AAB resist high concentrations of AcH, such as the assimilation of acetate through the tricarboxylic acid (TCA) cycle, the export of acetate by various transporters and modifications of the outer membrane. However, except for a few acetate-specific proteins, little is known about the global proteome responses to AcH. In this study, we used 2D-DIGE to compare the proteome of Acetobacter pasteurianus LMG 1262(T) when growing in glucose or ethanol and in the presence of acetic acid. Interesting protein spots were selected using the ANOVA p-value of 0.05 as threshold and 1.5-fold as the minimal level of differential expression, and a total of 53 proteins were successfully identified. Additionally, the size of AAB was reduced by approximately 30% in length as a consequence of the acidity. A modification in the membrane polysaccharides was also revealed by PATAg specific staining.

  7. Genetic organization of Acetobacter for acetic acid fermentation.

    Science.gov (United States)

    Beppu, T

    Plasmid vectors for the acetic acid-producing strains of Acetobacter and Gluconobacter were constructed from their cryptic plasmids and the efficient transformation conditions were established. The systems allowed to reveal the genetic background of the strains used in the acetic acid fermentation. Genes encoding indispensable components in the acetic acid fermentation, such as alcohol dehydrogenase, aldehyde dehydrogenase and terminal oxidase, were cloned and characterized. Spontaneous mutations at high frequencies in the acetic acid bacteria to cause the deficiency in ethanol oxidation were analyzed. A new insertion sequence element, IS1380, was identified as a major factor of the genetic instability, which causes insertional inactivation of the gene encoding cytochrome c, an essential component of the functional alcohol dehydrogenase complex. Several genes including the citrate synthase gene of A. aceti were identified to confer acetic acid resistance, and the histidinolphosphate aminotransferase gene was cloned as a multicopy suppressor of an ethanol sensitive mutant. Improvement of the acetic acid productivity of an A. aceti strain was achieved through amplification of the aldehyde dehydrogenase gene with a multicopy vector. In addition, spheroplast fusion of the Acetobacter strains was developed and applied to improve their properties.

  8. Acetobacter aceti fast identification by Real Time PCR in spoiled wine samples

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2014-11-01

    Full Text Available Wine is a beverage that made from grape berries. However, without beneficial bacteria, we would not produce good wine. But very often wines contain acetic acid bacteria, which are undesirable in winemaking process. Acetic acid bacteria as known as a vinegar bacteria are Gram-negative, aerobic, rod-shaped and ubiquitous bacteria. This study was focused on species of acetic acid bacteria, specifically Acetobacter aceti that make spoilage in wine.The aim of our study was the identification of Acetobacter aceti in spoiled red wine samples, with plate dilution method on agar plates and using sensitive Real-time PCR (qPCR method. We cultivated Acetobacter aceti on GYC agar at 30°C, 48h. The one of main objective in the present work was the test fast, sensitive and reliable technique such as quantitative Real-time PCR and detecting the presence of Acetobacter aceti in wine samples with positive Acetobacteraceti control on amplification plot and melting curve. The next objective before  qPCR analysis was DNA extraction from wine samples incubated for one week at 28°C aerobically. We used five different red wine samples for this experiment: Alibernet 2013, Blaufränkisch 2013, Cabernet Sauvignon 2013, Dunaj 2012 and Saint-Laurent 2012. Next we extracted DNA from wine samples and from pure Acetobacter aceti CCM 3620T strain purchased from Czech collection of microorganisms in Brno. Susceptibility ofAcetobacter aceti was varied in different isolates from 102 to 107 CFU.mL-1. The number of Acetobacter cells on GYC medium ranged from 4.05 to 4.83log CFU.mL-1 in differentwine samples.The higher number of Acetobacter cells (4.83 log CFU.mL-1 was found in Cabernet Sauvignon 2013 wine.

  9. THE INFLUENCE OF CULTURE MEDIA ON ACETIC FERMENTATION WITH SELECTED Acetobacter STRAINS

    OpenAIRE

    MARIA CRISTIANA GARNAI

    2012-01-01

    We have systematically followed the efficiency of acetic fermentation, by cultivating 14 Acetobacter strains (previously isolated and identified), within a medium obtain out of ethanol and acetic acid, in various proportions, and utilizing corn extract (CE) as a nutrient. The purpose of the research was to determine the resistance of the studied Acetobacter strains related to the composition of the cultivation media (acidity and alcohol content of the medium), as well as following the dy...

  10. Role of Plasmid in Production of Acetobacter Xylinum Biofilms

    Directory of Open Access Journals (Sweden)

    Abbas Rezaee

    2005-01-01

    Full Text Available Acetobacter xylinum has the ability to produce cellulotic biofilms. Bacterial cellulose is expected to be used in many industrial or biomedical materials for its unique characteristics. A. xylinum contains a complex system of plasmid DNA molecules. A 44 kilobases (kb plasmid was isolated in wild type of A. xylinum. To improve the cellulose producing ability of A. xylinum, role of the plasmid in production of cellulose was studied. The comparisons between wild type and cured cells of A. xylinum showed that there is considerably difference in cellulose production. In order to study the relationship between plasmid and the rate of cellulose production, bacteria were screened for plasmid profile by a modified method for preparation of plasmid. This method yields high levels of pure plasmid DNA that can be used for common molecular techniques, such as digestion and transformation, with high efficiency.

  11. Characterization of cellulose membranes produced by Acetobacter xyllinum

    Directory of Open Access Journals (Sweden)

    Pikul Wanichapichart

    2002-11-01

    Full Text Available Cellulose membranes formed by Acetobacter xylinum under known cell density in a culture medium were characterized. A dead end testing unit was used for water flux and filtration of Chlorella sp. and bovine serum albumin (BSA. This study found that the cells formed membranes faster in sucrose supplemented coconut juice than in the standard Schramm & Hestrin's medium. For two-day formed membranes in the former medium, an increase in cell density from 1 × 108 to 2 × 108 cfu.ml-1 reduced water flux and, hence, reduced the hydraulic permeability coefficient (Lp from 3.6 × 10-10 to 0.5 × 10-10 m3N-1s-1. These membranes were asymmetric-hydrophilic type with thickness less than 6.0 μm. Membrane porosity was found to vary from 1.4% to 2.4%, with the averaged pore size 0.08 μm. Under 100 kPa filtration, two-day formed membranes in sucrose supplemented coconut juice with higher cell density rejected Chlorella cells and BSA by 99.8% and 98.4%, respectively.

  12. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    Science.gov (United States)

    France, Danielle Cook

    2016-09-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  13. Biotransformation of glycerol to D-glyceric acid by Acetobacter tropicalis.

    Science.gov (United States)

    Habe, Hiroshi; Fukuoka, Tokuma; Kitamoto, Dai; Sakaki, Keiji

    2009-01-01

    Bacterial strains capable of converting glycerol to glyceric acid (GA) were screened among the genera Acetobacter and Gluconacetobacter. Most of the tested Acetobacter and Gluconacetobacter strains could produce 1.8 to 9.3 g/l GA from 10% (v/v) glycerol when intact cells were used as the enzyme source. Acetobacter tropicalis NBRC16470 was the best GA producer and was therefore further investigated. Based on the results of high-performance liquid chromatography analysis and specific rotation, the enantiomeric composition of the produced GA was D-glyceric acid (D-GA). The productivity of D-GA was enhanced with the addition of both 15% (v/v) glycerol and 20 g/l yeast extract. Under these optimized conditions, A. tropicalis NBRC16470 produced 22.7 g/l D-GA from 200 g/l glycerol during 4 days of incubation in a jar fermentor.

  14. THE INFLUENCE OF CULTURE MEDIA ON ACETIC FERMENTATION WITH SELECTED Acetobacter STRAINS

    Directory of Open Access Journals (Sweden)

    MARIA CRISTIANA GARNAI

    2012-06-01

    Full Text Available We have systematically followed the efficiency of acetic fermentation, by cultivating 14 Acetobacter strains (previously isolated and identified, within a medium obtain out of ethanol and acetic acid, in various proportions, and utilizing corn extract (CE as a nutrient. The purpose of the research was to determine the resistance of the studied Acetobacter strains related to the composition of the cultivation media (acidity and alcohol content of the medium, as well as following the dynamics of the acetic fermentation by calculating the practical yield. The research led to optimal variants which may be industrially exploited in order to obtain vinegar.

  15. Draft Genome Sequence of Acetobacter malorum CECT 7742, a Strain Isolated from Strawberry Vinegar.

    Science.gov (United States)

    Sainz, Florencia; Mas, Albert; Torija, María Jesús

    2016-06-23

    The present article reports the draft genome sequence of the strain Acetobacter malorum CECT 7742, an acetic acid bacterium isolated from strawberry vinegar. This species is characterized by the production of d-gluconic acid from d-glucose, which it further metabolizes to keto-d-gluconic acids.

  16. Draft Genome Sequence of Acetobacter malorum CECT 7742, a Strain Isolated from Strawberry Vinegar

    Science.gov (United States)

    Sainz, Florencia; Torija, María Jesús

    2016-01-01

    The present article reports the draft genome sequence of the strain Acetobacter malorum CECT 7742, an acetic acid bacterium isolated from strawberry vinegar. This species is characterized by the production of d-gluconic acid from d-glucose, which it further metabolizes to keto-d-gluconic acids. PMID:27340078

  17. Removal of Mercury from chlor-alkali Industry Wastewater using Acetobacter xylinum Cellulose

    Directory of Open Access Journals (Sweden)

    A. Rezaee

    2005-01-01

    Full Text Available In this study, the removal of mercury ions by cellulose of Acetobacter xylinum was investigated in the synthetic and chlor-alkali wastewater. Biofilms of Acetobacter xylinum were grown in laboratory column bioreactors. The biofilms were continuously treated with sterile synthetic model wastewater or nonsterile, neutralized chloralkali wastewater.The extent of adsorption was studied as function of pH, adsorbent dose and contact time. Efficiency of mercury ion removal from chlor-alkali industry wastewater by aluminum sulfate and ferric chloride was also determined. Under acidic condition the adsorption of mercury by cellulose was quite low and increasing processing time more than 10min has no remarkably effect on the adsorption rate. Adsorption capacity of cellulose under dynamic condition for chlor-alkali wastewater was 65mg/µg which was less than the value (80mg/µg that obtained from batch adsorption experiments for synthetic wastewater.

  18. Optimization of lactobionic acid production by Acetobacter orientalis isolated from Caucasian fermented milk, "Caspian Sea yogurt".

    Science.gov (United States)

    Kiryu, Takaaki; Yamauchi, Kouhei; Masuyama, Araki; Ooe, Kenichi; Kimura, Takashi; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2012-01-01

    We have reported that lactobionic acid is produced from lactose by Acetobacter orientalis in traditional Caucasian fermented milk. To maximize the application of lactobionic acid, we investigated favorable conditions for the preparation of resting A. orientalis cells and lactose oxidation. The resting cells, prepared under the most favorable conditions, effectively oxidized 2-10% lactose at 97.2 to 99.7 mol % yield.

  19. APPLICATION OF RT-PCR FOR ACETOBACTER SPECIES DETECTION IN RED WINE

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2014-02-01

    Full Text Available Acetic acid bacteria play a negative role in wine making because they increase the volatile acidity of wines. They can survive in the various phases of alcoholic fermentation and it is very important to control their presence and ulterior development. The main objective of the present work is to test fast, sensitive and reliable technique such as real-time PCR (rt-PCR and detecting the presence of Acetobacter aceti, Acetobacter pasteurianus, Gluconobacter oxydans, Gluconacetobacter liquefaciens and Gluconacetobacter hansenii in red wine. The aim of our study was the identification of some species of acetic acid bacteria in red wine during the fermentation process using a classical microbiological method. The changes in different groups of microorganisms were monitored in total counts of bacteria, and Acetobacter cells. Microbiological parameters were observed during the current collection and processing of wine in 2012. Samples (Modry Portugal, MP and Frankovka modra, FM were taken during the fermentation process in wine enterprises and were storage with different conditions. The total counts of bacteria ranged from 4.21 in the wine MP at 4°C of storage to 5.81 log CFU.mL-1 in the wine MP at 25°C of storage, but the total counts of bacteria ranged from 4.85 in the wine FM at 4°C of storage to 5.63 log CFU.mL-1 in the wine FM at 25°C of storage. The higher number of Acetobacter cells was found in wine MP at 25°C.

  20. Synthesis of cellulose by Acetobacter xylinum. VI. Growth on citric acid-cycle intermediates.

    Science.gov (United States)

    GROMET-ELHANAN, Z; HESTRIN, S

    1963-02-01

    Gromet-Elhanan, Zippora (The Hebrew University, Jerusalem, Israel) and Shlomo Hestrin. Synthesis of cellulose by Acetobacter xylinum. VI. Growth on citric acid-cycle intermediates. J. Bacteriol. 85:284-292. 1963.-Acetobacter xylinum could be made to grow on ethanol, acetate, succinate, or l-malate. The growth was accompanied by formation of opaque leathery pellicles on the surface of the growth medium. These pellicles were identified as cellulose on the basis of their chemical properties, solubility behavior, and infrared absorption spectra. Washed-cell suspensions prepared from cultures grown on ethanol or the organic acids, in contrast to washed sugar-grown cells, were able to transform citric-cycle intermediates into cellulose. The variations in the substrate spectrum of cellulose synthesis between sugar-grown cells and organic acids-grown cells were found to be correlated with differences in the oxidative capacity of the cells. The significance of the findings that A. xylinum could be made to grow on ethanol on complex as well as synthetic media is discussed from the viewpoint of the whole pattern of Acetobacter classification.

  1. Transfer of Acetobacter oboediens Sokollek et al 1998 and Acetobacter intermedius Boesch et al. 1998 to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov.

    Science.gov (United States)

    Yamada, Y

    2000-11-01

    Acetobacter oboediens Sokollek et al. 1998 and Acetobacter intermedius Boesch et al. 1998 are transferred to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. because, on the basis of their 16S rRNA gene sequences, the type strains of both species are located in the cluster of the genus Gluconacetobacter along with those of Gluconacetobacter xylinus, Gluconacetobacter europaeus, Gluconacetobacter hansenii, Gluconacetobacter liquefaciens (the type species) and Gluconacetobacter diazotrophicus. The significance of growth on mannitol agar and the presence of a ubiquinone isoprenologue composed of Q-10 is discussed for characterization of the genus Gluconacetobacter.

  2. Isolation and Identification of Acetobacter Bacteria from Kefir Grains%开菲尔粒中醋酸菌的分离鉴定

    Institute of Scientific and Technical Information of China (English)

    刘芸; 曹宜; 刘波; 刘丹莹; 朱育菁; 刘欣

    2012-01-01

    Two Acetobacter strains FJAT-13764 and FJAT-13780 were isolated from kefir grains. The observations with scanning electron microscope showed that both bacteria strains were rod-shaded with round terminals, presented in single or pairs, produced no spores. Their orerall biochemical and physiological characters indicated that these strains should be placed in the Acetobacter spp. The 16S rDNA sequence analysis indicated that FJAT-13764 and FJAT-13780 were Acetobacter orientalis and Acetobacter syzygii, respectively. This study is the first report in Acetobacter orientalis isolated from kefir grains, which provides the basic information for further researches on the micro-flora diversity in kefir grain.%从开菲尔粒中分离出2株醋酸菌FJAT-13764和FJAT-13780.利用形态学观察、生理生化和16S rDNA方法对菌株进行分类鉴定.菌株FJAT-13764和FJAT-13780的菌体形态均为圆端直杆菌,单个或成对,无芽孢,其生理生化特征与醋杆菌属Acetobacter基本一致.经16S rDNA基因序列同源性比较和系统发育分析,鉴定菌株FJAT-13764为Acetobacter orientalis(东方醋酸菌),菌株FJAT-13780为Acetobacter syzygii.

  3. Comparative Proteome of Acetobacter pasteurianus Ab3 During the High Acidity Rice Vinegar Fermentation.

    Science.gov (United States)

    Wang, Zhe; Zang, Ning; Shi, Jieyan; Feng, Wei; Liu, Ye; Liang, Xinle

    2015-12-01

    As a traditional Asian food for several centuries, vinegar is known to be produced by acetic acid bacteria. The Acetobacter species is the primary starter for vinegar fermentation and has evolutionarily acquired acetic acid resistance, in which Acetobacter pasteurianus Ab3 is routinely used for industrial production of rice vinegar with a high acidity (9 %, w/v). In contrast to the documented short-term and low acetic acid effects on A. pasteurianus, here we investigated the molecular and cellular signatures of long-term and high acetic acid responses by proteomic profiling with bidimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF/MS) analyses. Protein spots of interest were selected based on the threshold ANOVA p value of 0.05 and minimal twofold of differential expression, leading to the identification of 26 proteins that are functionally enriched in oxidoreductase activity, cell membrane, and metabolism. The alterations in protein functioning in respiratory chain and protein denaturation may underlay cellular modifications at the outer membrane. Significantly, we found that at higher acidity fermentation phase, the A. pasteurianus Ab3 cells would adapt to distinct physiological processes from that of an ordinary vinegar fermentation with intermediate acidity, indicating increasing energy requirement and dependency of membrane integrity during the transition of acetic acid production. Together, our study provided new insights into the adaptation mechanisms in A. pasteurianus to high acetic acid environments and yield novel regulators and key pathways during the development of acetic acid resistance.

  4. Cloning and characterization of groESL operon in Acetobacter aceti.

    Science.gov (United States)

    Okamoto-Kainuma, Akiko; Yan, Wang; Kadono, Sachiko; Tayama, Kenji; Koizumi, Yukimichi; Yanagida, Fujiharu

    2002-01-01

    The groESL operon of Acetobacter aceti was cloned and sequenced. We observed that GroES and GroEL of A. aceti had high amino acid sequence homologies to GroES and GroEL of Escherichia coli and Bacillus subtilis. The upstream region of the groESL operon contained the heat-shock promoter, which was previously reported in alpha-purple proteobacteria, and the highly conserved inverted repeat sequence. Phylogenetic analysis revealed that the A. aceti GroES and GroEL are very closely related to those of other alpha-purple proteobacteria. Transcription of this operon in A. aceti was induced by heat shock as well as by exposure to ethanol and acetic acid, which are present during fermentation of acetic acid. A. aceti that overexpressed the groESL was more resistant than the control strain to Stressors such as heat, ethanol, or acetic acid, indicating that GroES and GroEL are closely associated with the characteristic nature of Acetobacter and play an important role in acetic acid fermentation.

  5. Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti.

    Science.gov (United States)

    Nakano, Shigeru; Fukaya, Masahiro; Horinouchi, Sueharu

    2004-06-15

    Acetobacter spp. are used for industrial vinegar production because of their high ability to oxidize ethanol to acetic acid and high resistance to acetic acid. Two-dimensional gel electrophoretic analysis of a soluble fraction of Acetobacter aceti revealed the presence of several proteins whose production was enhanced, to various extents, in response to acetic acid in the medium. A protein with an apparent molecular mass of 100 kDa was significantly enhanced in amount by acetic acid and identified to be aconitase by NH2-terminal amino acid sequencing and subsequent gene cloning. Amplification of the aconitase gene by use of a multicopy plasmid in A. aceti enhanced the enzymatic activity and acetic acid resistance. These results showed that aconitase is concerned with acetic acid resistance. Enhancement of the aconitase activity turned out to be practically useful for acetic acid fermentation, because the A. aceti transformant harboring multiple copies of the aconitase gene produced a higher concentration of acetic acid with a reduced growth lag-time.

  6. Bacterial Cellulose Production by Acetobacter xylinum Strains from Agricultural Waste Products

    Science.gov (United States)

    Kongruang, Sasithorn

    Bacterial cellulose is a biopolysaccharide produced from the bacteria, Acetobacter xylinum. Static batch fermentations for bacterial cellulose production were studied in coconut and pineapple juices under 30 °C in 5-1 fermenters by using three Acetobacter strains: A. xylinum TISTR 998, A. xylinum TISTR 975, and A. xylinum TISTR 893. Experiments were carried out to compare bacterial cellulose yields along with growth kinetic analysis. Results showed that A. xylinum TISTR 998 produced a bacterial cellulose yield of 553.33 g/l, while A. xylinum TISTR 893 produced 453.33 g/l and A. xylinum TISTR 975 produced 243.33 g/l. In pineapple juice, the yields for A. xylinum TISTR 893, 975, and 998 were 576.66, 546.66, and 520 g/l, respectively. The strain TISTR 998 showed the highest productivity when using coconut juice. Morphological properties of cellulose pellicles, in terms of texture and color, were also measured, and the textures were not significantly different among treatments.

  7. Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice.

    Science.gov (United States)

    Muthukumarasamy, Ramachandran; Cleenwerck, Ilse; Revathi, Gopalakrishnan; Vadivelu, Muthaiyan; Janssens, D; Hoste, B; Gum, Kang Ui; Park, Ki-Do; Son, Cho Young; Sa, Tongmin; Caballero-Mellado, Jesus

    2005-04-01

    The family Acetobacteraceae currently includes three known nitrogen-fixing species, Gluconacetobacter diazotrophicus, G. johannae and G. azotocaptans. In the present study, acetic acid-producing nitrogen-fixing bacteria were isolated from four different wetland rice varieties cultivated in the state of Tamilnadu, India. Most of these isolates were identified as G. diazotrophicus on the basis of their phenotypic characteristics and PCR assays using specific primers for that species. Based on 16S rDNA partial sequence analysis and DNA: DNA reassociation experiments the remaining isolates were identified as Acetobacter peroxydans, another species of the Acetobacteraceae family, thus far never reported as diazotrophic. The presence of nifH genes in A. peroxydans was confirmed by PCR amplification with nifH specific primers. Scope for the findings: This is the first report of the occurrence and association of N2-fixing Gluconacetobacter diazotrophicus and Acetobacter peroxydans with wetland rice varieties. This is the first report of diazotrophic nature of A. peroxydans.

  8. Cloning and sequencing of the beta-glucosidase gene from Acetobacter xylinum ATCC 23769.

    Science.gov (United States)

    Tajima, K; Nakajima, K; Yamashita, H; Shiba, T; Munekata, M; Takai, M

    2001-12-31

    The beta-glucosidase gene (bglxA) was cloned from the genomic DNA of Acetobacter xylinum ATCC 23769 and its nucleotide sequence (2200 bp) was determined. This bglxA gene was present downstream of the cellulose synthase operon and coded for a polypeptide of molecular mass 79 kDa. The overexpression of the beta-glucosidase in A. xylinum caused a tenfold increase in activity compared to the wild-type strain. In addition, the action pattern of the enzyme was identified as G3ase activity. The deduced amino acid sequence of the bglxA gene showed 72.3%, 49.6%, and 45.1% identity with the beta-glucosidases from A. xylinum subsp. sucrofermentans, Cellvibrio gilvus, and Mycobacterium tuberculosis, respectively. Based on amino acid sequence similarities, the beta-glucosidase (BglxA) was assigned to family 3 of the glycosyl hydrolases.

  9. Acetic acid fermentation of acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation.

    Science.gov (United States)

    Kanchanarach, Watchara; Theeragool, Gunjana; Inoue, Taketo; Yakushi, Toshiharu; Adachi, Osao; Matsushita, Kazunobu

    2010-01-01

    Acetobacter pasteurianus strains IFO3283, SKU1108, and MSU10 were grown under acetic acid fermentation conditions, and their growth behavior was examined together with their capacity for acetic acid resistance and pellicle formation. In the fermentation process, the cells became aggregated and covered by amorphous materials in the late-log and stationary phases, but dispersed again in the second growth phase (due to overoxidation). The morphological change in the cells was accompanied by changes in sugar contents, which might be related to pellicle polysaccharide formation. To determine the relationship between pellicle formation and acetic acid resistance, a pellicle-forming R strain and a non-forming S strain were isolated, and their fermentation ability and acetic acid diffusion activity were compared. The results suggest that pellicle formation is directly related to acetic acid resistance ability, and thus is important to acetic acid fermentation in these A. pasteurianus strains.

  10. Hydrogen peroxide resistance of Acetobacter pasteurianus NBRC3283 and its relationship to acetic acid fermentation.

    Science.gov (United States)

    Okamoto-Kainuma, Akiko; Ehata, Yasunori; Ikeda, Manami; Osono, Takemasa; Ishikawa, Morio; Kaga, Takayuki; Koizumi, Yukimichi

    2008-10-01

    The bacterium Acetobacter pasteurianus can ferment acetic acid, a process that proceeds at the risk of oxidative stress. To understand the stress response, we investigated catalase and OxyR in A. pasteurianus NBRC3283. This strain expresses only a KatE homolog as catalase, which is monofunctional and growth dependent. Disruption of the oxyR gene increased KatE activity, but both the katE and oxyR mutant strains showed greater sensitivity to hydrogen peroxide as compared to the parental strain. These mutant strains showed growth similar to the parental strain in the ethanol oxidizing phase, but their growth was delayed when cultured in the presence of acetic acid and of glycerol and during the acetic acid peroxidation phase. The results suggest that A. pasteurianus cells show different oxidative stress responses between the metabolism via the membrane oxidizing pathway and that via the general aerobic pathway during acetic acid fermentation.

  11. Binding of soluble glycoproteins from sugarcane juice to cells of Acetobacter diazotrophicus.

    Science.gov (United States)

    Legaz, M E; de Armas, R; Barriguete, E; Vicente, C

    2000-09-01

    Sugarcane produces two different pools of glycoproteins containing a heterofructan as glycidic moiety, tentatively defined as high-molecular mass (HMMG) and mid-molecular mass (MMMG) glycoproteins. Both kinds of glycoproteins can be recovered in sugarcane juice. Fluorescein-labelled glycoproteins are able to bind to Acetobacter diazotrophicus cells, a natural endophyte of sugarcane. This property implies the aggregation of bacterial cells in liquid culture after addition of HMMG or MMMG. Anionic glycoproteins seem to be responsible for the binding activity whereas cationic fraction is not retained on the surface ofA. diazotrophicus. Bound HMMG is competitively desorbed by sucrose whereas MMMG is desorbed by glucosamine or fructose. On this basis, a hypothesis about the discriminatory ability of sugarcane to choose the compatible endophyte from several possible ones is proposed.

  12. Isolation of a new restriction enzyme, ApaCI, an isoschizomer of BamHI produced by Acetobacter pasteurianus.

    Science.gov (United States)

    Grones, J; Turna, J

    1992-01-01

    A new Type II restriction endonuclease ApaCI purified from Acetobacter pasteurianus is an isoschizomer of BamHI that cleaves at the nucleotide sequence 5'-G/GATCC-3' of double-stranded DNA. The single restriction activity present in this strain permits rapidly purified 30,000 units of cleavage activity from 10 g of freshly harvested cells. The resulting ApaCI preparation is free of contaminant nuclease activities that might interfere with in vitro manipulation of DNA.

  13. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains.

    Science.gov (United States)

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  14. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains

    Science.gov (United States)

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  15. KINETIKA FERMENTASI ASAM ASETAT (VINEGAR) OLEH BAKTERI Acetobacter aceti B 127 DARI ETANOL HASIL FERMENTASI LIMBAH CAIR PULP KAKAO [Kinetics of Acetic Acid (Vinegar) Fermentation By Acetobacter aceti B127 from Ethanol Produced by Fermentation of Liquid Waste of Cacao Pulp

    OpenAIRE

    M. Supli Effendi

    2002-01-01

    Acetic acid concentration is one of vinegar’s quality parameter. Acetic acid concentration in vinegar is influenced by the activity of acetic acid bacteria. This research studied the kinetics of anaerobic fermentation of liquid waste of cacao pulp by Saccharomyces cerevisiae R60 to produce ethanol and the kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127. The kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127 can be used as a basic of biopro...

  16. 藏灵菇发酵乳中醋酸菌的分离纯化与鉴定%Isolation and Identification of Acetobacter in Tibetan Kefir

    Institute of Scientific and Technical Information of China (English)

    曹宜; 刘芸; 刘波; 朱育菁; 陈倩倩

    2012-01-01

    One Acetobacter strain, FJAT-13797, was isolated from Tibetan kefir. The image under scanning electronic microscope showed that the bacterium was rod-shaped with round ends, and presented in single or pairs without spores. The strain showed the bio-chemical properties of Acetobacter spp. The 16S rDNA sequence analysis indicated that the strain, FJAT-13797, belonged to Acetobacter orientalis.%从藏灵菇中分离出醋酸菌株FJAT-13797,利用形态学观察、生理生化和16S rDNA方法对其进行细菌学鉴定,菌体形态为圆端直杆,单个或成对,无芽孢,其生理生化特征与醋杆菌属(Acetobacter)基本一致.经16S rDNA基因序列同源性比较和系统发育分析,菌株FJAT-13797鉴定为东方醋酸菌(Acetobacter orientalis).

  17. Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae).

    Science.gov (United States)

    Kounatidis, Ilias; Crotti, Elena; Sapountzis, Panagiotis; Sacchi, Luciano; Rizzi, Aurora; Chouaia, Bessem; Bandi, Claudio; Alma, Alberto; Daffonchio, Daniele; Mavragani-Tsipidou, Penelope; Bourtzis, Kostas

    2009-05-01

    Following cultivation-dependent and -independent techniques, we investigated the microbiota associated with Bactrocera oleae, one of the major agricultural pests in olive-producing countries. Bacterial 16S rRNA gene libraries and ultrastructural analyses revealed the presence of several bacterial taxa associated with this insect, among which Acetobacter tropicalis was predominant. The recent increased detection of acetic acid bacteria as symbionts of other insect model organisms, such as Anopheles stephensi (G. Favia et al., Proc. Natl. Acad. Sci. USA 104:9047-9051, 2007) or Drosophila melanogaster (C. R. Cox and M. S. Gilmore, Infect. Immun. 75:1565-1576, 2007), prompted us to investigate the association established between A. tropicalis and B. oleae. Using an A. tropicalis-specific PCR assay, the symbiont was detected in all insects tested originating from laboratory stocks or field-collected from different locations in Greece. This acetic acid bacterium was successfully established in cell-free medium, and typing analyses, carried out on a collection of isolates, revealed that different A. tropicalis strains are present in fly populations. The capability to colonize and lodge in the digestive system of both larvae and adults and in Malpighian tubules of adults was demonstrated by using a strain labeled with a green fluorescent protein.

  18. Adaptive mutation of Acetobacter pasteurianus SKU1108 enhances acetic acid fermentation ability at high temperature.

    Science.gov (United States)

    Matsutani, Minenosuke; Nishikura, Mitsuteru; Saichana, Natsaran; Hatano, Tomoyuki; Masud-Tippayasak, Uraiwan; Theergool, Gunjana; Yakushi, Toshiharu; Matsushita, Kazunobu

    2013-05-20

    In vitro adaptation is one of the most challenging subjects in biology to understand adaptive evolution. Microbial adaptation to temperature is not only interesting in terms of understanding the adaptation mechanism, but also useful for industrial applications. In this study, we attempted the in vitro adaptation of Acetobacter pasteurianus SKU1108 by repeating its cultivation under high-temperature acetic acid fermentation conditions. As a result, thermo-adapted strains having the higher fermentation ability than the wild-type strain were obtained. Mutations and/or disruptions in several proteins of the adapted strains were detected with NGS sequencing technology. In particular, two different adapted strains had mutations or disruptions in three specific genes in common, suggesting that these genes are essential for thermotolerance or fermentation at higher temperature. In order to clarify their involvement in thermotolerance, two of the three genes were disrupted and their phenotype was examined. The results showed that mutations of the two proteins, MarR and an amino acid transporter, are partly responsible for higher fermentation ability and/or thermotolerance. Thus, it was suggested that these elevated abilities of the adapted strains are acquired by assembling several single gene mutations including the above two mutations.

  19. Cloning and characterization of grpE in Acetobacter pasteurianus NBRC 3283.

    Science.gov (United States)

    Ishikawa, Morio; Okamoto-Kainuma, Akiko; Jochi, Takayuki; Suzuki, Ikue; Matsui, Kazuaki; Kaga, Takayuki; Koizumi, Yukimichi

    2010-01-01

    The grpE gene in Acetobacter pasteurianus NBRC 3283 was cloned and characterized, to elucidate the mechanism underlying the resistance of acetic acid bacteria to the stressors existing during acetic acid fermentation. This gene was found to be located in tandem with two related genes, appearing on the genome in the order grpE-dnaK-dnaJ. A sigma(32)-type promoter sequence was found in the upstream region of grpE. The relative transcription levels of grpE, dnaK, and dnaJ mRNA were in the ratio of approximately 1:2:0.1, and the genes were transcribed as grpE-dnaK, dnaK, and dnaJ. The transcription level of grpE was elevated by heat shock and treatment with ethanol. Co-overexpression of GrpE with DnaK/J in cells resulted in improved growth compared to the single overexpression of DnaK/J in high temperature or ethanol-containing conditions, suggesting that GrpE acts cooperatively with DnaK/J for expressing resistance to those stressors considered to exist during acetic acid fermentation. Our findings indicate that GrpE is closely associated with adaptation to stressors in A. pasteurianus and may play an important role in acetic acid fermentation.

  20. EVALUASI PENGGUNAAN METILEN BIRU SEBAGAI MEDIATOR ELEKTRON PADA MICROBIAL FUEL CELL DENGAN BIOKATALIS ACETOBACTER ACETI

    Directory of Open Access Journals (Sweden)

    Dani Permana

    2013-05-01

    Full Text Available Microbial fuel cell (MFC merupakan salah satu teknologi sel bahan bakar alternatif yang dapat diperbarui. MFC memanfaatkan proses oksidasi senyawa kimia oleh biokatalis untuk menghasilkan energi listrik daya rendah. Tujuan dari penelitian ini adalah mengetahui kinerja MFC dengan dan tanpa mediator elektron metilen biru (MB menggunakan biokatalis Acetobacter aceti dan substrat glukosa agar diperoleh energi listrik. Metode yang dilakukan adalah peremajaan kultur A. aceti, persiapan inokulum, persiapan reaktor MFC, persiapan media MFC dengan substrat glukosa 2% dengan dan tanpa mediator MB, pencuplikan secara periodik, penentuan kurva pertumbuhan, arus, potensial, kerapatan daya, energi, kadar glukosa dan tingkat keasaman (pH. Hasil penelitian menunjukkan bahwa MFC dengan mediator menghasilkan kuat arus sebesar 0,040 mA, potensial 878 mV, kerapatan daya 0,395 mW/cm2, energi maksimum 3,685 kJ, pemanfaatan glukosa 93,02% dan pH akhir 3,33, sedangkan MFC tanpa mediator menghasilkan kuat arus 0,035 mA, potensial 773 mV, kerapatan daya 0,290 mW/cm2, energi maksimum 2,434 kJ, pemanfaatan glukosa 90,16% dan pH akhir 3,24. Perolehan kerapatan daya pada kedua jenis MFC masih tergolong kecil dan tidak berbeda secara signifikan. Berdasarkan hasil penelitian dapat disimpulkan bahwa penggunaan mediator MB hanya berpengaruh terhadap perolehan potensial pada MFC dengan kondisi perlakuan yang diterapkan dalam penelitian ini.

  1. Minerals consumption by Acetobacter xylinum on cultivation medium on coconut water

    Directory of Open Access Journals (Sweden)

    Denise Milleo Almeida

    2013-01-01

    Full Text Available The objective of this work is to verifying the consume of the minerals K, Na, Fe, Mg, P, S-SO4-2,B,N Total Kjedahl (NTK, NO3--N, and NH4+-N in the production of bacterial cellulose by Acetobacter xylinum, according to the medium and the manner of cultivation. The fermentative process was in ripe and green coconut water. K and Na were determined by flame emission photometry, Mg and Fe by atomic absorption spectrophotometry, P by molecular absorption spectrophotometry, S-SO4-2 by barium sulphate turbidimetry, B by Azomethin-H method, NTK by Kjeldahl method, N-NO3-and N-NH4+ by vapor distillation with magnesium oxide and Devarda's alloy, respectively. In Fermentation of ripe coconut water there were higher consumption of K (69%, Fe (84,3%, P (97,4%, S-SO2-2 (64,9%, B (56,1%, N-NO3 (94,7% and N-NH4+ (95,2%, whereas coconut water of green fruit the most consumed ions were Na (94,5%, Mg (67,7% and NTK (56,6%. The cultivation under agitation showed higher mineral consumption. The higher bacterial cellulose production, 6 g.L-1, was verified in the coconut water fermentative in ripe fruit, added KH2PO4, FeSO4 and NaH2PO4 kept under agitation.

  2. The optimal conditions for nata production from sugar palm syrup by Acetobacter xylinum TISTR 107

    Directory of Open Access Journals (Sweden)

    Laochareonsuk, T.

    2005-11-01

    Full Text Available The optimal conditions of nata production from the fermentation of sugar palm syrup by Acetobacter xylinum TISTR 107 was studied. The results showed that optimized production for a litre of sugar palm syrup medium should compose 15 ºBrix concentration, 7.0 g NH4H2PO4 and 0.7 g MgSO4. 7 H2O at pH 4.25 and incubation at room temperature. The thickness of nata production reached 1.15 cm in 9 days. Sensory evaluation showed that there were no significant difference in odor and acceptability between the nata from sugar palm syrup and the traditional nata production from coconut juice whereas there were significant differences in color and texture. However, the nata from sugar palm syrup gave a better texture. Chemical analysis of the nata produced under these optimal culture conditions revealed 0.13% protein, 0.012% fat, 2.74% fiber, 0.378% nitrogen-free extract, 0.11% ash and 96.63% moisture content. The results suggest that nata produced from sugar palm syrup can be used in food and confectionery.

  3. Behavior of Freezable Bound Water in the Bacterial Cellulose Produced by Acetobacter xylinum: An Approach Using Thermoporosimetry

    OpenAIRE

    Kaewnopparat, Sanae; Sansernluk, Kamonlawat; Faroongsarng, Damrongsak

    2008-01-01

    The aim of the study is to examine thermal behavior of water within reticulated structure of bacterial cellulose (BC) films by sub-ambient differential scanning calorimetry (DSC). BC films with different carbon source, either manitol (BC (a)) or glycerol (BC (b)), were produced by Acetobacter xylinum using Hestrin and Shramm culture medium under static condition at 30 ± 0.2°C for 3 days. BC samples were characterized by electron scanning microscopy and X-ray diffraction spectroscopy. The pore...

  4. Characterization of a major cluster of nif, fix, and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus.

    Science.gov (United States)

    Lee, S; Reth, A; Meletzus, D; Sevilla, M; Kennedy, C

    2000-12-01

    A major 30.5-kb cluster of nif and associated genes of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus), a nitrogen-fixing endophyte of sugarcane, was sequenced and analyzed. This cluster represents the largest assembly of contiguous nif-fix and associated genes so far characterized in any diazotrophic bacterial species. Northern blots and promoter sequence analysis indicated that the genes are organized into eight transcriptional units. The overall arrangement of genes is most like that of the nif-fix cluster in Azospirillum brasilense, while the individual gene products are more similar to those in species of Rhizobiaceae or in Rhodobacter capsulatus.

  5. Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum.

    Science.gov (United States)

    Zhou, L L; Sun, D P; Hu, L Y; Li, Y W; Yang, J Z

    2007-07-01

    Bacterial cellulose (BC) production by Acetobacter xylinum NUST4.1 was carried out in the shake flask and in a stirred-tank reactor by means of adding sodium alginate (NaAlg) into the medium. When 0.04% (w/v) NaAlg was added in the shake flask, BC production reached 6.0 g/l and the terminal yield of the cellulose was 27% of the total sugar initially added, compared with 3.7 g/l and 24% in the control, respectively. The variation between replicates in all determinations was less than 5%. During the cultivation in the stirred-tank reactor, the addition of NaAlg changed the morphology of cellulose from the irregular clumps and fibrous masses entangled in the internals to discrete masses dispersing into the broth, which indicates that NaAlg hinders formation of large clumps of BC, and enhances cellulose yield. Because the structure of cellulose is changed depending on the culture condition such as additives, structural characteristics of BC produced in the NaAlg-free and NaAlg medium are compared using scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD). SEM photographs show some differences in reticulated structures and ribbon width and FT-IR spectra indicate that there is the hydrogen bonding interaction between BC and NaAlg, then X-ray diffraction (XRD) analysis reveals that BC produced with NaAlg-added has a lower crystallinity and a smaller crystalline size. The results show that enhanced yields and modification of cellulose structure occur in the presence of NaAlg.

  6. Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Nakano, Shigeru; Fukaya, Masahiro

    2008-06-30

    Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation.

  7. Identification of the catalytic residues of alpha-amino acid ester hydrolase from Acetobacter turbidans by labeling and site-directed mutagenesis

    NARCIS (Netherlands)

    Polderman - Tijmes, Jolanda j.; Jekel, Peter A.; Jeronimus-Stratingh, CM; Bruins, Andries P.; van der Laan, Jan-Metske; Sonke, Theo; Janssen, Dick B.

    2002-01-01

    The alpha-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing the side chain peptide bond in beta-lactam antibiotics. Data base searches revealed that the enzyme contains an active site serine consensus sequence Gly-X-Ser-Tyr-X-Gly that is also

  8. Determination of dehydrogenase activities involved in D-glucose oxidation in Gluconobacter and Acetobacter strains

    Directory of Open Access Journals (Sweden)

    Florencia Sainz

    2016-08-01

    Full Text Available Acetic acid bacteria (AAB are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane bound dehydrogenases. In the present study, the enzyme activity of the membrane bound dehydrogenases (membrane-bound PQQ-glucose dehydrogenase (mGDH, D-gluconate dehydrogenase (GADH and membrane-bound glycerol dehydrogenase (GLDH involved in the oxidation of D-glucose and D-gluconic acid (GA was determined in six strains of three different species of AAB (three natural and three type strains. Moreover, the effect of these activities on the production of related metabolites (GA, 2-keto-D-gluconic acid (2KGA and 5-keto-D-gluconic acid (5KGA was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the A. malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h, which coincided with glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of G. oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition.Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter were

  9. The role of protein modifications in senescence of freeze-dried Acetobacter senegalensis during storage

    Science.gov (United States)

    2014-01-01

    Background Loss of viability is one of the most important problems during starter culture production. Previous research has mostly focused on the production process of bacterial starters, but there are few studies about cellular protein deterioration causing cell defectiveness during storage. In the present study, we investigated the influence of storage temperature (−21, 4, 35°C) on the cellular protein modifications which may contribute to the senescence of freeze-dried Acetobacter senegalensis. Results Heterogeneous populations composed of culturable cells, viable but non-culturable cells (VBNC) and dead cells were generated when freeze-dried cells were kept at −21 and 4°C for 12 months whereas higher storage temperature (35°C) mainly caused death of the cells. The analysis of stored cell proteome by 2D-DiGE demonstrated a modified pattern of protein profile for cell kept at 4 and 35°C due to the formation of protein spot trains and shift of Isoelectric point (pI). Quantification of carbonylated protein by ELISA showed that the cells stored at 4 and 35°C had higher carbonylated protein contents than fresh cells. 2D-DiGE followed by Western blotting also confirmed the carbonylation of cellular proteins involved in translation process and energy generation. The auto-fluorescent feature of cells kept at 35°C increased significantly which may be an indication of protein glycation during storage. In addition, the percentage of cellular unsaturated fatty acid and the solubility of cellular proteins decreased upon storage of cells at higher temperature suggesting that peroxidation of fatty acids and possibly protein lipidation and oxidation occurred. Conclusions High storage temperature induces some deteriorative reactions such as protein oxidation, lipidation and glycation which may cause further protein modifications like pI-shift, and protein insolubility. These modifications can partly account for the changes in cell viability. It can also be deduced

  10. Three cdg Operons Control Cellular Turnover of Cyclic Di-GMP in Acetobacter xylinum: Genetic Organization and Occurrence of Conserved Domains in Isoenzymes

    OpenAIRE

    Tal, Rony; Wong, Hing C; Calhoon, Roger; Gelfand, David; Fear, Anna Lisa; Volman, Gail; Mayer, Raphael; Ross, Peter; Amikam, Dorit; Weinhouse, Haim; Cohen, Avital; Sapir, Shai; Ohana, Patricia; Benziman, Moshe

    1998-01-01

    Cyclic di-GMP (c-di-GMP) is the specific nucleotide regulator of β-1,4-glucan (cellulose) synthase in Acetobacter xylinum. The enzymes controlling turnover of c-di-GMP are diguanylate cyclase (DGC), which catalyzes its formation, and phosphodiesterase A (PDEA), which catalyzes its degradation. Following biochemical purification of DGC and PDEA, genes encoding isoforms of these enzymes have been isolated and found to be located on three distinct yet highly homologous operons for cyclic diguany...

  11. Ocorrência de micorrizas arbusculares e da bactéria diazotrófica Acetobacter diazotrophicus em cana-de-açúcar Occurrence of arbuscular mycorrhizae and bacterium Acetobacter diazotrophicus in sugar cane

    Directory of Open Access Journals (Sweden)

    Veronica Massena Reis

    1999-10-01

    Full Text Available Foi avaliada a ocorrência e a distribuição de espécies de fungos micorrízicos arbusculares (FMAs e Acetobacter diazotrophicus em plantios de cana-de-açúcar em diferentes tipos de manejo nos Estados do Rio de Janeiro e Pernambuco. Foram feitas 35 coletas de amostras de solo da rizosfera e de raízes de 14 variedades de cana-de-açúcar para extração de esporos e isolamento da bactéria. O número de esporos variou de 18 a 2.070/100 mL de solo, e os maiores número e diversidade de espécies foram verificados nos canaviais de Campos, RJ, especialmente naqueles que não adotam a queima do palhiço. As espécies predominantes nas três localidades amostradas foram: Acaulospora sp., Scutellospora heterogama, Glomus etunicatum, Glomus occultum e Gigaspora margarita. A. diazotrophicus estava presente nas amostras de raízes colhidas em canaviais de Campos, com exceção de uma coleta de cana-de-açúcar plantada num solo usado como bacia de sedimentação de vinhaça. Não foi possível isolar essa bactéria a partir de esporos desinfestados dos FMAs nativos, apenas dos esporos lavados com água estéril.The occurrence and distribution of species of arbuscular mycorrhizae fungi and Acetobacter diazotrophicus in sugar cane (Saccharum officinarum grown in different regimes of crop management in the States of Rio de Janeiro and Pernambuco, Brazil, were studied. Thirty five samples of the rhizosphere soil and roots were collected from 14 varieties of sugar cane for the extraction of spores and isolation of the bacterium. The number of spores varied from 18 to 2,070 per 100 mL of soil, and the greatest diversity of fungal species was found in the sugarcane fields of Campos (Rio de Janeiro State, especially in those where the sugarcane trash was not burned at harvest. The predominant species found in the three localities sampled were: Scutellospora heterogama, Glomus etunicatum, Glomus occultum, Acaulospora sp. and Gigaspora margarita. A

  12. Efficient Production Process for Food Grade Acetic Acid by Acetobacter aceti in Shake Flask and in Bioreactor Cultures

    Directory of Open Access Journals (Sweden)

    Hassan M. Awad

    2012-01-01

    Full Text Available Acetic acid is one of the important weak acids which had long history in chemical industries. This weak organic acid has been widely used as one of the key intermediate for many chemical, detergent, wood and food industries. The production of this acid is mainly carried out using submerged fermentation system and the standard strain Acetobacter aceti. In the present work, six different media were chosen from the literatures and tested for acetic acid production. The highest acetic acid production was produced in medium composed of glucose, yeast extract and peptone. The composition of this medium was optimized by changing the concentration of medium components. The optimized medium was composed of (g/L: glucose, 100; yeast extract, 12 and peptone 5 and yielded 53 g/L acetic acid in shake flask after 144 h fermentation. Further optimization in the production process was achieved by transferring the process to semi-industrial scale 16-L stirred tank bioreactor and cultivation under controlled pH condition. Under fully aerobic conditions, the production of acetic acid reached maximal concentration of about 76 g/L and 51 g/L for uncontrolled and controlled pH cultures, respectively.

  13. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts.

    Science.gov (United States)

    Karthikeyan, Rengasamy; Krishnaraj, Navanietha; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung; Lee, Patrick K H; Leung, Michael K H; Berchmans, Sheela

    2016-10-01

    This study explores the use of materials such as chitosan (chit), polyaniline (PANI) and titanium carbide (TC) as anode materials for microbial fuel cells. Nickel foam (NF) was used as the base anode substrate. Four different types of anodes (NF, NF/PANI, NF/PANI/TC, NF/PANI/TC/Chit) are thus prepared and used in batch type microbial fuel cells operated with a mixed consortium of Acetobacter aceti and Gluconobacter roseus as the biocatalysts and bad wine as a feedstock. A maximum power density of 18.8Wm(-3) (≈2.3 times higher than NF) was obtained in the case of the anode modified with a composite of PANI/TC/Chit. The MFCs running under a constant external resistance of (50Ω) yielded 14.7% coulombic efficiency with a maximum chemical oxygen demand (COD) removal of 87-93%. The overall results suggest that the catalytic materials embedded in the chitosan matrix show the best performance and have potentials for further development.

  14. Involvement of Acetobacter orientalis in the production of lactobionic acid in Caucasian yogurt ("Caspian Sea yogurt") in Japan.

    Science.gov (United States)

    Kiryu, T; Kiso, T; Nakano, H; Ooe, K; Kimura, T; Murakami, H

    2009-01-01

    Lactobionic acid was first found in a Caucasian fermented milk product popularly known as "Caspian Sea yogurt" in Japan. The presence of lactobionic acid in the fermented milk was indicated by the results of both high-performance anion-exchange chromatographic analysis with pulsed amperometric detection and mass spectrometric analysis. Thereafter, the acid was purified from the yogurt and analyzed by nuclear magnetic resonance. A substantial amount of lactobionic acid was found to be accumulated in the upper layer of the yogurt, especially within 10 mm from the surface. A total of 45 mg of lactobionic acid per 100 g of the upper yogurt layer was collected after 4 d of fermentation. The annual intake of lactobionic acid in individuals consuming 100 g of the yogurt every day would be 0.5 to 1.0 g. A lactose-oxidizing bacterium was isolated from the fermented milk and was identified as Acetobacter orientalis. Washed A. orientalis cells oxidized monosaccharides such as d-glucose at considerable rates, although their activities for substrates such as lactose, maltose, and cellobiose were much lower. When A. orientalis cells were cultivated in cow's milk, they exhibited lactose-oxidizing activity, suggesting that this bacterium was the main organism involved in the production of lactobionic acid in the yogurt.

  15. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  16. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-22

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  17. KINETIKA FERMENTASI ASAM ASETAT (VINEGAR OLEH BAKTERI Acetobacter aceti B 127 DARI ETANOL HASIL FERMENTASI LIMBAH CAIR PULP KAKAO [Kinetics of Acetic Acid (Vinegar Fermentation By Acetobacter aceti B127 from Ethanol Produced by Fermentation of Liquid Waste of Cacao Pulp

    Directory of Open Access Journals (Sweden)

    M. Supli Effendi

    2002-08-01

    Full Text Available Acetic acid concentration is one of vinegar’s quality parameter. Acetic acid concentration in vinegar is influenced by the activity of acetic acid bacteria. This research studied the kinetics of anaerobic fermentation of liquid waste of cacao pulp by Saccharomyces cerevisiae R60 to produce ethanol and the kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127. The kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127 can be used as a basic of bioprocess design for aerobic fermentation in general and acetic acid fermentation from ethanol by Acetobacter aceti B127 in particular. Fermentation medium used was liquid waste of cocoa pulp with sugar content of 12.85%, and the addition of sucrosa and urea. The parameter observed was growth of Saccharomyces cerevisiae R60 and Acetobacter aceti B127, and chemical analysis including concentration of ethanol, total sugar and acetic acid, content. The research result showed that the  value was 0.048 hour-1, Y P was 0.676, Qp value was 0.033 hour-, and KLa value was 0.344, QO2.Cx value was 0.125 (mgO2L-1jam-1, Y X was s O2 0.378 (x 108selmL-1g-1¬¬O2, and dCT was 0.150 mgL-1hour-1. Concentration of acetic acid in the product was 4.24% or 42.4 gL-1

  18. Study on Formula and Process of Fermented Honey drink by Acetobacter Fermentation%蜂蜜醋酸发酵饮料配方及工艺研究

    Institute of Scientific and Technical Information of China (English)

    王树林; 赵永华; 李宗文

    2001-01-01

    Optimal formula and process have been determined through thestudy of relationship among the additive quantities of honey, yeast and acetobacter with different tempertures and times of fermentation to evaluate quality and rate of fermentation.%通过讨论蜂蜜添加量、酵母和醋酸菌接种量、发酵温度及时间对产品感官质量和发酵速度的影响,确定了产品的最佳配方及发酵工艺。

  19. Acetobacter pasteurianus の酢酸発酵特性評価およびSCMフラスコ培養への適用

    OpenAIRE

    鳴海, 正樹; 田畠, 浩司; 菅野, 亨; 堀内, 淳一; 小林, 正義; Masaki, NARUMI; Kouji, TABATA; Tohru, KANNO; Junichi, HORIUCHI; Masayoshi, KOBAYASHI

    1999-01-01

    Factors affecting acetic acid fermentation using Acetobacter pasteurianus were investigated. The growth of acetic acid bacteria was inhibited under the following conditions ; initial ethanol conc.>32(g/1), initial acetic acid conc.>32(g/1),pH<3.2 and culture temperature >40℃.The optimal temperature range for the bacteria growth was 20〜35℃. A dense cell culture system using an SCM (shaken ceramic membrane) flask was then examined for efficient acetic acid fermentation. Consequently, the cell c...

  20. Influence of carbon sources on the viability and resuscitation of Acetobacter senegalensis during high-temperature gluconic acid fermentation.

    Science.gov (United States)

    Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Mounir, Majid; Thonart, Philippe; Delvigne, Frank

    2017-02-15

    Much research has been conducted about different types of fermentation at high temperature, but only a few of them have studied cell viability changes during high-temperature fermentation. In this study, Acetobacter senegalensis, a thermo-tolerant strain, was used for gluconic acid production at 38 °C. The influences of different carbon sources and physicochemical conditions on cell viability and the resuscitation of viable but nonculturable (VBNC) cells formed during fermentation were studied. Based on the obtained results, A. senegalensis could oxidize 95 g l(- 1) glucose to gluconate at 38 °C (pH 5.5, yield 83%). However, despite the availability of carbon and nitrogen sources, the specific rates of glucose consumption (qs) and gluconate production (qp) reduced progressively. Interestingly, gradual qs and qp reduction coincided with gradual decrease in cellular dehydrogenase activity, cell envelope integrity, and cell culturability as well as with the formation of VBNC cells. Entry of cells into VBNC state during stationary phase partly stemmed from high fermentation temperature and long-term oxidation of glucose, because just about 48% of VBNC cells formed during stationary phase were resuscitated by supplementing the culture medium with an alternative favorite carbon source (low concentration of ethanol) and/or reducing incubation temperature to 30 °C. This indicates that ethanol, as a favorable carbon source, supports the repair of stressed cells. Since formation of VBNC cells is often inevitable during high-temperature fermentation, using an alternative carbon source together with changing physicochemical conditions may enable the resuscitation of VBNC cells and their use for several production cycles.

  1. A novel carbonyl reductase with anti-Prelog stereospecificity from Acetobacter sp. CCTCC M209061: purification and characterization.

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Chen

    Full Text Available A novel carbonyl reductase (AcCR catalyzing the asymmetric reduction of ketones to enantiopure alcohols with anti-Prelog stereoselectivity was found in Acetobacter sp. CCTCC M209061 and enriched 27.5-fold with an overall yield of 0.4% by purification. The enzyme showed a homotetrameric structure with an apparent molecular mass of 104 kDa and each subunit of 27 kDa. The gene sequence of AcCR was cloned and sequenced, and a 762 bp gene fragment was obtained. Either NAD(H or NADP(H can be used as coenzyme. For the reduction of 4'-chloroacetophenone, the Km value for NADH was around 25-fold greater than that for NADPH (0.66 mM vs 0.026 mM, showing that AcCR preferred NADPH over NADH. However, when NADH was used as cofactor, the response of AcCR activity to increasing concentration of 4'-chloroacetophenone was clearly sigmoidal with a Hill coefficient of 3.1, suggesting that the enzyme might possess four substrate-binding sites cooperating with each other The Vmax value for NADH-linked reduction was higher than that for NADPH-linked reduction (0.21 mM/min vs 0.17 mM/min. For the oxidation of isopropanol, the similar enzymological properties of AcCR were found using NAD+ or NADP+ as cofactor. Furthermore, a broad range of ketones such as aryl ketones, α-ketoesters and aliphatic ketones could be enantioselectively reduced into the corresponding chiral alcohols by this enzyme with high activity.

  2. Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability.

    Science.gov (United States)

    Takemura, H; Horinouchi, S; Beppu, T

    1991-11-01

    Acetobacter pasteurianus NCI1380, a thermophilic strain isolated from the surface culture of acetic acid fermentation, showed genetic instability to produce at high frequency spontaneous mutants which were deficient in ethanol oxidation because of the loss of alcohol dehydrogenase activity. Southern hybridization experiments with the cloned alcohol dehydrogenase-cytochrome c gene cluster as the probe showed insertion of an unknown DNA fragment into a specific position in the cytochrome c gene in most of the mutant strains. Cloning and sequencing analyses revealed that the inserted sequence was 1,665 bp in length and had a terminal inverted repeat of 15 bp. In addition, this inserted sequence was found to generate a 4-bp duplication at the inserted site upon transposition. The target site specificity was not very strict, but a TCGA sequence appeared to be preferentially used. The inserted sequence contains two long open reading frames of 461 and 222 amino acids which are overlapped and encoded by different strands. Although these open reading frames showed no homology to any protein registered in the DNA data bases, the longer open reading frame contained many basic amino acids (87 of 461), as was observed with transposases of so-called insertion sequence (IS) elements. All of these characteristics are typical of IS elements, and the sequence was named IS1380. The copy number of IS1380 in a cell of A. pasteurianus NCI1380 was estimated to be about 100. Several strains of acetic acid bacteria also contained IS1380 at high copy numbers. These results suggest that IS1380 is associated with the genetic loss of ethanol-oxidizing ability as well as the genetic instability of acetic acid bacteria in general.

  3. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    Science.gov (United States)

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation.

  4. Behavior of freezable bound water in the bacterial cellulose produced by Acetobacter xylinum: an approach using thermoporosimetry.

    Science.gov (United States)

    Kaewnopparat, Sanae; Sansernluk, Kamonlawat; Faroongsarng, Damrongsak

    2008-01-01

    The aim of the study is to examine thermal behavior of water within reticulated structure of bacterial cellulose (BC) films by sub-ambient differential scanning calorimetry (DSC). BC films with different carbon source, either manitol (BC (a)) or glycerol (BC (b)), were produced by Acetobacter xylinum using Hestrin and Shramm culture medium under static condition at 30 +/- 0.2 degrees C for 3 days. BC samples were characterized by electron scanning microscopy and X-ray diffraction spectroscopy. The pore analysis was done by B.H.J. nitrogen adsorption. The pre-treated with 100% relative humidity, at 30.0 +/- 0.2 degrees C for 7 days samples were subjected to a between 25 and -150 degrees C-cooling-heating cycle of DSC at 5.00 degrees C/min rate. The pre-treated samples were also hydrated by adding 1 mul of water and thermally run with identical conditions. It is observed that cellulose fibrils of BC (a) were thinner and reticulated to form slightly smaller porosity than those of BC (b). They exhibited slightly but non-significantly different crystalline features. The freezable bound water behaved as a water confinement within pores rather than a solvent of polymer which is possible to use thermoporosimetry based on Gibb-Thomson equation to approach pore structure of BC. In comparison with nitrogen adsorption, it was found that thermoporosimetry underestimated the BC porosity, i.e., the mean diameters of 23.0 nm vs. 27.8 nm and 27.9 nm vs. 33.9 nm for BC (a) and BC (b), respectively, by thermoporosimetry vs. B.H.J. nitrogen adsorption. It may be due to large non-freezable water fraction interacting with cellulose, and the validity of pore range based on thermodynamic assumptions of Gibb-Thomson theory.

  5. In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair

    Directory of Open Access Journals (Sweden)

    de Lima-Neto João

    2009-03-01

    Full Text Available Abstract Background Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering. Methods Twenty-five Swiss Albino mice were used. A 10 × 10 mm cellulose membrane obtained through biosynthesis using Acetobacter xylinum bacteria was implanted into the lumbar subcutaneous tissue of each mouse. The mice were euthanatized at seven, 15, 30, 60, and 90 days, and the membrane and surrounding tissues were collected and examined by histology. Results A mild inflammatory response without foreign body reaction was observed until 30 days post-surgery around the implanted membrane. Polarized microscopy revealed that the membrane remained intact at all evaluation points. Scanning electron microscopy of the cellulose membrane surface showed absence of pores. The in vitro evaluation of the interaction between cells and biomaterial was performed through viability staining analysis of the cells over the biomaterial, which showed that 95% of the mesenchymal stem cells aggregating to the cellulose membrane were alive and that 5% were necrotic. Scanning electron microscopy showed mesenchymal stem cells with normal morphology and attached to the cellulose membrane surface. Conclusion The microbial cellulose membrane evaluated was found to be nonresorbable, induced a mild inflammatory response and may prove useful as a scaffold for mesenchymal stem cells.

  6. Separation of Acetobacter aceti and Compared the Rules of Produced Organic Acid%醋酸菌分离及其有机酸产生规律

    Institute of Scientific and Technical Information of China (English)

    李亚武; 张宝善; 魏冉; 王玮; 黄雯

    2015-01-01

    For compared the rules of different forms of Acetobacter aceti produced organic acid. Determination of organic acids by HPLC method found:S strain had more ability than R strain for produced quinic acid , malic acid, fumaric acid and succinic acid and less ability for produced ability lactic acid and citric acid. Therefore , we can infer that ornithine cycle, gluconeogenesis, and the citric acid cycle involved in the formation of Acetobacter aceti pellice.%研究不同形态醋酸菌产生有机酸规律的比较。经HPLC法测定有机酸含量发现:不产膜菌S菌产生奎宁酸、苹果酸、富马酸和琥珀酸的能力比产膜菌R菌高;而产生乳酸和柠檬酸的能力低于R菌。因此推断鸟氨酸循环、糖异生作用和三羧酸循环参与醋酸菌菌膜的形成。

  7. Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks.

    Science.gov (United States)

    Jung, Ho-Il; Jeong, Jin-Ha; Lee, O-Mi; Park, Geun-Tae; Kim, Keun-Ki; Park, Hyean-Cheal; Lee, Sang-Mong; Kim, Young-Gyun; Son, Hong-Joo

    2010-05-01

    Cost-effective production of bacterial cellulose (BC) by Acetobacter sp. V6 was investigated in shake culture using glycerol as carbon source and its structural and physical properties were determined. In medium containing 3% (w/v) glycerol, BC production was 4.98+/-0.03g/l after 7 days. This value was 3.8-fold higher than the yield in the glucose medium. FT-IR spectra revealed that all the BC samples were highly crystalline and were cellulose type capital I, Ukrainian. The crystallinity index value of the BC produced was 9% higher in the glycerol medium than in the glucose medium. Scanning electron micrographs showed that BC from the glycerol medium was more compact than that from the glucose medium. Water-holding capacity and viscosity of BC from the glycerol medium had 61.3% and 22.4% lower values than those from the glucose medium. These results suggest that glycerol could be a potential low-cost substrate for BC production by Acetobacter sp. V6, leading to the reduction in the production cost.

  8. Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent.

    Science.gov (United States)

    Ahmed, Khan Behlol Ayaz; Kalla, Divya; Uppuluri, Kiran Babu; Anbazhagan, Veerappan

    2014-11-04

    With a vision of finding greener materials to synthesize nanoparticles, we report the production and isolation of levan, a polysaccharide with repeating units of fructose, from Acetobacter xylinum NCIM2526. The isolated levan were characterized using potassium ferricyanide reducing power assay, Fourier transform infra-red (FTIR) spectroscopy and (1)H nuclear magnetic resonance spectroscopy ((1)H NMR). To exploit levan in nanotechnology, we present a simple and greener method to synthesize silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using biopolymer, levan as both reducing and stabilizing agents. The morphology and stability of the AgNPs and AuNPs were examined by transmission electron microscopy (TEM) and UV-vis absorption (UV-vis) spectroscopy. The possible capping mechanism of the nanoparticles was postulated using FTIR studies. As synthesized biogenic nanoparticles showed excellent catalytic activity as evidenced from sodium borohydride mediated reduction of 4-nitro phenol and methylene blue.

  9. Optimization of culture conditions to produce high yields of active Acetobacter sp. CCTCC M209061 cells for anti-Prelog reduction of prochiral ketones

    Directory of Open Access Journals (Sweden)

    Chen Xiao-Hong

    2011-11-01

    Full Text Available Abstract Background Chiral alcohols are widely used in the synthesis of chiral pharmaceuticals, flavors and functional materials and appropriate whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to these valuable compounds. The recently isolated strain Acetobacter sp. CCTCC M209061 showed exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones, but the low biomass has limited its commercialization and industrial applications. To tackle this problem, the effects of medium components and culture conditions on the strain's growth and reduction activity were explored. Results By using a one-at-a-time method and a central composite rotatable design (CCRD, the optimal medium and culture conditions were found to be as follows: glucose 8.26 g/L, fructose 2.50 g/L, soy peptone 83.92 g/L, MnSO4·H2O 0.088 g/L, pH 5.70, 30°C and 10% (v/v inoculum. Under the above-mentioned conditions, the biomass after 30 h cultivation reached 1.10 ± 0.03 g/L, which was 9.5-fold higher than that obtained with basic medium. Also, the reduction activity towards 4'-chloroacetophenone was markedly enhanced to 39.49 ± 0.96 μmol/min/g from 29.34 ± 0.65 μmol/min/g, with the product e.e. being above 99%. Comparable improvements were also seen with the enantioselective bioreduction of 4-(trimethylsilyl-3-butyn-2-one to the key pharmaceutical precursor (R - 4-(trimethylsilyl-3-butyn-2-ol. Conclusions The biomass and reduction activity of Acetobacter sp. CCTCC M209061 can be greatly enhanced through the optimization strategy. This facilitates use of the strain in the anti-Prelog stereoselective reduction of prochiral ketones to enantiopure chiral alcohols as building blocks for many industries.

  10. 固定化醋酸杆菌发酵条件的研究%Optimization of Fermentation Conditions for Acid Production by Immobilized Acetobacter aceti

    Institute of Scientific and Technical Information of China (English)

    林清华; 唐欣昀

    2011-01-01

    以海藻酸钠为载体,采用包埋法固定化醋酸杆菌,利用固定化醋酸杆菌进行醋酸发酵,寻求其最优工艺参数。在单因素试验的基础上,确定接种量、起始乙醇体积分数和发酵温度为主要影响因素,采用响应面法的Box-Behnken试验设计对发酵条件进行优化。建立产酸量与影响因子的多元二次回归方程,得到固定化醋酸杆菌进行醋酸发酵的最佳条件为:接种量7.88g/100mL,起始乙醇体积分数4.63%,发酵温度32℃,在此条件下,产酸量的理论值为3.56g/100mL。对最佳发酵条件进行实验验证,结果产酸量为3.51g/100mL,%Response surface methodology was employed to find optimal fermentation conditions for immobilized Acetobacter pasteurianus cells obtained by using sodium alginate as the carrier.One-factor-at-a-time experiments were conducted to identify inoculum amount,initial alcohol concentration and temperature as main affecting factors of acid production.On the basis of a three-level,seventeen-run Box-Behnken experimental design,a quadratic regression model equation describing acid production as a function of the three selected variables was established.The results indicated that the optimal conditions for acetic acid fermentation were inoculum amount of 7.88 g/100 mL,initial alcohol concentration of 4.63%,and fermentation temperature of 32 ℃.Under the optimized fermentation conditions,the yield of total acids was 3.51 g/100 mL,which was close to the theoretical yield of 3.56 g/100 mL.Therefore,response surface methodology can provide the optimal fermentation condition of immobilized Acetobacter aceti for practical applications due to its reliability.

  11. Pengaruh kemasan dan lama penyimpanan Acetobacter sp. RMG-2 dalam bahan pembawa terhadap populasi dan produksi bioselulosa dengan konsentrasi inokulum terbatas

    Directory of Open Access Journals (Sweden)

    Ruth Melliawati

    2012-10-01

    Full Text Available Bioselulosa or nata de coco is one food product that contains 25% fiber, which is very useful to support health, especially the digestive system. Along with the development of science and technology, raw material for making nata de coco become increasingly diverse as well as developing its usefulness for the wider interests. Inoculum became one of the things that are important in nata production process is also a determinant of product quality. This research was conducted to obtain information about the packaging is good for storing inoculum Acetobacter sp. RMG-2 in the carrier material and the efficiency of inoculum for the production bioselulosa. Two kinds of containers (straws and plastic bags with two kinds of carrier material (cellulose pulp and CMC are used. Storageof inoculum carried out for 20 weeks at 4 ° C. The measured parameter is the number of population, wet weight, dry weight and thickness as well bioselulosa pesentase minimal inoculum for the manufacture bioselulosa. Result, the inoculum in the CMC are packed using a straw is better than the plastic bag packaging, with a population of Acetobacter sp RMG-2 at 4.53 × 108 cells/ml, while in the plastic bag packaging population reached 3.5 x 107 cells/ml, respectively during storage was 20 weeks (five months. Bioselulosa production uses between 1-15 ml inoculum in 1250 ml of medium/tray of wet weight data obtained vary. With 1 ml of inoculum produced an average wet weight of 725 grams with a thickness of 0.6 cm. Research on the percentage of inoculum between 0.1 to 1.0%, showingthat the use of 0.1% (in the CMC carrier materials for 8 weeks can still be used for production with the average bioselulosa/100 ml of medium weight 31.45 grams wet, 1.6 g dry weight and thickness of 0.8 cm during the 7 days incubation. Investigation was still continuing to be carried out to get optimal results.

  12. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell

    Science.gov (United States)

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-05-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol.

  13. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell.

    Science.gov (United States)

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-01-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol.

  14. Factors relevant to the production of (R)-(+)-glycidol (2,3-epoxy-1-propanol) from racemic glycidol by enantioselective oxidation with Acetobacter pasteurianus ATCC 12874.

    Science.gov (United States)

    Geerlof, A; Jongejan, J A; van Dooren, T J; Racemakers-Franken, P C; van den Tweel, W J; Duine, J A

    1994-12-01

    Acetobacter pasteurianus oxidizes glycidol with high activity, comparable to the oxidation of ethanol. The organism has a preference for the S-enantiomer, and the kinetic resolution process obeys a simple relationship, indicating an enantiomeric ratio (E) of 19. The compound is converted into glycidic acid, although a transient accumulation of glycidaldehyde occurs initially. Determination of other parameters revealed a temperature optimum of 50 degrees C, long-term stability (cells in the resting state), and a pH optimum compatible with the chemical stability of glycidol. However, it was also noted that respiration rates decrease at concentrations of glycidol above 1 M. This is most likely caused by substrate inhibition of the glycidol-oxidizing enzyme, the quinohemoprotein ethanol dehydrogenase. Comparison with existing methods for enantiomerically pure glycidol production indicated a number of attractive points for the method described here, although definitive evaluation must await further studies on the long-term stability under process conditions, reusability of the cells, and the mechanism of glycidol inhibition.

  15. Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process.

    Science.gov (United States)

    Papalexandratou, Zoi; Lefeber, Timothy; Bahrim, Bakhtiar; Lee, Ong Seng; Daniel, Heide-Marie; De Vuyst, Luc

    2013-09-01

    Two spontaneous Malaysian cocoa bean box fermentations (one farm, two plantation plots) were investigated. Physical parameters, microbial community dynamics, yeast and bacterial species diversity [mainly lactic acid bacteria (LAB) and acetic acid bacteria (AAB)], and metabolite kinetics were monitored, and chocolates were produced from the respective fermented dry cocoa beans. Similar microbial growth and metabolite profiles were obtained for the two fermentations. Low concentrations of citric acid were found in the fresh pulp, revealing low acidity of the raw material. The main end-products of the catabolism of the pulp substrates glucose, fructose, and citric acid by yeasts, LAB, and AAB were ethanol, lactic acid, acetic acid, and/or mannitol. Hanseniaspora opuntiae, Lactobacillus fermentum, and Acetobacter pasteurianus were the prevalent species of the two fermentations. Saccharomyces cerevisiae, Lactobacillus plantarum, Lactobacillus pentosus, and Acetobacter ghanensis were also found during the mid-phase of the fermentation processes. Leuconostoc pseudomesenteroides and Acetobacter senegalensis were among the prevailing species during the initial phase of the fermentations. Tatumella saanichensis and Enterobacter sp. were present in the beginning of the fermentations and they could be responsible for the degradation of citric acid and/or the production of gluconic acid and lactic acid, respectively. The presence of facultative heterofermentative LAB during the fermentations caused a high production of lactic acid. Finally, as these fermentations were carried out with high-quality raw material and were characterised by a restricted microbial species diversity, resulting in successfully fermented dry cocoa beans and good chocolates produced thereof, it is likely that the prevailing species H. opuntiae, S. cerevisiae, Lb. fermentum, and A. pasteurianus were responsible for it.

  16. Molecular cloning and characterization of two inducible NAD⁺-adh genes encoding NAD⁺-dependent alcohol dehydrogenases from Acetobacter pasteurianus SKU1108.

    Science.gov (United States)

    Masud, Uraiwan; Matsushita, Kazunobu; Theeragool, Gunjana

    2011-11-01

    The cytosolic NAD⁺-dependent alcohol dehydrogenases (NAD⁺-ADHs) are induced in the quinoprotein ADH-(PQQ-ADH) defective Acetobacter pasteurianus SKU1108 mutant during growth in an ethanol medium. The adhI and adhII genes, which encode NAD⁺-ADH I and ADH II, respectively, of this strain have been cloned and characterized. Sequence analyses have revealed that the adhI gene consists of 1029 bp coding for 342 amino acids, which share 99.71% identity with the same protein from A. pasteurianus IFO 3283. Conversely, the adhII gene is composed of 762 bp encoding for a polypeptide of 253 amino acids, which exhibit 99.60% identity with the A. pasteurianus IFO 3283 protein. ADH I is a member of the group I Zn-dependent long-chain ADHs, while the ADH II belongs to the group II short-chain dehydrogenase/reductase NAD⁺-ADHs. The NAD⁺-adh gene disruptants exhibited a growth reduction when grown in an ethanol medium. In Escherichia coli, ethanol induced adhI and adhII promoter activities by approximately 1.5 and 2.0 times, respectively, and the promoter activity of the adhII gene exceeded that of the adhI gene by approximately 3.5 times. The possible promoter regions of the adhI and adhII genes are located at approximately 81-105 bp and 74-92 bp, respectively, from their respective ATG start codons. Their repressor regions might be located in proximity to these promoters and may repress gene expression in the wild-type, where the membrane-bound ADH effectively functions.

  17. A flavin cofactor-binding PAS domain regulates c-di-GMP synthesis in AxDGC2 from Acetobacter xylinum.

    Science.gov (United States)

    Qi, Yaning; Rao, Feng; Luo, Zhen; Liang, Zhao-Xun

    2009-11-03

    The cytoplasmic protein AxDGC2 regulates cellulose synthesis in the obligate aerobe Acetobacter xylinum by controlling the cellular concentration of the cyclic dinucleotide messenger c-di-GMP. AxDGC2 contains a Per-Arnt-Sim (PAS) domain and two putative catalytic domains (GGDEF and EAL) for c-di-GMP metabolism. We found that the PAS domain of AxDGC2 binds a flavin adenine dinucleotide (FAD) cofactor noncovalently. The redox status of the FAD cofactor modulates the catalytic activity of the GGDEF domain for c-di-GMP synthesis, with the oxidized form exhibiting higher catalytic activity and stronger substrate inhibition. The results suggest that AxDGC2 is a signaling protein that regulates the cellular c-di-GMP level in response to the change in cellular redox status or oxygen concentration. Moreover, several residues predicated to be involved in FAD binding and signal transduction were mutated to examine the impact on redox potential and catalytic activity. Despite the minor perturbation of redox potential and unexpected modification of FAD in one of the mutants, none of the single mutations was able to completely disrupt the transmission of the signal to the GGDEF domain, indicating that the change in the FAD redox state can still trigger structural changes in the PAS domain probably by using substituted hydrogen-bonded water networks. Meanwhile, although the EAL domain of AxDGC2 was found to be catalytically inactive toward c-di-GMP, it was capable of hydrolyzing some phosphodiester bond-containing nonphysiological substrates. Together with the previously reported oxygen-dependent activity of the homologous AxPDEA1, the results provided new insight into relationships among oxygen level, c-di-GMP concentration, and cellulose synthesis in A. xylinum.

  18. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes.

    Science.gov (United States)

    Tal, R; Wong, H C; Calhoon, R; Gelfand, D; Fear, A L; Volman, G; Mayer, R; Ross, P; Amikam, D; Weinhouse, H; Cohen, A; Sapir, S; Ohana, P; Benziman, M

    1998-09-01

    Cyclic di-GMP (c-di-GMP) is the specific nucleotide regulator of beta-1,4-glucan (cellulose) synthase in Acetobacter xylinum. The enzymes controlling turnover of c-di-GMP are diguanylate cyclase (DGC), which catalyzes its formation, and phosphodiesterase A (PDEA), which catalyzes its degradation. Following biochemical purification of DGC and PDEA, genes encoding isoforms of these enzymes have been isolated and found to be located on three distinct yet highly homologous operons for cyclic diguanylate, cdg1, cdg2, and cdg3. Within each cdg operon, a pdeA gene lies upstream of a dgc gene. cdg1 contains two additional flanking genes, cdg1a and cdg1d. cdg1a encodes a putative transcriptional activator, similar to AadR of Rhodopseudomonas palustris and FixK proteins of rhizobia. The deduced DGC and PDEA proteins have an identical motif structure of two lengthy domains in their C-terminal regions. These domains are also present in numerous bacterial proteins of undefined function. The N termini of the DGC and PDEA deduced proteins contain putative oxygen-sensing domains, based on similarity to domains on bacterial NifL and FixL proteins, respectively. Genetic disruption analyses demonstrated a physiological hierarchy among the cdg operons, such that cdg1 contributes 80% of cellular DGC and PDEA activities and cdg2 and cdg3 contribute 15 and 5%, respectively. Disruption of dgc genes markedly reduced in vivo cellulose production, demonstrating that c-di-GMP controls this process.

  19. A kinetic study of the oxidation by molecular oxygen of the cytochrome chain of intact yeast cells, Acetobacter suboxydans cells, and of particulate suspensions of heart muscle.

    Science.gov (United States)

    Ludwig, G D; Kuby, S A; Edelman, G M; Chance, B

    1983-01-01

    The pre-steady state kinetics of the cytochrome c oxidase reaction with oxygen were studied by a variation in the reaction time between approximately 6 and 25 ms at oxygen concentrations less than 6 mumol/l. For baker's yeast, a pseudo-first-order velocity constant of approximately 150 s-1 at 1.3 mumol/l O2 was obtained corresponding to a second-order reaction between O2 and a3 at a forward velocity constant (k+1) of approximately 3 X 10(7) liter equiv.-1s-1. Thus, the membrane-bound oxidase in the intact cell exhibits one of the most rapid enzyme-substrate reactions to be reported. The value is identical with that of Greenwood and Gibson on an isolated, solubilized cytochrome c oxidase. Similar values of k+1 are calculated from the turnover numbers [k+2 (a+2)] divided by the Km values (formula; see text) measured for these yeast preparations, which points to an almost negligible reverse reaction (k-1) compared to k+2(a+2). Similar calculations for the membrane-bound cytochrome c oxidase of heart muscle give a value of k+1 approximately equal to 10(7) liter equiv.-1s-1. The concordance of the different values of k+1 supports the view that the yeast cell wall does not impart a significant diffusion barrier to the transport of molecular oxygen. In contrast, Acetobacter suboxydans exhibits a much larger value for Km, and has a terminal oxidase of different kinetic parameters.

  20. Estudo experimental da resposta tecidual à presença de celulose produzida por Acetobacter xylinum no dorso nasal de coelhos Experimental study of the tissue reaction caused by the presence of cellulose produced by Acetobacter Xylinum in the nasal dorsum of rabbits

    Directory of Open Access Journals (Sweden)

    Wander Lopes Amorim

    2009-04-01

    Full Text Available Vários materiais são propostos para reconstrução nasal, não havendo consenso sobre qual o melhor. A manta de celulose produzida por bactéria pode ser mais um elemento para adição cartilaginosa. Não há estudos deste material no dorso nasal. OBJETIVO: Avaliar a resposta tecidual à presença da celulose bacteriana no dorso nasal de coelhos. MATERIAL E MÉTODO: Foram utilizados 22 coelhos Nova Zelândia, sendo que em 20 deles foi implantada a manta de celulose no dorso nasal e em 2 controles nada foi feito. Foram acompanhados por um período de três e seis meses, sendo então retirados as regiões do dorso nasal e narinas dos coelhos e realizado estudo histopatológico levando em consideração parâmetros definidos de condição inflamatória como congestão vascular, intensidade do processo inflamatório e presença de exsudato purulento. RESULTADOS: O processo inflamatório manteve-se estável, demonstrando sua relação com o procedimento cirúrgico, e não com a presença da manta de celulose. Nos demais parâmetros estudados não houve diferença estatisticamente significante. CONCLUSÃO: A manta de celulose de Acetobacter xylinum mostrou boa biocompatibilidade e manteve-se estável no decorrer do tempo de estudo, podendo ser considerada um bom material para uso na elevação do dorso nasal.Several materials have been proposed for nasal reconstruction. There is no consensus on which is the best. The cellulose blanket produced by bacteria may be a possible cartilaginous addition element to the nose. AIM: to study tissue reaction to cellulose in the dorsal nose of rabbits. MATERIALS AND METHODS: 22 New Zealand rabbits were used. In 20 a cellulose blanket was implanted in the nasal dorsum and 2 served as controls. They were followed up through a period of three and six months, after which their nostrils and nasal dorsums were removed and histological studies were carried out on them, considering defined parameters of inflammation such

  1. Enzymes involved in the glycidaldehyde (2,3-epoxy-propanal) oxidation step in the kinetic resolution of racemic glycidol (2,3-epoxy-1-propanol) by Acetobacter pasteurianus.

    Science.gov (United States)

    Wandel, U; Machado, S S.; Jongejan, J A.; Duine, J A.

    2001-02-01

    It is already known that kinetic resolution of racemic glycidol (2,3-epoxy-1-propanol) takes place when Acetobacter pasteurianus oxidizes the compound to glycidic acid (2,3-epoxy-propionic acid) with glycidaldehyde (2,3-epoxy-propanal) proposed to be the transient seen in this conversion. Since inhibition affects the feasibility of a process based on this conversion in a negative sense, and the chemical reactivity of glycidaldehyde predicts that it could be the cause for the phenomena observed, it is important to know which enzyme(s) oxidise(s) this compound. To study this, rac.- as well as (R)-glycidaldehyde were prepared by chemical synthesis and analytical methods developed for their determination. It appears that purified quinohemoprotein alcohol dehydrogenase (QH-ADH type II), the enzyme responsible for the kinetic resolution of rac.-glycidol, also catalyses the oxidation of glycidaldehyde. In addition, a preparation exhibiting dye-linked aldehyde dehydrogenase activity for acetaldehyde, most probably originating from molybdohemoprotein aldehyde dehydrogenase (ALDH), which has been described for other Acetic acid bacteria, oxidised glycidaldehyde as well with a preference for the (R)-enantiomer, the selectivity quantified by an enantiomeric ratio (E) value of 7. From a comparison of the apparent kinetic parameter values of QH-ADH and ALDH, it is concluded that ALDH is mainly responsible for the removal of glycidaldehyde in conversions of glycidol catalysed by A. pasteurianus cells. It is shown that the transient observed in rac.-glycidol conversion by whole cells, is indeed (R)-glycidaldehyde. Since both QH-ADH and ALDH are responsible for vinegar production from ethanol by Acetobacters, growth and induction conditions optimal for this process seem also suited to yield cells with high catalytic performance with respect to kinetic resolution of glycidol and prevention of formation of inhibitory concentrations glycidaldehyde.

  2. Characterization of the Enantioselective Properties of the Quinohemoprotein Alcohol Dehydrogenase of Acetobacter pasteurianus LMG 1635. 1. Different Enantiomeric Ratios of Whole Cells and Purified Enzyme in the Kinetic Resolution of Racemic Glycidol.

    Science.gov (United States)

    Machado, S S; Wandel, U; Jongejan, J A; Straathof, A J; Duine, J A

    1999-01-01

    Resting cells of Acetobacter pasteurianus LMG 1635 (ATCC 12874) show appreciable enantioselectivity (E=16-18) in the oxidative kinetic resolution of racemic 2,3-epoxy-1-propanol, glycidol. Distinctly lower values (E=7-9) are observed for the ferricyanide-coupled oxidation of glycidol by the isolated quinohemoprotein alcohol dehydrogenase, QH-ADH, which is responsible for the enantiospecific oxidation step in whole cells. The accuracy of E-values from conversion experiments could be verified using complementary methods for the measurement of enantiomeric ratios. Effects of pH, detergent, the use of artificial electron acceptors, and the presence of intermediate aldehydes, could be accounted for. Measurements of E-values at successive stages of the purification showed that the drop in enantioselectivity correlates with the separation of QH-ADH from the cytoplasmic membrane. It is argued that the native arrangement of QH-ADH in the membrane-associated complex favors the higher E-values. The consequences of these findings for the use of whole cells versus purified enzymes in biocatalytic kinetic resolutions of chiral alcohols are discussed.

  3. 木醋杆菌纤维素合成操纵子的克隆及棉花转化%Cloning Whole Cellulose-Synthesizing Operon (ayacs Operon) from Acetobacter xylinum and Transforming It into Cultivated Cotton Plants

    Institute of Scientific and Technical Information of China (English)

    卢迎春; 魏刚; 朱玉贤

    2002-01-01

    The gram-negative bacterium Acetobacter xylinum synthesizes an extracellular ribbon of cellulose microfibrils that possess unique structural and mechanical properties when compared to higher plant cellulose. All four genes in the cellulose-synthesizing operon (ayacs operon) of A. xylinum Ay201 were amplified by polymerase chain reaction (PCR) using oligonucleotide primers designed according to published acs operon sequence of A. xylinum ATCC 53582. Alignment of the two operons showed that they were highly homologous (98% similarity, 97% identity). AcsA and acsB gene were cloned in pCAMBIA 1301 vector while acsC and acsD were cloned in pCOB302-3 under the control of CaM 35S promoter. The constructs were introduced into cotton by the pollen-tube-pathway method and seeds obtained from putative transgenic plants were germinated on media containing hygromycin and phosphinothricin (PPT). Five seedlings out of 934 seeds were proved to contain all four foreign genes by PCR amplification. This is the first time that a whole operon encoding four different bacterial enzymes with various biological functions is transformed into cultivated cotton plants.%革兰氏阴性菌木醋杆菌(Acetobacter xylinum (Brown) Yamada)合成一种由纤维素微纤丝组成的胞外带状物.与高等植物纤维素相比,它具有独特的结构和机械性能.根据从木醋杆菌ATCC 53582克隆的acs纤维素合成操纵子序列设计引物, 用PCR的方法从木醋杆菌Ay201中克隆了ayacs纤维素合成操纵子的全部4个基因.序列比较发现,两者高度同源.将连上CaMV 35S启动子的acsA、acsB克隆到植物表达载体pCAMBIA 1301上,acsC、acsD克隆到pCOB302-3中.然后通过花粉管通道法转化棉花(Gossypium hirsutum)胚珠,收获的种子在含有卡那霉素和除草剂的双抗培养基上进行筛选.PCR检测发现934粒种子中有5棵植株含有全部4个基因.这是首次将编码4个功能蛋白的细菌操纵子成功地转入棉花.

  4. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti.

    Science.gov (United States)

    Mullins, Elwood A; Francois, Julie A; Kappock, T Joseph

    2008-07-01

    Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels.

  5. Isolation and Identification of An Excellent Strain of Acetobacter spp. for the Fermentation of Changshanhuyou Tangelo Vinegar%胡柚果醋生产菌种的筛选与鉴定

    Institute of Scientific and Technical Information of China (English)

    刘欠欠; 杨颖; 陆胜民; 陶宁萍; 夏其乐; 邢建荣

    2010-01-01

    目的:筛选1株适合胡柚果醋生产的醋酸菌.方法:从自然发酵胡柚果醋中筛选产醋酸菌种,研究其酒精耐受性、酒精消耗速度、产醋酸速度;分别发酵生产胡柚果醋,对其进行感官分析,以Vitek-32型微生物分析系统对最适菌种进行鉴定.结果:筛选出3株性能较好的醋酸菌株,分别命名为HY05、HY19与HY36,其中HY05菌株性能最优,能够耐受14%的酒精浓度,起始酒精浓度为10%时酒精转化最快,产酸速度快,所生产的果醋色泽淡黄,质地滑清透亮,风味芳香怡人;根据形态观察与Vitek-32系统的分析结果,将其鉴定为醋杆菌属的巴氏醋杆菌(Acetobacter pasteurianus),命名为A.pasteurianus HY05.结论:A.pasteurianus HY05适宜胡柚果醋的生产.

  6. Effect of fed-batch on calcium biotransformation of mussel shell by Acetobacter sp.%分批补料对醋酸菌发酵转化贻贝壳钙源的影响研究

    Institute of Scientific and Technical Information of China (English)

    李晓娇; 刘书来; 丁玉庭

    2012-01-01

    研究了不同初始酒精浓度对醋酸发酵的影响及分批补料对贝壳钙源发酵的影响.醋酸茵在初始酒精浓度为6%vol时的产酸速率、菌体生长速率都较快,且其发酵周期适中.在此基础上,研究了分批补料发酵过程中菌体生长、产物及副产物的合成规律.结果表明:分批补料发酵通过改善发酵的环境条件,进而提高钙离子的转化率.与分批发酵相比,发酵中钙离子的转化率由18.08%提高到了37.33%,钙离子的总浓度由16.96mg/mL提高到了33.99mg/mL.因此,分批补料发酵可显著提高代谢产物的产量,促进贝壳钙源的生物转化率.%The effects of initial alcohol concentrations on acetic acid fermentation and the influence of fed-batch on calcium biotransformation of mussel shell were investigated. When the initial alcohol concentration was 6%vol, the acetic acid production and growth rate of f Acetobacter sp. were faster, and the fermentation time was proper. Base on this study, the cell growth rate and synthetic rates of metabolites in fed-batch fermentation were investigated. The results showed that fed-batch fermentation can improve the calcium conversion rate through changing the fermentation environment. Comparing with batch fermentation, the calcium conversion rate increased from 18.08% to 37.33%, and the total concentration of calcium increased from 16.96mg/ml to 33.99mg/ml in fed-bath fermentation. The fed-batch fermentation could significantly enhance the yield of acetic acid and promote the efficiency of calcium conversion.

  7. Sequential Design Optimization of Bacterial Cellulose Production by Acetobacter xylinus Using Chayote (Sechium edule)Juice as the Basal Fermentation Medium%序贯设计优化佛手瓜汁生产细菌纤维素工艺

    Institute of Scientific and Technical Information of China (English)

    李家洲; 肖玉平; 黄荣林; 赵鑫

    2011-01-01

    在以佛手瓜汁为原料利用木醋杆菌(Acetobacter xylinus)发酵生产细菌纤维素的过程中,利用Plackett-Burman 分部析因试验设计确定出蔗糖质量浓度和pH值对产量具有显著影响,再利用最速爬坡试验确定出这两个因素的中心点,最后以中心点进行中心组合试验设计,建立试验空间下的模型,优化出最佳的因素水平为温度28℃、(NH4)2SO2质量浓度0.3g/l00mL、佛手瓜汁用量(体积分数)100%、蔗糖质量浓度6.54g/l00mL、pH4.19.在最优条件下可得最大干基产量为4.18g/L.

  8. Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae)

    DEFF Research Database (Denmark)

    Kounatidis, Ilias; Crotti, Elena; Sapountzis, Panagiotis;

    2009-01-01

    Following cultivation-dependent and -independent techniques, we investigated the microbiota associated with Bactrocera oleae, one of the major agricultural pests in olive-producing countries. Bacterial 16S rRNA gene libraries and ultrastructural analyses revealed the presence of several bacterial...

  9. Evaluation of viability and growth of Acetobacter senegalensis under different stress conditions.

    Science.gov (United States)

    Shafiei, Rasoul; Delvigne, Frank; Babanezhad, Manoochehr; Thonart, Philippe

    2013-05-15

    Acetic acid bacteria (AAB) are used in production of vinegars. During acetic acid fermentation, AAB encounter various aggressive conditions which may lead to a variety of cellular disorders. Previous researches mainly studied the influences of different carbon sources on tolerance of AAB to ethanol and acetic acid. In this study, different techniques were used comparatively to investigate the effects of preadaptation on the ability of A. senegalensis to tolerate ethanol and acetic acid. In general, the carbon sources used for preadaptation of A. senegalensis exhibited significant effects on the tolerance of cells to stressors. Flow-cytometric assessments of preadapted cells in ethanol showed that 87.3% of the cells perform respiration after exposure to a stress medium containing 5% (v/v) ethanol and 3% (w/v) acetic acid. However, 58.4% of these preadapted cells could keep their envelope integrity under the stress condition. They could also grow rapidly (μmax=0.39/h) in the stress medium (E5A3) with a high yield (>80%). A. senegalensis grown in glucose exhibited a low tolerance to acetic acid. Analysis of their respiration capacity, membrane integrity and culturability revealed that almost all the population were dead after exposure to 5% (v/v) ethanol and 3% (w/v) acetic acid. In contrast, exposure of A. senegalensis preadapted in a mixture of glucose and acetic acid to a stress medium containing 5% (v/v) ethanol and 3% (w/v) acetic acid, exhibited an intact respiration system and cellular membrane integrity in 80.3% and 50.01% of cells, respectively. Moreover, just 24% of these cells could keep their culturability under that stress condition. In summary, cell envelope integrity, growth and culturability are more susceptible to pH and acetic acid stresses whereas respiration system is less subjected to damages under stress condition. In addition, preadaptation of A. senegalensis in a mixture of glucose and acetic acid enables it to tolerate and grow in ethanol and acetic acid.

  10. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor

    OpenAIRE

    Majid MOUNIR; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-01-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV...

  11. Pemanfaatan Limbah Pulp Buah Semangka (Citrullus vulgaris, Schard) Untuk Pembuatan Nata De Watermelon Pulp Dengan Menggunakan Bakteri Acetobacter xylinum

    OpenAIRE

    Mawaddah

    2011-01-01

    This research done to know can or not the waste of watermelon pulp use to produce nata and how the effect of mass variation using to nata’s quality. This research was done with mass variation of watermelon pulp that is 10 g, 20 g, 30 g, 40 g, 50 g, 60 g, and watermelon pulp without adding sugar as control. Statistical analysis count the thickness, water content, ash content, fiber content and organoleptic test of texture, color, aroma, and taste of nata de watermelon pulp. The result show...

  12. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum.

    Science.gov (United States)

    Li, Zheng; Wang, Lifen; Hua, Jiachuan; Jia, Shiru; Zhang, Jianfei; Liu, Hao

    2015-04-20

    The work is aimed to investigate the suitability of waste water of candied jujube-processing industry for the production of bacterial cellulose (BC) by Gluconacetobacter xylinum CGMCC No.2955 and to study the structure properties of bacterial cellulose membranes. After acid pretreatment, the glucose of hydrolysate was higher than that of waste water of candied jujube. The volumetric yield of bacterial cellulose in hydrolysate was 2.25 g/L, which was 1.5-folds of that in waste water of candied jujube. The structures indicated that the fiber size distribution was 3-14 nm in those media with an average diameter being around 5.9 nm. The crystallinity index of BC from pretreatment medium was lower than that of without pretreatment medium and BCs from various media had similar chemical binding. Ammonium citrate was a key factor for improving production yield and the crystallinity index of BC.

  13. 巴氏醋酸杆菌醋酸发酵工艺的优化%Technology optimization of acetic acid fermentation of Acetobacter pasteurium

    Institute of Scientific and Technical Information of China (English)

    刘洪祥; 王敏; 王春霞; 沈妍君; 郑宇; 骆健美

    2009-01-01

    分析比较了巴氏醋酸杆菌AC2005和恶臭醋酸杆菌AS1.41的菌种性能,发现菌株AC2005对酒精和醋酸的耐受性较AS1.41优越.采用响应面分析方法对巴氏醋酸杆菌AC2005初始发酵培养基进行了优化.确定了其最佳水平组合为酒精浓度2.7%、醋酸浓度2.6 g/100mL、装液量40.0mL时,酒精转化率为97.5%,醋酸浓度可达到5.2 g/100mL.在此基础上初步建立了巴氏醋酸杆菌AC2005单批补料的发酵工艺,在发酵过程中补加3次山楂果酒以维持发酵液中酒精浓度为2.0%vol~2.5%vol,发酵周期80h~85h,醋酸浓度可达7.0 g/100mL~8.0 g/100mL.

  14. 醋酸杆菌醇脱氢酶粗酶液的特性研究%Properties of Alcohol Dehydrogenase(ADH)Preparation from Acetobacter sp.CCTCC M209061

    Institute of Scientific and Technical Information of China (English)

    肖仔君; 黄国清; 钟瑞敏

    2010-01-01

    乙醇脱氢酶(ADH)是醋酸杆菌发酵生产醋酸的关键酶.以硫酸铵为沉淀剂,采用盐析法对醋酸杆菌中乙醇脱氢酶进行初步的分离纯化,并研究其酶学特性.结果表明:ADH比活力从粗酶液的0.201 U/mg提高到0.460 U/mg,纯化倍数为2.289;其最适作用pH值为7.5~8.0,pH值为7.8时酶活力达到最大,pH值为7.0时酶较为稳定;最适作用温度为35℃,温度为30℃~40℃时酶活力较为稳定,温度超过45℃后酶活力急剧下降.通过对乙醇底物浓度对ADH活力影响的研究,ADH对乙醇的米氏常数Km为2.59×10-2mol/L.

  15. Scale-up production of yacon fruit vinegar by Acetobacter%醋酸杆菌发酵雪莲果生产果醋饮料工程放大实验研究

    Institute of Scientific and Technical Information of China (English)

    黄晓宾; 罗荣华; 张茜; 黄彪; 李媛媛; 唐湘华

    2011-01-01

    Using yacon fruits as main raw materials, yacon fruit vinegar was produced by two stages of alcoholic fermentation and acetic fermentation in 200L fermentor. The fermentation time was 200h and acetic acid concentration could reach 24.18g/L. The components of fermentation product were analyzed by GC-MS. The content of acid material reached 82.34%, in which, acetic acid content was 74.70%. The scale-up experiments provided an important reference for development of liquid fermentation fruit vinegar beverage.%通过以雪莲果为主要原料在200L发酵罐中经过酒精发酵和醋酸发酵2个阶段,获得雪莲果果醋产物,总发酵时间为200h,醋酸浓度可达到24.18g/L,对发酵产物进行GC-MS分析,发酵产物中酸类物质的含量占82.34%,其中醋酸的含量占到总量的74.70%.该放大实验的研究为液态发酵果醋饮料的发展和技术提升提供了重要的基础.

  16. 巴氏醋杆菌AC2005苹果醋发酵工艺优化%Optimization of Cider Vinegar Fermentation of Acetobacter PasteuriumAC2005

    Institute of Scientific and Technical Information of China (English)

    张荣展; 张仁宽; 苏广玉; 王敏; 郑宇

    2015-01-01

    The batch fermentation of cider vinegar was studied in a 15L self-inspiriting fermenter. The initial acetic acid concentration,the initial ethonal concentration and the aeration rate were optimized through the single factor experiments and the orthogonal test. The results showed that the initial concentration of acetic acid has a significant influence on the cider vinegar batch fermentation. The optimal initial concentration of ethanol and acetic acid were 8% and 1.0 g/100mL,respectively. The batch fermentation was performed under 30 ℃and aeration rate 0.15vvm. The 8.5g/100mL acetic acid concentration of broth was achieved after 73h cultivation which is higher than the domestic industry average with 93.1% ethanol conservation ratio,and the acidification rate was 0.10g/100mL/h.%本研究利用15L自吸式发酵罐对苹果醋分批发酵工艺进行优化,在单因素实验的基础上,采用正交试验对初始醋酸浓度,通气量以及初始乙醇浓度进行优化,结果表明初始醋酸浓度对苹果醋发酵有显著影响。发酵培养基中初始醋酸浓度为1.0g/100mL,初始乙醇浓度为8%,在30℃,通气量0.15vvm条件下发酵73h,终酸浓度达到8.5g/100mL,平均产酸速率为0.10g/100mL/h,乙醇转化率为93%。

  17. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana.

    Science.gov (United States)

    Camu, Nicholas; De Winter, Tom; Verbrugghe, Kristof; Cleenwerck, Ilse; Vandamme, Peter; Takrama, Jemmy S; Vancanneyt, Marc; De Vuyst, Luc

    2007-03-01

    The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as "Weissella ghanaensis," was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named "Acetobacter senegalensis" (A. tropicalis-like) and "Acetobacter

  18. Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels.

    Science.gov (United States)

    Lefeber, Timothy; Gobert, William; Vrancken, Gino; Camu, Nicholas; De Vuyst, Luc

    2011-05-01

    To speed up research on the usefulness and selection of bacterial starter cultures for cocoa bean fermentation, a benchmark cocoa bean fermentation process under natural fermentation conditions was developed successfully. Therefore, spontaneous fermentations of cocoa pulp-bean mass in vessels on a 20 kg scale were tried out in triplicate. The community dynamics and kinetics of these fermentations were studied through a multiphasic approach. Microbiological analysis revealed a limited bacterial species diversity and targeted community dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation, as was the case during cocoa bean fermentations processes carried out in the field. LAB isolates belonged to two main (GTG)(5)-PCR clusters, namely Lactobacillus plantarum and Lactobacillus fermentum, with Fructobacillus pseudofilculneus occurring occasionally; one main (GTG)(5)-PCR cluster, composed of Acetobacter pasteurianus, was found among the AAB isolates, besides minor clusters of Acetobacter ghanensis and Acetobacter senegalensis. 16S rRNA-PCR-DGGE revealed that L. plantarum and L. fermentum dominated the fermentations from day two until the end and Acetobacter was the only AAB species present at the end of the fermentations. Also, species of Tatumella and Pantoea were detected culture-independently at the beginning of the fermentations. Further, it was shown through metabolite target analyses that similar substrate consumption and metabolite production kinetics occurred in the vessels compared to spontaneous cocoa bean fermentation processes. Current drawbacks of the vessel fermentations encompassed an insufficient mixing of the cocoa pulp-bean mass and retarded yeast growth.

  19. Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana.

    Science.gov (United States)

    Camu, Nicholas; González, Angel; De Winter, Tom; Van Schoor, Ann; De Bruyne, Katrien; Vandamme, Peter; Takrama, Jemmy S; Addo, Solomon K; De Vuyst, Luc

    2008-01-01

    The influence of turning and environmental contamination on six spontaneous cocoa bean heap fermentations performed in Ghana was studied through a multiphasic approach, encompassing both microbiological (culture-dependent and culture-independent techniques) and metabolite target analyses. A sensory analysis of chocolate made from the fermented, dried beans was performed as well. Only four clusters were found among the isolates of acetic acid bacteria (AAB) identified: Acetobacter pasteurianus, Acetobacter ghanensis, Acetobacter senegalensis, and a potential new Acetobacter lovaniensis-like species. Two main clusters were identified among the lactic acid bacteria (LAB) isolated, namely, Lactobacillus plantarum and Lactobacillus fermentum. No differences in biodiversity of LAB and AAB were seen for fermentations carried out at the farm and factory sites, indicating the cocoa pod surfaces and not the general environment as the main inoculum for spontaneous cocoa bean heap fermentation. Turning of the heaps enhanced aeration and increased the relative population size of AAB and the production of acetic acid. This in turn gave a more sour taste to chocolate made from these beans. Bitterness was reduced through losses of polyphenols and alkaloids upon fermentation and cocoa bean processing.

  20. 21 CFR 186.1839 - Sorbose.

    Science.gov (United States)

    2010-04-01

    ... microbial oxidation of sorbitol. It also occurs naturally in other plants. Sorbose can be synthesized by the catalytic hydrogenation of glucose to D-sorbitol. The resulting sorbitol can be oxidized by Acetobacter... migrates to food at levels not to exceed good manufacturing practice. (d) Prior sanctions for...

  1. Bacteria and yeast microbiota in milk kefir grains from different Italian regions.

    Science.gov (United States)

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Aquilanti, Lucia; De Filippis, Francesca; Stellato, Giuseppina; Di Mauro, Simone; Turchetti, Benedetta; Buzzini, Pietro; Ercolini, Danilo; Clementi, Francesca

    2015-08-01

    Kefir grains are a unique symbiotic association of different microrganisms, mainly lactic acid bacteria, yeasts and occasionally acetic acid bacteria, cohabiting in a natural polysaccharide and a protein matrix. The microbial composition of kefir grains can be considered as extremely variable since it is strongly influenced by the geographical origin of the grains and by the sub-culturing method used. The aim of this study was to elucidate the bacteria and yeast species occurring in milk kefir grains collected in some Italian regions by combining the results of scanning electron microscopy analysis, viable counts on selective culture media, PCR-DGGE and pyrosequencing. The main bacterial species found was Lactobacillus kefiranofaciens while Dekkera anomala was the predominant yeast. The presence of sub-dominant species ascribed to Streptococcus thermophilus, Lactococcus lactis and Acetobacter genera was also highlighted. In addition, Lc. lactis, Enterococcus sp., Bacillus sp., Acetobacter fabarum, Acetobacter lovaniensis and Acetobacter orientalis were identified as part of the cultivable community. This work further confirms both the importance of combining culture-independent and culture-dependent approaches to study microbial diversity in food and how the combination of multiple 16S rRNA gene targets strengthens taxonomic identification using sequence-based identification approaches.

  2. Recent advances in nitrogen-fixing acetic acid bacteria.

    Science.gov (United States)

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects

  3. Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster.

    Science.gov (United States)

    Newell, Peter D; Douglas, Angela E

    2014-01-01

    The animal gut is perpetually exposed to microorganisms, and this microbiota affects development, nutrient allocation, and immune homeostasis. A major challenge is to understand the contribution of individual microbial species and interactions among species in shaping these microbe-dependent traits. Using the Drosophila melanogaster gut microbiota, we tested whether microbe-dependent performance and nutritional traits of Drosophila are functionally modular, i.e., whether the impact of each microbial taxon on host traits is independent of the presence of other microbial taxa. Gnotobiotic flies were constructed with one or a set of five of the Acetobacter and Lactobacillus species which dominate the gut microbiota of conventional flies (Drosophila with untreated microbiota). Axenic (microbiota-free) flies exhibited prolonged development time and elevated glucose and triglyceride contents. The low glucose content of conventional flies was recapitulated in gnotobiotic Drosophila flies colonized with any of the 5 bacterial taxa tested. In contrast, the development rates and triglyceride levels in monocolonized flies varied depending on the taxon present: Acetobacter species supported the largest reductions, while most Lactobacillus species had no effect. Only flies with both Acetobacter and Lactobacillus had triglyceride contents restored to the level in conventional flies. This could be attributed to two processes: Lactobacillus-mediated promotion of Acetobacter abundance in the fly and a significant negative correlation between fly triglyceride content and Acetobacter abundance. We conclude that the microbial basis of host traits varies in both specificity and modularity; microbe-mediated reduction in glucose is relatively nonspecific and modular, while triglyceride content is influenced by interactions among microbes.

  4. Frequent Replenishment Sustains the Beneficial Microbiome of Drosophila melanogaster

    OpenAIRE

    2013-01-01

    ABSTRACT We report that establishment and maintenance of the Drosophila melanogaster microbiome depend on ingestion of bacteria. Frequent transfer of flies to sterile food prevented establishment of the microbiome in newly emerged flies and reduced the predominant members, Acetobacter and Lactobacillus spp., by 10- to 1,000-fold in older flies. Flies with a normal microbiome were less susceptible than germfree flies to infection by Serratia marcescens and Pseudomonas aeruginosa. Augmentation ...

  5. 15-2-4 :セルロース生産微生物による機能性セルロースの創製; セルロース合成における高次構造制御

    OpenAIRE

    天野, 良彦; 神田, 鷹久

    2004-01-01

    We tried to investigated various carbohydrates and cellulose degrading enzyme activityin the culture broth of cellulose producing microorganism, Acetobacter xylinum to clarify, the role of cellulase for cellulose production. Cerboxymethylcellulose (CMC) degrading activity and various sugars in addition to cellulose were detected in the culture broth after one day culture. These sugars increased gradually and were identified to some kinds of β-linked disaccharides such as gentiobiose and cello...

  6. KAJIAN CIDER SEBAGAI ALTERNATIF PENGANEKARAGAMAN PRODUK KOPI Study of Cider as Alternative Product Diversivication from Coffee

    OpenAIRE

    Suharyono Apno Sugito

    2012-01-01

    Coffee is an important export commodity from Indonesia. There are not many processed product from coffee, and sincecoffee is a delightful refreshing beverage, it is interesting to make product diversivication from coffee. An alternative processing could be a cider. Coffee used in this research were decaffeinated, Robusta and Arabica coffee. The amount of added sugar were 15 %, 20 %, and 25 %. Natural cultures, combination of Sacharomyces cerevisiae and Acetobacter xylinum, combination of Sach...

  7. Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives

    OpenAIRE

    1982-01-01

    In vivo cellulose ribbon assembly by the Gram-negative bacterium Acetobacter xylinum can be altered by incubation in carboxymethylcellulose (CMC), a negatively charged water-soluble cellulose derivative, and also by incubation in a variety of neutral, water-soluble cellulose derivatives. In the presence of all of these substituted celluloses, normal fasciation of microfibril bundles to form the typical twisting ribbon is prevented. Alteration of ribbon assembly is most extensive in the presen...

  8. Acetic Acid Production by an Electrodialysis Fermentation Method with a Computerized Control System

    OpenAIRE

    Nomura, Yoshiyuki; Iwahara, Masayoshi; Hongo, Motoyoshi

    1988-01-01

    In acetic acid fermentation by Acetobacter aceti, the acetic acid produced inhibits the production of acetic acid by this microorganism. To alleviate this inhibitory effect, we developed an electrodialysis fermentation method such that acetic acid is continuously removed from the broth. The fermentation unit has a computerized system for the control of the pH and the concentration of ethanol in the fermentation broth. The electrodialysis fermentation system resulted in improved cell growth an...

  9. Bacterial Ecology of Fermented Cucumber Rising pH Spoilage as Determined by Nonculture-Based Methods.

    Science.gov (United States)

    Medina, Eduardo; Pérez-Díaz, Ilenys M; Breidt, Fred; Hayes, Janet; Franco, Wendy; Butz, Natasha; Azcarate-Peril, María Andrea

    2016-01-01

    Fermented cucumber spoilage (FCS) characterized by rising pH and the appearance of manure- and cheese-like aromas is a challenge of significant economical impact for the pickling industry. Previous culture-based studies identified the yeasts Pichia manshurica and Issatchenkia occidentalis, 4 Gram-positive bacteria, Lactobacillus buchneri, Lactobacillus parrafaraginis, Clostridium sp., and Propionibacterium and 1 Gram-negative genus, Pectinatus, as relevant in various stages of FCS given their ability to metabolize lactic acid. It was the objective of this study to augment the current knowledge of FCS using culture-independent methods to microbiologically characterize commercial spoilage samples. Ion Torrent data and 16S rRNA cloning library analyses of samples collected from commercial fermentation tanks confirmed the presence of L. rapi and L. buchneri and revealed the presence of additional species involved in the development of FCS such as Lactobacillus namurensis, Lactobacillus acetotolerans, Lactobacillus panis, Acetobacter peroxydans, Acetobacter aceti, and Acetobacter pasteurianus at pH below 3.4. The culture-independent analyses also revealed the presence of species of Veillonella and Dialister in spoilage samples with pH above 4.0 and confirmed the presence of Pectinatus spp. during lactic acid degradation at the higher pH. Acetobacter spp. were successfully isolated from commercial samples collected from tanks subjected to air purging by plating on Mannitol Yeast Peptone agar. In contrast, Lactobacillus spp. were primarily identified in samples of FCS collected from tanks not subjected to air purging for more than 4 mo. Thus, it is speculated that oxygen availability may be a determining factor in the initiation of spoilage and the leading microbiota.

  10. Bacterial Ecology of Fermented Cucumber Rising pH Spoilage as Determined by Non-Culture Based Methods

    Science.gov (United States)

    Medina, Eduardo; Pérez-Díaz, Ilenys M.; Breidt, Fred; Hayes, Janet; Franco, Wendy; Butz, Natasha; Azcarate-Peril, María Andrea

    2016-01-01

    Fermented cucumber spoilage (FCS) characterized by rising pH and the appearance of manure and cheese like aromas is a challenge of significant economical impact for the pickling industry. Previous culture based studies identified the yeasts Pichia manshurica and Issatchenkia occidentalis, four gram positive bacteria, Lactobacillus buchneri, Lactobacillus parrafaraginis, Clostridium sp. and Propionibacterium and one gram-negative genus, Pectinatus as relevant in various stages of FCS given their ability to metabolize lactic acid. It was the objective of this study to augment the current knowledge of FCS using culture independent methods to microbiologically characterize commercial spoilage samples. Ion Torrent data and 16S rRNA cloning library analyses of samples collected from commercial fermentation tanks confirmed the presence of L. rapi and L. buchneri and revealed the presence of additional species involved in the development of FCS such as Lactobacillus namurensis, Lactobacillus acetotolerans, Lactobacillus panis, Acetobacter peroxydans, Acetobacter aceti, and Acetobacter pasteurianus at pH below 3.4. The culture independent analyses also revealed the presence of species of Veillonella and Dialister in spoilage samples with pH above 4.0 and confirmed the presence of Pectinatus spp. during lactic acid degradation at the higher pH. Acetobacter spp. were successfully isolated from commercial samples collected from tanks subjected to air purging by plating on Mannitol Yeast Peptone agar. In contrast, Lactobacillus spp. were primarily identified in samples of FCS collected from tanks not subjected to air purging for more than 4 months. Thus, it is speculated that oxygen availability may be a determining factor in the initiation of spoilage and the leading microbiota. Practical Application Understanding of the underlying microbiology and biochemistry driving FCS is essential to enhancing the sodium chloride (NaCl)-free cucumber fermentation technology and in

  11. Fermentation Tecniques and Applications of Bacterial Cellulose: a Review Técnicas de fermentación y aplicaciones de la celulosa bacteriana: una revisión

    Directory of Open Access Journals (Sweden)

    Luz Dary Carreño Pineda

    2012-12-01

    Full Text Available Bacterial cellulose is a polymer obtained by fermentation with microorganismsfrom Acetobacter, Rhizobium, Agrobacterium and Sarcina genera. Amongthem, Acetobacter xylinum is the most efficient specie. This polymer hasthe same chemical composition of plant cellulose, but its conformation andphysicochemical properties are different, making it attractive for several applications, especially in the areas of food, separation processes, catalysis andhealth, due to its biocompatibility. However, the main problem is the production in mass that is constrained by low yield. It is therefore necessaryto develop some alternatives. This paper presents a review about synthesis,production, properties and principal applications of bacterial cellulose, as wellas some alternatives to reduce the difficulties for process scaling.La celulosa bacteriana es un polímero obtenido por fermentación con microrganismosde los géneros Acetobacter, Rhizobium, Agrobacterium y Sarcina, delas cuales la especie más eficiente es la Acetobacter Xylinum. Este polímero presenta la misma estructura química de la celulosa de origen vegetal, pero difiereen su conformación y propiedades fisicoquímicas, lo que lo hace atractivo para diversas aplicaciones, especialmente en las áreas de alimentos, procesosde separación, catálisis y en medicina, gracias a su biocompatibilidad. Sin embargo, el principal problema es la producción a gran escala limitada por losbajos rendimientos, lo que genera la necesidad de desarrollar alternativas que permitan disminuir o eliminar las causas de esta limitación. En este artículo se hace una revisión acerca de la síntesis, producción, propiedades y principales aplicaciones de la celulosa bacteriana, así como de algunas alternativas estudiadas para disminuir los inconvenientes en el escalamiento del proceso.

  12. Biochemical localization of a protein involved in Gluconacetobacter hansenii cellulose synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Prashanti R; Catchmark, Jeffrey M; Brown, Nicole Robitaille; Tien, Ming

    2011-02-08

    Using subcellular fractionation and Western blot methods, we have shown that AcsD, one of the proteins encoded by the Acetobacter cellulose synthase (acs) operon, is localized in the periplasmic region of the cell. AcsD protein was heterologously expressed in Escherichia coli and purified using histidine tag affinity methods. The purified protein was used to obtain rabbit polyclonal antibodies. The purity of the subcellular fractions was assessed by marker enzyme assays.

  13. Microbial Diversity and Biochemical Analysis of Suanzhou: A Traditional Chinese Fermented Cereal Gruel

    Science.gov (United States)

    Qin, Huibin; Sun, Qinghui; Pan, Xuewei; Qiao, Zhijun; Yang, Hongjiang

    2016-01-01

    Suanzhou as a traditional Chinese gruel is fermented from proso millet and millet. The biochemical analysis showed Suanzhou had relatively high concentrations of lactic acid, acetic acid, and free amino acids. The metagenomics of Suanzhou were studied, with the analysis of the V4 region of 16S rRNA gene, the genera Lactobacillus and Acetobacter were found dominant with the average abundance of 58.2 and 24.4%, respectively; and with the analysis of the ITS1 region between 18S and 5.8S rRNA genes, 97.3% of the fungal community was found belonging to the genus Pichia and 2.7% belonging to five other genera. Moreover, the isolates recovered from 59 Suanzhou samples with various media were identified with the 16S rRNA or 18S rRNA gene analyses. Lactobacillus fermentum (26.9%), L. pentosus (19.4%), L. casei (17.9%), and L. brevis (16.4%) were the four dominant Lactobacillus species; Acetobacter lovaniensis (38.1%), A. syzygii (16.7%), A. okinawensis (16.7%), and A. indonesiensis (11.9%) were the four dominant Acetobacter species; and Pichia kudriavzevii (55.8%) and Galactomyces geotrichum (23.1%) were the two dominant fungal species. Additionally, L. pentosus p28-c and L. casei h28-c1 were selected for the fermentations mimicking the natural process. Collectively, our data demonstrate that Suanzhou is a nutritional food high in free amino acids and organic acids. Diverse Lactobacillus, Acetobacter, and yeast species are identified as the dominant microorganisms in Suanzhou. The isolated strains can be further characterized and used as starters for the industrial production of Suanzhou safely. PMID:27610102

  14. Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki).

    Science.gov (United States)

    Hidalgo, C; Mateo, E; Mas, A; Torija, M J

    2012-05-01

    Persimmon (Diospyros kaki) is a seasonal fruit with important health benefits. In this study, persimmon use in wine and condiment production was investigated using molecular methods to identify the yeast and acetic acid bacteria (AAB) isolated from the alcoholic fermentation and acetification of the fruit. Alcoholic fermentation was allowed to occur either spontaneously, or by inoculation with a commercial Saccharomyces cerevisiae wine strain, while acetification was always spontaneous; all these processes were performed in triplicates. Non-Saccharomyces yeast species were particularly abundant during the initial and mid-alcoholic fermentation stages, but S. cerevisiae became dominant toward the end of these processes. During spontaneous fermentation, S. cerevisiae Sc1 was the predominant strain isolated throughout, while the commercial strain of S. cerevisiae was the most common strain isolated from the inoculated fermentations. The main non-Saccharomyces strains isolated included Pichia guilliermondii, Hanseniaspora uvarum, Zygosaccharomyces florentinus and Cryptococcus sp. A distinct succession of AAB was observed during the acetification process. Acetobacter malorun was abundant during the initial and mid-stages, while Gluconacetobacter saccharivorans was the main species during the final stages of these acetifications. Four additional AAB species, Acetobacter pasteurianus, Acetobacter syzygii, Gluconacetobacter intermedius and Gluconacetobacter europaeus, were also detected. We observed 28 different AAB genotypes, though only 6 of these were present in high numbers (between 25%-60%), resulting in a high biodiversity index.

  15. Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka.

    Science.gov (United States)

    Perumpuli, P A B N; Watanabe, Taisuke; Toyama, Hirohide

    2014-01-01

    From the pellicle formed on top of brewing coconut water vinegar in Sri Lanka, three Acetobacter strains (SL13E-2, SL13E-3, and SL13E-4) that grow at 42 °C and four Gluconobacter strains (SL13-5, SL13-6, SL13-7, and SL13-8) grow at 37 °C were identified as Acetobacter pasteurianus and Gluconobacter frateurii, respectively. Acetic acid production by the isolated Acetobacter strains was examined. All three strains gave 4% acetic acid from 6% initial ethanol at 37 °C, and 2.5% acetic acid from 4% initial ethanol at 40 °C. Compared with the two other strains, SL13E-4 showed both slower growth and slower acetic acid production. As well as the thermotolerant SKU1108 strain, the activities of the alcohol dehydrogenase and the aldehyde dehydrogenase of SL13E-2 and SL13E-4 were more stable than those of the mesophilic strain. The isolated strains were used to produce coconut water vinegar at higher temperatures than typically used for vinegar production.

  16. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    Science.gov (United States)

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-04

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product.

  17. Extractive fermentation of acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Busche, R.M. [Bio En-Gene-Er Associates, Inc., Wilmington, DE (United States)

    1991-12-31

    In this technoeconomic evaluation of the manufacture of acetic acid by fermentation, the use of the bacterium: Acetobacter suboxydans from the old vinegar process was compared with expected performance of the newer Clostridium thermoaceticum bacterium. Both systems were projected to operate as immobilized cells in a continuous, fluidized bed bioreactor, using solvent extraction to recover the product. Acetobacter metabolizes ethanol aerobically to produce acid at 100 g/L in a low pH medium. This ensures that the product is in the form of a concentrated extractable free acid, rather than as an unextractable salt. Unfortunately, yields from glucose by way of the ethanol fermentation are poor, but near the biological limits of the organisms involved. Conversely, C. thermoaceticum is a thermophilic anaerobe that operates at high fermentation rates on glucose at neutral pH to produce acetate salts directly in substantially quantitative yields. However, it is severely inhibited by product, which restricts concentration to a dilute 20 g/L. An improved Acetobacter system operating with recycled cells at 50 g/L appears capable of producing acid at $0.38/lb, as compared with a $0.29/lb price for synthetic acid. However, this system has only a limited margin for process improvement. The present Clostridium system cannot compete, since the required selling price would be $0.42/lb. However, if the organism could be adapted to tolerate higher product concentrations at acid pH, selling price could be reduced to $0.22/lb, or about 80% of the price of synthetic acid.

  18. Microbial Diversity and Biochemical Analysis of Suanzhou: A Traditional Chinese Fermented Cereal Gruel

    Directory of Open Access Journals (Sweden)

    Huibin Qin

    2016-08-01

    Full Text Available Suanzhou as a traditional Chinese gruel is fermented from proso millet and millet. The biochemical analysis showed Suanzhou had relatively high concentrations of lactic acid, acetic acid, and free amino acids. The metagenomics of Suanzhou were studied, with the analysis of the V4 region of 16S rRNA gene, the genera Lactobacillus and Acetobacter were found dominant with the average abundance of 58.2% and 24.4%, respectively; and with the analysis of the ITS1 region between 18S and 5.8S rRNA genes, 97.3% of the fungal community was found belonging to the genus Pichia and 2.7% belonging to 5 other genera. Moreover, the isolates recovered from 59 Suanzhou samples with various media were identified with the 16S rRNA or 18S rRNA gene analyses. L. fermentum (26.9%, L. pentosus (19.4%, L. casei (17.9%, and L. brevis (16.4% were the four dominant Lactobacillus species; A. lovaniensis (38.1%, A. syzygii (16.7%, A. okinawensis (16.7%, and A. indonesiensis (11.9% were the four dominant Acetobacter species; and Pichia kudriavzevii (55.8% and Galactomyces geotrichum (23.1% were the two dominant fungal species. Additionally, L. pentosus p28-c and L. casei h28-c1 were selected for the fermentations mimicking the natural process. Collectively, our data demonstrate that Suanzhou is a nutritional food high in free amino acids and organic acids. Diverse Lactobacillus, Acetobacter, and yeast species are identified as the dominant microorganisms in Suanzhou. The isolated strains can be further characterized and used as starters for the industrial production of Suanzhou safely.

  19. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods

    Directory of Open Access Journals (Sweden)

    K Beheshti-Maal

    2010-06-01

    Full Text Available Background and Objectives: Acetic acid bacteria (AAB are useful in industrial production of vinegar. The present study aims at isolation and identification of acetic acid bacteria with characterization, optimization, and evaluation of their acetic acid productivity."nMaterials and Methods: Samples from various fruits were screened for presence of acetic acid bacteria on glucose, yeast extract, calcium carbonate (GYC medium. Carr medium supplemented with bromocresol green was used for distinguishing Acetobacter from Gluconobacter. The isolates were cultured in basal medium to find the highest acetic acid producer. Biochemical tests followed by 16S rRNA and restriction analyses were employed for identification of the isolate and phylogenic tree was constructed. Bacterial growth and acid production conditions were optimized based on optimal inoculum size, pH, temperature, agitation, aeration and medium composition."nResults: Thirty-seven acetic acid bacteria from acetobacter and gluconobacter members were isolated. Acetic acid productivity yielded 4 isolates that produced higher amounts of acid. The highest producer of acid (10.03% was selected for identification. The sequencing and restriction analyses of 16S rRNA revealed a divergent strain of Acetobacter pasteurianus (Gene bank accession number # GU059865. The optimum condition for acid production was a medium composed of 2% glucose, 2% yeast extract, 3% ethanol and 3% acid acetic at inoculum size of 4% at 3L/Min aeration level in the production medium. The isolate was best preserved in GYC medium at 12oC for more than a month. Longer preservation was possible at -70oC."nConclusion: The results are suggestive of isolation of an indigenous acetic acid bacteria. Pilot plan is suggested to study applicability of the isolated strain in acetic acid production.

  20. Study of pineapple peelings processing into vinegar by biotechnology.

    Science.gov (United States)

    Sossou, Seyram K; Ameyapoh, Yaovi; Karou, Simplice D; de Souza, Comlan

    2009-06-01

    This study aimed to reduce post-harvest losses of pineapple local variety egbenana by the transformation of juice into vinegar through biotechnological process. Vinegar was produced through two successive fermentations: alcoholic and acetic fermentations. The alcohol fermentation was carried out at 30 degrees C using yeast. Biomass, pH and Brix were evaluated daily during the fermentation. Acetic fermentation was carried out at 30 degrees C using an acetic bacteria strain isolated from pineapple wine previously exposed to ambient temperature (28 degrees C) for 5 days. Biomass, pH and acid levels were monitored each 2 days. The performance of acetic bacteria isolated was also assessed by studying their glucose and ethanol tolerance. The study allowed the isolation of yeast coded Saccharomyces cerevisiae (LAS01) and an acetic bacteria coded Acetobacter sp. (ASV03) both occurring in the pineapple juice. The monitoring of successive fermentations indicated that the pineapple juice with sugar concentration of 20 Brix, seeded with 10(6) cells of Saccharomyces cerevisiae (LAS01) for alcoholic fermentation for 4 days and afterwards seeded with 10(6) cells of Acetobacter sp. resulted in 4.5 acetic degree vinegar at Brix 5.3% and pH 2.8 for 23 to 25 days. The study of glucose tolerance of the strain of Acetobacter sp. showed that the growth of acetic bacteria was important in a juice with high concentration of sugar. However, the concentration of ethanol did not effect on the acetic bacteria growth. These results enabled on one hand to improve the manufacturing technology of vinegar from fruits and on the other hand to produce a starter of yeast and acetic bacteria strains for this production.

  1. \\"Monitoramento da produção de ácidos orgânicos em amostras de leite fermentado pelos grãos de Kefir e do Tibet utilizando técnicas voltamétricas e HPLC\\"

    OpenAIRE

    Lidia Santos Pereira Martins

    2006-01-01

    Neste trabalho duas espécies de grãos, de kefir e do tibet, popularmente conhecidas e utilizadas para fermentar o leite, foram estudados neste trabalho, no que se refere aos produtos formados durante a fermentação. O grão de kefir é uma associação simbiótica de microganismo pertencente a diversas espécies incluindo no geral bactérias ácidas láticas (Lactobacillus, Lactococcus, Leuconostoc), leveduras (Saccharomyces cereviseae) e bactérias ácidas acéticas (Acetobacter). O grão de tibet é, tamb...

  2. Chemical Composition and Biological Activities of Essential Oil from the Rhizomes of Iris bulleyana

    Institute of Scientific and Technical Information of China (English)

    DENG Guo-bin; ZHANG Han-bo; XUE Hong-fen; CHEN Shan-na; CHEN Xiao-lan

    2009-01-01

    Iris bulleyana has long been used as a remedy for detoxication and detumescence.Hydrodistillation was used to extract the essential oil from its rhizomes,and 0.23% oil yield was obtained.Using gas chromatography-mass spectrometry (GCMS) analysis,31 chemicals including aristolone,euparene,β-gurjunene,δ-amorphene,α-muurolene,α-cadinol,camphor,γ-elemene,and τ-eadinol were identified.The essential oil exhibited antibacterial activity against Acetobacter calcoacetica,Bacillus subtillis,Clostridium sporogenes,Clostridium perfringens,Escherichia coli,Salmonella typhii,Staphylococcus aureus,and Yersinia enterocolitica.Its antifungal and antioxidant activities were also tested.

  3. KAJIAN CIDER SEBAGAI ALTERNATIF PENGANEKARAGAMAN PRODUK KOPI Study of Cider as Alternative Product Diversivication from Coffee

    Directory of Open Access Journals (Sweden)

    Suharyono Apno Sugito

    2012-05-01

    Full Text Available Coffee is an important export commodity from Indonesia. There are not many processed product from coffee, and sincecoffee is a delightful refreshing beverage, it is interesting to make product diversivication from coffee. An alternative processing could be a cider. Coffee used in this research were decaffeinated, Robusta and Arabica coffee. The amount of added sugar were 15 %, 20 %, and 25 %. Natural cultures, combination of Sacharomyces cerevisiae and Acetobacter xylinum, combination of Sacharomyces ludwigii and Acetobacter xylinum, combination of  S. cerevisiae, S. ludwigii, and A. xylinum were used as starters. The parameters observed included: reducing sugar content, alcohol, total tertitrasi acid, pH and Organoleptic Test (color, aroma, taste, clarity, and general acceptance. Coffee cider with the highest overall acceptance score was made from decaffeinated coffee, with 20 % sugar addition and combination of S. ludwigii and A. xylinum as starter.The result of correlation analysis showed a negative significant correlation between reducing sugar content and aroma of coffee cider. Positive significant correlation were found between total titrable acidity and aroma, taste and overall acceptance of coffee cider. ABSTRAK Kopi merupakan komoditas ekspor penting   Indonesia. Tidak banyak produk olahan dari kopi, yang lebih dikenalsebagai minuman menyegarkan dan menyenangkan, sehingga menarik untuk membuat diversifikasi produk kopi. Salah satu alternatif adalah pengolahan cider. Kopi yang digunakan dalam penelitian ini adalah kopi tanpa kafein, Robusta dan Arabika. Jumlah gula yang ditambahkan adalah 15 %, 20 %, dan 25 %. Kultur alami, kombinasi Sacharomyces cerevisea dan Acetobacter xylinum, kombinasi Sacharomyces Ludwigii dan Acetobacter xylinum, kombinasi S. cerevisiae, S.Ludwigii , dan A.xylinum digunakan sebagai starter. Parameter yang diamati meliputi: kadar gula pereduksi, alkohol, total asam tertitrasi, pH dan Uji Organoleptik (warna

  4. Efecto de las condiciones de cultivo y purificación sobre las propiedades fisicoquímicas y de transporte en membranas de celulosa bacteriana

    OpenAIRE

    Carreño Pineda, Luz Dary

    2011-01-01

    En el presente trabajo fueron sintetizadas membranas de celulosa bacteriana a partir de un aislado nativo de Acetobacter xylinum. Se variaron como condiciones de cultivo la temperatura y la fuente de carbono, y como condiciones de purificación el agente purificante, la temperatura y el tiempo de exposición, y se evaluó el efecto de estas condiciones sobre las propiedades fisicoquímicas y de transporte de las membranas. Se caracterizaron con pruebas de difracción de rayos X, calorimetría di...

  5. Preliminary Research on Structure and Properties of Nano-cellulose

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The structure of bacterial cellulose (BC) produced by Acetobacter xylinum NUST4 (A.xylinum NUST4) under static (SBC) and shake culture condition (ABC) was studied by means of transmission electron microscopic (TEM), X-ray diffraction (XRD) and Fourier transform-infrared spectrum (FT-IR). It was revealed that BC is Ⅰ crystal cellulose and the proportion of cellulose Ⅰα exceeds 80% and BC diameter is 10-80 nm.Mechanical properties and water absorption capacity were also determined. These properties could result from crystalline and nanometer structure of BC.

  6. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior

    Science.gov (United States)

    Fischer, Caleb; Trautman, Eric P; Crawford, Jason M; Stabb, Eric V; Handelsman, Jo; Broderick, Nichole A

    2017-01-01

    Animals host multi-species microbial communities (microbiomes) whose properties may result from inter-species interactions; however, current understanding of host-microbiome interactions derives mostly from studies in which elucidation of microbe-microbe interactions is difficult. In exploring how Drosophila melanogaster acquires its microbiome, we found that a microbial community influences Drosophila olfactory and egg-laying behaviors differently than individual members. Drosophila prefers a Saccharomyces-Acetobacter co-culture to the same microorganisms grown individually and then mixed, a response mainly due to the conserved olfactory receptor, Or42b. Acetobacter metabolism of Saccharomyces-derived ethanol was necessary, and acetate and its metabolic derivatives were sufficient, for co-culture preference. Preference correlated with three emergent co-culture properties: ethanol catabolism, a distinct volatile profile, and yeast population decline. Egg-laying preference provided a context-dependent fitness benefit to larvae. We describe a molecular mechanism by which a microbial community affects animal behavior. Our results support a model whereby emergent metabolites signal a beneficial multispecies microbiome. DOI: http://dx.doi.org/10.7554/eLife.18855.001 PMID:28068220

  7. Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria.

    Science.gov (United States)

    Papalexandratou, Zoi; Vrancken, Gino; De Bruyne, Katrien; Vandamme, Peter; De Vuyst, Luc

    2011-10-01

    Spontaneous organic cocoa bean box fermentations were carried out on two different farms in Brazil. Physical parameters, microbial growth, bacterial species diversity [mainly lactic acid bacteria (LAB) and acetic acid bacteria (AAB)], and metabolite kinetics were monitored, and chocolates were produced from the fermented dry cocoa beans. The main end-products of the catabolism of the pulp substrates (glucose, fructose, and citric acid) by yeasts, LAB, and AAB were ethanol, lactic acid, mannitol, and/or acetic acid. Lactobacillus fermentum and Acetobacter pasteurianus were the predominating bacterial species of the fermentations as revealed through (GTG)(5)-PCR fingerprinting of isolates and PCR-DGGE of 16S rRNA gene PCR amplicons of DNA directly extracted from fermentation samples. Fructobacillus pseudoficulneus, Lactobacillus plantarum, and Acetobacter senegalensis were among the prevailing species during the initial phase of the fermentations. Also, three novel LAB species were found. This study emphasized the possible participation of Enterobacteriaceae in the cocoa bean fermentation process. Tatumella ptyseos and Tatumella citrea were the prevailing enterobacterial species in the beginning of the fermentations as revealed by 16S rRNA gene-PCR-DGGE. Finally, it turned out that control over a restricted bacterial species diversity during fermentation through an ideal post-harvest handling of the cocoa beans will allow the production of high-quality cocoa and chocolates produced thereof, independent of the fermentation method or farm.

  8. Exploring the Bacterial Microbiota of Colombian Fermented Maize Dough “Masa Agria” (Maiz Añejo)

    Science.gov (United States)

    Chaves-Lopez, Clemencia; Serio, Annalisa; Delgado-Ospina, Johannes; Rossi, Chiara; Grande-Tovar, Carlos D.; Paparella, Antonello

    2016-01-01

    Masa Agria is a naturally fermented maize dough produced in Colombia, very common in the traditional gastronomy. In this study we used culture-dependent and RNA-based pyrosequencing to investigate the bacterial community structure of Masa Agria samples produced in the south west of Colombia. The mean value of cell density was 7.6 log CFU/g of presumptive lactic acid bacteria, 5.4 log cfu/g for presumptive acetic bacteria and 5.6 og CFU/g for yeasts. The abundance of these microorganisms is also responsible for the low pH (3.1–3.7) registered. Although the 16S rRNA pyrosequencing revealed that the analyzed samples were different in bacteria richness and diversity, the genera Lactobacillus, Weissella, and Acetobacter were predominant. In particular, the most common species were Lactobacillus plantarum and Acetobacter fabarum, followed by L. fermentum, L. vaccinostercus, and Pediococcus argentinicus. Several microorganisms of environmental origin, such as Dechloromonas and most of all Sphingobium spp., revealed in each sample, were detected, and also bacteria related to maize, such as Phytoplasma. In conclusion, our results elucidated for the first time the structures of the bacterial communities of Masa Agria samples obtained from different producers, identifying the specific dominant species and revealing a complete picture of the bacterial consortium in this specific niche. The selective pressure of tropical environments may favor microbial biodiversity characterized by a useful technological potential. PMID:27524979

  9. Exploring the bacterial microbiota of Colombian fermented maize dough “Masa Agria” (Maiz Añejo

    Directory of Open Access Journals (Sweden)

    Clemencia Chaves

    2016-07-01

    Full Text Available Masa Agria is a naturally fermented maize dough produced in Colombia, very common in the traditional gastronomy. In this study we used culture-dependent and RNA-based pyrosequencing to investigate the bacterial community structure of Masa Agria samples produced in the south west of Colombia. The mean value of cell density was 7.6 Log CFU/g of presumptive lactic acid bacteria (LAB, 5.4 Log cfu/g for presumptive acetic bacteria and 5.6 Log CFU/g for yeasts. The abundance of these microorganisms is also responsible for the low pH (3.1-3.7 registered. Although the 16S rRNA pyrosequencing revealed that the analyzed samples were different in bacteria richness and diversity, the genera Lactobacillus, Weissella and Acetobacter were predominant. In particular, the most common species were Lactobacillus plantarum and Acetobacter fabarum, followed by Lb. fermentum, Lb. vaccinostercus and Pediococcus argentinicus. Several microorganisms of environmental origin, such as Dechloromonas and most of all Sphingobium spp., revealed in each sample, were detected, and also bacteria related to maize, such as Phytoplasma. In conclusion, our results elucidated for the first time the structures of the bacterial communities of Masa Agria samples obtained from different producers, identifying the specific dominant species and revealing a complete picture of the bacterial consortium in this specific niche. The selective pressure of tropical environments may favour microbial biodiversity characterized by a useful technological potential.

  10. Exploring the Bacterial Microbiota of Colombian Fermented Maize Dough "Masa Agria" (Maiz Añejo).

    Science.gov (United States)

    Chaves-Lopez, Clemencia; Serio, Annalisa; Delgado-Ospina, Johannes; Rossi, Chiara; Grande-Tovar, Carlos D; Paparella, Antonello

    2016-01-01

    Masa Agria is a naturally fermented maize dough produced in Colombia, very common in the traditional gastronomy. In this study we used culture-dependent and RNA-based pyrosequencing to investigate the bacterial community structure of Masa Agria samples produced in the south west of Colombia. The mean value of cell density was 7.6 log CFU/g of presumptive lactic acid bacteria, 5.4 log cfu/g for presumptive acetic bacteria and 5.6 og CFU/g for yeasts. The abundance of these microorganisms is also responsible for the low pH (3.1-3.7) registered. Although the 16S rRNA pyrosequencing revealed that the analyzed samples were different in bacteria richness and diversity, the genera Lactobacillus, Weissella, and Acetobacter were predominant. In particular, the most common species were Lactobacillus plantarum and Acetobacter fabarum, followed by L. fermentum, L. vaccinostercus, and Pediococcus argentinicus. Several microorganisms of environmental origin, such as Dechloromonas and most of all Sphingobium spp., revealed in each sample, were detected, and also bacteria related to maize, such as Phytoplasma. In conclusion, our results elucidated for the first time the structures of the bacterial communities of Masa Agria samples obtained from different producers, identifying the specific dominant species and revealing a complete picture of the bacterial consortium in this specific niche. The selective pressure of tropical environments may favor microbial biodiversity characterized by a useful technological potential.

  11. Cellulose synthesizing Complexes in Vascular Plants andProcaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard M, Jr; Saxena, Inder Mohan

    2009-07-07

    Continuing the work initiated under DE-FG03-94ER20145, the following major accomplishments were achieved under DE-FG02-03ER15396 from 2003-2007: (a) we purified the acsD gene product of the Acetobacter cellulose synthase operon as well as transferred the CesA cellulose gene from Gossypium into E. coli in an attempt to crystallize this protein for x-ray diffraction structural analysis; however, crystallization attempts proved unsuccessful; (b) the Acetobacter cellulose synthase operon was successfully incorporated into Synechococcus, a cyanobacterium2; (c) this operon in Synechococcus was functionally expressed; (d) we successfully immunolabeled Vigna cellulose and callose synthase components and mapped their distribution before and after wounding; (e) we developed a novel method to produce replicas of cellulose synthases in tobacco BY-2 cells, and we demonstrated the cytoplasmic domain of the rosette TC; (f) from the moss Physcomitrella, we isolated two full-length cDNA sequences of cellulose synthase (PpCesA1 and PpCesA2) and attempted to obtain full genomic DNA sequences; (g) we examined the detailed molecular structure of a new form of non-crystalline cellulose known as nematic ordered cellulose (=NOC)3.

  12. Fermentation process for production of apple-based kefir vinegar: microbiological, chemical and sensory analysis.

    Science.gov (United States)

    Viana, Roberta Oliveira; Magalhães-Guedes, Karina Teixeira; Braga, Roberto Alves; Dias, Disney Ribeiro; Schwan, Rosane Freitas

    2017-03-07

    The aim of this study was to develop a kefir apple-based vinegar and evaluate this fermentation process using new methodology with Biospeckle Laser. Brazilian kefir grains were inoculated in apple must for vinegar production. In this study, the microbial community present in kefir, and correspondent vinegar, was investigated using Matrix Assisted Laser Desorption/Ionization - Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. Saccharomyces cerevisiae, Lactobacillus paracasei, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii were the microbial species identified. S. cerevisiae, L. plantarum, A. pasteurianus and A. syzygii were found in smaller quantities at the beginning of the alcoholic fermentation, but were found throughout the alcoholic and acetic fermentation. Kefir grains were able to utilize apple must as substrate to produce ethanol, and acetic acid. Acetate, volatile alcohols and aldehydes in the vinegar-based kefir were also produced. The yield of acetic acid in the kefir vinegars was ∼79%. The acetic acid concentration was ∼41gL(-1), reaching the required standard for the Brazilian legislation accepts it as vinegar (4.0% acetic acid). Kefir vinegar showed good acceptance in the sensory analysis. The technology proposed here is novel by the application of immobilized-cell biomass (kefir grains) providing a mixed inocula and eliminating the use of centrifuge at the end of the fermentative process. This step will save energy demand and investment. This is the first study to produce apple vinegar using kefir grains.

  13. Identification and quantification of acetic acid bacteria in wine and vinegar by TaqMan-MGB probes.

    Science.gov (United States)

    Torija, M J; Mateo, E; Guillamón, J M; Mas, A

    2010-04-01

    A Real-Time PCR (RT-PCR) assay was developed using TaqMan minor groove binder (MGB) probes for the specific detection and quantification of five acetic acid bacteria (AAB) species (Acetobacter pasteurianus, Acetobacter aceti, Gluconacetobacter hansenii, Gluconacetobacter europaeus and Gluconobacter oxydans) in wine and vinegar. The primers and probes, designed from the 16S rRNA gene, showed good specificity with the target AAB species. The technique was tested on AAB grown in glucose medium (GY) and inoculated samples of red wine and wine vinegar. Standard curves were constructed with the five target species in all these matrices. Quantification was linear over at least 5 log units using both serial dilution of purified DNA and cells. When this technique was tested in GY medium and inoculated matrices, at least 10(2)-10(3) cells/ml were detected. To quantify low populations of AAB in microbiologically complex samples, a PCR enrichment including part of the 16S-23S rRNA gene ITS region was needed to increase the amount of target DNA compared to non-target DNA. The RT-PCR assay used in this study is a reliable, specific and fast method for quantifying these five AAB species in wine and vinegar.

  14. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu.

    Science.gov (United States)

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes.

  15. Diversity of the microbiota involved in wine and organic apple cider submerged vinegar production as revealed by DHPLC analysis and next-generation sequencing.

    Science.gov (United States)

    Trček, Janja; Mahnič, Aleksander; Rupnik, Maja

    2016-04-16

    Unfiltered vinegar samples collected from three oxidation cycles of the submerged industrial production of each, red wine and organic apple cider vinegars, were sampled in a Slovene vinegar producing company. The samples were systematically collected from the beginning to the end of an oxidation cycle and used for culture-independent microbial analyses carried out by denaturing high pressure liquid chromatography (DHPLC) and Illumina MiSeq sequencing of 16S rRNA gene variable regions. Both approaches showed a very homogeneous bacterial structure during wine vinegar production but more heterogeneous during organic apple cider vinegar production. In all wine vinegar samples Komagataeibacter oboediens (formerly Gluconacetobacter oboediens) was a predominating species. In apple cider vinegar the acetic acid and lactic acid bacteria were two major groups of bacteria. The acetic acid bacterial consortium was composed of Acetobacter and Komagataeibacter with the Komagataeibacter genus outcompeting the Acetobacter in all apple cider vinegar samples at the end of oxidation cycle. Among the lactic acid bacterial consortium two dominating genera were identified, Lactobacillus and Oenococcus, with Oenococcus prevailing with increasing concentration of acetic acid in vinegars. Unexpectedly, a minor genus of the acetic acid bacterial consortium in organic apple cider vinegar was Gluconobacter, suggesting a possible development of the Gluconobacter population with a tolerance against ethanol and acetic acid. Among the accompanying bacteria of the wine vinegar, the genus Rhodococcus was detected, but it decreased substantially by the end of oxidation cycles.

  16. Screening of main microorganism from Kefir Grain and analysis of femented milk using mixed microsapsule pure cultures%开菲尔粒中主要组成菌的分离鉴定及微囊化纯培养混合发酵指标分析

    Institute of Scientific and Technical Information of China (English)

    钟浩; 王亮; 刘克营; 郭爱珍; 胡曼; 刘朋龙; 齐向辉; 蔡梅红

    2016-01-01

    开菲尔粒是一个复杂的微生物共生体系,包含很多有益生作用的微生物.本文研究了一种开菲尔粒的主要组成菌并制成发酵剂.通过形态学特征初步分离纯化得出:该开菲尔粒样品主要由两株酵母菌、三株乳酸菌以及两株醋酸菌构成.经16S rDNA序列分析进一步确定其种属,得出其分别为Kluyveromyces marxianus和Pichia kudriavzevii、Lactobacillus pontis和Lactobacillus kefiri、Acetobacter lovaniensis和Acetobacter cibinongensis.采用分离出的菌株纯培养微囊化之后进行混合发酵,得到具有优良稳定发酵性能的混合发酵剂,测定结果显示发酵乳的营养成分、挥发性成分和抑菌性与原粒对比十分接近.

  17. Bacteria isolated from Korean black raspberry vinegar with low biogenic amine production in wine.

    Science.gov (United States)

    Song, Nho-Eul; Cho, Hyoun-Suk; Baik, Sang-Ho

    2016-01-01

    A high concentration of histamine, one of the biogenic amines (BAs) usually found in fermented foods, can cause undesirable physiological side effects in sensitive humans. The objective of this study is to isolate indigenous Acetobacter strains from naturally fermented Bokbunja vinegar in Korea with reduced histamine production during starter fermentation. Further, we examined its physiological and biochemical properties, including BA synthesis. The obtained strain MBA-77, identified as Acetobacter aceti by 16S rDNA homology and biochemical analysis and named A. aceti MBA-77. A. aceti MBA-77 showed optimal acidity % production at pH 5; the optimal temperature was 25°C. When we prepared and examined the BAs synthesis spectrum during the fermentation process, Bokbunja wine fermented with Saccharomyces cerevisiae showed that the histamine concentration increased from 2.72 of Bokbunja extract to 5.29mg/L and cadaverine and dopamine was decreased to 2.6 and 10.12mg/L, respectively. Bokbunja vinegar prepared by A. aceti MBA-77 as the starter, the histamine concentration of the vinegar preparation step was decreased up to 3.66mg/L from 5.29mg/L in the wine preparation step. To our knowledge, this is the first report to demonstrate acetic acid bacteria isolated from Bokbunja seed vinegar with low spectrum BA and would be useful for wellbeing vinegar preparation.

  18. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar.

    Science.gov (United States)

    Wang, Zong-Min; Lu, Zhen-Ming; Shi, Jin-Song; Xu, Zheng-Hong

    2016-05-31

    Multispecies solid-state fermentation (MSSF), a natural fermentation process driven by reproducible microbiota, is an important technique to produce traditional fermented foods. Flavours, skeleton of fermented foods, was mostly produced by microbiota in food ecosystem. However, the association between microbiota and flavours and flavour-producing core microbiota are still poorly understood. Here, acetic acid fermentation (AAF) of Zhenjiang aromatic vinegar was taken as a typical case of MSSF. The structural and functional dynamics of microbiota during AAF process was determined by metagenomics and favour analyses. The dominant bacteria and fungi were identified as Acetobacter, Lactobacillus, Aspergillus, and Alternaria, respectively. Total 88 flavours including 2 sugars, 9 organic acids, 18 amino acids, and 59 volatile flavours were detected during AAF process. O2PLS-based correlation analysis between microbiota succession and flavours dynamics showed bacteria made more contribution to flavour formation than fungi. Seven genera including Acetobacter, Lactobacillus, Enhydrobacter, Lactococcus, Gluconacetobacer, Bacillus and Staphylococcus were determined as functional core microbiota for production of flavours in Zhenjiang aromatic vinegar, based on their dominance and functionality in microbial community. This study provides a perspective for bridging the gap between the phenotype and genotype of ecological system, and advances our understanding of MSSF mechanisms in Zhenjiang aromatic vinegar.

  19. Observations on a laboratory method for submerged acetic fermentation.

    Science.gov (United States)

    LOPEZ, A; JOHNSON, L W; WOOD, C B

    1961-09-01

    Submerged acetic fermentation experiments were performed for the purpose of determining the conditions under which this type of fermentation should be conducted under laboratory conditions. The apparatus used consisted of a set of glass tubes provided with air spargers. Acetobacter acetigenum was found to be the most suitable bacterium among six Acetobacter compared under submerged acetic fermentation conditions in a synthetic medium. Statistically significant different rates of fermentation were observed in acetators that were identical in construction, fermentation medium, and aeration characteristics. Extremely long growth lag periods and complete absence of growth were often observed when starting fermentations. The causes of this behavior were investigated. It was found that it was not produced by lack of nutrients or by presence of a bacteriophage. Different kinds of bacterial starters were studied and compared. Cultures maintained in a liquid medium were reliable starters with a short growth lag period. Liquid medium cultures maintained their good starter characteristics after periods of storage of up to 11 weeks at 40 F (4 C).

  20. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance.

  1. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques.

    Science.gov (United States)

    Yetiman, Ahmet E; Kesmen, Zülal

    2015-07-02

    Culture-dependent and culture-independent methods were combined for the investigation of acetic acid bacteria (AAB) populations in traditionally produced vinegars and mother of vinegar samples obtained from apple and grape. The culture-independent denaturing gradient gel electrophoresis (DGGE) analysis, which targeted the V7-V8 regions of the 16S rRNA gene, showed that Komagataeibacter hansenii and Komagataeibacter europaeus/Komagataeibacter xylinus were the most dominant species in almost all of the samples analyzed directly. The culture-independent GTG5-rep PCR fingerprinting was used in the preliminary characterization of AAB isolates and species-level identification was carried out by sequencing of the 16S rRNA gene, 16S-23S rDNA internally transcribed to the spacer (ITS) region and tuf gene. Acetobacter okinawensis was frequently isolated from samples obtained from apple while K. europaeus was identified as the dominant species, followed by Acetobacter indonesiensis in the samples originating from grape. In addition to common molecular techniques, real-time PCR intercalating dye assays, including DNA melting temperature (Tm) and high resolution melting analysis (HRM), were applied to acetic acid bacterial isolates for the first time. The target sequence of ITS region generated species-specific HRM profiles and Tm values allowed discrimination at species level.

  2. Selection of protectants for freezing and freeze-drying of acetic acid bacteria%醋酸菌冷冻、冷干保护剂的选择

    Institute of Scientific and Technical Information of China (English)

    王娜; 国石磊; 张永祥; 彭利沙; 李军

    2015-01-01

    In order to increase their freezing survival rate and freeze-drying survival rate,the effect of different protectants on the survival of Acetobacter aceti and Acetobacter pasteurianus ssp.pasteurianus during different processes including freezing and freeze-drying were studied herein.The protection effects of the different protectants on freezing and freeze-drying were also estimated.The results showed that the freezing survival rate of Acetobacter aceti was as follows:trehalose(73.58%) > corn dextrin(62.26%) > skim milk powder(60.38%),which were significantly higher than that of the control group (24.53%).The freezing survival rate of Acetobacter pasteurianus ssp.pasteurianus was as follows:dextran (95.35%) > skim milk powder (89.53%) > corn dextrin (88.37%) > trehalose (52.32%),which were significantly higher than that of the control group (2.23%).The freeze-drying survival rate of Acetobacter aceti was as follows:skim milk powder(92.86%) > lactose(81.25%) > glucose(46.88%),which were significantly higher than that of the control group (22.25%).The freeze-drying survival rate of Acetobacter pasteurianus ssp.pasteurianus was as follows:skim milk powde(72.92%) > trehalose(31.25%),which were significantly higher than that of the control group (12.08%).The other protectants showed varying degrees of protection effect on the strains.Trehalose and skim milk powder were prior selection for the protections of Acetobacter.%为提高醋酸菌在冷冻及冷干过程中的存活率,考察了10种不同保护剂分别对醋化醋杆菌和巴氏醋杆菌巴士亚种存活率的影响,评价了10种不同保护剂对醋酸菌的冷冻及冷干保护作用.结果发现,醋化醋杆菌的冷冻存活率:海藻糖(73.58%)>玉米糊精(62.26%)>脱脂乳粉(60.38%),明显高于对照的24.53% (P<0.05);巴氏醋杆菌巴士亚种的冷冻存活率:葡聚糖(95.35%)>脱脂乳粉(89.53%)>玉米糊精(88.37

  3. 蜂蜜醋发酵及其智舌辨识的研究%Research on the Fermentation of Honey Vinegar and Its Detection with EIectronic Tongue

    Institute of Scientific and Technical Information of China (English)

    袁鹰; 常雅宁; 丁庆豹; 聂嘉睿

    2015-01-01

    Honey vinegar is produced through a two-step fermentation process,alcohol fermentation with immobilized yeast and acetic acid fermentation with acetobacter.The immobilized yeast is very stable and could be used for 15 times.After 72 hours'fermentation,the yield of acetic acid reaches 1 .9 g/dL when the original alcohol concentration is 4%and 2%inoculation amount of acetobacter and 0.25% yeast extract are added.The yield of acetic acid increases to 2.2 g/dL when 40% inoculation amount of acetobacter but no yeast extract are added.Due to many similarities,honey vinegar fermented above is distinguished and identified with electronic tongue to the class of fruit vinegar.%以蜂蜜为原料,经过固定化酵母和醋酸杆菌两步发酵得到蜂蜜醋。固定化酵母发酵生产酒精时,发酵批次最多可达15次。调整酒精度为4.0%时,向原料中添加0.25%酵母膏(YE+),接种量为2%时,经醋酸杆菌发酵72 h 乙酸量可达1.9 g/dL,相同条件下酵母膏未添加组(YE-)增加接种量至40%时,乙酸量增加至2.2 g/dL。利用智舌对发酵的蜂蜜醋进行辨识,发现蜂蜜醋与进口果醋在滋味等多个方面具有很高的相似性,因此本实验发酵所得蜂蜜醋总体口味可归于进口果醋一类。

  4. 库尔勒香梨果醋生产过程中醋酸发酵工艺的优化%Technology Optimization of Acetic Acid Fermentation in the Production Process of Korla Fragrant Pear Vinegar

    Institute of Scientific and Technical Information of China (English)

    王陈强; 崔正涛; 沈广军; 李静; 马自强; 颜海燕

    2016-01-01

    In order to improve the effective utilization rate of the Korla fragrant pear, the alcohol fermentation and acetic acid fermentation process were been used. In the process of acetic acid fermentation of Acetobacter pasteurianus, the single factor Acetobacter pasteurianus addition, fermentation temperature and degree of alcohol effect on acid production were been studied. On the basis of single factor experiments of orthogonal experiment, the results showed that the optimum technological conditions of acetic acid fermentation:Acetobacter pasteurianus addition 12%, fermentation temperature 31℃, degree of alcohol 8ovol. Single fermentation acetic acid yield was up to 4.82g/100mL. In the fermentation process of acetic acid, supplemented two times original wine in order to maintain the alcohol concentration at 7.5ovol~ 8ovol. With the fermentation period of 10d~12d, the concentration of acetic acid could reach 6.12g/100mL ~7.42g/100mL.%为了提高库尔勒香梨的有效利用率,采用酒精发酵和醋酸发酵发酵工艺。在巴氏醋酸杆菌醋酸发酵过程中,研究了单因素巴氏醋酸杆菌添加量,发酵温度,酒精度对产酸的影响,单因素实验的基础上进行正交实验,结果表明醋酸发酵最佳工艺条件为:巴氏醋酸杆菌添加量12%,发酵温度31℃,酒精度8ºvol,单次发酵产酸量可达4.82g/100mL。在发酵过程中补加2次香梨原果酒以维持发酵液中酒精浓度为7.5ºvol~8.0ºvol,发酵周期10d~12d,醋酸浓度可达6.12g/100mL~7.42g/100mL。

  5. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation.

    Science.gov (United States)

    Parmar, Indu; Rupasinghe, H P Vasantha

    2013-02-01

    Enzymatic hydrolysis of cellulose present in apple pomace was investigated using process variables such as enzyme activity of commercial cellulase, pectinase and β-glucosidase, temperature, pH, time, pre-treatments and end product separation. The interaction of enzyme activity, temperature, pH and time had a significant effect (Pfermented using Saccharomyces cerevisae yielding 19.0g ethanol/100g DM. Further bio-conversion using Acetobacter aceti resulted in the production of acetic acid at a concentration of 61.4g/100g DM. The present study demonstrates an improved process of enzymatic hydrolysis of apple pomace to yield sugars and concomitant bioconversion to produce ethanol and acetic acid.

  6. Effect of inoculation on strawberry fermentation and acetification processes using native strains of yeast and acetic acid bacteria.

    Science.gov (United States)

    Hidalgo, C; Torija, M J; Mas, A; Mateo, E

    2013-05-01

    The aim of this work was to analyze the microbiota involved in the traditional vinegar elaboration of strawberry fruit during a spontaneous and inoculated process. In the spontaneous processes, low biodiversity was detected in both alcoholic fermentation (AF) and acetification. Nevertheless, a strain of Saccharomyces cerevisiae and of Acetobacter malorum were selected and tested as starter cultures in the inoculation study. The inoculated processes with these strains were compared with another spontaneous process, yielding a significant reduction in time for AF with a total imposition of the S. cerevisiae strain. The resulting strawberry wine was acetified in different containers (glass and wood) yielding an initial imposition of the A. malorum inoculated strain, although displacement by Gluconacetobacter species was observed in the wood barrels.

  7. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    Science.gov (United States)

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples.

  8. Biosynthesis and Characterization of Nanocellulose-Gelatin Films

    Directory of Open Access Journals (Sweden)

    Muenduen Phisalaphong

    2013-02-01

    Full Text Available A nanocellulose-gelatin (bacterial cellulose gelatin (BCG film was developed by a supplement of gelatin, at a concentration of 1%–10% w/v, in a coconut-water medium under the static cultivation of Acetobacter xylinum. The two polymers exhibited a certain degree of miscibility. The BCG film displayed dense and uniform homogeneous structures. The Fourier transform infrared spectroscopy (FTIR results demonstrated interactions between the cellulose and gelatin. Incorporation of gelatin into a cellulose nanofiber network resulted in significantly improved optical transparency and water absorption capacity of the films. A significant drop in the mechanical strengths and a decrease in the porosity of the film were observed when the supplement of gelatin was more than 3% (w/v. The BCG films showed no cytotoxicity against Vero cells.

  9. PENGARUH MEDIUM PERENDAM TERHADAP SIFAT MEKANIK, MORFOLOGI, DAN KINERJA MEMBRAN NATA DE COCO

    Directory of Open Access Journals (Sweden)

    Senny Widyaningsih

    2008-05-01

    Full Text Available Nata de coco is bacterial cellulose which is produced by Acetobacter xylinum in fermentation process of coconut water. Based on its properties, nata de coco can be used as a membrane. Soaking medium in purification of nata de coco gel can influence structure, morphology, and performance of nata de coco membrane. First medium was NaOCl 0.05% and NaOH 5%, Second medium was ultrasonic. Third medium was NaOH 1% and CH3COOH 1%. Mechanical property were analysized based on its tensile strength. Morphology of membrane was analysized using SEM. Performance of membrane was determined based on its permeability. The result showed that nata de coco membrane which had the best value on mechanical properties, morphology, and performance was membrane in third medium.

  10. Exploring microbial succession and diversity during solid-state fermentation of Tianjin duliu mature vinegar.

    Science.gov (United States)

    Nie, Zhiqiang; Zheng, Yu; Wang, Min; Han, Yue; Wang, Yuenan; Luo, Jianmei; Niu, Dandan

    2013-11-01

    Tianjin duliu mature vinegar was one of famous Chinese traditional vinegars. The unique flavor and taste of vinegar are mainly generated by the multitudinous microorganisms during fermentation. In this research, the composition and succession of microbial communities in the entire solid-state fermentation were investigated, including starter daqu and acetic acid fermentation (AAF). Molds and yeasts in daqu, including Aspergillus, Saccharomycopsis and Pichia, decreased in AAF. The bacterial compositions increased from four genera in daqu to more than 13 genera in AAF. Principal component analysis showed that Acetobacter, Gluconacetobacter, Lactobacillus and Nostoc were dominant bacteria that were correlated well with AAF process. In the early fermentation period, lactic acid bacteria (LAB) decreased while acetic acid bacteria and Nostoc increased rapidly with the accumulation of total acids. Then, the abundance and diversity of LAB increased (more than 80%), indicating that LAB had important influences on the flavor and taste of vinegar.

  11. Characterization of acetic acid bacteria in traditional acetic acid fermentation of rice vinegar (komesu) and unpolished rice vinegar (kurosu) produced in Japan.

    Science.gov (United States)

    Nanda, K; Taniguchi, M; Ujike, S; Ishihara, N; Mori, H; Ono, H; Murooka, Y

    2001-02-01

    Bacterial strains were isolated from samples of Japanese rice vinegar (komesu) and unpolished rice vinegar (kurosu) fermented by the traditional static method. Fermentations have never been inoculated with a pure culture since they were started in 1907. A total of 178 isolates were divided into groups A and B on the basis of enterobacterial repetitive intergenic consensus-PCR and random amplified polymorphic DNA fingerprinting analyses. The 16S ribosomal DNA sequences of strains belonging to each group showed similarities of more than 99% with Acetobacter pasteurianus. Group A strains overwhelmingly dominated all stages of fermentation of both types of vinegar. Our results indicate that appropriate strains of acetic acid bacteria have spontaneously established almost pure cultures during nearly a century of komesu and kurosu fermentation.

  12. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile.

    Science.gov (United States)

    Ordóñez, J L; Sainz, F; Callejón, R M; Troncoso, A M; Torija, M J; García-Parrilla, M C

    2015-07-01

    This paper studies the amino acid profile of beverages obtained through the fermentation of strawberry purée by a surface culture using three strains belonging to different acetic acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans and one of Acetobacter malorum). An HPLC-UV method involving diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From the entire set of 21 amino acids, multiple linear regressions showed that glutamine, alanine, arginine, tryptophan, GABA and proline were significantly related to the fermentation process. Furthermore, linear discriminant analysis classified 100% of the samples correctly in accordance with the microorganism involved. G. japonicus consumed glucose most quickly and achieved the greatest decrease in amino acid concentration. None of the 8 biogenic amines were detected in the final products, which could serve as a safety guarantee for these strawberry gluconic fermentation beverages, in this regard.

  13. Ocorrência de bactérias diazotróficas em diferentes genótipos de cana-de-açúcar Occurrence of diazotrophic bacteria in different sugar cane genotypes

    Directory of Open Access Journals (Sweden)

    FÁBIO BUENO DOS REIS JUNIOR

    2000-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a localização e o número de bactérias endofíticas em quatro genótipos de cana-de-açúcar e investigar sobre a possível existência de correlação com os resultados apresentados em trabalhos de quantificação da fixação biológica de nitrogênio (FBN. Fez-se um levantamento das bactérias diazotróficas presentes, e quantificou-se a população de Herbaspirillum spp. e Acetobacter diazotrophicus, em genótipos de cana-de-açúcar contrastantes quanto à capacidade de obter N da FBN. De acordo com o levantamento realizado neste trabalho, as bactérias estudadas (Azospirillum lipoferum, A. brasilense, A. amazonense, Herbaspirillum spp. e Acetobacter diazotrophicus estavam presentes nos quatro genótipos avaliados e em todas as partes da planta, exceto A. amazonense, que não foi isolado de amostras de folhas. A quantificação das bactérias Herbaspirillum spp. e A. diazotrophicus mostrou não haver diferenças significativas entre os genótipos, e que, geralmente, elas estão presentes em maior número nas raízes. Enquanto Herbaspirillum spp. mantém-se mais estável ao longo do ciclo da cultura, a população de A. diazotrophicus decresce com a aproximação do final do ciclo comercial. Pode-se sugerir que as diferenças entre as taxas de FBN encontradas nos diversos genótipos não é causada por diferenças na presença ou no número das bactérias aqui estudadas.The objective of this work was to find out the localization and number of endophytic bacteria in four sugar cane genotypes and investigate upon the possible existence of correlation to the results obtained in some studies about quantification of biological nitrogen fixation (BNF. A survey of the diazotrophic bacteria present in sugar cane genotypes differing in their capacity to obtain nitrogen through BNF was performed, and population of Herbaspirillum spp. and Acetobacter diazotrophicus was quantified. The bacteria tested in the

  14. Genome sequence of Frateuria aurantia type strain (Kondo 67(T)), a xanthomonade isolated from Lilium auratium Lindl.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Lang, Elke [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2013-01-01

    rateuria aurantia (ex Kondo and Ameyama 1958) Swings et al. 1980 is a member of the bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily targeted for non-type strain genome sequencing. Strain Kondo 67(T) was initially (1958) identified as a member of 'Acetobacter aurantius', a name that was not considered for the approved list. Kondo 67(T) was therefore later designated as the type strain of the newly proposed acetogenic species Frateuria aurantia. The strain is of interest because of its triterpenoids (hopane family). F. aurantia Kondo 67(T) is the first member of the genus Frateura whose genome sequence has been deciphered, and here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,603,458-bp long chromosome with its 3,200 protein-coding and 88 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  15. Bioskin as an affinity matrix for the separation of glycoproteins.

    Science.gov (United States)

    Vicente, C; Sebastián, B; Fontaniella, B; Márquez, A; Xavier Filho, L; Legaz, M E

    2001-05-11

    Bioskin is a natural product produced by a mixed culture of Acetobacter xylinum, Saccharomyces cerevisiae and S. pombe cultured on media containing sucrose. It is of fibrillar nature able to retain some proteins, such as cytochrome c, by adsorption, and mainly composed of glucosamine and N-acetyl-D-glucosamine. This makes it possible that, at an adequate pH value, proteins charged as polyanionic molecules, such as catalase, can be retained by ionic adsorption using the positively charged amino groups of the matrix. In addition, bioskin can also be used as an affinity matrix to retain glycoproteins able to perform specific affinity reactions with the amino sugars of the matrix, such as invertase, fetuin or ovalbumin. Its possible use as a chromatographic support is discussed.

  16. Isolation, identification and optimization of ethanol producing bacteria from Saccharomyces-based fermentation process of alcohol industries in Iran

    Directory of Open Access Journals (Sweden)

    Hoda Ebrahimi

    2013-01-01

    Full Text Available Introduction: Due to the vast growth of world population, consumption of a lot of energy, limited energy supply and rising prices of fuel oil in the future, other alternative energy source is essential. Ethanol is renewable and a safe fuel and it is mainly based on microbial fermentation. The purpose of this study was isolation of high ethanol producing bacteria from the fermentation process of alcohol industries and optimization of growth conditions to be introduced to the industries. Materials and methods: The samples that were collected from fermentation tanks of alcohol industries were enriched in ZSM medium. To isolate the ethanol producing bacteria, the enriched culture was transferred on RMA agar. Bacterial growth conditions and their effects on ethanol production were optimized based on pH, growth temperature, agitation, fermentation time, initial substrate concentration and carbon and nitrogen sources. In addition, the morphological, physiological and molecular characterizations were investigated for identification of the isolates.Results: Three bacterial isolates ZYM7, ZYM8 and ZYM9 were isolated from fermentation tank. All isolates were able to produce ethanol 5.00, 7.60 and 4.00 gL-1 after 48 hours, respectively. The results demonstrated that all isolates were able to consume most sugars sources specially pentose carbon xylose. The isolate ZYM7 produced 13.00 gL-1 ethanol by consumption of xylose. The results of morphological and physiological characteristics showed that ZYM7 belonged to Lactobacillus sp. and ZYM8 and ZYM9 belonged to Acetobacter sp. Moreover, 16S rRNA sequencing and phylogenetic analyses exhibited that ZYM7 was similar to Lactobacillus rhamnosus with 99% homology and ZYM8 and ZYM9 were similar to Acetobacter pasteurianus with 99 and 98% homology, respectively.Discussion and conclusion: The results showed that that the isolated bacteria were suitable candidates to produce ethanol from raw material enriched with

  17. Experimental study on producing tomato vinegar by Bifidobacterium%双歧番茄醋的实验研究

    Institute of Scientific and Technical Information of China (English)

    王春耀; 张德纯; 张名均; 李金玲; 刘明方

    2011-01-01

    Objective To use tomato as main material,and study the fermentation process of tomato vinegar by Bifidobacterium and Acetobacter pasteurianus.Method The optimal process was selected by Orthogonal test.Result The final acidlty of Bifidobacterium vinegar was 27 g/L; The total count of Bifidobacterium was 1.9 × 1011 CFU/mL; Viable count of Bifidobacterium was 5.5 × 107 CFU/mL in five days.The product had a brown color and good gloss, with smell of ripe tomato and moderate taste.Conclusion Bifidobacterium and Acetobacter pasteurianus can survive together in tomato juice and it is feasible to use them to produce Bifidobacterium tomato vinegar.%目的 以番茄为主要原料,对双歧杆菌和醋酸杆菌共同发酵研制双歧番茄醋的工艺进行研究.方法 通过正交试验筛选最适工艺.结果 双歧番茄醋的最终醋酸度为27 g/L,含双歧杆菌总菌为1.9×1011 CFU/mL,5 d内双歧杆菌活菌为5.5×107 CFU/mL.双歧番茄醋棕黄色,光泽度好,有成熟番茄香味,入口酸甜适中.结论 双歧杆菌与醋酸杆菌在可以番茄汁中共生,此方法制备双歧番茄醋可行.

  18. 响应面法优化红茶菌发酵工艺%Optimization of Kombucha fermentation technology by response surface methodology

    Institute of Scientific and Technical Information of China (English)

    李璇; 陈义伦; 黄丽梅; 宋珊; 朱晓庆

    2012-01-01

    从优质红茶菌中分离纯化醋酸菌、酵母菌进行混合纯种发酵,采用单因素法和响应面法优化红茶菌发酵工艺,结合总糖利用率和感官评价,得到最佳工艺条件为:以木醋杆菌和巴斯德酵母分别以5%比例接入绿茶水中,茶水浓度为0.7%,糖量为84.5g·L-1;在30℃,发酵5d后结束。产品经过适当调节糖酸比后口味达到最佳,产品质量稳定,并保持了红茶菌酸甜香醇的独特风味。%Pure strains of yeast and acetobacter were extracted from Kombucha for mixed fermentation and the technical conditions of fermentation were optimized by single factor experiment and response surface analysis in combination with maximum utilization of total sugar and sensory evaluation as the response value.The results showed that the optimal conditions were as follows:5% Acetobacter xylinum and Pasteur yeast respectively inoculating into green tea,with tea concentration 0.7% and sugar yield 84.5g·L-1,fermentation at the temperature of 30℃,and the fermentation period for 5 days.The product remained the distinctive flavor of mellow sweet and sour of Kombucha beverage after adjusting the sugar-acid ratio and its quality was stable.

  19. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    Science.gov (United States)

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  20. Peningkatan kualitas nata de cane dari limbah nira tebu metode Budchips dengan penambahan ekstrak tauge sebagai sumber nitrogen

    Directory of Open Access Journals (Sweden)

    NIARDA ARIFIANI

    2015-11-01

    Full Text Available Arifiani N, Sani TA, Utami AS. 2015. Improving the quality of nata de cane juice from sugar cane waste Budchips method with the addition of bean sprouts extract as nitrogen source. Bioteknologi 12: 29-33. Budchips method is a method of sugarcane cultivation in minimalist land use buds with special treatment that can produce large quantities of sugar cane segments. This method leaves of sugarcane weevil does not germinate but it still contains a lot of sugar cane juice containing sucrose and potentially as a substrate for making nata de cane. Nata is a cellulose matrix resulted from Acetobacter activity that has a chewy texture and commonly used as a food ingredient. Nata could be formed in media containing adequate of C, H, and N. Bean sprouts contain lots of protein and nitrogen sources that can support the growth of Acetobacter xylinum. The aim of this study was to determine the effect on bean sprouts extract on the quality of produced nata. The best result was shown by bean extract concentration of 300 g/500 mL of distilled water with a thickness of 0.913 mm, weighs 244.56 grams, the yield of 61.14% and 89.13% water content. Based on organoleptic test of the 30 panelists, the most preferred nata is the treatment of bean sprouts extract with the highest concentration of 300 g/500 mL of distilled water. Based on analysis of variance that sprouts extract treatment given influence on thickness, moisture content, color, flavor and texture of nata de cane.

  1. 乙醇脱氢酶(ADH)产酶菌株的选育%Breeding of Alcohol Dehydrogenase Producing Strains

    Institute of Scientific and Technical Information of China (English)

    问清江; 慕娟; 党永; 张烁; 景振龙; 贺聪莹; 颜阳欣

    2013-01-01

    185 alcohol dehydrogenase ( ADH ) producing strains were isolated from samples collected from vinegar fermented grains in vinegar production enterprise by selective medium using ethanol as the sole carbon source, and calcium carbonate transparent circle on plate. 20 high ADH producing strains were bred under shaking-flask fermenta-tion, in which acid output and ethanol tolerance were used as standards. The acid output of A5-2 achieved 49. 85 g/L and its capacity of ethanol tolerance was strong. A5-2 was initially identified as Acetobacter pasteurianus based on its morphological characterization and 16S rDNA sequence. Study on enzyme characteristics showed that the optimal reac-tion conditions of A5-2 ADH were at 45 ℃ and pH 4. 0, and it had heat tolerance and fine tolerance against acid-base. The preparation condition of crude ADH were saturated concentration of ammonium sulfate was at 70% ~ 80%and the ADH activity recovery was at 84%.%从食醋生产企业的醋醅中采集样品,以乙醇为唯一碳源,用碳酸钙透明圈平板法分离出185株菌株,然后以产酸量和耐乙醇能力为标准,瓶发酵选育出20株ADH产酶菌株;A5-2产酸量为49.85 g/L,耐乙醇能力强,A5-2的菌种形态学和16S rDNA序列分析初步鉴定为巴斯德醋酸杆菌( Acetobacter pasteurianus);A5-2乙醇脱氢酶酶学性质研究表明:最适作用温度和pH分别为45℃和pH 4.0,具有一定的耐热性和良好的耐酸碱性;A5-2乙醇脱氢酶粗酶制备条件为硫酸铵饱和度70%~80%,回收率84%。

  2. 实时荧光定量PCR监测镇江香醋醋酸发酵过程中微生物变化%Detection of the variation of microorganisms in acetic acid fermentation of Zhenjiang aromatic vinegar through real-time quantitative PCR

    Institute of Scientific and Technical Information of China (English)

    陶京兰; 陆震鸣; 王宗敏; 李国权; 史劲松; 许正宏

    2013-01-01

    对镇江香醋醋酸发酵阶段醋醅中功能微生物的变化进行定量分析.建立了实时荧光定量PCR方法,对醋酸发酵阶段醋醅中总细菌、总真菌、醋酸菌、乳酸菌和酵母的动态变化进行了定量分析.研究结果表明,发酵起始阶段(1~7天)醋醅中总细菌、醋酸菌和乳酸菌的生物量快速上升,分别于第6、7、4天达到最大值,为4.85 ×1011,1.14×1010和3.37 ×1011copies/g干醅.随后各类细菌的生物量逐渐下降,并维持在一定水平.醋醅中总真菌和酵母的生物量在发酵前期变化不大,7天后至发酵结束总真菌的生物量逐渐下降为7.59×104 copies/g干醅,而酵母生物量则在发酵8~12天内下降为0.%Variation of the functional microbes was quantitatively analyzed during the acetic acid fermentation process of Zhenjiang aromatic vinegar.Real-time quantitative PCR (RT-qPCR) was applied to quantitatively analyze the variation of bacteria, fungi, Acetobacter, Lactobacillus and Saccharomyces during the acetic acid fermentation process in this study.Results showed that the biomass of bacteria, Acetobacter and Lactobacillus increased rapidly in the initial stage of fermentation (day 1 ~7) , and reached the maximum on the 6th, 7th and 4th day with the biomass were 3.37×1011 , 1.14×1010 and 3.37×1011 copies/g dry grains respectively, which followed by a gradually decent to a certain level with the fermentation performed.The biomass of fungi and Saccharomyces showed little change in the initial stage of fermentation, while the biomass of fungi decreased gradually to 7.59×104 copies/g dry grains from day 7 to day 18 , and the biomass of Saccharomyces decreased rapidly to zero from day 8 to day 12.

  3. Optimization of immobilization of acetic acid bacteria for ginseng vinegar drinks%固定化醋酸菌发酵人参醋饮料加工工艺优化

    Institute of Scientific and Technical Information of China (English)

    徐璐; 文连奎

    2012-01-01

    After studying the alcohol fermentation,acetic fermentation by immobilized acetobacter,clarification, and blending to ginseng vinegar drinks with ginseng. The result showed that..when 3g of sawdust and 20mL of adsorption vinegar mother were added in 100mL ginseng alcohol and the fermentation temperature was 28℃, the fermentation was fastest,and the immobilized acetobacter could be recycled. The gelatin-tannin clarify showed the better effect,the transmittance was 87.8% with the 0.02‰ content of vinegar. The best formula conditions for ginseng vinegar drinks was that ginseng original vinegar 7% ,jujube juice concentrate 1% ,total acid 0.37% ,total sugar 12% and the product was amber with characteristic flavor of ginseng and vinegar and the score was 90.%摘要:以生晒人参为原料,经酒精发酵后通过固定化醋酸茵进行醋酸发酵、澄清及调配得到人参醋饮料。通过正交实验分别确定固定化发酵最佳条件、人参醋饮料最佳配方,通过离心、壳聚糖、明胶一单宁梯度澄清实验确定澄清方法。实验结果表明,每100mL人参发酵酒中,木屑3g、被吸附醋母20mL、28℃时发酵速度最快,同时固定化醋酸菌可重复利用:采用明胶一单宁澄清法澄清效果最佳,明胶、单宁添加量各为0.02‰,透光率达87.8%;人参醋饮料最佳配方为:人参原醋7%、浓缩大枣汁1%、总酸0.37%、总糖12%,感官评分为90分,产品口感最佳。

  4. Study on Fermentation Process of Euryale ferox Vinegar with Saccharified Filter Residue in Euryale ferox Wine%芡实酒糖化滤渣发酵芡实醋工艺的研究

    Institute of Scientific and Technical Information of China (English)

    李湘利; 刘静; 高学峰; 胡彦营; 朱九滨

    2014-01-01

    以芡实酒发酵工艺前糖化过滤所得滤渣为原料,采用液态发酵的方法,直接接种酵母菌、醋酸菌进行发酵制醋,并通过正交试验的方法优化工艺条件。结果表明:酒精发酵阶段最优组合为酵母接种量1.0%,pH 4.5,发酵温度26℃,发酵6天,所得酒精度为7.0%。醋酸发酵阶段最优组合为醋酸菌接种量10%,pH 4.0,发酵温度28℃,发酵6天,酸度高达8.953 g/dL,最后经灭菌、稀释处理后可获得总酸度为3.5~5.0 g/dL的芡实醋。%Use the filter residue before fermentation process in Euryale ferox wine as material,Euryale ferox vinegar is produced by submerged fermentation,inoculated with yeast and acetobacter.The op-timum conditions are determined by orthogonal experiments.The results show that the optimal condi-tions for ethanol fermentation are:yeast inoculation amount 1.0%,pH 4.5,at 26 ℃ fermented for 6 days,and the alcoholicity could reach 7.0%.The optimal conditions for acetic fermentation are:acetobacter inoculation amount 10%,pH 4.0,at 28 ℃fermented for 6 days,and the total acidity rea-ches up to 8.953 g/dL.Euryale ferox vinegar with 3.5~5.0 g/dL could be obtained after sterilization and disposal dilution.

  5. VARIETY OF MICROORGANISMS GROUPS LIVING ON BERRIES OF GRAPES

    Directory of Open Access Journals (Sweden)

    Ageeva N. M.

    2015-09-01

    Candida. In the microflora of Cabernets, Risling and, especially, Karaburnu grapes, we have found lactic acid bacteria Lactobacillus plantarum and Lactobacillus brevis. Lactobacillus plantarum. Among the bacteria the total quantity of coccic flora composes - 56 %, the rod-shaped - 44 %. Two types of active acetous bacteria are identified – Acetobacter aceti and Acetobacter xelinum. Especially high was their surface concentration on the berries of Kachich type of grapes

  6. Bacterial Cellulose From Rice Waste Water With Addition Chitosan, Glycerol, And Silver Nanoparticle

    Directory of Open Access Journals (Sweden)

    Eli Rohaeti

    2016-05-01

    Full Text Available This study aimed to prepare silver nanoparticles chemically, deposite silver nanoparticles on bacterial cellulose-chitosan-glycerol composite based rice waste water, as well as test the antibacterial activity of bacterial cellulose and its composite. Preparation of silver nanoparticles was conducted by chemical reduction of silver nitrate solution, as well as trisodium citrate as the reductor. Bacterial cellulose from rice waste water is fermented by the bacteria Acetobacter xylinum for 7 days. The dried bacterial cellulose was composited with chitosan and glycerol by immersion method on 2% of chitosan solution and 0.5% of glycerol solution. UV-Vis spectroscopy is used to determine the formation of silvernanoparticles and Particle Size Analyzer to test the size and particle size distribution. Characterization was conducted to bacterial cellulose and its composite included functional groups by FTIR, the mechanical properties by Tensile Tester, crystallinity by XRD, surface photograph by SEM, and antibacterial test against S. aureus and E. coli by the shake flask turbidimetry method. Silver nanoparticle characterization indicated that silver nanoparticles are formed at a wavelength of 421.80 nm, yellow, diameter particle size of 61.8 nm. SEM images showed that the surface of bacterial cellulose had deposited silver nanoparticles and antibacterial test showed an inhibitory effect of bacterial cellulose, bacterial cellulose-chitosan composite, and bacterial cellulose-chitosan-glycerol composite which are deposited silver nanoparticles against the growth of S. aureus and E. coli bacteria.

  7. Adaptability of microbial inoculators and their contribution to degradation of mineral oil and PAHs

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Five dominant bacteria strains(Acetobacter sp., Alcaligenes sp., Micrococcus sp., Arthrobacter sp. and Bacillus sp.) and five fungi strains (Cephalosporium sp. I, Cephalosporium sp. Ⅱ, Aspergillus sp. Ⅰ, Aspergillus sp. Ⅱ and Fusarium sp.) isolated from petroleum-contaminated soil were used to assess the potential capability of mineral oil and PAH enhanced degradation separately and jointly using the batch liquid medium cultivation with diesel oil spiked at 1000 mg/L. The experiment was performed on a reciprocal shaker in the darkness at 25℃ to 30℃ for 100 d. The dynamic variation in the activity of microbial inoculators in each treatment and the degradation of the target pollutants during the period of experiment were monitored. Results showed a more rapid biodegradation of mineral oil and PAHs at the beginning of the experiment (about 20 d) by dominant bacteria, fungi and their mixture than that of the indigenous microorganisms, however, thereafter an opposite trend was exhibited that the removal ratio by indigenous microorganisms was superior to any other dominant treatments and the tendency lasted till the end of the experiment, indicating the limited competitive capability of dominant microorganisms to degrade the contaminants, and the natural selection of indigenous microorganisms for use in the removal of the contaminants. At the end of the experiment, the removal ratio of mineral oil ranged from 56.8 % to 79.2 % and PAHs ranged from 96.8 % to 99.1% in each treatment by microbial inoculators.

  8. Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE.

    Science.gov (United States)

    Thanh, Vu Nguyen; Mai, Le Thuy; Tuan, Duong Anh

    2008-12-10

    The diversity of fungi and bacteria associated with traditional Vietnamese alcohol fermentation starters (banh men) was investigated by PCR-mediated DGGE. From 52 starter samples, 13 species of fungi (including yeasts) and 23 species of bacteria were identified. The fungal composition of the starters was consistent with little variation among samples. It consisted of amylase producers (Rhizopus oryzae, R. microsporus, Absidia corymbifera, Amylomyces sp., Saccharomycopsis fibuligera), ethanol producers (Saccharomyces cerevisiae, Issatchenkia sp., Pichia anomala, Candida tropicalis, P. ranongensis, Clavispora lusitaniae), and (opportunistic) contaminants (Xeromyces bisporus, Botryobasidium subcoronatum). The bacterial microflora of starters was highly variable in species composition and dominated by lactic acid bacteria (LAB). The most frequent LAB were Pediococcus pentosaceus, Lactobacillus plantarum, L. brevis, Weissella confusa, and W. paramesenteroides. Species of amylase-producing Bacillus (Bacillus subtilis, B. circulans, B. amyloliquefaciens, B. sporothermodurans), acetic acid bacteria (Acetobacter orientalis, A. pasteurianus), and plant pathogens/environment contaminants (Burkholderia ubonensis, Ralstonia solanacearum, Pelomonas puraquae) were also detected. Fungal DGGE was found to be useful for evaluating starter type and starter quality. Moreover, in view of the high biological diversity of these substrates, bacterial DGGE may be useful in determining the identity of a starter. The constant occurrence of opportunistic contaminants highlights the need for careful examination of the role of individual components in starters.

  9. Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells1

    Science.gov (United States)

    Shpigel, Etai; Roiz, Levava; Goren, Raphael; Shoseyov, Oded

    1998-01-01

    Recombinant cellulose-binding domain (CBD) derived from the cellulolytic bacterium Clostridium cellulovorans was found to modulate the elongation of different plant cells in vitro. In peach (Prunus persica L.) pollen tubes, maximum elongation was observed at 50 μg mL−1 CBD. Pollen tube staining with calcofluor showed a loss of crystallinity in the tip zone of CBD-treated pollen tubes. At low concentrations CBD enhanced elongation of Arabidopsis roots. At high concentrations CBD dramatically inhibited root elongation in a dose-responsive manner. Maximum effect on root hair elongation was at 100 μg mL−1, whereas root elongation was inhibited at that concentration. CBD was found to compete with xyloglucan for binding to cellulose when CBD was added first to the cellulose, before the addition of xyloglucan. When Acetobacter xylinum L. was used as a model system, CBD was found to increase the rate of cellulose synthase in a dose-responsive manner, up to 5-fold compared with the control. Electron microscopy examination of the cellulose ribbons produced by A. xylinum showed that CBD treatment resulted in a splayed ribbon composed of separate fibrillar subunits, compared with a thin, uniform ribbon in the control. PMID:9701575

  10. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2014-06-01

    Full Text Available To improve the efficacy and safety of dural repair in neurosurgical procedures, a new dural material derived from bacterial cellulose (BC was evaluated in a rabbit model with dural defects. We prepared artificial dura mater using bacterial cellulose which was incubated and fermented from Acetobacter xylinum. The dural defects of the rabbit model were repaired with BC membranes. All surgeries were performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. All animals were humanely euthanized by intravenous injection of phenobarbitone, at each time point, after the operation. Then, the histocompatibility and inflammatory effects of BC were examined by histological examination, real-time fluorescent quantitative polymerase chain reaction (PCR and Western Blot. BC membranes evenly covered the surface of brain without adhesion. There were seldom inflammatory cells surrounding the membrane during the early postoperative period. The expression of inflammatory cytokines IL-1β, IL-6 and TNF-α as well as iNOS and COX-2 were lower in the BC group compared to the control group at 7, 14 and 21 days after implantation. BC can repair dural defects in rabbit and has a decreased inflammatory response compared to traditional materials. However, the long-term effects need to be validated in larger animals.

  11. The Eschericia coli Growth Inhibition Activity of Some Fermented Medicinal Plant Leaf Extract from the Karo Highland, North Sumatra

    Directory of Open Access Journals (Sweden)

    NOVIK NURHIDAYAT

    2009-10-01

    Full Text Available A lot of traditional medicinal plant has antibacterial acitivities. Most of these plants are freshly chewed or grounded and used directly to treat infectious bacterial deseases. However, some practices employ a traditionally spontaneous fermentation on boiled extracted leaf, root or other parts of the plant. This work reports a laboratory stimulated spontaneous fermentation of leaf extracts from selected medicinal plants collected from the Karo Higland. The spontaenous fermentation was stimulated to be carried out by the Acetobacter xylinum and Saccharomyces cerevisiae. The anti-infectious agent activity was assayed on the Eschericia coli growth inhibition. A complementary non fermented leaf extract was also made and assayed as a comparative measure. Indeed, the fermented leaf extract of bitter bush (Eupatorium pallescens, cacao (Theobroma cacao, avocado (Persia gratissima, passion fruit (Passiflora edulis, cassava (Cassava utillissima, diamond flower (Hedyotis corymbosa, periwinkle (Catharanthus roseus, and gandarusa (Justicia gendarussa have relatively higher anti-E.coli acitivity than those of non fermented ones. However, there were no anti-E.coli activity was detected in both fermented and non fermented leaf extract of the guava (Psidium guajava and common betel (Piper nigrum.

  12. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.

    Science.gov (United States)

    Sainz, F; Navarro, D; Mateo, E; Torija, M J; Mas, A

    2016-04-01

    The oxidative metabolism of acetic acid bacteria (AAB) can be exploited for the production of several compounds, including D-gluconic acid. The production of D-gluconic acid in fermented beverages could be useful for the development of new products without glucose. In the present study, we analyzed nineteen strains belonging to eight different species of AAB to select those that could produce D-gluconic acid from D-glucose without consuming D-fructose. We tested their performance in three different media and analyzed the changes in the levels of D-glucose, D-fructose, D-gluconic acid and the derived gluconates. D-Glucose and D-fructose consumption and D-gluconic acid production were heavily dependent on the strain and the media. The most suitable strains for our purpose were Gluconobacter japonicus CECT 8443 and Gluconobacter oxydans Po5. The strawberry isolate Acetobacter malorum (CECT 7749) also produced D-gluconic acid; however, it further oxidized D-gluconic acid to keto-D-gluconates.

  13. Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis

    Directory of Open Access Journals (Sweden)

    Feng Hong

    2015-01-01

    Full Text Available Bacterial nanocellulose (BNC has demonstrated a tempting prospect for applications in substitute of small blood vessels. However, present technology is inefficient in production and BNC tubes have a layered structure that may bring danger after implanting. Double oxygen-permeable silicone tubes in different diameters were therefore used as a tube-shape mold and also as oxygenated supports to construct a novel bioreactor for production of the tubular BNC materials. Double cannula technology was used to produce tubular BNC via cultivations with Acetobacter xylinum, and Kombucha, a symbiosis of acetic acid bacteria and yeasts. The results indicated that Kombucha gave higher yield and productivity of BNC than A. xylinum. Bacterial nanocellulose was simultaneously synthesized both on the inner surface of the outer silicone tube and on the outer surface of the inner silicone tube. Finally, the nano BNC fibrils from two directions formed a BNC tube with good structural integrity. Scanning electron microscopy inspection showed that the tubular BNC had a multilayer structure in the beginning but finally it disappeared and an intact BNC tube formed. The mechanical properties of BNC tubes were comparable with the reported value in literatures, demonstrating a great potential in vascular implants or in functional substitutes in biomedicine.

  14. Nisin based stabilization of novel fruit and vegetable functional juices containing bacterial cellulose at ambient temperature.

    Science.gov (United States)

    Jagannath, A; Kumar, Manoranjan; Raju, P S; Batra, H V

    2014-06-01

    The current study reports the preparation and stabilization of novel functional drinks based on fruit and vegetable juices incorporating bacterial cellulose from Acetobacter xylinum. Pineapple, musk melon, carrot, tomato, beet root and a blend juice containing 20 % each of carrot and tomato juice with 60 % beet root juice has been studied. These juices have been stabilized over a storage period of 90 days at 28 °C, by the use of nisin and maintaining a low pH circumventing the need for any chemical preservatives or refrigeration. Instrumental color values have been correlated with the pigment concentrations present in the fresh as well as stored juices. There was 36, 72 and 60 % loss of total carotenoids in the case of carrot, pineapple and musk melon juices respectively while the lycopene content remained unchanged after 90 days of storage. The betanin content decreased 37 % in the case of beetroot juice and 25 % in the case of beetroot juice blended with carrot and tomato juices. Sensory analysis has revealed a clear preference for the beetroot blended mixed juice.

  15. PEMANFAATAN MEMBRAN NATA DE COCO SEBAGAI MEDIA FILTRASI UNTUK REKOVERIMINYAK JELANTAH

    Directory of Open Access Journals (Sweden)

    Senny Widyaningsih

    2013-05-01

    Full Text Available Peningkatan kualitas minyak jelantah telah dilakukan dengan metode filtrasi menggunakan membran selulosa bakterial yang terbuat dari nata de coco. Pembuatan membran nata de coco dilakukan dengan cara memurnikan nata de coco hasil proses fermentasi bakteri Acetobacter xylinum. Karakterisasi membran meliputi berat jenis, nilai fluks, dan koefisien rejeksi. Proses filtrasi minyak jelantah menggunakan tekanan sebesar 4 kgf/cm2 dengan metode dead-end. Hasil penelitian menunjukkan bahwa karakterisasi membran nata de coco memiliki berat jenis sebesar 0,6314 g/cm3, nilai fluks air sebesar 104,021 L/m2.jam, fluks minyak sebesar 1,004 L/m2.jam dan fluks Dekstran T-500 sebesar 52,208 L/m2.jam. Nilai rejeksi membran sebesar 15,11%. Peningkatan kualitas minyak jelantah dibanding sebelum rekoveri dapat dilihat dari penurunan angka asam sebesar 54,95%, kadar air sebesar 93,22%, serta peningkatan angka penyabunan sebesar 29,09% dan angka iod sebesar 8,14%.

  16. Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota.

    Directory of Open Access Journals (Sweden)

    Esther Meersman

    Full Text Available The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a "core" and a "variable" part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations ("core" yeasts, and a large number of yeasts that only occur in lower numbers and specific fermentations ("variable" yeasts. Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency.

  17. Yeasts are essential for cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics.

  18. Synthesis of {sup 14}C-labelled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT), nitrocellulose (NC) and glycidyl azide polymer (GAP) for use in assessing the biodegradation potential of these energetic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ampleman, G.; Thiboutot, S.; Lavigne, J.; Marois, A. [Defence Research Establishment Valcartier, Courcelette, PQ (Canada); Hawari, J.; Jones, A.M.; Rho, D. [National Research Council of Canada, Ottawa, ON (Canada)

    1995-06-01

    Within the framework of an R and D project on bioremediation of soils contaminated with energetic compounds, the biodegradation of energetic products such as hexogen (RDX), trinitrotoluene (TNT), nitrocellulose (NC) and glycidyl azide polymer (GAP) is under study. Microcosm assays must be performed with radioactive carbon-14 labelled products in order to follow the biodegradation process. {sup 14}C-RDX was prepared by nitration of hexamethylenetetramine (HMTA) according to the Hale process. {sup 14}C-ring and methyl labelled TNTs synthesized according to the Dorey and Carper procedure. {sup 14}C-cellulose was synthesized from {sup 14}C-glucose by Acetobacter xylinum. Nitration of the {sup 14}C-cellulose yielded {sup 14}C-nitrocellulose. {sup 14}C-glycidyl azide polymer was obtained by polymerization and azidation of {sup 14}C-epichlorohydrin (ECH) which was synthesized from {sup 14}C-glycerol. Hydrochlorination of {sup 14}C-glycerol and epoxidation of the resulting {sup 14}C-1,3-dichloro 2-propanol yielded {sup 14}C-ECH. The syntheses of these {sup 14}C-labelled explosives are described in this paper. (Author).

  19. Microbial diversity and flavor formation in onion fermentation.

    Science.gov (United States)

    Cheng, Lili; Luo, Jianfei; Li, Pan; Yu, Hang; Huang, Jianfei; Luo, Lixin

    2014-09-01

    Fermented onion products are popular in many countries. We conducted fermentation with and without salt to identify the microorganisms responsible for onion fermentation and the unique taste of fermented onion. The results of PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) revealed that lactic acid bacteria (Lactobacillus zymae, L. malefermentans, L. plantarum), acetic acid bacteria (Acetobacter pasteurianus, A. orientalis), citric acid bacteria (Citrobacter sp., C. freundii), and yeasts (Candida humilis, Kazachstania exigua, Saccharomyces boulardii) were the dominant microorganisms involved in onion fermentation. Organic acid analysis indicated that lactic acid and acetic acid significantly increased after fermentation. There were no significant changes in the types of amino acids after fermentation, but the total concentration of amino acids significantly decreased after fermentation with salt. The increase in esters, alcohols, and aldehydes after fermentation was responsible for the unique flavor of fermented onion. Fermentation with salt inhibited the accumulation of organic acids and limited the conversion of proteins into amino acids but maintained the unique odor of onion by limiting the degradation of sulfur-containing compounds.

  20. Analysis of Bacterial Diversity During Acetic Acid Fermentation of Tianjin Duliu Aged Vinegar by 454 Pyrosequencing.

    Science.gov (United States)

    Peng, Qian; Yang, Yanping; Guo, Yanyun; Han, Ye

    2015-08-01

    The vinegar pei harbors complex bacterial communities. Prior studies revealing the bacterial diversity involved were mainly conducted by culture-dependent methods and PCR-DGGE. In this study, 454 pyrosequencing was used to investigate the bacterial communities in vinegar pei during the acetic acid fermentation (AAF) of Tianjin Duliu aged vinegar (TDAV). The results showed that there were 7 phyla and 24 families existing in the vinegar pei, with 2 phyla (Firmicutes, Protebacteria) and 4 families (Lactobacillaceae, Acetobacteracae, Enterobacteriaceae, Chloroplast) predominating. The genus-level identification revealed that 9 genera were the relatively stable, consistent components in different stages of AAF, including the most abundant genus Lactobacillus followed by Acetobacter and Serratia. Additionally, the bacterial community in the early fermentation stage was more complex than those in the later stages, indicating that the accumulation of organic acids provided an appropriate environment to filter unwanted bacteria and to accelerate the growth of required ones. This study provided basic information of bacterial patterns in vinegar pei and relevant changes during AAF of TDAV, and could be used as references in the following study on the implementation of starter culture as well as the improvement of AAF process.

  1. Application of culture culture-independent molecular biology based methods to evaluate acetic acid bacteria diversity during vinegar processing.

    Science.gov (United States)

    Ilabaca, Carolina; Navarrete, Paola; Mardones, Pamela; Romero, Jaime; Mas, Albert

    2008-08-15

    Acetic acid bacteria (AAB) are considered fastidious microorganisms because they are difficult to isolate and cultivate. Different molecular approaches were taken to detect AAB diversity, independently of their capacity to grow in culture media. Those methods were tested in samples that originated during traditional vinegar production. Bacterial diversity was assessed by analysis of 16S rRNA gene, obtained by PCR amplifications of DNA extracted directly from the acetification container. Bacterial composition was analyzed by RFLP-PCR of 16S rRNA gene, Temporal Temperature Gradient Gel Electrophoresis (TTGE) separation of amplicons containing region V3-V5 of 16S rRNA gene and cloning of those amplicons. TTGE bands and clones were grouped based on their electrophoretic pattern similarity and sequenced to be compared with reference strains. The main microorganism identified in vinegar was Acetobacter pasteurianus, which at the end of the acetification process was considered to be the only microorganism present. The diversity was the highest at 2% acetic acid, where indefinite species of Gluconacetobacter xylinus/europaeus/intermedius were also present.

  2. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    Science.gov (United States)

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters.

  3. Metaproteomics and ultrastructure characterization of Komagataeibacter spp. involved in high-acid spirit vinegar production.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Saad, Maged M; Cabello Ferrete, Elena; Bravo, Daniel; Chappuis, Marie-Luise; Ortega Pérez, Ruben; Junier, Pilar; Perret, Xavier; Barja, François

    2016-05-01

    Acetic acid bacteria (AAB) are widespread microorganisms in nature, extensively used in food industry to transform alcohols and sugar alcohols into their corresponding organic acids. Specialized strains are used in the production of vinegar through the oxidative transformation of ethanol into acetic acid. The main AAB involved in the production of high-acid vinegars using the submerged fermentation method belong to the genus Komagataeibacter, characterized by their higher ADH stability and activity, and higher acetic acid resistance (15-20%), compared to other AAB. In this work, the bacteria involved in the production of high-acid spirit vinegar through a spontaneous acetic acid fermentation process was studied. The analysis using a culture-independent approach revealed a homogeneous bacterial population involved in the process, identified as Komagataeibacter spp. Differentially expressed proteins during acetic acid fermentation were investigated by using 2D-DIGE and mass spectrometry. Most of these proteins were functionally related to stress response, the TCA cycle and different metabolic processes. In addition, scanning and transmission electron microscopy and specific staining of polysaccharide SDS-PAGE gels confirmed that Komagataeibacter spp. lacked the characteristic polysaccharide layer surrounding the outer membrane that has been previously reported to have an important role in acetic acid resistance in the genus Acetobacter.

  4. Analysis of several methods for the extraction of high quality DNA from acetic acid bacteria in wine and vinegar for characterization by PCR-based methods.

    Science.gov (United States)

    Jara, C; Mateo, E; Guillamón, J M; Torija, M J; Mas, A

    2008-12-10

    Acetic acid bacteria (AAB) are fastidious microorganisms with poor recovery in culture. Culture-independent methods are currently under examination. Good DNA extraction is a strict requirement of these methods. We compared five methods for extracting the DNA of AAB directly from wine and vinegar samples. Four matrices (white wine, red wine, superficial vinegar and submerged vinegar) contaminated with two AAB strains belonging to Acetobacter pasteurianus and Gluconacetobacter hansenii were assayed. To improve the yield and quality of the extracted DNA, a sample treatment (washing with polyvinyl pyrrolidone or NaCl) was also tested. DNA quality was measured by amplification of the 16S rRNA gene with conventional PCR. DNA recovery rate was assessed by real-time PCR. DNA amplification was always successful with the Wizard method though DNA recovery was poor. A CTAB-based method and NucleoSpin protocol extracted the highest DNA recoveries from wine and vinegar samples. Both of these methods require treatment to recover suitable DNA for amplification with maximum recovery. Both may therefore be good solutions for DNA extraction in wine and vinegar samples. DNA extraction of Ga hansenii was more effective than that of A. pasteurianus. The fastest and cheapest method we evaluated (the Thermal shock protocol) produced the worst results both for DNA amplification and DNA recovery.

  5. Population dynamics of acetic acid bacteria during traditional wine vinegar production.

    Science.gov (United States)

    Vegas, Carlos; Mateo, Estibaliz; González, Angel; Jara, Carla; Guillamón, José Manuel; Poblet, Montse; Torija, Ma Jesús; Mas, Albert

    2010-03-31

    The population dynamics of acetic acid bacteria in traditional vinegar production was determined in two independent vinegar plants at both the species and strain level. The effect of barrels made of four different woods upon the population dynamics was also determined. Acetic acid bacteria were isolated on solid media and the species were identified by RFLP-PCR of 16S rRNA genes and confirmed by 16S rRNA gene sequencing, while strains were typed by ERIC-PCR and (GTG)(5)-rep-PCR. The most widely isolated species was Acetobacter pasteurianus, which accounted for 100% of all the isolates during most of the acetification. Gluconacetobacter europaeus only appeared at any notable level at the end of the process in oak barrels from one vinegar plant. The various A. pasteurianus strains showed a clear succession as the concentration of acetic acid increased. In both vinegar plants the relative dominance of different strains was modified as the concentrations of acetic acid increased, and strain diversity tended to reduce at the end of the process.

  6. Monitoring the microbial community during solid-state acetic acid fermentation of Zhenjiang aromatic vinegar.

    Science.gov (United States)

    Xu, Wei; Huang, Zhiyong; Zhang, Xiaojun; Li, Qi; Lu, Zhenming; Shi, Jinsong; Xu, Zhenghong; Ma, Yanhe

    2011-09-01

    Zhenjiang aromatic vinegar is one of the most famous Chinese traditional vinegars. In this study, change of the microbial community during its fermentation process was investigated. DGGE results showed that microbial community was comparatively stable, and the diversity has a disciplinary series of changes during the fermentation process. It was suggested that domestication of microbes and unique cycle-inoculation style used in the fermentation of Zhenjiang aromatic vinegar were responsible for comparatively stable of the microbial community. Furthermore, two clone libraries were constructed. The results showed that bacteria presented in the fermentation belonged to genus Lactobacillus, Acetobacter, Gluconacetobacter, Staphylococcus, Enterobacter, Pseudomonas, Flavobacterium and Sinorhizobium, while the fungi were genus Saccharomyces. DGGE combined with clone library analysis was an effective and credible technique for analyzing the microbial community during the fermentation process of Zhenjiang aromatic vinegar. Real-time PCR results suggested that the biomass showed a "system microbes self-domestication" process in the first 5 days, then reached a higher level at the 7th day before gradually decreasing until the fermentation ended at the 20th day. This is the first report to study the changes of microbial community during fermentation process of Chinese traditional solid-state fermentation of vinegar.

  7. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    Science.gov (United States)

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites.

  8. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of "Shanxi aged vinegar", a traditional Chinese vinegar.

    Science.gov (United States)

    Wu, Jia Jia; Ma, Ying Kun; Zhang, Fen Fen; Chen, Fu Sheng

    2012-05-01

    Shanxi aged vinegar is a famous traditional Chinese vinegar made from several kinds of cereal by spontaneous solid-state fermentation techniques. In order to get a comprehensive understanding of culturable microorganism's diversity present in its fermentation, the indigenous microorganisms including 47 yeast isolates, 28 lactic acid bacteria isolates and 58 acetic acid bacteria isolates were recovered in different fermenting time and characterized based on a combination of phenotypic and genotypic approaches including inter-delta/PCR, PCR-RFLP, ERIC/PCR analysis, as well as 16S rRNA and 26S rRNA partial gene sequencing. In the alcoholic fermentation, the dominant yeast species Saccharomyces (S.) cerevisiae (96%) exhibited low phenotypic and genotypic diversity among the isolates, while Lactobacillus (Lb.) fermentum together with Lb. plantarum, Lb. buchneri, Lb. casei, Pediococcus (P.) acidilactici, P. pentosaceus and Weissella confusa were predominated in the bacterial population at the same stage. Acetobacter (A.) pasteurianus showing great variety both in genotypic and phenotypic tests was the dominant species (76%) in the acetic acid fermentation stage, while the other acetic acid bacteria species including A. senegalensis, A. indonesiensis, A. malorum and A. orientalis, as well as Gluconobacter (G.) oxydans were detected at initial point of alcoholic and acetic acid fermentation stage respectively.

  9. Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite

    Directory of Open Access Journals (Sweden)

    Hamonangan Nainggolan

    2013-05-01

    Full Text Available The effects of the addition of fibres of bacterial cellulose (FBC to commercial starch of Mater-Bi® have been investigated. FBC produced by cultivating Acetobacter xylinum for 21 days in glucose-based medium were purified by sodium hydroxide 2.5 wt % and sodium hypochlorite 2.5 wt % overnight, consecutively. To obtain water-free BC nanofibres, the pellicles were freeze dried at a pressure of 130 mbar at a cooling rate of 10 °C min−1. Both Mater-Bi and FBC were blended by using a mini twin-screw extruder at 160 °C for 10 min at a rotor speed of 50 rpm. Tensile tests were performed according to ASTM D638 to measure the Young’s modulus, tensile strength and elongation at break. A field emission scanning electron microscope was used to observe the morphology at an accelerating voltage of 10 kV. The crystallinity (Tc and melting temperature (Tm were measured by DSC. Results showed a significant improvement in mechanical and thermal properties in accordance with the addition of FBC into Mater-Bi. FBC is easily incorporated in Mater-Bi matrix and produces homogeneous Mater-Bi/FBC composite. The crystallinity of the Mater-Bi/FBC composites decrease in relation to the increase in the volume fraction of FBC.

  10. Encapsulation of Platelet in Kefiran Polymer and Detection of Bioavailability of Immobilized Platelet in Probiotic Kefiran as A New Drug for Surface Bleeding

    Directory of Open Access Journals (Sweden)

    Anahita Jenab

    2015-11-01

    Full Text Available Background : Kefir contains lactic acid bacteria (Lactobacillus, Lactococcus, Leuconostoc, Acetobacter and Streptococcus and yeasts (Kluyveromyces, Torula, Candida, Saccharomyces .Kefiran is the polysaccharide produced by lactic acid bacteria in kefir.Methods : Kefiran was prepared from milk containing 0.5% fat and 10 grams kefir grains and was separated from kefir by ethanol (0.02 gram following entrapping the platelets to this polymer. Ligand of the platelet-polysaccharide was studied by FTIR.Results : FTIR results showed that the bands of C-O and C-O-C connections were formed and the polysaccharides had been attached to the receptors of the platelet glycoproteins (GP Ib,GPIIb / IIIa. Stability and encapsulation of the platelet and kefiran were assessed by Coulter Counter. Encapsulation of the platelets by polysaccharide at the beginning caused to reduce the number of platelets following by releasing of 50% of the platelets after 3 hours.Conclusion : The platelets were encapsulated in kefiran polymer and detected for bioavailability as new drug for surface bleeding. Also, kefiran has antimicrobial and antifungal properties. On the other hand, the existence of nisin in kefiran could be useful as an antibacterial lantibiotic. 

  11. Metabolic and microbial community dynamics during the hydrolytic and acidogenic fermentation in a leach-bed process

    Energy Technology Data Exchange (ETDEWEB)

    Straeuber, Heike; Kleinsteuber, Sabine [UFZ - Helmholtz Centre for Environmental Research, Leipzig (Germany). Dept. of Bioenergy; UFZ - Helmholtz Centre for Environmental Research, Leipzig (Germany). Dept. of Environmental Microbiology; Schroeder, Martina [UFZ - Helmholtz Centre for Environmental Research, Leipzig (Germany). Dept. of Bioenergy

    2012-12-15

    Biogas production from lignocellulosic feedstock not competing with food production can contribute to a sustainable bioenergy system. The hydrolysis is the rate-limiting step in the anaerobic digestion of solid substrates such as straw. Hence, a detailed understanding of the metabolic processes during the steps of hydrolysis and acidogenesis is required to improve process control strategies. The fermentation products formed during the acidogenic fermentation of maize silage as a model substrate in a leach-bed process were determined by gas and liquid chromatography. The bacterial community dynamics was monitored by terminal restriction fragment length polymorphism analysis. The community profiles were correlated with the process data using multivariate statistics. The batch process comprised three metabolic phases characterized by different fermentation products. The bacterial community dynamics correlated with the production of the respective metabolites. In phase 1, lactic and acetic acid fermentations dominated. Accordingly, bacteria of the genera Lactobacillus and Acetobacter were detected. In phase 2, the metabolic pathways shifted to butyric acid fermentation, accompanied by the production of hydrogen and carbon dioxide and a dominance of the genus Clostridium. In phase 3, phylotypes affiliated with Ruminococcaceae and Lachnospiraceae prevailed, accompanied by the formation of caproic and acetic acids, and a high gas production rate. A clostridial butyric type of fermentation was predominant in the acidogenic fermentation of maize silage, whereas propionic-type fermentation was marginal. As the metabolite composition resulting from acidogenesis affects the subsequent methanogenic performance, process control should focus on hydrolysis/acidogenesis when solid substrates are digested. (orig.)

  12. Acetic Acid Production by an Electrodialysis Fermentation Method with a Computerized Control System.

    Science.gov (United States)

    Nomura, Yoshiyuki; Iwahara, Masayoshi; Hongo, Motoyoshi

    1988-01-01

    In acetic acid fermentation by Acetobacter aceti, the acetic acid produced inhibits the production of acetic acid by this microorganism. To alleviate this inhibitory effect, we developed an electrodialysis fermentation method such that acetic acid is continuously removed from the broth. The fermentation unit has a computerized system for the control of the pH and the concentration of ethanol in the fermentation broth. The electrodialysis fermentation system resulted in improved cell growth and higher productivity over an extended period; the productivity exceeded that from non-pH-controlled fermentation. During electrodialysis fermentation in our system, 97.6 g of acetic acid was produced from 86.0 g of ethanol; the amount of acetic acid was about 2.4 times greater than that produced by non-pH-controlled fermentation (40.1 g of acetic acid produced from 33.8 g of ethanol). Maximum productivity of electrodialysis fermentation in our system was 2.13 g/h, a rate which was 1.35 times higher than that of non-pH-controlled fermentation (1.58 g/h).

  13. Dynamics and diversity of microbial community succession in traditional fermentation of Shanxi aged vinegar.

    Science.gov (United States)

    Nie, Zhiqiang; Zheng, Yu; Du, Hongfu; Xie, Sankuan; Wang, Min

    2015-05-01

    The traditional fermentation of Shanxi aged vinegar (SAV), a well-known traditional Chinese vinegar, generally involves the preparation of starter daqu, starch saccharification, alcoholic fermentation (AF) and acetic acid fermentation (AAF). Dynamics and diversity of microbial community succession in daqu and other fermentation stages were investigated by denaturing gradient gel electrophoresis (DGGE). Results showed that eight bacterial genera and four fungal genera were found in daqu. However, Staphylococcus, Saccharopolyspora, Bacillus, Oceanobacillus, Enterobacter, Streptomyces, Eurotium, Monascus and Pichia in daqu were eradicated during AF. Four bacterial genera and three fungal genera were found in this stage. Weissella, Lactobacillus, Streptococcus, Saccharomyces, and Saccharomycopsis were the dominant microorganisms in the late stage of AF. During AAF, four bacterial genera and four fungal genera were found. Weissella, Streptococcus, Klebsiella, Escherichia, and Cladosporium gradually disappeared; the dominant microorganisms were Acetobacter, Lactobacillus, Saccharomycopsis, and Alternaria in the late stage of AAF. Alpha diversity metrics showed that fungal diversity in daqu was greater than that in AF and AAF. By contrast, bacterial diversity decreased from daqu to AF and increased in the first three days of AAF and then decreased. Hence, these results could help understand dynamics of microbial community succession in continuous fermentation of traditional Chinese vinegars.

  14. Stability of monacolin K and citrinin and biochemical characterization of red-koji vinegar during fermentation.

    Science.gov (United States)

    Hsieh, Chia-Wen; Lu, Yi-Ru; Lin, Shu-Mei; Lai, Tzu-Yuan; Chiou, Robin Y-Y

    2013-07-31

    Red-koji vinegar is a Monascus -involved and acetic acid fermentation-derived traditional product, in which the presence of monacolin K and citrinin has attracted public attention. In this study, red-koji wine was prepared as the substrate and artificially supplemented with monacolin K and citrinin and subjected to vinegar fermentation with Acetobacter starter. After 30 days of fermentation, 43.0 and 98.1% of the initial supplements of monacolin K and citrinin were decreased, respectively. During fermentation, acetic acid contents increased, accompanied by decreases of ethanol and lactic acid contents and pH values. The contents of free amino acids increased while the contents of other organic acids, including fumaric acid, citric acid, succinic acid, and tartaric acid, changed limitedly. Besides, increased levels of total phenolics in accordance with increased antioxidative potency, α,α-diphenyl-β-picrylhydrazyl scavenging, and xanthine oxidase inhibitory (XOI) activities were detected. It is of merit that most citrinin was eliminated and >50% of the monacolin K was retained; contents of free amino acids and total phenolics along with antioxidant and XOI activities of the red-koji vinegar were increased after fermentation.

  15. Unusal pattern of product inhibition: batch acetic acid fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  16. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  17. The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production.

    Science.gov (United States)

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Aquilanti, Lucia; Clementi, Francesca

    2015-12-01

    Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile-filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture-dependent methods and PCR-DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR-DGGE technique coupled with the culture-dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by-products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant.

  18. Selection and characterisation of lactic acid bacteria isolated from different origins for ensilingRobinia pseudoacacia and Morus alba L. leaves

    Institute of Scientific and Technical Information of China (English)

    NI Kui-kui; YANG Hui-xiao; HUA Wei; WANG Yan-ping; PANG Hui-li

    2016-01-01

    The objective of this study was to isolate lactic acid bacteria (LAB) strains from different origins and to select the best strains for ensilingRobinia pseudoacacia (RB) and Morus albaL. (MB)leaves. The LAB strains were inoculated into the extracted liquid obtained from RB and MB leaves to evaluate the fermentation products. 11 LAB strains were selected for further experiments based on the highest products of lactic or acetic acid, including 1 strain of Weissela confusa, 2 ofLactobacilus reuteri and 8 ofLactobacilus plantarum.The API 50 CH fermentation experiment indicated that al of the selected 11 LAB strains utilised most of the carbohydrates. Al the strains grew at temperatures between 10 and 45°C and at a pH of 3.5 to 4.5; however,L. reuteri F7 and F8 tolerated a pH as low as 3.0. Al 11 LAB strains showed antibacterial activity against Listeria monocytogens,Escherichia coil,Salmonelasp. and Acetobacter pasteurianus; however, after excluding the effect of organic acids, only F7 and F8 stil exhibited antibacterial activity. The present study indicated that the selected 11 LAB strains could be used to prepare silages of RB and MB leaves, especialyL. reuteri F7 and F8.

  19. Characterization of the bacterial cellulose dissolved on dimethylacetamide/lithium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Glaucia de Marco [Universidade do Vale do Itajai (PMCF/UNIVALI), Itajai, SC (Brazil). Programa de Mestrado em Ciencias Farmaceuticas; Sierakowski, Maria Rita; Faria-Tischer, Paula C.S.; Tischer, Cesar A., E-mail: cesar.tischer@pq.cnpq.b [Universidade Federal do Parana (BIOPOL/UFPR), Curitiba, PR (Brazil). Lab. de Biopolimeros

    2009-07-01

    The main barrier to the use of cellulose is his insolubility on water or organic solvents, but derivates can be obtained with the use of ionic solvents. Bacterial cellulose, is mainly produced by the bacterium Acetobacter xylinum, and is identical to the plant, but free of lignin and hemi cellulose, and with several unique physical-chemical properties. Cellulose produced in a 4 % glucose medium with static condition was dissoluted on heated DMAc/LiCl (120 '0 C, 150 '0 C or 170 '0 C). The product of dissolved cellulose was observed with 13 C-NMR and the effect on crystalline state was seen with x-ray crystallography. The crystalline structure was lost in the dissolution, becoming an amorphous structure, as well as Avicel. The process of dissolution of the bacterial cellulose is basics for the analysis of these water insoluble polymer, facilitating the analysis of these composites, by 13 C-NMR spectroscopy, size exclusion chromatography and light scattering techniques. (author)

  20. Bioskin: A New Biomaterial for Therapeutical and Biotechnological Purposes

    Institute of Scientific and Technical Information of China (English)

    Xavier-Filho L

    2005-01-01

    @@ 1Results and Discussion Bioskin is new material by Acetobacter xylinum, Saccharomyces cerevisae and Schyzosaccharomyces pombe in mixed culture on sucrose. The Material has been revealed as hypoaller- genic,antibiotic,antithermic and sedative. It is widely used for skin regeneration in therapy of burns as well as in odontological surgery.Bioskin contains high amounts of D-glucosamine and N-acetyl-D-glucosamine. It does not produce ash after heating at 600 ℃ and its combustion heat is similar to that of several current woods, such as pine oak or maple Bioskin has been used to immobilize algal cells, fungal spores and Bacteria in order to study some metabolic events. In addition, immobilization, of several enzymes has been performed using bioskin as inert matrix.Catalase was immobilized at pH 7.0 by ionic adsorption (aminosugars provide a net positive charge neutral pH values) whereas several glycoproteins can be immobilized on bioskin by an affinity mechanism.

  1. Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria.

    Science.gov (United States)

    Carrillo, W; García-Ruiz, A; Recio, I; Moreno-Arribas, M V

    2014-10-01

    The antimicrobial activity of heat-denatured and hydrolyzed hen egg white lysozyme against oenological lactic acid and acetic acid bacteria was investigated. The lysozyme was denatured by heating, and native and heat-denatured lysozymes were hydrolyzed by pepsin. The lytic activity against Micrococcus lysodeikticus of heat-denatured lysozyme decreased with the temperature of the heat treatment, whereas the hydrolyzed lysozyme had no enzymatic activity. Heat-denatured and hydrolyzed lysozyme preparations showed antimicrobial activity against acetic acid bacteria. Lysozyme heated at 90°C exerted potent activity against Acetobacter aceti CIAL-106 and Gluconobacter oxydans CIAL-107 with concentrations required to obtain 50% inhibition of growth (IC50) of 0.089 and 0.013 mg/ml, respectively. This preparation also demonstrated activity against Lactobacillus casei CIAL-52 and Oenococcus oeni CIAL-91 (IC50, 1.37 and 0.45 mg/ml, respectively). The two hydrolysates from native and heat-denatured lysozyme were active against O. oeni CIAL-96 (IC50, 2.77 and 0.3 mg/ml, respectively). The results obtained suggest that thermal and enzymatic treatments increase the antibacterial spectrum of hen egg white lysozyme in relation to oenological microorganisms.

  2. Comparative evaluation of the genomes of three common Drosophila-associated bacteria.

    Science.gov (United States)

    Petkau, Kristina; Fast, David; Duggal, Aashna; Foley, Edan

    2016-09-15

    Drosophila melanogaster is an excellent model to explore the molecular exchanges that occur between an animal intestine and associated microbes. Previous studies in Drosophila uncovered a sophisticated web of host responses to intestinal bacteria. The outcomes of these responses define critical events in the host, such as the establishment of immune responses, access to nutrients, and the rate of larval development. Despite our steady march towards illuminating the host machinery that responds to bacterial presence in the gut, there are significant gaps in our understanding of the microbial products that influence bacterial association with a fly host. We sequenced and characterized the genomes of three common Drosophila-associated microbes: Lactobacillus plantarum, Lactobacillus brevis and Acetobacter pasteurianus For each species, we compared the genomes of Drosophila-associated strains to the genomes of strains isolated from alternative sources. We found that environmental Lactobacillus strains readily associated with adult Drosophila and were similar to fly isolates in terms of genome organization. In contrast, we identified a strain of A. pasteurianus that apparently fails to associate with adult Drosophila due to an inability to grow on fly nutrient food. Comparisons between association competent and incompetent A. pasteurianus strains identified a short list of candidate genes that may contribute to survival on fly medium. Many of the gene products unique to fly-associated strains have established roles in the stabilization of host-microbe interactions. These data add to a growing body of literature that examines the microbial perspective of host-microbe relationships.

  3. Investigation the Effects of Different Doses Organic Fertilizers and Phosphate Solubilizing Bacterias on Yield and Nutrient Contents in Chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Ferit SÖNMEZ

    2015-07-01

    Full Text Available The study was conducted to determine the effect of phosphate solubilizing bacteria (N2; Bacillus megaterium M-3, TV-6I; Cellulosimicrobium cellulans, TV-34A; Hafnia Alve, TV-69E; Acetobacter pasteurianus and TV-83F; Bacillus cereus and organic fertilizer (0, 10 and 20 ton / ha on the seed yield and nutrient content of chickpea under field conditions in 2010 and 2011 growing seasons. Phosphate solubilizing bacteria used in this study were determined by the separate investigation conducted in chamber room by using ten phosphate solubilizing bacteria and organic fertilizer (control, %5,%10. The tiral were laid out with a factorial design in randomized complete block with three replications. In this study, plant height, primary branches, secondary branches and number of pods per plant, number of seeds per pod, grain yield and biological yield and nutrient content of stem and seed were determined. According to the results of the study bacteria applications increased significantly biological and seed yield. Bacteria applications without organic fertilizer increased nutrient contents of seed and steed except cupper content. In case of inoculation with organic fertilizer provided more increases in biological and seed yields. The highest seed yield were obtained from application of 20 ton/ha + N2 (Bacillus megaterium M-3 with 1020 kg/ha and 1793 kg/ha in 2010 and 2011 years, respectively. Bacteria without organic fertilizer application were more active in terms of phosphorus uptake in both years. 

  4. EFEKTIVITAS NIRA AREN SEBAGAI BAHAN PENGEMBANG ADONAN ROTI

    Directory of Open Access Journals (Sweden)

    Mody Lempang

    2013-12-01

    Full Text Available Fermentation is a natural process that happen in fresh-sweet sap of aren trees (Arenga pinnata Merr., because many kinds of microorganism stay and life in this substance e.g. bakteria (Acetobacter acetic and yeast (Saccharomyces tuac. Species of yeast from genus of Saccharomyses, e.g. Saccharomyses serivisae is wellknown as microorganism that can ferment sugar (glucose into alchohol and CO2. This natural process as well happen in aren sap, so that this substance potencially using as a swollen agent of bread or cake dough. This research objective is to recognize the effectiveness of aren sap as a swollen agent of bread dough. Fermentation duration of bread dough was one hour by using swollen agent of fresh, 10 hours old and 20 hours old of aren sap. Daily yield of sap tapped from aren trees in Maros district, South Sulawesi province was 7 litre (4-5 litre collected in the morning and 2-3 litre colected in the afternoon. Aren sap containt some of nutritions e.g. carbohydrate, protein, fat, vitamin C and mineral. Sweet taste of aren sap caused by it’s charbohydrate content of 11.18%. The effectiveness of aren sap as a swollen agent of bread dough is lower than instant (commercial yeast. The older of aren sap the lower of it’s effectiveness as a swollen agent of dough and kuality of bread yield.    Keywords : Sap, Arenga pinnata, swollen agent, bread dough

  5. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples.

    Science.gov (United States)

    Marsh, Alan J; O'Sullivan, Orla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2014-04-01

    Kombucha is a sweetened tea beverage that, as a consequence of fermentation, contains ethanol, carbon dioxide, a high concentration of acid (gluconic, acetic and lactic) as well as a number of other metabolites and is thought to contain a number of health-promoting components. The sucrose-tea solution is fermented by a symbiosis of bacteria and yeast embedded within a cellulosic pellicle, which forms a floating mat in the tea, and generates a new layer with each successful fermentation. The specific identity of the microbial populations present has been the focus of attention but, to date, the majority of studies have relied on culture-based analyses. To gain a more comprehensive insight into the kombucha microbiota we have carried out the first culture-independent, high-throughput sequencing analysis of the bacterial and fungal populations of 5 distinct pellicles as well as the resultant fermented kombucha at two time points. Following the analysis it was established that the major bacterial genus present was Gluconacetobacter, present at >85% in most samples, with only trace populations of Acetobacter detected (95% in the fermented beverage, with a greater fungal diversity present in the cellulosic pellicle, including numerous species not identified in kombucha previously. Ultimately, this study represents the most accurate description of the microbiology of kombucha to date.

  6. Brazilian kefir: structure, microbial communities and chemical composition

    Directory of Open Access Journals (Sweden)

    Karina Teixeira Magalhães

    2011-06-01

    Full Text Available Microbial ecology and chemical composition of Brazilian kefir beverage was performed. The microorganisms associated with Brazilian kefir were investigated using a combination of phenotypic and genotypic methods. A total of 359 microbial isolates were identified. Lactic acid bacteria (60.5% were the major isolated group identified, followed by yeasts (30.6% and acetic acid bacteria (8.9%. Lactobacillus paracasei (89 isolates, Lactobacillus parabuchneri (41 isolates, Lactobacillus casei (32 isolates, Lactobacillus kefiri (31 isolates, Lactococcus lactis (24 isolates, Acetobacter lovaniensis (32 isolates, Kluyveromyces lactis (31 isolates, Kazachstania aerobia (23 isolates, Saccharomyces cerevisiae (41 isolates and Lachancea meyersii (15 isolates were the microbial species isolated. Scanning electron microscopy showed that the microbiota was dominated by bacilli (short and curved long cells growing in close association with lemon-shaped yeasts cells. During the 24 h of fermentation, the protein content increased, while lactose and fat content decreased. The concentration of lactic acid ranged from 1.4 to 17.4 mg/ml, and that of acetic acid increased from 2.1 to 2.73 mg/ml. The production of ethanol was limited, reaching a final mean value of 0.5 mg/ml.

  7. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    Science.gov (United States)

    Javed, Rabia; Usman, Muhammad; Tabassum, Saira; Zia, Muhammad

    2016-11-01

    Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV-vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and antidiabetic activity against α-amylase enzyme found to be exhibited highest by ZnO-PEG nanoparticles.

  8. Optimization performance of an AnSBBR applied to biohydrogen production treating whey.

    Science.gov (United States)

    Lima, D M F; Lazaro, C Z; Rodrigues, J A D; Ratusznei, S M; Zaiat, M

    2016-03-15

    The present study investigated the influence of the influent concentration of substrate, feeding time and temperature on the production of biohydrogen from cheese whey in an AnSBBR with liquid phase recirculation. The highest hydrogen yield (0.80 molH2.molLactose(-1)) and productivity (660 mLH2 L(-1) d(-1)) were achieved for influent concentrations of 5400 mgDQO L(-1). No significant difference was noted in the biological hydrogen production for the feeding time conditions analyzed. The lowest temperature tested (15 °C) promoted the highest hydrogen yield and productivity (1.12 molH2 molLactose(-1) and 1080 mLH2 L(-1) d(-1)), and for the highest temperature (45 °C), hydrogen production did not occur. The indicator values for the hydrogen production obtained with this configuration were higher than those obtained in other studies using traditional configurations such as UASBr and CSTR. A phylogenetic analysis showed that the majority of the analyzed clones were similar to Clostridium. In addition, clones phylogenetically similar to the Lactobacilaceae family, notably Lactobacillus rhamnosus, and clones with similar sequences to Acetobacter indonesiensis were observed in small proportion in the reactor.

  9. Microbes Associated with Freshly Prepared Juices of Citrus and Carrots

    Directory of Open Access Journals (Sweden)

    Kamal Rai Aneja

    2014-01-01

    Full Text Available Fruit juices are popular drinks as they contain antioxidants, vitamins, and minerals that are essential for human being and play important role in the prevention of heart diseases, cancer, and diabetes. They contain essential nutrients which support the growth of acid tolerant bacteria, yeasts, and moulds. In the present study, we have conducted a microbiological examination of freshly prepared juices (sweet lime, orange, and carrot by serial dilution agar plate technique. A total of 30 juice samples were examined for their microbiological quality. Twenty-five microbial species including 9 bacterial isolates, 5 yeast isolates, and 11 mould isolates were isolated from juices. Yeasts and moulds were the main cause of spoilage of juices. Aspergillus flavus and Rhodotorula mucilaginosa were observed in the maximum number of juice samples. Among bacteria Bacillus cereus and Serratia were dominant. Escherichia coli and Staphylococcus aureus were detected in few samples. Candida sp., Curvularia, Colletotrichum, and Acetobacter were observed only in citrus juice samples. Alternaria, Aspergillus terreus, A. niger, Cladosporium, and Fusarium were also observed in tested juice samples. Some of the microorganisms detected in these juice samples can cause disease in human beings, so there is need for some guidelines that can improve the quality of fruit juices.

  10. AISLAMIENTO, CARACTERIZACIÓN Y CONSERVACIÓN DE BACTERIAS ÁCIDO-ACÉTICAS A PARTIR DE PRODUCTOS FERMENTADOS TRADICIONALES COMO UNA HERRAMIENTA PEDAGÓGICA. Pág. 146-149

    Directory of Open Access Journals (Sweden)

    Cindy Lucía Martínez

    2012-01-01

    Full Text Available El Trabajo de Grado titulado: “Aislamiento, caracterización y conservación de bacterias acido-acéticas a partir de productos fermentados tradicionales” se desarrolló determinando los géneros bacterias ácido-acéticas Acetobacter sp. y Gluconobacter sp., aisladas a partir de productos fermentados tradiciones como son la chicha de maíz y el masato de arroz, para verificar estas bacterias se realizó un bioproceso a pequeña escala demostrando la producción de ácido acético característica propia de estos microorganismos. Finalmente se establecieron métodos de conservación que aseguran la estabilidad genética, bioquímica y morfológica de las bacterias ácido-acéticas aisladas para la introducción en el Cepario del Departamento de Biología de la Universidad Pedagógica Nacional (CDBUPN con el fin de ser utilizadas por los docentes y estudiantes de Biología de la Universidad Pedagógica Nacional como herramienta para la enseñanza de conceptos relacionados con temáticas frente a procesos de orden biológico.

  11. 从水果中分离醋酸菌制备苹果梨醋的研究白龙律1,武伦鹏2,宋鉴达1,刘洪亮1,朴文香3%Research on Preparation of AppIe-Pear Vinegar with Acetic Acid Bacteria IsoIated from Fruits

    Institute of Scientific and Technical Information of China (English)

    白龙律; 武伦鹏; 宋鉴达; 刘洪亮; 朴文香

    2015-01-01

    从11种常见水果样品中分离培养得到38种醋酸菌,利用乙醇浓度、菌株接种量、发酵液有效体积三个条件的正交实验,进一步筛选出高效菌株,并在优化的条件下制备苹果梨醋。最终得到一种醋酸产量高的高效菌株Ace22,通过分子生物学鉴定得知,菌株Ace22属于醋酸杆菌属(Acetobacter)。%In this study,38 acetic acid bacteria are isolated from 11 kinds of fruits .The effects of ethanol concentration,inoculation amount,and effective volume of fermentation broth on acetic acid bacteria fermentation are investigated, and apple-pear vinegar is prepared under optimized fermentation conditions.Finally,a high-yield acetic acid strain Ace22 is selected,it is learned that the strain Ace22 belongs to Acetobacter by molecular biology identification.

  12. Mechanical properties, biocompatibility, and biodegradation of cross-linked cellulose acetate-reinforced polyester composites.

    Science.gov (United States)

    Wu, Chin-San

    2014-05-25

    Composites of treated (cross-linked) cellulose acetate (t-CA) and acrylic acid-grafted poly(hydroxyalkanoate) (PHA-g-AA/t-CA) exhibited noticeably superior mechanical properties compared with PHA/CA composites due to greater compatibility between the two components. The dispersion covering of t-CA in the PHA-g-AA matrix was highly homogeneous as a result of condensation reactions. Human lung fibroblasts (FBs) were seeded on these two series of composites to characterize the biocompatibility properties. In a time-dependent course, the FB proliferation results demonstrated higher performance from the PHA/CA series of composites than from the PHA-g-AA/t-CA composites. The water resistance of PHA-g-AA/t-CA was higher than that of PHA/CA, although the weight loss of both composites buried in Acetobacter pasteurianus (A. pasteurianus) indicated that they were both biodegradable, especially at higher levels of cellulose acetate substitution. The PHA/CA and PHA-g-AA/t-CA composites were more biodegradable than pure PHA, implying a strong connection between cellulose acetate content and biodegradability.

  13. Fructo-oligosaccharides production by the Gluconacetobacter diazotrophicus levansucrase expressed in the methylotrophic yeast Pichia pastoris.

    Science.gov (United States)

    Trujillo, L E.; Arrieta, J G.; Dafhnis, F; García, J; Valdés, J; Tambara, Y; Pérez, M; Hernández, L

    2001-02-01

    Levansucrase (LsdA) (EC 2.4.1.10) from Gluconacetobacter diazotrophicus (formerly Acetobacter diazotrophicus) yields high levels of fructo-oligosaccharides (FOS) from sucrose. A DNA fragment encoding the precursor LsdA lacking the first 57 amino acids was fused to the pho1 signal sequence under the control of the Pichia pastoris-alcohol oxidase 1 (AOX1) promoter. Methanol induction of a P. pastoris strain harboring a single copy of the lsdA expression cassette integrated in the genome resulted in the production of active levansucrase. After fermentation of the recombinant yeast, LsdA activity was detected in the periplasmic fraction (81%) and in the culture supernatant (18%) with an overall yield of 1% of total protein. The recombinant LsdA was glycosylated and displayed optimal pH and temperature for enzyme activity similar to those of the native enzyme, but thermal stability was increased. Neither fructosylpolymerase activity nor FOS production was affected. Incubation of recombinant LsdA in sucrose (500 g l(-1)) yielded 43% (w/w) of total sugar as 1-kestose, with a conversion efficiency about 70%. Intact recombinant yeast cells also converted sucrose to FOS although for a 30% efficiency.

  14. Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants.

    Science.gov (United States)

    Fuentes-Ramírez, L E; Bustillos-Cristales, R; Tapia-Hernández, A; Jiménez-Salgado, T; Wang, E T; Martínez-Romero, E; Caballero-Mellado, J

    2001-07-01

    Diazotrophic bacteria were isolated, in two different years, from the rhizosphere and rhizoplane of coffee (Coffea arabica L.) plants cultivated in Mexico; they were designated as type DOR and type SAd isolates. They showed characteristics of the family Acetobacteraceae, having some features in common with Gluconacetobacter (formerly Acetobacter) diazotrophicus, the only known N2-fixing species of the acetic acid bacteria, but they differed from this species with regard to several characteristics. Type DOR isolates can be differentiated phenotypically from type SAd isolates. Type DOR isolates and type SAd isolates can both be differentiated from Gluconacetobacter diazotrophicus by their growth features on culture media, their use of amino acids as nitrogen sources and their carbon-source usage. These results, together with the electrophoretic mobility patterns of metabolic enzymes and amplified rDNA restriction analysis, suggested that the type DOR and type SAd isolates represent two novel N2-fixing species. Comparative analysis of the 16S rRNA sequences revealed that strains CFN-Cf55T (type DOR isolate) and CFN-Ca54T (type SAd isolate) were closer to Gluconacetobacter diazotrophicus (both strains had sequence similarities of 98.3%) than to Gluconacetobacter liquefaciens, Gluconacetobacter sacchari (similarities Gluconacetobacter johannae sp. nov. (for the type DOR isolates), with strain CFN-Cf55T (= ATCC 700987T = DSM 13595T) as the type strain, and Gluconacetobacter azotocaptans sp. nov. (for the type SAd isolates), with strain CFN-Ca54T (= ATCC 70098ST = DSM 13594T) as the type strain.

  15. TERPENOIDS FROM THE STEM BARK OF JATROPHA PLANTS AND THEIR BIOLOGICAL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Manggau Marianti

    2011-11-01

    Full Text Available Three terpenoids, including two diterpenes (curcusone B and jatrophone and a triterpene (stigmasterol have beenisolated from the stem bark of Jatropha plants. Curcusone B and stigmasterol were isolated from J. curcas, meanwhilejatrophone and stigmasterol were from J. gossypifolia. The biological activities of these compounds have beenevaluated toward bacteria, fungi and tumour cells. Isolation was carried out in vacuum liqiud cromatography (VLCtechnique with silica gel as an adsorben and some solvents as eluents. The compound structures were determined byspectroscopic methodes i.e. UV-vis, FTIR, NMR (1-D, 2-D and were then compared based on their spectroscopic datawith similiar data from literatures. The biological properties of these compounds were evaluated against four strains ofbacteria (Acetobacter sp., Eschericia coli, Staphylococcus aureus, and Streptococcus sp., 4 strains of fungi (Aspergilusniger, Penicillium sp. (grey, Penicillium sp. (white and Rhizopus sp. and murine leukemia P-388 cells. The resultsshowed that cytotoxic property of curcusone B towards murine leukemia P-388 cells is better than jatrophone andstigmasterol which are IC50 = 0.57 μg/mL (1.93 μM for curcusone B and IC50 > 100 μg/mL for jatrophone andstigmasterol. Meanwhile, activities against bacteria, jatrophone is better than curcusone B and stigmasterol. Jatrophoneis the most active against S. aureus (bacteria with growth inhibition zone 36 mm and A.niger (fungi is 44 mm. Furtherstudy indicated that jatrophone was bacteriostatic against S. aureus.

  16. Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria

    KAUST Repository

    Mazzetto, Fabio

    2016-03-24

    Some species of acetic acid bacteria (AAB) play relevant roles in the metabolism and physiology of Drosophila spp. and in some cases convey benefits to their hosts. The pest Drosophila suzukii harbors a set of AAB similar to those of other Drosophila species. Here, we investigate the potential to exploit the ability of AAB to produce volatile substances that attract female D. suzukii. Using a two-way olfactometer bioassay, we investigate the preference of D. suzukii for strains of AAB, and using solid-phase microextraction gas chromatography–mass spectrometry we specifically characterize their volatile profiles to identify attractive and non-attractive components produced by strains from the genera Acetobacter, Gluconobacter, and Komagataeibacter. Flies had a preference for one strain of Komagataeibacter and two strains of Gluconobacter. Analyses of the volatile profiles from the preferred Gluconobacter isolates found that acetic acid is distinctively emitted even after 2 days of bacterial growth, confirming the relevance of this volatile in the profile of this isolate for attracting flies. Analyses of the volatile profile from the preferred Komagataeibacter isolate showed that a different volatile in its profile could be responsible for attracting D. suzukii. Moreover, variation in the concentration of butyric acid derivatives found in some strains may influence the preference of D. suzukii. Our results indicate that Gluconobacter and Komagataeibacter strains isolated from D. suzukii have the potential to provide substances that could be exploited to develop sustainable mass-trapping-based control approaches. © 2016 Springer-Verlag Berlin Heidelberg

  17. 宏基因组学技术分析传统食醋发酵过程微生物多样性%Metagenomic Analysis of Microbial Diversity in the Traditional Vinegar Fermentation Process

    Institute of Scientific and Technical Information of China (English)

    聂志强; 韩玥; 郑宇; 申雁冰; 王敏

    2013-01-01

    传统食醋具有悠久的历史,生产工艺独特,酿造过程中复杂的微生物群落及其代谢产物赋予了传统食醋独特的风味.采用宏基因组学技术对天津独流老醋醋酸发酵过程中细菌群落组成及其多样性进行分析.结果表明:在醋酸发酵前期细菌具有较高的多样性,主成分分析表明与醋酸发酵过程相关的细菌为乳杆菌属(Lactobacillus)、醋杆菌属(Acetobacter)和念珠藻属(Nostoc).随着醋酸发酵的进行,醋酸菌的含量呈增加趋势,乳酸菌的丰度降低,在整个醋酸发酵过程中乳酸菌的丰度远远高于其他细菌,说明乳酸菌可能对食醋的风味形成具有重要作用.

  18. Ionic adsorption of catalase on bioskin: kinetic and ultrastructural studies.

    Science.gov (United States)

    Solas, M T; Vicente, C; Xavier, L; Legaz, M E

    1994-03-15

    Bioskin is a natural polymer produced by Acetobacter xylinum and several yeasts in culture. It contains glucosamine and N-acetyl galactosamine which promote ionic adsorption of catalase at the adequate pH value. High values of ionic strength are required to enzyme desorption. Adsorption of catalase on bioskin fibers has been visualized by scanning electron microscopy associated to a dispersion X-ray analyzer. At low enzyme density, the affinity of the immobilized catalase for hydrogen peroxide was 30% lower than that of the free enzyme. This affinity decreased dramatically at higher density of immobilized enzyme and could not be increased by agitation of the enzyme reaction mixture. Immobilized catalase retains about 70% of its initial activity after 16 d storage, whereas soluble enzyme is completely inactivated after 3 d at room temperature. The haeme group of catalase is not protected after immobilization since it is accessible to both EDTA and phloroglucinol, chelating agents which inactivate catalase by removing the iron atom from the haeme group.

  19. Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation.

    Science.gov (United States)

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-12-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes.

  20. Research on the Fermentation Conditions of Liquid-State Vinegar%液态醋酿造发酵条件研究

    Institute of Scientific and Technical Information of China (English)

    吴冬梅

    2014-01-01

    以米粉为原料,经淀粉酶液化、糖化酶糖化和酿醋酵母静置发酵后接入醋酸菌(犃犮犲狋狅犫犪犮狋犲狉狉犪狀-犮犲狀狊)1.41,继续静置发酵产生醋酸。实验探讨了醋酸菌在不同条件下产醋酸的能力,并最终确定在酵母菌接种量为10%,醋酸菌接种量为10%,自然pH(pH 3.4),不需要额外添加乙醇或乙酸的条件下产酸,酸度约为5 g/dL。%Rice flour is used as raw material,after being treated with diastasum,saccharifying enzyme and yeasts,inoculated into hydrolyzed liquid for static fermentation at a certain time,and then acetobacter rancens 1 .41 is inoculated and continuous to ferment for producing acetic acid.The effects of different conditions on acid producing capacity are investigated,and the results show that the acidity could be reaches about 5 g/dL under the conditions that the inoculums of 10% for both yeast and ace-tic acid bacteria at nature pH value (pH 3.4).Furthermore,there's no need to add any alcohol as well as acetic acid during the fermentation process.

  1. Brewing Technology of Apple-Kiwifruit Vinegar%苹果猕猴桃混合型果醋酿造工艺

    Institute of Scientific and Technical Information of China (English)

    刘聪; 程圣恩; 孙浩; 郭攀峰; 严景恩; 史亚歌

    2011-01-01

    以苹果、猕猴桃为原料,对苹果猕猴桃混合果醋的酿造工艺进行研究.获得原料配比、酒精发酵和醋酸发酵的最佳工艺参数.原料配比为m(苹果汁)∶m(猕猴桃汁)=2∶1.酒精发酵的最佳参数为酵母菌接种量0.25%、发酵温度28 ℃、发酵时间7 d.醋酸发酵的最佳参数为酒精体积分数6%、醋酸菌接种量7%、发酵时间10 d.按以上工艺参数所得产品每100 mL总酸含量≥5.50 g,色泽鲜亮呈浅黄色,具有苹果果香,酸味柔和.%Using apple and kiwifruit as raw material, the brewing technology of vinegar was studied. The optimum ratio of apple to kiwifruit was 2:1 and conditions for alcoholic fermentation were started with inoculum of yeast by 0. 25% , fermented under 28℃ for 7days. The optimum acetic acid fermentation conditions were 6% initial alcohol concentration , 7% inoculum of acetobacter and 10 days fermentation. The appLe-kiwifruit vinegar looks pale yellow, and tastes soft with apple aroma.

  2. Function and X-ray crystal structure of Escherichia coli YfdE.

    Directory of Open Access Journals (Sweden)

    Elwood A Mullins

    Full Text Available Many food plants accumulate oxalate, which humans absorb but do not metabolize, leading to the formation of urinary stones. The commensal bacterium Oxalobacter formigenes consumes oxalate by converting it to oxalyl-CoA, which is decarboxylated by oxalyl-CoA decarboxylase (OXC. OXC and the class III CoA-transferase formyl-CoA:oxalate CoA-transferase (FCOCT are widespread among bacteria, including many that have no apparent ability to degrade or to resist external oxalate. The EvgA acid response regulator activates transcription of the Escherichia coli yfdXWUVE operon encoding YfdW (FCOCT, YfdU (OXC, and YfdE, a class III CoA-transferase that is ~30% identical to YfdW. YfdW and YfdU are necessary and sufficient for oxalate-induced protection against a subsequent acid challenge; neither of the other genes has a known function. We report the purification, in vitro characterization, 2.1-Å crystal structure, and functional assignment of YfdE. YfdE and UctC, an orthologue from the obligate aerobe Acetobacter aceti, perform the reversible conversion of acetyl-CoA and oxalate to oxalyl-CoA and acetate. The annotation of YfdE as acetyl-CoA:oxalate CoA-transferase (ACOCT expands the scope of metabolic pathways linked to oxalate catabolism and the oxalate-induced acid tolerance response. FCOCT and ACOCT active sites contain distinctive, conserved active site loops (the glycine-rich loop and the GNxH loop, respectively that appear to encode substrate specificity.

  3. Microbes of fermented kefir-like using combination of kefir grains and Bifidobacterium longum

    Directory of Open Access Journals (Sweden)

    Sri Usmiati

    2005-03-01

    Full Text Available The objectives of research were to find out physico-chemical characters and to detect flavor volatile compound of kefir-like. Material used was skim milk TS 9.5% which was heated at 85oC for 30 minutes and cooled at 22oC before innoculation of the starter. Microorganisms used were (a Lactobacillus acidophilus P155110, (b Lactobacillus delbrueckii subsp. Bulgaricus NCIMB 11778, (c Lactococcus lactis P155610, (d Leuconostoc mesenteroides subsp. dextranicum NCIMB 3350, (e Acetobacter aceti P154810, (f Bifidobacterium longum BF1, and (g Saccharomyces cerevisiae P156252. The treatments consist of P1 = without (b; P2 = without (a; and P3= used (a until (g. The physico-chemical characters identified were lactic acid and lactose percentages, pH, viscosity, organoleptic test for intensity of kefir-like sensory attributes. Results indicated that B. longum was potential bacterium use for starter combination on kefir-like making. The use starter P1 combination has high acidity and viscosity, low pH and lactose percentage, and high intensity on attribute creamy-white color, soft and curdle consistency, and kefir specific aroma on kefir-like. Volatile compound acid group were dominate by high acidity character on kefir-like resulted from starter P1 combination. Compound of 3-hydroxi-2-butanone (acetoin was affecting butter-like of P3 character. This compound resulted from which is a character of fermented milk flavor was not detected on P1 kefir-like.

  4. Influence of air flow, temperature and agitation speed in the batch acetification process to obtain orange vinegar (Citrus sinensis var.W. Navel

    Directory of Open Access Journals (Sweden)

    María Ferreyra

    2012-03-01

    Full Text Available This paper describes the influence of process variables to produce orange vinegar. Orange juice was fermented with Saccharomyces cerevisiae until reach 14% v/v. The biooxidation was carried out with Acetobacter sp., in submerge culture using a laboratory scale fermentor. In order to avoid the inhibitory effect of ethanol on acetic acid bacteria, the orange wine was diluted to 6% v/v with a mineral solution. It was performed a factorial design 2k to study the influence of variables. It was studied air flow rate/agitation at levels of 0.3-0.6 vvm and 200-400 rpm and the effect of air flow rate/temperature at 0.4-0.6 vvm and 25- 30°C, respectively. Duplicate treatments were carried out and the results were evaluated in terms of productivity and fermentation yield. Statistical design (p-value<0.05 was analyzed using Statgraphics Centurion XV Corporate software. Treatments performed at 200 rpm and different air flow levels, did not show significant differences on acetification rate. At higher agitation speed and air flow rates, the productivity was high. The best yields were obtained at lower air flows levels and higher agitation speed. Temperature did not present statistically differences on studied variables. The best yield was obtained at 400 rpm and 0.3 vvm at 25°C. It can be concluded that agitation speed plays an important role for a better acetification rate however higher air flow rates causes less yields.

  5. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Rabia [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Usman, Muhammad, E-mail: uk_phy@yahoo.com [Department of Physics, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Physics, School of Science and Engineering, Lahore University of Management Sciences, Lahore 54729 (Pakistan); Tabassum, Saira; Zia, Muhammad [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2016-11-15

    Highlights: • ZnO nanoparticles have been effectively capped with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) shown by the data of XRD, FTIR and UV–visible spectroscopy. • Reduction in size occurred from 34 nm to 26 nm due to capping agent and band gap energy increases with the decrease in the particle size. • Antibacterial activity against Gram-positive bacteria is greater than the Gram-negative bacteria. • All biological assays reveal highest activities in capped ZnO nanoparticles as compared to the uncapped ZnO nanoparticles. • Highest antibacterial activity has been exhibited by ZnO-PVP while highest antioxidant and antidiabetic activities have been conferred by ZnO- PEG. - Abstract: Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV–vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and

  6. Microbial Dynamics during Aerobic Exposure of Corn Silage Stored under Oxygen Barrier or Polyethylene Films▿

    Science.gov (United States)

    Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca; Borreani, Giorgio

    2011-01-01

    The aims of this study were to compare the effects of sealing forage corn with a new oxygen barrier film with those obtained by using a conventional polyethylene film. This comparison was made during both ensilage and subsequent exposure of silage to air and included chemical, microbiological, and molecular (DNA and RNA) assessments. The forage was inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium and ensiled in polyethylene (PE) and oxygen barrier (OB) plastic bags. The oxygen permeability of the PE and OB films was 1,480 and 70 cm3 m−2 per 24 h at 23°C, respectively. The silages were sampled after 110 days of ensilage and after 2, 5, 7, 9, and 14 days of air exposure and analyzed for fermentation characteristics, conventional microbial enumeration, and bacterial and fungal community fingerprinting via PCR-denaturing gradient gel electrophoresis (DGGE) and reverse transcription (RT)-PCR-DGGE. The yeast counts in the PE and OB silages were 3.12 and 1.17 log10 CFU g−1, respectively, with corresponding aerobic stabilities of 65 and 152 h. Acetobacter pasteurianus was present at both the DNA and RNA levels in the PE silage samples after 2 days of air exposure, whereas it was found only after 7 days in the OB silages. RT-PCR-DGGE revealed the activity of Aspergillus fumigatus in the PE samples from the day 7 of air exposure, whereas it appeared only after 14 days in the OB silages. It has been shown that the use of an oxygen barrier film can ensure a longer shelf life of silage after aerobic exposure. PMID:21821764

  7. Microbial dynamics during aerobic exposure of corn silage stored under oxygen barrier or polyethylene films.

    Science.gov (United States)

    Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca; Borreani, Giorgio

    2011-11-01

    The aims of this study were to compare the effects of sealing forage corn with a new oxygen barrier film with those obtained by using a conventional polyethylene film. This comparison was made during both ensilage and subsequent exposure of silage to air and included chemical, microbiological, and molecular (DNA and RNA) assessments. The forage was inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium and ensiled in polyethylene (PE) and oxygen barrier (OB) plastic bags. The oxygen permeability of the PE and OB films was 1,480 and 70 cm³ m⁻² per 24 h at 23°C, respectively. The silages were sampled after 110 days of ensilage and after 2, 5, 7, 9, and 14 days of air exposure and analyzed for fermentation characteristics, conventional microbial enumeration, and bacterial and fungal community fingerprinting via PCR-denaturing gradient gel electrophoresis (DGGE) and reverse transcription (RT)-PCR-DGGE. The yeast counts in the PE and OB silages were 3.12 and 1.17 log₁₀ CFU g⁻¹, respectively, with corresponding aerobic stabilities of 65 and 152 h. Acetobacter pasteurianus was present at both the DNA and RNA levels in the PE silage samples after 2 days of air exposure, whereas it was found only after 7 days in the OB silages. RT-PCR-DGGE revealed the activity of Aspergillus fumigatus in the PE samples from the day 7 of air exposure, whereas it appeared only after 14 days in the OB silages. It has been shown that the use of an oxygen barrier film can ensure a longer shelf life of silage after aerobic exposure.

  8. Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-crop Maize Silages Stored at High Moisture Content.

    Science.gov (United States)

    Li, Yanbing; Nishino, Naoki

    2013-09-01

    The effects of storage period and aerobic deterioration on the bacterial community were examined in Italian ryegrass (IR), guinea grass (GG), and whole-crop maize (WM) silages. Direct-cut forages were stored in a laboratory silo for 3, 7, 14, 28, 56, and 120 d without any additives; live counts, content of fermentation products, and characteristics of the bacterial community were determined. 2,3-Butanediol, acetic acid, and lactic acid were the dominant fermentation products in the IR, GG, and WM silages, respectively. The acetic acid content increased as a result of prolonged ensiling, regardless of the type of silage crop, and the changes were distinctively visible from the beginning of GG ensiling. Pantoea agglomerans, Rahnella aquatilis, and Enterobacter sp. were the major bacteria in the IR silage, indicating that alcoholic fermentation may be due to the activity of enterobacteria. Staphylococcus sciuri and Bacillus pumilus were detected when IR silage was spoiled, whereas between aerobically stable and unstable silages, no differences were seen in the bacterial community at silo opening. Lactococcus lactis was a representative bacterium, although acetic acid was the major fermentation product in the GG silage. Lactobacillus plantarum, Lactobacillus brevis, and Morganella morganii were suggested to be associated with the increase in acetic acid due to prolonged storage. Enterobacter cloacae appeared when the GG silage was spoiled. In the WM silage, no distinctive changes due to prolonged ensiling were seen in the bacterial community. Throughout the ensiling, Weissella paramesenteroides, Weissella confusa, and Klebsiella pneumoniae were present in addition to L. plantarum, L. brevis, and L. lactis. Upon deterioration, Acetobacter pasteurianus, Klebsiella variicola, Enterobacter hormaechei, and Bacillus gibsonii were detected. These results demonstrate the diverse bacterial community that evolves during ensiling and aerobic spoilage of IR, GG, and WM silages.

  9. Use of Phosphate Solubilizing Bacteria to Leach Rare Earth Elements from Monazite-Bearing Ore

    Directory of Open Access Journals (Sweden)

    Doyun Shin

    2015-04-01

    Full Text Available In the present study, the feasibility to use phosphate solubilizing bacteria (PSB to develop a biological leaching process of rare earth elements (REE from monazite-bearing ore was determined. To predict the REE leaching capacity of bacteria, the phosphate solubilizing abilities of 10 species of PSB were determined by halo zone formation on Reyes minimal agar media supplemented with bromo cresol green together with a phosphate solubilization test in Reyes minimal liquid media as the screening studies. Calcium phosphate was used as a model mineral phosphate. Among the test PSB strains, Pseudomonas fluorescens, P. putida, P. rhizosphaerae, Mesorhizobium ciceri, Bacillus megaterium, and Acetobacter aceti formed halo zones, with the zone of A. aceti being the widest. In the phosphate solubilization test in liquid media, Azospirillum lipoferum, P. rhizosphaerae, B. megaterium, and A. aceti caused the leaching of 6.4%, 6.9%, 7.5%, and 32.5% of calcium, respectively. When PSB were used to leach REE from monazite-bearing ore, ~5.7 mg/L of cerium (0.13% of leaching efficiency and ~2.8 mg/L of lanthanum (0.11% were leached by A. aceti, and Azospirillum brasilense, A. lipoferum, P. rhizosphaerae and M. ciceri leached 0.5–1 mg/L of both cerium and lanthanum (0.005%–0.01%, as measured by concentrations in the leaching liquor. These results indicate that determination of halo zone formation was found as a useful method to select high-capacity bacteria in REE leaching. However, as the leaching efficiency determined in our experiments was low, even in the presence of A. aceti, further studies are now underway to enhance leaching efficiency by selecting other microorganisms based on halo zone formation.

  10. The impact of yeast starter cultures on the microbial communities and volatile compounds in cocoa fermentation and the resulting sensory attributes of chocolate.

    Science.gov (United States)

    Batista, Nádia Nara; Ramos, Cíntia Lacerda; Dias, Disney Ribeiro; Pinheiro, Ana Carla Marques; Schwan, Rosane Freitas

    2016-02-01

    Theobroma cacao seeds are the main raw material for chocolate production. During their fermentation, a succession of microorganisms are responsible for the physicochemical changes occurring in the pulp and inside the beans. The aim of this study was to investigate the effects of yeast inoculation (Saccharomyces cerevisiae UFLA CA11, Pichia kluivery CCMA0237, and Hanseniaspora uvarum CCMA0236) on the profile of the volatile compounds and microbial communities in cocoa fermentation. The resulting chocolate was also evaluated by temporal dominance of sensations (TDS) analyses. The dominant microorganisms during spontaneous fermentation were S. cerevisiae, H. uvarum, H. guilliermondii, Lactobacillus fermentum, Pediococcus sp., and Acetobacter pasteurianus. Similarly, S. cerevisiae, P. kluyveri, Candida sp., Pediococcus sp., and A. pasteurianus were the predominant microorganisms assessed by Denaturing Gradient Gel Electrophoresis (DGGE) in inoculated fermentation. Sixty-seven volatile compounds were detected and quantified by gas chromatography/mass spectrometry (GC/MS) at the end of fermentation and chocolates. The main group of volatile compound found after the inoculated and spontaneous fermentations was esters (41 and 39 %, respectively). In the chocolates, the main group was acids (73 and 44 % from the inoculated and spontaneous fermentations, respectively). The TDS analyses showed a dominance of bitter and cocoa attributes in both chocolates. However, in the inoculated chocolate, lingering fruity notes were more intense, while the chocolate produced by spontaneous fermentation was more astringent. Thus, the inoculation of yeast influenced the microbial profile, which likely affected the volatile compounds that affect sensory characteristics, resulting in chocolate with dominant bitter, cocoa, and fruity attributes.

  11. Biosynthetic bacterial cellulose graft as arteriovenous fistula and ndash; a complement to existing synthetic grafts?

    Directory of Open Access Journals (Sweden)

    Johan Magnusson

    2016-06-01

    Materials and Methods: As graftmaterial bacterial cellulose was used, produced around a preformed scaffold. Bacterial cellulose (BC is a material produced by the bacteria acetobacter xylinum. A pilotstudy was conducted on 6 pigs to validate the animalmodel and the new graftmaterial. In the following survival study a BC-graft AV-fistula was constructed in 15 pigs. Results: In the pilot study, 5 out of 6 animals had a patent AV-fistula 4 hours after implantation. In the survival study, after 4 (n3 and 8 (n10 weeks an angiography was performed prior to explantation of the BC-graft. All grafts were occluded with a presumed platelet plug. We conducted an additional acute patch-test comparing the BC and expanded PolyTetraFluoro- Ethylene. A patch of BC and ePTFE was applied to the right and left common femoral artery respectively. At explantation three hours later, all BC-patches showed a thin gel like layer, most likely consisting of platelets, throughout the whole sur- face while the ePTFE-patch showed no, or minimal, signs of platelet adhesions. Conclusion: Theoretically the cellulose might be similar to autologous veins considering risk of infections and thrombo- genicity. The animal model and the graft material showed good potential in the pilot study. The survival study was discour- aging with the reason for occlusion still to be explained. Bacterial cellulose has a good potential but further development and studies need to be performed. [Arch Clin Exp Surg 2016; 5(2.000: 70-77

  12. Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration.

    Science.gov (United States)

    Li, X; Wang, X D; Zhao, X; Dutt, Y

    2004-04-01

    A novel method for the genetic transformation of cotton pollen by means of vacuum infiltration and Agrobacterium-mediated transformation is reported. The acsA and acsB genes, which are involved in cellulose synthesis in Acetobacter xylinum, were transferred into pollen grains of brown cotton with the aim of improving its fiber quality by incorporating useful prokaryotic features into the colored cotton plants. Transformation was carried out in cotton pollen-germinating medium, and transformation was mediated by vector pCAMBIA1301, which contains a reporter gene beta-glucuronidase (GUS), a selectable marker gene, hpt, for hygromycin resistance and the genes of interest, acsA and acsB. The integration and expression of acsA, acsB and GUS in the genome of transgenic plants were analyzed with Southern blot hybridization, PCR, histochemical GUS assay and Northern blot hybridization. We found that following pollination on the cotton stigma transformed pollen retained its capability of double-fertilization and that normal cotton seeds were produced in the cotton ovary. Of 1,039 seeds from 312 bolls pollinated with transformed pollen grains, 17 were able to germinate and grow into seedlings for more than 3 weeks in a nutrient medium containing 50 mg/l hygromycin; eight of these were transgenic plants integrated with acsA and acsB, yielding a 0.77% transformation rate. Fiber strength and length from the most positive transformants was 15% greater than those of the control (non-transformed), a significant difference, as was cellulose content between the transformed and control plants. Our study suggests that transformation through vacuum infiltration and Agrobacterium mediated transformation can be an efficient way to introduce foreign genes into the cotton pollen grain and that cotton fiber quality can be improved with the incorporation of the prokaryotic genes acsA and acsB.

  13. The gut bacterial communities associated with lab-raised and field-collected ants of Camponotus fragilis (Formicidae: Formicinae).

    Science.gov (United States)

    He, Hong; Wei, Cong; Wheeler, Diana E

    2014-09-01

    Camponotus is the second largest ant genus and known to harbor the primary endosymbiotic bacteria of the genus Blochmannia. However, little is known about the effect of diet and environment changes on the gut bacterial communities of these ants. We investigated the intestinal bacterial communities in the lab-raised and field-collected ants of Camponotus fragilis which is found in the southwestern United States and northern reaches of Mexico. We determined the difference of gut bacterial composition and distribution among the crop, midgut, and hindgut of the two types of colonies. Number of bacterial species varied with the methods of detection and the source of the ants. Lab-raised ants yielded 12 and 11 species using classical microbial culture methods and small-subunit rRNA genes (16S rRNAs) polymerase chain reaction-restriction fragment-length polymorphism analysis, respectively. Field-collected ants yielded just 4 and 1-3 species using the same methods. Most gut bacterial species from the lab-raised ants were unevenly distributed among the crop, midgut, and hindgut, and each section had its own dominant bacterial species. Acetobacter was the prominent bacteria group in crop, accounting for about 55 % of the crop clone library. Blochmannia was the dominant species in midgut, nearly reaching 90 % of the midgut clone library. Pseudomonas aeruginosa dominated the hindgut, accounting for over 98 % of the hindgut clone library. P. aeruginosa was the only species common to all three sections. A comparison between lab-raised and field-collected ants, and comparison with other species, shows that gut bacterial communities vary with local environment and diet. The bacterial species identified here were most likely commensals with little effect on their hosts or mild pathogens deleterious to colony health.

  14. Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation.

    Science.gov (United States)

    Crafack, Michael; Mikkelsen, Morten B; Saerens, Sofie; Knudsen, Morten; Blennow, Andreas; Lowor, Samuel; Takrama, Jemmy; Swiegers, Jan H; Petersen, Gert B; Heimdal, Hanne; Nielsen, Dennis S

    2013-10-01

    The potential impact of aromatic and pectinolytic yeasts on cocoa flavour was investigated using two defined mixed starter cultures encompassing strains of Pichia kluyveri and Kluyveromyces marxianus for inoculating cocoa beans in small scale tray fermentations. Samples for microbial and metabolite analysis were collected at 12-24 hour intervals during 120 h of fermentation. Yeast isolates were grouped by (GTG)5-based rep-PCR fingerprinting and identified by sequencing of the D1/D2 region of the 26S rRNA gene and the actin gene. Pulsed Field Gel Electrophoresis (PFGE) was conducted on isolates belonging to the species P. kluyveri and K. marxianus to verify strain level identity with the inoculated strains. Furthermore, Denaturing Gradient Gel Electrophoresis (DGGE) was performed to follow yeast and bacterial dynamics over time including the presence of the bacterial inoculum consisting of Lactobacillus fermentum and Acetobacter pasteurianus. Yeast cell counts peaked after 12 h of fermentation with the predominant species being identified as Hanseniaspora opuntiae and Hanseniaspora thailandica. P. kluyveri and K. marxianus were found to compose 9.3% and 13.5% of the yeast population, respectively, after 12 h of fermentation whilst PFGE showed that ~88% of all P. kluyveri isolates and 100% of all K. marxianus isolates were identical to the inoculated strains. Despite never being the dominant yeast species at any stage of fermentation, the un-conched chocolates produced from the two inoculated fermentations were judged by sensory analysis to differ in flavour profile compared to the spontaneously fermented control. This could indicate that yeasts have a greater impact on the sensory qualities of cocoa than previously assumed.

  15. Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment.

    Science.gov (United States)

    Dzieciol, Monika; Schornsteiner, Elisa; Muhterem-Uyar, Meryem; Stessl, Beatrix; Wagner, Martin; Schmitz-Esser, Stephan

    2016-04-16

    Sanitation protocols are applied on a daily basis in food processing facilities to prevent the risk of cross-contamination with spoilage organisms. Floor drain water serves along with product-associated samples (slicer dust, brine or cheese smear) as an important hygiene indicator in monitoring Listeria monocytogenes in food processing facilities. Microbial communities of floor drains are representative for each processing area and are influenced to a large degree by food residues, liquid effluents and washing water. The microbial communities of drain water are steadily changing, whereas drain biofilms provide more stable niches. Bacterial communities of four floor drains were characterized using 16S rRNA gene pyrosequencing to better understand the composition and exchange of drain water and drain biofilm communities. Furthermore, the L. monocytogenes contamination status of each floor drain was determined by applying cultivation-independent real-time PCR quantification and cultivation-dependent detection according to ISO11290-1. Pyrosequencing of 16S rRNA genes of drain water and drain biofilm bacterial communities yielded 50,611 reads, which were clustered into 641 operational taxonomic units (OTUs), affiliated to 16 phyla dominated by Proteobacteria, Firmicutes and Bacteroidetes. The most abundant OTUs represented either product- (Lactococcus lactis) or fermentation- and food spoilage-associated phylotypes (Pseudomonas mucidolens, Pseudomonas fragi, Leuconostoc citreum, and Acetobacter tropicalis). The microbial communities in DW and DB samples were distinct in each sample type and throughout the whole processing plant, indicating the presence of indigenous specific microbial communities in each processing compartment. The microbiota of drain biofilms was largely different from the microbiota of the drain water. A sampling approach based on drain water alone may thus only provide reliable information on planktonic bacterial cells but might not allow conclusions

  16. Study on Fermentation Technique of Kumquat Vinegar with ImmobiIized MicrobiaI Strain%固定化菌种发酵生产金柑果醋的研究

    Institute of Scientific and Technical Information of China (English)

    王岩

    2016-01-01

    Aim to produce kumquat fruit vinegar by using kumquat as the main raw material,being fermented with immobilized microbial strain.The result indicates that the suitable conditions of making kumquat fruit vinegar by immobilized technology is sugar degree of 1 8%,immobilized yeast inoculum size of 10%,the ratio of inoculation quantity of aroma-producing yeast and Saccharomyces cerevisiae of 1∶1 ,fermentation temperature of 32 ℃ and fermentation time of 72 h in alcoholic fermentation phase;and initial alcohol degree of 8%,immobilized Acetobacter aceti inoculum size of 10%,fermentation temperature of 33 ℃ and fermentation time of 72 h in acetic acid fermentation phase.%以金柑为主要原料,利用固定化菌种进行发酵酿造金柑果醋的研究。实验结果表明利用固定化技术酿造金柑果醋的适宜工艺条件为酒精发酵阶段:糖度18%,固定化酵母菌接种量10%,接种发酵菌种中生香酵母与酿酒酵母的比例1∶1,发酵温度32℃,发酵时间72 h;醋酸发酵阶段:起始酒精度8%,固定化醋酸菌接种量10%,醋酸发酵温度33℃,发酵时间72 h。

  17. Screen and Mutation of Strains for Acetic Acid Fermentation by Method of ARTP%常温等离子体诱变选育醋酸发酵菌株

    Institute of Scientific and Technical Information of China (English)

    邓洪钧; 白晓磊; 方昕; 余森泉; 郑宇; 王敏

    2015-01-01

    [目的]选育具有耐温特性的醋酸菌,用于醋酸发酵.[方法]从醋醅中筛选具有较好耐温特性的醋酸菌,并且通过常温等离子体诱变提高该菌株的发酵效率.[结果]从山西老陈醋醋醅中筛选获得一株醋酸菌WL021,经鉴定属于巴氏醋杆菌(Acetobacter pasteurianus),最适发酵温度为35℃.对该菌株进行常温等离子体诱变处理,获得在35℃条件下具有较高醋酸发酵效率的菌株WL021-1.利用15 L自吸式发酵罐,在发酵温度35℃、通气量0.15 vvm、乙醇浓度7%的条件下,巴氏醋杆菌WL021-1平均发酵效率为1.10 g/(L·h),与出发菌株相比终酸浓度和酒精转化率没有显著差异,但发酵周期缩短约7h,发酵效率提高约10%.[结论]选育获得醋酸发酵菌株巴氏醋杆菌WL021-1,最适发酵温度35℃.该菌株的工业应用有利于降低发酵过程降温成本.

  18. Research on brewing technique of purple potato vinegar%紫薯醋酿造工艺研究

    Institute of Scientific and Technical Information of China (English)

    林顺; 熊汉国; 涂艳华

    2015-01-01

    Purple potato as raw material was used to produce purple potato vinegar by submerged fermentation after enzymol‐ysis .The results showed that :at 30℃ ,the optimal conditions of alcoholic fermentation was as:initial pH5 ,initial sugar 14% , yeast amount 0 .2 g/(100 ml);the optimal conditions of acetic fermentation was as :initial alcohol content 6% ,acetobacter addi‐tion amount 18% ,volume‐loading 50% .The results had a certain guiding significance for the industrialization of vinegar pro‐duction with potato starch material .%以紫薯为原料,进行酶解处理,再利用液态深层发酵的方法生产紫薯醋,研究了紫薯醋酿造的最佳发酵工艺,结果显示,在温度30℃下,酒精发酵最佳条件为:初始pH5、初始糖度14%、酵母添加量0.2 g/(100 ml);醋酸发酵最佳条件为:初始酒精度为6%、菌种添加量18%、装瓶量50%,对以薯类等淀粉基原料进行醋的工业化生产具有一定指导意义。

  19. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    Science.gov (United States)

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria.

  20. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    Science.gov (United States)

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.

  1. Influencia del caudal de aire, temperatura y velocidad de agitación en el proceso discontinuo de acetificación para la obtención de vinagre de naranja (Citrus sinensis var.W. Navel

    Directory of Open Access Journals (Sweden)

    María Ferreyra

    2012-01-01

    Full Text Available Se describe la influencia de variables de proceso para la producción de vinagre de naranja. El jugo de naranja, se fermentó con Saccharomyces cer evisiae hasta 14 % v/v de alcohol. La bioxidación se realizó con Acetobacter sp., en cultivo sumergido, en biorreactor de laboratorio. Para evitar el efecto inhibidor del etanol sobre las bacterias acéticas, el vino de naranja fue diluido a 6 % v/v de alco hol con solución de minerales. La influencia de las variables se evaluó con diseño factorial 2 k . Se estudió caudal de aire/velocidad de agitación, ensayando los niveles 0.3 – 0.6 vvm y 200 - 400 rpm y luego, caudal de aire/temperatura, siendo los niveles para cada variable 0.4 – 0.6 vvm y 25 - 30 ºC, respectivamente. Cada tratamiento se realizó por duplicado, usando como respuestas productividad y rendimiento. El análisis del diseño (α<0.05 se efectuó mediante programa Statgraphics Centurion XV Corporate. En los tratamientos con 200 rpm y distintos caudales de aire, no hubo diferencias significativas respecto a la productividad. A mayor velocidad de agitación y caudal de aire, la productividad fue mayor. Los mayores rendimientos se obtuvieron con menores caudales de aire y mayores velocidades de agitación. Con respecto a la temperatura, los valores ensayados no presentaron diferenc ias significativas en las respuestas estudiadas. El mejor rendimiento se obtuvo con 400 rpm y 0.3 vvm a 25 ºC. Se concluye que la velocidad de agitación juega un rol muy importante para lograr una mejor productividad mientras que elevados flujos de aire d isminuyen el rendimiento.

  2. The effect of lactic acid bacteria on cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  3. Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction

    Directory of Open Access Journals (Sweden)

    Amnuaikit T

    2011-06-01

    Full Text Available Thanaporn Amnuaikit, Toon Chusuit, Panithi Raknam, Prapaporn BoonmeDepartment of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, ThailandBackground: Cellulose masks obtained from natural sources such as bacteria are of interest as cosmetic devices for the treatment of dry skin because they not only improve hydration of the skin, but have low toxicity and are biodegradable. The aims of this study were to determine the in vivo effects of a cellulose mask obtained from Acetobacter xylinum on skin characteristics and to evaluate user satisfaction with the product.Methods: Thirty healthy Thai volunteers aged 21–40 years participated in the study. The volunteers were randomly separated into a control group and an experimental group. For the control group, volunteers were assigned to apply moist towels to the face for 25 minutes. For the experimental group, the volunteers were assigned to apply the masks, ie, translucent patches which could be fitted onto the face for the same period. The following week, the groups were changed over to the alternative treatment. Skin moisture, sebum, elasticity, texture, dullness, and desquamation levels were assessed using a system used for routine skin counseling before applying the trial product and five minutes after its removal. Degree of satisfaction with use of the cellulose mask was investigated using a five-point rating scale.Results: The cellulose mask increased moisture levels in the skin significantly more than moist towels (P < 0.05 after a single application. No obvious effects on other skin characteristics were found. The cellulose mask product rated around 4/5 on the satisfaction rating scale.Conclusions: A single application of the trial cellulose mask enhanced moisture uptake by facial skin. Users also reported being satisfied with the trial product.Keywords: bacterial cellulose, facial mask, skin characteristics, skin hydration, user

  4. Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon.

    Science.gov (United States)

    Blatny, J M; Brautaset, T; Winther-Larsen, H C; Haugan, K; Valla, S

    1997-01-01

    The plasmid vectors described in this report are derived from the broad-host-range RK2 replicon and can be maintained in many gram-negative bacterial species. The complete nucleotide sequences of all of the cloning and expression vectors are known. Important characteristics of the cloning vectors are as follows: a size range of 4.8 to 7.1 kb, unique cloning sites, different antibiotic resistance markers for selection of plasmid-containing cells, oriT-mediated conjugative plasmid transfer, plasmid stabilization functions, and a means for a simple method for modification of plasmid copy number. Expression vectors were constructed by insertion of the inducible Pu or Pm promoter together with its regulatory gene xylR or xylS, respectively, from the TOL plasmid of Pseudomonas putida. One of these vectors was used in an analysis of the correlation between phosphoglucomutase activity and amylose accumulation in Escherichia coli. The experiments showed that amylose synthesis was only marginally affected by the level of basal expression from the Pm promoter of the Acetobacter xylinum phosphoglucomutase gene (celB). In contrast, amylose accumulation was strongly reduced when transcription from Pm was induced. CelB was also expressed with a very high induction ratio in Xanthomonas campestris. These experiments showed that the A. xylinum celB gene could not complement the role of the bifunctional X. campestris phosphoglucomutase-phosphomannomutase gene in xanthan biosynthesis. We believe that the vectors described here are useful for cloning experiments, gene expression, and physiological studies with a wide range of bacteria and presumably also for analysis of gene transfer in the environment. PMID:9023917

  5. Study on the development of high yielding alcohol resistant strain of Saccharomyces cerevisiae and the Influence of Magnetic field on Saccharomyces cerevisiae Inoculum for the production of Alcohol and Vinegar from apple juice.

    Directory of Open Access Journals (Sweden)

    Rabiul Haque

    2014-12-01

    Full Text Available Natural vinegar is one of the fermented products which has some potentiality with respect to a nutraceutical standpoint. The present study is an optimization of the fermentation conditions for apple juice vinegar production from aple juice wine, this biochemical process being aided by Acetobacter aceti.We have studied on the development of high yielding alcohol resistant strain of Saccharomyces cerevisiae for the production of alcohol. Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomassdirected processes. It results from elevated apple juice containing sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high initial sugar concentrations From the results it is clear that strain T2. which has been exposed to 15% alcohol for 18 hrs is the high yielding strain, as it gives 16% alcohol after distillation. We also find that as the exposure is increased, that is, with increasing exposure to 20% alcohol for 5 hrs, 18 hrs, and 20 hrs, the production of alcohol decreases. Saccharomyces cerevisiae yeast cells strain T2. which has been exposed to 15% alcohol for 18 hrs were exposed to a homogenous static magnetic field of 125 mT for periods of 24, 48 or 72 hours and then used as inoculum for the alcoholic fermentation. The exposure to the magnetic field improved the fermentation process kinetics. Biomass and ethanol yields of fermentations inoculated with treated inoculum were higher than those in the control fermentation, which

  6. Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil.

    Directory of Open Access Journals (Sweden)

    Adam Collins Caldwell

    Full Text Available Despite a continuous rise in consumption of coffee over the past 60 years and recent studies showing positive benefits linked to human health, intensive coffee farming practices have been associated with environmental damage, risks to human health, and reductions in biodiversity. In contrast, organic farming has become an increasingly popular alternative, with both environmental and health benefits. This study aimed to characterize and determine the differences in the prokaryotic soil microbiology of three Brazilian coffee farms: one practicing intensive farming, one practicing organic farming, and one undergoing a transition from intensive to organic practices. Soil samples were collected from 20 coffee plant rhizospheres (soil directly influenced by the plant root exudates and 10 control sites (soil 5 m away from the coffee plantation at each of the three farms for a total of 90 samples. Profiling of 16S rRNA gene V4 regions revealed high levels of prokaryotic diversity in all three farms, with thousands of species level operational taxonomic units identified in each farm. Additionally, a statistically significant difference was found between each farm's coffee rhizosphere microbiome, as well as between coffee rhizosphere soils and control soils. Two groups of prokaryotes associated with the nitrogen cycle, the archaeal genus Candidatus Nitrososphaera and the bacterial order Rhizobiales were found to be abundant and statistically different in composition between the three farms and in inverse relationship to each other. Many of the nitrogen-fixing genera known to enhance plant growth were found in low numbers (e.g. Rhizobium, Agrobacter, Acetobacter, Rhodospirillum, Azospirillum, but the families in which they belong had some of the highest relative abundance in the dataset, suggesting many new groups may exist in these samples that can be further studied as potential plant growth-promoting bacteria to improve coffee production while

  7. Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil.

    Science.gov (United States)

    Caldwell, Adam Collins; Silva, Lívia Carneiro Fidéles; da Silva, Cynthia Canêdo; Ouverney, Cleber Costa

    2015-01-01

    Despite a continuous rise in consumption of coffee over the past 60 years and recent studies showing positive benefits linked to human health, intensive coffee farming practices have been associated with environmental damage, risks to human health, and reductions in biodiversity. In contrast, organic farming has become an increasingly popular alternative, with both environmental and health benefits. This study aimed to characterize and determine the differences in the prokaryotic soil microbiology of three Brazilian coffee farms: one practicing intensive farming, one practicing organic farming, and one undergoing a transition from intensive to organic practices. Soil samples were collected from 20 coffee plant rhizospheres (soil directly influenced by the plant root exudates) and 10 control sites (soil 5 m away from the coffee plantation) at each of the three farms for a total of 90 samples. Profiling of 16S rRNA gene V4 regions revealed high levels of prokaryotic diversity in all three farms, with thousands of species level operational taxonomic units identified in each farm. Additionally, a statistically significant difference was found between each farm's coffee rhizosphere microbiome, as well as between coffee rhizosphere soils and control soils. Two groups of prokaryotes associated with the nitrogen cycle, the archaeal genus Candidatus Nitrososphaera and the bacterial order Rhizobiales were found to be abundant and statistically different in composition between the three farms and in inverse relationship to each other. Many of the nitrogen-fixing genera known to enhance plant growth were found in low numbers (e.g. Rhizobium, Agrobacter, Acetobacter, Rhodospirillum, Azospirillum), but the families in which they belong had some of the highest relative abundance in the dataset, suggesting many new groups may exist in these samples that can be further studied as potential plant growth-promoting bacteria to improve coffee production while diminishing negative

  8. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion

    Directory of Open Access Journals (Sweden)

    M. Kaleem eABBASI

    2015-03-01

    Full Text Available AbstractThe present study was conducted to characterize the native plant growth promoting bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK, Pakistan. Nine bacterial isolates were purified, screened in vitro for plant growth promoting (PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.. Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK–3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these PGPR strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76% and root N contents (up to 32% was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK.

  9. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    Science.gov (United States)

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing.

  10. N-acetylglucosamine 6-phosphate deacetylase (nagA is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus.

    Directory of Open Access Journals (Sweden)

    Vikas Yadav

    Full Text Available Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum. For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tet(r; named as ΔnagA via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G. xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally, G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other related bacterial species.

  11. Oxidants: Chemical Energy for Life on Mars and in the Outer Solar System

    Science.gov (United States)

    Schulze-Makuch, D.; Houtkooper, J.; Cooper, J.

    2007-12-01

    Redox gradients are essential for life as we know it. Strong oxidants to retain these gradients are produced in a variety of planetary environments by UV and ionizing radiation. Houtkooper and Schulze-Makuch (2007) previously suggested hydrogen peroxide as an essential biological ingredient for putative Martian life to adapt to the challenging near-surface conditions on the Red Planet. On Earth, adaptation and use of oxidants is widespread. Examples are microorganisms that use or produce oxidants, and the microbe Acetobacter peroxidans, which uses the decomposition of H2O2 as its major metabolic pathway. However, oxidants may also be critical biogenic components on outer Solar System objects of high astrobiological potential such as Europa and Enceladus. Exothermic reactivity of oxidants additionally contributes heat for habitable environments and acceleration of chemical processes potentially supporting life. Oxidation chemistry produces volatile gases and other detectable species that may be diagnostic of recent and ongoing biochemistry. More reduced chemical environments like the Titan atmosphere, and more isolated liquid water habitats like the deep-lying subsurface oceans of Ganymede and Callisto, may be astrobiologically impacted by externally driven inputs of oxidants over billions of years. Houtkooper, J.M. and Schulze-Makuch, D. (2007) A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. Int. J. of Astrobiology 6: 147-152. Cooper, J. F., P. D. Cooper, E. C. Sittler, S. J. Sturner, A. M. Rymer, and M. E. Hill. Radiolytic gas-driven cryovolcanism in the outer solar system, J. Geophys. Res., in review.

  12. Species Diversity, Community Dynamics, and Metabolite Kinetics of the Microbiota Associated with Traditional Ecuadorian Spontaneous Cocoa Bean Fermentations▿

    Science.gov (United States)

    Papalexandratou, Zoi; Falony, Gwen; Romanens, Edwina; Jimenez, Juan Carlos; Amores, Freddy; Daniel, Heide-Marie; De Vuyst, Luc

    2011-01-01

    Traditional fermentations of the local Ecuadorian cocoa type Nacional, with its fine flavor, are carried out in boxes and on platforms for a short time. A multiphasic approach, encompassing culture-dependent and -independent microbiological analyses of fermenting cocoa pulp-bean samples, metabolite target analyses of both cocoa pulp and beans, and sensory analysis of chocolates produced from the respective fermented dry beans, was applied for the investigation of the influence of these fermentation practices on the yeast and bacterial species diversity and community dynamics during cocoa bean fermentation. A wide microbial species diversity was found during the first 3 days of all fermentations carried out. The prevailing ethanol-producing yeast species were Pichia kudriavzevii and Pichia manshurica, followed by Saccharomyces cerevisiae. Leuconostoc pseudomesenteroides (glucose and fructose fermenting), Fructobacillus tropaeoli-like (fructose fermenting), and Lactobacillus fermentum (citrate converting, mannitol producing) represented the main lactic acid bacterial species in the fermentations studied, resulting in intensive heterolactate metabolism of the pulp substrates. Tatumella saanichensis and Tatumella punctata were among the members of the family Enterobacteriaceae present during the initial phase of the cocoa bean fermentations and could be responsible for the production of gluconic acid in some cases. Also, a potential new yeast species was isolated, namely, Candida sorbosivorans-like. Acetic acid bacteria, whose main representative was Acetobacter pasteurianus, generally appeared later during fermentation and oxidized ethanol to acetic acid. However, acetic acid bacteria were not always present during the main course of the platform fermentations. All of the data taken together indicated that short box and platform fermentation methods caused incomplete fermentation, which had a serious impact on the quality of the fermented dry cocoa beans. PMID

  13. Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional ecuadorian spontaneous cocoa bean fermentations.

    Science.gov (United States)

    Papalexandratou, Zoi; Falony, Gwen; Romanens, Edwina; Jimenez, Juan Carlos; Amores, Freddy; Daniel, Heide-Marie; De Vuyst, Luc

    2011-11-01

    Traditional fermentations of the local Ecuadorian cocoa type Nacional, with its fine flavor, are carried out in boxes and on platforms for a short time. A multiphasic approach, encompassing culture-dependent and -independent microbiological analyses of fermenting cocoa pulp-bean samples, metabolite target analyses of both cocoa pulp and beans, and sensory analysis of chocolates produced from the respective fermented dry beans, was applied for the investigation of the influence of these fermentation practices on the yeast and bacterial species diversity and community dynamics during cocoa bean fermentation. A wide microbial species diversity was found during the first 3 days of all fermentations carried out. The prevailing ethanol-producing yeast species were Pichia kudriavzevii and Pichia manshurica, followed by Saccharomyces cerevisiae. Leuconostoc pseudomesenteroides (glucose and fructose fermenting), Fructobacillus tropaeoli-like (fructose fermenting), and Lactobacillus fermentum (citrate converting, mannitol producing) represented the main lactic acid bacterial species in the fermentations studied, resulting in intensive heterolactate metabolism of the pulp substrates. Tatumella saanichensis and Tatumella punctata were among the members of the family Enterobacteriaceae present during the initial phase of the cocoa bean fermentations and could be responsible for the production of gluconic acid in some cases. Also, a potential new yeast species was isolated, namely, Candida sorbosivorans-like. Acetic acid bacteria, whose main representative was Acetobacter pasteurianus, generally appeared later during fermentation and oxidized ethanol to acetic acid. However, acetic acid bacteria were not always present during the main course of the platform fermentations. All of the data taken together indicated that short box and platform fermentation methods caused incomplete fermentation, which had a serious impact on the quality of the fermented dry cocoa beans.

  14. Isolation, Characterization and Application of Bacterial Population From Agricultural Soil at Sohag Province, Egypt

    Directory of Open Access Journals (Sweden)

    Bahig, A. E.

    2008-01-01

    Full Text Available Forty soil samples of agriculture soil were collected from two different sites in Sohag province, Egypt, during hot and cold seasons. Twenty samples were from soil irrigated with canal water (site A and twenty samples were from soil irrigated with wastewater (site B. This study aimed to compare the incidence of plasmids in bacteria isolated from soil and to investigate the occurrence of metal and antibiotic resistance bacteria, and consequently to select the potential application of these bacteria in bioremediation. The total bacterial count (CFU/gm in site (B was higher than that in site (A. Moreover, the CFU values in summer were higher than those values in winter at both sites. A total of 771 bacterial isolates were characterized as Bacillus, Micrococcus, Staphylococcus, Pseudomonas, Eschershia, Shigella, Xanthomonas, Acetobacter, Citrobacter, Enterobacter, Moraxella and Methylococcus. Minimum inhibitory concentrations (MICs of Pb+2, Cu+2, Zn+2, Hg+2, Co+2, Cd+2, Cr+3, Te+2, As+2 and Ni+2 for plasmid-possessed bacteria were determined and the highest MICs were 1200 µg/mL for lead, 800 µg/mL for both Cobalt and Arsenate, 1200 µg/mL for Nickel, 1000 µg/ml for Copper and less than 600 µg/mL for other metals. Bacterial isolates from both sites A and B showed multiple heavy metal resistance. A total of 337 bacterial isolates contained plasmids and the incidence of plasmids was approximately 25-50% higher in bacteria isolated from site (B than that from site (A. These isolates were resistance to different antibiotics. Approximately, 61% of the bacterial isolates were able to assimilate insecticide, carbaryl, as a sole source of carbon and energy. However, the Citrobacter AA101 showed the best growth on carbaryl.

  15. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity.

    Directory of Open Access Journals (Sweden)

    Koen Illeghems

    Full Text Available This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly γ-Proteobacteria and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni. Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques.

  16. 醋酸菌中CRISPR位点的比较基因组学与进化分析%Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria

    Institute of Scientific and Technical Information of China (English)

    夏凯; 梁新乐; 李余动

    2015-01-01

    CRISPR (Clustered regularly interspaced short palindromic repeats)是近几年发现的一种广泛存在于细菌和古菌中,能够应对外源DNA干扰(噬菌体、病毒、质粒等),并提供免疫机制的重复序列结构。CRISPR系统通常由同向重复序列、前导序列、间隔序列和CRISPR相关蛋白组成。本研究以醋酸发酵中常见3个属醋杆菌属(Acetobacter)、葡糖醋杆菌属(Gluconacetobacter)和葡糖杆菌属(Gluconobacter)的48个菌株为研究对象,通过其基因组上CRISPR相关基因序列的生物信息学分析,探索CRISPR位点在醋酸菌中的多态性及其进化模式。结果表明48株醋酸菌中有32株存在CRISPR结构,大部分CRISPR-Cas结构属于type I-E和type I-C类型。除了葡糖杆菌属外,葡糖醋杆菌属和醋杆菌属中的部分菌株含有 II 类的 CRISPR-Cas 系统结构(CRISPR-Cas9)。来自不同属菌株的CRISPR结构中重复序列具有较强的保守性,而且部分菌株CRISPR结构中的前导序列具有保守的motif (与基因的转录调控有关)及启动子序列。进化树分析表明cas1适合用于醋酸菌株的分类,而不同菌株间 cas1基因的进化与重复序列的保守性相关,预示它们可能受相似的功能选择压力。此外,间隔序列的数量与噬菌体数量及插入序列(Insertion sequence, IS)数量有正相关的趋势,说明醋酸菌在进化过程中可能正不断受新的外源DNA入侵。醋酸菌中CRISPR结构位点的分析,为进一步研究不同醋酸菌株对醋酸胁迫耐受性差异及其基因组稳定性的分子机制奠定了基础。%The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immun-ity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic ac-id bacteria (AAB) play an

  17. 循环喷淋发酵制备醋酸工艺的优化%Optimization of Preparation Technology of Acetic Acid by Circulating Spraying Fermentation

    Institute of Scientific and Technical Information of China (English)

    杨勇; 汪超; 徐梅; 黄红霞; 康旭; 徐宁; 李冬生

    2013-01-01

    Acetic acid bacteria(Acetobacter sp.) was used to ferment vinegar.The fermentation rate and vinegar yield of static fermentation,shake flask fermentation and circulation spraying fermentation were compared.And the fermentation conditions of circulation spraying fermentation were optimized by single factor experiments and orthogonal test.The results showed that compared with static fermentation and shake flask fermentation,circulation spraying fermentation could shorten the fermentation time while increase the fermentation yield.The optimum circulation spraying fermentation conditions were using corn cob as fermentation bed carrier; fermentation time,24 h; fermentation temperature,32 ℃; pumping capacity,2.7 L/min; inoculum concentration,75 g/L; volume fraction of ethanol,8%.Yield of vinegar could be up to 1.93 g/100 mL under these conditions.%采用醋酸菌(A cetobacter sp.)发酵生产醋酸,考察了静置发酵、摇床发酵和循环喷淋发酵3种发酵方式对发酵速度和醋酸产量的影响,设计单因素试验和正交试验优化循环喷淋发酵的工艺条件.结果表明,与静置发酵和摇床发酵相比,循环喷淋发酵可以有效缩短发酵时间,提高醋酸产量.优化的循环喷淋发酵条件为玉米芯作菌床载体、发酵时间24h、发酵温度32℃、发酵液流速2.7 L/min、接种量75 g/L、乙醇体积分数8%,醋酸产量可达1.93 g/100 mL.

  18. Study on Technology of Composite Fruit Vinegar of Apple and Pomelo%苹果柚子复合果醋的研制

    Institute of Scientific and Technical Information of China (English)

    王乃馨; 陈尚龙; 李超; 吕可愉; 钱浩

    2016-01-01

    以苹果和柚子为原料,选用安琪酵母、醋酸菌作为发酵菌种进行发酵酿造苹果柚子复合果醋,对原汁配比、酒精发酵、醋酸发酵及果醋调配等工艺进行研究。实验结果表明:苹果汁和柚子汁最佳混合体积比为1∶1;酒精发酵的最佳工艺参数为初始糖度16%、初始 pH 值4.4、接种量8%、发酵温度32℃和发酵时间6天;醋酸发酵的最佳工艺参数为初始酒精含量8%,初始 pH 值5.2,接种量9%,发酵温度30℃和发酵时间6天;调配的最佳配方为原醋添加量30 mL、苹果汁添加量20 mL、柚子汁添加量20 mL和白砂糖添加量3 g/dL。%Compound fruit vinegar of apple and pomelo is produced by liquid fermentation using Anqi yeast and acetobacter as strains.The ratio of materials,alcohol and acetic acid fermentation and fruit vinegar blending process are studied.The results show that the best ratio of apple juice and pomelo juice is 1∶1;the optimal technological parameters of alcohol fermentation are initial sugar content of 16%,initial pH value of 4.4,inoculation amount of 8%,fermentation temperature of 32 ℃ and fermentation time of 6 days;the optimal technological parameters of acetic acid fermentation are initial alcohol content of 8%,initial pH value of 5.2,inoculation amount of 9%,fermentation temperature of 30 ℃ and fermentation time of 6 days;the best formula is vinegar amount of 30 mL,apple juice amount of 20 mL,pomelo juice amount of 20 mL,sugar amount of 3 g/dL.

  19. The microbial ecology of wine grape berries.

    Science.gov (United States)

    Barata, A; Malfeito-Ferreira, M; Loureiro, V

    2012-02-15

    Grapes have a complex microbial ecology including filamentous fungi, yeasts and bacteria with different physiological characteristics and effects upon wine production. Some species are only found in grapes, such as parasitic fungi and environmental bacteria, while others have the ability to survive and grow in wines, constituting the wine microbial consortium. This consortium covers yeast species, lactic acid bacteria and acetic acid bacteria. The proportion of these microorganisms depends on the grape ripening stage and on the availability of nutrients. Grape berries are susceptible to fungal parasites until véraison after which the microbiota of truly intact berries is similar to that of plant leaves, which is dominated by basidiomycetous yeasts (e.g. Cryptococcus spp., Rhodotorula spp. Sporobolomyces spp.) and the yeast-like fungus Aureobasidium pullulans. The cuticle of visually intact berries may bear microfissures and softens with ripening, increasing nutrient availability and explaining the possible dominance by the oxidative or weakly fermentative ascomycetous populations (e.g. Candida spp., Hanseniaspora spp., Metschnikowia spp., Pichia spp.) approaching harvest time. When grape skin is clearly damaged, the availability of high sugar concentrations on the berry surface favours the increase of ascomycetes with higher fermentative activity like Pichia spp. and Zygoascus hellenicus, including dangerous wine spoilage yeasts (e.g. Zygosaccharomyces spp., Torulaspora spp.), and of acetic acid bacteria (e.g. Gluconobacter spp., Acetobacter spp.). The sugar fermenting species Saccharomyces cerevisiae is rarely found on unblemished berries, being favoured by grape damage. Lactic acid bacteria are minor partners of grape microbiota and while being the typical agent of malolactic fermentation, Oenococcus oeni has been seldom isolated from grapes in the vineyard. Environmental ubiquitous bacteria of the genus Enterobacter spp., Enterococcus spp., Bacillus spp

  20. Otimização da produção de nata (celulose bacteriana por fermentação em superfície

    Directory of Open Access Journals (Sweden)

    DANESI Eliane Dalva Godoy

    1998-01-01

    Full Text Available A nata de coco, alimento glicídico obtido por fermentação em superfície promovida por Acetobacter xylinum, é bastante difundida em alguns países asiáticos, principalmente nas Filipinas. Como meio de cultivo são utilizadas a água ou o leite de coco, produtos de baixo valor econômico e resíduos de processamento da fruta; há indicativos na literatura, entretanto, de que outros resíduos agro-industriais como soro de leite ou mesmo suco de frutas podem ser utilizados. A fim de avaliar a produção de nata para posteriores estudos visando o uso de meios alternativos, foi utilizado um meio de composição definida com o qual foi possível definir as condições de pH, de inóculo e de incubação, assim como observar a influência de açúcares e de ácidos no processo. Foram delineados experimentos usando-se ácido acético e glucose como variáveis de entrada visando a otimização do processo. As condições de fermentação incluíram correção do pH para 4, adição de 10% (v/v de inóculo ao meio e incubação a 28°C por 10 dias. As condições encontradas como ótimas em relação às concentrações iniciais dos nutrientes considerados foram 0,65 moles/l de ácido acético e 67,4 g/l de glucose, com o que se produz 7,107 g de nata por 250 ml de meio .

  1. Evaluation of health aspects of kojic acid in food.

    Science.gov (United States)

    Burdock, G A; Soni, M G; Carabin, I G

    2001-02-01

    Kojic acid is a fungal metabolite commonly produced by many species of Aspergillus, Acetobacter, and Penicillium. The Aspergillus flavus group has traditionally been used in the production of a number of foods, including miso (soybean paste), shoyu (soy sauce), and sake. Kojic acid is widely used as a food additive for preventing enzymatic browning, and in cosmetic preparations as a skin-lightening or bleaching agent. Because kojic acid is often produced during the fermentation of historically used dietary staples, it has a long history of consumption. Various types of compounds, such as glucose, sucrose, acetate, ethanol, arabinose, and xylose, have been used as carbon sources for kojic acid production. Different Aspergillus species are known to produce variable amounts of kojic acid. The mechanism of action of kojic acid is well defined and it has been shown to act as a competitive and reversible inhibitor of animal and plant polyphenol oxidases, xanthine oxidase, and D- and some L-amino acid oxidases. The structure of kojic acid indicates a relatively simple route of metabolism much like dietary hexoses. Acute or subchronic toxicity resulting from an oral dose has not been reported, but convulsions may occur if kojic acid is injected. Results of mutagenicity studies are mixed, but in the in vivo mammalian dominant lethal assay, kojic acid was proven negative. Continuous administration of high doses of kojic acid in mice resulted in induction of thyroid adenomas in both sexes. Kojic acid reversibly affects thyroid function primarily by inhibiting iodine uptake, leading to decreases in T3 and T4 and increase in TSH. Increased TSH from pituitary gland in turn stimulates thyroid hyperplasia. Several lines of evidence indicate that the proliferative effects of kojic acid on thyroid are not related to a genotoxic pathway. The risk of functional inhibition of iodine uptake and its metabolism (organification) and thyroid tumor induction by kojic acid in humans appears

  2. Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach.

    Science.gov (United States)

    Escalante, Adelfo; Giles-Gómez, Martha; Hernández, Georgina; Córdova-Aguilar, María Soledad; López-Munguía, Agustín; Gosset, Guillermo; Bolívar, Francisco

    2008-05-31

    In this study, the characterization of the bacterial community present during the fermentation of pulque, a traditional Mexican alcoholic beverage from maguey (Agave), was determined for the first time by a polyphasic approach in which both culture and non-culture dependent methods were utilized. The work included the isolation of lactic acid bacteria (LAB), aerobic mesophiles, and 16S rDNA clone libraries from total DNA extracted from the maguey sap (aguamiel) used as substrate, after inoculation with a sample of previously produced pulque and followed by 6-h fermentation. Microbiological diversity results were correlated with fermentation process parameters such as sucrose, glucose, fructose and fermentation product concentrations. In addition, medium rheological behavior analysis and scanning electron microscopy in aguamiel and during pulque fermentation were also performed. Our results showed that both culture and non-culture dependent approaches allowed the detection of several new and previously reported species within the alpha-, gamma-Proteobacteria and Firmicutes. Bacteria diversity in aguamiel was composed by the heterofermentative Leuconostoc citreum, L. mesenteroides, L. kimchi, the gamma-Proteobacteria Erwinia rhapontici, Enterobacter spp. and Acinetobacter radioresistens. Inoculation with previously fermented pulque incorporated to the system microbiota, homofermentative lactobacilli related to Lactobacillus acidophilus, several alpha-Proteobacteria such as Zymomonas mobilis and Acetobacter malorum, other gamma-Proteobacteria and an important amount of yeasts, creating a starting metabolic diversity composed by homofermentative and heterofermentative LAB, acetic and ethanol producing microorganisms. At the end of the fermentation process, the bacterial diversity was mainly composed by the homofermentative Lactobacillus acidophilus, the heterofermentative L. mesenteroides, Lactococcus lactis subsp. lactis and the alpha-Proteobacteria A. malorum. After

  3. Terrestrial research in Mars analogue environments

    Science.gov (United States)

    Osipov, G.

    Fatty acids (FA) content was measured by GC-MS SIM technique in Sulfide ores of present day (Mid-Atlantic Ridge and others) and ancient (Ural Paleocene, Russia) black smokers; Early Proterozoic kerites of Volyn; Siberian, Canadian and Antarctic permafrosts and also in rocks of East-European platform Achaean crystalline basement. Analysis was shown presence those and only those fatty acids which are specific to microorganisms. FA with 12 up 19 of carbon atoms are thought to be a bacterial biomass sign. 3-Hydroxy fatty acids also found in samples and are strong specific markers of gram-negative bacteria. Cultivation yield living bacteria in some cases. The East-European platform Achaean crystalline basement rocks opened by Vorotilov Deep Well (VDW) drilled through Puchezh-Katunski impact structure were studied within depths 2575 - 2805 m. 34 microbial lipid markers were detected by GC-MS and 22 species were identified. Bacteria of g. Bacillus reached 6,8 % in subsurface communities. However, members of gg. Clostridium (37,1 - 33,2 %) and Rhodococcus (27,6 - 33,7 %) were absolute dominants within studied depth interval. Some lipid patterns of kerite samples could be assessed to definite genera or, in special cases, to species of contemporary microorganisms. For instance, 2-hydroxylauric acid is specific to Pseudomonas putida group or Acinetobacter spp., and hydroxymyristic together with hydroxypalmitic are specific to P.cepacea and cyanobacteria. 3-hydroxystearic acid was known as component of Acetobacter diazothrophycus and Gloebacter violaceous cyanobacterium. 10-hydroxystearic acid associated with Nocardia spp., which oxidizes oleic acid in organic substrates. 10-methylhexadecanoic (10Me16) acid together with 10Me14, 10Me15 and 10Me17 analogues are markers of actinomycetes. Significant part of Black Smokers organic matter is probably biogenic. Fatty acid features strongly assigns it to bacterial, microeucariotic and planta cells. Par example 3-hydroxy acids are

  4. Genetic analysis on 16S rDNA of brucella%布鲁菌16S rDNA基因遗传分析

    Institute of Scientific and Technical Information of China (English)

    李克诚; 周邦谣; 夏菲

    2013-01-01

    目的 通过分析临床分离的布鲁菌、其他盐杆菌科细菌以及临床常见致病菌的16S rDNA基因片段的差异并构建16S rDNA系统发育树,为进一步研究布鲁菌打下基础.方法 PCR扩增临床分离株的16SrDNA并测序;从EMBL下载常见盐杆菌科细菌和临床上常见致病菌的16S rDNA序列.利用CLUSTALX和MEGA程序进行16S rDNA比对并构建系统发育树.结果 成功扩增了临床分离菌株的16S rDNA,得到测序结果,比对临床分离菌株和相关菌株后,发现了特异序列5’-ATCCCGGTCGCGGTTAGTGG-3';系统发育树表明不同种的布鲁菌间的距离非常接近;布鲁菌和醋菌属的进化距离较近,但是和其他的盐杆菌的进化距离较远.结论 在布鲁菌16S rDNA中存在特异序列5'-ATCCCGGTCGCGGTTAGTGG-3’,有可能作为探针来快速检测布鲁氏菌.%Objective To analyze and to compare the genetic characteristics of 16S rDNA gene of Brucella with other halobacteriaceae and pathogenic bacteria, and to construct phylogenetic tree to find the specific sequence. Methods 16s rDNA of Brucella isolated from clinical sample was amplified and sequenced, which was then compared with sequences of halobacteriaceae and other pathogenic bacteria downloaded from EM-BL. CLUSTALA and MEGA software were used for the comparison of the sequences and building of the phylogenetic tree. Results 16s rDNA was successfully amplified and sequenced. Meanwhile, a specific sequence of 5' -ATCCCGGTCGCGGTTAGTGG-3' was identified. Phylogenetic tree showed that the distance was very close among different species of Brucella and was also closer to acetobacter sp. . but was farther to other halobacteriaceae. Conclusions A specific sequence is present in 16S rDNA of brucella which could be used as a probe to detect Brucella.

  5. Study of fermentation process in yacon-passion fruit mixed vinegar%雪莲果西番莲复合果醋发酵工艺的研究

    Institute of Scientific and Technical Information of China (English)

    潘嫣丽; 黄友琴; 黄夏; 姜元欣; 梁荣慧; 朱其斌; 朱才

    2012-01-01

    Yacon and passion fruit were selected to make fermented yacon-passion fruit mixed vinegar by dry activate wine yeast and acetobacter in liquid fermentation. The ethanol fermentation, acetic acid fermentation and fruit vinegar purification conditions were studied to determine the best process. Results showed that the best ethanol fermentation condition is initial sugar content 14%, yeast inoculum 0.012% and fermentation temperature 28℃;The best acetic acid fermentation condition is fermentation temperature 34℃, ethanol content 8%vol, fermentation period 4d, vaccination content 4%. Diatomite content 0.06% yield a good purification rate and led to a transmittance rate 90.5%. Final product of yacon-passion fruit mixed vinegar is purified with a strong vinegar smell. It has all the delightful characteristic of both yacon and passion fruit.%以雪莲果和西番莲为原料,选用葡萄酒用活性干酵母、醋酸杆菌作为发酵菌种进行液体发酵酿造雪莲果西番莲复合果醋,对酒精发酵、醋酸发酵及果醋澄清等工艺进行研究,确定最佳加工工艺参数.结果表明:酒精发酵的最佳条件为:初始糖度14%,酵母菌接种量0.012%,发酵温度28℃;醋酸发酵的最佳条件为:发酵温度34℃、酒精度8%vol、发酵时间4d、接种量4%;硅藻土用量为0.06%,澄清效果较佳,透光率可达90.5%.酿制出来的雪莲果西番莲复合果醋澄清透亮,醋味浓郁,同时具有雪莲果和西番莲的特殊清香味.

  6. 猕猴桃果醋饮料的研制及成分分析%The Development of Vinegar Drink of Kiwifruit and Quality Analysis

    Institute of Scientific and Technical Information of China (English)

    刘延岭; 杨蕾; 蒋云刚; 董凤鹃; 刁正敏; 白琪

    2014-01-01

    以都江堰猕猴桃为原料,对猕猴桃果醋饮料的酿造工艺进行研究。通过单因素和正交试验,确定猕猴桃果醋酿造的最佳发酵工艺条件为:酒精发酵中,酵母菌接种量0.25%,发酵温度26℃,发酵时间8d;醋酸发酵中,醋酸菌接种量10%,初始酒精度6%,发酵时间8d。成品猕猴桃果醋 pH 为3.8,总酸(以醋酸计)≥4.5g/100mL,酒精度≤0.18%(v/v),总糖含量为12.0g/100mL,维生素C含量≥450mg/100mL,呈黄绿色,果味柔和,具有浓郁的醋香和猕猴桃特有芳香。%Kiwifruit as raw material,the brewing technology of vinegar was studied. The fermentation technology pa-rameters were optimized by single factor test and orthogonal test. The results indicated that the optimal technology conditions of alcoholic fermentation were: yeast inoculum 0.25%, fermentation period 8d at temperature 26℃, and these of acetic fermentation were: Acetobacter inoculum 10%, initial alcoholicity 6%, fermentation period 8d.The vinegar drink of kiwifruit looked pale yellow, taste nice and have rich nutritients. The vinegar pH=3.8, total acid≥4.5g/100mL, alcoholicity≤0.18%(v/v), total sugar=12.0g/100mL, vitamin C≥450mg/100mL.

  7. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  8. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene.

    Science.gov (United States)

    Trcek, Janja

    2005-10-01

    Acetic acid bacteria (AAB) are well known for oxidizing different ethanol-containing substrates into various types of vinegar. They are also used for production of some biotechnologically important products, such as sorbose and gluconic acids. However, their presence is not always appreciated since certain species also spoil wine, juice, beer and fruits. To be able to follow AAB in all these processes, the species involved must be identified accurately and quickly. Because of inaccuracy and very time-consuming phenotypic analysis of AAB, the application of molecular methods is necessary. Since the pairwise comparison among the 16S rRNA gene sequences of AAB shows very high similarity (up to 99.9%) other DNA-targets should be used. Our previous studies showed that the restriction analysis of 16S-23S rDNA internal transcribed spacer region is a suitable approach for quick affiliation of an acetic acid bacterium to a distinct group of restriction types and also for quick identification of a potentially novel species of acetic acid bacterium (Trcek & Teuber 2002; Trcek 2002). However, with the exception of two conserved genes, encoding tRNAIle and tRNAAla, the sequences of 16S-23S rDNA are highly divergent among AAB species. For this reason we analyzed in this study a gene encoding PQQ-dependent ADH as a possible DNA-target. First we confirmed the expression of subunit I of PQQ-dependent ADH (AdhA) also in Asaia, the only genus of AAB which exhibits little or no ADH-activity. Further we analyzed the partial sequences of adhA among some representative species of the genera Acetobacter, Gluconobacter and Gluconacetobacter. The conserved and variable regions in these sequences made possible the construction of A. acetispecific oligonucleotide the specificity of which was confirmed in PCR-reaction using 45 well-defined strains of AAB as DNA-templates. The primer was also successfully used in direct identification of A. aceti from home made cider vinegar as well as for

  9. Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir.

    Science.gov (United States)

    Walsh, Aaron M; Crispie, Fiona; Kilcawley, Kieran; O'Sullivan, Orla; O'Sullivan, Maurice G; Claesson, Marcus J; Cotter, Paul D

    2016-01-01

    Kefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides. Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. IMPORTANCE Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to understand

  10. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis

    Directory of Open Access Journals (Sweden)

    Demirci Ali

    2009-07-01

    Full Text Available Abstract Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, thermogravimetric analysis (TGA, and dynamic mechanical analysis (DMA. Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L that was 2.5-fold greater than the control (2.82 g/L. The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93% and similar crystal size (5.2 nm to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher Tmax compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to

  11. BIO-ORGANIC CHEMISTRY QUARTERLY REPORT. December 1961, January and February 1962

    Energy Technology Data Exchange (ETDEWEB)

    Various,

    1962-04-03

    Progress is reported in investigations on the polymerization of formaldehyde, ultraviolet irradiation of aqueous HC/sup 14/N, radiation chemistry of nucleic acid constituents, oxidation of free sugars and aldonic acid derivatives by Acetobacter suboxydans, preparation and isolation of C/sup 14/O/ sub 2/~ enzyme, metabolism of C/sup 14/-ribulose diphosphate by Nitrobacter agilis, C/sup 14/O/sub 2/ metabolism of Hordeum valgare seedlings during the development of the photosynthetic apparatus, location and chemical characterization of RNA in the chloroplasts of Spinacea oleracea, inhibition of dark bleaching by stroma extracts and by inert gases, ESR studies on chromatophores from Rhodospirillium rubrum and on quantasomes from spinach chloroplasts, and phthalocyanine manganese and etioporphyrin manganese complexes. (J.R.D.) It has been known for a hundred years that formaldehyde polymerizes to carbohydrate substances in alkaline media. Although the reaction has long attracted much attention, only recently has a detailed qualitative analysis of the products been carried out by chromatographic methods. We have started to re-examine this reaction by combining chromatography with radioactive tracer techniques in the hope of refining the quantitative aspects of the analysis. Our particular interest has been to develop methods for determining the relative proportions of ribose and ribulose in the mixtures of sugars formed in basic media, as well as under other polymerizing conditions. The finding of large amounts of these sugars might help to explain the occurrence of ribose as the only basic sugar in the fundamental replicating molecules--the nucleic acids. Formaldehyde is thought to have been present in the primitive reducing atmosphere which existed before life first appeared. The ribonucleic acids must have appeared in the constitution of reproducing systems at a very early stage in the development of living organisms. In this study, the polymerizations of formaldehyde

  12. Effects of 8 chemical and bacterial additives on the quality of corn silage.

    Science.gov (United States)

    Queiroz, O C M; Arriola, K G; Daniel, J L P; Adesogan, A T

    2013-09-01

    This project aimed to evaluate the effects 8 additives on the fermentation, dry matter (DM) losses, nutritive value, and aerobic stability of corn silage. Corn forage harvested at 31% DM was chopped (10mm) and treated with (1) deionized water (control); (2) Buchneri 500 (BUC; 1×10(5) cfu/g of Pediococcus pentosaceus 12455 and 4×10(5) cfu/g of Lactobacillus buchneri 40788; Lallemand Animal Nutrition, Milwaukee, WI); (3) sodium benzoate (BEN; 0.1% of fresh forage); (4) Silage Savor acid mixture (SAV: 0.1% of fresh forage; Kemin Industries Inc., Des Moines, IA); (5) 1×10(6) cfu/g of Acetobacter pasteurianus-ATCC 9323; (6) 1×10(6) cfu/g of Gluconobacter oxydans-ATCC 621; (7) Ecosyl 200T (1×10(5) cfu/g of Lactobacillus plantarum MTD/1; Ecosyl Products Inc., Byron, IL); (8) Silo-King WS (1.5×10(5) cfu/g of L. plantarum, P. pentosaceus and Enterococcus faecium; Agri-King, Fulton, IL); and (9) Biomax 5 (BIO; 1×10(5) cfu/g of L. plantarum PA-28 and K-270; Chr. Hansen Animal Health and Nutrition, Milwaukee, WI). Treated forage was ensiled in quadruplicate in mini silos at a density of 172 kg of DM/m(3) for 3 and 120 d. After 3 d of ensiling, the pH of all silages was below 4 but ethanol concentrations were least in BEN silage (2.03 vs. 3.24% DM) and lactic acid was greatest in SAV silage (2.97 vs. 2.51% DM). Among 120-d silages, additives did not affect DM recovery (mean=89.8% ± 2.27) or in vitro DM digestibility (mean=71.5% ± 0.63). The SAV silage had greater ammonia-N (0.85 g/kg of DM) and butyric acid (0.22 vs. 0.0% DM) than other treatments. In contrast, BEN and Silo-King silages had the least ammonia-N concentration and had no butyric acid. The BEN and A. pasteurianus silages had the lowest pH (3.69) and BEN silage had the least ethanol (1.04% DM) and ammonia nitrogen (0.64 g/kg DM) concentrations, suggesting that fermentation was more extensive and protein degradation was less in BEN silages. The BUC and BIO silages had greater acetic acid concentrations than

  13. Plantas de cana-de-açúcar cultivadas in vitro com antibióticos Sugar cane plants cultivated in vitro with antibiotics

    Directory of Open Access Journals (Sweden)

    Virgínia Maria Tenório Sabino Donato

    2005-02-01

    Full Text Available A contaminação por microrganismos é conhecida como um dos mais sérios problemas da cultura de tecidos de plantas, especialmente, em espécies tropicais. Com o objetivo de eliminar bactérias endofíticas, propágulos das cultivares de cana-de-açúcar Co 997, SP 70-1143 e ápices caulinares isolados de plantas, provenientes de semente botânica biparental (RB 818004 x SP 71-6949, foram cultivados in vitro, em meios de cultivo com antibióticos. No primeiro experimento, propágulos das cultivares Co 997 e SP 70-1143 foram cultivados em meio de cultivo contendo 200 e 300 mg.L-1 de amoxicilina e cefatoxima sódica durante 30 dias. Num segundo experimento, utilizou-se apenas a amoxicilina em concentrações mais elevadas ( 300, 600 e 1000 mg.L-1, com as mesmas plantas utilizadas no primeiro experimento, permanecendo em cultivo por mais 30 dias. No terceiro experimento foram utilizados ápices caulinares isolados de plantas provenientes de semente botânica biparental (RB 818004 x SP 71-6949, cultivados em meio de cultivo contendo 1000 mg.L-1 de amoxicilina, por um período de 120 dias. Após estes períodos de cultivo, testes de infecção e observações histológicas revelaram que o isolamento do ápice caulinar associado ao uso de antibiótico no meio de cultivo não foi suficiente para eliminar as bactérias endofíticas.Contamination by microrganism is known as one of the most serious problems in plant tissue cultures, especially, of tropical species. Most of the time, this contamination is derived from endophytic bacteria. With the objective of eliminating the endophytic bacteria Acetobacter diazotrophicus and Herbaspirillum spp., propagules of the cultivars Co 997, SP 70-1143 and shoot tips of sugarcane plants, from botanical biparental seed (RB 818004 x SP 71-6949 were cultivated in vitro in culture media with antibiotic. In the first experiment, propagules of the cultivars Co 997 and SP 70-1143 were cultivated in culture media with 200

  14. Chemical and microbiological analysis of red wines during storage at different temperatures

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2014-11-01

    for one wine sample. Microbiological parameters were observed during wine storing after filtration through different microfilters. We determined the total count of bacteria (TCB, Acetobacter cells, Lactobacillus cells, yeast and molds in wine samples with classic plate dilution method. The highest quality wines from microbiological properties were wines from 2013, which was filtered through microfilter and aseptically filled into the bottles, but wines from 2011 was filtered through cross-flow filter and samplesdirectly collected from the storage tanks without microfiltration.

  15. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.

    Science.gov (United States)

    Steenhoudt, O; Vanderleyden, J

    2000-10-01

    Azospirillum represents the best characterized genus of plant growth-promoting rhizobacteria. Other free-living diazotrophs repeatedly detected in association with plant roots, include Acetobacter diazotrophicus, Herbaspirillum seropedicae, Azoarcus spp. and Azotobacter. Four aspects of the Azospirillum-plant root interaction are highlighted: natural habitat, plant root interaction, nitrogen fixation and biosynthesis of plant growth hormones. Each of these aspects is dealt with in a comparative way. Azospirilla are predominantly surface-colonizing bacteria, whereas A. diazotrophicus, H. seropedicae and Azoarcus sp. are endophytic diazotrophs. The attachment of Azospirillum cells to plant roots occurs in two steps. The polar flagellum, of which the flagellin was shown to be a glycoprotein, mediates the adsorption step. An as yet unidentified surface polysaccharide is believed to be essential in the subsequent anchoring phase. In Azoarcus sp. the attachment process is mediated by type IV pili. Nitrogen fixation structural genes (nif) are highly conserved among all nitrogen-fixing bacteria, and in all diazotrophic species of the class of proteobacteria examined, the transcriptional activator NifA is required for expression of other nif genes in response to two major environmental signals (oxygen and fixed N). However, the mechanisms involved in this control can vary in different organisms. In Azospirillum brasilense and H. seropedicae (alpha- and beta-subgroup, respectively), NifA is inactive in conditions of excess nitrogen. Activation of NifA upon removal of fixed N seems to involve, either directly or indirectly, the signal transduction protein P(II). The presence of four conserved cysteine residues in the NifA protein might be an indication that NifA is directly sensitive to oxygen. In Azotobacter vinelandii (gamma-subgroup) nifA is cotranscribed with a second gene nifL. The nifL gene product inactivates NifA in response to high oxygen tension and cellular

  16. EFECTOS BENEFICOS DE BACTERIAS RIZOSFÉRICAS EN LA DISPONIBILIDAD DE NUTRIENTES EN EL SUELO Y LA ABSORCIÓN DE NUTRIENTES POR LAS PLANTAS A REVIEW ON BENEFICIAL EFFECTS OF RHIZOSPHERE BACTERIA ON SOIL NUTRIENT AVAILABILITY AND PLANT NUTRIENT UPTAKE

    Directory of Open Access Journals (Sweden)

    Nelson Walter Osorio Vega

    2007-06-01

    participan en el biocontrol de patógenos de plantas. Debido a estos beneficios sobre la nutrición y el crecimiento vegetal estas bacterias rizosfericas han sido llamadas “rizobacterias promotoras del crecimiento vegetal” (PGPR, por sus siglas en inglés.This paper is a review of the benefits of rhizosphere bacteria on plant nutrition. The interaction between plant and phosphate-solubilizing- bacteria is explained in more detail and used as model to illustrate the role that rhizosphere bacteria play on soil nutrient availability. Environmental conditions of rhizosphere and mycorrhizosphere are also discussed. Plants can release carbohydrates, aminoacids, lipids, and vitamins trough their roots to stimulate microorganisms in the soil. The soil volume affected by these root exudates, aproximately 2 mm from the root surface, is termed rhizosphere. Rhizosphere bacteria participate in the geochemical cycling of nutrients and determine their availability for plants and soil microbial community. For instance, in the rhizosphere there are organisms able to fix N2 forming specialized structures (e.g., Rhizobium and related genera or simply establishing associative relationships (e.g. Azospirillium, Acetobacter. On the other hand, bacterial ammonifiers and nitrifiers are responsible for the conversion of organic N compounds into inorganic forms (NH4+ and NO3- which are available for plants. Rhizosphere bacteria can also enhance the solubility of insoluble minerals that control the availability of phosphorus (native or applied using for that organic acids or producing phosphatases that act on organic phosphorus pools. The availability of sulfur, iron and manganese are also affected by redox reactions carried out by rhizosphere bacteria. Likewise, chelating agents can control the availability of micronutrients and participate in mechanisms of biocontrol of plant pathogens. Due to these and other benefits on plant growth, some rhizosphere bacteria have been called Plant Growth

  17. The H2O2-H2O Hypothesis: Extremophiles Adapted to Conditions on Mars?

    Science.gov (United States)

    Houtkooper, Joop M.; Schulze-Makuch, Dirk

    2007-08-01

    The discovery of extremophiles on Earth is a sequence of discoveries of life in environments where it had been deemed impossible a few decades ago. The next frontier may be the Martian surface environment: could life have adapted to this harsh environment? What we learned from terrestrial extremophiles is that life adapts to every available niche where energy, liquid water and organic materials are available so that in principle metabolism and propagation are possible. A feasible adaptation mechanism to the Martian surface environment would be the incorporation of a high concentration of hydrogen peroxide in the intracellular fluid of organisms. The H2O2-H2O hypothesis suggests the existence of Martian organisms that have a mixture of H2O2 and H2O instead of salty water as their intracellular liquid (Houtkooper and Schulze-Makuch, 2007). The advantages are that the freezing point is low (the eutectic freezes at 56.5°C) and that the mixture is hygroscopic. This would enable the organisms to scavenge water from the atmosphere or from the adsorbed layers of water molecules on mineral grains, with H2O2 being also a source of oxygen. Moreover, below its freezing point the H2O2-H2O mixture has the tendency to supercool. Hydrogen peroxide is not unknown to biochemistry on Earth. There are organisms for which H2O2 plays a significant role: the bombardier beetle, Brachinus crepitans, produces a 25% H2O2 solution and, when attacked by a predator, mixes it with a fluid containing hydroquinone and a catalyst, which produces an audible steam explosion and noxious fumes. Another example is Acetobacter peroxidans, which uses H2O2 in its metabolism. H2O2 plays various other roles, such as the mediation of physiological responses such as cell proliferation, differentiation, and migration. Moreover, most eukaryotic cells contain an organelle, the peroxisome, which mediates the reactions involving H2O2. Therefore it is feasible that in the course of evolution, water-based organisms

  18. Biogenic hydrogen peroxide as a possible adaptation of life on Mars: the search for biosignatures

    Science.gov (United States)

    Houtkooper, J. M.; Schulze-Makuch, D.

    2007-08-01

    The hypothesis that putative Martian organisms incorporate H2O2 into their intracellular liquids (Houtkooper and Schulze-Makuch, 2007) has significant implications, as it explains the Viking observations quite well; it provides a functional adaptation to Martian environmental conditions; and, it is feasible as an adaptation based on the biochemistry of terrestrial organisms. It would explain many of the puzzling Viking observations such as (1) the lack of organics detected by GC-MS, (2) the lack of detected oxidant(s) to support a chemical explanation, (3) evolution of O2 upon wetting (GEx experiment), (4) limited organic synthesis reactions (PR experiment), and (5) the gas release observations made (LR experiment). An intracellular liquid containing a high concentration of H2O2 has advantages such as providing a low freezing point, a source of oxygen, and hygroscopicity, allowing an organism to obtain water vapor from the Martian atmosphere or from the adsorbed layers of water molecules on mineral grains. Perhaps surprisingly, H2O2 is used by many terrestrial organisms for diverse purposes, e.g., metabolism (Acetobacter peroxidans), as defense mechanism (Bombardier beetle), and also to mediate diverse physiological responses such as cell proliferation, differentiation, and migration. The detection of H2O2-containing organisms may well suffer from the same problems as the Viking experiments: Because of the excess oxidative contents, as derived from the GEx experiment, the organisms may decompose completely into H2O, CO2, O2 and N2. This can happen when exposed to an excess of water vapor (through hyperhydration), too high a temperature or a combination of both. Therefore, the addition of too much water vapor may be fatal. Moreover, employing pyrolysis in order to detect organic molecules may result in the organisms autooxidizing completely. Although the instrument suite aboard the Phoenix Lander offers some interesting possibilities (Schulze-Makuch and Houtkooper