WorldWideScience

Sample records for acetic aldehyde

  1. Acetic acid assisted cobalt methanesulfonate catalysed chemoselective diacetylation of aldehydes

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Zhi Guo Song; Hong Gong; Heng Jiang

    2008-01-01

    Cobalt methanesulfonate in combination with acetic acid catalysed the chemoselective diacetylation of aldehyde with acetic anhydride at room temperature under solvent free conditions. After reaction, cobalt methanesulfonate can be easily recovered and mused many times. The reaction was mild and efficient with good to high yields.

  2. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes.

    Science.gov (United States)

    Denmark, Scott E; Chung, Won-Jin

    2008-06-20

    A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.

  3. The use of anhydrous CeCl{sub 3} as a recyclable and selective catalyst for the acetalization of aldehydes and ketones

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Claudio C.; Mendes, Samuel R.; Ziembowicz, Francieli I. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica; Lenardao, Eder J.; Perin, Gelson [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Quimica e Geociencias

    2010-07-01

    An efficient, clean, chemoselective and solvent-free method for the synthesis of ketone and aldehyde dimethyl acetals was developed using trimethyl orthoformate and commercially available anhydrous CeCl{sub 3} as a recyclable catalyst. The method is general and affords the protected carbonyl compounds in good yields and under mild conditions, including aryl and alkyl ketones and activated aldehydes. The catalyst could be utilised directly for 3 cycles, without significant loss of activity. (author)

  4. The bifunctional aldehyde-alcohol dehydrogenase controls ethanol and acetate production in Entamoeba histolytica under aerobic conditions.

    Science.gov (United States)

    Pineda, Erika; Encalada, Rusely; Olivos-García, Alfonso; Néquiz, Mario; Moreno-Sánchez, Rafael; Saavedra, Emma

    2013-01-16

    By applying metabolic control analysis and inhibitor titration we determined the degree of control (flux control coefficient) of pyruvate:ferredoxin oxidoreductase (PFOR) and bifunctional aldehyde-alcohol dehydrogenase (ADHE) over the fluxes of fermentative glycolysis of Entamoeba histolytica subjected to aerobic conditions. The flux-control coefficients towards ethanol and acetate formation determined for PFOR titrated with diphenyleneiodonium were 0.07 and 0.09, whereas for ADHE titrated with disulfiram were 0.33 and -0.19, respectively. ADHE inhibition induced significant accumulation of glycolytic intermediates and lower ATP content. These results indicate that ADHE exerts significant flux-control on the carbon end-product formation of amoebas subjected to aerobic conditions. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Regioselective Addition of Silyl Enolates to α,β-Unsaturated Aldehyde and its Acetal Catalyzed by MgI2 Etherate

    Institute of Scientific and Technical Information of China (English)

    Xing Xian ZHANG; Wei Dong Z. LI

    2003-01-01

    Regioselective addition reactions of silyl enolates to α,β -unsaturated aldehyde and its acetal catalyzed by MgI2 etherate give aldol adducts (1, 2-addition) preferentially over Michael adducts (1, 4-addition). This unique regioselectivity is distinctly different with other Lewis acidic promoters and may be attributed to the high oxyphilicity of IMg+.

  6. Kinetics and Mechanistic Approach to the Benzimidazolium fluorochromate Oxidation of Indole-2-aldehyde in various percentages of Acetic acid and Water mixture

    Directory of Open Access Journals (Sweden)

    V. Saleem Malik

    2015-03-01

    Full Text Available The kinetics of benzimidazolium fluorochromate (BIFC catalysed oxidation of indole-2-aldehyde (2-InA with perchloric acid in 50% acetic acid–50% water solvent mixture at 303 K has been followed spectrophotometrically. The reaction is first order with respect to [BIFC], [2-InA] and [H+] and the reaction is catalyzed by hydrogen ions. A suitable mechanism has been proposed.

  7. Enolizable Carbonyls and N,O-Acetals: A Rational Approach for Room-Temperature Lewis Superacid-Catalyzed Direct α-Amidoalkylation of Ketones and Aldehydes.

    Science.gov (United States)

    Touati, Bahria; El Bouakher, Abderrahman; Taillier, Catherine; Othman, Raja Ben; Trabelsi-Ayadi, Malika; Antoniotti, Sylvain; Duñach, Elisabet; Dalla, Vincent

    2016-04-18

    An efficient catalytic room-temperature direct α-amidoalkylation of carbonyl donors, that is, ketones and aldehydes with unbiased N,O-acetals, is described. Sn(NTf2 )4 is an optimal catalyst to promote this challenging transformation at low loading and the reaction shows promising scope. A comprehensive and rational evaluation of this reaction has led to the establishment of an empirical scale of nucleophilic reactivity for a broad set of ketones that should be helpful in the synthetic design and development of carbonyl α-functionalization methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Photolabile acetals as profragrances: the effect of structural modifications on the light-induced release of volatile aldehydes on cotton.

    Science.gov (United States)

    Trachsel, Alain; Buchs, Barbara; Herrmann, Andreas

    2016-09-31

    Because volatile compounds evaporate from surfaces that are usually exposed to daylight, photoresponsive delivery systems are particularly suitable to control their release. In the present study, we investigated 4,4-diphenyl-4H-benzo[d][1,3]dioxins as profragrances for the light-induced delivery of aldehydes in functional perfumery. The efficiency of fragrance release was investigated on cotton after direct and indirect surface deposition from a fabric softening formulation as a function of the substitution pattern of the profragrance structure. Dynamic headspace analysis above the cotton surface demonstrated that the structure of the profragrance had a much larger effect on the fragrance release than did the amount of deposition on the target surface. Although some trends observed for the photolysis in solution also applied to the reaction on cotton, it is not generally possible to predict the photochemical behaviour of structurally different precursors on surfaces from their solution properties. The fact that the present system performed on a dry surface makes it an interesting light-triggered delivery vehicle for other classes of bioactive volatile compounds, such as pheromones or agrochemicals.

  9. Unraveling the Concerted Reaction Mechanism of the Noncatalyzed Mukaiyama Reaction between C,O,O-Tris(trimethylsilyl)ketene Acetal and Aldehydes Using Density Functional Theory.

    Science.gov (United States)

    Hadj Mohamed, Slim; Trabelsi, Mahmoud; Champagne, Benoît

    2016-07-21

    The uncatalyzed Mukaiyama aldol reaction between C,O,O-tris(trimethylsilyl)ketene acetal and aldehydes bearing alkyl, vinyl, and aromatic substituents has been studied theoretically using density functional theory with the M06-2X exchange-correlation functional. These DFT calculations mostly demonstrate that (i) the syn product is both kinetically and thermodynamically favored, (ii) the diastereoselectivity of the uncatalyzed reaction is larger than observed for the reaction catalyzed by HgI2 and it is inverted with respect to the latter, (iii) solvents with larger dielectric constants increase the activation barrier but reduce the diastereoselectivity, (iv) the concerted reaction is preferred over the stepwise reaction, and (v) the OSiMe3 group in geminal lowers the activation barrier and increases the energy of reaction. Analyzing the concerted mechanism unravels four types of cyclic transition states, two pro-anti and two pro-syn. Then, the relative energy of the most stable transition state of each type as well as of the corresponding anti and syn products shows that the syn reaction path is located at lower Gibbs enthalpy than the anti reaction path for all substituents.

  10. Insights into Stereoselective Aminomethylation Reaction of α,β-Unsaturated Aldehyde with N,O-Acetal via N-Heterocyclic Carbene and Brønsted Acid/Base Cooperative Organocatalysis.

    Science.gov (United States)

    Wang, Yang; Tang, Mingsheng; Wang, Yanyan; Wei, Donghui

    2016-07-01

    A theoretical investigation has been performed to interrogate the mechanism and stereoselectivities of aminomethylation reaction of α,β-unsaturated aldehyde with N,O-acetal, which is initiated by N-heterocyclic carbene and Brønsted acid (BA). The calculated results disclose that the reaction contains several steps, i.e., formation of the actual catalysts NHC and Brønsted acid Et3N·H(+) coupled with activation of C-O bond of N,O-acetal, nucleophilic attack of NHC on α,β-unsaturated aldehyde, formation of Breslow intermediate, β-protonation for the formation of enolate intermediate, nucleophilic addition on the Re/Si face to enolate by the activated iminium cation, esterification coupled with regeneration of Et3N·H(+), and dissociation of NHC from product. Addition on the prochiral face of enolate should be the stereocontrolling step, in which the chiral α-carbon is formed. Furthermore, NBO, GRI, and FMO analyses have been performed to explore the roles of catalysts and origin of stereoselectivity. Surprisingly, the added Brønsted base (BB) Et3N plays an indispensable role in the esterification process, indicating the reaction proceeds under NHC-BA/BB multicatalysis rather than NHC-BA dual catalysis proposed in the experiment. This theoretical work provides a case on the exploration of the special roles of the multicatalysts in NHC chemistry, which is valuable for rational design on new cooperative organocatalysis.

  11. 功能化离子液体在室温下催化醛(酮)与二元醇的缩合反应%Acetalization of aldehydes (ketones) with diols catalyzed by functional ionic liquids under room-temperature

    Institute of Scientific and Technical Information of China (English)

    谢毅; 方东

    2009-01-01

    采用功能化离子液体1-甲基-3-丙磺酸基咪唑盐作为溶剂/催化剂双功能体系,通过探针反应,固定原料环己酮与离子液体催化剂的摩尔比为50∶1进行工艺参数的优化,得到优化工艺条件为:n(环己酮)∶n(1,2-丙二醇)=1∶1.5,在20℃条件下反应0.1 h可以得到缩合产物,转化率大于97%.研究了该催化剂对其他醛(酮)与二元醇的缩合反应的催化性能,结果表明,该工艺无需有机溶剂及脱水剂,反应结束产物与催化体系分层,通过倾析便可得到产物,简化了分离过程且离子液体可以循环使用.%Some functional ionic liquids (FILs) composed of 1-methyl-3-propane sulfo-imidazolium salts were synthesized and used as solvent-catalyst dual system for acetalization of aldehydes (ketones) with diols. The model reaction was carried out based upon molar ratio of raw material cyclohexanone and the FILs catalyst as 50: 1. The optimized conditions of the condensation reaction were identified as : 1 : 1.5 molar ratio of cyclohexanone and 1,2 - propanediol, under reaction temperature 20℃ for 0.1 h. The conversion achieves 97% and the reaction process is free of any organic solvent and water stripping agent. The condensation reactions of the other aldehydes (ketones) with other diols were also explored. After completion of the reaction, the product can be separated from the catalyst simply by decantation, and the catalyst can be recycled and reused for several times without noticeable decreasing of activity.

  12. Scientific Opinion on the safety and efficacy of primary aliphatic saturated or unsaturated alcohols/aldehydes/acids/acetals/esters with a second primary, secondary or tertiary oxygenated functional group including aliphatic lactones (chemical group 9 when used as flavourings for all animal species

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2012-10-01

    Full Text Available

    Chemical group 9 consists of primary aliphatic saturated or unsaturated alcohols/aldehydes/acids/acetals/esters with a second primary, secondary or tertiary oxygenated functional group including aliphatic lactones, of which 30 are currently authorised for use as flavours in food. The FEEDAP Panel was unable to perform an assessment of 2-oxopropanal because of issues related to the purity of the compound. The FEEDAP Panel concludes that lactic acid, succinic acid, fumaric acid, 4-oxovaleric acid, ethyl lactate, butyl lactate, butyl-O-butyryllactate, hex-3-enyl lactate, hexyl lactate, ethyl acetoacetate, ethyl 4-oxovalerate, diethylsuccinate and diethyl malonate are considered to be safe for all animal species at the use levels proposed when used as feed flavourings; octano-1,4-lactone, nonano-1,4-lactone, decano-1,4-lactone and undecano-1,4-lactone are safe at 20 mg/kg complete feed; butyro-1,4-lactone, pentano-1,4-lactone, hexano-1,4-lactone, heptano-1,4-lactone, octano-1,5-lactone, nonano-1,5-lactone, decano-1,5-lactone and undecano-1,5-lactone at 5 mg/kg complete feed; dodecano-1,4-lactone, dodecano-1,5-lactone, tetradecano-1,5-lactone, and pentadecano-1,15-lactone at a maximum of 1.5 mg/kg complete feed for cattle, salmonids and non food producing animals and of 1 mg/kg complete feed for pigs and poultry. No safety concern was identified for the consumer from the use of compounds belonging to CG 9 up to the highest safe level in feedingstuffs for all animal species. All compounds should be considered as irritants to skin, eyes and respiratory tract, and as skin sensitizers. The compounds do not pose a risk to the environment when used at concentrations considered safe for the target species. Since all compounds are used in food as flavourings, no further demonstration of efficacy is necessary.

  13. Alcohol, Aldehydes, Adducts and Airways.

    Science.gov (United States)

    Sapkota, Muna; Wyatt, Todd A

    2015-11-05

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  14. Chemoselective Preparation of 1,1-Diacetates from Aldehydes, Mediated by a Keggin Heteropolyacid Under Solvent Free Conditions at Room Temperature

    Directory of Open Access Journals (Sweden)

    G. Romanelli

    2007-01-01

    Full Text Available A simple, general and efficient method has been developed for the conversion of aldehydes to 1,1-diacetates using acetic anhydride, a catalytic amount of non commercial Keggin heteropolyacid (H6 PalMo11O40 (1% mol in solvent free conditions at room temperature. Aromatic and aliphatic, simple and conjugated aldehydes were protected with excellent yields.

  15. Microwave Irradiated Reactions of N-Phenacylpyridinium Chloride with Aromatic Aldehydes and Ketones

    Institute of Scientific and Technical Information of China (English)

    Ping WU; Xi Mei CAI; Rong YAO; Chao Guo YAN

    2006-01-01

    In the system of ammonium acetate and acetic acid and under microwave irradiation,N-phenacylpyridinium chloride 1 reacted with chalcone 2 to give 2,4,6-triarylpyrididnes 3a-g in high yields. 3a-g can also be prepared from one-pot reaction of 1 with aromatic aldehydes 4 and substituted acetophenones 5. Under the same conditions 1 can also react with pyridinecar boxaldehyde 6a-c and acetophenone to yield bipyridine derivatives 7a-c. 1 reacted with aromatic aldehyde and cyclohexanone 6 to yield 2,4-diaryltetrahydroquinolines 8a-d. At last 1 reacted with aromatic aldehydes to give 2,4,6-triarylpyrimidine 9a-i. The structure of the products was characterized with 1H NMR and IR and mass spectroscopy.

  16. MICROWAVE-ASSISTED PREPARATION OF 1-BUTYL-3-METHYLIMIDAZOLIUM TETRACHLOROGALLATE AND ITS CATALYTIC USE IN ACETAL FORMATION UNDER MILD CONDITIONS

    Science.gov (United States)

    1-Butyl-3-methylimidazolium tetrachlorogallate, [bmim][GaCl4], prepared via microwave-assisted protocol, is found to be an active catalyst for the efficient acetalization of aldehydes under mild conditions.

  17. Chromate reduction by rabbit liver aldehyde oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Banks, R.B.; Cooke, R.T. Jr.

    1986-05-29

    Chromate was reduced during the oxidation of 1-methylnicotinamide chlorine by partially purified rabbit liver aldehyde oxidase. In addition to l-methylnicotinamide, several other electron donor substrates for aldehyde oxidase were able to support the enzymatic chromate reduction. The reduction required the presence of both enzyme and the electron donor substrate. The rate of the chromate reduction was retarded by inhibitors or aldehyde oxidase but was not affected by substrates or inhibitors of xanthine oxidase. These results are consistent with the involvement of aldehyde oxidase in the reduction of chromate by rabbit liver cytosolic enzyme preparations.

  18. Synthesis of Discodermolide Subunits by S(E)2' Addition of Nonracemic Allenylstannanes to Aldehydes.

    Science.gov (United States)

    Marshall, James A.; Lu, Zhi-Hui; Johns, Brian A.

    1998-02-01

    Three subunits, 15, 29, and 34, of the immunosuppressant discodermolide were prepared starting from (S)-3-[(tert-butyldimethylsilyl)oxy]-2-methylpropanal ((S)-1) and the enantioenriched allenylstannanes (P)-2a, (P)-2b, and (P)-31. The route to 15 involved BF(3)-promoted addition of stannane (P)-2a to aldehyde (S)-1 which afforded the syn,syn-homopropargylic alcohol adduct 3 in 97% yield. The derived p-methoxybenzylidene acetal 5 was treated with Red-Al to effect cleavage of the pivalate and reduction of the double bond leading to the (E)-allylic alcohol 6. Sharpless epoxidation and subsequent addition of Me(2)CuCNLi(2) yielded the syn,syn,syn,anti stereopentad, diol 8. Protection of the secondary alcohol and oxidation of the primary gave aldehyde 12, which was treated with the alpha-bromo allylsilane 13 and CrCl(2), followed by NaH to effect elimination to the diene 15. A similar sequence was employed to prepare aldehyde 29. In this case aldehyde (S)-1 was converted to the anti,syn-homopropargylic alcohol 20 by treatment with the allenyl indium reagent formed in situ from allenylstannane (P)-2b and InBr(3). Epoxy alcohol 24, prepared from alcohol 20 by the above-described sequence, was reduced with Red-Al to afford diol 25. Protection of the secondary alcohol and oxidation of the primary completed the synthesis of 29. The anti,syn-homopropargylic alcohol 32 was obtained through addition of the allenic indium reagent, from allenylstannane (P)-31, to aldehyde (S)-1. Protection of the derived diol 33 as the p-methoxybenzylidene acetal afforded the third subunit, acetylene 34. Addition of the lithio derivative of 34 to aldehyde 29 gave alcohol 35 with the carbinyl stereochemistry needed for C7 of discodermolide as the major product.

  19. Organic acids and aldehydes in rainwater in a northwest region of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pena, R.M.; Garcia, S.; Herrero, C. [Universidad de Santiago de Compostela, Lugo (Spain). Departamento de Quimica Analitica, Nutricion y Bromatologia

    2002-11-01

    During a 1 year period, measurements of carboxylic acids and aldehydes were carried out in rainwater samples collected at nine different sites in NW Spain surrounding a thermal power plant in order to determine concentration levels and sources. In addition, certain major ions (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}) were also determined. Aldehyde and carboxylic acid concentration patterns and their effects on rainwater composition concerning temporal, seasonal and spatial variations were evaluated. Among carboxylic acids, formic and acetic were predominant (VWA 7.0 and 8.3 {mu}M), while formaldehyde and acroleine were the dominant aldehydes (VWA 0.42 and 1.25 {mu}M). Carboxylic acids were estimated to account for 27.5% of the total free acidity (TFA), whereas sulphuric and nitric acid accounted for 46.2% and 26.2%, respectively. Oxalic acid was demonstrated to be an important contributing compound to the acidification in rainwater representing 7.1% of the TFA. The concentration of aldehydes and carboxylic acids, which originated mainly from biogenic emissions in the area studied, was strongly dependent on the season of the year (growing and non-growing). The ratios of formic to acetic acids are considerably different in the two seasons suggesting that there exist distinct sources in both growing and non-growing seasons. Principal component analysis was applied in order to elucidate the sources of aldehydes and organic acids in rainwater. The prevalence of natural vegetative origins for both of these compounds versus anthropogenic emissions was demonstrated and the importance of the oxidation of aldehydes as a relevant source of organic acids was also established. (author)

  20. Gaseous aliphatic aldehydes in Chinese incense smoke

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.M.; Wang, L.H. (National Taiwan Univ., Taipei (China))

    1994-09-01

    Aliphatic aldehydes were found during the combustion of materials. Tobacco smoke contains aldehydes. Fire fighters were exposed to aldehydes when they conducted firefighting. Aldehydes in ambient air come mainly from the incomplete combustion of hydrocarbons and from photochemical reaction. Most aldehydes in ambient air are formaldehyde and acetaldehyde. Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and benzaldehyde were found in the atmosphere in Los Angeles. Burning Chinese incense for worshipping deities is a Chinese daily routine. It was suspected to be a factor causing nasopharynegeal cancer. Epidemiological studies correlated it with the high risk of childhood brain tumor and the high risk of childhood leukemia. Ames test identified the mutagenic effect of the smoke from burning Chinese incense. The smoke had bee proved to contain polycyclic aromatic hydrocarbons and aromatic aldehydes. Suspicion about formaldehyde and other alphatic aldehydes was evoked, when a survey of indoor air pollution was conducted in Taipei city. This study determined the presence of aliphatic aldehydes in the smoke from burning Chinese incense under a controlled atmosphere. 12 refs., 5 figs., 2 tabs.

  1. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 3, Revision 2 (FGE.03Rev2): Acetals of branched- and straight-chain aliphatic saturated primary alcohols and branched- and straight-chain saturated or unsaturated, aldehydes, an ester of a hemiacetal and an orthoester of formic acid, from chemical groups 1, 2 and 4

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister;

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate one flavouring substance, acetaldehyde ethyl isopropyl acetal [FL-no: 06.137], structurally related to the 58 flavouring substances in the Flavouring Group...

  2. Identification and characterization of an antennae-specific aldehyde oxidase from the navel orangeworm.

    Directory of Open Access Journals (Sweden)

    Young-Moo Choo

    Full Text Available Antennae-specific odorant-degrading enzymes (ODEs are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes--the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs. Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW, Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13-16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13-16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons.

  3. Nasal pungency and odor of homologous aldehydes and carboxylic acids.

    Science.gov (United States)

    Cometto-Muñiz, J E; Cain, W S; Abraham, M H

    1998-01-01

    Airborne substances can stimulate both the olfactory and the trigeminal nerve in the nose, giving rise to odor and pungent (irritant) sensations, respectively. Nose, eye, and throat irritation constitute common adverse effects in indoor environments. We measured odor and nasal pungency thresholds for homologous aliphatic aldehydes (butanal through octanal) and carboxylic acids (formic, acetic, butanoic, hexanoic, and octanoic). Nasal pungency was measured in subjects lacking olfaction (i.e., anosmics) to avoid odor biases. Similar to other homologous series, odor and pungency thresholds declined (i.e., sensory potency increased) with increasing carbon chain length. A previously derived quantitative structure-activity relationship (QSAR) based on solvation energies predicted all nasal pungency thresholds, except for acetic acid, implying that a key step in the mechanism for threshold pungency involves transfer of the inhaled substance from the vapor phase to the receptive biological phase. In contrast, acetic acid - with a pungency threshold lower than predicted - is likely to produce threshold pungency through direct chemical reaction with the mucosa. Both in the series studied here and in those studied previously, we reach a member at longer chain-lengths beyond which pungency fades. The evidence suggests a biological cut-off, presumably based upon molecular size, across the various series.

  4. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.

    Science.gov (United States)

    Rodriguez, Gabriel M; Atsumi, Shota

    2014-09-01

    Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90-99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2-C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production.

  5. Genetic organization of Acetobacter for acetic acid fermentation.

    Science.gov (United States)

    Beppu, T

    Plasmid vectors for the acetic acid-producing strains of Acetobacter and Gluconobacter were constructed from their cryptic plasmids and the efficient transformation conditions were established. The systems allowed to reveal the genetic background of the strains used in the acetic acid fermentation. Genes encoding indispensable components in the acetic acid fermentation, such as alcohol dehydrogenase, aldehyde dehydrogenase and terminal oxidase, were cloned and characterized. Spontaneous mutations at high frequencies in the acetic acid bacteria to cause the deficiency in ethanol oxidation were analyzed. A new insertion sequence element, IS1380, was identified as a major factor of the genetic instability, which causes insertional inactivation of the gene encoding cytochrome c, an essential component of the functional alcohol dehydrogenase complex. Several genes including the citrate synthase gene of A. aceti were identified to confer acetic acid resistance, and the histidinolphosphate aminotransferase gene was cloned as a multicopy suppressor of an ethanol sensitive mutant. Improvement of the acetic acid productivity of an A. aceti strain was achieved through amplification of the aldehyde dehydrogenase gene with a multicopy vector. In addition, spheroplast fusion of the Acetobacter strains was developed and applied to improve their properties.

  6. Stereoselective synthesis of (Z)-13-hexadecen-11-yn-1-yl acetate, the major component of the sex pheromone of the pine processionary moth (Thaumetopoea pityocampa).

    Science.gov (United States)

    Shani, A; Klug, J T; Skorka, J

    1983-07-01

    A short and stereoselective synthesis of (Z)-13-hexadecen-1 1-yn-1-yl acetate is described. The main feature is a low-temperature Wittig reaction of a triphenylpropylphosphonium bromide with a long-chain alkylated propargyl aldehyde.

  7. Analytical reagents based on pyridine aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Lejtis, L.Ya.; Skolmejstere, R.A.; Rubina, K.I.; Yansone, D.P.; Shimanskaya, N.V. (AN Latvijskoj SSR, Riga. Inst. Organicheskogo Sinteza)

    1985-03-01

    The papers published in 1950 through 1983 on the use of pyriodine aldehydes and their derivatives as analytical reagents for determining inorganic and organic substances are considered. To determining cations of transition metals, pyridine aldehydes, such as oximethanephosphonic acid, oximes azomethines, hydrazones, semicarbazones, are also applied. The complexing reactions of transition metal ions with pyrimine aldehydes and the structure of complexes obtained are considered. Spectrophotometric characteristics of complexes of Cd, V, Rv and other metals with pyridine aldehydes are given. Optimum conditions are shown for the formation of complexes as well as their stability, concentration ranges in which the beer law is observed, sensitivity and errors of spectrophotometric determination of the ions are in question.

  8. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  9. Chemoenzymatic Fc Glycosylation via Engineered Aldehyde Tags

    OpenAIRE

    2014-01-01

    Glycoproteins with chemically defined glycosylation sites and structures are important biopharmaceutical targets and critical tools for glycobiology. One approach toward constructing such molecules involves chemical glycosylation of aldehyde-tagged proteins. Here, we report the installation of a genetically encoded aldehyde tag at the internal glycosylation site of the crystallizable fragment (Fc) of IgG1. We replaced the natural Fc N-glycosylation sequon with a five amino-acid sequence that ...

  10. Synthesis and herbicidal activities of benzothiazole N,O-acetals.

    Science.gov (United States)

    Ji, Zhiqin; Zhou, Fengxing; Wei, Shaopeng

    2015-10-01

    A new series of N,O-acetals were prepared via a simple one-pot reaction by the condensation of 2-amino-methybenzothiazole with aldehydes and alcohols. The title compounds were obtained in moderate to good yields in the presence of acid catalyst. Bioassay results indicated that some synthesized compounds had good herbicidal activity against both dicotyledon and monocotyledon weeds. This investigation provided a new type of herbicidal lead compounds, as well as its facile preparation method.

  11. Obtaining of inulin acetate

    OpenAIRE

    Khusenov, Arslonnazar; Rakhmanberdiev, Gappar; Rakhimov, Dilshod; Khalikov, Muzaffar

    2014-01-01

    In the article first obtained inulin ester inulin acetate, by etherification of inulin with acetic anhydride has been exposed. Obtained product has been studied using elementary analysis and IR spectroscopy.

  12. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  13. NaHSO4-SiO2 as an efficient and chemoselective catalyst, for the synthesis of acylal from aldehydes under, solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Kannasani Ravi Kumar

    2012-11-01

    Full Text Available Abstract Background Structurally diverse aldehydes are successfully converted into acylals (1,1-diacetates with acetic anhydride using NaHSO4-SiO2 as a mild, convenient and inexpensive catalyst under solvent-free conditions. The noteworthy features of the present system are shorter reaction times, and mild and solvent-free conditions. Furthermore, it offers chemoselective protection of aldehydes. Results Both aromatic and aliphatic aldehydes reacts smoothly with acetic anhydride in presence of silica supported sodium hydrogen sulphate to afford the corresponding 1,1-diacetates in good to excellent yields. We studied competitive reactions for the acylation of aldehydes in the presence of ketones using silica supported sodium hydrogen sulphate as a catalyst. Using this catalytic system, the highly selective conversion of an aldehyde in the presence of ketone was observed. Conclusions NaHSO4-SiO2 is a chemoselective and highly efficient catalyst for acylal formation from aldehydes. The advantages of this methodology over the reported methods is the availability of the starting materials, simplicity of acylation procedure, a clean work-up, a short reaction time, high yields and reusability.

  14. Knoevenagel condensation of aromatic aldehydes with ethyl 4-chloro-3-oxobutanoate in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Bruno R.S. de; Zampieri, Davila S.; Rodrigues, Jose Augusto R.; Moran, Paulo J.S., E-mail: moran@iqm.unicamp.br [Institute of Chemistry, University of Campinas, Campinas-SP (Brazil); Zukerman-Schpector, Julio [Department of Chemistry, Federal University of Sao Carlos, SP (Brazil); Tiekink, Edward R.T. [Department of Chemistry, University of Malaya, Kuala Lampur (Malaysia)

    2012-05-15

    Knoevenagel condensations of aromatic aldehydes with ethyl 4-chloro-3-oxobutanoate catalyzed by morpholine/acetic acid were carried out in ionic liquids to give ethyl 2-chloroacetyl-3-arylpropenoates in 44-84% yield after 0.5 to 2 h at room temperature (25-28 deg C). These conditions represent a greener protocol for the Knoevenagel condensation than those using refluxing benzene or toluene as solvent. Aromatic aldehydes having aryl groups 4-chlorophenyl, 4-methoxyphenyl, 2-thiofuranyl, 2-furanyl, phenyl and 3,4-methylenedioxyphenyl gave (E)/(Z) diastereomeric ratios of products from 56/44 to 85/15. The two isomers of each compound were separately isolated and characterized. The structure of the (E)-isomer of ethyl 2-chloroacetyl-3-(3',4'methylenedioxyphenyl) propenoate was determined by X-ray crystallography and an unequivocal methodology of (E)/(Z)-structural analysis by {sup 13}C NMR (nuclear magnetic resonance) is presented. (author)

  15. Methodology for in situ protection of aldehydes and ketones using trimethylsilyl trifluoromethanesulfonate and phosphines: selective alkylation and reduction of ketones, esters, amides, and nitriles.

    Science.gov (United States)

    Yahata, Kenzo; Minami, Masaki; Yoshikawa, Yuki; Watanabe, Kei; Fujioka, Hiromichi

    2013-01-01

    A methodology for selective transformations of ketones, esters, Weinreb amides, and nitriles in the presence of aldehydes has been developed. The use of a combination of PPh(3)-trimethylsilyl trifluoromethanesulfonate (TMSOTf) promotes selective transformation of aldehydes to their corresponding, temporarily protected, O,P-acetal type phosphonium salts. Because, hydrolytic work-up following ensuing reactions of other carbonyl moieties in the substrates liberates the aldehyde moiety, a sequence involving aldehyde protection, transformation of other carbonyl groups, and deprotection can be accomplished in a one-pot manner. Furthermore, the use of PEt(3) instead of PPh(3) enables ketones to be converted in situ to their corresponding O,P-ketal type phosphonium salts and, consequently, selective transformations of esters, Weinreb amides, and nitriles in the presence of ketones can be performed. This methodology is applicable to various dicarbonyl compounds, including substrates that possess heteroaromatic skeletons and hydroxyl protecting groups.

  16. Distinct roles of jasmonates and aldehydes in plant-defense responses.

    Directory of Open Access Journals (Sweden)

    E Wassim Chehab

    Full Text Available BACKGROUND: Many inducible plant-defense responses are activated by jasmonates (JAs, C(6-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS and hydroperoxide lyase (HPL branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C(6-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C(6-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae, an insect herbivore (leafminers: Liriomyza trifolii, and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola. We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani, a natural enemy of aphids. PRINCIPAL FINDINGS: This study conclusively establishes that jasmonates and C(6-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C(6-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C(6-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic

  17. Oxidation of Aromatic Aldehydes Using Oxone

    Science.gov (United States)

    Gandhari, Rajani; Maddukuri, Padma P.; Thottumkara, Vinod K.

    2007-01-01

    The experiment demonstrating the feasibility of using water as a solvent for organic reactions which highlights the cost and environmental benefits of its use is presented. The experiment encourages students to think in terms of the reaction mechanism of the oxidation of aldehydes knowing that potassium persulfate is the active oxidant in Oxone…

  18. Aldehydic acids in frying oils: formation, toxicological significance and analysis

    OpenAIRE

    Kamal-Eldin, Afaf; Appelqvist, Lars-Åke

    1996-01-01

    Aldehydic acids are generated in oxidized lipids as a result of decomposition of hydroperoxides by (β-scission reactions. Aldehydes are known to interact with proteins and DNA and to impair enzymatic functions. Aldehydic esters from oxidized lipids were reabsorbed to a significant extent in rats. This paper reviews the mechanism of formation of esterified aldehydic acids in frying oils and their physiological/toxicological effects. The paper also gives an overview of relevant basic analytical...

  19. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  20. Aldehyde-induced xanthine oxidase activity in raw milk.

    Science.gov (United States)

    Steffensen, Charlotte L; Andersen, Henrik J; Nielsen, Jacob H

    2002-12-04

    In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to initiate radical reactions when added to milk. Formation of superoxide through aldehyde-induced xanthine oxidase activity is suggested as the initial reaction, as all tested aldehydes were shown to trigger superoxide formation in an ultrahigh temperature (UHT) milk model system with added xanthine oxidase. It was found that addition of aldehydes to milk initially increased the ascorbyl radical concentration with a subsequent decay due to ascorbate depletion, which renders the formation of superoxide in milk with added aldehyde. The present study shows for the first time potential acceleration of oxidative events in milk through aldehyde-induced xanthine oxidase activity.

  1. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Saad, Maged M; Chappuis, Marie-Louise; Boffa, Mauro; Perret, Xavier; Ortega Pérez, Ruben; Barja, François

    2012-03-16

    Acetic acid bacteria (AAB) are Gram-negative, strictly aerobic microorganisms that show a unique resistance to ethanol (EtOH) and acetic acid (AcH). Members of the Acetobacter and Gluconacetobacter genera are capable of transforming EtOH into AcH via the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes and are used for the industrial production of vinegar. Several mechanisms have been proposed to explain how AAB resist high concentrations of AcH, such as the assimilation of acetate through the tricarboxylic acid (TCA) cycle, the export of acetate by various transporters and modifications of the outer membrane. However, except for a few acetate-specific proteins, little is known about the global proteome responses to AcH. In this study, we used 2D-DIGE to compare the proteome of Acetobacter pasteurianus LMG 1262(T) when growing in glucose or ethanol and in the presence of acetic acid. Interesting protein spots were selected using the ANOVA p-value of 0.05 as threshold and 1.5-fold as the minimal level of differential expression, and a total of 53 proteins were successfully identified. Additionally, the size of AAB was reduced by approximately 30% in length as a consequence of the acidity. A modification in the membrane polysaccharides was also revealed by PATAg specific staining.

  2. Cytotoxic kurubasch aldehyde from Trichilia emetica.

    Science.gov (United States)

    Traore, Maminata; Zhai, Lin; Chen, Ming; Olsen, Carl Erik; Odile, Nacoulma; Pierre, Guissou I; Bosco, Ouédrago J; Robert, Guigemdé T; Christensen, S Brøgger

    2007-01-01

    Kurubasch aldehyde, a sesquiterpenoid with an hydroxylated humulene skeleton, was isolated as free alcohol from Trichilia emetica Vahl. (Meliaceae), belonging to the order Sapindales. Related substances have been previously found in plants as esters of aromatic acids, and these plants were species belonging to the distant order Apiales. This is the first report of humulenes found in the genus Trichilia and only the second of humulenes in the order Sapindales. The aldehyde is a modest inhibitor of the growth of Plasmodium falciparum (IC50 76 microM) and slow-proliferating breast cancer cells MCF7 (78 microM), but a potent inhibitor of proliferation of S180 cancer cells (IC50 7.4 microM).

  3. Iron(Ⅲ) Trifluoroacetate:Chemoselective and Recyclable Lewis Acid Catalyst for Diacetylation of Aldehydes,Thioacetalization and Transthioacetalization of Carbonyl Compounds and Aerobic Coupling of Thiols

    Institute of Scientific and Technical Information of China (English)

    ADIBI Ha-di; SAMIMI Heshmat Allah; IRANPOOR Nasser

    2008-01-01

    Iron(Ⅲ)trifluoroacetate [Fe(CF3CO2)3] was found to be a recyclable,highly efficient and chemoselective Lewis acid catalyst for protection of a variety of carbonyl compounds as thioacetals under nearly neutral conditions.With the use of this catalyst,1,3-dithiolanes and 1,3-dithianes were obtained in high yields from various aldehydes.Un-der the same conditions ketones were similarly but more slowly thioketalized.This difference in reactivity between aldehydes and ketones was successfully utilized for the selective thioacetalization of aldehydes in the presence of ketones and also for the chemoselective conversion of β-diketone into the corresponding dithioacetal.Transthio-acetalization of O,O-acetals and O,O-ketals into cyclic thioacetals was also achieved by using this catalyst.Addi-tionally,iron(Ⅲ)trifluoroacetate has been found to be efficient catalyst for the addition of acetic anhydride to both aromatic and aliphatic aldehydes to afford 1,1-diacetates(gem diacetates).Aerobic dimerization of thiols was achieved by this reagent mediated by sodium iodide and air atmosphere.

  4. Allylation of Aromatic Aldehyde under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yu-Mei; JIA,Xue-Feng; WANG,Jin-Xian

    2004-01-01

    @@ Allylation of carbonyl compounds is one of the most interesting processes for the preparation of homoallylic alcohols. Over the past few decades, many reagents have been developed for such reactions[1~3]. In this paper, we first report allylic zinc reagent 1, which can be prepared from zinc dust and allyl bromide conveniently in THF, and reacted with aromatic aldehyde to give homo-allylic alcohols under microwave irradiation.

  5. Homogeneous catalytic hydrogenation of bio-oil and related model aldehydes with RuCl{sub 2}(PPh{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Li, W.; Lu, Q.; Zhu, X. [Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei (China)

    2010-12-15

    A homogeneous RuCl{sub 2}(PPh{sub 3}){sub 3} catalyst was prepared for the hydrogenation of bio-oil to improve its stability and fuel quality. Experiments were first performed on three model aldehydes of acetaldehyde, furfural and vanillin selected to represent the linear aldehydes, oxygen heterocyclic aldehydes and aromatic aldehydes in bio-oil. The results demonstrated the high hydrogenation capability of this homogeneous catalyst under mild conditions (55-90 C, 1.3-3.3 MPa). The highest conversion of the three model aldehydes was over 90 %. Furfural and acetaldehyde were singly converted to furfuryl alcohol and ethanol after hydrogenation, while vanillin was mainly converted to vanillin alcohol, together with a small amount of 2-methoxy-4-methylphenol and 2-methoxyphenol. Further experiments were conducted on a bio-oil fraction extracted by ethyl acetate and on the whole bio-oil at 70 C and 3.3 MPa. Most of the aldehydes were transformed to the corresponding alcohols, and some ketones and compounds with C-C double bond were converted to more stable compounds. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. ZrOCl2 Catalysed Chemoselective Conversion of Aldehydes to geminal-Diacetates and Their Cleavage: A Mild and Efficient Method

    Institute of Scientific and Technical Information of China (English)

    NAGARAJ, Adki; SANJEEVA REDDY,Cherkupally

    2007-01-01

    ZrOCl2 was found to be an effective Lewis acid catalyst for the solventless chemoselective conversion of aldehydes into geminal-diacetates in high yields at room temperature. Regeneration of the aldehydes from the acetals was also achieved using the same catalyst in water. The beneficial effect of microwave irradiation on the reaction was also described. Other advantages are the very low loading of catalyst, high yields achieved even on a gram scale, and considerably shortened reaction time compared to the conventional method.

  7. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification1[OPEN

    Science.gov (United States)

    Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya

    2017-01-01

    The Arabidopsis (Arabidopsis thaliana) aldehyde oxidases are a multigene family of four oxidases (AAO1–AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. PMID:28188272

  8. Acetate Kinase Isozymes Confer Robustness in Acetate Metabolism

    DEFF Research Database (Denmark)

    Chan, Siu Hung Joshua; Nørregaard, Lasse; Solem, Christian

    2014-01-01

    strains reveal that AckA1 has a higher capacity for acetate production which allows faster growth in an environment with high acetate concentration. Meanwhile, AckA2 is important for fast acetate-dependent growth at low concentration of acetate. The results demonstrate that the two ACKs have complementary...

  9. Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Soumabha; Hendricks, P.I. [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States); Reynolds, J.C. [Centre for Analytical Science, Loughborough University, Loughborough, Leicestershire (United Kingdom); Cooks, R.G., E-mail: cooks@purdue.edu [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States)

    2015-02-20

    Highlights: • In-situ derivatization and simultaneous ionization used to detect aldehydes. • Biogenic aliphatic and aromatic aldehydes reacted with 4-aminophenol. • Derivatized products yield structurally characteristic fragment ions. • This measurement demonstrated using a miniaturized portable mass spectrometer. - Abstract: Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer.

  10. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while oxi

  11. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while

  12. A chemoselective, one-pot transformation of aldehydes to nitriles.

    Science.gov (United States)

    Laulhé, Sébastien; Gori, Sadakatali S; Nantz, Michael H

    2012-10-19

    This paper describes a procedure for direct conversion of aldehydes to nitriles using O-(diphenylphosphinyl)hydroxylamine (DPPH). Aldehydes are smoothly transformed to their corresponding nitriles by heating with DPPH in toluene. The reaction can be accomplished in the presence of alcohol, ketone, ester, or amine functionality.

  13. Deodorants: an experimental provocation study with cinnamic aldehyde

    DEFF Research Database (Denmark)

    Bruze, Magnus; Johansen, Jeanne Duus; Andersen, Klaus Ejner

    2003-01-01

    BACKGROUND: Axillary dermatitis is common and overrepresented in individuals with contact allergy to fragrances. Many individuals suspect their deodorants to be the incriminating products. OBJECTIVE: Our aim was to investigate the significance of cinnamic aldehyde in deodorants for the development...... cinnamic aldehyde had been applied (P skin, can elicit axillary dermatitis within a few weeks....

  14. EFFECT OF LEAD ACETATE

    African Journals Online (AJOL)

    MICROSOFT

    suspicion of poisoning are illnesses in a number of pre- viously healthy animals, at the same time, and showing. *Corresponding ... hepatocytes, the major cell type in the liver. ALT is often ... level is also increased in cases of liver cell death resulting from ...... Acetate on the Neural Development of Chick Embryos. Radostitis ...

  15. Solvent-switchable Acetalization by Yb(OTf)3-Catalyzed Procedures

    Institute of Scientific and Technical Information of China (English)

    LI,Gang-Qin; SHAN,Wei-Guang; SU,Wei-Ke; YAO,Zhu-Jun

    2007-01-01

    O,O'-Diethyl acetals were prepared in high yields under mild conditions via the reaction of triethyl orthoformate with aldehydes and ketones in absolute ethanol in the presence of as low as 0.1 mol% of Yb(OTf)3. Using the same catalyst in THF-H2O, these O,O'-diethyl acetals could be converted to the corresponding carbonyl compounds efficiently. This new protection-deprotection protocol presents the advantages of ease of execution, high efficiency and good chemoselectivity.

  16. Vinyl acetate monomer (VAM) genotoxicity profile: relevance for carcinogenicity.

    Science.gov (United States)

    Albertini, Richard J

    2013-09-01

    Vinyl acetate monomer (VAM) is a site-of-contact carcinogen in rodents. It is also DNA reactive and mutagenic, but only after its carboxylesterase mediated conversion to acetaldehyde (AA), a metabolic reaction that also produces acetic acid and protons. As VAM's mutagenic metabolite, AA is normally produced endogenously; detoxification by aldehyde dehydrogenase (ALDH) is required to maintain intra-cellular AA homeostasis. This review examines VAM's overall genotoxicity, which is due to and limited by AA, and the processes leading to mutation induction. VAM and AA have both been universally negative in mutation studies in bacteria but both have tested positive in several in vitro studies in higher organisms that usually employed high concentrations of test agents. Recently however, in vitro studies evaluating submillimolar concentrations of VAM or AA have shown threshold dose-responses for mutagenicity in human cultured cells. Neither VAM nor AA induced systemic mutagenicity in in vivo studies in metabolically competent mice when tested at non-lethal doses while treatments of animals deficient in aldehyde dehydrogenase (Aldh in animals) did induce both gene and chromosome level mutations. The results of several studies have reinforced the critical role for aldehyde dehydrogenase 2 (ALDH2 in humans) in limiting AA's (and therefore VAM's) mutagenicity. The overall aim of this review of VAM's mutagenic potential through its AA metabolite is to propose a mode of action (MOA) for VAM's site-of-contact carcinogenesis that incorporates the overall process of mutation induction that includes both background mutations due to endogenous AA and those resulting from exogenous exposures.

  17. Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications.

    Science.gov (United States)

    Zárate-Romero, Andrés; Murillo-Melo, Darío S; Mújica-Jiménez, Carlos; Montiel, Carmina; Muñoz-Clares, Rosario A

    2016-04-01

    In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL.

  18. Five Fatty Aldehyde Dehydrogenase Enzymes from Marinobacter and Acinetobacter spp. and Structural Insights into the Aldehyde Binding Pocket.

    Science.gov (United States)

    Bertram, Jonathan H; Mulliner, Kalene M; Shi, Ke; Plunkett, Mary H; Nixon, Peter; Serratore, Nicholas A; Douglas, Christopher J; Aihara, Hideki; Barney, Brett M

    2017-06-15

    Enzymes involved in lipid biosynthesis and metabolism play an important role in energy conversion and storage and in the function of structural components such as cell membranes. The fatty aldehyde dehydrogenase (FAldDH) plays a central function in the metabolism of lipid intermediates, oxidizing fatty aldehydes to the corresponding fatty acid and competing with pathways that would further reduce the fatty aldehydes to fatty alcohols or require the fatty aldehydes to produce alkanes. In this report, the genes for four putative FAldDH enzymes from Marinobacter aquaeolei VT8 and an additional enzyme from Acinetobacter baylyi were heterologously expressed in Escherichia coli and shown to display FAldDH activity. Five enzymes (Maqu_0438, Maqu_3316, Maqu_3410, Maqu_3572, and the enzyme reported under RefSeq accession no. WP_004927398) were found to act on aldehydes ranging from acetaldehyde to hexadecanal and also acted on the unsaturated long-chain palmitoleyl and oleyl aldehydes. A comparison of the specificities of these enzymes with various aldehydes is presented. Crystallization trials yielded diffraction-quality crystals of one particular FAldDH (Maqu_3316) from M. aquaeolei VT8. Crystals were independently treated with both the NAD(+) cofactor and the aldehyde substrate decanal, revealing specific details of the likely substrate binding pocket for this class of enzymes. A likely model for how catalysis by the enzyme is accomplished is also provided.IMPORTANCE This study provides a comparison of multiple enzymes with the ability to oxidize fatty aldehydes to fatty acids and provides a likely picture of how the fatty aldehyde and NAD(+) are bound to the enzyme to facilitate catalysis. Based on the information obtained from this structural analysis and comparisons of specificities for the five enzymes that were characterized, correlations to the potential roles played by specific residues within the structure may be drawn. Copyright © 2017 American Society for

  19. Aldehyde concentrations in wet deposition and river waters

    Energy Technology Data Exchange (ETDEWEB)

    Dąbrowska, Agata, E-mail: agatadab@amu.edu.pl; Nawrocki, Jacek

    2013-05-01

    The process of pollutants removal from the atmosphere can be responsible for the appearance of aldehydes in surface waters. We observed that formaldehyde, acetaldehyde, propanal, glyoxal, methylglyoxal and acetone were commonly present in precipitations as well as in surface water samples, while semi-volatile and poorly soluble aldehydes as nonanal and decanal were observed seasonally. Particularly high level of carbonyls concentration was noted after periods of drought and at the beginning of rainy periods. We estimated that ca. 40% of aldehydes from wet precipitations were delivered into river waters. The level of carbonyl concentration in river was positively correlated with specific local meteorological conditions such as solar radiation and ozone concentration, in contrast, there was negative correlation between aldehyde concentration in the river samples and the precipitation intensity. - Highlights: ► Atmosphere pollutants are responsible for the appearance of aldehydes in surface waters. ► Volatile aldehydes are commonly present in precipitations as well as in surface waters. ► Semi-volatile and poorly soluble aldehydes as nonanal and decanal were observed seasonally. ► High concentration of carbonyls were noted after periods of drought and at the beginning of rain. ► Carbonyl concentration in river is correlated to meteorological conditions.

  20. Rutin attenuates ethanol-induced neurotoxicity in hippocampal neuronal cells by increasing aldehyde dehydrogenase 2.

    Science.gov (United States)

    Song, Kibbeum; Kim, Sokho; Na, Ji-Young; Park, Jong-Heum; Kim, Jae-Kyung; Kim, Jae-Hun; Kwon, Jungkee

    2014-10-01

    Rutin is derived from buckwheat, apples, and black tea. It has been shown to have beneficial anti-inflammatory and antioxidant effects. Ethanol is a central nervous system depressant and neurotoxin. Its metabolite, acetaldehyde, is critically toxic. Aldehyde dehydrogenase 2 (ALDH2) metabolizes acetaldehyde into nontoxic acetate. This study examined rutin's effects on ALDH2 activity in hippocampal neuronal cells (HT22 cells). Rutin's protective effects against acetaldehyde-based ethanol neurotoxicity were confirmed. Daidzin, an ALDH2 inhibitor, was used to clarify the mechanisms of rutin's protective effects. Cell viability was significantly increased after rutin treatment. Rutin significantly reversed ethanol-increased Bax, cytochrome c expression and caspase 3 activity, and decreased Bcl-2 and Bcl-xL protein expression in HT22 cells. Interestingly, rutin increased ALDH2 expression, while daidzin reversed this beneficial effect. Thus, this study demonstrates rutin protects HT22 cells against ethanol-induced neurotoxicity by increasing ALDH2 activity.

  1. Turn on Fluorescent Probes for Selective Targeting of Aldehydes

    Directory of Open Access Journals (Sweden)

    Ozlem Dilek

    2016-03-01

    Full Text Available Two different classes of fluorescent dyes were prepared as a turn off/on sensor system for aldehydes. Amino derivatives of a boron dipyrromethene (BDP fluorophore and a xanthene-derived fluorophore (rosamine were prepared. Model compounds of their product with an aldehyde were prepared using salicylaldehyde. Both amino boron dipyrromethene and rosamine derivatives are almost non-fluorescent in polar and apolar solvent. However, imine formation with salicylaldehyde on each fluorophore increases the fluorescence quantum yield by almost a factor of 10 (from 0.05 to 0.4. These fluorophores are therefore suitable candidates for development of fluorescence-based sensors for aldehydes.

  2. Threshold responses in cinnamic-aldehyde-sensitive subjects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, K E; Rastogi, Suresh Chandra

    1996-01-01

    Cinnamic aldehyde is an important fragrance material and contact allergen. The present study was performed to provide quantitative data on the eliciting capacity of cinnamic aldehyde, to be considered in assessment of clinical relevance and health hazard. The skin response to serial dilution patch...... usage concentrations in different kind of cosmetics. 72% (13/18) developed eczema in the use test performed with an alcoholic solution of cinnamic aldehyde on healthy upper arm skin. 6 of the 13 use-test-positive subjects (46%) reacted later than day 7, indicating that the standard exposure period of 7...

  3. Preparing Process of Cerium Acetate and Rare Earth Acetate

    Institute of Scientific and Technical Information of China (English)

    Qiao Jun; Ma Ying; Xu Yanhui; Zhang Jun; Chang Shu; Hao Xianku

    2004-01-01

    Preparing process was presented and the influences of concentration of acetic acid, reaction temperature, the ratio of cerium carbonate and acetic acid, heat preservation time to the yield of cerium acetate were discussed.The crystalline cerium acetate and rare earth acetate such as ( La, Ce, Pr, Nd) (Ac) 3, ( Ce, Pr, Nd) (Ac) 3, ( Pr, Nd, Er,Y) (Ac) 3 and yttrium acetate were prepared under this condition.The shape, structure and composition of the crystals were determined by the methods of SEM, TG-DTA, X-ray diffraction and chemical analysis.The optimum prepared conditions of cerium acetate were described.This prepared process has characteristics such as simple process route, low cost, high yield, good quality, no pollution to environment, etc.

  4. Molecular Structure and Reactivity in the Pyrolysis of Aldehydes

    Science.gov (United States)

    Sias, Eric; Cole, Sarah; Sowards, John; Warner, Brian; Wright, Emily; McCunn, Laura R.

    2016-06-01

    The effect of alkyl chain structure on pyrolysis mechanisms has been investigated in a series of aldehydes. Isovaleraldehyde, CH_3CH(CH_3)CH_2CHO, and pivaldehyde, (CH_3)_3CCHO, were subject to thermal decomposition in a resistively heated SiC tubular reactor at 800-1200 °C. Matrix-isolation FTIR spectroscopy was used to identify pyrolysis products. Carbon monoxide and isobutene were major products from each of the aldehydes, which is consistent with what is known from previous studies of unbranched alkyl-chain aldehydes. Other products observed include vinyl alcohol, propene, acetylene, and ethylene, revealing complexities to be considered in the pyrolysis of large, branched-chain aldehydes.

  5. Silver-catalyzed synthesis of amides from amines and aldehydes

    Science.gov (United States)

    Madix, Robert J; Zhou, Ling; Xu, Bingjun; Friend, Cynthia M; Freyschlag, Cassandra G

    2014-11-18

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  6. Lanthanide dithiocarbamate complexes: efficient catalysts for the cyanosilylation of aldehydes

    OpenAIRE

    VALE, JULIANA A.; FAUSTINO, WAGNER M.; Menezes, Paulo H.; Sá,Gilberto F. de

    2006-01-01

    A new class of lanthanide dithiocarbamate complexes was used to promote the cyanosilylation of aldehydes at high yields at room temperature. This represents the first application of lanthanide dithiocarbamate acting as Lewis acid.

  7. The Reduction of Nitriles to Aldehydes: Applications of Raney Nickel ...

    African Journals Online (AJOL)

    NJD

    aSchool of Chemistry, University of the Witwatersrand, Johannesburg, P.O. Wits 2050, South Africa. bHonorary ... REVIEW ARTICLE. B. Staskun and T. van .... it was found that olefins, ketones, esters, aldehydes, amides, halo compounds and.

  8. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Science.gov (United States)

    2010-04-01

    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are...

  9. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity

    Directory of Open Access Journals (Sweden)

    Rodriguez Gabriel M

    2012-06-01

    Full Text Available Abstract Background Increasing global demand and reliance on petroleum-derived chemicals will necessitate alternative sources for chemical feedstocks. Currently, 99% of chemical feedstocks are derived from petroleum and natural gas. Renewable methods for producing important chemical feedstocks largely remain unaddressed. Synthetic biology enables the renewable production of various chemicals from microorganisms by constructing unique metabolic pathways. Here, we engineer Escherichia coli for the production of isobutyraldehyde, which can be readily converted to various hydrocarbons currently derived from petroleum such as isobutyric acid, acetal, oxime and imine using existing chemical catalysis. Isobutyraldehyde can be readily stripped from cultures during production, which reduces toxic effects of isobutyraldehyde. Results We adopted the isobutanol pathway previously constructed in E. coli, neglecting the last step in the pathway where isobutyraldehyde is converted to isobutanol. However, this strain still overwhelmingly produced isobutanol (1.5 g/L/OD600 (isobutanol vs 0.14 g/L/OD600 (isobutyraldehyde. Next, we deleted yqhD which encodes a broad-substrate range aldehyde reductase known to be active toward isobutyraldehyde. This strain produced isobutanol and isobutyraldehyde at a near 1:1 ratio, indicating further native isobutyraldehyde reductase (IBR activity in E. coli. To further eliminate isobutanol formation, we set out to identify and remove the remaining IBRs from the E. coli genome. We identified 7 annotated genes coding for IBRs that could be active toward isobutyraldehyde: adhP, eutG, yiaY, yjgB, betA, fucO, eutE. Individual deletions of the genes yielded only marginal improvements. Therefore, we sequentially deleted all seven of the genes and assessed production. The combined deletions greatly increased isobutyraldehyde production (1.5 g/L/OD600 and decreased isobutanol production (0.4 g/L/OD600. By assessing production by

  10. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    OpenAIRE

    Keung, W M; Vallee, B L

    1993-01-01

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3...

  11. Amine-functionalized porous silicas as adsorbents for aldehyde abatement.

    Science.gov (United States)

    Nomura, Akihiro; Jones, Christopher W

    2013-06-26

    A series of aminopropyl-functionalized silicas containing of primary, secondary, or tertiary amines is fabricated via silane-grafting on mesoporous SBA-15 silica and the utility of each material in the adsorption of volatile aldehydes from air is systematically assessed. A particular emphasis is placed on low-molecular-weight aldehydes such as formaldehyde and acetaldehyde, which are highly problematic volatile organic compound (VOC) pollutants. The adsorption tests demonstrate that the aminosilica materials with primary amines most effectively adsorbed formaldehyde with an adsorption capacity of 1.4 mmolHCHO g(-1), whereas the aminosilica containing secondary amines showed lower adsorption capacity (0.80 mmolHCHO g(-1)) and the aminosilica containing tertiary amines adsorbed a negligible amount of formaldehyde. The primary amine containing silica also successfully abated higher aldehyde VOC pollutants, including acetaldehyde, hexanal, and benzaldehyde, by effectively adsorbing them. The adsorption mechanism is investigated by (13)C CP MAS solid-state NMR and FT-Raman spectroscopy, and it is demonstrated that the aldehydes are chemically attached to the surface of aminosilica in the form of imines and hemiaminals. The high aldehyde adsorption capacities of the primary aminosilicas in this study demonstrate the utility of amine-functionalized silica materials for reduction of gaseous aldehydes.

  12. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  13. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    Science.gov (United States)

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-07

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  14. 4-Carbamoylpiperidinium acetate monohydrate

    Directory of Open Access Journals (Sweden)

    Urs D. Wermuth

    2010-12-01

    Full Text Available In the structure of the title compound, C6H13N2O+·C2H3O2−·H2O, the amide H atoms of the cations form centrosymmetric cyclic hydrogen-bonding associations incorporating two water molecules [graph set R42(8], which are conjoint with cyclic water-bridged amide–amide associations [R44(12] and larger R44(20 associations involving the water molecule and the acetate anions, which bridge through the piperidinium H-bond donors, giving an overall three-dimensional framework structure.

  15. A comparative study of biodegradation of vinyl acetate by environmental strains.

    Science.gov (United States)

    Greń, Izabela; Gąszczak, Agnieszka; Guzik, Urszula; Bartelmus, Grażyna; Labużek, Sylwia

    2011-06-01

    Four Gram-negative strains, E3_2001, EC1_2004, EC3_3502 and EC2_3502, previously isolated from soil samples, were subjected to comparative studies in order to select the best vinyl acetate degrader for waste gas treatment. Comparison of biochemical and physiological tests as well as the results of fatty acids analyses were comparable with the results of 16S rRNA gene sequence analyses. The isolated strains were identified as Pseudomonas putida EC3_2001, Pseudomonas putida EC1_2004, Achromobacter xylosoxidans EC3_3502 and Agrobacterium sp. EC2_3502 strains. Two additional strains, Pseudomonas fluorescens PCM 2123 and Stenotrophomonas malthophilia KB2, were used as controls. All described strains were able to use vinyl acetate as the only source of carbon and energy under aerobic as well as oxygen deficiency conditions. Esterase, alcohol dehydrogenase and aldehyde dehydrogenase were involved in vinyl acetate decomposition under aerobic conditions. Shorter degradation times of vinyl acetate were associated with accumulation of acetic acid, acetaldehyde and ethanol as intermediates in the culture fluids of EC3_2001 and KB2 strains. Complete aerobic degradation of vinyl acetate combined with a low increase in biomass was observed for EC3_2001 and EC1_2004 strains. In conclusion, P. putida EC1_2004 is proposed as the best vinyl acetate degrader for future waste gas treatment in trickle-bed bioreactors.

  16. Threshold responses in cinnamic-aldehyde-sensitive subjects: results and methodological aspects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, Klaus Ejner; Rastogi, S C

    1996-01-01

    tests and 6-week graded use tests with 0.02, 0.1 and 0.8% cinnamic aldehyde in ethanol was studied in a group of cinnamic-aldehyde-sensitive eczema patients. The minimum effect level demonstrated was 0.02% cinnamic aldehyde on patch testing and 0.1% cinnamic aldehyde on use testing, which are allowed...... exposure information is needed to evaluate more fully the consequences of cinnamic aldehyde sensitivity....

  17. Threshold Acetate Concentrations for Acetate Catabolism by Aceticlastic Methanogenic Bacteria

    OpenAIRE

    Westermann, Peter; Ahring, Birgitte K.; Mah, Robert A.

    1989-01-01

    Marked differences were found for minimum threshold concentrations of acetate catabolism by Methanosarcina barkeri 227 (1.180 mM), Methanosarcina mazei S-6 (0.396 mM), and a Methanothrix sp. (0.069 mM). This indicates that the aceticlastic methanogens responsible for the conversion of acetate to methane in various ecosystems might be different, depending on the prevailing in situ acetate concentrations.

  18. Kallolide A acetate pyrazoline.

    Science.gov (United States)

    Rodríguez-Escudero, Idaliz; Marrero, Jeffrey; Rodríguez, Abimael D

    2012-01-01

    IN THE CRYSTAL STRUCTURE OF KALLOLIDE A ACETATE PYRAZOLINE [SYSTEMATIC NAME: 7-methyl-16-oxo-4,10-bis-(prop-1-en-2-yl)-17,18-dioxa-14,15-diaza-tetra-cyclo-[9.4.2.1(6,9).0(1,12)]octa-deca-6,8,14-trien-5-yl acetate], C(23)H(28)N(2)O(5), there is a 12-member-ed carbon macrocyclic structure. In addition, there is a tris-ubstituted furan ring, an approximately planar γ-lactone ring [maximum deviation of 0.057 (3) Å] and a pyraz-oline ring, the latter in an envelope conformation. The pyrazoline and the γ-lactone rings are fused in a cis configuration. In the crystal, mol-ecules are linked by weak C-H⋯O inter-actions, forming a two-dimensional network parallel to (001). An intra-molecular C-H⋯O hydrogen bond is also present.

  19. Antibiofilm Properties of Acetic Acid

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup;

    2014-01-01

    of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram......-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms....

  20. ACETIC ACID AND A BUFFER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  1. ACETIC ACID AND A BUFFER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  2. Eco-friendly one-pot synthesis of acetals and ketals by heterogeneously catalyzed liquid-solid phase reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Shuijin; WANG Min; LIANG Yongguang; SUN Jutang

    2006-01-01

    Twelve classes of acetals and ketals were synthesized from aldehyde/ketone and glycol using TiSiWl2O40/TiO2 as a novel eco-friendly catalyst. The physical characterizations were carried out by TG/DTA, FT-IR, XRD, and 1H NMR spectra. The results indicated that the catalyst showed excellent catalytic activity for the condensation reactions. The yield of 12classes of acetals and ketals reached 56.3%-96.3% under the typical reaction conditions (the molar ratio of aldehyde/ketone ture was 80-116℃). The catalyst was easily recovered and reused to give almost the same yield of the product as that given by fresh TiSiW12O40/TiO2.

  3. Acetic Acid bacteria: physiology and carbon sources oxidation.

    Science.gov (United States)

    Mamlouk, Dhouha; Gullo, Maria

    2013-12-01

    Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called "oxidative fermentations", especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.

  4. Acetate metabolism in Methanothrix soehngenii.

    NARCIS (Netherlands)

    Jetten, M.S.M.

    1991-01-01

    Acetate is quantitatively the most important intermediate in the anaerobic degradation of soluble organic matter. The conversion rate of acetate by methanogenic bacteria is proposed to be the rate limiting step in this degradation The study of acetoclastic methanogens, therefore is of relevance to o

  5. Photoaddition reactions of silyl ketene acetals with aromatic carbonyl compounds: a new procedure for {beta}-hydroxyester synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ung Chan; Kim, Moon Jung; Moon, Jae Joon; Oh, Sun Wha; Kim, Hyun Jin [Pusan National Univ., Pusan (Korea, Republic of); Mariano, Patrick S. [University of New Mexico, Albuquerque (United States)

    2002-09-01

    Photochemical reactions of aromatic carbonyl compounds with silyl ketene acetals have been explored. Irradiation of acetonitrile or benzene solutions containing aryl aldehydes or ketones in the presence of silyl ketene acetals is observed to promote formation of {beta}-hydroxyester, 2,2-dioxyoxetane and 3,3-dioxyoxetane products. The ratios of these photoproducts, which arise by competitive single electron transfer (SET) and classical Paterno-Buchi mechanistic pathway, is found to be dependent on the degree of methyl-substitution on the vinyl moieties of the ketene acetals in a manner which reflects expected alkyl substituent effects on the oxidation potentials of these electron rich donors. An analysis of the product distribution arising by irradiation of a solution containing butyrophenone (6) and the silyl ketene acetal 9, derived from methyl isobutyrate, provides an estimate of the rate constants for the competitive Norrish type II, SET and Paterno-Buchi processes occurring. Finally, sequences involving silyl ketene acetal-aryl aldehyde or ketone photoaddition followed by 2,2-dioxyoxetane hydrolysis represent useful procedures for Claisen-condensation type, {beta}-hydroxyester synthesis.

  6. Access to nitriles from aldehydes mediated by an oxoammonium salt.

    Science.gov (United States)

    Kelly, Christopher B; Lambert, Kyle M; Mercadante, Michael A; Ovian, John M; Bailey, William F; Leadbeater, Nicholas E

    2015-03-27

    A scalable, high yielding, rapid route to access an array of nitriles from aldehydes mediated by an oxoammonium salt (4-acetylamino-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate) and hexamethyldisilazane (HMDS) as an ammonia surrogate has been developed. The reaction likely involves two distinct chemical transformations: reversible silyl-imine formation between HMDS and an aldehyde, followed by oxidation mediated by the oxoammonium salt and desilylation to furnish a nitrile. The spent oxidant can be easily recovered and used to regenerate the oxoammonium salt oxidant. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The mitochondrial monoamine oxidase-aldehyde dehydrogenase pathway: a potential site of action of daidzin.

    Science.gov (United States)

    Rooke, N; Li, D J; Li, J; Keung, W M

    2000-11-02

    Recent studies showed that daidzin suppresses ethanol intake in ethanol-preferring laboratory animals. In vitro, it potently and selectively inhibits the mitochondrial aldehyde dehydrogenase (ALDH-2). Further, it inhibits the conversion of monoamines such as serotonin (5-HT) and dopamine (DA) into their respective acid metabolites, 5-hydroxyindole-3-acetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in isolated hamster or rat liver mitochondria. Studies on the suppression of ethanol intake and inhibition of 5-HIAA (or DOPAC) formation by six structural analogues of daidzin suggested a potential link between these two activities. This, together with the finding that daidzin does not affect the rates of mitochondria-catalyzed oxidative deamination of these monoamines, raised the possibility that the ethanol intake-suppressive (antidipsotropic) action of daidzin is not mediated by the monoamines but rather by their reactive biogenic aldehyde intermediates such as 5-hydroxyindole-3-acetaldehyde (5-HIAL) and/or 3,4-dihydroxyphenylacetaldehyde (DOPAL) which accumulate in the presence of daidzin. To further evaluate this possibility, we synthesized more structural analogues of daidzin and tested and compared their antidipsotropic activities in Syrian golden hamsters with their effects on monoamine metabolism in isolated hamster liver mitochondria using 5-HT as the substrate. Effects of daidzin and its structural analogues on the activities of monoamine oxidase (MAO) and ALDH-2, the key enzymes involved in 5-HT metabolism in the mitochondria, were also examined. Results from these studies reveal a positive correlation between the antidipsotropic activities of these analogues and their abilities to increase 5-HIAL accumulation during 5-HT metabolism in isolated hamster liver mitochondria. Daidzin analogues that potently inhibit ALDH-2 but have no or little effect on MAO are most antidipsotropic, whereas those that also potently inhibit MAO exhibit little, if

  8. Enzymes involved in vinyl acetate decomposition by Pseudomonas fluorescens PCM 2123 strain.

    Science.gov (United States)

    Szczyrba, Elżbieta; Greń, Izabela; Bartelmus, Grażyna

    2014-03-01

    Esterases are widely used in food processing industry, but there is little information concerning enzymes involved in decompositions of esters contributing to pollution of environment. Vinyl acetate (an ester of vinyl alcohol and acetic acid) is a representative of volatile organic compounds (VOCs) in decomposition, of which hydrolyses and oxidoreductases are mainly involved. Their activities under periodically changing conditions of environment are essential for the removal of dangerous VOCs. Esterase and alcohol/aldehyde dehydrogenase activities were determined in crude cell extract from Pseudomonas fluorescens PMC 2123 after vinyl acetate induction. All examined enzymes exhibit their highest activity at 30-35 °C and pH 7.0-7.5. Esterase preferably hydrolyzed ester bonds with short fatty chains without plain differences for C2 or C4. Comparison of Km values for alcohol and aldehyde dehydrogenases for acetaldehyde suggested that this metabolite was preferentially oxidized than reduced. Activity of alcohol dehydrogenase reducing acetaldehyde to ethanol suggested that one mechanism of defense against the elevated concentration of toxic acetaldehyde could be its temporary reduction to ethanol. Esterase activity was inhibited by phenylmethanesulfonyl fluoride, while β-mercaptoethanol, dithiothreitol, and ethylenediaminetetraacetic acid had no inhibitor effect. From among metal ions, only Mg(2+) and Fe(2+) stimulated the cleavage of ester bond.

  9. Cyclodextrin Aldehydes are Oxidase Mimics

    DEFF Research Database (Denmark)

    Fenger, Thomas Hauch; Bjerre, Jeannette; Bols, Mikael

    2009-01-01

    Cyclodextrins containing 6-aldehyde groups were found to catalyse oxidation of aminophenols in the presence of hydrogen peroxide. The catalysis followed Michaelis-Menten kinetics and is related to the catalysis previously observed with cyclodextrin ketones. A range of different cyclodextrin...

  10. Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus

    NARCIS (Netherlands)

    Sevcenco, A.M; Bevers, L.E.; Pinkse, M.W.H.; Krijger, G.C.; Wolterbeek, H.T.; Verhaert, P.D.E.M.; Hagen, W.R.; Hagedoorn, P.L.

    2010-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is no

  11. Direct acylation of aryl bromides with aldehydes by palladium catalysis.

    Science.gov (United States)

    Ruan, Jiwu; Saidi, Ourida; Iggo, Jonathan A; Xiao, Jianliang

    2008-08-13

    A new protocol for the direct acylation of aryl bromides with aldehydes is established. It appears to involve palladium-amine cooperative catalysis, affording synthetically important alkyl aryl ketones in moderate to excellent yields in a straightforward manner, and broadening the scope of metal-catalyzed coupling reactions.

  12. Copepod reproduction is unaffected by diatom aldehydes or lipid composition

    DEFF Research Database (Denmark)

    Dutz, Jörg; Koski, Marja; Jonasdottir, Sigrun

    2008-01-01

    production of Temora longicornis were measured for six different diatom species as well as for a nondiatom control diet (Rhodomonas sp.). The experiments were accompanied by determinations of fatty acids, sterols, and polyunsaturated aldehydes (PUA) in the food. Although diatoms were generally ingested...

  13. Reaction of benzoxasilocines with aromatic aldehydes: Synthesis of homopterocarpans

    Directory of Open Access Journals (Sweden)

    Rodríguez-García Ignacio

    2007-02-01

    Full Text Available Abstract Condensation of 2H-benzo[g][1,2]oxasilocines with aromatic aldehydes in the presence of boron trifluoride affords mixtures of cis/trans 2-phenyl-3-vinylchromans with moderate yields. These can be transformed into homopterocarpans, a synthetic group of substances homologous to the natural isoflavonoid pterocarpans.

  14. Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus

    NARCIS (Netherlands)

    Sevcenco, A.M; Bevers, L.E.; Pinkse, M.W.H.; Krijger, G.C.; Wolterbeek, H.T.; Verhaert, P.D.E.M.; Hagen, W.R.; Hagedoorn, P.L.

    2010-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is no

  15. Aldehydic acids in frying oils: formation, toxicological significance and analysis

    Directory of Open Access Journals (Sweden)

    Kamal-Eldin, Afaf

    1996-10-01

    Full Text Available Aldehydic acids are generated in oxidized lipids as a result of decomposition of hydroperoxides by (β-scission reactions. Aldehydes are known to interact with proteins and DNA and to impair enzymatic functions. Aldehydic esters from oxidized lipids were reabsorbed to a significant extent in rats. This paper reviews the mechanism of formation of esterified aldehydic acids in frying oils and their physiological/toxicological effects. The paper also gives an overview of relevant basic analytical techniques that needs to be improved to establish reliable quantitative method (s.

    Ácidos aldehídicos son producidos en lípidos oxidados como resultado de la descomposición de hidroperóxidos por reacciones de (β-escición. Es conocido que los aldehídos interaccionan con las proteínas y el ADN y debilitan las funciones enzimáticas. Los esteres aldehídicos de lípidos oxidados fueron reabsorbidos en una cantidad significativa en ratas. Este artículo revisa los mecanismos de formación de ácidos aldehídicos esterificados en aceites de fritura y sus efectos fisiológicos/toxicológicos. El artículo también ofrece una visión de conjunto de las técnicas analíticas básicas que necesitan ser mejoradas para establecer métodos cuantitativos fiables.

  16. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzimenti

    2013-09-01

    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  17. Lipid-derived aldehyde degradation under thermal conditions.

    Science.gov (United States)

    Zamora, Rosario; Navarro, José L; Aguilar, Isabel; Hidalgo, Francisco J

    2015-05-01

    Nucleophilic degradation produced by reactive carbonyls plays a major role in food quality and safety. Nevertheless, these reactions are complex because reactive carbonyls are usually involved in various competitive reactions. This study describes the thermal degradation of 2-alkenals (2-pentenal and 2-octenal) and 2,4-alkadienals (2,4-heptadienal and 2,4-decadienal) in an attempt to both clarify the stability of aldehydes and determine new compounds that might also play a role in nucleophile/aldehyde reactions. The obtained results showed that alkenals and alkadienals decomposed rapidly in the presence of buffer and air to produce formaldehyde, acetaldehyde, and the aldehydes corresponding to the breakage of the carboncarbon double bonds: propanal, hexanal, 2-pentenal, 2-octenal, glyoxal, and fumaraldehyde. The activation energy of double bond breakage was relatively low (∼ 25 kJ/mol) and the yield of alkanals (10-18%) was higher than that of 2-alkenals (∼ 1%). All these results indicate that these reactions should be considered in order to fully understand the range of nucleophile/aldehyde adducts produced.

  18. Antibiotics from basidiomycetes. 26. Phlebiakauranol aldehyde an antifungal and cytotoxic metabolite from Punctularia atropurpurascens.

    Science.gov (United States)

    Anke, H; Casser, I; Steglich, W; Pommer, E H

    1987-04-01

    Phlebiakauranol aldehyde and the corresponding alcohol were isolated from cultures of Punctularia atropurpurascens. The aldehyde but not the alcohol exhibited strong antifungal activity against several phytopathogens as well as antibacterial and cytotoxic activities. Two acetylated derivatives prepared from the aldehyde showed only very weak antifungal and antibacterial and moderate cytotoxic activities. We therefore assume, that the aldehyde group together with the high number of hydroxyl groups are responsible for the biological activity of the compound.

  19. Catalyst-Controlled Wacker-Type Oxidation: Facile Access to Functionalized Aldehydes

    OpenAIRE

    Wickens, Zachary K.; Skakuj, Kacper; Morandi, Bill; Grubbs, Robert H

    2014-01-01

    The aldehyde-selective oxidation of alkenes bearing diverse oxygen groups in the allylic and homoallylic position was accomplished with a nitrite-modified Wacker oxidation. Readily available oxygenated alkenes were oxidized in up to 88% aldehyde yield and as high as 97% aldehyde selectivity. The aldehyde-selective oxidation enabled the rapid, enantioselective synthesis of an important pharmaceutical agent, atomoxetine. Finally, the influence of proximal functional groups on this anti-Markovni...

  20. Antibiofilm Properties of Acetic Acid

    Science.gov (United States)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup; Nielsen, Anne K.; Johansen, Helle Krogh; Homøe, Preben; Høiby, Niels; Givskov, Michael; Kirketerp-Møller, Klaus

    2015-01-01

    Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms. PMID:26155378

  1. Zinc Acetate Immobilized on Mesoporous Materials by Acetate Ionic Liquids as Catalysts for Vinyl Acetate Synthesis

    Directory of Open Access Journals (Sweden)

    Hang Xu

    2015-01-01

    Full Text Available Ionic liquid containing active ingredient Zn(CH3COO2 was loaded in mesoporous silica gel to form supported ionic liquids catalyst (SILC which was used to synthesize vinyl acetate monomer (VAM. SILC was characterized by 1HNMR, FT-IR, TGA, BET, and N2 adsorption/desorption and the acetylene method was used to evaluate SILC catalytic activity and stability in fixed reactor. The result shows that 1-allyl-3-acetic ether imidazole acetate ionic liquid is successfully fixed within mesoporous channel of silica gel. The average thickness of ionic liquid catalyst layer is about 1.05 nm. When the catalytic temperature is 195°C, the acetic acid (HAc conversion is 10.9% with 1.1 g vinyl acetate yield and 98% vinyl acetate (VAc selectivity. The HAc conversion is increased by rise of catalytic temperature and molar ratio of C2H2 : HAc and decreased by mass space velocity (WHSV. The catalyst activity is not significantly reduced within 7 days and VAc selectivity has a slight decrease.

  2. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health.

    Science.gov (United States)

    O'Brien, Peter J; Siraki, Arno G; Shangari, Nandita

    2005-08-01

    Aldehydes are organic compounds that are widespread in nature. They can be formed endogenously by lipid peroxidation (LPO), carbohydrate or metabolism ascorbate autoxidation, amine oxidases, cytochrome P-450s, or myeloperoxidase-catalyzed metabolic activation. This review compares the reactivity of many aldehydes towards biomolecules particularly macromolecules. Furthermore, it includes not only aldehydes of environmental or occupational concerns but also dietary aldehydes and aldehydes formed endogenously by intermediary metabolism. Drugs that are aldehydes or form reactive aldehyde metabolites that cause side-effect toxicity are also included. The effects of these aldehydes on biological function, their contribution to human diseases, and the role of nucleic acid and protein carbonylation/oxidation in mutagenicity and cytotoxicity mechanisms, respectively, as well as carbonyl signal transduction and gene expression, are reviewed. Aldehyde metabolic activation and detoxication by metabolizing enzymes are also reviewed, as well as the toxicological and anticancer therapeutic effects of metabolizing enzyme inhibitors. The human health risks from clinical and animal research studies are reviewed, including aldehydes as haptens in allergenic hypersensitivity diseases, respiratory allergies, and idiosyncratic drug toxicity; the potential carcinogenic risks of the carbonyl body burden; and the toxic effects of aldehydes in liver disease, embryo toxicity/teratogenicity, diabetes/hypertension, sclerosing peritonitis, cerebral ischemia/neurodegenerative diseases, and other aging-associated diseases.

  3. Interactions Between Exogenous Bt Insecticidal Protein and Cotton Terpenoid Aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-jun; GUO Yu-yuan; WU Kong-ming; WANG Wu-gang

    2002-01-01

    The contents of terpenoid aldehydes in Bt transgenic cotton and their non-Bt parental varieties were analyzed by the HPLC method. Statistical analysis of variance showed that Bt insecticidal protein Bt-ICP expression has no negative effect on the synthesis of gossypol, total heliocides and total resistant terpenoids.The results of the combined dosage test of Bt-ICP and gossypoi in vitro showed that there is no interaction between gossypol and Bt-ICP on the mortality of cotton boilworm larvae Helicoverpa armigera (Hubnner). It is indicated that the actions of Bt-ICP and gossypol on cotton bollworm are additive. Therefore, it is advantageous to combine Bt-ICP with cotton terpenoid aldehydes in controlling cotton bollworm.

  4. Identification of isotopically manipulated cinnamic aldehyde and benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Culp, R.A.; Noakes, J.E. (Univ. of Georgia, Athens (USA))

    1990-05-01

    Cinnamic aldehyde and benzaldehyde samples were isolated from botanical sources and compared to labeled isolates from natural origins and those synthetically produced. Products synthesized from petrochemical precursors yielded {delta}{sup 13}C and {delta}D values uniquely different from those of botanical derivation. Upon further comparison with the radiocarbon ({sup 14}C) activities it was possible to define average {delta}{sup 13}C and {delta}D isotopic values for the naturally derived cinnamic aldehyde ({minus}27.6 {plus minus} 0.6 and {minus}116 {plus minus} 8, respectively) and benzaldehyde samples ({minus}28.6 {plus minus} 0.5 and {minus}105 {plus minus} 5, respectively) and the synthetically derived cinnamic aldehyde ({minus}25.4 {plus minus} 0.3 and 517 {plus minus} 52, respectively, via toluene oxidation) and benzaldehyde samples ({minus}29.2 {plus minus} 0.8 and {minus}54 {plus minus} 11, respectively, via benzal chloride and {minus}26.1 {plus minus} 0.6 and 576 {plus minus} 73, respectively, via toluene oxidation). It is also revealed by comparison of isotopic values for certain synthetically derived compounds that {sup 14}C manipulation of simulated natural products has occurred.

  5. Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Nakano, Shigeru; Fukaya, Masahiro

    2008-06-30

    Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation.

  6. 5-(Chloromethylquinolin-8-yl acetate

    Directory of Open Access Journals (Sweden)

    Ling-Qian Kong

    2008-08-01

    Full Text Available The title compound, C12H10ClNO2, crystallizes with two independent molecules in the asymmetric unit; these are approximate mirror images of each other. In each molecule, the chloromethyl and acetate groups lie on the same side of the quinoline ring system, with dihedral angles between the ring plane and the plane of the acetate group of 82.0 (1 and −79.2 (1°. The C—C—C—Cl torsion angles for the chloromethyl groups of the two molecules are 80.9 (2 and −83.1 (2°.

  7. Chiral Phosphoric Acid Catalyzed Enantioselective Allylation of Aldehydes with Allyltrichlorosilane%Chiral Phosphoric Acid Catalyzed Enantioselective Allylation of Aldehydes with Allyltrichlorosilane

    Institute of Scientific and Technical Information of China (English)

    程柯; 范甜甜; 孙健

    2011-01-01

    Easily accessible chiral phosphoric acid lb has been applied as efficient organocatalyst for the asymmetric al- lylation of aldehydes with allyltrichlorosilane. In the presence of 20 mol% of lb, the allylation of a broad range of aldehydes proceeded smoothly to give the corresponding homoallylic alcohol with up to 87% ee and 97% yield.

  8. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance.

    Science.gov (United States)

    Rathinasabapathi, B; McCue, K F; Gage, D A; Hanson, A D

    1994-01-01

    Certain higher plants synthesize and accumulate glycine betaine, a compound with osmoprotectant properties. Biosynthesis of glycine betaine proceeds via the pathway choline-->betaine aldehyde-->glycine betaine. Plants such as tobacco (Nicotiana tabacum L.) which do not accumulate glycine betaine lack the enzymes catalyzing both reactions. As a step towards engineering glycine betaine accumulation into a non-accumulator, spinach and sugar beet complementary-DNA sequences encoding the second enzyme of glycine-betaine synthesis (betaine aldehyde dehydrogenase, BADH, EC 1.2.1.8) were expressed in tobacco. Despite the absence of a typical transit peptide, BADH was targeted to the chloroplast in leaves of transgenic plants. Levels of extractable BADH were comparable to those in spinach and sugar beet, and the molecular weight, isoenzyme profile and Km for betaine aldehyde of the BADH enzymes from transgenic plants were the same as for native spinach or sugar beet BADH. Transgenic plants converted supplied betaine aldehyde to glycine betaine at high rates, demonstrating that they were able to transport betaine aldehyde across both the plasma membrane and the chloroplast envelope. The glycine betaine produced in this way was not further metabolized and reached concentrations similar to those in plants which accumulate glycine betaine naturally. Betaine aldehyde was toxic to non-transformed tobacco tissues whereas transgenic tissues were resistant due to detoxification of betaine aldehyde to glycine betaine. Betaine aldehyded ehydrogenase is therefore of interest as a potential selectable marker, as well as in the metabolic engineering of osmoprotectant biosynthesis.

  9. Molecular and Catalytic Properties of the Aldehyde Dehydrogenase of Gluconacetobacter diazotrophicus, a Quinoheme Protein Containing Pyrroloquinoline Quinone, Cytochrome b, and Cytochrome c▿

    Science.gov (United States)

    Gómez-Manzo, S.; Chavez-Pacheco, J. L.; Contreras-Zentella, M.; Sosa-Torres, M. E.; Arreguín-Espinosa, R.; Pérez de la Mora, M.; Membrillo-Hernández, J.; Escamilla, J. E.

    2010-01-01

    Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone. PMID:20802042

  10. Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c.

    Science.gov (United States)

    Gómez-Manzo, S; Chavez-Pacheco, J L; Contreras-Zentella, M; Sosa-Torres, M E; Arreguín-Espinosa, R; Pérez de la Mora, M; Membrillo-Hernández, J; Escamilla, J E

    2010-11-01

    Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone.

  11. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.

    Science.gov (United States)

    Wang, Xu; Ma, Menggen; Liu, Z Lewis; Xiang, Quanju; Li, Xi; Liu, Na; Zhang, Xiaoping

    2016-08-01

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors (such as furfural and 5-hydroxymethylfurfural (HMF)) to less toxic corresponding alcohols. However, the reduction enzymes involved in this reaction remain largely unknown. In this study, we reported that an uncharacterized open reading frame PICST_72153 (putative GRE2) from S. stipitis was highly induced in response to furfural and HMF stresses. Overexpression of this gene in Saccharomyces cerevisiae improved yeast tolerance to furfural and HMF. GRE2 was identified as an aldehyde reductase which can reduce furfural to FM with either NADH or NADPH as the co-factor and reduce HMF to FDM with NADPH as the co-factor. This enzyme can also reduce multiple aldehydes to their corresponding alcohols. Amino acid sequence analysis indicated that it is a member of the subclass "intermediate" of the short-chain dehydrogenase/reductase (SDR) superfamily. Although GRE2 from S. stipitis is similar to GRE2 from S. cerevisiae in a three-dimensional structure, some differences were predicted. GRE2 from S. stipitis forms loops at D133-E137 and T143-N145 locations with two α-helices at E154-K157 and E252-A254 locations, different GRE2 from S. cerevisiae with an α-helix at D133-E137 and a β-sheet at T143-N145 locations, and two loops at E154-K157 and E252-A254 locations. This research provided guidelines for the study of other SDR enzymes from S. stipitis and other yeasts on tolerant mechanisms to aldehyde inhibitors derived from lignocellulosic biomass.

  12. Salivary aldehyde dehydrogenase - temporal and population variability, correlations with drinking and smoking habits and activity towards aldehydes contained in food.

    Science.gov (United States)

    Giebułtowicz, Joanna; Dziadek, Marta; Wroczyński, Piotr; Woźnicka, Katarzyna; Wojno, Barbara; Pietrzak, Monika; Wierzchowski, Jacek

    2010-01-01

    Fluorimetric method based on oxidation of the fluorogenic 6-methoxy-2-naphthaldehyde was applied to evaluate temporal and population variability of the specific activity of salivary aldehyde dehydrogenase (ALDH) and the degree of its inactivation in healthy human population. Analyzed was also its dependence on drinking and smoking habits, coffee consumption, and its sensitivity to N-acetylcysteine. Both the specific activity of salivary ALDH and the degree of its inactivation were highly variable during the day, with the highest activities recorded in the morning hours. The activities were also highly variable both intra- and interpersonally, and negatively correlated with age, and this correlation was stronger for the subgroup of volunteers declaring abstinence from alcohol and tobacco. Moderately positive correlations of salivary ALDH specific activity with alcohol consumption and tobacco smoking were also recorded (r(s) ~0.27; p=0.004 and r(s) =0.30; p=0.001, respectively). Moderate coffee consumption correlated positively with the inactivation of salivary ALDH, particularly in the subgroup of non-drinking and non-smoking volunteers. It was found that mechanical stimulation of the saliva flow increases the specific activity of salivary ALDH. The specific activity of the salivary ALDH was strongly and positively correlated with that of superoxide dismutase, and somewhat less with salivary peroxidase. The antioxidant-containing drug N-acetylcysteine increased activity of salivary ALDH presumably by preventing its inactivation in the oral cavity. Some food-related aldehydes, mainly cinnamic aldehyde and anisaldehyde, were excellent substrates of the salivary ALDH3A1 enzyme, while alkenals, particularly those with short chain, were characterized by lower affinity towards this enzyme but high catalytic constants. The protective role of salivary ALDH against aldehydes in food and those found in the cigarette smoke is discussed, as well as its participation in

  13. The FEMA GRAS assessment of phenethyl alcohol, aldehyde, acid, and related acetals and esters used as flavor ingredients

    NARCIS (Netherlands)

    Adams, T.B.; Cohen, S.M.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Munro, I.C.; Portoghese, P.S.; Smith, R.L.; Waddell, W.J.; Wagner, B.M.

    2005-01-01

    This publication is the ninth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of int

  14. In vitro assessment of human airway toxicity from major aldehydes in automotive emissions

    Energy Technology Data Exchange (ETDEWEB)

    Grafstroem, R.C. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1997-09-01

    Automotive exhausts can significantly contribute to the levels of reactive aldehydes, including formaldehyde, acetaldehyde and acrolein, in urban air. The use of alcohols as an alternative fuel for gasoline or diesel may further increase these emissions. Since it is unclear if aldehyde inhalation may induce pathological states, including cancer, in human airways, the toxic properties of the above-mentioned aldehydes were studied in cultured target cell types. Each aldehyde modified vital cellular functions in a dose-dependent manner, and invariably inhibited growth and induced abnormal terminal differentiation. Decreases of cellular thiols and increases of intracellular Ca{sup 2+} were observed, and moreover, variable types and amounts of short-lived or persistent genetic damage were induced. The concentrations required for specified levels of a particular type of injury varied up to 10000-fold among the aldehydes. Overall, distinctive patterns of cytopathological activity were observed, which differed both qualitatively and quantitatively among the aldehydes. Finally, aldehydes inhibited DNA repair processes and increased cytotoxicity and mutagenesis in synergy with other known toxicants, indicating that aldehydes may also enhance damage by other constituents in automotive exhausts. In summary, the aldehydes, notably {sup m}u{sup M}-mM formaldehyde, caused pathological effects and induced mechanisms that relate to acute toxicity and cancer development in airway epithelial cells. Since `no-effect` levels may not exist for carcinogenic agents, the overall results support a need for elimination of aldehydes in automotive exhausts. 41 refs

  15. An efficient Biginelli one-pot synthesis of new benzoxazole-substituted dihydropyrimidinones and thiones catalysed by trifluoro acetic acid under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    D.Shobha; M.Adharvana Chari; K.H.Ahn

    2009-01-01

    An efficient synthesis of benzoxazole-substituted 3,4-dihydropyrimidinones(DHPMs)using trifluoro acetic acid as the catalyst for the first time from an aldehyde,β-keto ester and benzoxazole-substituted urea/thiourea under solvent-free conditions is described.Compared to the classical Biginelli reaction conditions,this new method consistently has the advantage of excellent yields(80-91%)and short reaction time(40-130 min)at reflux temperature.

  16. Desmopressin Acetate in Intracranial Haemorrhage

    Directory of Open Access Journals (Sweden)

    Thomas Kapapa

    2014-01-01

    Full Text Available Introduction. The secondary increase in the size of intracranial haematomas as a result of spontaneous haemorrhage or trauma is of particular relevance in the event of prior intake of platelet aggregation inhibitors. We describe the effect of desmopressin acetate as a means of temporarily stabilising the platelet function. Patients and Methods. The platelet function was analysed in 10 patients who had received single (N=4 or multiple (N=6 doses of acetylsalicylic acid and 3 patients (control group who had not taken acetylsalicylic acid. All subjects had suffered intracranial haemorrhage. Analysis was performed before, half an hour and three hours after administration of desmopressin acetate. Statistical analysis was performed by applying a level of significance of P≤0.05. Results. (1 Platelet function returned to normal 30 minutes after administration of desmopressin acetate. (2 The platelet function worsened again after three hours. (3 There were no complications related to electrolytes or fluid balance. Conclusion. Desmopressin acetate can stabilise the platelet function in neurosurgical patients who have received acetylsalicylic acid prior to surgery without causing transfusion-related side effects or a loss of time. The effect is, however, limited and influenced by the frequency of drug intake. Further controls are needed in neurosurgical patients.

  17. Application of heterocyclic aldehydes as components in Ugi–Smiles couplings

    Directory of Open Access Journals (Sweden)

    Katelynn M. Mason

    2016-09-01

    Full Text Available Efficient one-pot Ugi–Smiles couplings are reported for the use of furyl-substituted aldehyde components. In the presence of these heterocyclic aldehydes, reactions tolerated variations in amine components and led to either isolated N-arylamide Ugi–Smiles adducts or N-arylepoxyisoindolines, products of tandem Ugi–Smiles Diels–Alder cyclizations, in moderate yields. A thienyl-substituted aldehyde was also a competent component for Ugi–Smiles adduct formation.

  18. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  19. Application of heterocyclic aldehydes as components in Ugi–Smiles couplings

    Science.gov (United States)

    Mason, Katelynn M; Meyers, Michael S; Fox, Abbie M

    2016-01-01

    Summary Efficient one-pot Ugi–Smiles couplings are reported for the use of furyl-substituted aldehyde components. In the presence of these heterocyclic aldehydes, reactions tolerated variations in amine components and led to either isolated N-arylamide Ugi–Smiles adducts or N-arylepoxyisoindolines, products of tandem Ugi–Smiles Diels–Alder cyclizations, in moderate yields. A thienyl-substituted aldehyde was also a competent component for Ugi–Smiles adduct formation. PMID:27829908

  20. Carbon-isotopic analysis of dissolved acetate.

    Science.gov (United States)

    Gelwicks, J T; Hayes, J M

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  1. Interstellar Aldehydes and their corresponding Reduced Alcohols: Interstellar Propanol?

    Science.gov (United States)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    There is a well-defined trend of aldehydes and their corresponding reduced alcohols among the known interstellar molecules; methanal (CH_2O) and methanol (CH_3OH); ethenone (C_2H_2O) and vinyl alcohol (CH_2CHOH); ethanal (C_2H_4O) and ethanol(C_2H_5OH); glycolaldehyde (C_2H_4O_2) and ethylene glycol(C_2H_6O_2). The reduced alcohol of propanal (CH_3CH_2CHO) which is propanol (CH_3CH_2CH_2OH) has not yet been observed but its isomer; ethyl methyl ether (CH_3CH_2OCH_3) is a known interstellar molecule. In this article, different studies are carried out in investigating the trend between aldehydes and their corresponding reduced alcohols and the deviation from the trend. Kinetically and with respect to the formation route, alcohols could have been produced from their corresponding reduced aldehydes via two successive hydrogen additions. This is plausible because of (a) the unquestionable high abundance of hydrogen, (b) presence of energy sources within some of the molecular clouds and (c) the ease at which successive hydrogen addition reaction occurs. In terms of stability, the observed alcohols are thermodynamically favorable as compared to their isomers. Regarding the formation process, the hydrogen addition reactions are believed to proceed on the surface of the interstellar grains which leads to the effect of interstellar hydrogen bonding. From the studies, propanol and propan-2-ol are found to be more strongly attached to the surface of the interstellar dust grains which affects its overall gas phase abundance as compared to its isomer ethyl methyl ether which has been observed.

  2. DNA-Templated Introduction of an Aldehyde Handle in Proteins

    DEFF Research Database (Denmark)

    Kodal, Anne Louise Bank; Rosen, Christian Bech; Mortensen, Michael Rosholm;

    2016-01-01

    -templated reductive amination we create DNA-protein conjugates with control over labeling stoichiometry without genetic engineering. A guiding DNA strand with a metal-binding functionality facilitates site-selectivity by directing coupling of a second reactive DNA strand to the vicinity of a protein metal......-binding site. Here, we demonstrate DNA-templated reductive amination for His6-tagged proteins and native metal-binding proteins, including IgG1 antibodies. We also use a cleavable linker between the DNA and the protein to remove the DNA and introduce a single aldehyde to proteins. This functions as a handle...

  3. Electron transmission through a class of anthracene aldehyde molecules

    Science.gov (United States)

    Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupco; Kocarev, Ljupco

    2016-03-01

    Transmission of electrons via metal-molecule-metal junctions, involving rotor-stator anthracene aldehyde molecules is investigated. Two model barriers having input parameters evaluated from accurate ab initio calculations are proposed and the transmission coefficients are obtained by using the quasiclassical approximation. Transmission coefficients further enter in the integral for the net current, utilizing Simmons' method. Conformational dependence of the tunneling processes is evident and the presence of the side groups enhances the functionality of the future single-molecule based electronic devices.

  4. Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof

    Science.gov (United States)

    Rembaum, A.; Singer, S. (Inventor)

    1970-01-01

    A thermally stable, relatively conductive polymer was disclosed. The polymer was synthesized by condensing in the presence of catalyst a 2, 4, or 6 nuclear alklylated 2, 3, or 4 pyridine aldehyde or quaternary derivatives thereof to form a polymer. The pyridine groups were liked by olefinic groups between 2-4, 2-6, 2-3, 3-4, 3-6 or 4-6 positions. Conductive compositions were prepared by dissolving the quaternary polymer and an organic charge transfer complexing agent such as TCNQ in a mutual solvent such as methanol.

  5. Hydrogenations without Hydrogen: Titania Photocatalyzed Reductions of Maleimides and Aldehydes

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2014-09-01

    Full Text Available A mild procedure for the reduction of electron-deficient alkenes and carbonyl compounds is described. UVA irradiations of substituted maleimides with dispersions of titania (Aeroxide P25 in methanol/acetonitrile (1:9 solvent under dry anoxic conditions led to hydrogenation and production of the corresponding succinimides. Aromatic and heteroaromatic aldehydes were reduced to primary alcohols in similar titania photocatalyzed reactions. A mechanism is proposed which involves two proton-coupled electron transfers to the substrates at the titania surface.

  6. Piperidine Promoted Regioselective Synthesis of α, β-unsaturated Aldehydes

    Directory of Open Access Journals (Sweden)

    *A. H. Banday

    2013-03-01

    Full Text Available An efficient, facile and regioselective synthesis of α,β-unsaturated aldehydes from β-hydroxynitriles is reported. The reaction is carried out using DIBAL-H and promoted by piperidine under dry conditions at a temperature of -78 oC and can be described as a concomitant reduction-elimination reaction. The same reaction if carried out in the absence of piperidine gives mainly the uneliminated reduction product. The products formed are of immense importance as synthons in a large number of chemical reactions and biological processes.

  7. ADSORPTION OF UNSATURATED ALDEHYDES ON TiO2

    OpenAIRE

    Natalia Ortega; Oswaldo Núñez

    2012-01-01

    In this work, the unsaturated aldehydes adsorption on TiO2 surface was studied. To test their efficiency as catalyst, experiments on heterogeneous photocatalysis of p-nitrophenol (PNP) and a sample obtained from an oil industry effluent were carried out using a solar simulator and modified-TiO2 systems. The systems of TiO2 used were: TiO2 pure (without modifying) and TiO2-dienal systems constituted by the chemical adsorption of 2,4 hexadienal, 2,4 heptadienal and trans-cinamaldehyde on the su...

  8. 21 CFR 522.2476 - Trenbolone acetate.

    Science.gov (United States)

    2010-04-01

    ... days. (A) 140 milligrams (mg) trenbolone acetate (one implant consisting of 7 pellets, each pellet containing 20 mg trenbolone acetate) per implant dose. (B) 140 mg trenbolone acetate (one implant consisting... 29 mg tylosin tartrate) per implant dose. (ii) Indications for use. For improved feed...

  9. 21 CFR 582.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  10. Pallidol hexaacetate ethyl acetate monosolvate

    Directory of Open Access Journals (Sweden)

    Qinyong Mao

    2013-07-01

    Full Text Available The entire molecule of pallidol hexaacetate {systematic name: (±-(4bR,5R,9bR,10R-5,10-bis[4-(acetyloxyphenyl]-4b,5,9b,10-tetrahydroindeno[2,1-a]indene-1,3,6,8-tetrayl tetraacetate} is completed by the application of twofold rotational symmetry in the title ethyl acetate solvate, C40H34O12·C4H8O2. The ethyl acetate molecule was highly disordered and was treated with the SQUEEZE routine [Spek (2009. Acta Cryst. D65, 148–155]; the crystallographic data take into account the presence of the solvent. In pallidol hexaacetate, the dihedral angle between the fused five-membered rings (r.m.s. deviation = 0.100 Å is 54.73 (6°, indicating a significant fold in the molecule. Significant twists between residues are also evident as seen in the dihedral angle of 80.70 (5° between the five-membered ring and the pendent benzene ring to which it is attached. Similarly, the acetate residues are twisted with respect to the benzene ring to which they are attached [C—O(carboxy—C—C torsion angles = −70.24 (14, −114.43 (10 and −72.54 (13°]. In the crystal, a three-dimensional architecture is sustained by C—H...O interactions which encompass channels in which the disordered ethyl acetate molecules reside.

  11. Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production

    NARCIS (Netherlands)

    Kuit, W.; Minton, N.P.; Lopez Contreras, A.M.; Eggink, G.

    2012-01-01

    In microorganisms, the enzyme acetate kinase (AK) catalyses the formation of ATP from ADP by de-phosphorylation of acetyl phosphate into acetic acid. A mutant strain of Clostridium acetobutylicum lacking acetate kinase activity is expected to have reduced acetate and acetone production compared to

  12. Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production

    NARCIS (Netherlands)

    Kuit, W.; Minton, N.P.; Lopez Contreras, A.M.; Eggink, G.

    2012-01-01

    In microorganisms, the enzyme acetate kinase (AK) catalyses the formation of ATP from ADP by de-phosphorylation of acetyl phosphate into acetic acid. A mutant strain of Clostridium acetobutylicum lacking acetate kinase activity is expected to have reduced acetate and acetone production compared to t

  13. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    Science.gov (United States)

    Keung, W M; Vallee, B L

    1993-02-15

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3 orders of magnitude less sensitive to daidzin inhibition. Daidzin does not inhibit human class I, II, or III alcohol dehydrogenases, nor does it have any significant effect on biological systems that are known to be affected by other isoflavones. Among more than 40 structurally related compounds surveyed, 12 inhibit ALDH-I, but only prunetin and 5-hydroxydaidzin (genistin) combine high selectivity and potency, although they are 7- to 15-fold less potent than daidzin. Structure-function relationships have established a basis for the design and synthesis of additional ALDH inhibitors that could both be yet more potent and specific.

  14. The Complete Molecular Geometry of Salicyl Aldehyde from Rotational Spectroscopy

    Science.gov (United States)

    Dorosh, O.; Bialkowska-Jaworska, E.; Kisiel, Z.; Pszczolkowski, L.; Kanska, M.; Krygowski, T. M.; Maeder, H.

    2013-06-01

    Salicyl aldehyde is a well known planar molecule containing an internal hydrogen bond. In preparing the publication of our previous report of the study of its rotational spectrum we have taken the opportunity to update the structure determination of this molecule to the complete r_e^{SE} geometry. The molecule contains 15 atoms and we have used supersonic expansion FTMW spectroscopy to obtain rotational constants for a total 26 different isotopic species, including all singly substitued species relative to the parent molecule. The ^{13}C and ^{18}O substitutions were measured in natural abundance, while deuterium substitutions were carried out synthetically. The r_e^{SE} determination requires the calculation of vibration-rotation changes in rotational constants from an ab initio anharmonic force field, which necessitates some compromises in the level of calculation for a molecule of the size of salicyl aldehyde. For this reason we studied the five lowest vibrationally excited states, by using the combination of room-temperature mm-wave spectroscopy and waveguide Fourier transform cm-wave spectroscopy. The experimental excited state rotational constants were then used to calibrate the anharmonic force field calculation. The resulting r_e^{SE} geometry is compared with other types of geometry determination possible from this data, with emphasis on the effect of the near zero principal coordinate of the important C_2 atom. Z.Kisiel et al., 61^{st} OSU Symposium on Molecular Spectroscopy, The Ohio State University, Ohio 2006, RI-12.

  15. Enantioselective Organocatalytic Cascade Approach to Different Classes of Benzofused Acetals.

    Science.gov (United States)

    Paz, Bruno Matos; Klier, Lydia; Naesborg, Line; Lauridsen, Vibeke Henriette; Jensen, Frank; Jørgensen, Karl Anker

    2016-11-14

    A novel enantioselective organocatalytic strategy is presented for the synthesis of tetrahydrofurobenzofuran and methanobenzodioxepine natural product core structures. The strategy is based on a pair of divergent reaction pathways in which hydroxyarenes react with γ-keto-α,β-unsaturated aldehydes, catalyzed by a chiral secondary amine. One reaction pathway, which leads to chiral 5,5-fused acetals with two stereocenters-the tetrahydrofurobenzofuran scaffolds-proceeds in moderate yields and up to 96 % ee. The other reaction pathway provides 5,6-bridged methanobenzodioxepine scaffolds with three stereocenters in moderate to good yields and up to 95 % ee. The reaction is remarkable as it can proceed with catalyst loadings as low as 0.25 mol %, providing one of the highest known turnover numbers in iminium ion catalysis. Furthermore, the hemiacetal tetrahydrofurobenzofuran can undergo functionalizations including reduction, oxidation, and allylation. Finally, the effects involved in the substrate control for the divergent pathways, based on both experimental and computational studies, have been investigated. A model involving steric, electronic and stereoelectronic interactions is discussed to rationalize the observed selectivities.

  16. Chemical and biologic characteristics of roxatidine acetate.

    Science.gov (United States)

    Bickel, M; Herling, A W; Schoelkens, B; Scholtholt, J

    1988-01-01

    Roxatidine acetate is a specific and competitive H2-receptor antagonist, as shown in isolated rabbit gastric glands or guinea pig atria preparations. The antisecretory effect of roxatidine acetate is mediated by its main metabolite, roxatidine. In the rat, roxatidine acetate was equipotent after intraduodenal and intraperitoneal administration, indicating excellent bioavailability. Roxatidine acetate and roxatidine were equipotent in the rat after intravenous administration. In the Heidenhain-pouch dog stimulated by food ingestion or maximal histamine dosing, roxatidine acetate and roxatidine proved to be 3-6 times more potent than cimetidine in inhibiting gastric acid secretion. From in vitro experiments it can be concluded that roxatidine acetate and ranitidine are equipotent. Roxatidine acetate has no antiandrogenic effects and does not influence drug-metabolizing enzymes in the liver.

  17. Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata

    DEFF Research Database (Denmark)

    Ammam, Fariza; Tremblay, Pier-Luc; Lizak, Dawid Mariusz

    2016-01-01

    successfully converted to their corresponding alcohols 1-propanol and 1-butanol by S. ovata during gas fermentation. Increasing tungstate concentration enhanced conversion efficiency for both propionate and butyrate. Gene expression analysis suggested that tungsten-containing aldehyde ferredoxin...... oxidoreductases (AORs) and a tungsten-containing formate dehydrogenase (FDH) were involved in the improved biosynthesis of acetate, ethanol, 1-propanol, and 1-butanol. AORs and FDH contribute to the fatty acids re-assimilation pathway and the Wood-Ljungdahl pathway, respectively. This study presented here shows...

  18. A Novel NADPH-Dependent Aldehyde Reductase Gene from Saccharomyces cerevisiae NRRL Y-12632 Involved in the Detoxification of Aldehyde Inhibitors Derived from Lignocellulosic Biomass Conversion

    Science.gov (United States)

    Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...

  19. Biogenic aldehyde(s) derived from the action of monoamine oxidase may mediate the antidipsotropic effect of daidzin.

    Science.gov (United States)

    Keung, W M

    2001-01-30

    Daidzin, a major active principle of an ancient herbal treatment for 'alcohol addiction', was first shown to suppress ethanol intake in Syrian golden hamsters. Since then this activity has been confirmed in Wistar rats, Fawn hooded rats, genetically bred alcohol preferring P rats and African green moneys under various experimental conditions, including two-level operant, two-bottle free-choice, limited access, and alcohol-deprivation paradigms. In vitro, daidzin is a potent and selective inhibitor of mitochondrial aldehyde dehydrogenase (ALDH-2). However, in vivo, it does not affect overall acetaldehyde metabolism in golden hamsters. Using isolated hamster liver mitochondria and 5-hydroxytryptamine (5-HT) and dopamine (DA) as the substrates, we demonstrated that daidzin inhibits the second but not the first step of the MAO/ALDH-2 pathway, the major pathway that catalyzes monoamine metabolism in mitochondria. Correlation studies using structural analogs of daidzin led to the hypothesis that the mitochondrial MAO/ALDH-2 pathway may be the site of action of daidzin and that one or more biogenic aldehydes such as 5-hydroxyindole-3-acetaldehyde (5-HIAL) and/or DOPAL derived from the action of monoamine oxidase (MAO) may be mediators of its antidipsotropic action.

  20. β-Cyclodextrin promoted oxidation of aldehydes to carboxylic acids in water

    Institute of Scientific and Technical Information of China (English)

    Dong Po Shi; Hong Bing Ji

    2009-01-01

    A facile,efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaC10 catalyzed by β-cyclodextdn in water has been developed.A series of aldehydes which could form inclusion complex with β-cyclodextrin(β-CD)were oxidized selectively with excellent yields.

  1. Threshold responses in cinnamic-aldehyde-sensitive subjects: results and methodological aspects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, Klaus Ejner; Rastogi, S C

    1996-01-01

    Cinnamic aldehyde is an important fragrance material and contact allergen. The present study was performed to provide quantitative data on the eliciting capacity of cinnamic aldehyde, to be considered in assessment of clinical relevance and health hazard. The skin response to serial dilution patc...

  2. Metal-Free Direct Oxidation of Aldehydes to Esters Using TCCA.

    Science.gov (United States)

    Gaspa, Silvia; Porcheddu, Andrea; De Luca, Lidia

    2015-08-07

    Aromatic and aliphatic aldehydes are simply converted into esters by an efficient oxidative esterification carried out under mild conditions. The aldehydes are converted in situ into their corresponding acyl chlorides, which are then reacted with primary and secondary aliphatic, benzylic, allylic, and propargylic alcohols and phenols. A variety of esters are obtained in high yields.

  3. Direct chemoselective synthesis of glyconanoparticles from unprotected reducing glycans and glycopeptide aldehydes

    DEFF Research Database (Denmark)

    Thygesen, Mikkel Boas; Sørensen, Kasper Kildegaard; Cló, Emiliano

    2009-01-01

    Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell.......Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell....

  4. Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods

    NARCIS (Netherlands)

    Smit, B.A.; Engels, W.J.M.; Smit, G.

    2009-01-01

    Branched aldehydes, such as 2-methyl propanal and 2- and 3-methyl butanal, are important flavour compounds in many food products, both fermented and non-fermented (heat-treated) products. The production and degradation of these aldehydes from amino acids is described and reviewed extensively in lite

  5. Effect of whey protein on the In Vivo Release of Aldehydes.

    NARCIS (Netherlands)

    Weel, K.G.C.; Boelrijk, A.E.M.; Burger, J.J.; Claassen, N.E.; Gruppen, H.; Voragen, A.G.J.

    2003-01-01

    Retention of aldehydes by whey proteins in solutions buffered at a range of pH values was studied under static and dynamic headspace conditions and in vivo in exhaled air. Static headspace measurements showed a clear increase in retention in the presence of whey proteins for aldehydes with longer ca

  6. Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes.

    Science.gov (United States)

    Peng, Chiung-Yu; Lan, Cheng-Hang; Lin, Pei-Chen; Kuo, Yi-Chun

    2017-02-15

    Cooking oil fumes (COFs) contain a mixture of chemicals. Of all chemicals, aldehydes draw a great attention since several of them are considered carcinogenic and formation of long-chain aldehydes is related to fatty acids in cooking oils. The objectives of this research were to compare aldehyde compositions and concentrations in COFs produced by different cooking oils, cooking methods, and food types and to suggest better cooking practices. This study compared aldehydes in COFs produced using four cooking oils (palm oil, rapeseed oil, sunflower oil, and soybean oil), three cooking methods (stir frying, pan frying, and deep frying), and two foods (potato and pork loin) in a typical kitchen. Results showed the highest total aldehyde emissions in cooking methods were produced by deep frying, followed by pan frying then by stir frying. Sunflower oil had the highest emissions of total aldehydes, regardless of cooking method and food type whereas rapeseed oil and palm oil had relatively lower emissions. This study suggests that using gentle cooking methods (e.g., stir frying) and using oils low in unsaturated fatty acids (e.g., palm oil or rapeseed oil) can reduce the production of aldehydes in COFs, especially long-chain aldehydes such as hexanal and t,t-2,4-DDE. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Flavour release of aldehydes and diacetyl in oil/water systems

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Bredie, W. L. P.; Stahnke, Louise Heller

    2000-01-01

    The concentration- and time-dependent release of three C-6-aldehydes, six C-9-aldehydes and diacetyl was studied in model systems. The systems were water, rapeseed oil and oil-in-water emulsions. Dynamic headspace sampling was used to collect the volatile compounds. In the concentration......-dependent release experiment, the C-6-aldehydes were released in equal proportions from the aqueous and the emulsion systems, but in lower amounts from the pure oil. The amounts of C-9-aldehydes released decreased with increasing oil content. All aldehydes were released more rapidly from the aqueous system than...... from the pure oil. The release over time for diacetyl and (E,E)-2,4-hexadienal showed a linear relationship in all systems. The other compounds followed an exponential relationship between the time and the fraction released in the aqueous systems. It was demonstrated that the release of the volatile...

  8. Colorimetric monitoring of solid-phase aldehydes using 2,4-dinitrophenylhydrazine.

    Science.gov (United States)

    Shannon, Simon K; Barany, George

    2004-01-01

    A simple and rapid method to achieve colorimetric monitoring of resin-bound aldehydes, based on ambient temperature reaction with 2,4-dinitrophenylhydrazine (DNPH) in the presence of dilute acid, has been developed as an adjunct to solid-phase organic synthesis and combinatorial chemistry. By this test, the presence of aldehydes is indicated by a red to dark-orange appearance, within a minute. Alternatively, resins that are free of aldehydes or in which aldehyde functions have reacted completely retain their original color. The DNPH test was demonstrated for poly(ethylene glycol)-polystyrene (PEG-PS), aminomethyl polystyrene (AMP), cross-linked ethoxylate acrylate resin (CLEAR), and acryloylated O,O'-bis(2-aminopropyl)poly(ethylene glycol) (PEGA) supports and gave results visible to the naked eye at levels as low as 18 micromol of aldehyde per gram of resin.

  9. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T.K. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Clarke, S.M., E-mail: stuart@bpi.cam.ac.u [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Bhinde, T. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Castro, M.A.; Millan, C. [Instituto Ciencia de los Materiales de Sevilla, Departamento de Quimica Inorganica (CSIC-Universidad de Sevilla) (Spain); Medina, S. [Centro de Investigacion, Tecnologia e Innovacion de la Universidad de Sevilla (CITIUS), Sevilla (Spain)

    2011-03-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C{sub 7}, C{sub 9} and C{sub 11}) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C{sub 11} homologue is determined to have a plane group of either p2, pgb or pgg, and for the C{sub 7} homologue the p2 plane group is preferred.

  10. Does acute exposure to aldehydes impair pulmonary function and structure?

    Science.gov (United States)

    Abreu, Mariana de; Neto, Alcendino Cândido; Carvalho, Giovanna; Casquillo, Natalia Vasconcelos; Carvalho, Niedja; Okuro, Renata; Ribeiro, Gabriel C Motta; Machado, Mariana; Cardozo, Aléxia; Silva, Aline Santos E; Barboza, Thiago; Vasconcellos, Luiz Ricardo; Rodrigues, Danielle Araujo; Camilo, Luciana; Carneiro, Leticia de A M; Jandre, Frederico; Pino, Alexandre V; Giannella-Neto, Antonio; Zin, Walter A; Corrêa, Leonardo Holanda Travassos; Souza, Marcio Nogueira de; Carvalho, Alysson R

    2016-07-15

    Mixtures of anhydrous ethyl alcohol and gasoline substituted for pure gasoline as a fuel in many Brazilian vehicles. Consequently, the concentrations of volatile organic compounds (VOCs) such as ketones, other organic compounds, and particularly aldehydes increased in many Brazilian cities. The current study aims to investigate whether formaldehyde, acetaldehyde, or mixtures of both impair lung function, morphology, inflammatory and redox responses at environmentally relevant concentrations. For such purpose, C57BL/6 mice were exposed to either medical compressed air or to 4 different mixtures of formaldehyde and acetaldehyde. Eight hours later animals were anesthetized, paralyzed and lung mechanics and morphology, inflammatory cells and IL-1β, KC, TNF-α, IL-6, CCL2, MCP-1 contents, superoxide dismutase and catalalase activities were determined. The extra pulmonary respiratory tract was also analyzed. No differences could be detected between any exposed and control groups. In conclusion, no morpho-functional alterations were detected in exposed mice in relation to the control group.

  11. Rhenium-catalysed hydroboration of aldehydes and aldimines.

    Science.gov (United States)

    Arévalo, Rebeca; Vogels, Christopher M; MacNeil, Gregory A; Riera, Lucía; Pérez, Julio; Westcott, Stephen A

    2017-06-28

    The first examples for the rhenium-catalysed hydroboration of aldehydes, ketones and aldimines, including heteroaromatic quinoline, are reported herein. Reactions are remarkably chemoselective and tolerant of several functional groups. A wide array of rhenium complexes were efficient pre-catalysts for these hydroborations, including new low-valent complexes of the formula [Re(N-N)(CO)3(L)]X (N-N = bipy derivative, L = labile ligand/solvent, and X = [BAr(F)4](-) and [B(3,5-di-tBu-cat)2](-)), which have been characterized fully including an X-ray diffraction study for [Re(bipy)(CO)3(quin)][BAr(F)4] (2). A new silver spiroboronate ester Ag[B(3,5-di-tBu-cat)2](NCCH3)3 (3) was prepared and characterized fully, including an X-ray diffraction study, and used to make one of the new rhenium complexes.

  12. Reduction of Aldehydes and Ketones with Potassium Borohydride as Reductant

    Institute of Scientific and Technical Information of China (English)

    罗慧谋; 李毅群

    2005-01-01

    A series of aldehydes and ketones were reduced by potassium borohydride in an ionic liquid/water ([bmim]PF6/H2O) biphasic system to afford corresponding alcohol with high purity in excellent yields. The ionic liquid/water biphasic system could promote the chemoselectivity and the substituents such as nitro group and chlorine remained intact. Aromatic ketones were not as active as aromatic aldhydes and cyclic ketones owing to their higher steric hindrance. The ionic liquid could be recycled and reused. This protocol has notable advantages of no need of phase transfer catalyst and organic solvents, mild conditions, simple operation, short reaction time, ease work-up, high yields and recycling of the ionic liquid.

  13. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)], E-mail: ganesan.v@duke.edu; Song, Haijing; Affleck, Donna; McDougald, Darryl L. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States); Storms, Robert W. [Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R.; Chin, Bennett B. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)

    2009-11-15

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [{sup 125}I]FMIC and [{sup 125}I]DEIBA were 70{+-}5% and 47{+-}14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  14. Pharmacological activities of cilantro's aliphatic aldehydes against Leishmania donovani.

    Science.gov (United States)

    Donega, Mateus A; Mello, Simone C; Moraes, Rita M; Jain, Surendra K; Tekwani, Babu L; Cantrell, Charles L

    2014-12-01

    Leishmaniasis is a chronic infectious disease caused by different Leishmania species. Global occurrences of this disease are primarily limited to tropical and subtropical regions. Treatments are available; however, patients complain of side effects. Different species of plants have been screened as a potential source of new drugs against leishmaniasis. In this study, we investigated the antileishmanial activity of cilantro (Coriandrum sativum) essential oil and its main components: (E)-2-undecenal, (E)-2-decenal, (E)-2-dodecenal, decanal, dodecanal, and tetradecanal. The essential oil of C. sativum leaves inhibits growth of Leishmani donovani promastigotes in culture with an IC50 of 26.58 ± 6.11 µg/mL. The aliphatic aldehydes (E)-2-decenal (7.85 ± 0.28 µg/mL), (E)-2-undecenal (2.81 ± 0.21 µg/mL), and (E)-2-dodecenal (4.35 ± 0.15 µg/mL), all isolated from C. sativum essential oil, are effective inhibitors of in vitro cultures of L. donovani promastigotes. Aldehydes (E)-2-decenal, (E)-2-undecenal, and (E)-2-dodecenal were also evaluated against axenic amastigotes and IC50 values were determined to be 2.47 ± 0.25 µg/mL, 1.25 ± 0.11 µg/mL, and 4.78 ± 1.12 µg/mL, respectively. (E)-2-Undecenal and (E)-2-dodecenal demonstrated IC50 values of 5.65 ± 0.19 µg/mL and 9.60 ± 0.89 µg/mL, respectively, against macrophage amastigotes. These cilantro compounds showed no cytotoxicity against THP-1 macrophages.

  15. Differential effect of three polyunsaturated aldehydes on marine bacterial isolates.

    Science.gov (United States)

    Ribalet, Francois; Intertaglia, Laurent; Lebaron, Philippe; Casotti, Raffaella

    2008-01-31

    Bioactive polyunsaturated aldehydes (PUAs) are produced by several marine phytoplankton (mainly diatoms) and have been shown to have a detrimental effect on a wide variety of organisms, including phytoplankton and invertebrates. However, their potential impact on marine bacteria has been largely neglected. We assess here the effect of three PUAs produced by marine diatoms: 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, on the growth of 33 marine bacterial strains, including 16 strains isolated during a bloom of the PUA-producing diatom Skeletonema marinoi in the Northern Adriatic Sea. A concentration-dependent growth reduction was observed for 19 bacterial strains at concentrations ranging from 3 to 145 micromolL(-1). Surprisingly, Eudora adriatica strain MOLA358 (Flavobacteriaceae) and Alteromonas hispanica strain MOLA151 (Alteromonadaceae) showed growth stimulation upon exposure to PUAs at concentrations between 13 and 18 micromolL(-1). The remaining 12 strains were unaffected by even very high PUA concentrations. Strains isolated during the diatom bloom showed remarkable resistance to PUA exposures, with only two out of 16 strains showing growth inhibition at PUA concentrations below 106, 130, and 145 micromolL(-1) for 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, respectively. No correlation between taxonomical position and sensitivity to PUA was observed. Considering that many bacteria thrive in close vicinity of diatom cells, it is likely that these compounds may shape the structure of associated bacterial communities by representing a selection force. This is even more relevant during the final stages of blooms, when senescence and nutrient limitation increase the potential production and release of aldehydes.

  16. Isobaric Vapor-Liquid Equilibrium of Binary Systems: p-Xylene + (Acetic Acid, Methyl Acetate and n-Propyl Acetate)and Methyl Acetate + n-Propyl Acetate in an Acetic Acid Dehydration Process

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiuhui; ZHONG Weimin; PENG Changjun; QIAN Feng

    2013-01-01

    The vapor-liquid equilibrium data of four binary systems(acetic acid + p-xylene,methyl acetate + n-propyl acetate,n-propyl acetate + p-xylene and methyl acetate + p-xylene)are measured at 101.33 kPa with Ellis equilibrium still,and then both the NRTL and UNIQUAC models are used in combination with the HOC model for correlating and estimating the vapor-liquid equilibrium of these four binary systems.The estimated binary VLE results using correlated parameters agree well with the measured data except the methyl acetate + p-xylene system which easily causes bumping and liquid rushing out of the sampling tap due to their dramatically different boiling points.The correlation results by NRTL and UNIQUAC models have little difference on the average absolute deviations of temperature and composition of vapor phase,and the results by NRTL model are slightly better than those by UNIQUAC model except for the methyl acetate + n-propyl acetate system,for which the latter gives more accurate correlations.

  17. 21 CFR 184.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  18. Extractive fermentation of acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Busche, R.M. [Bio En-Gene-Er Associates, Inc., Wilmington, DE (United States)

    1991-12-31

    In this technoeconomic evaluation of the manufacture of acetic acid by fermentation, the use of the bacterium: Acetobacter suboxydans from the old vinegar process was compared with expected performance of the newer Clostridium thermoaceticum bacterium. Both systems were projected to operate as immobilized cells in a continuous, fluidized bed bioreactor, using solvent extraction to recover the product. Acetobacter metabolizes ethanol aerobically to produce acid at 100 g/L in a low pH medium. This ensures that the product is in the form of a concentrated extractable free acid, rather than as an unextractable salt. Unfortunately, yields from glucose by way of the ethanol fermentation are poor, but near the biological limits of the organisms involved. Conversely, C. thermoaceticum is a thermophilic anaerobe that operates at high fermentation rates on glucose at neutral pH to produce acetate salts directly in substantially quantitative yields. However, it is severely inhibited by product, which restricts concentration to a dilute 20 g/L. An improved Acetobacter system operating with recycled cells at 50 g/L appears capable of producing acid at $0.38/lb, as compared with a $0.29/lb price for synthetic acid. However, this system has only a limited margin for process improvement. The present Clostridium system cannot compete, since the required selling price would be $0.42/lb. However, if the organism could be adapted to tolerate higher product concentrations at acid pH, selling price could be reduced to $0.22/lb, or about 80% of the price of synthetic acid.

  19. 5-硝基水杨醛的合成研究%Synthesis of 5-nitrosaicyl Aldehyde

    Institute of Scientific and Technical Information of China (English)

    曹志武; 刘俊峰; 姜鹏; 冯桂英

    2011-01-01

    以对硝基苯酚、乌洛托品、多聚甲醛等为原料合成5-硝基水杨醛,主要探讨了反应温度、时间、反应物用量及酸等因素对合成产率的影响。较优反应条件为:在对硝基苯酚为0.02 mol(2.78 g)的情况下,多聚甲醛用量为0.4 g,冰醋酸和乙酸酐分别为15 mL和8 mLn,(六亚甲基四胺):n(对硝基苯酚)=2∶1,反应时间为4.0 h,反应温度为90℃,此时反应产率可达78.9%。产品经IR表征。%5-nitrosaicyl aldehyde was synthesized by reaction of p-nitrophenol,hexamethylenetetramine and paraformalclehyde.The optimum conditions were as follows: n(urotropine)/n(5-nitrosaicyl aldehyde)=2:1,the reaction time about 4.0 h,temperature about 90 ℃,the amount of the paraformalclehyde 0.4 g,glacial acetic acid 15 mL,and acetic anhydride 8 mL.The yield can reach 69.5%.The product was characterized by IR.

  20. Kinetics of Oxidation of Some Amino Acids by N-Chlorosaccharin in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2004-01-01

    Full Text Available The kinetics of oxidation of some amino acids namely, glycine, alanine, aspartic acid, arginine, and histidine, (AA by N-chlorosaccharin (NCSA in aqueous acetic acid medium in the presence of perchloric acid have been investigated. The observed rate of oxidation is first order in [AA], [NCSA] and of inverse fractional order in [H+]. The main product of the oxidation is the corresponding aldehyde. The ionic strength on the reaction rate has no significant effect. The effect of changing the dielectric constant of the medium on the rate indicates the reaction to be of dipole-dipole type. Hypochlorous acid has been postulated as the reactive oxidizing species. The reaction constants involved in the mechanism are derived. The activation parameters are computed with respect to slow step of the mechanism.

  1. Optimization of coproduction of ethyl acetate and n-butyl acetate by reactive distillation☆

    Institute of Scientific and Technical Information of China (English)

    Hui Tian; Suying Zhao; Huidong Zheng; Zhixian Huang

    2015-01-01

    Based on a previous investigation, a simulation model was used for optimization of coproduction of ethyl acetate and n-butyl acetate by reactive distil ation. An experimental setup was established to verify the simulated results. The effects of various operating variables, such as ethanol feed location, acetic acid feed location, feed stage of reaction mixture of acetic acid and n-butanol, reflux ratio of ethyl acetate reactive distillation column, and distil-late to feed ratio of n-butyl acetate column, on the ethanol/n-butanol conversions, ethyl acetate/n-butyl acetate purity, and energy consumption were investigated. The optimal results in the simulation study are as follows:ethanol feed location, 15th stage;acetic acid feed location, eighth stage;feed location of reaction mixture of acetic acid and n-butanol, eighth stage;reflux ratio of ethyl acetate reactive distillation column, 2.0;and distillate to feed ratio of n-butyl acetate, 0.6.

  2. Reaction mechanism of aldehydes and ammonia to form pyridine bases%醛/氨反应合成吡啶碱机理

    Institute of Scientific and Technical Information of China (English)

    张弦; 罗才武; 黄登高; 李安; 刘娟娟; 晁自胜

    2013-01-01

    Pyridine bases were prepared by reactions of aldehydes (formaldehyde,acrolein and/or acetaldehyde) with ammonium acetate,using acetic acid as solvent,in a refluxing tank reactor under atmospheric pressure.Quantum chemical and thermodynamic calculations were conducted to analyze the configurations and charges of acrolein and propylene imine and to investigate the electrostatic interaction,frontier molecular orbital and energy changes during the formations of intermediate dihydropyridine and product 3-methyl pyridine.Based on these results,a reaction mechanism was proposed for the formation of 3-methyl pyridine from acrolein and ammonia,and also,a general rule was summarized for the reaction of aldehyde with ammonia to form pyridine bases.The products distribution predicted theoretically was consistent with that obtained by experiment.%在常压釜式反应器中,以乙酸为溶剂,开展了乙酸铵(氨源)与甲醛、乙醛和丙烯醛中的一种或多种反应制备吡啶碱的研究.通过Hückel和Mulliken模型的量子化学和热力学计算,分析了丙烯醛和反应中间体丙烯亚胺的构型和电荷,考察了生成中间体二氢吡啶和产物3-甲基吡啶过程中的静电相互作用、前线分子轨道和能量变化,从而提出了丙烯醛/氨合成3-甲基吡啶的反应机理,并总结了醛/氨反应制吡啶碱反应的一般规律.理论预测的产物组成与实验结果具有良好的一致性.

  3. Manufacturing Ethyl Acetate From Fermentation Ethanol

    Science.gov (United States)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  4. Direct Oxidation of Ethene to Acetic Acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Direct oxidation of ethene to acetic acid over Pd-SiW12/SiO2 catalysts prepared by several methods was studied. A better method for reducing palladium composition of the catalysts was found. Acetic acid was obtained with selectivity of 82.7% and once-through space time yield (STY) of 257.4 g/h×L.

  5. Aldehydes in hydrothermal solution - Standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures

    Science.gov (United States)

    Schulte, Mitchell D.; Shock, Everett L.

    1993-01-01

    Aldehydes are common in a variety of geologic environments and are derived from a number of sources, both natural and anthropogenic. Experimental data for aqueous aldehydes were taken from the literature and used, along with parameters for the revised Helgeson-Kirkham-Flowers (HKF) equations of state, to estimate standard partial molal thermodynamic data for aqueous straight-chain alkyl aldehydes at high temperatures and pressures. Examples of calculations involving aldehydes in geological environments are given, and the stability of aldehydes relative to carboxylic acids is evaluated. These calculations indicate that aldehydes may be intermediates in the formation of carboxylic acids from hydrocarbons in sedimentary basin brines and hydrothermal systems like they are in the atmosphere. The data and parameters summarized here allow evaluation of the role of aldehydes in the formation of prebiotic precursors, such as amino acids and hydroxy acids on the early Earth and in carbonaceous chondrite parent bodies.

  6. Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka.

    Science.gov (United States)

    Perumpuli, P A B N; Watanabe, Taisuke; Toyama, Hirohide

    2014-01-01

    From the pellicle formed on top of brewing coconut water vinegar in Sri Lanka, three Acetobacter strains (SL13E-2, SL13E-3, and SL13E-4) that grow at 42 °C and four Gluconobacter strains (SL13-5, SL13-6, SL13-7, and SL13-8) grow at 37 °C were identified as Acetobacter pasteurianus and Gluconobacter frateurii, respectively. Acetic acid production by the isolated Acetobacter strains was examined. All three strains gave 4% acetic acid from 6% initial ethanol at 37 °C, and 2.5% acetic acid from 4% initial ethanol at 40 °C. Compared with the two other strains, SL13E-4 showed both slower growth and slower acetic acid production. As well as the thermotolerant SKU1108 strain, the activities of the alcohol dehydrogenase and the aldehyde dehydrogenase of SL13E-2 and SL13E-4 were more stable than those of the mesophilic strain. The isolated strains were used to produce coconut water vinegar at higher temperatures than typically used for vinegar production.

  7. Measurements Alcohols, Ketones, and Aldehydes During Trace-P

    Science.gov (United States)

    Apel, E. C.; Riemer, D. D.; Hills, A.; Lueb, R.; Fried, A.; Sachse, G.; Crawford, J.; Singh, H.; Blake, D.

    2002-12-01

    A sensitive and selective instrument (fast gas chromatographic mass spectrometer - FGCMS) was developed for the continuous measurement of oxygenated volatile organic compounds (OVOCs: alcohols, ketones and aldehydes (except for formaldehyde)) containing fewer than 6 carbon atoms and subsequently deployed during the NASA's TRACE-P (Transport and Chemical Evolution over the Pacific) experiment. This paper will briefly describe the instrument and present results obtained from 15 mission flights. Dramatic differences were observed in the mixing ratios and vertical profiles of the longer-lived species, acetone and methanol, compared to the shorter-lived species. For example, between 6 and 7 km, the median mixing ratios for the two longest lived species measured, acetone and methanol, are 765 pptv and 1061 pptv, respectively whereas the combined mixing ratio for all other species measured was less than 500 pptv. A large variety of air masses were encountered during this experiment and this is reflected in the behavior of the measured OVOCs. Relationships between the OVOCs and other trace species will be explored. Implications of these measurements for our current understanding of global tropospheric chemistry will be discussed.

  8. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  9. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively.

  10. A new resistance source of aldehyde reductase functions from Scheffersomyces stipitis against biomass fermentation inhibitor furfural

    Science.gov (United States)

    Aldehyde inhibitory compounds derived from lignocellulosic biomass pretreatment are a major class of toxic chemicals that interfere with microbial growth and subsequent fermentation for advanced biofuels production. This study identified five uncharacterized putative genes of Scheffersomyces stipiti...

  11. Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products

    National Research Council Canada - National Science Library

    Kaiser, Brett K; Carleton, Michael; Hickman, Jason W; Miller, Cameron; Lawson, David; Budde, Mark; Warrener, Paul; Paredes, Angel; Mullapudi, Srinivas; Navarro, Patricia; Cross, Fred; Roberts, James M

    2013-01-01

    We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters...

  12. Oxidative Esterification of Aldehydes with Urea Hydrogen Peroxide Catalyzed by Aluminum Chloride Hexahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sin-Ae; Kim, Yoon Mi; Lee, Jong Chan [Chung-Ang University, Seoul (Korea, Republic of)

    2016-08-15

    We have developed a new, environmentally benign and highly efficient oxidative preparation of methyl esters by the reaction of various aldehydes with UHP in methanol catalyzed by readily accessible aluminum(III) chloride hexahydrate. This new greener and cost effective direct esterification method can serve as a useful alternative to existing protocols. Esters are some of the most important functional groups in organic chemistry and have been found in the sub-structure of a variety of natural products, industrial chemicals, and pharmaceuticals. Numerous methods have been reported for the preparation of various esters. In particular, this method gives low yields for both aldehydes containing electron donating substituents in aromatic rings and heterocyclic aldehydes. Therefore, development of a more general, efficient, and greener protocol for the esterification of aldehydes with readily available catalyst is still desirable.

  13. A Direct Transformation of Aryl Aldehydes to Benzyl Iodides Via Reductive Iodination

    Energy Technology Data Exchange (ETDEWEB)

    Ruso, Jayaraman Sembian; Rajendiran, Nagappan; Kumaran, Rajendran Senthil [Univ. of Madras, Chennai (India)

    2014-02-15

    A facile transformation of aryl aldehydes to benzyl iodides through one-pot reductive iodination is reported. This protocol displays remarkable functional group tolerance and the title compound was obtained in good to excellent yield.

  14. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2011-01-01

    Full Text Available Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  15. The applications of Schiff bases in Ti-catalyzed asymmetric alkynylation of aldehydes

    Institute of Scientific and Technical Information of China (English)

    Xian Jia; Lu Yin; Xuan Zhao; Xing Shu Li

    2007-01-01

    Sciff bases 1 and 2, which were derived from chiral aminoalcohols, were used as ligands in Ti-catalyzed asymmetric alkynylation of aldehydes. Good enantioselectivities (up to 88% ee) and high chemical yields (80-90 %) were obtained.

  16. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2013-01-01

    Full Text Available Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.

  17. In vitro antibacterial activity of some aliphatic aldehydes from Olea europaea L.

    Science.gov (United States)

    Bisignano, G; Laganà, M G; Trombetta, D; Arena, S; Nostro, A; Uccella, N; Mazzanti, G; Saija, A

    2001-04-20

    In the present paper we report the 'in vitro' activity of eight aliphatic long-chain aldehydes from olive flavor (hexanal, nonanal, (E)-2-hexenal, (E)-2-eptenal, (E)-2-octenal, (E)-2-nonenal, (E)-2-decenal and (E,E)-2,4-decadienal) against a number of standard and freshly isolated bacterial strains that may be causal agents of human intestinal and respiratory tract infections. The saturated aldehydes characterized in the present study do not exhibit significant antibacterial activity, while the alpha,beta-unsaturated aldehydes have a broad antimicrobial spectrum and show similar activity against Gram-positive and Gram-negative microorganisms. The effectiveness of the aldehydes under investigation seems to depend not only on the presence of the alpha,beta-double bond, but also on the chain length from the enal group and on the microorganism tested.

  18. Ambient Ionic Liquids Used in the Reduction ofAldehydes and Ketones

    Institute of Scientific and Technical Information of China (English)

    Dan Qian XU; Shu Ping LUO; Bao You LIU; Zhen Yuan XU; Yin Chu SHEN

    2004-01-01

    The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.

  19. Direct preparation of copper organometallics bearing an aldehyde function via an iodine-copper exchange.

    Science.gov (United States)

    Yang, Xiaoyin; Knochel, Paul

    2006-06-21

    The iodine-copper exchange reaction allows the direct preparation of various aryl, heteroaryl and alkenyl cuprates bearing a formyl group, thus allowing a direct synthesis of polyfunctional aldehydes without the need of protecting groups or an additional oxidation step.

  20. Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations.

    Science.gov (United States)

    Hao, Li-Ping; Lü, Fan; He, Pin-Jing; Li, Lei; Shao, Li-Ming

    2011-01-15

    To quantify the contribution of syntrophic acetate oxidation to thermophilic anaerobic methanogenesis under the stressed condition induced by acidification, the methanogenic conversion process of 100 mmol/L acetate was monitored simultaneously by using isotopic tracing and selective inhibition techniques, supplemented with the analysis of unculturable microorganisms. Both quantitative methods demonstrated that, in the presence of aceticlastic and hydrogenotrophic methanogens, a large percentage of methane (up to 89%) was initially derived from CO(2) reduction, indicating the predominant contribution of the syntrophic acetate oxidation pathway to acetate degradation at high acid concentrations. A temporal decrease of the fraction of hydrogenotrophic methanogenesis from more than 60% to less than 40% reflected the gradual prevalence of the aceticlastic methanogenesis pathway along with the reduction of acetate. This apparent discrimination of acetate methanization pathways highlighted the importance of the syntrophic acetate-oxidizing bacteria to initialize methanogenesis from high organic loadings.

  1. Desvenlafaxinium chloranilate ethyl acetate solvate

    Directory of Open Access Journals (Sweden)

    Manpreet Kaur

    2013-10-01

    Full Text Available In the cation of the title compound, C16H26NO2+·C6HCl2O4−·C4H8O2, the 1-hydroxy-cyclohexyl ring adopts a slightly distorted chair conformation. The dihedral angle between the mean planes of the 1-hydroxycyclohexyl and 4-hydroxyphenyl rings is 84.0 (8°. In the anion, the hydroxyl H atom is twisted slightly out of the ring plane with a C—C—O—H torsion angle of −171.9°. Disorder was modeled for the methyl group of the acetate group in the solvate with an occupancy ratio of 0.583 (15: 0.417 (15. In the crystal, O—H...O hydrogen bonds are observed between cations and between cations and anions, while bifuricated N—H...(O,O cation–anion hydrogen bonds are also present, forming chains along [010] and [100]. In addition weak cation–anion and cation–solvate C—H...O interactions occur.

  2. Rh(I)-Catalyzed Intermolecular Hydroacylation: Enantioselective Cross-Coupling of Aldehydes and Ketoamides

    Science.gov (United States)

    2015-01-01

    Under Rh(I) catalysis, α-ketoamides undergo intermolecular hydroacylation with aliphatic aldehydes. A newly designed Josiphos ligand enables access to α-acyloxyamides with high atom-economy and enantioselectivity. On the basis of mechanistic and kinetic studies, we propose a pathway in which rhodium plays a dual role in activating the aldehyde for cross-coupling. A stereochemical model is provided to rationalize the sense of enantioinduction observed. PMID:24937681

  3. An Improved Protocol for the Aldehyde Olefination Reaction Using (bmim ( as Reaction Medium

    Directory of Open Access Journals (Sweden)

    Vivek Srivastava

    2013-01-01

    Full Text Available [Ru(CODCl2]/CuCl2·2H2O/LiCl catalytic system works efficiently in ionic liquid media for aldehyde olefination reaction. It offers good yield and selectivity with the added advantage of 5 times recyclability for [Ru(CODCl2] /CuCl2·2H2O/LiCl catalytic system. We also successfully reduced the reaction time from 12 hours to 9 hours for the aldehyde olefination reaction.

  4. Silicon Amine Reagents for the Photocatalytic Synthesis of Piperazines from Aldehydes and Ketones.

    Science.gov (United States)

    Hsieh, Sheng-Ying; Bode, Jeffrey W

    2016-05-06

    Silicon amine protocol (SLAP) reagents for photocatalytic cross-coupling with aldehydes and ketones to form N-unprotected piperazines have been developed. This blue light promoted process tolerates a wide range of heteroaromatic, aromatic, and aliphatic aldehydes and structurally and stereochemically complex SLAP reagents. It provides a tin-free alternative to SnAP (tin amine protocol) reagents for the synthesis of substituted piperazines.

  5. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  6. Iron-Catalyzed Regioselective Transfer Hydrogenative Couplings of Unactivated Aldehydes with Simple Alkenes.

    Science.gov (United States)

    Zheng, Yan-Long; Liu, Yan-Yao; Wu, Yi-Mei; Wang, Yin-Xia; Lin, Yu-Tong; Ye, Mengchun

    2016-05-17

    An FeBr3 -catalyzed reductive coupling of various aldehydes with alkenes that proceeds through a direct hydride transfer pathway has been developed. With (i) PrOH as the hydrogen donor under mild conditions, previously challenging coupling reactions of unactivated alkyl and aryl aldehydes with simple alkenes, such as styrene derivatives and α-olefins, proceeded smoothly to furnish a diverse range of functionalized alcohols with complete linear regioselectivity.

  7. Nitric Oxide Mediates the Stress Response Induced by Diatom Aldehydes in the Sea Urchin Paracentrotus lividus

    OpenAIRE

    Giovanna Romano; Maria Costantini; Isabella Buttino; Adrianna Ianora; Anna Palumbo

    2011-01-01

    Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadie...

  8. Accurate determination of aldehydes in amine catalysts or amines by 2,4-dinitrophenylhydrazine derivatization.

    Science.gov (United States)

    Barman, Bhajendra N

    2014-01-31

    Carbonyl compounds, specifically aldehydes, present in amine catalysts or amines are determined by reversed-phase liquid chromatography using ultraviolet detection of their corresponding 2,4-dinitrophenylhydrazones. The primary focus has been to establish optimum conditions for determining aldehydes accurately because these add exposure concerns when the amine catalysts are used to manufacture polyurethane products. Concentrations of aldehydes determined by this method are found to vary with the pH of the aqueous amine solution and the derivatization time, the latter being problematic when the derivatization reaction proceeds slowly and not to completion in neutral and basic media. Accurate determination of aldehydes in amines through derivatization can be carried out at an effective solution pH of about 2 and with derivatization time of 20min. Hydrochloric acid has been used for neutralization of an amine. For complete derivatization, it is essential to protonate all nitrogen atoms in the amine. An approach for the determination of an adequate amount of acid needed for complete derivatization has been described. Several 0.2M buffer solutions varying in pH from 4 to 8 have also been used to make amine solutions for carrying out derivatization of aldehydes. These solutions have effective pHs of 10 or higher and provide much lower aldehyde concentrations compared to their true values. Mechanisms for the formation of 2,4-dinitrophenylhydrazones in both acidic and basic media are discussed.

  9. Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation.

    Science.gov (United States)

    Bueno, Mónica; Carrascón, Vanesa; Ferreira, Vicente

    2016-01-27

    Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation.

  10. Brain and Liver Headspace Aldehyde Concentration Following Dietary Supplementation with n-3 Polyunsaturated Fatty Acids.

    Science.gov (United States)

    Ross, Brian M; Babay, Slim; Malik, Imran

    2015-11-01

    Reactive oxygen species react with unsaturated fatty acids to form a variety of metabolites including aldehydes. Many aldehydes are volatile enough to be detected in headspace gases of blood or cultured cells and in exhaled breath, in particular propanal and hexanal which are derived from omega-3 and omega-6 polyunsaturated fatty acids, respectively. Aldehydes are therefore potential non-invasive biomarkers of oxidative stress and of various diseases in which oxidative stress is thought to play a role including cancer, cardiovascular disease and diabetes. It is unclear, however, how changes in the abundance of the fatty acid precursors, for example by altered dietary intake, affect aldehyde concentrations. We therefore fed male Wistar rats diets supplemented with either palm oil or a combination of palm oil plus an n-3 fatty acid (alpha-linolenic, eicosapentaenoic, or docosahexaenoic acids) for 4 weeks. Fatty acid analysis revealed large changes in the abundance of both n-3 and n-6 fatty acids in the liver with smaller changes observed in the brain. Despite the altered fatty acid abundance, headspace concentrations of C1-C8 aldehydes, and tissue concentrations of thiobarbituric acid reactive substances, did not differ between the 4 dietary groups. Our data suggest that tissue aldehyde concentrations are independent of fatty acid abundance, and further support their use as volatile biomarkers of oxidative stress.

  11. Effects of culture conditions on acetic acid production by bacteria ...

    African Journals Online (AJOL)

    SARAH

    2015-11-30

    Nov 30, 2015 ... Keywords: Acetic acid bacteria, acetic acid production, Cocoa fermentation, culture conditions. INTRODUCTION ... assessed by acid forming colony characterized by a ... production capacity to ethanol, lactic acid, acetic acid.

  12. Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production.

    Science.gov (United States)

    Kuit, Wouter; Minton, Nigel P; López-Contreras, Ana M; Eggink, Gerrit

    2012-05-01

    In microorganisms, the enzyme acetate kinase (AK) catalyses the formation of ATP from ADP by de-phosphorylation of acetyl phosphate into acetic acid. A mutant strain of Clostridium acetobutylicum lacking acetate kinase activity is expected to have reduced acetate and acetone production compared to the wild type. In this work, a C. acetobutylicum mutant strain with a selectively disrupted ack gene, encoding AK, was constructed and genetically and physiologically characterized. The ack (-) strain showed a reduction in acetate kinase activity of more than 97% compared to the wild type. The fermentation profiles of the ack (-) and wild-type strain were compared using two different fermentation media, CGM and CM1. The latter contains acetate and has a higher iron and magnesium content than CGM. In general, fermentations by the mutant strain showed a clear shift in the timing of peak acetate production relative to butyrate and had increased acid uptake after the onset of solvent formation. Specifically, in acetate containing CM1 medium, acetate production was reduced by more than 80% compared to the wild type under the same conditions, but both strains produced similar final amounts of solvents. Fermentations in CGM showed similar peak acetate and butyrate levels, but increased acetoin (60%), ethanol (63%) and butanol (16%) production and reduced lactate (-50%) formation by the mutant compared to the wild type. These findings are in agreement with the proposed regulatory function of butyryl phosphate as opposed to acetyl phosphate in the metabolic switch of solventogenic clostridia.

  13. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.

    Science.gov (United States)

    Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min

    2017-08-02

    Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.

  14. Aldehyde measurements in indoor environments in Strasbourg (France)

    Science.gov (United States)

    Marchand, C.; Bulliot, B.; Le Calvé, S.; Mirabel, Ph.

    Formaldehyde and acetaldehyde concentrations have been measured in indoor environments of various public spaces (railway station, airport, shopping center, libraries, underground parking garage, etc.) of Strasbourg area (east of France). In addition, formaldehyde, acetaldehyde propionaldehyde and hexanal concentrations have been measured in 22 private homes in the same area. In most of the sampling sites, indoor and outdoor formaldehyde and acetaldehyde concentrations were measured simultaneously. Gaseous aldehydes levels were quantified by a conventional DNHP-derivatization method followed by liquid chromatography coupled to UV detection. Outdoor formaldehyde and acetaldehyde concentrations were both in the range 1-10 μg m -3, the highest values being measured at the airport and railway station. Indoor concentrations were strongly dependant upon the sampling sites. In homes, the average concentrations were 37 μg m -3 (living rooms) and 46 μg m -3 (bedrooms) for formaldehyde, 15 μg m -3 (living rooms) and 18 μg m -3 (bedrooms) for acetaldehyde, 1.2 μg m -3 (living rooms) and 1.6 μg m -3 (bedrooms) for propionaldehyde, 9 μg m -3 (living rooms) and 10 μg m -3 (bedrooms) for hexanal. However, concentrations as high as 123, 80 and 47 μg m -3 have been found for formaldehyde, acetaldehyde and hexanal respectively. In public spaces, the highest formaldehyde concentration (62 μg m -3) was found in a library and the highest concentration of acetaldehyde (26 μg m -3) in the hall of a shopping center. Additional measurements of formaldehyde and acetaldehyde were made inside a car both at rest or in a fluid or heavy traffic as well as in a room where cigarettes were smoked. Our data have been discussed and compared with those of previous studies.

  15. Health-Beneficial Phenolic Aldehyde in Antigonon leptopus Tea

    Directory of Open Access Journals (Sweden)

    Vanisree Mulabagal

    2011-01-01

    Full Text Available Tea prepared from the aerial parts of Antigonon leptopus is used as a remedy for cold and pain relief in many countries. In this study, A. leptopus tea, prepared from the dried aerial parts, was evaluated for lipid peroxidation (LPO and cyclooxygenase (COX-1 and COX-2 enzyme inhibitory activities. The tea as a dried extract inhibited LPO, COX-1 and COX-2 enzymes by 78%, 38% and 89%, respectively, at 100 g/mL. Bioassay-guided fractionation of the extract yielded a selective COX-2 enzyme inhibitory phenolic aldehyde, 2,3,4-trihydroxy benzaldehyde. Also, it showed LPO inhibitory activity by 68.3% at 6.25 g/mL. Therefore, we have studied other hydroxy benzaldehydes and their methoxy analogs for LPO, COX-1 and COX-2 enzymes inhibitory activities and found that compound 1 gave the highest COX-2 enzyme inhibitory activity as indicated by a 50% inhibitory concentration (IC50 at 9.7 g/mL. The analogs showed only marginal LPO activity at 6.25 g/mL. The hydroxy analogs 6, 7 and 9 showed 55%, 61% and 43% of COX-2 inhibition at 100 g/mL. However, hydroxy benzaldehydes 3 and 12 showed selective COX-1 inhibition while compounds 4 and 10 gave little or no COX-2 enzyme inhibition at 100 g/mL. At the same concentration, compounds 14, 21 and 22 inhibited COX-1 by 83, 85 and 70%, respectively. Similarly, compounds 18, 19 and 23 inhibited COX-2 by 68%, 72% and 70%, at 100 g/mL. This is the first report on the isolation of compound 1 from A. leptopus tea with selective COX-2 enzyme and LPO inhibitory activities.

  16. Residues that influence coenzyme preference in the aldehyde dehydrogenases.

    Science.gov (United States)

    González-Segura, Lilian; Riveros-Rosas, Héctor; Julián-Sánchez, Adriana; Muñoz-Clares, Rosario A

    2015-06-01

    To find out the residues that influence the coenzyme preference of aldehyde dehydrogenases (ALDHs), we reviewed, analyzed and correlated data from their known crystal structures and amino-acid sequences with their published kinetic parameters for NAD(P)(+). We found that the conformation of the Rossmann-fold loops participating in binding the adenosine ribose is very conserved among ALDHs, so that coenzyme specificity is mainly determined by the nature of the residue at position 195 (human ALDH2 numbering). Enzymes with glutamate or proline at 195 prefer NAD(+) because the side-chains of these residues electrostatically and/or sterically repel the 2'-phosphate group of NADP(+). But contrary to the conformational rigidity of proline, the conformational flexibility of glutamate may allow NADP(+)-binding in some enzymes by moving the carboxyl group away from the 2'-phosphate group, which is possible if a small neutral residue is located at position 224, and favored if the residue at position 53 interacts with Glu195 in a NADP(+)-compatible conformation. Of the residues found at position 195, only glutamate interacts with the NAD(+)-adenosine ribose; glutamine and histidine cannot since their side-chain points are opposite to the ribose, probably because the absence of the electrostatic attraction by the conserved nearby Lys192, or its electrostatic repulsion, respectively. The shorter side-chains of other residues-aspartate, serine, threonine, alanine, valine, leucine, or isoleucine-are distant from the ribose but leave room for binding the 2'-phosphate group. Generally, enzymes having a residue different from Glu bind NAD(+) with less affinity, but they can also bind NADP(+) even sometimes with higher affinity than NAD(+), as do enzymes containing Thr/Ser/Gln195. Coenzyme preference is a variable feature within many ALDH families, consistent with being mainly dependent on a single residue that apparently has no other structural or functional roles, and therefore can

  17. A Search for CD36 Ligands from Flavor Volatiles in Foods with an Aldehyde Moiety: Identification of Saturated Aliphatic Aldehydes with 9-16 Carbon Atoms as Potential Ligands of the Receptor.

    Science.gov (United States)

    Tsuzuki, Satoshi; Amitsuka, Takahiko; Okahashi, Tatsuya; Kimoto, Yusaku; Inoue, Kazuo

    2017-08-09

    Volatile compounds with an aldehyde moiety such as (Z)-9-octadecenal are potential ligands for cluster of differentiation 36 (CD36), a transmembrane receptor that has recently been shown to play a role in mammalian olfaction. In this study, by performing an assay using a peptide mimic of human CD36, we aimed to discover additional ligands for the receptor from volatiles containing a single aldehyde group commonly found in human foods. Straight-chain, saturated aliphatic aldehydes with 9-16 carbons exhibited CD36 ligand activities, albeit to varying degrees. Notably, the activities of tridecanal and tetradecanal were higher than that of oleic acid, the most potent ligand among the fatty acids tested. Among the aldehydes other than aliphatic aldehydes, only phenylacetaldehyde showed a weak activity. These findings make a contribution to our knowledge of recognition mechanisms for flavor volatiles in foods with an aldehyde group.

  18. Luminescence properties of uranyl-acetate species

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Hannes; Moll, Henry [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was applied to characterize uranium(VI)- acetate species based on their luminescence properties. In contrast to previous interpretations, no indications were detected for the existence of the 1: 3 complex.

  19. Effect of fluorogesterone acetate impregnated intravaginal sponges ...

    African Journals Online (AJOL)

    Effect of fluorogesterone acetate impregnated intravaginal sponges 1 on vaginal bacterial flora of ewes. ... The bacterial flora of the vagina of ten ewes was determined at sponge removal and two days later before insertion of ... Article Metrics.

  20. Acetic acid fermentation of acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation.

    Science.gov (United States)

    Kanchanarach, Watchara; Theeragool, Gunjana; Inoue, Taketo; Yakushi, Toshiharu; Adachi, Osao; Matsushita, Kazunobu

    2010-01-01

    Acetobacter pasteurianus strains IFO3283, SKU1108, and MSU10 were grown under acetic acid fermentation conditions, and their growth behavior was examined together with their capacity for acetic acid resistance and pellicle formation. In the fermentation process, the cells became aggregated and covered by amorphous materials in the late-log and stationary phases, but dispersed again in the second growth phase (due to overoxidation). The morphological change in the cells was accompanied by changes in sugar contents, which might be related to pellicle polysaccharide formation. To determine the relationship between pellicle formation and acetic acid resistance, a pellicle-forming R strain and a non-forming S strain were isolated, and their fermentation ability and acetic acid diffusion activity were compared. The results suggest that pellicle formation is directly related to acetic acid resistance ability, and thus is important to acetic acid fermentation in these A. pasteurianus strains.

  1. Microenvironmental characteristics important for personal exposures to aldehydes in Sacramento, CA, and Milwaukee, WI

    Science.gov (United States)

    Raymer, J. H.; Akland, G.; Johnson, T. R.; Long, T.; Michael, L.; Cauble, L.; McCombs, M.

    Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as "indoor at home." By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental

  2. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.

    Science.gov (United States)

    Kunjapur, Aditya M; Tarasova, Yekaterina; Prather, Kristala L J

    2014-08-20

    Aromatic aldehydes are useful in numerous applications, especially as flavors, fragrances, and pharmaceutical precursors. However, microbial synthesis of aldehydes is hindered by rapid, endogenous, and redundant conversion of aldehydes to their corresponding alcohols. We report the construction of an Escherichia coli K-12 MG1655 strain with reduced aromatic aldehyde reduction (RARE) that serves as a platform for aromatic aldehyde biosynthesis. Six genes with reported activity on the model substrate benzaldehyde were rationally targeted for deletion: three genes that encode aldo-keto reductases and three genes that encode alcohol dehydrogenases. Upon expression of a recombinant carboxylic acid reductase in the RARE strain and addition of benzoate during growth, benzaldehyde remained in the culture after 24 h, with less than 12% conversion of benzaldehyde to benzyl alcohol. Although individual overexpression results demonstrated that all six genes could contribute to benzaldehyde reduction in vivo, additional experiments featuring subset deletion strains revealed that two of the gene deletions were dispensable under the conditions tested. The engineered strain was next investigated for the production of vanillin from vanillate and succeeded in preventing formation of the byproduct vanillyl alcohol. A pathway for the biosynthesis of vanillin directly from glucose was introduced and resulted in a 55-fold improvement in vanillin titer when using the RARE strain versus the wild-type strain. Finally, synthesis of the chiral pharmaceutical intermediate L-phenylacetylcarbinol (L-PAC) was demonstrated from benzaldehyde and glucose upon expression of a recombinant mutant pyruvate decarboxylase in the RARE strain. Beyond allowing accumulation of aromatic aldehydes as end products in E. coli, the RARE strain expands the classes of chemicals that can be produced microbially via aldehyde intermediates.

  3. Acetate intolerance and an inhibitor of acetate utilization in hemodialysis patients

    Energy Technology Data Exchange (ETDEWEB)

    Egan, J.D.; Wells, I.C.

    1979-03-01

    Diminished ability to utilize acetate (acetate intolerance) developed in a male patient on chronic hemodialysis after five years of maintenance dialysis. His ability to utilize lactate was also subnormal. We studied acetate metabolism in vitro by isolating lymphocytes from the patient's blood before dialysis and measuring their ability to convert (1-/sub 14/C)acetate to /sub 14/CO2. His cells metabolized acetate only 35% as well as did lymphocytes from normal adults. The inhibition appeared when the patient's lymphocytes were cultured, and the ability of normal lymphocytes to oxidize acetate decreased after they had been incubated in the patient's plasma. We conclude that an inhibitor of acetate utilization is present in the plasma and in (or on) the cells of this acetate-intolerant patient. The diminished ability of the patient to utilize lactate and the presence of normal concentrations of pyruvate, citrate, and ketone bodies in his blood suggest that the inhibitor functions at the cell surface to impede the entrance of acetate into the cells. The inhibitor appears to be dialyzable; its nature is unknown. Its accumulation in the plasma of chronic hemodialysis patients has not been thus far associated with any deleterious effects other than prolonging the metabolic acidosis of such patients.

  4. Design and Synthesis of Some Thiazolidin-4-ones Based on (7-Hydroxy-2-oxo-2H-chromen-4-yl Acetic Acid

    Directory of Open Access Journals (Sweden)

    Valentina Rajkovic

    2009-07-01

    Full Text Available (7-Hydroxy-2-oxo-2H-chromen-4-yl-acetic acid methyl ester(1 upon reaction with ethyl bromoacetate furnishes (7-ethoxycarbonylmethoxy-2-oxo-2H-chromen-4-yl-acetic acid methylester (2, which on treatment with 100% hydrazine hydrate yields (7-hydrazinocarbonylmethoxy-2-oxo-2H-chromen-4-yl-acetic acid hydrazide (3. The condensation of compound 3 with different aromatic aldehydes afforded a series of [7-(arylidenehydrazinocarbonylmethoxy-2-oxo-2H-chromen-4-yl]-acetic acid arylidene-hydrazide Schiff’s bases 4a-k. Cyclo-condensation of compounds 4a-k with 2-mercapto-acetic acid in N,N-dimethylformamide in the presence of anhydrous ZnCl2 affordsN-(2-aryl-4-oxothiazolidin-3-yl-2-(4-(2-aryl-4-oxothiazolidin-3-ylcarbamoyl-methyl-2-oxo-2H-chromen-7-yloxy-acetamides 5a-k. Structure elucidation of the products has been accomplished on the basis of elemental analysis, IR, 1H-NMR and 13C-NMR data. Compounds 4a-k and 5a-k will be screened for their antibacterial activity against both Gram-positive and Gram-negative bacteria and the results reported elsewhere in due course.

  5. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Ma YM

    2016-04-01

    Full Text Available Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1 activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addition, the prognostic value of an individual ALDH1 isoenzyme in ovarian cancer is not clear. Thus, we accessed the prognostic value of ALDH1 isoenzymes in ovarian cancer patients through the “Kaplan–Meier plotter” online database, which can be used to determine the effect of the genes on ovarian cancer prognosis. We found that high mRNA expression of five ALDH1 isoenzymes, such as ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, and ALDH1L1, was not correlated with overall survival (OS for all 1,306 ovarian cancer patients. In addition, all five of the ALDH1 isoenzymes’ high mRNA expression was found to be uncorrelated with OS in serous cancer or endometrioid cancer patients. However, ALDH1A3’s high mRNA expression is associated with worse OS in grade II ovarian cancer patients, hazard ratio (HR 1.53 (1.14–2.07, P=0.005. ALDH1A2’s high mRNA expression is significantly associated with worse OS in TP53 wild-type ovarian cancer patients, HR 2.86 (1.56–5.08, P=0.00036. In addition, ALDH1A3’s high mRNA expression is significantly associated with better OS in TP53 wild-type ovarian cancer patients, HR 0.56 (0.32–1.00, P=0.04. Our results indicate that although ALDH1 isoenzyme mRNA might not be a prognostic marker for overall ovarian cancer patients, some isoenzymes, such as ALDH1A2 and ALDH1A3, might be a good prognostic marker for some types of ovarian cancer patients. Keywords: ALDH1, cancer stem cell, prognosis, KM plotter, hazard ratio

  6. Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping.

    Science.gov (United States)

    Khlystov, Andrey; Samburova, Vera

    2016-12-06

    The growing popularity of electronic cigarettes (e-cigarettes) raises concerns about the possibility of adverse health effects to primary users and people exposed to e-cigarette vapors. E-Cigarettes offer a very wide variety of flavors, which is one of the main factors that attract new, especially young, users. How flavoring compounds in e-cigarette liquids affect the chemical composition and toxicity of e-cigarette vapors is practically unknown. Although e-cigarettes are marketed as safer alternatives to traditional cigarettes, several studies have demonstrated formation of toxic aldehydes in e-cigarette vapors during vaping. So far, aldehyde formation has been attributed to thermal decomposition of the main components of e-cigarette e-liquids (propylene glycol and glycerol), while the role of flavoring compounds has been ignored. In this study, we have measured several toxic aldehydes produced by three popular brands of e-cigarettes with flavored and unflavored e-liquids. We show that, within the tested e-cigarette brands, thermal decomposition of flavoring compounds dominates formation of aldehydes during vaping, producing levels that exceed occupational safety standards. Production of aldehydes was found to be exponentially dependent on concentration of flavoring compounds. These findings stress the need for a further, thorough investigation of the effect of flavoring compounds on the toxicity of e-cigarettes.

  7. Quantification of aldehydes emissions from alternative and renewable aviation fuels using a gas turbine engine

    Science.gov (United States)

    Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas

    2014-02-01

    In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.

  8. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    Science.gov (United States)

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods.

  9. Aldehyde dehydrogenases in Arabidopsis thaliana: Biochemical requirements, metabolic pathways and functional analysis

    Directory of Open Access Journals (Sweden)

    Naim eStiti

    2011-10-01

    Full Text Available Aldehyde dehydrogenases (ALDHs are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected Arabidopsis ALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  10. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis.

    Science.gov (United States)

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  11. Surviving environmental stress: the role of betaine aldehyde dehydrogenase in marine crustaceans

    Directory of Open Access Journals (Sweden)

    NA Stephens-Camacho

    2015-02-01

    Full Text Available Betaine aldehyde dehydrogenase (BADH belongs to the aldehyde dehydrogenases (ALDH family, an ancestral group of enzymes responsible for aldehyde detoxification in several organisms. The BADH enzyme catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB an important osmoptrotector and osmoregulator accumulated in response to cellular osmotic stress. The BADH enzymes have been extensively described in terrestrial organisms, but information in marine crustaceans remains scarce. Research on crustacean stress-adaptive capacity to environmental stressors relates GB accumulation in response to salinity variations. Although GB de novo synthesis is confirmed on crustaceans, its metabolic pathways and regulation mechanism are unexplored. In this work, the state of the knowledge of betaine aldehyde dehydrogenase enzymes in marine crustaceans is summarized, as a mechanism to overcome the deleterious effects of changes in temperature, salinity and dissolved oxygen concentration in seawater. The purpose of this review is to provide a more comprehensive overview to set the basis for exploring novel functions and properties of BADHs on the response of crustaceans to environmental stress.

  12. Regulation of NF-B-Induced Inflammatory Signaling by Lipid Peroxidation-Derived Aldehydes

    Directory of Open Access Journals (Sweden)

    Umesh C. S. Yadav

    2013-01-01

    Full Text Available Oxidative stress plays a critical role in the pathophysiology of a wide range of diseases including cancer. This view has broadened significantly with the recent discoveries that reactive oxygen species initiated lipid peroxidation leads to the formation of potentially toxic lipid aldehyde species such as 4-hydroxy-trans-2-nonenal (HNE, acrolein, and malondialdehyde which activate various signaling intermediates that regulate cellular activity and dysfunction via a process called redox signaling. The lipid aldehyde species formed during synchronized enzymatic pathways result in the posttranslational modification of proteins and DNA leading to cytotoxicity and genotoxicty. Among the lipid aldehyde species, HNE has been widely accepted as a most toxic and abundant lipid aldehyde generated during lipid peroxidation. HNE and its glutathione conjugates have been shown to regulate redox-sensitive transcription factors such as NF-B and AP-1 via signaling through various protein kinase cascades. Activation of redox-sensitive transcription factors and their nuclear localization leads to transcriptional induction of several genes responsible for cell survival, differentiation, and death. In this review, we describe the mechanisms by which the lipid aldehydes transduce activation of NF-B signaling pathways that may help to develop therapeutic strategies for the prevention of a number of inflammatory diseases.

  13. Monounsaturated Fatty Acids Are Substrates for Aldehyde Generation in Tellurite-Exposed Escherichia coli

    Directory of Open Access Journals (Sweden)

    Gonzalo A. Pradenas

    2013-01-01

    Full Text Available Reactive oxygen species (ROS damage macromolecules and cellular components in nearly all kinds of cells and often generate toxic intracellular byproducts. In this work, aldehyde generation derived from the Escherichia coli membrane oxidation as well as membrane fatty acid profiles, protein oxidation, and bacterial resistance to oxidative stress elicitors was evaluated. Studies included wild-type cells as well as cells exhibiting a modulated monounsaturated fatty acid (MUFA ratio. The hydroxyaldehyde 4-hydroxy 2-nonenal was found to be most likely produced by E. coli, whose levels are dependent upon exposure to oxidative stress elicitors. Aldehyde amounts and markers of oxidative damage decreased upon exposure to E. coli containing low MUFA ratios, which was paralleled by a concomitant increase in resistance to ROS-generating compounds. MUFAs ratio, lipid peroxidation, and aldehyde generation were found to be directly related; that is, the lower the MUFAs ratio, the lower the peroxide and aldehyde generation levels. These results provide additional evidence about MUFAs being targets for membrane lipid oxidation and their relevance in aldehyde generation.

  14. Toxicity of polyunsaturated aldehydes of diatoms to Indo-Pacific bioindicator organism Echinometra mathaei.

    Science.gov (United States)

    Sartori, Davide; Gaion, Andrea

    2016-01-01

    Although it is well known suitability of early developmental stages of sea urchin as recommended model for pollutant toxicity testing, little is known about the sensitivity of Indo-Pacific species Echinometra mathaei to polyunsaturated aldehydes. In this study, the effect of three short chain aldehydes, 2,4-decadienal (DD), 2,4-octadienal (OD) and 2,4-heptadienal (HD), normally found in many diatoms, such as Skeletonema costatum, Skeletonema marinoi and Thalassiosira rotula, was evaluated on larval development of E. mathaei embryos. Aldehydes affected larval development in a dose-dependent manner, in particular HD>OD>DD; the results of this study highlighted the higher sensitivity of this species toward aldehydes compared with data registered for other sea urchin species. In comparison with studies reported in the literature, contrasting results were observed during our tests; therefore, an increasing toxic effect was registered with decreasing the chain length of aldehydes. This work could provide new insights in the development of new toxicological assays toward most sensitive species.

  15. Aldehydes in Artic Snow at Barrow (AK) during the Barrow 2009 Field Campaign

    Science.gov (United States)

    Barret, Manuel; Houdier, Stephan; Gallet, Jean-Charles; Domine, Florent; Beine, Harry; Jacobi, Hans-Werner; Weibring, Petter; Walega, James; Fried, Alan; Richter, Dirk

    2010-05-01

    Aldehydes (RCHO) are key reactive intermediates in hydrocarbon oxidation and in OH cycling. They are also emitted and taken up by the snowpack and a combination of both physical and photochemical processes are likely involved. Since the photolysis of aldehydes is a source of HOx radicals, these exchanges can modify the oxidative capacity of the overlying air. Formaldehyde (HCHO), acetaldehyde (MeCHO), glyoxal (CHOCHO) and methylglyoxal (MeCOCHO) concentrations were measured in over 250 snow samples collected during the Barrow 2009 campaign between late February and mid April 2009. Both continental and marine snowpacks were studied as well as frost flowers on sea ice. We found that HCHO was the most abundant aldehyde (1 to 9 µg/L), but significant concentrations of dicarbonyls glyoxal and methylglyoxal were also measured for the first time in Arctic snow. Similar concentrations were measured for the continental and marine snowpacks but some frost flowers exhibited HCHO concentrations as high as 150 µg/L. Daily cycles in the surface snow were observed for HCHO and CH3CHO but also for the dicarbonyls and we concluded to a photochemical production of these species from organic precursors. Additional data such as gas phase concentrations for the measured aldehydes and snow physical properties (specific surface area, density …) will be used to discuss on the location of aldehydes in the snow. This is essential to identify and quantify the physical processes that occur during the exchange of trace gases between the snow and the atmosphere.

  16. Clinical characteristics of roxatidine acetate: a review.

    Science.gov (United States)

    Dammann, H G; de Looze, S M; Bender, W; Labs, R

    1988-01-01

    Pharmacodynamic studies revealed that 150 mg of roxatidine acetate were optimal in suppressing gastric acid secretion, and that a single bedtime dose of 150 mg was more effective than a dose of 75 mg twice daily in terms of inhibiting nocturnal acid secretion. When administered orally as a capsule containing a granule formulation, the drug displayed modified-release properties, which led to a sustained suppression of gastric acid secretion. Clinical trials revealed that roxatidine acetate, 75 mg twice daily and 150 mg at night, was highly effective in healing duodenal and gastric ulcers and in reducing ulcer pain, over 4, 6, and 8 weeks of therapy. A steady reduction in diameter was observed in those ulcers not completely healed during therapy. The single bedtime dose regimen, while producing the same degree of healing as the divided daily dose during controlled clinical trials, may be of greater value in therapeutic use owing to improved patient compliance. In all efficacy criteria (cure, reduction in ulcer size, and pain relief) there was no significant difference between roxatidine acetate in a total daily dose of 150 mg, ranitidine in a total daily dose of 300 mg, and cimetidine in a total daily dose of 800 mg. Prevention of gastric and duodenal ulcer relapse was achieved by roxatidine acetate, 75 mg at night for 6 months, in about 70% of patients, as determined in open, pilot studies--a rate comparable to those reported for cimetidine and ranitidine. Roxatidine acetate shares with ranitidine an improved safety profile when compared with cimetidine. Human pharmacology studies and short-term and long-term clinical trials have all shown that roxatidine acetate is an exceptionally well tolerated compound, without the antiandrogenic activity and interference with hepatic drug metabolism which have characterized cimetidine treatment. A reason for the improved safety profile of roxatidine acetate may be its greater potency than cimetidine (six times less potent) and

  17. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    Science.gov (United States)

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  18. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    Science.gov (United States)

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  19. Different cerebrovascular effects of medroxyprogesterone acetate and norethisterone acetate in the New Zealand White rabbit

    DEFF Research Database (Denmark)

    Pedersen, S H; Pedersen, N G; Dalsgaard, T

    2004-01-01

    of different progestins on cerebrovascular reactivity in an animal model. METHODS: Fifty-six ovariectomized New Zealand White rabbits were randomized into seven groups receiving hormone treatment for 4 weeks: medroxyprogesterone acetate (MPA) (10 mg/day); norethisterone acetate (NETA) (3 mg/day); conjugated...

  20. Acetylation of Starch with Vinyl Acetate in Imidazolium Ionic Liquids and Characterization of Acetate Distribution

    Science.gov (United States)

    Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...

  1. Acetalization of carbonyl compounds with 2,2,4-trimethyl-1,3-pentanedio catalyzed by novel carbon based solid acid catalyst

    Institute of Scientific and Technical Information of China (English)

    Ling Liu; Yuechang Zhao; Shan Gan; Xuezheng Liang; Jianguo Yang; Mingyuan He

    2008-01-01

    The synthesis of 2, 4-diisopropyl-5,5-dimethyl-1,3-dioxane through the acetalization of isobutyraldehyde with 2, 2,4-trimethyl-1,3-pentanediol (TMPD) catalyzed by the novel carbon based acid was first carried out. High conversion (≥98%) and specific selectivity were obtained using the novel carbon based acid, which kept high activity after it was reused 5 times.Moreover, the catalyst could be used to catalyze the acetalization and ketalization of different aldehydes and ketones with superior yield. The yield of several products was over 90%. The novel heterogeneous catalyst has the distinct advantages of high activity, strikingly simple workup procedure, non-pollution, and reusability, which will contribute to the success of the green process greatly.

  2. Evolution of volatile aldehydes in Iberian ham matured under different processing conditions.

    Science.gov (United States)

    Martín, L; Timón, M L; Petrón, M J; Ventanas, J; Antequera, T

    2000-04-01

    To evaluate the influence of the Iberian ham processing conditions in the evolution of volatile aldehydes, 35 hams were processed in two plants following different conditions of relative humidity and temperature. For this, free fatty acids, peroxide values and volatile aldehydes were quantified in the hams. The highest increases in free fatty acids were noted during the drying stage in both processing plants. The drying period also revealed the greatest increase in peroxide values, where the highest values were in those hams processed at higher temperatures. The temperature during post-salting and drying had a marked influence on the formation of volatile aldehydes, being responsible for the differences in volatile compounds of matured hams.

  3. Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol

    Science.gov (United States)

    Karakalos, Stavros; Zugic, Branko; Stowers, Kara J.; Biener, Monika M.; Biener, Juergen; Friend, Cynthia M.; Madix, Robert J.

    2016-10-01

    Modern methods of esterification, one of the most important reactions in organic synthesis, are reaching their limits, as far as waste and expense are concerned. Novel chemical approaches to ester formation are therefore of importance. Here we report a simple procedure free of caustic reagents or byproducts for the facile direct oxidative methyl esterification of aldehydes over nanoporous Au catalysts. Complementary model studies on single crystal gold surfaces establish the fundamental reactions involved. We find that methanol more readily reacts with adsorbed active oxygen than do the aldehydes, but that once the aldehydes do react, they form strongly-bound acrylates that block reactive sites and decrease the yields of acrylic esters under steady flow conditions at 420 K. Significant improvements in yield can be achieved by operating at higher temperatures, which render the site-blocking acrylates unstable.

  4. Target-Specific Capture of Environmentally Relevant Gaseous Aldehydes and Carboxylic Acids with Functional Nanoparticles.

    Science.gov (United States)

    Campbell, McKenzie L; Guerra, Fernanda D; Dhulekar, Jhilmil; Alexis, Frank; Whitehead, Daniel C

    2015-10-12

    Aldehyde and carboxylic acid volatile organic compounds (VOCs) present significant environmental concern due to their prevalence in the atmosphere. We developed biodegradable functional nanoparticles comprised of poly(d,l-lactic acid)-poly(ethylene glycol)-poly(ethyleneimine) (PDLLA-PEG-PEI) block co-polymers that capture these VOCs by chemical reaction. Polymeric nanoparticles (NPs) preparation involved nanoprecipitation and surface functionalization with branched PEI. The PDLLA-PEG-PEI NPs were characterized by using TGA, IR, (1) H NMR, elemental analysis, and TEM. The materials feature 1°, 2°, and 3° amines on their surface, capable of capturing aldehydes and carboxylic acids from gaseous mixtures. Aldehydes were captured by a condensation reaction forming imines, whereas carboxylic acids were captured by acid/base reaction. These materials reacted selectively with target contaminants obviating off-target binding when challenged by other VOCs with orthogonal reactivity. The NPs outperformed conventional activated carbon sorbents.

  5. A reaction mode of carbene-catalysed aryl aldehyde activation and induced phenol OH functionalization

    Science.gov (United States)

    Chen, Xingkuan; Wang, Hongling; Doitomi, Kazuki; Ooi, Chong Yih; Zheng, Pengcheng; Liu, Wangsheng; Guo, Hao; Yang, Song; Song, Bao-An; Hirao, Hajime; Chi, Yonggui Robin

    2017-05-01

    The research in the field of asymmetric carbene organic catalysis has primarily focused on the activation of carbon atoms in non-aromatic scaffolds. Here we report a reaction mode of carbene catalysis that allows for aromatic aldehyde activation and remote oxygen atom functionalization. The addition of a carbene catalyst to the aldehyde moiety of 2-hydroxyl aryl aldehyde eventually enables dearomatization and remote OH activation. The catalytic process generates a type of carbene-derived intermediate with an oxygen atom as the reactive centre. Inexpensive achiral urea co-catalyst works cooperatively with the carbene catalyst, leading to consistent enhancement of the reaction enantioselectivity. Given the wide presence of aromatic moieties and heteroatoms in natural products and synthetic functional molecules, we expect our reaction mode to significantly expand the power of carbene catalysis in asymmetric chemical synthesis.

  6. Atmospheric Consequences of the Hydration in Gas Phase of Aldehydes and Ketones

    Science.gov (United States)

    Vaida, V.; Axson, J. L.; Maron, M. K.

    2010-12-01

    Aldehydes and ketones are known oxidation products of biogenic and anthropogenic VOCs and have been observed by field studies to be present in aerosol and cloud particles. While the gas-phase chemistry of these compounds is fairly well understood, their modeled concentration and role in SOA formation remains controversial. In aqueous solution aldehydes and ketones hydrate to form alcohols. We explore the hydration of these compounds in the gas phase and examine the water and photon mediated processes of these hydrates. The formation of hydrates can contribute to aerosol growth and formation by partitioning into clouds and aerosols because of their lower vapor pressure and tendency to form intermolecular hydrogen bonds. Hydration of aldehydes and ketones has important consequences to the atmospheric photochemistry of these organic compounds. The experimental approaches employ Fourier transform spectroscopy (FTS) and cavity ringdown spectroscopy (CRDS) to observe the formation of diols and hydrates by these molecules as a function of relative humidity.

  7. Transition-metal-free coupling reaction of vinylcyclopropanes with aldehydes catalyzed by tin hydride.

    Science.gov (United States)

    Ieki, Ryosuke; Kani, Yuria; Tsunoi, Shinji; Shibata, Ikuya

    2015-04-13

    Donor-acceptor cyclopropanes are useful building blocks for catalytic cycloaddition reactions with a range of electrophiles to give various cyclic products. In contrast, relatively few methods are available for the synthesis of homoallylic alcohols through coupling of vinylcyclopropanes (VCPs) with aldehydes, even with transition-metal catalysts. Here, we report that the hydrostannation of vinylcyclopropanes (VCPs) was effectively promoted by dibutyliodotin hydride (Bu2 SnIH). The resultant allylic tin compounds reacted easily with aldehydes. Furthermore, the use of Bu2 SnIH was effectively catalytic in the presence of hydrosilane as a hydride source, which established a coupling reaction of VCPs with aldehydes for the synthesis of homoallylic alcohols without the use of transition-metal catalysts. In contrast to conventional catalytic reactions of VCPs, the presented method allowed the use of several VCPs in addition to conventional donor-acceptor cyclopropanes.

  8. [Roxatidine acetate in therapy of reflux esophagitis].

    Science.gov (United States)

    Friedrich, P; Botzler, R; Mayershofer, R; Kriech, W

    1996-06-10

    A total of 3409 patients with gastro-oesophageal reflux disease were treated with roxatidine acetate. 60.7% of the patients received a daily dose of 2 x 75 mg roxatidine acetate, and the median duration of treatment was 5 weeks. Symptoms improved in about 90% of patients. For 1687 patients, endoscopic findings were available at the beginning and end of the treatment period. The overall endoscopic healing rate was 65.3%, and, depending on the initial finding (if), decreased from 92.9% (if: Savary-Miller stage I) to 67.5% (if: stage II), 40.7% (if: stage III), and to 22.5% (if: stage IV). Twenty-one patients experienced adverse events during the course of treatment, which, however, were either only minor or not related to the use of roxatidine acetate.

  9. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    Science.gov (United States)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  10. Syntheses of strychnine, norfluorocurarine, dehydrodesacetylretuline, and valparicine enabled by intramolecular cycloadditions of Zincke aldehydes.

    Science.gov (United States)

    Martin, David B C; Nguyen, Lucas Q; Vanderwal, Christopher D

    2012-01-06

    A full account of the development of the base-mediated intramolecular Diels-Alder cycloadditions of tryptamine-derived Zincke aldehydes is described. This important complexity-generating transformation provides the tetracyclic core of many indole monoterpene alkaloids in only three steps from commercially available starting materials and played a key role in short syntheses of norfluorocurarine (five steps), dehydrodesacetylretuline (six steps), valparicine (seven steps), and strychnine (six steps). Reasonable mechanistic possibilities for this reaction, a surprisingly facile dimerization of the products, and an unexpected cycloreversion to regenerate Zincke aldehydes under specific conditions are also discussed.

  11. Size-Selective Oxidation of Aldehydes with Zeolite Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane; Laursen, Anders Bo; Kegnæs, Søren

    2011-01-01

    Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies that the a......Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies...

  12. Semi-catalytic reduction of secondary amides to imines and aldehydes.

    Science.gov (United States)

    Lee, Sun-Hwa; Nikonov, Georgii I

    2014-06-21

    Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

  13. Acetic acid mediated interactions between alumina surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kimiyasu, E-mail: sato.kimiyasu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), Anagahora 2266-98, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Y Latin-Small-Letter-Dotless-I lmaz, Hueseyin [National Institute of Advanced Industrial Science and Technology (AIST), Anagahora 2266-98, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Gebze Institute of Technology, Materials Science and Engineering Department, 41400, Gebze-Kocaeli (Turkey); Ijuin, Atsuko; Hotta, Yuji; Watari, Koji [National Institute of Advanced Industrial Science and Technology (AIST), Anagahora 2266-98, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan)

    2012-02-01

    Low-molecular-weight organic acids have been known to modify colloidal stability of alumina-based suspensions. We investigated interaction forces between alumina surfaces mediated by acetic acid which is one of the simplest organic acids. Forces between alumina surfaces were measured using the colloid-probe method of atomic force microscope (AFM). Repulsive forces attributed to steric repulsion due to adsorbed molecules and electrostatic repulsion dominated the interaction. Results of rheological characterization of the alumina slurry containing acetic acid supported the finding.

  14. Hydrolysis of Acetic Anhydride in a CSTR

    Directory of Open Access Journals (Sweden)

    Veronica N. Coraci

    2016-05-01

    Full Text Available To find the optimal reactor volume and temperature for the hydrolysis of acetic anhydride at the lowest possible cost with a 90% conversion of acetic anhydride, a formula for the total cost of the reaction was created. Then, the first derivative was taken to find a value for the temperature. This value was then inputted into the second derivative of the equation to find the sign of the value which would indicate whether that point was a minima or maxima value. The minima value would then be the lowest total cost for the optimum reaction to take place.

  15. On the role of long-chain aldehydes in the light reaction in Photobacterium phosphoreum enzyme preparations

    NARCIS (Netherlands)

    Terpstra, Willemke

    1960-01-01

    1. (1) Active luciferase-DPNH-oxidase preparations from Photobacterium phosphoreum generally contain some aldehyde-attacking enzyme, probably ADH. Under the experimental conditions applied this enzyme appears to attack decanal, but not palmital. 2. (2) The presence of long-chain aldehydes in the en

  16. Reductive amination of aldehydes and ketones using sodium borohydride in the presence of silica chloride under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Heshmatollah; Alinezhad; Mahmood; Tajbakhsh; Neda; Hamidi

    2010-01-01

    A simple and convenient procedure for the preparation of amines from aldehydes and ketones with sodium borohydride activated by silica chloride as a catalyst under solvent-free conditions is described.A variety of aliphatic and aromatic aldehydes,ketones and amines when mixed with NaBH_4/silica chloride at room temperature,afforded excellent yield of the corresponding amines.

  17. Copper-catalyzed aerobic oxidative cleavage of C-C bonds in epoxides leading to aryl nitriles and aryl aldehydes.

    Science.gov (United States)

    Gu, Lijun; Jin, Cheng

    2015-04-18

    Novel copper-catalyzed aerobic synthesis of aryl nitriles and aldehydes from epoxides via C-C single bond cleavage has been discovered. This reaction provides a practical method toward the synthesis of aryl nitriles and aldehydes, which are versatile intermediates and building blocks in organic synthesis.

  18. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  19. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural

    Science.gov (United States)

    An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerev...

  20. Kinetics of forming aldehydes in frying oils and their distribution in French fries revealed by LC-MS-based chemometrics

    Science.gov (United States)

    Aldehydes are major secondary lipid oxidation products (LOPs) from heating vegetable oils and deep frying. The routes and reactions that generate aldehydes have been extensively investigated, but the sequences and kinetics of their formation in oils are poorly defined. In this study, a platform comb...

  1. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  2. Octreotide acetate in dominant cystoid macular dystrophy.

    NARCIS (Netherlands)

    Hogewind, B.F.T.; Pieters, G.; Hoyng, C.B.

    2008-01-01

    PURPOSE: Dominant cystoid macular degeneration (DCMD) is an autosomal dominant trait of cystoid macular edema with poor visual prognosis. Until now, no efficient treatments for DCMD have been reported. The authors evaluated a somatostatin-analogue (octreotide acetate) as treatment for DCMD. METHODS:

  3. Fierce Competition in China's Ethyl Acetate Market

    Institute of Scientific and Technical Information of China (English)

    Wang Zichang

    2007-01-01

    @@ Ethyl acetate is used extensively in the coatings, inks, pharmaceuticals,adhesives, cosmetics and organic synthesis sectors. With the sustained stable growth of China's national economy, the construction and automobile sectors are developing rapidly and environmental protection laws and regulations are becoming stricter.

  4. Megestrol acetate in cachexia and anorexia

    Science.gov (United States)

    Yeh, Shing-shing; Schuster, Michael W

    2006-01-01

    The aim is to review major clinical trials that have used megestrol acetate (MA) in the treatment of cachexia across several disease states. A review of general usage and potential side-effects are discussed. A theory that the newly approved nanocrystal formation of MA can better deliver this potent medication for treatment will also be reviewed. PMID:17722275

  5. Fragrance material review on 2-phenylpropyl acetate.

    Science.gov (United States)

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-phenylpropyl acetate when used as a fragrance ingredient is presented. 2-Phenylpropyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-phenylpropyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Fragrance material review on piperonyl acetate.

    Science.gov (United States)

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of piperonyl acetate when used as a fragrance ingredient is presented. Piperonyl acetate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for piperonyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, toxicokinetics, and genotoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Fragrance material review on 3-phenylpropyl acetate.

    Science.gov (United States)

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 3-phenylpropyl acetate when used as a fragrance ingredient is presented. 3-Phenylpropyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-phenylpropyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, skin sensitization, and toxicokinetics data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al., 2012 for an overall assessment of the safe use of this material and all AAASAE in fragrances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Fragrance material review on 4-methylbenzyl acetate.

    Science.gov (United States)

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 4-methylbenzyl acetate when used as a fragrance ingredient is presented. 4-Methylbenzyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 4-methylbenzyl acetate were evaluated, then summarized, and includes: physical properties, skin irritation, skin sensitization, and elicitation data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Heat Bonding of Irradiated Ethylene Vinyl Acetate

    Science.gov (United States)

    Slack, D. H.

    1986-01-01

    Reliable method now available for joining parts of this difficult-tobond material. Heating fixture encircles ethylene vinyl acetate multiplesocket part, providing heat to it and to tubes inserted in it. Fixtures specially designed to match parts to be bonded. Tube-and-socket bonds made with this technique subjected to tensile tests. Bond strengths of 50 percent that of base material obtained consistently.

  10. Advanced Colloids Experiment (ACE-T1)

    Science.gov (United States)

    Meyer, William V.; Sicker, Ron; Brown, Dan; Eustace, John

    2015-01-01

    Increment 45 - 46 Science Symposium presentation of Advanced Colloids Experiment (ACE-T1) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  11. Analysis of endogenous aldehydes in human urine by static headspace gas chromatography-mass spectrometry.

    Science.gov (United States)

    Serrano, María; Gallego, Mercedes; Silva, Manuel

    2016-03-11

    Endogenous aldehydes (EAs) generated during oxidative stress and cell processes are associated with many pathogenic and toxicogenic processes. The aim of this research was to develop a solvent-free and automated analytical method for the determination of EAs in human urine using a static headspace generator sampler coupled with gas chromatography-mass spectrometry (HS-GC-MS). Twelve significant EAs used as markers of different biochemical and physiological processes, namely short- and medium-chain alkanals, α,β-unsaturated aldehydes and dicarbonyl aldehydes have been selected as target analytes. Human urine samples (no dilution is required) were derivatized with O-2,3,4,5,6-pentafluorobenzylhydroxylamine in alkaline medium (hydrogen carbonate-carbonate buffer, pH 10.3). The HS-GC-MS method developed renders an efficient tool for the sensitive and precise determination of EAs in human urine with limits of detection from 1 to 15ng/L and relative standard deviations, (RSDs) from 6.0 to 7.9%. Average recoveries by enriching urine samples ranged between 92 and 95%. Aldehydes were readily determined at 0.005-50μg/L levels in human urine from healthy subjects, smokers and diabetic adults.

  12. Stereodivergent Coupling of Aldehydes and Alkynes via Synergistic Catalysis Using Rh and Jacobsen's Amine.

    Science.gov (United States)

    Cruz, Faben A; Dong, Vy M

    2017-01-25

    We report an enantioselective coupling between α-branched aldehydes and alkynes to generate vicinal quaternary and tertiary carbon stereocenters. The choice of Rh and organocatalyst combination allows for access to all possible stereoisomers with high enantio-, diastereo-, and regioselectivity. Our study highlights the power of catalysis to activate two common functional groups and provide access to divergent stereoisomers and constitutional structures.

  13. Phenyl versus Ethyl Transfer in the Addition of Organozincs to Aldehydes: A Theoretical Study

    DEFF Research Database (Denmark)

    Rudolph, Jens; Rasmussen, Torben; Bolm, Carsten;

    2003-01-01

    The dramatic improvement in diphenylzinc addition to aldehydes that is obtained by adding diethylzinc was investigated by DFT methods. The strong preference for phenyl over ethyl transfer can be understood in terms of overlap with the phenyl 31 system in the transition state (see picture). Reason...

  14. Palladium-catalyzed Substitution of Ketone or Aldehyde Bearing Aryl Triflates by Amines or Amides

    Institute of Scientific and Technical Information of China (English)

    TAO Xiaochun; DAI Chunya; CAO Xiongjie; CAI Lisheng; PIKE Victor W

    2009-01-01

    Various aryl triflates, bearing ketone or aldehyde groups, were evaluated for palladium-mediated introduction of an amino group at the triflate position in the presence of various phosphine ligands. BINAP was best for secondary amines, MOP-type ligand for primary or small secondary amines and Xantphos for primary or cyclic secondary amides. No ligand was found effective for acyclic secondary amides.

  15. Highly selective methodology for the direct conversion of aromatic aldehydes to glycol monoesters.

    Science.gov (United States)

    Sharghi, Hashem; Sarvari, Mona Hosseini

    2003-05-16

    Al(2)O(3)/MeSO(3)H (AMA) was found to be an extremely efficient reagent for the conversion of aromatic aldehydes and diols to glycol monoesters. The remarkable selectivity achieved with this reagent is an attractive feature of the present method.

  16. Directing-group-assisted copper-catalyzed oxidative esterification of phenols with aldehydes.

    Science.gov (United States)

    Zheng, Yong; Song, Wei-Bin; Xuan, Li-Jiang

    2015-11-28

    A directing-group-assisted copper-catalyzed oxidative esterification of phenols with aldehydes using TBHP as an oxidant was described. This methodology which showed the advantages of base, ligand free, short routes and functional group tolerance could be used as an alternative protocol for the classical esterification reactions.

  17. Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts

    DEFF Research Database (Denmark)

    Marsden, Charlotte Clare; Taarning, Esben; Hansen, David

    2008-01-01

    A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient...

  18. The Condensation of Aromatic Aldehydes with Acidic Methylene Compounds in Water

    Institute of Scientific and Technical Information of China (English)

    Da Qing SHI; Jing CHEN; Qi Ya ZHUANG; Xiang Shan WANG; Hong Wen HU

    2003-01-01

    The condensation of aromatic aldehydes with acidic methylene compounds such as malononitrile, methyl cyanoacetate, cyanoacetamide, 5,5-dimethyl-1,3-cyclohexanedione, bartbituric acid and 2-thiobarbituric acid proceeded very efficiently in water in the presence of triethylbenzylammonium chloride (TEBA) and the products were isolated simply by filtration.

  19. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus.

    Science.gov (United States)

    Halavaty, Andrei S; Rich, Rebecca L; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R; Myszka, David G; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F; Anderson, Wayne F

    2015-05-01

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.

  20. Separation and Purification of Betaine Aldehyde Dehydrogenase from Wild Suaeda liaotungensis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    High active betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) is found in wild Suaeda liaotungensis. The enzyme is purified 206-fold with recovery of 1.5%. It have a specific activity of 2363 nmol/min*mg protein and the molecular mass of each subunit is 64.5 kDa as determined by SDS-PAGE.

  1. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Mentzel, Uffe Vie;

    2014-01-01

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic...

  2. Dual Lewis Acid/Lewis Base Catalyzed Acylcyanation of Aldehydes: A Mechanistic Study.

    Science.gov (United States)

    Laurell Nash, Anna; Hertzberg, Robin; Wen, Ye-Qian; Dahlgren, Björn; Brinck, Tore; Moberg, Christina

    2016-03-07

    A mechanistic investigation, which included a Hammett correlation analysis, evaluation of the effect of variation of catalyst composition, and low-temperature NMR spectroscopy studies, of the Lewis acid-Lewis base catalyzed addition of acetyl cyanide to prochiral aldehydes provides support for a reaction route that involves Lewis base activation of the acyl cyanide with formation of a potent acylating agent and cyanide ion. The cyanide ion adds to the carbonyl group of the Lewis acid activated aldehyde. O-Acylation by the acylated Lewis base to form the final cyanohydrin ester occurs prior to decomplexation from titanium. For less reactive aldehydes, the addition of cyanide is the rate-determining step, whereas, for more reactive, electron-deficient aldehydes, cyanide addition is rapid and reversible and is followed by rate-limiting acylation. The resting state of the catalyst lies outside the catalytic cycle and is believed to be a monomeric titanium complex with two alcoholate ligands, which only slowly converts into the product. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Parallel Kinetic Resolution of Racemic Aldehydes by Use of Asymmetric Horner-Wadsworth-Emmons Reactions

    DEFF Research Database (Denmark)

    Pedersen, Torben Møller; Jensen, Jakob Feldthusen; Humble, Rikke Eva

    2000-01-01

    A racemic aldehyde can undergo parallel kinetic resolution (PKR) by simultaneous reaction with two different chiral phosphonates, differing either in the structure of the chiral auxiliary or in the structure of the phosphoryl group (i.e., one (E)- and one (Z)-selective reagent). This strategy all...

  4. Inhibitory effects of Ruta graveolens L. extract on guinea pig liver aldehyde oxidase.

    Science.gov (United States)

    Pirouzpanah, Saieed; Saieed, Pirouzpanah; Rashidi, Mohammad Reza; Reza, Rashidi Mohammad; Delazar, Abbas; Abbas, Delazar; Razavieh, Seyyed-Vali; Seyyedvali, Razavieh; Hamidi, Aliasghar; Aliasghar, Hamidi

    2006-01-01

    Ruta graveolens L. is a flavonoid-containing medicinal plant with various biological properties. In the present study, the effects of R. graveolens extract on aldehyde oxidase, a molybdenum hydroxylase, are investigated. Aldehyde oxidase was partially purified from liver homogenates of mature male guinea pigs by heat treatment and ammonium sulphate precipitation. The total extract was obtained by macerating the aerial parts of R. graveolens in MeOH 70% and the effect of this extract on the enzyme activity was assayed using phenanthridine, vanillin and benzaldehyde as substrates. Quercetin and its glycoside form, rutin were isolated, purified and identified from the extract and their inhibitory effects on the enzyme were investigated. R. graveolens extract exhibited a high inhibition on aldehyde oxidase activity (89-96%) at 100 microg/ml which was comparable with 10 microM of menadione, a specific potent inhibitor of aldehyde oxidase. The IC50 values for the inhibitory effect of extract against the oxidation of benzaldehyde, vanillin and phenanthridine were 10.4, 10.1, 43.2 microg/ml, respectively. Both quercetin and rutin at 10 microM caused 70-96% and 27-52% inhibition on the enzyme activity, respectively. Quercetin was more potent inhibitor than rutin, but both flavonols exerted their inhibitory effects mostly in a linear mixed-type.

  5. Allylation of Functionalized Aldehydes by Potassium Allyltrifluoroborate Catalyzed by 18-Crown-6 in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Roberta A. Oliveira

    2012-11-01

    Full Text Available An efficient method for the allylation of aldehydes containing a broad range of functional groups using potassium allyltrifluoroborate is described. The reaction utilizes a catalytic amount of 18-C-6 in biphasic media under open atmosphere and room temperature to provide the corresponding homoallylic alcohols in high yields and without the necessity of any subsequent purification.

  6. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain.

    Science.gov (United States)

    Zambelli, Vanessa O; Gross, Eric R; Chen, Che-Hong; Gutierrez, Vanessa P; Cury, Yara; Mochly-Rosen, Daria

    2014-08-27

    Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase-2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R(2) = 0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde- and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than in the wild-type mice. Finally, Alda-1 treatment was even beneficial when given after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic, cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians' apparent lower pain tolerance.

  7. Synthesis of Soai aldehydes for asymmetric autocatalysis by desulfurative cross-coupling.

    Science.gov (United States)

    Maltsev, Oleg V; Pöthig, Alexander; Hintermann, Lukas

    2014-03-07

    Palladium-catalyzed dehydrosulfurative Liebeskind-Srogl coupling of terminal alkynes with 2-mercapto-1,3-pyrimidine-5-carbaldehyde under base-free conditions provides 2-(alkynyl)-1,3-pyrimidine-5-carbaldehydes, which are substrates for autocatalytic amplification of chirality according to Soai et al. The mercapto aldehyde acceptor is obtained by condensation of Arnold's vinamidinium salt with thiourea.

  8. The First Catalytic Asymmetric Morita-Baylis-Hillman Reaction of Acrolein with Aromatic Aldehydes

    Institute of Scientific and Technical Information of China (English)

    曾兴平; 刘运林; 计从斌; 周剑

    2012-01-01

    We report the first example of catalytic asymmetric Morita-Baylis-Hillman reaction of acrolein with aromatic aldehydes. The use of 10 mol% of Hatakeyama's catalyst β-isocupreidine C4, in combination with 20 mol% of 2,6-dimethoxybenzoic acid, could catalyze the reaction to give the desired products in up to 81% ee.

  9. Pyridinium tribromide catalyzed condensation of indoles and aldehydes to form bisindolylalkanes

    Institute of Scientific and Technical Information of China (English)

    Qin Yang; Zheng Lan Yin; Ban Lai Ouyang; Yi Yuan Peng

    2011-01-01

    An efficient synthetic method for bis(indol-3-yl)alkane derivatives has been developed. In the presence of 5 mol% of pyridinium tribromide (PTB), the condensation of indoles and aldehydes proceeded smoothly under mild conditions, giving rise to the corresponding bis(indol-3-yl)alkanes in good to excellent yields.

  10. Mitochondrial aldehyde dehydrogenase 2 protects gastric mucosa cells against DNA damage caused by oxidative stress.

    Science.gov (United States)

    Duan, Yantao; Gao, Yaohui; Zhang, Jun; Chen, Yinan; Jiang, Yannan; Ji, Jun; Zhang, Jianian; Chen, Xuehua; Yang, Qiumeng; Su, Liping; Zhang, Jun; Liu, Bingya; Zhu, Zhenggang; Wang, Lishun; Yu, Yingyan

    2016-04-01

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a member of the aldehyde dehydrogenase superfamily and is involved with the metabolic processing of aldehydes. ALDH2 plays a cytoprotective role by removing aldehydes produced during normal metabolism. We examined the cytoprotective role of ALDH2 specifically in gastric mucosa cells. Overexpression of ALDH2 increased the viability of gastric mucosa cells treated with H2O2, while knockdown of ALDH2 had an opposite effect. Moreover, overexpression of ALDH2 protected gastric mucosa cells against oxidative stress-induced apoptosis as determined by flow cytometry, Hoechst 33342, and TUNEL assays. Consistently, ALDH2 knockdown had an opposite effect. Additionally, DNA damage was ameliorated in ALDH2-overexpressing gastric mucosa cells treated with H2O2. We further identified that this cytoprotective role of ALDH2 was mediated by metabolism of 4-hydroxynonenal (4-HNE). Consistently, 4-HNE mimicked the oxidative stress induced by H2O2 in gastric mucosa cells. Treatment with 4-HNE increased levels of DNA damage in ALDH2-knockdown GES-1 cells, while overexpression of ALDH2 decreased 4-HNE-induced DNA damage. These findings suggest that ALDH2 can protect gastric mucosa cells against DNA damage caused by oxidative stress by reducing levels of 4-HNE.

  11. Reductive Amination of Aldehydes and Ketones with Primary Amines by Using Lithium Amidoborane as Reducing Reagent

    Institute of Scientific and Technical Information of China (English)

    徐维亮; 郑学丽; 吴国涛; 陈萍

    2012-01-01

    A variety of secondary amines were obtained in high isolated yields in the reductive amination of aldehydes and ketones by using lithium amidoborane as reducing agent. Compared to ammonia borane, lithium amidoborane has higher reducibility, and thus, exhibits faster reaction rate.

  12. Enantioselective Pinacol Coupling of Aromatic Aldehydes Induced by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    Qing Fang CHENG; Xing You XU; Ming Yan WANG; Jun CHEN; Wei Xing MA; Xu Jie YANG

    2006-01-01

    Asymmetric pinacol coupling of aromatic aldehydes with TiCl4-Zn in the presence of enantiopure squaric acid amidoalcohols afforded 1, 2-diols in excellent yields with high dldiastereoselectivities and enantioselectivities in the range of 46-89% ee. Some factors influencing dl-diastereoselectivity and enantioselectivity were discussed.

  13. Fructose derived pyridyl alcohol ligands: synthesis and application in the asymmetric diethylzinc addition to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHOU, Yong-Gui; DAI, Li-Xin; HOU, Xue-Long

    2000-01-01

    Easily available chiral ketones were employed for the synthesis of optically active pyridyl alcohols, which were applied in the asymmetric diethylzinc addition to aldehydes, up to 89.4%e.e. was obtained using D-fructose-derived pyridyl alcohol.

  14. Bifunctional Enantioselective Ligands of Chiral BINOL Derivatives for Asymmetric Addition of Alkynylzinc to Aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-Wei; ZHENG Li-Fei; WU Ling-Lin; ZONG Li-Li; CHENG Yi-Xiang

    2008-01-01

    Four analogous binaphthyl compounds (R)-3a-3d containing (R)-3,3'-bis(2-pyridyl) groups were synthesized by the conjugation of (R)-2,2'-dimethoxy-1,1'-binaphthyl-3,3'-diboronic acid [(R)-2] with 2-bromopyridine,2-bromo-5-methylpyridine, 2-chloro-4-fluoropyridine and 2-chloro-3-(trifluoromethyl)pyridine via Pd-catalyzed Suzuki reactions, respectively.The application of the four chiral ligands in combination with Et2Zn and Ti(Oi-Pr)4 to the asymmetric addition of phenylacetylene to various aldehydes has been studied.The results show that (R)-3a and (R)-3b are not good catalysts for the alkynylzinc addition to aldehydes, (R)-3d shows good enantioselectivity only for the alkynylzinc addition to aliphatic aldehydes, and (R)-3c exhibits excellent enantioselectivity for phenylethynylzinc addition to both aromatic and aliphatic aldehydes.All the four chiral ligands produced the opposite configuration of the propargylic alcohols to that of the chiral ligands.

  15. Study on physico-chemical properties of dialdehyde yam starch with different aldehyde group contents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liming, E-mail: zhanglmd@yahoo.com.cn [Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457 (China); Liu, Peng; Wang, Yugao [College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Gao, Wenyuan [Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2011-01-10

    Dialdehyde yam starches (DASs) are prepared and characterized. Compared with native starch, viscosity average molecular weight of DASs decreases, and the extent of degradation depends on content of the aldehyde groups. Fourier transform infrared (FT-IR) spectra confirm that the characteristic peak for C=O group at 1732 cm{sup -1} is enhanced with the increasing of content of the aldehyde groups. Scanning electron microscopy (SEM) micrographs show that the surface of starch granules becomes wrinkled. X-ray diffraction (XRD) patterns clearly indicate that their crystallinity decreases with the increasing content of the aldehyde groups before they become amorphous at higher oxidation states. The experimental results of thermogravimetric analysis (TGA) show that DASs have poor stability as compared to native starch. With the increase in content of the aldehyde groups, the thermal stability of DAS declines gradually. According to the results of differential scanning calorimetry (DSC), gelatinization temperature (T{sub o} and T{sub p}) of DASs are increased, whereas the gelatinization enthalpy decreased.

  16. Mn(0)-mediated chemoselective reduction of aldehydes. Application to the synthesis of α-deuterioalcohols.

    Science.gov (United States)

    Jiménez, Tania; Barea, Elisa; Oltra, J Enrique; Cuerva, Juan M; Justicia, José

    2010-10-15

    A mild, simple, safe, chemoselective reduction of different kinds of aldehydes to the corresponding alcohols mediated by the Mn dust/water system is described. In addition to this, the use of D(2)O leads to the synthesis of α-deuterated alcohols and constitutes an efficient, inexpensive alternative for the preparation of these compounds.

  17. An assessment of the role played by some oxidation-related aldehydes in wine aroma.

    Science.gov (United States)

    Culleré, Laura; Cacho, Juan; Ferreira, Vicente

    2007-02-07

    The levels of important oxidation-related aldehydes, such as methional, phenylacetaldehyde, (E)-2-hexenal, (E)-2-heptenal, (E)-2-octenal, (E)-2-nonenal, methylpropanal, 2-methylbutanal, and 3-methylbutanal, were determined in 41 different wines belonging to different types (young whites and reds, natural sparkling wines, oxidized young whites and reds, Sherry, aged red wines, Port wines). Except (E)-2-hexenal and (E)-2-heptenal, all of them could be found at levels above threshold. Different compositional patterns were identified: Sherry wines have large amounts of branched aldehydes but not of (E)-2-alkenals, wines exposed to oxygen can have large amounts of (E)-2-alkenals but not of branched aldehydes, while aged wine and Port have relatively large amounts of both classes of compounds. Different sensory tests confirmed the active sensory role of these compounds and revealed the existence of interactions (additive or synergic) between them and with other wine volatiles. (E)-2-Alkenals are related to flavor deterioration, while branched aldehydes enhance dried fruit notes and mask the negative role of (E)-2-alkenals.

  18. Facile synthesis of functionalized tetrahydroquinolines via domino Povarov reactions of arylamines, methyl propiolate and aromatic aldehydes

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2012-10-01

    Full Text Available In the presence of p-toluenesulfonic acid as catalyst the domino reaction of arylamines, methyl propiolates and aromatic aldehydes in ethanol proceeded smoothly to give polysubstituted 1,2,3,4-tetrahydroquinolines in moderate yields. The reaction is believed to involve the Povarov reaction of in situ generated β-enamino ester with the in situ formed aromatic imine.

  19. A General and Convenient Method for the Rhodium-Catalyzed Decarbonylation of Aldehydes

    DEFF Research Database (Denmark)

    Kreis, Michael; Palmelund, Anders; Bunch, Lennart

    2006-01-01

    A practical protocol for the decarbonylation of a wide range of aldehydes has been developed by using commercially available RhCl3x3H2O and dppp in a diglyme solution. This method gives rise to decarbonylated products in good to high yield and is particularly useful because of its experimental si...

  20. The acid free asymmetric intermolecular α-alkylation of aldehydes in fluorinated alcohols.

    Science.gov (United States)

    Xiao, Jian; Zhao, Kai; Loh, Teck-Peng

    2012-04-11

    The acid free asymmetric intermolecular α-alkylation of aldehydes with alcohols has been discovered using trifluoroethanol as solvent. This unprecedented system affords the enantioenriched functionalized primary alcohols (after NaBH(4) reduction) in high yields and good to excellent enantioselectivities with wide substrate scope in the absence of any acid additive.

  1. Phosphite Ligand Modified Supported Rhodium Catalyst for Hydroformylation of Internal Olefins to Linear Aldehydes

    Institute of Scientific and Technical Information of China (English)

    LI Xian-ming; DING Yun-jie; JIAO Gui-ping; LI Jing-wei; YAN Li; ZHU He-jun

    2009-01-01

    A phosphite ligand modified heterogeneous catalyst was developed for the hydroformylation of internal olefins to linear aldehydes, which showed a high activity and high regioselectivity and could be separated easily by filtration after reaction in an autoclave. Three nanoporous silica sieves were used to investigate the influence of pore structure and shape selective performance of support on the regioselectivity to the linear products.

  2. New HPLC methods to quantitate terpenoid aldehydes in foliage of cotton (Gossypium)

    Science.gov (United States)

    The cotton plant (Gossypium) produces protective terpenoid aldehydes in lysigenous pigment glands. These terpenoids include hemigossypolone, hemigossypolone-6-methyl ether, gossypol, gossypol-6-methyl ether, gossypol-6,6'-dimethyl ether, heliocides H1, H2, H3 and H4, and heliocides B1, B2, B3 and B4...

  3. Reactions of CH-acids with α,β-unsaturated aldehydes in ionic liquids

    DEFF Research Database (Denmark)

    Kryshtal, G. V.; Zhdankina, G. M.; Astakhova, Irina Kira

    2004-01-01

    Metal carbonate-catalyzed reactions of CH-acids (diethyl malonate, ethyl acetoacetate, ethyl cyanoacetate, and ethyl 2-acetyl- and 2-ethoxycarbonyl-5,9- dimethyldeca-4,8-dienoates) with α,β-unsaturated aldehydes (acrolein, crotonaldehyde, citral) were studied in an ionic liquid, 1-butyl-3...

  4. Microwave-Assisted Olefination Reaction of Alkylzinc with Aromatic Aldehyde Catalyzed by Nickel Complex

    Institute of Scientific and Technical Information of China (English)

    MEN Xiu-Qin; WANG Jin-Xian; SHI Xiao-Ning; WANG Ke-Hu

    2003-01-01

    @@ Carbon-carbon double bond-forming reactions have always been great importance in organic synthesis. Manymethods have been described for C =C bond formation. We[1] have reported the new method of C =C bond formation of nickel catalyzed organozinc with aromatic aldehydes in the presence of Me3SiC1.

  5. Enantioselective α-Chlorination of Aldehydes with Recyclable Fluorous (S)-Pyrrolidine-Thiourea Bifunctional Organocatalyst.

    Science.gov (United States)

    Wang, Liang; Cai, Chun; Curran, Dennis P; Zhang, Wei

    2010-01-01

    A novel fluorous (S)-pyrrolidine-thiourea bifunctional organocatalyst is prepared. The catalyst shows good activity and enantioselectivity for direct α-chlorination of aldehydes using N-chlorosuccinimide (NCS) as the chlorine source. It can be recovered from the reaction mixture by fluorous solid-phase extraction with excellent purity for direct reuse.

  6. Fast determination of aldehyde preservatives by miniaturized capillary electrophoresis with amperometric detection.

    Science.gov (United States)

    Li, Ying; Chen, Fang; Ge, Jinyuan; Tong, Fanghong; Deng, Zhaoyue; Shen, Fengwu; Gu, Qianxia; Ye, Jiannong; Chu, Qingcui

    2014-02-01

    A novel miniaturized CE with amperometric detection (mini-CE-AD) method has been developed for fast determination of aliphatic aldehyde preservatives, namely formaldehyde and glyoxal, in commodities. After derivatization with an electroactive compound 2-thiobarbituric acid, these two nonelectroactive aldehydes were converted to electroactive adducts, therefore detectable by mini-CE-AD approach. Under the optimum conditions, two aldehydes can be well-separated with the coexisting interferents as well as their homologs (acetaldehyde and methyl-glyoxal), and the LODs (S/N = 3) were achieved at nanogram-per-milliliter level (1.64-2.80 ng/mL) based on the online enrichment method of transient moving chemical reaction boundary. The proposed method has been applied for the analyses of above aldehyde preservatives in different real commodity samples including skincare products, baby lotion, and toothpaste, and the average recoveries were in the range of 94-105%, which should find a wide range of analytical applications as an alternative to conventional and microchip CE approaches.

  7. Phenyl Acetate Preparation from Phenol and Acetic Acid: Reassessment of a Common Textbook Misconception.

    Science.gov (United States)

    Hocking, M. B.

    1980-01-01

    Reassesses a common textbook misconception that "...phenols cannot be esterified directly." Results of experiments are discussed and data tables provided of an effective method for the direct preparation of phenyl acetate. (CS)

  8. The microwave spectrum of n-hexyl acetate and structural aspects of n-alkyl acetates

    Science.gov (United States)

    Attig, T.; Kannengießer, R.; Kleiner, I.; Stahl, W.

    2014-04-01

    The microwave spectrum of n-hexyl acetate was recorded in the range of 10-13.5 GHz using the Aachen MB-FTMW spectrometer. The rotational constants of the most abundant conformer were determined to be A = 3.3591100(32) GHz, B = 0.39596553(53) GHz, and C = 0.36999804(31) GHz. Quantum chemical calculations for specific conformers were carried out at the MP2/6-311++G(d,p) level. The programs XIAM and BELGI were used to analyze the internal rotation of the acetyl methyl group. The observed conformer of n-hexyl acetate was compared to the lowest energy conformers of n-butyl acetate and n-pentyl acetate.

  9. Aldehyde modification and alum coadjuvancy enhance anti-TNF-α autovaccination and mitigate arthritis in rat.

    Science.gov (United States)

    Bavoso, Alfonso; Ostuni, Angela; De Vendel, Jolanda; Bracalello, Angelo; Shcheglova, Tatiana; Makker, Sudesh; Tramontano, Alfonso

    2015-05-01

    Experimental vaccination to induce antibodies (Abs) capable of cytokine antagonism shows promise as a novel immunotherapy for chronic inflammatory disease. We prepared a hybrid antigen consisting of residues 141-235 of rat TNF-α fused to the C-terminus of glutathione-S-transferase (GST), chemically modified to incorporate aldehyde residues, for development of an auto-vaccine eliciting anti-rTNF-α Abs. In rat immunization the soluble aldehyde-modified fusion protein did not generate observable Ab responses. By contrast, vaccination with the aldehyde-modified fusion protein adsorbed on alum induced anti-TNF-α autoAbs with high titer and neutralizing activity. Induction of adjuvant arthritis in rats pre-immunized with unmodified fusion protein or a control protein in alum resulted in severe inflammation and joint damage, whereas the disease induced in rats immunized with the aldehyde-bearing fusion protein in alum was markedly attenuated. Similar results were obtained in a collagen-induced rat arthritis model. Anti-collagen II IgG Ab titers did not deviate significantly in groups pre-immunized with modified fusion protein and control protein, suggesting that anti-TNF vaccination did not skew the immune response related to disease induction. This study demonstrates synergy between particulate alum and protein bound carbonyl residues for enhancement of protein immunogenicity. The antigen-specific co-adjuvant system could prove advantageous for breaking tolerance in emerging auto-vaccination therapies targeting inflammatory cytokines as well as for enhancing a broader category of subunit vaccines. Aldehyde adduction introduces a minimal modification which, together with the established use of alum as a safe adjuvant for human use, could be favorable for further vaccine development.

  10. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2010-08-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3–8, the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  11. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2010-04-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios, the SOA yields from isoprene high-NOxphotooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  12. Role of aldehydes in the toxic and mutagenic effects of nitrosamines.

    Science.gov (United States)

    Peterson, Lisa A; Urban, Anna M; Vu, Choua C; Cummings, Meredith E; Brown, Lee C; Warmka, Janel K; Li, Li; Wattenberg, Elizabeth V; Patel, Yesha; Stram, Daniel O; Pegg, Anthony E

    2013-10-21

    α-Hydroxynitrosamine metabolites of nitrosamines decompose to a reactive diazohydroxide and an aldehyde. To test the hypothesis that the aldehydes contribute to the harmful effects of nitrosamines, the toxic and mutagenic activities of three model methylating agents were compared in Chinese hamster ovary cells expressing or not expressing human O⁶-alkylguanine DNA alkyltransferase (AGT). N-Nitrosomethylurethane (NMUr), acetoxymethylmethylnitrosamine (AMMN), and 4-(methylnitrosamino)-4-acetoxy-1-(3-pyridyl)-1-butanone (NNK-4-OAc) are all activated by ester hydrolysis to methanediazohydroxide. NMUr does not form an aldehyde, whereas AMMN generates formaldehyde, and NNK-4-OAc produces 4-oxo-1-(3-pyridyl)-1-butanone (OPB). Since these compounds were likely to alkylate DNA to different extents, the toxic and mutagenic activities of these compounds were normalized to the levels of the most cytotoxic and mutagenic DNA adduct, O⁶-mG, to assess if the aldehydes contributed to the toxicological properties of these methylating agents. Levels of 7-mG indicated that the differences in cytotoxic and mutagenic effects of these compounds resulted from differences in their ability to methylate DNA. When normalized against the levels of O⁶-mG, there was no difference between these three compounds in cells that lacked AGT. However, AMMN and NNK-4-OAc were more toxic than NMUr in cells expressing AGT when normalized against O⁶-mG levels. In addition, AMMN was more mutagenic than NNK-4-OAc and MNUr in these cells. These findings demonstrate that the aldehyde decomposition products of nitrosamines can contribute to the cytotoxic and/or mutagenic activity of methylating nitrosamines.

  13. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States); Totah, Rheem A., E-mail: rtotah@u.washington.edu [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  14. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  15. Nasal pungency, odor, and eye irritation thresholds for homologous acetates.

    Science.gov (United States)

    Cometto-Muñiz, J E; Cain, W S

    1991-08-01

    We measured detection thresholds for nasal pungency (in anosmics), odor (in normosmics) and eye irritation employing a homologous series of acetates: methyl through octyl acetate, decyl and dodecyl acetate. All anosmics reliably detected the series up to heptyl acetate. Only the anosmics without smell since birth (congenital) reliably detected octyl acetate, and only one congenital anosmic detected decyl and dodecyl acetate. Anosmics who lost smell from head trauma proved to be selectively less sensitive. As expected, odor thresholds lay well below pungency thresholds. Eye irritation thresholds for selected acetates came close to nasal pungency thresholds. All three types of thresholds decreased logarithmically with carbon chain length, as previously seen with homologous alcohols and as seen in narcotic and toxic phenomena. Results imply that nasal pungency for these stimuli rests upon a physical, rather than chemical, interaction with susceptible mucosal structures. When expressed as thermodynamic activity, nasal pungency thresholds remain remarkably constant within and across the homologous series of acetates and alcohols.

  16. Oestrus induction using fluorogestone acetate sponges and equine ...

    African Journals Online (AJOL)

    Oestrus induction using fluorogestone acetate sponges and equine chorionic gonadotrophin in Red Sokoto goats. ... acetate sponge) alone or in combination with equine chorionic gonadotrophin (eCG) on oestrus response in ... Article Metrics.

  17. Expression of acetate permease-like (apl) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Elifantz, H.; N' Guessan, L.A.; Mouser, P.J.; Williams, K H.; Wilkins, M J.; Risso, C.; Holmes, D.E.; Long, P.E.; Lovley, D.R.

    2010-03-01

    The addition of acetate to uranium-contaminated aquifers in order to stimulate the growth and activity of Geobacter species that reduce uranium is a promising in situ bioremediation option. Optimizing this bioremediation strategy requires that sufficient acetate be added to promote Geobacter species growth. We hypothesized that under acetate-limiting conditions, subsurface Geobacter species would increase the expression of either putative acetate symporters genes (aplI and aplII). Acetate was added to a uranium-contaminated aquifer (Rifle, CO) in two continuous amendments separated by 5 days of groundwater flush to create changing acetate concentrations. While the expression of aplI in monitoring well D04 (high acetate) weakly correlated with the acetate concentration over time, the transcript levels for this gene were relatively constant in well D08 (low acetate). At the lowest acetate concentrations during the groundwater flush, the transcript levels of aplII were the highest. The expression of aplII decreased 2-10-fold upon acetate reintroduction. However, the overall instability of acetate concentrations throughout the experiment could not support a robust conclusion regarding the role of apl genes in response to acetate limitation under field conditions, in contrast to previous chemostat studies, suggesting that the function of a microbial community cannot be inferred based on lab experiments alone.

  18. 超声辐射下水溶液中离子液体催化合成芳醛缩氨基硫脲%Synthesis of aromatic aldehyde thiosemicarbazones catalyzed by ionic liquid in water under ultrasound irradiation

    Institute of Scientific and Technical Information of China (English)

    刘卉闵; 崔鹏雷; 魏俊萍; 张冬暖; 张英群

    2013-01-01

    A series of aromatic aldehyde thiosemicarbazones were synthesized by the condensation reactions of aromatic aldehydes with thiosemicarbazide in water with 3-methyl-l-(3-sulfopropyl)-imidazolium trifluoro acetate as catalyst under ultrasound irradiation.The yields were ranged from 60.0%-95.0%.The structures of the products were confirmed by 1HNMR spectroscopy,IR and elemental analysis.The Bronsted acidic ionic liquid could be recycled easily.It is shown that the proposed method is easy,efficient and environmental friendly.%在超声波辐射下水相中以酸性甲基咪唑丙烷磺酸-三氟乙酸离子液体催化芳醛和氨基硫脲进行反应,合成了系列芳醛缩氨基硫脲衍生物,产率为60.0%~95.0%.产物结构经1 HNMR,IR,元素分析表征,该反应具有反应时间短、产率高、环境友好、后处理方便、催化剂可回收重复使用的优点.

  19. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    Science.gov (United States)

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  20. 21 CFR 582.5933 - Vitamin A acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Vitamin A acetate. 582.5933 Section 582.5933 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5933 Vitamin A acetate. (a) Product. Vitamin A acetate. (b) Conditions of use. This...

  1. Microbial acetate oxidation in horizontal rotating tubular bioreactor

    Indian Academy of Sciences (India)

    A Slavica; B Šantek; S Novak; V Marić

    2004-06-01

    The aim of this work was to investigate the possibility of conducting a continuous aerobic bioprocess in a horizontal rotating tubular bioreactor (HRTB). Aerobic oxidation of acetate by the action of a mixed microbial culture was chosen as a model process. The microbial culture was not only grown in a suspension but also in the form of a biofilm on the interior surface of HRTB. Efficiency of the bioprocess was monitored by determination of the acetate concentration and chemical oxygen demand (COD). While acetate inlet concentration and feeding rate influenced efficiency of acetate oxidation, the bioreactor rotation speed did not influence the bioprocess dynamics significantly. Gradients of acetate concentration and pH along HRTB were more pronounced at lower feeding rates. Volumetric load of acetate was proved to be the most significant parameter. High volumetric loads (above 2 g acetate l–1 h–1) gave poor acetate oxidation efficiency (only 17 to 50%). When the volumetric load was in the range of 0.60–1.75 g acetate l–1 h–1, acetate oxidation efficiency was 50–75%. At lower volumetric loads (0.14–0.58 g acetate l–1 h–1), complete acetate consumption was achieved. On the basis of the obtained results, it can be concluded that HRTB is suitable for conducting aerobic continuous bioprocesses.

  2. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, Sascha R.A.; van der Ham, Aloysius G.J.; Schuur, Boelo

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  3. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  4. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  5. Acetate in Oz: Some Strategic Moves

    Directory of Open Access Journals (Sweden)

    Colin Webb

    2005-08-01

    Full Text Available I would like to add my voice to the words of congratulations and thanks to the British Library for organising this forum, and for their generosity in making it possible for me to come across the world to be part of it. The issues we are discussing today have an importance extending beyond cellulose acetate, as they reflect our ability as custodians to deal with common threats to the documentary heritage we are charged with preserving. As I will argue later, we need to see this situation in the context of the full range of preservation management issues that face our institutions. While it imposes a burden and a challenge on us as preservation managers, it also presents opportunities to sort out some things that have needed attention for some time. I have been asked to talk about problems with cellulose acetate microfilm collections in Australia, and specifically the strategies – both national and local – that have been adopted or at least explored in response to those problems. In the time I have I will not be going into any of these in great detail, but I hope I can give you some sense of the situation down under, and perhaps draw out a few issues that might make this more than just an ‘us too’ session! One thing to emphasise from the start is that we have had a number of goes at dealing with acetate microfilm collections: it is not a newly discovered problem in Australia. One significant context in which we have been working is that of a national strategy for all kinds of cellulose acetate collection materials. Explaining this national strategy will form a major part of my presentation, with issues and approaches specific to microfilm discussed towards the end.

  6. 21 CFR 184.1721 - Sodium acetate.

    Science.gov (United States)

    2010-04-01

    .... (d) The ingredient is used in food at levels not to exceed current good manufacturing practice in... defined in § 170.3(n)(23) of this chapter and snack foods as defined in § 170.3(n)(37) of this chapter; 0... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium acetate. 184.1721 Section 184.1721 Food and...

  7. PHOTOCOPOLYMERIZATION OF MALEIC ANHYDRIDE AND VINYL ACETATE

    Institute of Scientific and Technical Information of China (English)

    LI Xiaofang; LI Shanjun; QIN Anwei; YU Tongyin

    1990-01-01

    The charge-transfer complex of maleic anhydride and vinyl acetate was copolymerized under UV light. The chain composition and structure of the copolymer were analyzed with conductometry and NMR, and the chain sequence was determined as alternating. The copolymerization rates at different feed ratios, temperatures and in different solvents were investigated, giving evidence to the very active involvement of the CT complexes in the copolymerization. Terpolymerization with acrylonitrile also showed that the complex mechanism was a proper one for this system.

  8. Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates.

    Science.gov (United States)

    Gong, Zhiwei; Zhou, Wenting; Shen, Hongwei; Yang, Zhonghua; Wang, Guanghui; Zuo, Zhenyu; Hou, Yali; Zhao, Zongbao K

    2016-05-01

    The process of lignocellulosic biomass routinely produces a stream that contains sugars plus various amounts of acetic acid. As acetate is known to inhibit the culture of microorganisms including oleaginous yeasts, little attention has been paid to explore lipid production on mixtures of acetate and sugars. Here we demonstrated that the yeast Cryptococcus curvatus can effectively co-ferment acetate and sugars for lipid production. When mixtures of acetate and glucose were applied, C. curvatus consumed both substrates simultaneously. Similar phenomena were also observed for acetate and xylose mixtures, as well as acetate-rich corn stover hydrolysates. More interestingly, the replacement of sugar with equal amount of acetate as carbon source afforded higher lipid titre and lipid content. The lipid products had fatty acid compositional profiles similar to those of cocoa butter, suggesting their potential for high value-added fats and biodiesel production. This co-fermentation strategy should facilitate lipid production technology from lignocelluloses.

  9. Isolation of liver aldehyde oxidase containing fractions from different animals and determination of kinetic parameters for benzaldehyde

    Directory of Open Access Journals (Sweden)

    Kadam R

    2008-01-01

    Full Text Available Aldehyde oxidase activity containing fractions from rabbit, guinea pig, rat and mouse livers were obtained by heat treatment and ammonium sulfate precipitation. Aldehyde oxidase activity was observed in rabbit and guinea pig livers, while aldehyde oxidase activity was absent in rat and mouse liver fractions. Enzyme kinetic parameters, K m and V max , were determined for the oxidation of benzaldehyde to benzoic acid by rabbit and guinea pig liver fractions, by spectrophotometric method, with potassium ferricyanide as the electron acceptor. The K m values obtained for both animal liver fractions were in the range of 10.3-19.1 µM.

  10. Ferrous methanesulfonate as an efficient and recyclable catalyst for chemoselective synthesis of 1,1-diacetate from aldehydes

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Gui Fu Tian; Zhi Guo Song; Heng Jiang

    2009-01-01

    Ferrous methanesulfonate catalysing the conversion of aromatic,heteroaromatic,unsaturated,and aliphatic aldehydes to 1,1-diacetates at room temperature under solvent-free condition has been developed.The catalytic activity of seventeen metal methanesulfonates was compared under the same condition,ferrous methanesufonate proved to be the best.It can be easily recovered and reused for several times without distinct deterioration in catalytic activity.During the competitive protection between a ketone and an aldehyde group with Ac2O,1,1-diacetate formed exclusively with the aldehyde group.

  11. A reactive and sensitive diffusion sampler for the determination of aldehydes and ketones in ambient air

    Science.gov (United States)

    Uchiyama, Shigehisa; Hasegawa, Shuji

    We developed a diffusive sampling device (DSD-carbonyl) for organic carbonyl compounds (aldehydes and ketones) which is suitable for collection and analysis of low concentration levels. This sampling device is composed of three parts, an exposure part made of a porous polytetrafluoroethylene (PPTFE) tube, an analysis part made of polypropylene (PP) tubing and an absorbent part made of 2,4-dinitrophenylhydrazine (DNPH) coated silica gel (DNPH-silica). Aldehydes and ketones diffuse to the DSD-carbonyl through PPTFE-tube by the mechanism of molecular diffusion and react specifically with DNPH to form a stable DNPH-derivatives. Collection is controlled by moving the absorbent from the exposure part to the analysis part by changing the posture of the DSD-carbonyl. DNPH-derivatives were eluted from an analysis part of DSD-carbonyl with acetonitrile directly and analyzed by high performance liquid chromatography (HPLC). The advantages of the DSD-carbonyl are the following: (1) The DSD-carbonyl can be used in a wide range of concentration of aldehydes and ketones in atmosphere, as the DSD-carbonyl exposure part has a variable diffusion area, (2) DNPH-derivatives are eluted from DNPH-silica without contamination of air. (3) The sampler can be applied to active sampling by connecting it with a pump. The limit of detection (LOD) for concentrations of major aldehydes and ketones ranged from 0.072 to 0.13 ppb, and the limit of quantitation (LOQ) ranged from 0.24 to 0.42 ppb. The coefficient variation (CV) for concentrations of major aldehydes and ketones ranged from 2.5 to 3.0% in laboratory air. The DSD-carbonyl method and active sampling method (US EPA method IP-6A) showed a good correlation (formaldehyde, r2=0.995). The uptake rates for formaldehyde, acetaldehyde, and acetone were estimated as 0.078, 0.062 and 0.079 nmol ppb -1 h -1, respectively. It is possible to estimate atmospheric aldehydes and ketones at parts per billion (ppb), with high sensitivity and precision, by

  12. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor

    OpenAIRE

    Majid MOUNIR; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-01-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV...

  13. A NOVEL COPOLYMER-BOUND CIS- DICARBONYLRHODIUM COMPLEX FOR THE CARBONYLATION OF METHANOL TO ACETIC ACID AND ACETIC ANHYDRIDE

    Institute of Scientific and Technical Information of China (English)

    YUAN Guoqing; CHEN Yuying; CHEN Rongyao

    1989-01-01

    A series of porous microspheres of linear and ethylene diacrylate (M ') cross-linked copolymers of 2 - vinylpyridine (V) and methyl acrylate (M) reacted with tetracarbonyldichlorodirhodium to form a series of cis-dicarbonylrhodium chelate complex (MVRh and MVM 'Rh). They are thermally stable yet very reactive in the carbonylation of methanol to acetic acid, and of methanol - acetic acid mixture to acetic acid and acetic anhydride with a selectivity of 100% under relatively mild and anhydrous conditions.

  14. Study on catalytic synthesis of acetals and ketals by Ce(SO4) 2%Ce(SO4)2催化合成缩醛(酮)的研究

    Institute of Scientific and Technical Information of China (English)

    胡仁国

    2013-01-01

    研究了Ce(SO4)2催化乙二醇与环己酮、丁酮、丙酮、丙醛、丁醛、异丁醛、戊醛、异戊醛、正己醛、正辛醛、苯甲醛等10余种醛(酮)的缩合反应.考察了反应时间、醛(酮)与醇的配比、KHSO4用量等因素对醛(酮)与醇缩合反应的影响.结果表明:当醛(酮)与乙二醇物质的量比为1∶1.2,催化剂用量为1 mol醛(酮)1.0g,反应2.0h,选择性一般在98%以上,转化率在92%以上.Ce(SO4)2对醛(酮)与醇的缩合反应有较好的催化性能.%The acetalization and ketalization of different aldehydes and ketones with glycol catalyzed by Ce (SO4)2 are studied.The effects of reaction time,mole ratio of reactants and dosage of catalyst on the yield of acetals (ketals) are investigated.The results show that Ce(SO4)2 displays efficient catalytic performance for synthesis of acetals (ketals),the selectivity is more than 98% and the conversion is more than 92% when the mole ratio of aldehydes (ketones) to glycol is 1 ∶ 1.2,the dosage of catalyst is 1.0 g per mole aldehydes (ketones) and the reaction time is 2.0 h.

  15. Lipase Mediated Isoamyl Acetate Synthesis in Solvent-Free System Using Vinyl Acetate as Acyl Donor

    Directory of Open Access Journals (Sweden)

    Annapurna Kumari

    2009-01-01

    Full Text Available Synthesis of isoamyl acetate, a flavour ester extensively used in food industry, has been carried out in a solvent-free system. In the present study, an attempt has been made to enhance the isoamyl acetate synthesis yield by transesterification of isoamyl alcohol with vinyl acetate using immobilized Rhizopus oryzae NRRL 3562 lipase. In the present synthesis, substrates had no inhibitory effect on immobilized lipase. The effects of various reaction parameters on isoamyl acetate synthesis were studied and maximum conversion was achieved at 16 % (by mass per volume of immobilized lipase, 40 °C and 200 rpm. Under these conditions, 8-hour reaction time was sufficient to reach a high ester conversion of 95 % with 0.5 mol/L of isoamyl alcohol. The structure of the transesterified product was confirmed by infrared and nuclear magnetic resonance spectroscopic studies. Immobilized lipase had Km and vmax values of 306.53 mmol/L and 99 µmol/(h·g respectively, for isoamyl acetate synthesis in a solvent-free system.

  16. Compound list: desmopressin acetate [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available desmopressin acetate DDAVP 00159 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LA...TEST/Rat/in_vivo/Liver/Single/desmopressin_acetate.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosciencedbc.jp/a...rchive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/desmopressin_acetate.Rat.in_vivo.Liver.Repeat.zip ftp://...ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/desmopre...ssin_acetate.Rat.in_vivo.Kidney.Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Repeat/desmopressin_acetate.Rat.in_vivo.Kidney.Repeat.zip ...

  17. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity.

    Science.gov (United States)

    Li, Sha; Gan, Li-Qin; Li, Shu-Ke; Zheng, Jie-Cong; Xu, Dong-Ping; Li, Hua-Bin

    2014-01-01

    Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.

  18. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    Science.gov (United States)

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner.

  19. Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent.

    Science.gov (United States)

    Zhang, Huanyu; Yong, Xueyong; Zhou, Jinyong; Deng, Jianping; Wu, Youping

    2016-02-03

    The contribution reports the first polymeric microspheres derived from a biomass, vanillin. It reacted with methacryloyl chloride, providing monomer vanillin methacrylate (VMA), which underwent suspension polymerization in aqueous media and yielded microspheres in high yield (>90 wt %). By controlling the N2 bubbling mode and by optimizing the cosolvent for dissolving the solid monomer, the microspheres were endowed with surface pores, demonstrated by SEM images and mercury intrusion porosimetry measurement. Taking advantage of the reactive aldehyde groups, the microspheres further reacted with glycine, thereby leading to a novel type of Schiff-base chelating material. The functionalized microspheres demonstrated remarkable adsorption toward Cu(2+) (maximum, 135 mg/g) which was taken as representative for metal ions. The present study provides an unprecedented class of biobased polymeric microspheres showing large potentials as adsorbents in wastewater treatment. Also importantly, the reactive aldehyde groups may enable the microspheres to be used as novel materials for immobilizing biomacromolecules, e.g. enzymes.

  20. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst

    Directory of Open Access Journals (Sweden)

    Viviane P. de Souza

    2016-11-01

    Full Text Available Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  1. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    Science.gov (United States)

    Xiong, Ke; Yu, Weiting; Chen, Jingguang G.

    2014-12-01

    The selective deoxygenation of aldehydes and alcohols without cleaving the Csbnd C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the Cdbnd O and Csbnd OH bonds.

  2. Synthesis and Charaterization of Silica-Based Aldehyde Chitosan Hybrid Material for Biodiesel Purification.

    Science.gov (United States)

    da Silva, Sandra Rodrigues; de Albuquerque, Nilson J A; de Almeida, Rusiene M; de Abreu, Fabiane C

    2017-09-25

    This study concerns the development and charaterization of Silica-based aldehyde Chitosan hybrid material as an adsorbent for biodiesel purification. This biocomposite was prepared by sol-gel route and oxidation with periodate, and then characterized. FTIR experiments showed that the hybrid formed presents absorption bands similar to those of Chitosan-Silica, with the exception of the vibrations at 1480 cm(-1) and 1570 cm(-1) attributed to the symmetrical angular deformation in the N-H plane, and possess large N₂ Brunauer-Emmett-Teller (BET) surface areas. Thermogravimetric analysis (TG) and scanning electron microscopy (SEM) was also carried out. Adsorption studies of bioadsorbents involving the analysis of free glycerol, soap, acidity, diglycerides, triglycerides, and fluorescence spectroscopy showed that silica-based aldehyde chitosan has a good affinity for glycerol and a good purification process.

  3. Synthesis and Charaterization of Silica-Based Aldehyde Chitosan Hybrid Material for Biodiesel Purification

    Directory of Open Access Journals (Sweden)

    Sandra Rodrigues da Silva

    2017-09-01

    Full Text Available This study concerns the development and charaterization of Silica-based aldehyde Chitosan hybrid material as an adsorbent for biodiesel purification. This biocomposite was prepared by sol-gel route and oxidation with periodate, and then characterized. FTIR experiments showed that the hybrid formed presents absorption bands similar to those of Chitosan-Silica, with the exception of the vibrations at 1480 cm−1 and 1570 cm−1 attributed to the symmetrical angular deformation in the N-H plane, and possess large N2 Brunauer–Emmett–Teller (BET surface areas. Thermogravimetric analysis (TG and scanning electron microscopy (SEM was also carried out. Adsorption studies of bioadsorbents involving the analysis of free glycerol, soap, acidity, diglycerides, triglycerides, and fluorescence spectroscopy showed that silica-based aldehyde chitosan has a good affinity for glycerol and a good purification process.

  4. Generation of thiols by biotransformation of cysteine-aldehyde conjugates with baker's yeast.

    Science.gov (United States)

    Huynh-Ba, Tuong; Matthey-Doret, Walter; Fay, Laurent B; Bel Rhlid, Rachid

    2003-06-01

    Baker's yeast was shown to catalyze the transformation of cysteine-furfural conjugate into 2-furfurylthiol. The biotransformation's yield and kinetics were influenced by the reaction parameters such as pH, incubation mode (aerobic and anaerobic), and substrate concentration. 2-Furfurylthiol was obtained in an optimal 37% yield when cysteine-furfural conjugate at a 20 mM concentration was anaerobically incubated with whole cell baker's yeast at pH 8.0 and 30 degrees C. Similarly to 2-furfurylthiol, 5-methyl-2-furfurylthiol (11%), benzylthiol (8%), 2-thiophenemethanethiol (22%), 3-methyl-2-thiophenemethanethiol (3%), and 2-pyrrolemethanethiol (6%) were obtained from the corresponding cysteine-aldehyde conjugates by incubation with baker's yeast. This work indicates the versatile bioconversion capacity of baker's yeast for the generation of thiols from cysteine-aldehyde conjugates. Thanks to its food-grade character, baker's yeast provides a biochemical tool to produce thiols, which can be used as flavorings in foods and beverages.

  5. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016.

  6. Urease Inhibitors of Agricultural Interest Inspired by Structures of Plant Phenolic Aldehydes

    OpenAIRE

    Lívia P. Horta; Mota,Yane C. C.; Barbosa,Gisele Maria; Taniris C. Braga; Marriel,Ivanildo E.; Fátima,Ângelo de; Modolo, Luzia V.

    2016-01-01

    The plant phenolic natural products (PNPs) protocatechuic aldehyde, syringaldehyde and vanillin were used as platforms for obtaining four urease inhibitors. Urea (urease substrate) or thiourea (urease inhibitor) core was added to the structure of newly synthesized compounds to provide inhibitors up to 230-fold more active than the PNPs they originated from. The PNP derivatives are mixed inhibitors with higher affinity to urease active site. Two compounds were as efficient as N-(butyl)thiophos...

  7. Daidzin inhibits mitochondrial aldehyde dehydrogenase and suppresses ethanol intake of Syrian golden hamsters

    OpenAIRE

    Keung, Wing Ming; Klyosov, Anatole A; Vallee, Bert L.

    1997-01-01

    Daidzin is the major active principle in extracts of radix puerariae, a traditional Chinese medication that suppresses the ethanol intake of Syrian golden hamsters. It is the first isoflavone recognized to have this effect. Daidzin is also a potent and selective inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH-2). To establish a link between these two activities, we have tested a series of synthetic structural analogs of daidzin. The results demonstrate a direct correlation betwe...

  8. Continuous-flow enantioselective α-aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline

    Directory of Open Access Journals (Sweden)

    Xacobe C. Cambeiro

    2011-10-01

    Full Text Available The application of polystyrene-immobilized proline-based catalysts in packed-bed reactors for the continuous-flow, direct, enantioselective α-aminoxylation of aldehydes is described. The system allows the easy preparation of a series of β-aminoxy alcohols (after a reductive workup with excellent optical purity and with an effective catalyst loading of ca. 2.5% (four-fold reduction compared to the batch process working at residence times of ca. 5 min.

  9. Aldehyde dehydrogenase polymorphism in North American, South American, and Mexican Indian populations.

    Science.gov (United States)

    Goedde, H W; Agarwal, D P; Harada, S; Rothhammer, F; Whittaker, J O; Lisker, R

    1986-01-01

    While about 40% of the South American Indian populations (Atacameños, Mapuche, Shuara) were found to be deficient in aldehyde dehydrogenase isozyme I (ALDH2 or E2), preliminary investigations showed very low incidence of isozyme deficiency among North American natives (Sioux, Navajo) and Mexican Indians (mestizo). Possible implications of such trait differences on cross-cultural behavioral response to alcohol drinking are discussed. PMID:3953578

  10. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E.; Calcutt, Wade M.; Brash, Alan R.; Samel, Nigulas

    2015-01-01

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using 18O-labeled substrate and incubations in H218O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. PMID:26100625

  11. HCO Cross Sections and Radical Yields From the Photolysis of Saturated Aldehydes

    Science.gov (United States)

    Flad, J. E.; Brown, S. S.; Burkholder, J. B.; Ravishankara, A. R.

    2005-12-01

    Aldehydes are a major component of oxygenated volatile organic compounds (OVOC) in the atmosphere. They are removed from the atmosphere primarily by reaction with OH or by photodissociation from ultraviolet (radicals. Determination of the radical yields from aldehyde photolysis as a function of temperature, pressure and wavelength has important implications for the HOx budget, particularly in the upper troposphere. Photolysis of formaldehyde and acetaldehyde has been studied extensively in the laboratory, although current parameterizations for radical yields are based in part on studies that have used indirect methods. A sensitive and direct method of measuring these radical yields is therefore of substantial interest. A new instrument has been developed to measure formyl (HCO) radical yields from the photodissociation of aldehydes. A pulsed, tunable ultraviolet laser is used to photolyze the aldehyde between 290 and 350 nm, and a second tunable laser is used to detect the HCO radicals using cavity ring-down spectroscopy on the A-X system (613 - 617 nm). The photolysis and probe lasers copropagate along the axis of the ring-down cell to maximize the overlap of the two laser beams for sensitive HCO detection. The absorption cross section of HCO has been determined by measuring the HCO product from the reaction of atomic chlorine with formaldehyde relative to the NO 3 product from the reaction of atomic chlorine with chlorine nitrate. Atomic chlorine was generated by photolysis of Cl 2 at 335 nm. The HCO quantum yield from the photolysis of acetaldehyde and formaldehyde and its dependence on photolysis wavelength, temperature, and pressure is being studied.

  12. Small Peptides Catalyzed Direct Aldol Reactions of Aldehydes with Hydroxyacetone with Regiocontrol in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    TANG,Zhuo; YANG,Zhi-Hua; CUN,Lin-Feng; GONG,Liu-Zhu; MI,Ai-Qiao; JIANG,Yao-Zhong

    2004-01-01

    @@ Very recently, we[1] found that L-proline amides and dipeptides acted as efficient catalysts for the asymmetric direct aldol reaction. We report here that L-proline-based peptides 1~5 can catalyze the aldol reactions of hydroxyacetone with aldehydes 6 in aqueous media, to give 1,4-diols (7), the disfavored products with either aldolase or L-proline. Both peptides 3 and 4 give good results.

  13. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    Directory of Open Access Journals (Sweden)

    J. C. Gong

    2010-08-01

    Full Text Available Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein in a central Beijing site in the summer and early fall of 2008 (from June to October. Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions. In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5. These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  14. Indoor aldehydes concentration and emission rate of formaldehyde in libraries and private reading rooms

    Science.gov (United States)

    Kim, Jeonghoon; Kim, Seojin; Lee, Kiyoung; Yoon, Dongwon; Lee, Jiryang; Ju, DaeYoung

    2013-06-01

    Aldehydes are of particularly interest due to their potential adverse impact on human health. Formaldehyde is one of the most abundant indoor pollutants. To improve indoor air quality, identifying and removing the major emission sources of formaldehyde would be desirable. The purposes of this study were to determine aldehyde concentrations in libraries and reading rooms and to identify emission sources of formaldehyde in private reading rooms. Indoor aldehyde concentrations were quantified at 66 facilities, including public libraries, children's libraries, public reading rooms, and private reading rooms, in the Seoul metropolitan area. Emission fluxes of formaldehyde from the surfaces of desks, chairs, floors, walls, and ceilings in 19 private reading rooms were measured using a passive emission colorimetric sensor. Indoor aldehyde (formaldehyde, acetaldehyde, propioaldehyde, benzaldehyde, and hexaldehyde) levels were significantly higher than outdoor levels. Indoor formaldehyde geometric mean concentrations in private reading rooms (119.3 μg m-3) were significantly higher than in public libraries (29.2 μg m-3), children's libraries (29.3 μg m-3), and public reading rooms (40.8 μg m-3). Indoor formaldehyde levels were associated with relative humidity. In private reading rooms, the emission rates from desks (255.5 ± 214.8 μg h-1) and walls (231.7 ± 192.3 μg h-1) were significantly higher than that from chairs (79.6 ± 88.5 μg h-1). Desks (31%) and walls (29%) were the major emission sources of formaldehyde in 14 facilities in which measurements exceeded the indoor standard of 100 μg m-3. The age of interior materials was a significant factor for indoor formaldehyde emission flux. Controlling the emission rates of desks and walls is recommended to improve formaldehyde concentrations in private reading rooms.

  15. Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica.

    Science.gov (United States)

    Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2014-11-28

    In the n-alkane assimilating yeast Yarrowia lipolytica, n-alkanes are oxidized to fatty acids via fatty alcohols and fatty aldehydes, after which they are utilized as carbon sources. Here, we show that four genes (HFD1-HFD4) encoding fatty aldehyde dehydrogenases (FALDHs) are involved in the metabolism of n-alkanes in Y. lipolytica. A mutant, in which all of four HFD genes are deleted (Δhfd1-4 strain), could not grow on n-alkanes of 12-18 carbons; however, the expression of one of those HFD genes restored its growth on n-alkanes. Production of Hfd2Ap or Hfd2Bp, translation products of transcript variants generated from HFD2 by the absence or presence of splicing, also supported the growth of the Δhfd1-4 strain on n-alkanes. The FALDH activity in the extract of the wild-type strain was increased when cells were incubated in the presence of n-decane, whereas this elevation in FALDH activity by n-decane was not observed in Δhfd1-4 strain extract. Substantial FALDH activities were detected in the extracts of Escherichia coli cells expressing the HFD genes. Fluorescent microscopic observation suggests that Hfd3p and Hfd2Bp are localized predominantly in the peroxisome, whereas Hfd1p and Hfd2Ap are localized in both the endoplasmic reticulum and the peroxisome. These results suggest that the HFD multigene family is responsible for the oxidation of fatty aldehydes to fatty acids in the metabolism of n-alkanes, and raise the possibility that Hfd proteins have diversified by gene multiplication and RNA splicing to efficiently assimilate or detoxify fatty aldehydes in Y. lipolytica.

  16. Three-Component Halo Aldol Condensation of Thioacrylates with Aldehydes Mediated by Titanium (IV Halide

    Directory of Open Access Journals (Sweden)

    Guigen Li

    2002-01-01

    Full Text Available a,b-Ethyl thioacrylate was difuctionalized by a tandem X-C/C=C bond formation reaction. The new system uses Ti (IV halide as both the Lewis acidic promoter and the halogen source for the Michael-type addition onto the thioacrylate. The titanium enolate species resulting from Michael-type addition react with aldehydes followed by dehydration to afford trisubstituted olefin products. Complete geometric selectivity (>95% and up to 72% yield have been obtained for 7 examples.

  17. Aldehydes in relation to air pollution sources: A case study around the Beijing Olympics

    Science.gov (United States)

    Altemose, Brent; Gong, Jicheng; Zhu, Tong; Hu, Min; Zhang, Liwen; Cheng, Hong; Zhang, Lin; Tong, Jian; Kipen, Howard M.; Ohman-Strickland, Pamela; Meng, Qingyu; Robson, Mark G.; Zhang, Junfeng

    2015-05-01

    This study was carried out to characterize three aldehydes of health concern (formaldehyde, acetaldehyde, and acrolein) at a central Beijing site in the summer and early fall of 2008 (from June to October). Aldehydes in polluted atmospheres come from both primary and secondary sources, which limits the control strategies for these reactive compounds. Measurements were made before, during, and after the Beijing Olympics to examine whether the dramatic air pollution control measures implemented during the Olympics had an impact on concentrations of the three aldehydes and their underlying primary and secondary sources. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.3 ± 15.1 μg/m3, 27.1 ± 15.7 μg/m3 and 2.3 ± 1.0 μg/m3, respectively, for the entire period of measurements, all being at the high end of concentration ranges measured in cities around the world in photochemical smog seasons. Formaldehyde and acrolein increased during the pollution control period compared to the pre-Olympic Games, followed the changing pattern of temperature, and were significantly correlated with ozone and with a secondary formation factor identified by principal component analysis (PCA). In contrast, acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period and was significantly correlated with several pollutants emitted from local emission sources (e.g., NO2, CO, and PM2.5). Acetaldehyde was also more strongly associated with primary emission sources including vegetative burning and oil combustion factors identified through the PCA. All three aldehydes were lower during the post-Olympic sampling period compared to the before and during Olympic periods, likely due to seasonal and regional effects. Our findings point to the complexity of source control strategies for secondary pollutants.

  18. Effects of aliphatic aldehydes on the growth and patulin production of Penicillium expansum in apple juice.

    Science.gov (United States)

    Taguchi, Tomoyasu; Kozutsumi, Daisuke; Nakamura, Ruka; Sato, Yoshio; Ishihara, Atsushi; Nakajima, Hiromitsu

    2013-01-01

    The effects of 16 aliphatic aldehydes with 3-10 carbons on the growth and patulin production of Penicillium expansum were examined. When P. expansum spores were inoculated into apple juice broth, some alkenals, including 2-propenal, (E)-2-butenal, (E)-2-pentenal, and (E)-2-hexenal, inhibited fungal growth and patulin production. Their minimal inhibitory concentrations were 5, 50, 80, and 80 µg/mL respectively. Vital staining indicated that these alkenals killed mycelia within 4 h. Treatment of the spores with these aldehydes also resulted in rapid loss of germination ability, within 0.5-2 d. On the other hand, aliphatic aldehydes with 8-10 carbons significantly enhanced patulin production without affecting fungal growth: 300 µg/mL of octanal and 100 µg/mL of (E)-2-octenal increased the patulin concentrations in the culture broth by as much as 8.6- and 7.8-fold as compared to that of the control culture respectively. The expression of the genes involved in patulin biosynthesis in P. expansum was investigated in mycelia cultured in apple juice broth containing 300 µg/mL of octanal for 3.5, 5, and 7 d. Transcription of the msas gene, encoding 6-methylsalicylic acid synthase, which catalyzed the first step in the patulin biosynthetic pathway was remarkably high in the 3.5-d and 5-d-old cultures as compared with the control. However, octanal did not any increase the transcription of the msas in the 7-d-old culture or that of the other two genes, IDH and the peab1, in culture. Thus the enhanced patulin accumulation with supplementation with these aldehydes is attributable to the increased amount of the msas transcript.

  19. Stimulation of tarsal receptors of the blowfly by aliphatic aldehydes and ketones.

    Science.gov (United States)

    CHADWICK, L E; DETHIER, V G

    1949-03-20

    Rejection of eight aldehydes, eight ketones, five secondary alcohols, and 3-pentanol has been studied in the blowfly Phormia regina Meigen. The data agree with results previously reported for normal alcohols and several series of glycols in showing a logarithmic increase in stimulating effect with increasing chain length. The order of increasing effectiveness among the different species of compounds thus far investigated is the following: polyglycols, diols, secondary alcohols, iso-alcohols, normal alcohols, ketones, iso-aldehydes, normal aldehydes. Curves relating the logarithms of threshold concentration to the logarithms of chain length for diols, alcohols, aldehydes, and ketones show inflections in the 3 to 6 carbon range. Above and below the region of inflection the curves are nearly rectilinear. The slopes for the upper limbs (smaller molecules) are of the order of -2; for the lower limbs, about -10. Comparisons of the threshold data with numerical values for molecular weights, molecular areas and volumes, oil-water distribution coefficients, activity coefficients, standard free energies, vapor pressures, boiling points, melting points, dipole moments, dielectric constants, and degree of association are discussed briefly, and it is concluded that none of the comparisons serves to bring the data from the several series and from the two portions of each series into a single homogeneous system. A qualitative comparison with water solubilities shows fewer discrepancies. It is suggested that the existence of a combination of aqueous and lipoid phases at the receptor surface would fit best with what is presently known about the relationship between chemical structure and stimulating effect in contact chemoreception. In this hypothesis the smaller and more highly water-soluble compounds are envisaged as gaining access to the receptors partly through the aqueous phase, the larger molecules predominantly through the lipoid phase.

  20. Oxidative stress and the enzyme system of aldehyde catabolism in the muscle mitochondria of immobilized pubertal rats

    Directory of Open Access Journals (Sweden)

    Amjad Hamdallah

    2014-12-01

    Full Text Available The aim of the work is to find out peculiarities in manifestation of oxidative stress and to determine activity of enzymes, responsible for utilization of endogenous aldehydes in the mitochondrial fraction of the skeletal (femoral muscle in pubertal rats during immobilization stress. Our study has shown that differently directed changes in the activity of mitochondrial aldehyde dehydrogenases and aldehyde reductases occur in the pubertal immobilized rats, that limits the catabolism effectiveness as regards carbonyl products of free radical oxidation in the muscle cells. Corroboration of the effect under consideration is an increased level of protein free radical oxidation products in the mitochondria of the skeletal muscle. On the basis of the obtained data the authors draw a conclusion about an increased sensitivity of the skeletal muscle to the oxidative stress impact due to modulation in the state of enzyme system, responsible for utilization of endogenous aldehydes in the mitochondria.

  1. Fatty Aldehydes in Cyanobacteria Are a Metabolically Flexible Precursor for a Diversity of Biofuel Products: e58307

    National Research Council Canada - National Science Library

    Brett K Kaiser; Michael Carleton; Jason W Hickman; Cameron Miller; David Lawson; Mark Budde; Paul Warrener; Angel Paredes; Srinivas Mullapudi; Patricia Navarro; Fred Cross; James M Roberts

    2013-01-01

      We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters...

  2. Synthesis of chiral N-ferrocenylmethylaminoalcohols and their applica-tion in enantioselective addition of diethylzinc to aldehydes

    Institute of Scientific and Technical Information of China (English)

    Jian Feng GE; Zong Xuan SHEN; Ya Wen ZHANG

    2004-01-01

    Three chiral N-ferrocenylmethylaminoalcohols were synthesized from readily available natural L-valine, leucine and phenylanine, and used as chiral ligands in the enantioselective addition of diethylzinc to aldehydes.

  3. Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate

    Energy Technology Data Exchange (ETDEWEB)

    Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.

    2017-03-28

    One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.

  4. Adaptation and tolerance of bacteria against acetic acid.

    Science.gov (United States)

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange

  5. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates

    Science.gov (United States)

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-02-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (uc(d)-allose and uc(d)-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars uc(d)-allose and uc(d)-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  6. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates

    Science.gov (United States)

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-04-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars ( d-allose and d-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars d-allose and d-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  7. Immobilization of penicillin G acylase on paramagnetic aldehyde-functionalized mesostructured cellular foams.

    Science.gov (United States)

    Yang, Ling; Gao, Zhenyuan; Guo, Yanglong; Zhan, Wangcheng; Guo, Yun; Wang, Yunsong; Lu, Guanzhong

    2014-06-10

    Paramagnetic aldehyde-functionalized mesostructured cellular foams (PAMCFs), synthesized by grafting 3-aminopropyltriethoxysilane modified Fe3O4 (NH2-Fe3O4) nanoparticles with larger particle size than the window pore size of MCFs on the outer surface of aldehyde-functionalized mesostructured cellular foams (AMCFs), were investigated as efficient supports for immobilization of penicillin G acylase (PGA). The results show that NH2-Fe3O4 nanoparticles were successfully grafted on the outer surface of AMCFs and PGA molecules were mainly immobilized covalently on the inner surface of PAMCFs, which was because amino groups of NH2-Fe3O4 nanoparticles or PGA molecules reacted with aldehyde groups of AMCFs or PAMCFs to form imine bonds. PGA/PAMCFs-15 showed a rather high initial activity of 9563Ug(-1) and retained 89.1% of its initial activity after recycled for 10 times. PGA/PAMCFs are easily recycled by magnetic field in order to replace tedious separation of high-speed centrifugation for mesoporous materials.

  8. Betaine Aldehyde Dehydrogenase expression during physiological cardiac hypertrophy induced by pregnancy.

    Science.gov (United States)

    Rosas-Rodríguez, Jesús Alfredo; Soñanez-Organis, José Guadalupe; Godoy-Lugo, José Arquimides; Espinoza-Salazar, Juan Alberto; López-Jacobo, Cesar Jeravy; Stephens-Camacho, Norma Aurora; González-Ochoa, Guadalupe

    2017-08-26

    Betaine Aldehyde Dehydrogenase (betaine aldehyde: NAD(P)(+) oxidoreductase, (E.C. 1.2.1.8; BADH) catalyze the irreversible oxidation of betaine aldehyde (BA) to glycine betaine (GB) and is essential for polyamine catabolism, γ-aminobutyric acid synthesis, and carnitine biosynthesis. GB is an important osmolyte that regulates the homocysteine levels, contributing to a vascular risk factor reduction. In this sense, distinct investigations describe the physiological roles of GB, but there is a lack of information about the GB novo synthesis process and regulation during cardiac hypertrophy induced by pregnancy. In this work, the BADH mRNA expression, protein level, and activity were quantified in the left ventricle before, during, and after pregnancy. The mRNA expression, protein content and enzyme activity along with GB content of BADH increased 2.41, 1.95 and 1.65-fold respectively during late pregnancy compared to not pregnancy, and returned to basal levels at postpartum. Besides, the GB levels increased 1.53-fold during pregnancy and remain at postpartum. Our results demonstrate that physiological cardiac hypertrophy induced BADH mRNA expression and activity along with GB production, suggesting that BADH participates in the adaptation process of physiological cardiac hypertrophy during pregnancy, according to the described GB role in cellular osmoregulation, osmoprotection and reduction of vascular risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Reductive detoxification of acrolein as a potential role for aldehyde reductase (AKR1A) in mammals.

    Science.gov (United States)

    Kurahashi, Toshihiro; Kwon, Myoungsu; Homma, Takujiro; Saito, Yuka; Lee, Jaeyong; Takahashi, Motoko; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2014-09-12

    Aldehyde reductase (AKR1A), a member of the aldo-keto reductase superfamily, suppresses diabetic complications via a reduction in metabolic intermediates; it also plays a role in ascorbic acid biosynthesis in mice. Because primates cannot synthesize ascorbic acid, a principle role of AKR1A appears to be the reductive detoxification of aldehydes. In this study, we isolated and immortalized mouse embryonic fibroblasts (MEFs) from wild-type (WT) and human Akr1a-transgenic (Tg) mice and used them to investigate the potential roles of AKR1A under culture conditions. Tg MEFs showed higher methylglyoxal- and acrolein-reducing activities than WT MEFs and also were more resistant to cytotoxicity. Enzymatic analyses of purified rat AKR1A showed that the efficiency of the acrolein reduction was about 20% that of glyceraldehyde. Ascorbic acid levels were quite low in the MEFs, and while the administration of ascorbic acid to the cells increased the intracellular levels of ascorbic acid, it had no affect on the resistance to acrolein. Endoplasmic reticulum stress and protein carbonylation induced by acrolein treatment were less evident in Tg MEFs than in WT MEFs. These data collectively indicate that one of the principle roles of AKR1A in primates is the reductive detoxification of aldehydes, notably acrolein, and protection from its detrimental effects.

  10. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Giovanna Romano

    Full Text Available Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  11. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Romano, Giovanna; Costantini, Maria; Buttino, Isabella; Ianora, Adrianna; Palumbo, Anna

    2011-01-01

    Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  12. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates.

    Science.gov (United States)

    Small, Meagan C; Aytenfisu, Asaminew H; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D

    2017-02-11

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  13. A unified approach for the synthesis of symmetrical and unsymmetrical dibenzyl ethers from aryl aldehydes through reductive etherification

    Directory of Open Access Journals (Sweden)

    J. Sembian Ruso

    2016-05-01

    Full Text Available In this paper, we describe a simple and convenient conversion of aryl aldehydes to symmetrical dibenzyl ethers through reductive etherification. Similarly, unsymmetrical dibenzyl ether was obtained from aryl aldehyde and TES-protected benzyl alcohol. Triethyl silane with catalytic amount of InCl3 was found to be an efficient condition for the reductive etherification. Moreover, it exhibits remarkable functional group compatibility with yield ranging from good to excellent.

  14. Identification and Quantification of Aldehydes in Mezcal by Solid Phase Microextraction with On-fiber Derivatization - Gas Cromatography

    OpenAIRE

    Guadalupe Medina Valtierra; Rocío Juárez Ciprés; Araceli Peña Álvarez

    2011-01-01

    A headspace solid phase microextraction with on fiber derivatization procedure followed by gas chromatography and flame ionization detection was applied for the determination of aldehydes in mezcal. A derivatization agent o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed onto a Polydimethylsiloxane/ divinyl benzene (PDMS/DVB, 65 ¿m) fiber and exposed to the headspace of a vial with a mezcal sample. The aldehydes selectively reacted with PFBHA, and the oximes were desorbed int...

  15. Improved Schmidt Conversion of Aldehydes to Nitriles Using Azidotrimethylsilane in 1,1,1,3,3,3-Hexafluoro-2-propanol

    Directory of Open Access Journals (Sweden)

    Hashim F. Motiwala

    2015-12-01

    Full Text Available The Schmidt reaction of aromatic aldehydes using a substoichiometric amount (40 mol % of triflic acid is described. Low catalyst loading was enabled by a strong hydrogen-bond-donating solvent hexafluoro-2-propanol (HFIP. This improved protocol tolerates a broad scope of aldehydes with diverse functional groups and the corresponding nitriles were obtained in good to high yields without the need for aqueous work up.

  16. POLYMER—SUPPORTED RHODIUM CATALYSTS FOR CARBONYLATION OF METHYL ACETATE TO ACETIC ANHYDRIDE

    Institute of Scientific and Technical Information of China (English)

    CHENDean; HUANGShizhuan; 等

    1993-01-01

    Two kinds of rhodium catalysts supported on cross-linked styrene-divinylbenzene copolymers containing bipyridine or o-phenylene diamine have been prepared and found to display high activity for methyl acetate carbonylation to form acetic anhydride,the activities are even higher than their homogeneous counterparts. XPS analysis was used to characterize the synthetic catalysts.The apparent activation parameters were determined to be Eα=73.3KJ/mol,ΔH≠=66.3KJ/mol,ΔS≠=-28.6eu.These parameters are very close to those in methanol carbonylation and imply to have analogous mechanism in both cases.

  17. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Christiansen, Sofie Egholm; Thomsen, M.L.D.

    2007-01-01

    The aerobic oxidation of aqueous ethanol to produce acetic acid and ethyl acetate was studied using heterogeneous gold catalysts. Comparing the performance of Au/MgAl2O4 and Au/TiO2 showed that these two catalysts exhibited similar performance in the reaction. By proper selection of the reaction...... conditions, yields of 90-95% of acetic acid could be achieved at moderate temperatures and pressures. Based on our findings, a reaction pathway for the catalytic oxidation of ethanol via acetaldehyde to acetic acid is proposed, and the rate-determining step (RDS) in the mechanism is found to be the (possibly......, the possibilities for producing ethyl acetate by the aerobic oxidation of ethanol is also studied. At low ethanol concentrations, the main product is acetic acid; at concentrations >60 wt%, it is ethyl acetate....

  18. Kinetics of Forming Aldehydes in Frying Oils and Their Distribution in French Fries Revealed by LC-MS-Based Chemometrics.

    Science.gov (United States)

    Wang, Lei; Csallany, A Saari; Kerr, Brian J; Shurson, Gerald C; Chen, Chi

    2016-05-18

    In this study, the kinetics of aldehyde formation in heated frying oils was characterized by 2-hydrazinoquinoline derivatization, liquid chromatography-mass spectrometry (LC-MS) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The aldehydes contributing to time-dependent separation of heated soybean oil (HSO) in a PCA model were grouped by the HCA into three clusters (A1, A2, and B) on the basis of their kinetics and fatty acid precursors. The increases of 4-hydroxynonenal (4-HNE) and the A2-to-B ratio in HSO were well-correlated with the duration of thermal stress. Chemometric and quantitative analysis of three frying oils (soybean, corn, and canola oils) and French fry extracts further supported the associations between aldehyde profiles and fatty acid precursors and also revealed that the concentrations of pentanal, hexanal, acrolein, and the A2-to-B ratio in French fry extracts were more comparable to their values in the frying oils than other unsaturated aldehydes. All of these results suggest the roles of specific aldehydes or aldehyde clusters as novel markers of the lipid oxidation status for frying oils or fried foods.

  19. DNA-support coupling for transcription factor purification. Comparison of aldehyde, cyanogen bromide and N-hydroxysuccinimide chemistries.

    Science.gov (United States)

    Chockalingam, Priya Sethu; Gadgil, Himanshu; Jarrett, Harry W

    2002-01-04

    Purification of transcription factor IIIA on internal control region DNA coupled to aldehyde-silica is described and compared with purification on cyanogen bromide-activated Sepharose and Bio-Rad Affi-Gel-10. The Affi-Gel support results in mixed-mode chromatography; both ion-exchange and affinity modes contribute. Coupling DNA to aldehyde-silica is advantageous in that it has no ion-exchange properties and performs as well as DNA coupled to CNBr-activated Sepharose. Purification of lac repressor on aldehyde-silica, and CAAT enhancer binding protein on Affi-Gel also shows the advantages of a neutral support and the disadvantages of mixed-mode chromatography for transcription factor purification. Aldehyde-silica couples to alkylamines and to the amines of adenine, guanine, and cytosine nucleoside bases. Reaction occurs with either single- or double-stranded DNA, although it is less efficient with the latter. Overall, the results demonstrate that predominantly neutral coupling chemistries, such as aldehyde or CNBr-mediated coupling, have distinct advantages for transcription factor purification. Since the CNBr chemistry has not yet been applied to silica supports, aldehyde-silica coupling is currently the most attractive method for DNA affinity HPLC.

  20. Isolation of animal cell mutants defective in long-chain fatty aldehyde dehydrogenase. Sensitivity to fatty aldehydes and Schiff's base modification of phospholipids: implications for Sj-ogren-Larsson syndrome.

    Science.gov (United States)

    James, P F; Zoeller, R A

    1997-09-19

    Using tritium suicide, we have isolated a variant of the Chinese hamster ovary cell line, CHO-K1, that is deficient in long-chain fatty alcohol:NAD+ oxidoreductase (FAO; EC 1.1.1.192). Specifically, it was the fatty aldehyde dehydrogenase component that was affected. The enzymatic deficiency found in this mutant strain, designated FAA. K1A, was similar to that displayed by fibroblasts from patients with Sjögren-Larsson syndrome (SLS), an inheritable neurocutaneous disorder. Complementation analyses suggested that the deficiency in fatty alcohol oxidation in the FAA.K1A cells and the SLS fibroblasts is a result of lesions in homologous genes. The FAA.K1A cells were unable to convert long chain fatty aldehydes to the corresponding fatty acids. This resulted in a hypersensitivity of the FAA.K1A cells to the cytotoxic effects of long chain fatty aldehydes. The difference between the mutant and wild-type cells was most obvious when using fatty aldehydes between 14 and 20 carbons, with the greatest difference between wild-type and mutant cells found when using octadecanal. Fibroblasts from a patient with SLS also displayed the hypersensitivity phenotype when compared with FAldDH+ human fibroblasts. In both CHO and human FAldDH- cell lines, addition of long chain fatty aldehydes to the medium caused a dramatic increase in aldehyde-modified phosphatidylethanolamine, presumably through Schiff's base addition to the primary amine of the ethanolamine head group. When 25 microM hexadecanal was added to the growth medium, approximately 10% of the phosphatidylethanolamine was found in the fatty aldehyde-modified form in FAA.K1A, although this was not observed in wild-type cells. Modified phosphatidylethanolamine could be detected in FAldDH- cells even when exogenous fatty aldehydes were not added to the medium. We propose a possible role for fatty aldehydes, or other aldehydic species, in mediating some of the symptoms associated with Sjögren-Larsson syndrome.

  1. Photoelectron spectroscopy of a series of acetate and propionate esters

    Science.gov (United States)

    Śmiałek, Małgorzata A.; Guthmuller, Julien; MacDonald, Michael A.; Zuin, Lucia; Delwiche, Jacques; Hubin-Franskin, Marie-Jeanne; Lesniewski, Tadeusz; Mason, Nigel J.; Limão-Vieira, Paulo

    2017-10-01

    The electronic state and photoionization spectroscopy of a series of acetate esters: methyl acetate, isopropyl acetate, butyl acetate and pentyl acetate as well as two propionates: methyl propionate and ethyl propionate, have been determined using vacuum-ultraviolet photoelectron spectroscopy. These experimental investigations are complemented by ab initio calculations. The measured first adiabatic and vertical ionization energies were determined as: 10.21 and 10.45 eV for methyl acetate, 9.99 and 10.22 eV for isopropyl acetate, 10.07 and 10.26 eV for butyl acetate, 10.01 and 10.22 eV for pentyl acetate, 10.16 and 10.36 eV for methyl propionate and 9.99 and 10.18 eV for ethyl propionate. For the four smaller esters vibrational transitions were calculated and compared with those identified in the photoelectron spectrum, revealing the most distinctive ones to be a Csbnd O stretch combined with a Cdbnd O stretch. The ionization energies of methyl and ethyl esters as well as for a series of formates and acetates were compared showing a clear dependence of the value of the ionization energy on the size of the molecule with very little influence of its conformation.

  2. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii.

    Science.gov (United States)

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2016-04-01

    Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic-acid-tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo-lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin-treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress.

  3. Immunotoxicity of trenbolone acetate in Japanese quail

    Science.gov (United States)

    Quinn, M.J.; McKernan, M.; Lavoie, E.T.; Ottinger, M.A.

    2007-01-01

    Trenbolone acetate is a synthetic androgen that is currently used as a growth promoter in many meat-exporting countries. Despite industry laboratories classifying trenbolone as nonteratogenic, data showed that embryonic exposure to this androgenic chemical altered development of the immune system in Japanese quail. Trenbolone is lipophilic, persistent, and released into the environment in manure used as soil fertilizer. This is the first study to date to assess this chemical's immunotoxic effects in an avian species. A one-time injection of trenbolone into yolks was administered to mimic maternal deposition, and subsequent effects on the development and function of the immune system were determined in chicks and adults. Development of the bursa of Fabricius, an organ responsible for development of the humoral arm of the immune system, was disrupted, as indicated by lower masse, and smaller and fewer follicles at day 1 of hatch. Morphological differences in the bursas persisted in adults, although no differences in either two measures of immune function were observed. Total numbers of circulating leukocytes were reduced and heterophil-lymphocyte ratios were elevated in chicks but not adults. This study shows that trenbolone acetate is teratogenic and immunotoxic in Japanese quail, and provides evidence that the quail immune system may be fairly resilient to embryonic endocrine-disrupting chemical-induced alterations following no further exposure posthatch.

  4. Methylprednisolon acetate in the management of

    Directory of Open Access Journals (Sweden)

    N. Khaci, M.D.

    2008-01-01

    Full Text Available AbstractBackground and Purpose: Acute renal colic is a common complaint from patients entering the emergency departments. Although, urethral lithotripsy and extracorporeal shock wave lithotripsy are known to be effective, the role of medical-expulsive therapy for the treatment of this disease has not yet been established. This study assessed the clinical efficacy of addition methylprednisolon acetate in the medical-expulsive therapy of distal ureterolithiasis.Materials and Methods: Eighty five (85 consecutive patients with a symptomatic distal urethral stone were included in our study and randomized to one of two home treatment groups. Group A patients (n = 45 received tramadol (50mg bid and hydrochlorothiazide (50 mg daily for 21 days, and group B patients (n = 40 were treated with a corticosteroid drug (methylprednisolon acetate 40mg intra-muscular on 0, 7 and 14 days after treatment, in addition to tramadol and hydrochlorothiazide. The treatment duration was 21 days. All patients were re-evaluated after 21days with a clinical examination and KUB.Results: The mean stone size was 5.2mm and 5.8mm in groups A and B respectively (P value>0.05. Both groups had a significant difference in expulsion rate (20(44.4% for group A and 32 (88% for group B; (P value<0.001.Conclusion: Our results suggest that the use of a corticosteroid drug in association with tramadol and hydro-cholorothiazid appeared to induce an increase in the expulsion ra

  5. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.

  6. Effect of medroxyprogesterone acetate (Provera) on ovarian radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Jarrell, J.; YoungLai, E.V.; McMahon, A.; Barr, R.; O' Connell, G.; Belbec, L.

    1989-04-01

    Medroxyprogesterone acetate (Provera) is a drug that is commonly given to young women with cancer during chemotherapy and radiation to control heavy bleeding associated with anovulation. Because hypothalamic-pituitary-ovarian suppression has been associated with ovarian protection from the effects of chemotherapy and medroxyprogesterone acetate has been identified as a radiosensitizing agent, we explored the effects of medroxyprogesterone acetate on a rat model with known radiation injury characteristics. Sprague-Dawley rats were treated with medroxyprogesterone acetate or vehicle from day 22 to day 37 of life and were either irradiated or sham-irradiated on day 30 of life and then killed on day 44. Radiation with medroxyprogesterone acetate administration produced a greater loss in preantral and healthy control follicles than in control follicles. No suppression of luteinizing hormone or follicle-stimulating hormone had occurred by day 30 but ovarian glutathione content was reduced. These findings indicate that the administration of medroxyprogesterone acetate with radiotherapy may enhance ovarian injury.

  7. Fermentation characteristics of Fusarium oxysporum grown on acetate

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Pachidou, Fotini; Petroutsos, Dimitris

    2008-01-01

    In this study, the growth characteristics of Fusarium oxysporum were evaluated in minimal medium using acetate or different mixtures of acetate and glucose as carbon source. The minimum inhibitory concentration (MIC) of acetic acid that F oxysporum cells could tolerate was 0.8% w/v while glucose...... of succinate-propionate pathway which consumes reducing power (NADH) via conversion of succinate to propionyl-CoA and produce propionate. (C) 2008 Elsevier Ltd. All rights reserved....

  8. Leuprorelin Acetate in Prostate Cancer: a European Update

    OpenAIRE

    Persad R

    2002-01-01

    This review provides an update on leuprorelin acetate, the world's most widely prescribed depot luteinising hormone-releasing hormone analogue. Leuprorelin acetate has been in clinical use in the palliative treatment of prostate cancer for more than 20 years, but advances continue to be made in terms of convenience and flexibility of administration, and in the incorporation of leuprorelin acetate into novel treatment regimens. The drug is administered in the form of a depot injection containi...

  9. Methane-to-acetic acid synthesis matriculates at Penn State

    Energy Technology Data Exchange (ETDEWEB)

    Rotman, D.

    1994-04-20

    Direct conversion of methane to commercially valuable chemicals remains one of the grails of industrial chemistry. But scientists at Pennsylvania State University (University Park) appear to have made a significant step forward, reporting the direct catalytic conversion of methane into acetic acid under relatively mild conditions. Commercial acetic production involves a three-step process, including steam reforming of methane to synthesis gas (syngas) and the carbonylation of methanol of acetic acid.

  10. Structure-based mutational studies of substrate inhibition of betaine aldehyde dehydrogenase BetB from Staphylococcus aureus.

    Science.gov (United States)

    Chen, Chao; Joo, Jeong Chan; Brown, Greg; Stolnikova, Ekaterina; Halavaty, Andrei S; Savchenko, Alexei; Anderson, Wayne F; Yakunin, Alexander F

    2014-07-01

    Inhibition of enzyme activity by high concentrations of substrate and/or cofactor is a general phenomenon demonstrated in many enzymes, including aldehyde dehydrogenases. Here we show that the uncharacterized protein BetB (SA2613) from Staphylococcus aureus is a highly specific betaine aldehyde dehydrogenase, which exhibits substrate inhibition at concentrations of betaine aldehyde as low as 0.15 mM. In contrast, the aldehyde dehydrogenase YdcW from Escherichia coli, which is also active against betaine aldehyde, shows no inhibition by this substrate. Using the crystal structures of BetB and YdcW, we performed a structure-based mutational analysis of BetB and introduced the YdcW residues into the BetB active site. From a total of 32 mutations, those in five residues located in the substrate binding pocket (Val288, Ser290, His448, Tyr450, and Trp456) greatly reduced the substrate inhibition of BetB, whereas the double mutant protein H448F/Y450L demonstrated a complete loss of substrate inhibition. Substrate inhibition was also reduced by mutations of the semiconserved Gly234 (to Ser, Thr, or Ala) located in the BetB NAD(+) binding site, suggesting some cooperativity between the cofactor and substrate binding sites. Substrate docking analysis of the BetB and YdcW active sites revealed that the wild-type BetB can bind betaine aldehyde in both productive and nonproductive conformations, whereas only the productive binding mode can be modeled in the active sites of YdcW and the BetB mutant proteins with reduced substrate inhibition. Thus, our results suggest that the molecular mechanism of substrate inhibition of BetB is associated with the nonproductive binding of betaine aldehyde.

  11. Toxicity of algal-derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Rebecca L. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: r.l.taylor@ncl.ac.uk; Caldwell, Gary S. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom); Bentley, Matthew G. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2005-08-15

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24 h LD{sub 50} values of 7 and 20 {mu}M for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 {mu}M of copper sulphate in solutions of decadienal resulted in the reduction of the 24 h LD{sub 50} of decadienal by approximately a third for both species. 1 {mu}M of copper chloride in solutions of decadienal reduced the 24 h LD{sub 50} of decadienal to A. salina nauplii by approximately 11% and 1 {mu}M zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 {mu}M copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed.

  12. Toxicity of algal-derived aldehydes to two invertebrate species: do heavy metal pollutants have a synergistic effect?

    Science.gov (United States)

    Taylor, Rebecca L; Caldwell, Gary S; Bentley, Matthew G

    2005-08-15

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24h LD(50) values of 7 and 20 microM for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 microM of copper sulphate in solutions of decadienal resulted in the reduction of the 24h LD(50) of decadienal by approximately a third for both species. 1 microM of copper chloride in solutions of decadienal reduced the 24h LD(50) of decadienal to A. salina nauplii by approximately 11% and 1 microM zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 microM copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed.

  13. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    Science.gov (United States)

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production.

  14. The acetate kinase of Clostridum acetobutylicum strain P262.

    Science.gov (United States)

    Diez-Gonzalez, F; Russell, J B; Hunter, J B

    1996-12-01

    Clostridum acetobutylicum strain P262 fermented glucose, pyruvate, or lactate, and the butyrate production was substrate-dependent. Differences in butyrate yield could not be explained by changes in butyrate kinase activities, but the butyrate production was inversely related to acetate kinase activity. The acetate kinase had a pH optimum of 8.0, a Km for acetate of 160 mM, and a kcat of 16, 800 min-1. The enyzme had a native molecular mass of 78 kDa; the size of 42 kDa on SDS-PAGE indicated that the acetate kinase of strain P262 was a homodimer.

  15. Glatiramer Acetate-associated Refractory Immune Thrombocytopenic Purpura

    Directory of Open Access Journals (Sweden)

    Iftach Sagy

    2016-04-01

    Full Text Available We present a case of glatiramer acetate-associated refractory immune thrombocytopenic purpura (ITP in a female patient with multiple sclerosis. A search of MEDLINE/PubMed did not find any connection between glatiramer acetate and thrombocytopenia, specifically ITP. The autoimmune reaction was resistant to conservative ITP treatment, and was eventually managed only by splenectomy. To the best of our knowledge, this is the first report of glatiramer acetate-associated ITP. Physicians should be aware of this condition, and consider performing routine blood counts at the beginning of glatiramer acetate treatment.

  16. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  17. Acetic orcein staining of prefixed tissue sections.

    Science.gov (United States)

    Reynolds, C; Lillie, R D

    1978-05-01

    Acetic orcein stains formol- and Carnoy-fixed tissues, coloring mast cells, nuclei, basophilic cytoplasm, cerebral corpora amylacea, and cartilage strongly; keratin and erythrocytes moderately; muscle and collagen weakly. Guinea pig Brunner gland and rat colonic goblet cell mucins did not stain. The red nuclear stain contrasts well with the Prussian blue reaction of hemosiderin and the ferric ferricyanide (Turnbull's blue) reaction of enterochromaffin. A weak (0.01%) fast-green FCF stain changes collagen and sometimes smooth muscle to green, without impairing nucleic acid or mast cell staining. Picroindigocarmine gives blue collagen, yellow muscle, and red elastin, nucleic acids and mast cells. Picro-methyl blue tends to override the red nuclear stain. Carnoy fixation is somewhat better for nuclei, formol for basophil cytoplasms.

  18. Unsuccessful treatment of acromegaly with medroxyprogesterone acetate.

    Science.gov (United States)

    Atkinson, R L; Dimond, R C; Howard, W J; Earll, J M

    1974-09-01

    6 patients with active acromegaly were treated with 10 mg of medroxyprogesterone acetate (MPA) every 6 hours daily for 2 weeks to 6 months. Oral glucose tolerance tests, growth hormone (GH) levels, and insulin tolerance tests (ITT) were done before and during MPA treatment. Basal GH levels varied widely during control and therapy periods; no significant lowering of GH levels occurred during treatment. Carbohydrate tolerance was not significantly affected by MPA therapy, although 5 out of 6 patients had deterioration at least once during treatment. Blood glucose response to ITT was unchanged by MPA. MPA did not affect the clinical features of acromegaly. There was no consistent effect of MPA on insulin-induced or arginine-induced GH secretion. It is concluded that MPA is not an effective agent for treating acromegaly.

  19. Cytoprotective action of roxatidine acetate HCl.

    Science.gov (United States)

    Shiratsuchi, K; Fuse, H; Hagiwara, M; Mikami, T; Miyasaka, K; Sakuma, H

    1988-01-01

    The cytoprotective action of roxatidine acetate HCl (roxatidine) was investigated. We also studied the involvement of endogenous prostaglandins (PGs) in the cytoprotective action of roxatidine and the effect of roxatidine on SRS content in pleurisy induced by A23187. Simultaneously, these effects of roxatidine were compared with those of other histamine H2-receptor antagonists at the same anti-secretory activity level. Roxatidine prevented formation of the gastric mucosal lesions induced by abs. ethanol, 0.6 N HCl and 0.2 N NaOH, but it failed to prevent 30% NaCl-induced gastric mucosal lesions. Cimetidine, ranitidine and famotidine failed to prevent formation of the gastric mucosal lesions induced by necrotizing agents. The cytoprotective action of roxatidine was not abolished by pretreatment with indomethacin. Roxatidine did not greatly influence SRS production. Consequently, it appears that roxatidine has a cytoprotective action and that this action is not associated with endogenous PGs and SRS.

  20. Synthesis of ferulic acid catalyzed by ammonium acetate%乙酸铵催化合成阿魏酸的工艺研究

    Institute of Scientific and Technical Information of China (English)

    梁红冬; 蔡庆荣

    2011-01-01

    以香草醛和丙二酸为原料,乙酸铵为催化剂,合成阿魏酸.考察反应时间、投料物质的量比、催化剂用量和溶剂体积比等因素对收率的影响.结果表明,N,N-二甲基甲酰胺作溶剂,环已烷作带水剂,在V(环己烷)∶以N,N-二甲基甲酰胺)=2∶1、催化剂用量占香草醛质量的6%、n(香草醛)∶n(丙二酸)=1∶1.3和反应时间4h条件下,阿魏酸收率为70.87%.%Ferulic acid was synthesized by using vanillic aldehyde and malonic acid as raw materials, and ammonium acetate as the catalyst. The influence of reaction time, molar ratio of reactants, catalyst dosage and volume ratio of cyclohexane to N ,N-dimethylformamide( DMF) on ferulic acid yield was investigated. The experimental results indicated that ferulic acid yield of 70. 87% was attained under the optimum reaction condition as follows;DMF as the solvent,cyclohexane as the water carrying agent,volume ratio of cyclohexane to DMF =2∶1, catalyst dosage 6% of mass of vanillic aldehyde, molar ratio of vanillic aldehyde to malonic acid 1∶1∶3, and reaction time 4 h.

  1. Emergency contraception: potential role of ulipristal acetate

    Directory of Open Access Journals (Sweden)

    Kristina Gemzell-Danielsson

    2010-04-01

    Full Text Available Kristina Gemzell-Danielsson, Chun-Xia MengDepartment of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, SwedenAbstract: Unintended pregnancy is a global reproductive health problem. Emergency contraception (EC provides women with a safe means of preventing unwanted pregnancies after having unprotected intercourse. While 1.5 mg of levonorgestrel (LNG as a single dose or in 2 doses with 12 hours apart is the currently gold standard EC regimen, a single dose of 30 mg ulipristal acetate (UPA has recently been proposed for EC use up to 120 hours of unprotected intercourse with similar side effect profiles as LNG. The main mechanism of action of both LNG and UPA for EC is delaying or inhibiting ovulation. However, the ‘window of effect’ for LNG EC seems to be rather narrow, beginning after selection of the dominant follicular and ending when luteinizing hormone peak begins to rise, whereas UPA appears to have a direct inhibitory effect on follicular rupture which allows it to be also effective even when administered shortly before ovulation, a time period when use of LNG is no longer effective. These experimental findings are in line with results from a series of clinical trials conducted recently which demonstrate that UPA seems to have higher EC efficacy compared to LNG. This review summarizes some of the data available on UPA used after unprotected intercourse with the purpose to provide evidence that UPA, a new type of second-generation progesterone receptor modulator, represents a new evolutionary step in EC treatment.Keywords: emergency contraception, ulipristal acetate, levonorgestrel

  2. Mono(imidazolin-2-iminato) actinide complexes: synthesis and application in the catalytic dimerization of aldehydes.

    Science.gov (United States)

    Karmel, Isabell S R; Fridman, Natalia; Tamm, Matthias; Eisen, Moris S

    2014-12-10

    The synthesis of the mono(imidazolin-2-iminato) actinide(IV) complexes [(Im(R)N)An(N{SiMe3)2}3] (3-8) was accomplished by the protonolysis reaction between the respective imidazolin-2-imine (Im(R)NH, R = tBu, Mes, Dipp) and the actinide metallacycles [{(Me3Si)N}2An{κ(2)C,N-CH2SiMe2N(SiMe3)}] (1, An = U; 2, M = Th). The thorium and uranium complexes were obtained in high yields, and their structures were established by single-crystal X-ray diffraction analysis. The mono(imidazolin-2-iminato) actinide complexes 3-8 display short An-N bonds together with large An-N-C angles, indicating strong electron donation from the imidazolin-2-iminato moiety to the metal, corroborating a substantial π-character to the An-N bond. The reactivity of complexes 3-8 toward benzaldehyde was studied in the catalytic dimerization of aldehydes (Tishchenko reaction), displaying low to moderate catalytic activities for the uranium complexes 3-5 and moderate to high catalytic activities for the thorium analogues 6-8, among which 8 exhibited the highest catalytic activity. In addition, actinide coordination compounds showed unprecedented reactivity toward cyclic and branched aliphatic aldehydes in the catalytic Tishchenko reaction mediated by the thorium complex [(Im(Dipp)N)Th{N(SiMe3)2}3] (8), exhibiting high activity even at room temperature. Moreover, complex 8 was successfully applied in the crossed Tishchenko reaction between an aromatic or polyaromatic and an aliphatic cyclic and branched aldehyde, yielding selectively the asymmetrically substituted ester in high yields (80-100%).

  3. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  4. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  5. HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY FOR DETERMINATION OF AROMATIC ALDEHYDES IN WINE DISTILLATES

    Directory of Open Access Journals (Sweden)

    Elena Nezalzova

    2011-06-01

    Full Text Available Quality control of alcoholic beverages, coming into the market, is a defining element in preventing the production and supplying of defective products. One of the main criteria for quality control of wine distillates is to estimate their age, and more precisely the period of maturation as the dominant factor in determining the quality of cognacs and, consequently, their market price. On the opinion of majority scientists, one of the main factors, which determines the age of wine distillates, is the content of aromatic aldehydes, mostly vanillin, and their ratio.

  6. "Juice Monsters": Sub-Ohm Vaping and Toxic Volatile Aldehyde Emissions.

    Science.gov (United States)

    Talih, Soha; Salman, Rola; Karaoghlanian, Nareg; El-Hellani, Ahmad; Saliba, Najat; Eissenberg, Thomas; Shihadeh, Alan

    2017-09-29

    An emerging category of electronic cigarettes (ECIGs) is sub-Ohm devices (SODs) that operate at ten or more times the power of conventional ECIGs. Because carcinogenic volatile aldehyde (VA) emissions increase sharply with power, SODs may expose users to greater VAs. In this study, we compared VA emissions from several SODs and found that across device, VAs and power were uncorrelated unless power was normalized by coil surface area. VA emissions and liquid consumed were correlated highly. Analyzed in light of EU regulations limiting ECIG liquid nicotine concentration, these findings suggest potential regulatory levers and pitfalls for protecting public health.

  7. Unsaturated aldehydes as alkene equivalents in the Diels-Alder reaction

    DEFF Research Database (Denmark)

    Taarning, Esben; Madsen, Robert

    2008-01-01

    with no electron-withdrawing substituents. In this way, the aldehyde group serves as a traceless control element to direct the cycloaddition reaction. The Diels-Alder reactions are performed in a diglyme solution in the presence of a catalytic amount of boron trifluoride etherate. Subsequent quenching of the Lewis...... acid, addition of 0.3% of [Rh-(dppp)(2)Cl] and heating to reflux achieves the ensuing decarbonylation to afford the product cyclohexenes. Under these conditions, acrolein, crotonaldehyde and cinnamaldehyde have been reacted with a variety of 1,3-dienes to afford cyclohexenes in overall yields between...

  8. Peptide Deravatives as New Chiral Ligands for Enantioselective Phenylacetylene Addition to Aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Yi-Feng; GAO,Yan-Feng; KANG,Yong-Feng; HAN,Zhi-Jian; YAN,Wen-Jin; NI,Ming; WANG,Rui

    2004-01-01

    @@ The asymmetric addition of alkynylzinc to aldehydes is an important method of synthesizing chiral propargyl alcohols, which are important precursors to many chiral organic compounds. Recently, many significant chiral ligands in this area have been disclosed.[1] Use of a short peptide as a catalyst would allow expansion beyond the (still uncharted) repertoire of single amino acids, while conserving the advantages of a small molecule catalyst. To the best of our knowledge,no results of peptide derivatives as chiral ligands in this reaction has been disclosed to date.[2] Herein, we report the initial results of peptide derivatives, which have been used directly as a chiral ligand in this reaction (Scheme 1).

  9. A C-terminal Aldehyde Analog of the Insect Kinins Inhibits Diuresis in the Housefly

    Science.gov (United States)

    2006-09-21

    p e p t i d e s 2 8 ( 2 0 0 7 ) 1 4 6 – 1 5 2A C-terminal aldehyde analog of the insect kinins inhibits diuresis in the housefly Ronald J. Nachman a...secretion in crickets, but shows inhibition of both in vitro and in vivo diuresis in the housefly. R-LK-CHO reduced the total amount of urine voided over 3 h...to stimulate Malpighian tubule fluid secretion [2,25]. In the housefly, muscakinin has been implicated in the control of diuresis in response to

  10. The mechanism for the rhodium-catalyzed decarbonylation of aldehydes: A combined experimental and theoretical study

    DEFF Research Database (Denmark)

    Fristrup, Peter; Kreis, Michael; Palmelund, Anders

    2008-01-01

    The mechanism for the rhodium-catalyzed decarbonylation of aldehydes was investigated by experimental techniques (Hammett studies and kinetic isotope effects) and extended by a computational study (DFT calculations). For both benzaldehyde and phenyl acetaldehyde derivatives, linear Hammett plots...... were obtained with positive slopes of +0.79 and +0.43, respectively, which indicate a buildup of negative charge in the selectivity-determining step. The kinetic isotope effects were similar for these substrates (1.73 and 1.77 for benzaldehyde and phenyl acetaldehyde, respectively), indicating...

  11. Facile Aldol Reaction Between Unmodified Aldehydes and Ketones in Bronsted Acid Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-you; ZHAO Di-shun; XU Dan-qian; XU Zhen-yuan

    2007-01-01

    A series of condensation reactions of unmodified ketones and aromatic aldehydes to prepare α ,β-unsaturated carbonyl compounds by means of Aldol reactions in Bronsted acid ionic liquids(BAILs) was explored. 1-Butyl-3-methylimidazolium hydrogen sulphate( BMImHSO4 ) acting as an effective media and catalyst in aldol reactions was compared with other BAILs, with the advantages of high conversion and selectivity. The product was easily isolated andthe left ionic liquid can be readily recovered and reused at least 3 times with almost the same efficiency. The scope and limitation of the present method were explored and the possible catalytic mechanism was speculated.

  12. The first catalytic asymmetric addition of diethylzinc to aldehyde promoted by chiral thiourea

    Institute of Scientific and Technical Information of China (English)

    Zhi Guo Qiao; Tian Hua Shen; Zhen Fang Fu; Jun Qi Li; Hong Wang; Qing Bao Song

    2011-01-01

    A series of C2-symmetric and asymmetric chiral thiourea derivatives were synthesized from commercial L-phenylalanine. All of the new compounds have been fully characterized by IR, 1H NMR, 13C NMR, MS spectra and elemental analyses. The chiral thioureas were used as chiral ligands in the catalytic enantioselective ethylation of aldehydes with diethylzinc, the corresponding sec-alcohols were gained with excellent enantioselectivities (up to 87.1 % ee) and high yields (up to 76.7%) after the conditions were optimized.

  13. Highly selective allylborations of aldehydes using α,α-disubstituted allylic pinacol boronic esters.

    Science.gov (United States)

    Hesse, Matthew J; Essafi, Stéphanie; Watson, Charlotte G; Harvey, Jeremy N; Hirst, David; Willis, Christine L; Aggarwal, Varinder K

    2014-06-10

    α,α-Disubstituted allylic pinacol boronic esters undergo highly selective allylborations of aldehydes to give tetrasubstituted homoallylic alcohols with exceptional levels of anti-Z-selectivity (>20:1). The scope of the reaction includes both acyclic and cyclic allylic boronic esters which lead to acyclic and exocyclic tetrasubstituted homoallylic alcohols. The use of β-borylated allylic boronic esters gave fully substituted alkenes bearing a boronic ester which underwent further cross-coupling enabling a highly modular and stereoselective approach to the synthesis of diaryl tetrasubstituted alkenes. Computational analysis revealed the origin of the remarkable selectivity observed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  15. Revisiting the Reaction Between Diaminomaleonitrile and Aromatic Aldehydes: a Green Chemistry Approach

    Directory of Open Access Journals (Sweden)

    Francisco León

    2006-11-01

    Full Text Available The reaction between diaminomaleonitrile (DAMN and aldehydes and the resulting monoimines are well known. Since the standard reaction conditions involve the use of toxic solvents (typically methanol, we have sought to apply green chemistry principles to this reaction by either using water as the solvent without any catalysts or employing “solvent-free” conditions. The monoimines derived from DAMN are of interest as precursors for obtaining different heterocyclic systems and linear polymers. The methodologies used have significant advantages with regards to cost and environmental considerations.

  16. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, Robert E.; Dolbeare, Frank A.

    1979-01-01

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  17. Liquid-Liquid equilibria of the water-acetic acid-butyl acetate system

    Directory of Open Access Journals (Sweden)

    E. Ince

    2002-04-01

    Full Text Available Experimental liquid-liquid equilibria of the water-acetic acid-butyl acetate system were studied at temperatures of 298.15± 0.20, 303.15± 0.20 and 308.15± 0.20 K. Complete phase diagrams were obtained by determining solubility and tie-line data. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The UNIFAC group contribution method was used to predict the observed ternary liquid-liquid equilibrium (LLE data. It was found that UNIFAC group interaction parameters used for LLE did not provide a good prediction. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  18. A double-blind placebo controlled trial of medroxyprogesterone acetate and cyproterone acetate with seven pedophiles.

    Science.gov (United States)

    Cooper, A J; Sandhu, S; Losztyn, S; Cernovsky, Z

    1992-12-01

    Seven of ten pedophiles in hospital completed a double-blind, placebo-controlled two-dose comparison of medroxyprogesterone acetate and cyproterone acetate. Sequential measures during the 28 week study were: patient self-reports, nurses' observations, phallometry, hormone levels and side-effects. The drugs, which performed equivalently, reduced sexual thoughts and fantasies, the frequency of early morning erections on awakening, the frequency and pleasure of masturbation, and level of sexual frustration. Penile responses were also reduced but to a lesser degree and were more variable. Serum testosterone FSH and LH all declined during drug administration, but by the end of the final placebo phase had essentially returned to (or exceeded) pre-drug values. Our experience suggests that only a minority of pedophiles are likely to accept libido-reducing drugs.

  19. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    Science.gov (United States)

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.

  20. Acetalization of furfural with zeolites under benign reaction conditions

    DEFF Research Database (Denmark)

    Rubio-Caballeroa, Juan Miguel; Shunmugavel, Saravanamurugan; Maireles-Torres, Pedro

    2014-01-01

    Acetalization is a viable method to protect carbonyl functionalities in organic compounds and offers apotential synthetic strategy for synthesizing derived chemicals. In this work, several families of commer-cial zeolites have been employed as solid acid catalysts in the acetalization of furfural...

  1. A review of the animal pharmacology of roxatidine acetate.

    Science.gov (United States)

    Scholtholt, J; Bickel, M; Herling, A W

    1988-01-01

    Roxatidine acetate (TZU 0460/HOE 760) [N-(3-[3-(1-piperidinylmethyl)-phenoxy]-propyl)acetoxyacetamide hydrochloride] is a specific and competitive H2-receptor antagonist with a chemical structure different from those of cimetidine, ranitidine and famotidine. Roxatidine acetate and its main metabolite roxatidine inhibit histamine-induced gastric acid secretion in vitro with a potency greater than that of cimetidine, and in the range of that produced by ranitidine. Gastric acid secretion following stimulation with dibutyryl cyclic adenosine monophosphate remains unaffected by roxatidine acetate. In vivo experiments in rats and dogs confirm these in vitro findings. Thus, in rats roxatidine acetate inhibits gastric acid secretion with similar values following intraduodenal or intraperitoneal injection, indicating excellent absorption of the drug from the gastrointestinal tract. In all studies it was shown that roxatidine acetate was more potent than cimetidine. In rats single or repeated dosing with roxatidine acetate did not influence drug metabolising enzymes in the liver nor did the drug show antiandrogenic activity in long term animal studies. Extensive general pharmacological studies with roxatidine acetate demonstrate the lack of effects on the central nervous system, on gastrointestinal motility, the autonomic nervous system and the cardiovascular and urogenital systems. Studies on the pharmacokinetics and metabolism of roxatidine acetate demonstrate that there is a presystemic deacetylation producing the main metabolite roxatidine, which is responsible for the in vivo effects of the drug.

  2. 21 CFR 522.2477 - Trenbolone acetate and estradiol.

    Science.gov (United States)

    2010-04-01

    ... acetate and 4 mg estradiol, and 1 pellet containing 29 mg tylosin tartrate) per implant dose. (C) 200 mg... containing 29 mg tylosin tartrate) per implant dose. (F) 80 mg trenbolone acetate and 16 mg estradiol (one..., and 1 pellet containing 29 mg tylosin tartrate) per implant dose. (G) 200 milligram (mg)...

  3. Practical synthesis of enantiomerically pure beta2-amino acids via proline-catalyzed diastereoselective aminomethylation of aldehydes.

    Science.gov (United States)

    Chi, Yonggui; English, Emily P; Pomerantz, William C; Horne, W Seth; Joyce, Leo A; Alexander, Lane R; Fleming, William S; Hopkins, Elizabeth A; Gellman, Samuel H

    2007-05-01

    Proline-catalyzed diastereoselective aminomethylation of aldehydes using a chiral iminium ion, generated from a readily prepared precursor, provides alpha-substituted-beta-amino aldehydes with 85:15 to 90:10 dr. The alpha-substituted-beta-amino aldehydes can be reduced to beta-substituted-gamma-amino alcohols, the major diastereomer of which can be isolated via crystallization or column chromatography. The amino alcohols are efficiently transformed to protected beta2-amino acids, which are valuable building blocks for beta-peptides, natural products, and other interesting molecules. Because conditions for the aminomethylation and subsequent reactions are mild, beta2-amino acid derivatives with protected functional groups in the side chain, such as beta2-homoglutamic acid, beta2-homotyrosine, and beta2-homolysine, can be prepared in this way. The synthetic route is short, and purifications are simple; therefore, this method enables the preparation of protected beta2-amino acids in useful quantities.

  4. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  5. Enhanced detection of aldehydes in Extra-Virgin Olive Oil by means of band selective NMR spectroscopy

    Science.gov (United States)

    Dugo, Giacomo; Rotondo, Archimede; Mallamace, Domenico; Cicero, Nicola; Salvo, Andrea; Rotondo, Enrico; Corsaro, Carmelo

    2015-02-01

    High resolution Nuclear Magnetic Resonance (NMR) spectroscopy is a very powerful tool for comprehensive food analyses and especially for Extra-Virgin Olive Oils (EVOOs). We use the NMR technique to study the spectral region of aldehydes (8-10 ppm) for EVOOs coming from the south part of Italy. We perform novel experiments by using mono and bidimensional band selective spin-echo pulse sequences and identify four structural classes of aldehydes in EVOOs. For the first time such species are identified in EVOOs without any chemical treatment; only dilution with CDCl3 is employed. This would allow the discrimination of different EVOOs for the aldehydes content increasing the potentiality of the NMR technique in the screening of metabolites for geographical characterization of EVOOs.

  6. Mitochondrial aldehyde dehydrogenase prevents ROS-induced vascular contraction in angiotensin-II hypertensive mice.

    Science.gov (United States)

    Choi, Hyehun; Tostes, Rita C; Webb, R Clinton

    2011-01-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme that detoxifies aldehydes to carboxylic acids. ALDH2 deficiency is known to increase oxidative stress, which is the imbalance between reactive oxygen species (ROS) generation and antioxidant defense activity. Increased ROS contribute to vascular dysfunction and structural remodeling in hypertension. We hypothesized that ALDH2 plays a protective role to reduce vascular contraction in angiotensin-II (AngII) hypertensive mice. Endothelium-denuded aortic rings from C57BL6 mice, treated with AngII (3.6 μg/kg/min, 14 days), were used to measure isometric force development. Rings treated with daidzin (10 μmol/L), an ALDH2 inhibitor, potentiated contractile responses to phenylephrine (PE) in AngII mice. Tempol (1 mmol/L) and catalase (600 U/mL) attenuated the augmented contractile effect of daidzin. In normotensive mice, contraction to PE in the presence of the daidzin was not different from control, untreated values. AngII aortic rings transfected with ALDH2 recombinant protein decreased contractile responses to PE compared with control. These data suggest that ALDH2 reduces vascular contraction in AngII hypertensive mice. Because tempol and catalase blocked the contractile response of the ALDH2 inhibitor, ROS generation by AngII may be decreased by ALDH2, thereby preventing ROS-induced contraction.

  7. Genome-Wide Identification and Functional Classification of Tomato (Solanum lycopersicum) Aldehyde Dehydrogenase (ALDH) Gene Superfamily.

    Science.gov (United States)

    Jimenez-Lopez, Jose C; Lopez-Valverde, Francisco J; Robles-Bolivar, Paula; Lima-Cabello, Elena; Gachomo, Emma W; Kotchoni, Simeon O

    2016-01-01

    Aldehyde dehydrogenases (ALDHs) is a protein superfamily that catalyzes the oxidation of aldehyde molecules into their corresponding non-toxic carboxylic acids, and responding to different environmental stresses, offering promising genetic approaches for improving plant adaptation. The aim of the current study is the functional analysis for systematic identification of S. lycopersicum ALDH gene superfamily. We performed genome-based ALDH genes identification and functional classification, phylogenetic relationship, structure and catalytic domains analysis, and microarray based gene expression. Twenty nine unique tomato ALDH sequences encoding 11 ALDH families were identified, including a unique member of the family 19 ALDH. Phylogenetic analysis revealed 13 groups, with a conserved relationship among ALDH families. Functional structure analysis of ALDH2 showed a catalytic mechanism involving Cys-Glu couple. However, the analysis of ALDH3 showed no functional gene duplication or potential neo-functionalities. Gene expression analysis reveals that particular ALDH genes might respond to wounding stress increasing the expression as ALDH2B7. Overall, this study reveals the complexity of S. lycopersicum ALDH gene superfamily and offers new insights into the structure-functional features and evolution of ALDH gene families in vascular plants. The functional characterization of ALDHs is valuable and promoting molecular breeding in tomato for the improvement of stress tolerance and signaling.

  8. Chirped Pulse-Fourier Transform Microwave Spectroscopy of Ethyl 3-METHYL-3-PHENYLGLYCIDATE (strawberry Aldehyde)

    Science.gov (United States)

    Shipman, Steven T.; Neill, Justin L.; Muckle, Matt T.; Suenram, Richard D.; Pate, Brooks H.

    2009-06-01

    Strawberry aldehyde (C_{12} O_3 H_{14}), a common artificial flavoring compound, has two non-interconvertible conformational families defined by the relative stereochemistry around its epoxide carbons. In one family, referred to as the trans because the two large substituents (a phenyl ring and an ethyl ester) are on opposite sides of the epoxide ring, these two substituents are unable to interact with each other. However, in the cis family, there is a long-range interaction that is difficult to accurately capture in electronic structure calculations. Three trans and two cis conformations have been assigned by broadband chirped pulse Fourier transform microwave spectroscopy, along with the C-13 isotopomers in natural abundance for one conformer from each of the families. The agreement of the rotational constants, relative dipole moments, and relative energies between theory and experiment is excellent, even at relatively crude levels of theory, for the trans family, but is quite poor for the cis conformers. In addition, due to the reactivity of strawberry aldehyde and the high temperature to which it must be heated to yield a suitable vapor pressure, several decomposition products have been assigned, and more, as of yet unassigned, are likely to be present. This project demonstrates some of the challenges in performing large-molecule rotational spectroscopy.

  9. Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata.

    Science.gov (United States)

    Wang, F W; Wang, M L; Guo, C; Wang, N; Li, X W; Chen, H; Dong, Y Y; Chen, X F; Wang, Z M; Li, H Y

    2016-06-20

    Glycine betaine is an important quaternary ammonium compound that is produced in response to several abiotic stresses in many organisms. The synthesis of glycine betaine requires the catalysis of betaine aldehyde dehydrogenase (BADH), which can convert betaine aldehyde into glycine betaine in plants, especially in halotolerant plants. In this study, we isolated the full-length cDNA of BADH from Suaeda corniculata (ScBADH) using reverse transcriptase-polymerase chain reaction and rapid amplification of cDNA ends. Next, we analyzed the expression profile of ScBADH using real-time PCR. The results showed that ScBADH expression was induced in the roots, stems, and leaves of S. corniculata seedlings under salt and drought stress. Next, ScBADH was overexpressed in Arabidopsis, resulting in the transgenic plants exhibiting enhanced tolerance over wild-type plants under salt and drought stress. We then analyzed the levels of glycine betaine and proline, as well as superoxide dismutase (SOD) activity, during salt stress in WT and transgenic Arabidopsis. The results indicated that overexpression of ScBADH produced more glycine betaine and proline, and increased SOD activity under NaCl treatment. Our results suggest that ScBADH might be a positive regulator in plants during the response to NaCl.

  10. Antifeedant activity of an anthraquinone aldehyde in Galium aparine L. against Spodoptera litura F.

    Science.gov (United States)

    Morimoto, Masanori; Tanimoto, Kumiko; Sakatani, Akiko; Komai, Koichiro

    2002-05-01

    The insect antifeedant anthraquinone aldehyde nordamnacanthal (1,3-dihydroxy-anthraquinone-2-al) was identified in Galium aparine L., and isolated from the root powder of akane (Rubia akane), a member of the Rubiaceae. Structure-activity relationship (SAR) studies using a series of anthraquinone analogues suggested that the aldehyde group on the anthraquinone was more important than the quinone moiety for antifeedant activity against the common cutworm (Spodoptera litura). High levels of nordamnacanthal were found in the seed leaf stage and in callus tissue induced from seedlings of G. aparine, but its concentration decreased with plant development. Since these compounds are natural pigments for dying textiles, we also evaluated the antifeedant activity against the carpet beetle (Attagenus japonicus ), a textile pest was also evaluated. While nordamnacanthal had strong antifeedant activity against the common cutworm, it did not show any antifeedant activity against the carpet beetle. The most effective antifeedant against the carpet beetle was the major constituent in the extract of R. trictorum, lucidin-3-O-primeveroside, a food pigment.

  11. Quantification of Dissolved and Particulate Polyunsaturated Aldehydes in the Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Raffaella Casotti

    2011-03-01

    Full Text Available Polyunsaturated aldehydes (PUA are supposed to play critical roles in chemically-mediated plankton interactions. Laboratory studies suggest that they act as mediators of chemical defense and chemical communication. PUA are oxylipins containing an α,β,γ,δ-unsaturated aldehyde structure element and are mainly found in diatoms. We present here a detailed surface mapping of PUA during a spring bloom of the diatom Skeletonema marinoi in the Adriatic Sea. We monitored dissolved PUA, as well as particulate PUA, which are produced by phytoplankton after cell disintegration. Our survey revealed a patchy distribution of PUA and shows that at most stations S. marinoi is the major contributor to the overall PUA. Our data also suggest that lysis of a diatom bloom can contribute significantly to the dissolved PUA concentrations and that other producers, which are smaller in cell size compared to diatoms, have to be taken into account as well if the total PUA content of marine samples is considered. The analyses of samples collected in deeper water suggests that diatom contribution to PUA decreases with depth, while smaller-sized unidentified organisms take place as dominant contributors to the PUA concentrations.

  12. NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features

    Directory of Open Access Journals (Sweden)

    Ekaterina Yu. Bezsudnova

    2016-01-01

    Full Text Available We present the functional and structural characterization of the first archaeal thermostable NADP-dependent aldehyde dehydrogenase AlDHPyr1147. In vitro, AlDHPyr1147 catalyzes the irreversible oxidation of short aliphatic aldehydes at 60–85°С, and the affinity of AlDHPyr1147 to the NADP+ at 60°С is comparable to that for mesophilic analogues at 25°С. We determined the structures of the apo form of AlDHPyr1147 (3.04 Å resolution, three binary complexes with the coenzyme (1.90, 2.06, and 2.19 Å, and the ternary complex with the coenzyme and isobutyraldehyde as a substrate (2.66 Å. The nicotinamide moiety of the coenzyme is disordered in two binary complexes, while it is ordered in the ternary complex, as well as in the binary complex obtained after additional soaking with the substrate. AlDHPyr1147 structures demonstrate the strengthening of the dimeric contact (as compared with the analogues and the concerted conformational flexibility of catalytic Cys287 and Glu253, as well as Leu254 and the nicotinamide moiety of the coenzyme. A comparison of the active sites of AlDHPyr1147 and dehydrogenases characterized earlier suggests that proton relay systems, which were previously proposed for dehydrogenases of this family, are blocked in AlDHPyr1147, and the proton release in the latter can occur through the substrate channel.

  13. Structure and mechanism of action of the hydroxy aryl aldehyde class of IRE1 endoribonuclease inhibitors

    Science.gov (United States)

    Sanches, Mario; Duffy, Nicole M.; Talukdar, Manisha; Thevakumaran, Nero; Chiovitti, David; Canny, Marella D.; Lee, Kenneth; Kurinov, Igor; Uehling, David; Al-awar, Rima; Poda, Gennadiy; Prakesch, Michael; Wilson, Brian; Tam, Victor; Schweitzer, Colleen; Toro, Andras; Lucas, Julie L.; Vuga, Danka; Lehmann, Lynn; Durocher, Daniel; Zeng, Qingping; Patterson, John B.; Sicheri, Frank

    2014-01-01

    Endoplasmic reticulum (ER) stress activates the unfolded protein response and its dysfunction is linked to multiple diseases. The stress transducer IRE1α is a transmembrane kinase endoribonuclease (RNase) that cleaves mRNA substrates to re-establish ER homeostasis. Aromatic ring systems containing hydroxy-aldehyde moieties, termed hydroxy aryl aldehydes (HAA), selectively inhibit IRE1α RNase and thus represent a novel chemical series for therapeutic development. We solved crystal structures of murine IRE1α in complex with three HAA inhibitors. HAA inhibitors engage a shallow pocket at the RNase active site through pi-stacking interactions with His910 and Phe889, an essential Schiff base with Lys907 and a H-bond with Tyr892. Structure activity studies and mutational analysis of contact residues define the optimal chemical space of inhibitors and validate the inhibitor binding site. These studies lay the foundation for understanding both the biochemical and cellular functions of IRE1α using small molecule inhibitors and suggest new avenues for inhibitor design. PMID:25164867

  14. NMR analysis of aldehydes in Sicilian extra-virgin olive oils by DPFGSE techniques

    Directory of Open Access Journals (Sweden)

    Enrico Rotondo

    2011-03-01

    Full Text Available The DPFGSE NMR sequences open new perspectives in the volatile compounds analysis of food matrices. Many fresh extra-virgin Sicilian olive oils, analyzed by this technique, show two main resonances in the aldehydic spectral region (9–10 ppm, at 9.18 and 9.58 ppm. The former was never reported so far, the latter was sometime highlighted as a minor aldehydic component signal of spectra showing stronger resonances at 9.45 and 9.70 ppm. Thermal treatment at 220°C of extra virgin olive oil samples lead to the complete transformation of the resonances at 9.18 and 9.58 ppm into those at 9.45 and 9.70 ppm in 50 minutes. Analogous transformation takes place place in CDCl3 at rt in several weeks. These results suggest the transformation of relatively unstable compounds into thermodynamically more stable products whose resonances are commonly reported in the literature. Even though these chemical changes involve minimal amount of product, they are of crucial importance to define: i organoleptic extra virgin olive oil properties; ii fraudulent chemical or thermal treatment detection; iii extra virgin oil ageing.

  15. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei [South China Univ. of Technology, Guangzhou (China)

    2014-06-15

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H{sub 2}O{sub 2}) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS{sub 4})) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS{sub 4}). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS{sub 4})/H{sub 2}O{sub 2} was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS{sub 4})/H{sub 2}O{sub 2} system.

  16. Potential polyunsaturated aldehydes in the Strait of Gibraltar under two tidal regimes.

    Science.gov (United States)

    Morillo-García, Soledad; Valcárcel-Pérez, Nerea; Cózar, Andrés; Ortega, María J; Macías, Diego; Ramírez-Romero, Eduardo; García, Carlos M; Echevarría, Fidel; Bartual, Ana

    2014-03-13

    Diatoms, a major component of the large-sized phytoplankton, are able to produce and release polyunsaturated aldehydes after cell disruption (potential PUAs or pPUA). These organisms are dominant in the large phytoplankton fraction (>10 µm) in the Strait of Gibraltar, the only connection between the Mediterranean Sea and the Atlantic Ocean. In this area, the hydrodynamics exerts a strong control on the composition and physiological state of the phytoplankton. This environment offers a great opportunity to analyze and compare the little known distribution of larger sized PUA producers in nature and, moreover, to study how environmental variables could affect the ranges and potential distribution of these compounds. Our results showed that, at both tidal regimes studied (Spring and Neap tides), diatoms in the Strait of Gibraltar are able to produce three aldehydes: Heptadienal, Octadienal and Decadienal, with a significant dominance of Decadienal production. The PUA released by mechanical cell disruption of large-sized collected cells (pPUA) ranged from 0.01 to 12.3 pmol from cells in 1 L, and from 0.1 to 9.8 fmol cell⁻¹. Tidal regime affected the abundance, distribution and the level of physiological stress of diatoms in the Strait. During Spring tides, diatoms were more abundant, usually grouped nearer the coastal basin and showed less physiological stress than during Neap tides. Our results suggest a significant general increase in the pPUA productivity with increasing physiological stress for the cell also significantly associated to low nitrate availability.

  17. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Vincenzo Marrone

    Full Text Available Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30 were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.

  18. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Marrone, Vincenzo; Piscopo, Marina; Romano, Giovanna; Ianora, Adrianna; Palumbo, Anna; Costantini, Maria

    2012-01-01

    Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.

  19. A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes.

    Science.gov (United States)

    Vardi, Assaf; Bidle, Kay D; Kwityn, Clifford; Hirsh, Donald J; Thompson, Stephanie M; Callow, James A; Falkowski, Paul; Bowler, Chris

    2008-06-24

    Diatoms are unicellular phytoplankton accounting for approximately 40% of global marine primary productivity [1], yet the molecular mechanisms underlying their ecological success are largely unexplored. We use a functional-genomics approach in the marine diatom Phaeodactylum tricornutum to characterize a novel protein belonging to the widely conserved YqeH subfamily [2] of GTP-binding proteins thought to play a role in ribosome biogenesis [3], sporulation [4], and nitric oxide (NO) generation [5]. Transgenic diatoms overexpressing this gene, designated PtNOA, displayed higher NO production, reduced growth, impaired photosynthetic efficiency, and a reduced ability to adhere to surfaces. A fused YFP-PtNOA protein was plastid localized, distinguishing it from a mitochondria-localized plant ortholog. PtNOA was upregulated in response to the diatom-derived unsaturated aldehyde 2E,4E/Z-decadienal (DD), a molecule previously shown to regulate intercellular signaling, stress surveillance [6], and defense against grazers [7]. Overexpressing cell lines were hypersensitive to sublethal levels of this aldehyde, manifested by altered expression of superoxide dismutase and metacaspases, key components of stress and death pathways [8, 9]. NOA-like sequences were found in diverse oceanic regions, suggesting that a novel NO-based system operates in diatoms and may be widespread in phytoplankton, providing a biological context for NO in the upper ocean [10].

  20. Organic acids and aldehydes in throughfall and dew in a Japanese pine forest.

    Science.gov (United States)

    Chiwa, Masaaki; Miyake, Takayuki; Kimura, Nobuhito; Sakugawa, Hiroshi

    2008-01-01

    We analyzed low molecular weight organic acids and aldehydes in throughfall under pine forest, and organic acids in dew on chemically inert surfaces and pine needle surfaces at urban- and mountain-facing sites of pine forest in western Japan. Low molecular weight organic acids and aldehydes accounted for less than 5% of the dissolved organic carbon in throughfall at both sites. Formaldehyde at both sites and formate at the mountain-facing site were found at significantly lower concentrations in throughfall than in rainfall, which may be explained by the degradation and/or retention of these components by the pine canopy as the incident precipitation passed through it. The oxalate concentration in throughfall was significantly higher than those in rainfall at both sites, suggesting that oxalate was derived from leaching from the pine foliage. At both sites, organic acid concentrations were higher in dew on the pine needles than in throughfall or dew on chemically inert surfaces. This could be due to the long contact time of dew on pine needles, during which leached substances from pine needles and dry deposits accumulated on their surfaces can dissolve into the small volume of dew. The role of enhanced concentrations of oxalate in an aqueous phase on the plant surfaces (e.g., dew) is discussed in relation to hydroxyl radical formation via the photo-Fenton reaction.

  1. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities.

    Science.gov (United States)

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke

    2014-06-15

    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1-4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Po(lpo)) and aldehyde oxidase-1 (Aldox-1(n1)) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Po(lpo)-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Po(lpo) allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1(n1) phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays.

  2. Genomic organization and expression of the human fatty aldehyde dehydrogenase gene (FALDH)

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, G.R.; Markova, N.G.; Compton, J.G. [National Institutes of Health, Bethesda, MD (United States)] [and others

    1997-01-15

    Mutations in the fatty aldehyde dehydrogenase (FALDH) gene cause Sjoegren-Larsson syndrome (SLS) - a disease characterized by mental retardation, spasticity, and congenital ichthyosis. To facilitate mutation analysis in SLS and to study the pathogenesis of FALDH deficiency, we have determined the structural organization and characterized expression of the FALDH (proposed designation ALDH10) gene. The gene consists of 10 exons spanning about 30.5 kb. A TATA-less promoter is associated with the major transcription initiation site found to be 258 hp upstream of the ATG codon. The G4C-rich sequences surrounding the transcription initiation site encompassed regulatory elements that interacted with proteins in HeLa nuclear extracts and were able to promote transcription in vitro. FALDH is widely expressed as three transcripts of 2, 3.8, and 4.0 kb, which originate from multiple polyadenylation signals in the 3{prime} UTR. An alternatively spliced mRNA was detected that contains an extra exon and encodes an enzyme that is likely to have altered membrane-binding properties. The FALDH gene lies only 50-85 kb from ALDH3, an aldehyde dehydrogenase gene that has homologous sequence and intron/exon structure. 25 refs., 4 figs., 1 tab.

  3. Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sarika, P.R., E-mail: sarikapaithal@gmail.com; Nirmala, Rachel James, E-mail: nirmala@iist.ac.in

    2016-08-01

    Curcumin, a widely studied hydrophobic polyphenol with anticancer potential is loaded in gum arabic aldehyde-gelatin (GA Ald-Gel) nanogels to improve its bioavailability and therapeutic efficacy towards cancer cells. Physicochemical properties of the curcumin loaded GA Ald-Gel nanogels are investigated by different techniques including dynamic light scattering (DLS), NMR spectroscopy and scanning electron microscopy (SEM). These nanogels exhibit hydrodynamic diameter of 452 ± 8 nm with a zeta potential of − 27 mV. The nanogels possess an encapsulation efficiency of 65 ± 3%. Potential of the nanogels for controlled release of curcumin is illustrated by in vitro drug release studies. Hemocompatibility and cytocompatibility of the drug loaded nanogels are evaluated. In vitro cytotoxicity of the bare and curcumin loaded nanogels are analyzed by MTT assay towards MCF-7 cells. The results manifest that curcumin loaded nanogels induce toxicity in MCF-7 cells. Confocal laser scanning microscopy (CLSM) studies indicate in vitro cellular uptake of the nanogels in MCF-7 cells. All these results prove the suitability of the curcumin loaded GA Ald-Gel nanogels for cancer therapy. - Highlights: • Curcumin loaded gum arabic aldehyde-gelatin nanogels were prepared. • Nanogels maintained negative zeta potential after curcumin loading. • Curcumin release is higher at acidic pH compared to neutral pH. • Curcumin loaded GA Ald-Gel nanogels shows toxicity towards MCF-7 cells. • Green fluorescence in MCF-7 cells confirmed the intracellular uptake.

  4. Absorption Reveals and Hydrogen Addition Explains New Interstellar Aldehydes: Propenal and Propanal

    Science.gov (United States)

    Hollis, J. M.; Jewell, P. R.; Lovas, F. J.; Remijan, A.; Mollendal, H.

    2004-01-01

    New interstellar molecules propenal (CH2CHCHO) and propanal (CH3CH2CHO) have been detected largely in absorption toward the star-forming region Sagittarius B2(N) by means of rotational transitions observed with the 100-m Green Bank Telescope (GBT) operating in the range of 18 GHz (lambda approximately 1.7 cm) to 26 GHz (lambda approximately 1.2 cm). The GBT was also used to observe the previously reported interstellar aldehyde propynal (HC2CHO) in Sagittarius B2(N) which is known for large molecules believed to form on interstellar grains. The presence of these three interstellar aldehydes toward Sagittarius B2(N) strongly suggests that simple hydrogen addition on interstellar grains accounts for successively larger molecular species: from propynal to propenal and from propenal to propanal. Energy sources within Sagittarius B2(N) likely permit the hydrogen addition reactions on grain surfaces to proceed. This work demonstrates that successive hydrogen addition is probably an important chemistry route in the formation of a number of complex interstellar molecules. We also searched for but did not detect the three-carbon sugar glyceraldehyde (CH2OHCHOHCHO).

  5. Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism.

    Directory of Open Access Journals (Sweden)

    Nongkran Lumjuan

    Full Text Available Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism.Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald, to phenoxybenzoic acid (PBacid.ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.

  6. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ke [Catalysis Center for Energy Innovation, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 (United States); Yu, Weiting [Chemical Engineering, Columbia University, New York, NY 10027 (United States); Chen, Jingguang G., E-mail: jgchen@columbia.edu [Chemical Engineering, Columbia University, New York, NY 10027 (United States)

    2014-12-30

    Highlights: • Mo{sub 2}C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal). • Mo{sub 2}C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo{sub 2}C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds.

  7. Observations of total peroxy nitrates and aldehydes: measurement interpretation and inference of OH radical concentrations

    Directory of Open Access Journals (Sweden)

    P. A. Cleary

    2007-01-01

    Full Text Available We describe measurements of total peroxy nitrates (ΣPNs, NO2, O3 and several aldehydes at Granite Bay, California, during the Chemistry and Transport of the Sacramento Urban Plume-2001 (CATSUP 2001 campaign, from 19 July–16 September 2001. We observed a strong photochemically driven variation of ΣPNs during the day with the median of 1.2 ppb at noon. Acetaldehyde, pentanal, hexanal and methacrolein had median abundances in the daytime of 1.2 ppb, 0.093 ppb, 0.14 ppb, and 0.27 ppb, respectively. We compare steady state and time dependent calculations of the dependence of ΣPNs on aldehydes, OH, NO and NO2 showing that the steady state calculations are accurate to ±30% between 10:00 and 18:00 h. We use the steady state calculation to investigate the composition of ΣPNs and the concentration of OH at Granite Bay. We find that PN molecules that have never been observed before make up an unreasonably large fraction of the ΣPNs unless we assume that there exists a PAN source that is much larger than the acetaldehyde source. We calculate that OH at the site varied between 2 and 7×106 molecule cm−3 at noon during the 8 weeks of the experiment.

  8. Aldehyde-modified proteins as mediators of early inflammation in atherosclerotic disease.

    Science.gov (United States)

    Antoniak, Derrick T; Duryee, Michael J; Mikuls, Ted R; Thiele, Geoffrey M; Anderson, Daniel R

    2015-12-01

    Inflammation is widely accepted to play a major role in atherosclerosis and other cardiovascular diseases. However, the exact mechanism(s) by which inflammation exerts its pathogenic effect remains poorly understood. A number of oxidatively modified proteins have been associated with cardiovascular disease. Recently, attention has been given to the oxidative compound of malondialdehyde and acetaldehyde, two reactive aldehydes known to covalently bind and adduct macromolecules. These products have been shown to form stable malondialdehyde-acetaldehyde (MAA) adducts that are reactive and induce immune responses. These adducts have been found in inflamed and diseased cardiovascular tissue of patients. Antibodies to these adducted proteins are measurable in the serum of diseased patients. The isotypes involved in the immune response to MAA (i.e., IgM, IgG, and IgA) are predictive of atherosclerotic disease progression and cardiovascular events such as an acute myocardial infarction or coronary artery bypass grafting. Therefore, it is the purpose of this article to review the past and current knowledge of aldehyde-modified proteins and their role in cardiovascular disease.

  9. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    Science.gov (United States)

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.

  10. Mild and efficient strategy for site-selective aldehyde modification of glycosaminoglycans: tailoring hydrogels with tunable release of growth factor.

    Science.gov (United States)

    Wang, Shujiang; Oommen, Oommen P; Yan, Hongji; Varghese, Oommen P

    2013-07-01

    Aldehydes have been used as an important bioorthogonal chemical reporter for conjugation of large polymers and bioactive substances. However, generating aldehyde functionality on carbohydrate-based biopolymers without changing its native chemical structure has always persisted as a challenging task. The common methods employed to achieve this require harsh reaction conditions, which often compromise the structural integrity and biological function of these sensitive molecules. Here we report a mild and simple method to graft aldehydes groups on glycosaminoglycans (GAGs) in a site-selective manner without compromising the structural integrity of the biopolymer. This regio-selective modification was achieved by conjugating the amino-glycerol moiety on the carboxylate residue of the polymer, which allowed selective cleavage of pendent diol groups without interfering with the C2-C3 diol groups of the native glucopyranose residue. Kinetic evaluation of this reaction demonstrated significant differences in second-order reaction rate for periodate oxidation (by four-orders of magnitude) between the two types of vicinal diols. We employed this chemistry to develop aldehyde modifications of sulfated and nonsulfated GAGs such as hyaluronic acid (HA), heparin (HP), and chondroitin sulfate (CS). We further utilized these aldehyde grafted GAGs to tailor extracellular matrix mimetic injectable hydrogels and evaluated its rheological properties. The composition of the hydrogels was also found to modulate release of therapeutic protein such as FGF-2, demonstrating controlled release (60%) for over 14 days. In short, our result clearly demonstrates a versatile strategy to graft aldehyde groups on sensitive biopolymers under mild conditions that could be applied for various bioconjugation and biomedical applications such as drug delivery and regenerative medicine.

  11. Hydrolyses of alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D

    1983-01-01

    Using simultaneous coupling azo dye techniques kidney enzymes active against alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester are characterized. The enzymes show identical distribution in the section. The banding patterns in zymograms are the same after...

  12. Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats.

    Science.gov (United States)

    Yamashita, Hiromi

    2016-07-29

    Fatty acids derived from adipose tissue are oxidized by β-oxidation to form ketone bodies as final products under the starving condition. Previously, we found that free acetic acid was formed concomitantly with the production of ketone bodies in isolated rat liver perfusion, and mitochondrial acetyl CoA hydrolase was appeared to be involved with the acetic acid production. It was revealed that acetic acid was formed as a final product of enhanced β-oxidation of fatty acids and utilized as a fuel in extrahepatic tissues under the starving condition. Under the fed condition, β-oxidation is suppressed and acetic acid production is decreased. When acetic acid was taken daily by obesity-linked type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats under the fed condition, it protected OLETF rats against obesity. Furthermore, acetic acid contributed to protect from the accumulation of lipid in the liver as well as abdominal fat in OLETF rats. Transcripts of lipogenic genes in the liver were decreased, while transcripts of myoglobin and Glut4 genes in abdominal muscles were increased in the acetic acid-administered OLETF rats. It is indicated that exogenously administered acetic acid would have effects on lipid metabolism in both the liver and the skeletal muscles, and have function that works against obesity and obesity-linked type 2 diabetes.

  13. The effect of oral sodium acetate administration on plasma acetate concentration and acid-base state in horses

    Directory of Open Access Journals (Sweden)

    Lindinger Michael I

    2007-12-01

    Full Text Available Abstract Aim Sodium acetate (NaAcetate has received some attention as an alkalinizing agent and possible alternative energy source for the horse, however the effects of oral administration remain largely unknown. The present study used the physicochemical approach to characterize the changes in acid-base status occurring after oral NaAcetate/acetic acid (NAA administration in horses. Methods Jugular venous blood was sampled from 9 exercise-conditioned horses on 2 separate occasions, at rest and for 24 h following a competition exercise test (CET designed to simulate the speed and endurance test of 3-day event. Immediately after the CETs horses were allowed water ad libitum and either: 1 8 L of a hypertonic NaAcetate/acetic acid solution via nasogastric tube followed by a typical hay/grain meal (NAA trial; or 2 a hay/grain meal alone (Control trial. Results Oral NAA resulted in a profound plasma alkalosis marked by decreased plasma [H+] and increased plasma [TCO2] and [HCO3-] compared to Control. The primary contributor to the plasma alkalosis was an increased [SID], as a result of increased plasma [Na+] and decreased plasma [Cl-]. An increased [Atot], due to increased [PP] and a sustained increase in plasma [acetate], contributed a minor acidifying effect. Conclusion It is concluded that oral NaAcetate could be used as both an alkalinizing agent and an alternative energy source in the horse.

  14. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Science.gov (United States)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  15. Hydrolyses of alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D

    1983-01-01

    Using simultaneous coupling azo dye techniques kidney enzymes active against alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester are characterized. The enzymes show identical distribution in the section. The banding patterns in zymograms are the same after...

  16. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    Science.gov (United States)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  17. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    Science.gov (United States)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  18. Fluorescein aldehyde with disulfide functionality as a fluorescence turn-on probe for cysteine and homocysteine in HEPES buffer.

    Science.gov (United States)

    Lee, Heejin; Kim, Hae-Jo

    2013-08-14

    We developed a fluorescein aldehyde probe with disulfide functionality for the fluorescence detection of biologically important thiols. The probe displayed highly selective responses to cysteine (Cys) and homocysteine (Hcy) over glutathione (GSH) due to the rapid ring formation reaction of Cys and Hcy with the aldehyde group of the probe and the concomitant cleavage of the disulfide group followed by subsequent intramolecular cyclization. The fluorescent probe also exhibited a highly sensitive fluorescence turn-on response to Hcy with a detection limit of 2.4 μM Hcy in HEPES buffer.

  19. Fluoride-assisted activation of calcium carbide: a simple method for the ethynylation of aldehydes and ketones.

    Science.gov (United States)

    Hosseini, Abolfazl; Seidel, Daniel; Miska, Andreas; Schreiner, Peter R

    2015-06-01

    The fluoride-assisted ethynylation of ketones and aldehydes is described using commercially available calcium carbide with typically 5 mol % of TBAF·3H2O as the catalyst in DMSO. Activation of calcium carbide by fluoride is thought to generate an acetylide "ate"-complex that readily adds to carbonyl groups. Aliphatic aldehydes and ketones generally provide high yields, whereas aromatic carbonyls afford propargylic alcohols with moderate to good yields. The use of calcium carbide as a safe acetylide ion source along with economic amounts of TBAF·3H2O make this procedure a cheap and operationally simple method for the preparation of propargylic alcohols.

  20. Microsomal metabolism of trenbolone acetate metabolites ...

    Science.gov (United States)

    Trenbolone acetate (TBA) is a synthetic growth promoter widely used in animal agriculture, and its metabolites are suspected endocrine disrupting compounds in agriculturally impacted receiving waters. However, beyond the three widely recognized TBA metabolites (17-trenbolone, 17-trenbolone and trendione), little is known about other metabolites formed in vivo and subsequently discharged into the environment, with some evidence suggesting these unknown metabolites comprise a majority of the TBA mass dosed to the animal. Here, we explored the metabolism of the three known TBA metabolites using rat liver microsome studies. All TBA metabolites are transformed into a complex mixture of monohydroxylated products. Based on product characterization, the majority are more polar than the parent metabolites but maintain their characteristic trienone backbone. A minor degree of interconversion between known metabolites was also observed, as were higher order hydroxylated products with a greater extent of reaction. Notably, the distribution and yield of products were generally comparable across a series of variably induced rat liver microsomes, as well as during additional studies with human and bovine liver microsomes. Bioassays conducted with mixtures of these transformation products suggest that androgen receptor (AR) binding activity is diminished as a result of the microsomal treatment, suggesting that the transformation products are generally less potent than

  1. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2–Acetic Acid Interface

    Science.gov (United States)

    2016-01-01

    The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC. PMID:27110318

  2. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2-Acetic Acid Interface.

    Science.gov (United States)

    Hussain, Hadeel; Torrelles, Xavier; Cabailh, Gregory; Rajput, Parasmani; Lindsay, Robert; Bikondoa, Oier; Tillotson, Marcus; Grau-Crespo, Ricardo; Zegenhagen, Jörg; Thornton, Geoff

    2016-04-14

    The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC.

  3. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    Science.gov (United States)

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation.

  4. Theoretical structural study on the adsorption properties of aliphatic aldehydes on ZnO nanoclusters and graphene-like nanosheets systems

    Science.gov (United States)

    Tayebee, R.; Zamand, N.; Hosseini-nasr, A.; Kargar Razi, M.

    2014-05-01

    The structure optimizations for some aliphatic aldehydes adsorbed on ZnO nanoclusters, and graphene-like nanosheets were carried out using the B3LYP/LanL2DZ calculations and the adsorption energies were calculated. It was considered that adsorption of the examined aldehydes on the ZnO nanoclusters and graphene-like nanosheets occurred through carbonyl oxygens of aldehyde molecules with the surface Zn2+ ions of the central ring. Aldehydes with the general formula of R-COH (R denotes a branched or linear aliphatic chain with maximum of three carbon atoms) were considered. Also, Effects of chain length were investigated on the orientation of the aldehyde molecules with respect to the nanosheet and nanocluster surfaces. Findings revealed that the adsorption energy was decreased with enhancing chain length. However, the most negative adsorption energy was obtained for iso-butyraldehyde, as a branched aldehyde. Interaction of the aldehyde molecules with the surfaces of nanosheets were analyzed by means of DOS analysis and Bader's method. We hope the obtained results be helpful in identifying the mechanism of cyclotrimerization of aliphatic aldehydes on the surface of zinc oxide nanoparticles.

  5. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS.

    Science.gov (United States)

    Poli, Diana; Goldoni, Matteo; Corradi, Massimo; Acampa, Olga; Carbognani, Paolo; Internullo, Eveline; Casalini, Angelo; Mutti, Antonio

    2010-10-01

    A number of volatile organic compounds (VOCs) have been identified and used in preliminary clinical studies of the early diagnosis of lung cancer. The aim of this study was to evaluate the potential of aldehydes (known biomarkers of oxidative stress) in the diagnosis of patients with non-small cell lung cancer (NSCLC). We used an on-fiber-derivatisation SPME sampling technique coupled with GC/MS analysis to measure straight aldehydes C3-C9 in exhaled breath. Linearity was established over two orders of magnitude (range: 3.3-333.3×10(-12) M); the LOD and LOQ of all the aldehydes were respectively 1×10(-12) M and 3×10(-12) M. Accuracy was within 93% and precision calculated as % RSD was 7.2-15.1%. Aldehyde stability in a Bio-VOC(®) tube stored at +4°C was 10-17 h, but this became >10 days using a specific fiber storage device. Finally, exhaled aldehydes were measured in 38 asymptomatic non-smokers (controls) and 40 NSCLC patients. The levels of all of the aldehydes were increased in the NSCLC patients without any significant effect of smoking habits and little effect of age. The good discriminant power of the aldehyde pattern (90%) was confirmed by multivariate analysis. These results show that straight aldehydes may be promising biomarkers associated with NSCLC, and increase the sensitivity and specificity of previously identified VOC patterns.

  6. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne a,ß-unsaturated aldehydes.

    NARCIS (Netherlands)

    Kiwamoto, R.; Spenkelink, A.; Rietjens, I.M.C.M.; Punt, A.

    2015-01-01

    Acyclic a,ß-unsaturated aldehydes present in food raise a concern because the a,ß-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present s

  7. Effect of Magnesium Acetate on the Antimold Activity of Lactobacillus.

    Science.gov (United States)

    Kycia, Katarzyna; Bzducha-Wróbel, Anna; Kraśniewska, Karolina; Chlebowska-Śmigiel, Anna; Gniewosz, Małgorzata

    2017-01-01

    The antimold activity of lactic acid bacteria (LAB) is used in food biopreservation. The aim of this study was to evaluate the effect of magnesium acetate added to de Man Rogosa Sharpe (MRS) medium on the antimold activity of three LAB strains ( Lactobacillus plantarum , Lactobacillus brevis , and Lactobacillus fermentum ) against molds contaminating food ( Aspergillus oryzae , Aspergillus niger , Penicillium chrysogenum , Fusarium avenaceum , and Rhizopus arrhizus ) and their ability to produce organic acids (acetic acid, lactic acid, and phenyllactic acid). The antimold activity of LAB strains was evaluated using the overlay method, and the concentration of the organic acids was determined with the gas chromatography technique. Changes in viable cell counts and the pH of LAB culture also were monitored over a 48-h period. The results show that the growth inhibition of all the molds (except R. arrhizus ) was higher in LAB strain cultures on MRS with magnesium acetate agar than on MRS agar, and inhibition increased over the 48 h. Magnesium acetate added to MRS broth stimulated the production of acetic acid by all LAB strains in the first 8 h and slightly stimulated the production of lactic acid by L. plantarum during the first 24 h. No adverse effect of magnesium acetate on growth of LAB strains was noted. The results confirm that magnesium acetate enhances the antimold activity of LAB strains.

  8. SAGA complex components and acetate repression in Aspergillus nidulans.

    Science.gov (United States)

    Georgakopoulos, Paraskevi; Lockington, Robin A; Kelly, Joan M

    2012-11-01

    Alongside the well-established carbon catabolite repression by glucose and other sugars, acetate causes repression in Aspergillus nidulans. Mutations in creA, encoding the transcriptional repressor involved in glucose repression, also affect acetate repression, but mutations in creB or creC, encoding components of a deubiquitination system, do not. To understand the effects of acetate, we used a mutational screen that was similar to screens that uncovered mutations in creA, creB, and creC, except that glucose was replaced by acetate to identify mutations that were affected for repression by acetate but not by glucose. We uncovered mutations in acdX, homologous to the yeast SAGA component gene SPT8, which in growth tests showed derepression for acetate repression but not for glucose repression. We also made mutations in sptC, homologous to the yeast SAGA component gene SPT3, which showed a similar phenotype. We found that acetate repression is complex, and analysis of facA mutations (lacking acetyl CoA synthetase) indicates that acetate metabolism is required for repression of some systems (proline metabolism) but not for others (acetamide metabolism). Although plate tests indicated that acdX- and sptC-null mutations led to derepressed alcohol dehydrogenase activity, reverse-transcription quantitative real-time polymerase chain reaction showed no derepression of alcA or aldA but rather elevated induced levels. Our results indicate that acetate repression is due to repression via CreA together with metabolic changes rather than due to an independent regulatory control mechanism.

  9. Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: Identification and characterization

    NARCIS (Netherlands)

    K.W.A. Grinsven; S. Rosnowsky (Silke); S.W.H. van Weelden (Susanne); S. Pütz (Simone); M. van der Giezen (Mark); W. Martin (William); J.J. van Hellemond (Jaap); A.G.M. Tielens (Aloysius); K. Henze (Katrin)

    2008-01-01

    textabstractAcetate:succinate CoA-transferases (ASCT) are acetate-producing enzymes in hydrogenosomes, anaerobically functioning mitochondria and in the aerobically functioning mitochondria of trypanosomatids. Although acetate is produced in the hydrogenosomes of a number of anaerobic microbial

  10. Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes.

    Science.gov (United States)

    Ribalet, François; Berges, John A; Ianora, Adrianna; Casotti, Raffaella

    2007-12-15

    Several marine diatoms produce polyunsaturated aldehydes (PUAs) that have been shown to be toxic to a wide variety of model organisms, from bacteria to invertebrates. However, very little information is available on their effect on phytoplankton. Here, we expand previous studies to six species of marine phytoplankton, belonging to different taxonomic groups that are well represented in marine plankton. The effect of three PUAs, 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, was assessed on growth, cell membrane permeability, flow cytometric properties and morphology. A concentration-dependent reduction in the growth rate was observed for all cultures exposed to PUAs with longer-chained aldehydes having stronger effects on growth than shorter-chained aldehydes. Clear differences were observed among the different species. The prymnesiophyte Isochrysis galbana was the most sensitive species to PUA exposure with a lower threshold for an observed effect triggered by mean concentrations of 0.10 micromol L(-1) for 2E,4E-decadienal, 1.86 micromol L(-1) for 2E,4E-octadienal and 3.06 micromol L(-1) for 2E,4E-heptadienal, and a 50% growth inhibition (EC(50)) with respect to the control at 0.99, 2.25 and 5.90 micromol L(-1) for the three PUAs, respectively. Alternatively, the chlorophyte Tetraselmis suecica and the diatom Skeletonema marinoi (formerly S. costatum) were the most resistant species with 50% growth inhibition occurring at concentrations at least two to three times higher than I. galbana. In all species, the three PUAs caused changes in flow cytometric measures of cell size and cell granulosity and increased membrane permeability, assessed using the viability stain SYTOX Green. For example, after 48 h 51.6+/-2.6% of I. galbana cells and 15.0+/-1.8% of S. marinoi cells were not viable. Chromatin fragmentation was observed in the dinoflagellate Amphidinium carterae while clear DNA degradation was observed in the chlorophyte Dunaliella tertiolecta

  11. Ethinylestradiol/Chlormadinone acetate: dermatological benefits.

    Science.gov (United States)

    Guerra-Tapia, Aurora; Sancho Pérez, Blanca

    2011-09-06

    Acne vulgaris, hirsutism, seborrhea and female pattern hair loss (FPHL) are common disorders of the pilosebaceous unit (PSU). In some women with hyperandrogenemia, an excess of androgens at the PSU can lead to the development of these dermatological manifestations. These manifestations can cause many psychiatric and psychological implications, such as social fears and anxiety, and can adversely affect quality of life. High androgen levels at the PSU as a possible underlying cause of acne vulgaris, hirsutism, seborrhea and FPHL supports the rationale for using combined oral contraceptives for the management of these conditions in women. The purpose of this review is to describe these dermatological manifestations of the PSU and the management of these conditions through the use of the oral contraceptive ethinylestradiol/chlormadinone acetate (EE/CMA). EE/CMA 0.03/2 mg is a combined monophasic contraceptive pill with anti-androgenic properties. It is approved in Europe for contraception and has been investigated in phase III trials for the treatment of acne. EE/CMA was better than placebo and similar to another low-dose oral contraceptive (ethinylestradiol/levonorgestrel) in improving symptoms of acne in two phase III randomized controlled trials in patients with mild to moderate papulopustular acne. In addition, in trials investigating the contraceptive efficacy of EE/CMA, limited data suggest that there were also improvements in hirsutism, FPHL and seborrhea in small subgroups of patients. EE/CMA has a good safety profile. The most commonly reported adverse events are breast tenderness/pain, headache/migraine and nausea. Evidence in the literature indicates that the use of EE/CMA for the treatment of dermatological disorders under the control of androgens may be a valid treatment option. Further investigation is warranted.

  12. Leuprolide acetate suppresses pedophilic urges and arousability.

    Science.gov (United States)

    Schober, Justine M; Kuhn, Phyllis J; Kovacs, Paul G; Earle, James H; Byrne, Peter M; Fries, Ruth A

    2005-12-01

    Cognitive-behavioral psychotherapy was compared with cognitive-behavioral psychotherapy augmented by leuprolide acetate (LA) for suppression of pedophilic behavior. Five male pedophiles (M age, 50 years; range, 36-58) were administered LA by Depo injection for 12 months, followed by saline placebo for 12 months. Testosterone levels, sexual interest preference by visual reaction time (Abel Assessment), penile tumescence (Monarch Penile Plethysmography, PPG), as well as strong sexual urges toward children and masturbatory frequency involving thoughts of children (polygraph), were measured every 3 months. On LA, testosterone decreased to castrate levels. Penile tumescence was significantly suppressed compared with baseline, but sufficient response remained to detect pedophilic interest. Pedophilic interest was also detected by visual reaction times. When asked about having pedophilic urges and masturbating to thoughts of children, all subjects self-reported a decrease. Polygraph responses indicated subjects were not deceptive. On placebo, testosterone and physiologic arousal eventually rose to baseline. As noted by polygraph, at baseline and on placebo, subjects were deceptive regarding increased pedophilic urges and masturbatory frequency. Interest preference, as measured by Abel Assessment and Monarch PPG, was generally unchanged throughout the study. Cognitive-behavioral psychotherapy augmented with LA significantly reduced pedophilic fantasies, urges, and masturbation; however, pedophilic interest did not change during 1 year of therapy. Deceptive responses by polygraph suggested that self-report was unreliable. Follow-up utilizing objective measures is essential for monitoring efficacy of treatment in pedophilia. Our study supports the premise that suppression of pedophilic behavior is possible. LA may augment cognitive-behavioral psychotherapy and help break the sequence leading to a re-offense.

  13. Inhibition of ice growth and recrystallization by zirconium acetate and zirconium acetate hydroxide.

    Science.gov (United States)

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications.

  14. Inhibition of ice growth and recrystallization by zirconium acetate and zirconium acetate hydroxide.

    Directory of Open Access Journals (Sweden)

    Ortal Mizrahy

    Full Text Available The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs, present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH, on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications.

  15. Disproportionation Kinetics of Hypoiodous Acid As Catalyzed and Suppressed by Acetic Acid-Acetate Buffer.

    Science.gov (United States)

    Urbansky, Edward T.; Cooper, Brian T.; Margerum, Dale W.

    1997-03-26

    The kinetics of the disproportionation of hypoiodous acid to give iodine and iodate ion (5HOI right harpoon over left harpoon 2I(2) + IO(3)(-) + H(+) + 2H(2)O) are investigated in aqueous acetic acid-sodium acetate buffer. The rate of iodine formation is followed photometrically at -log [H(+)] = 3.50, 4.00, 4.50, and 5.00, &mgr; = 0.50 M (NaClO(4)), and 25.0 degrees C. Both catalytic and inhibitory buffer effects are observed. The first process is proposed to be a disproportionation of iodine(I) to give HOIO and I(-); the iodide then reacts with HOI to give I(2). The reactive species (acetato-O)iodine(I), CH(3)CO(2)I, is postulated to increase the rate by assisting in the formation of I(2)O, a steady-state species that hydrolyzes to give HOIO and I(2). Inhibition is postulated to result from the formation of the stable ion bis(acetato-O)iodate(I), (CH(3)CO(2))(2)I(-), as buffer concentration is increased. This species is observed spectrophotometrically with a UV absorption shoulder (lambda = 266 nm; epsilon = 530 M(-)(1) cm(-)(1)). The second process is proposed to be a disproportionation of HOIO to give IO(3)(-) and I(2). Above 1 M total buffer, the reaction becomes reversible with less than 90% I(2) formation. Rate and equilibrium constants are resolved and reported for the proposed mechanism.

  16. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    Science.gov (United States)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  17. Characterization of zinc–nickel alloy electrodeposits obtained from sulphamate bath containing substituted aldehydes

    Indian Academy of Sciences (India)

    Visalakshi Ravindran; V S Muralidharan

    2006-06-01

    Zinc alloy offers superior sacrificial protection to steel as the alloy dissolves more slowly than pure zinc. The degree of protection and the rate of dissolution depend on the alloying metal and its composition. Zinc-nickel alloy may also serve as at less toxic substitute for cadmium. In this paper the physico-chemical characterization of zinc-nickel electrodeposits obtained from sulphamate bath containing substituted aldehydes was carried out using hardness testing, X-ray diffraction, and corrosion resistance measurements. The corrosion behaviour of these samples in a 3.5% NaCl solution was examined. The decrease in corr and high charge transfer resistance indicated the improved corrosion resistance of these deposits.

  18. Watermelon (Citrullus lanatus) hydroperoxide lyase greatly increases C6 aldehyde formation in transgenic leaves.

    Science.gov (United States)

    Fukushige, Hirotada; Hildebrand, David F

    2005-03-23

    Fatty acid hydroperoxide lyase (HL) is the key enzyme for the production of the "green note"compounds, leaf aldehyde [(2E)-hexenal] and leaf alcohol [(3Z)-hexenol], in plant tissues. A cDNA encoding HL was cloned from leaves of watermelon (Citrullus lanatus) and expressed in Nicotiana tabacum. The enzyme is 3 times more active with 13-hydroperoxylinolenic acid than with 13-hydroperoxylinoleic acid. The activity against 9-hydroperoxides of polyunsaturated fatty acids is minimal. Enzyme activity of the watermelon HL in the transgenic leaves was approximately 50 times higher than endogenous HL activity in the wild-type N. tabacum plants. When compared with Arabidopsis HL also expressed in N. tabacum, the highest HL activity is 10 times higher in watermelon HL overexpressing leaves than in Arabidopsis HL overexpressers.

  19. Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera).

    Science.gov (United States)

    Chen, Yao; Shen, Bin; Zhang, Junpeng; Jones, Gareth; He, Guimei

    2013-02-01

    Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.

  20. Expression of betaine aldehyde dehydrogenase gene and salinity tolerance in rice transgenic plants

    Institute of Scientific and Technical Information of China (English)

    郭岩; 张莉; 肖岗; 曹守云; 谷冬梅; 田文忠; 陈受宜

    1997-01-01

    Betaine as one of osmolytes plays an important role in osmoregulation of most high plants. Betaine aldehyde dehydrogenase C BADH) is the second enzyme involved in betaine biosynthesis. The BADH gene from a halophite, Atriplex hortensis, was transformed into rice cultivars by bombarment method. Totally 192 transgenic rice plants were obtained and most of them had higher salt tolerance than controls. Among transgenic plants transplanted in the saline pool containing 0.5% NaCl in a greenhouse, 22 survived, 13 of which set seeds, and the frequency of seed setting was very low, only 10% . But the controls could not grow under the same condition. The results of BADH ac-tivity assay and Northern blot showed that the BADH gene was integrated into chromosomes of transgenic plants and expressed.

  1. New Tailor-Made Alkyl-Aldehyde Bifunctional Supports for Lipase Immobilization

    Directory of Open Access Journals (Sweden)

    Robson Carlos Alnoch

    2016-11-01

    Full Text Available Immobilized and stabilized lipases are important biocatalytic tools. In this paper, different tailor-made bifunctional supports were prepared for the immobilization of a new metagenomic lipase (LipC12. The new supports contained hydrophobic groups (different alkyl groups to promote interfacial adsorption of the lipase and aldehyde groups to react covalently with the amino groups of side chains of the adsorbed lipase. The best catalyst was 3.5-fold more active and 5000-fold more stable than the soluble enzyme. It was successfully used in the regioselective deacetylation of peracetylated d-glucal. The PEGylated immobilized lipase showed high regioselectivity, producing high yields of the C-3 monodeacetylated product at pH 5.0 and 4 °C.

  2. Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

    Science.gov (United States)

    Ahadome, Sarah D.; Abraham, David J.; Rayapureddi, Suryanarayana; Saw, Valerie P.; Saban, Daniel R.; Calder, Virginia L.; Norman, Jill T.; Ponticos, Markella; Daniels, Julie T.; Dart, John K.

    2016-01-01

    Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy. PMID:27699226

  3. Molecular mechanism of null expression of aldehyde dehydrogenase-1 in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Yoshida, Akira [Institute of the City of Hope, Duarte, CA (United States); Yanagawa, Yuchio [Tokohu Univ., Sendai (Japan)

    1996-04-01

    In isozyme systems in general, the pattern of tissue-dependent expression of a given type of isozyme is uniform in various mammalian species. In contrast, a major cytosolic aldehyde dehydrogenase isozyme, termed ALDH1, which is strongly expressed in the livers of humans and other mammals, is hardly detectable in rat liver. Thirteen nucleotides existing in the 5{prime}-promoter region of human, marmoset, and mouse ALDH1 genes are absent in the four rat strains examined. When the 13 nucleotides were deleted from a chloramphenicol acetyltransferase expression construct, which contained the 5{prime} promoter region of the human ALDH1 gene and a low-background promoterless chloramphenicol acetyltransferase expression vector, the expression activity was severely diminished in human hepatic cells. Thus, deletion of the 13 nucleotides in the promoter region of the gene can account for the lack of ALDH1 expression in rat liver. 16 refs., 3 figs.

  4. Scope and mechanism of the highly stereoselective metal-mediated domino aldol reactions of enolates with aldehydes

    Science.gov (United States)

    Engelen, Bernward; Panthöfer, Martin; Deiseroth, Hans-Jörg; Schlirf, Jens

    2016-01-01

    Summary A one-pot transformation, which involves the reaction of ketones with aldehydes in the presence of metal halides to furnish tetrahydro-2H-pyran-2,4-diols in a highly diastereoselective manner, is investigated thoroughly by experiments and computations. The reaction was also successfully implemented on a flow micro reactor system. PMID:27340472

  5. YqhD. A broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, Laura R. [Iowa State Univ., Ames, IA (United States). Dept. of Chemical and Biological Engineering

    2011-01-15

    The Escherichia coli NADPH-dependent aldehyde reductase YqhD has contributed to a variety of metabolic engineering projects for production of biorenewable fuels and chemicals. As a scavenger of toxic aldehydes produced by lipid peroxidation, YqhD has reductase activity for a broad range of short-chain aldehydes, including butyraldehyde, glyceraldehyde, malondialdehyde, isobutyraldehyde, methylglyoxal, propanealdehyde, acrolein, furfural, glyoxal, 3-hydroxypropionaldehyde, glycolaldehyde, acetaldehyde, and acetol. This reductase activity has proven useful for the production of biorenewable fuels and chemicals, such as isobutanol and 1,3- and 1,2-propanediol; additional capability exists for production of 1-butanol, 1-propanol, and allyl alcohol. A drawback of this reductase activity is the diversion of valuable NADPH away from biosynthesis. This YqhD-mediated NADPH depletion provides sufficient burden to contribute to growth inhibition by furfural and 5-hydroxymethyl furfural, inhibitory contaminants of biomass hydrolysate. The structure of YqhD has been characterized, with identification of a Zn atom in the active site. Directed engineering efforts have improved utilization of 3-hydroxypropionaldehyde and NADPH. Most recently, two independent projects have demonstrated regulation of yqhD by YqhC, where YqhC appears to function as an aldehyde sensor. (orig.)

  6. Aryl Ketone Synthesis via Tandem Orthoplatinated Triarylphosphite-Catalyzed Addition Reactions of Arylboronic Acids with Aldehydes Followed by Oxidation

    Science.gov (United States)

    Liao, Yuan-Xi; Hu, Qiao-Sheng

    2010-01-01

    Tandem orthoplatinated triarylphosphite-catalyzed addition reactions of arylboronic acids with aldehydes followed by oxidation to yield aryl ketones is described. 3-Pentanone was identified as a suitable oxidant for the tandem aryl ketone formation reaction. By using microwave energy, aryl ketones were obtained in high yields with the catalyst loading as low as 0.01%. PMID:20849092

  7. Oxidation of N-alkyl and N-aryl azaheterocycles by free and immobilized rabbit liver aldehyde oxidase

    NARCIS (Netherlands)

    Angelino, S.A.G.F.

    1984-01-01

    Aldehyde oxidase isolated from rabbit liver is studied in this thesis with regard to its application in organic synthesis. The enzyme has a broad substrate specificity towards azaheterocycles and therefore offers great potential for profitable use.

    The oxidation of 1-alkyl(aryl)-3

  8. A note on the Noyori model for chiral amplification in the aminoalcohol-catalyzed reaction of aldehydes with dialkylzinc

    Directory of Open Access Journals (Sweden)

    IVAN GUTMAN

    1999-11-01

    Full Text Available The Noyori model of chiral amplification in the alkylation of aldehydes by means of dialkylzinc, catalyzed by chiral aminoalcohols, is further elaborated. A direct, but approximate, relation is obtained between the enantiomeric excess of the catalyst added and the enantiomeric excess of the product.

  9. Ru/Me-BIPAM-Catalyzed Asymmetric Addition of Arylboronic Acids to Aliphatic Aldehydes and α-Ketoesters

    Directory of Open Access Journals (Sweden)

    Momoko Watanabe

    2011-06-01

    Full Text Available A ruthenium-catalyzed asymmetric arylation of aliphatic aldehydes and α-ketoesters with arylboronic acids has been developed, giving chiral alkyl(arylmethanols and α-hydroxy esters in good yields. The use of a chiral bidentate phosphoramidite ligand (Me-BIPAM achieved excellent enantioselectivities.

  10. Copper/TEMPO catalysed synthesis of nitriles from aldehydes or alcohols using aqueous ammonia and with air as the oxidant.

    Science.gov (United States)

    Dornan, Laura M; Cao, Qun; Flanagan, James C A; Crawford, James J; Cook, Matthew J; Muldoon, Mark J

    2013-07-11

    Copper/TEMPO catalysts can be used to prepare nitriles from aldehydes or alcohols using aqueous ammonia. Readily accessible methods were developed that enable standard glassware to be used with air as the source of O2. It was further shown that, at higher temperatures in a pressurised reactor under limiting oxygen conditions (8% O2), catalyst loadings of 1 mol% could be employed.

  11. A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction

    Science.gov (United States)

    Wu, Yu; Yuan, Liu; Sheng, Nai-an; Gu, Zi-qi; Feng, Wen-hao; Yin, Hai-yue; Morsi, Yosry; Mo, Xiu-mei

    2017-09-01

    Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (ASA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff's base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.

  12. Oxidation of N-alkyl and N-aryl azaheterocycles by free and immobilized rabbit liver aldehyde oxidase

    NARCIS (Netherlands)

    Angelino, S.A.G.F.

    1984-01-01

    Aldehyde oxidase isolated from rabbit liver is studied in this thesis with regard to its application in organic synthesis. The enzyme has a broad substrate specificity towards azaheterocycles and therefore offers great potential for profitable use.

    The oxidation of

  13. Removal of Low-Molecular Weight Aldehydes by Selected Houseplants under Different Light Intensities and CO2 Concentrations

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-11-01

    Full Text Available The removal of five low-molecular weight aldehydes by two houseplants (Schefflera octophylla (Lour. Harms and Chamaedorea elegans were investigated in a laboratory simulation environment with short-term exposure to different low light intensities and CO2 concentrations. Under normal circumstances, the C1–C5 aldehyde removal rates of Schefflera octophylla (Lour. Harms and Chamaedorea elegans (Lour. Harms ranged from 0.311 μmol/m2/h for valeraldehyde to 0.677 μmol/m2/h for formaldehyde, and 0.526 μmol/m2/h for propionaldehyde to 1.440 μmol/m2/h for formaldehyde, respectively. However, when the light intensities varied from 0 to 600 lx, a significant correlation between the aldehyde removal rate and the light intensity was found. Moreover, the CO2 experiments showed that the total aldehyde removal rates of Schefflera octophylla (Lour. Harms and Chamaedorea elegans (Lour. Harms decreased 32.0% and 43.2%, respectively, with increasing CO2 concentrations from 350 ppmv to 1400 ppmv. This might be explained by the fact that the excessive CO2 concentration decreased the stomatal conductance which limited the carbonyl uptake from the stomata.

  14. Antifungal agents. 5. Chemical modification of antibiotics from Polyangium cellulosum var. fulvum. Alcohol, ketone, aldehyde, and oxime analogues of ambruticin.

    Science.gov (United States)

    Connor, D T; von Strandtmann, M

    1979-09-01

    Alcohol, ketone, aldehyde, and oxime analogues of ambruticin (1) were prepared. The analogues were tested against Histoplasma capsulatum, Microsporum fulvum, Candida albicans, and Streptococcus pyogenes. Structure-activity relationships are described. Increasing the bulk of substituent at C1 and C5 reduces antifungal activity.

  15. Oxidation of N-alkyl and N-aryl azaheterocycles by free and immobilized rabbit liver aldehyde oxidase

    NARCIS (Netherlands)

    Angelino, S.A.G.F.

    1984-01-01

    Aldehyde oxidase isolated from rabbit liver is studied in this thesis with regard to its application in organic synthesis. The enzyme has a broad substrate specificity towards azaheterocycles and therefore offers great potential for profitable use.The oxidation of 1-alkyl(aryl)-3-aminocarbonylpyridi

  16. Ionic liquids as recyclable and separable reaction media in Rh-catalyzed decarbonylation of aromatic and aliphatic aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Riisager, Anders

    2014-01-01

    Ionic liquids (ILs) have been applied as recyclable reaction media in the decarbonylation of aldehydes in the presence of a rhodium-phosphine complex catalyst. The performance of several new catalytic systems based on imidazolium-based ILs and [Rh(dppp)2]Cl (dppp: 1,3-diphenylphosphinopropane) were...

  17. The health- and addictive effectes due to exposure to aldehydes of cigarette smoke. Part 1; Acetaldehyde, Formaldehyde, Acrolein and Propionaldehyde

    NARCIS (Netherlands)

    Andel I van; Schenk E; Rambali B; Wolterink G; Werken G van de; Stevenson H; Aerts LAGJM van; Vleeming W; LEO; LGM; LOC; CRV

    2003-01-01

    In the desk study presented here, health effects and possible addictive effects of aldehyde exposure due to cigarette smoking are discussed. In the light of currently available literature the health effects of exposure to acetaldehyde, formaldehyde, acrolein and propionaldehyde were assessed. All al

  18. Enantioselective addition of diethylzinc to aryl aldehydes catalyzed by 1,2,3,4-tetrahydroisoquinoline β-amino alcohol

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A highly effective,new chiral 1,2,3,4-tetrahydroisoquinoline catalyst 1 for the diethylzinc addition to aryl aldehydes has been investigated.Using 10 mol%of this chiral catalyst,secondary alcohols can be obtained in up to 87%yield and 99.5%ee under mild conditions.

  19. QSTR with extended topochemical atom (ETA) indices. 14. QSAR modeling of toxicity of aromatic aldehydes to Tetrahymena pyriformis

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Kunal, E-mail: kunalroy_in@yahoo.com [Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032 (India); Das, Rudra Narayan [Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032 (India)

    2010-11-15

    Aldehydes are a toxic class of chemicals causing severe health hazards. In this background, quantitative structure-toxicity relationship (QSTR) models have been developed in the present study using Extended Topochemical Atom (ETA) indices for a large group of 77 aromatic aldehydes for their acute toxicity against the protozoan ciliate Tetrahymena pyriformis. The ETA models have been compared with those developed using various non-ETA topological indices. Attempt was also made to include the n-octanol/water partition coefficient (log K{sub o/w}) as an additional descriptor considering the importance of hydrophobicity in toxicity prediction. Thirty different models were developed using different chemometric tools. All the models have been validated using internal validation and external validation techniques. The statistical quality of the ETA models was found to be comparable to that of the non-ETA models. The ETA models have shown the important effects of steric bulk, lipophilicity, presence of electronegative atom containing substituents and functionality of the aldehydic oxygen to the toxicity of the aldehydes. The best ETA model (without using log K{sub o/w}) shows encouraging statistical quality (Q{sub int}{sup 2}=0.709,Q{sub ext}{sup 2}=0.744). It is interesting to note that some of the topological models reported here are better in statistical quality than previously reported models using quantum chemical descriptors.

  20. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tomofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135 (Japan); Ichinose, Hirofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Wariishi, Hiroyuki, E-mail: hirowari@agr.kyushu-u.ac.jp [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  1. An aldehyde group-based P-acid probe for selective fluorescence turn-on sensing of cysteine and homocysteine.

    Science.gov (United States)

    Yang, Chunlei; Wang, Xiu; Shen, Lei; Deng, Wenping; Liu, Haiyun; Ge, Shenguang; Yan, Mei; Song, Xianrang

    2016-06-15

    A highly sensitive and selective turn on fluorescent probe P-acid-aldehyde (P-CHO) is developed for the determination of cysteine (Cys) and homocysteine (Hcy). The probe is designed and synthesized by incorporating the specific functional group aldehyde group for thiols into a stable π-conjugated material 4,4'-(2,5-dimethoxy-1,4-phenylene) bis(ethyne-2,1-diyl) dibenzoic acid (P-acid). The probe fluorescence is quenched through donor photoinduced electron transfer (d-PET) between the fluorophore (P-acid) and the recognition group (aldehyde group). In the presence of thiols, Cys and Hcy can selectively react with aldehyde group of the probe because the inhibition of d-PET between fluorophore and recognition group. Therefore, a turn-on fluorescent sensor was established for the fluorescence recovery. Under the optimized conditions, the fluorescence response of probe is directly proportional to the concentration of Cys in the range of 4-95 NM L(-1), with a detection limit 3.0 nM. In addition, the sensing system exhibits good selectively toward Cys and Hcy in the presence of other amino acids. It has been successfully applied for bioimaging of Cys and Hcy in living cells with low cell toxicity.

  2. InCl3.4H2O Catalyzed Aldol Condensation of Cycloalkanones with Aromatic Aldehydes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    InCl3·4H2O catalyzes the cross-aldol condensation of cycloalkanones with aromatic aldehydes in sealed tube under solvent free condition to afford an efficient method for the synthesis of α, α-bis(substituted)benzylidenecycloalkanones.

  3. Ru/Me-BIPAM-catalyzed asymmetric addition of arylboronic acids to aliphatic aldehydes and α-ketoesters.

    Science.gov (United States)

    Yamamoto, Yasunori; Shirai, Tomohiko; Watanabe, Momoko; Kurihara, Kazunori; Miyaura, Norio

    2011-06-17

    A ruthenium-catalyzed asymmetric arylation of aliphatic aldehydes and α-ketoesters with arylboronic acids has been developed, giving chiral alkyl(aryl)methanols and α-hydroxy esters in good yields. The use of a chiral bidentate phosphoramidite ligand (Me-BIPAM) achieved excellent enantioselectivities.

  4. Regioselective Propargylation of Aldehydes with Propargyl Bromide Mediated by Sn-In in Aqueous Media under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Cheng Zhi GU; Qian Rong LI; Hao YIN

    2005-01-01

    Tin-indium were employed in the propargylations of various aldehydes with propargyl bromide in the presence of SnCl2 and C6 H5(CH3)3NBr under microwave irradiation to afford the corresponding homopropargyl alcohols exclusively in high yields. All the reactions were completed smoothly in predominantly aqueous media in 200 seconds only.

  5. Comparative studies of the static and dynamic headspace extraction of saturated short chain aldehydes from cellulose-based packaging materials.

    Science.gov (United States)

    Wenzl, T; Lankmayr, E P

    2002-03-01

    Aldehydes in cellulose-based materials such as cardboard are derived from lipid degradation. Depending on the production- and storage conditions of the cardboard, the aldehyde content changes. Owing to their sensorial properties, accurate control of their content is obligatory. The cardboard usually exhibits strong and even varying matrix effects and considerable inhomogeneity. The comparability of results of analysis after static and dynamic headspace extraction of short chained saturated aldehydes from cellulose-based matrices was studied. In the case of the static extraction technique, special attention was given to the establishment of the headspace equilibrium, which could be reached by the addition of water as a displacer. For dynamic headspace extraction, the volatiles were purged from the matrix by an inert gas and enriched on an adsorbent trap. In theory, the extraction yield should be 100%. Since there are no certified reference materials for verification of the extraction efficiency available, confirmation was achieved by determining the total amount of analytes in the sample by means of multiple headspace extraction.In comparison to the static operation mode, the major drawbacks of the dynamic technique were found to be based on a more complex parameter string and on limitations to the extractable sample quantities, which may result in enhanced uncertainty of the measurements. Nevertheless, the results of analysis pointed out that both headspace extraction techniques are suitable for the determination of volatile aldehydes from cellulose-based materials.

  6. KINETIC STUDY OF CARBONYLATION OF METHANOL TO ACETIC ACID AND ACETIC ANHYDRIDE OVER A NOVEL COPOLYMER- BOUND CIS- DICARBONYLRHODIUM COMPLEX

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuying; YUAN Guoqing; CHEN Rongyao

    1989-01-01

    The kinetic study of carbonylation of methanol-acetic acid mixture to acetic acid and acetic anhydride over a cis-dicarbonylrhodium complex (MVM' Rh)coordinated with the ethylene diacrylate (M')crosslinked copolymer of methyl acrylate (M) and 2 - vinylpyridine (V) shows that the rate of reaction is zero order with respect to both reactants methanol and carbon monoxide, but first order in the concentrations of promoter methyl iodide and rhodium in the complex . Polar solvents can accelerate the reaction .Activation parameters were calculated from the experimental results, being comparable to that of the homogeneous system . A mechanism similar to that of soluble rhodium catalyst was proposed .

  7. Effects of Alda-1, an Aldehyde Dehydrogenase-2 Agonist, on Hypoglycemic Neuronal Death.

    Directory of Open Access Journals (Sweden)

    Tetsuhiko Ikeda

    Full Text Available Hypoglycemic encephalopathy (HE is caused by a lack of glucose availability to neuronal cells, and no neuroprotective drugs have been developed as yet. Studies on the pathogenesis of HE and the development of new neuroprotective drugs have been conducted using animal models such as the hypoglycemic coma model and non-coma hypoglycemia model. However, both models have inherent problems, and establishment of animal models that mimic clinical situations is desirable. In this study, we first developed a short-term hypoglycemic coma model in which rats could be maintained in an isoelectric electroencephalogram (EEG state for 2 min and subsequent hyperglycemia without requiring anti-seizure drugs and an artificial ventilation. This condition caused the production of 4-hydroxy-2-nonenal (4-HNE, a cytotoxic aldehyde, in neurons of the hippocampus and cerebral cortex, and a marked increase in neuronal death as evaluated by Fluoro-Jade B (FJB staining. We also investigated whether N-(1,3-benzodioxole-5-ylmethyl-2,6-dichlorobenzamide (Alda-1, a small-molecule agonist of aldehyde dehydrogenase-2, could attenuate 4-HNE levels and reduce hypoglycemic neuronal death. After confirming that EEG recordings remained isoelectric for 2 min, Alda-1 (8.5 mg/kg or vehicle (dimethyl sulfoxide; DMSO was administered intravenously with glucose to maintain a blood glucose level of 250 to 270 mg/dL. Fewer 4-HNE and FJB-positive cells were observed in the cerebral cortex of Alda-1-treated rats than in DMSO-treated rats 24 h after glucose administration (P = 0.002 and P = 0.020. Thus, activation of the ALDH2 pathway could be a molecular target for HE treatment, and Alda-1 is a potentially neuroprotective agent that exerts a beneficial effect on neurons when intravenously administered simultaneously with glucose.

  8. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  9. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang Yoon [The Hotchkiss School, Lakeville, CT (United States); Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Ku, Cheol Ryong [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Yoon Hee, E-mail: wooriminji@gmail.com [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Eun Jig, E-mail: ejlee423@yuhs.ac [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.

  10. Potential Polyunsaturated Aldehydes in the Strait of Gibraltar under Two Tidal Regimes

    Directory of Open Access Journals (Sweden)

    Soledad Morillo-García

    2014-03-01

    Full Text Available Diatoms, a major component of the large-sized phytoplankton, are able to produce and release polyunsaturated aldehydes after cell disruption (potential PUAs or pPUA. These organisms are dominant in the large phytoplankton fraction (>10 µm in the Strait of Gibraltar, the only connection between the Mediterranean Sea and the Atlantic Ocean. In this area, the hydrodynamics exerts a strong control on the composition and physiological state of the phytoplankton. This environment offers a great opportunity to analyze and compare the little known distribution of larger sized PUA producers in nature and, moreover, to study how environmental variables could affect the ranges and potential distribution of these compounds. Our results showed that, at both tidal regimes studied (Spring and Neap tides, diatoms in the Strait of Gibraltar are able to produce three aldehydes: Heptadienal, Octadienal and Decadienal, with a significant dominance of Decadienal production. The PUA released by mechanical cell disruption of large-sized collected cells (pPUA ranged from 0.01 to 12.3 pmol from cells in 1 L, and from 0.1 to 9.8 fmol cell−1. Tidal regime affected the abundance, distribution and the level of physiological stress of diatoms in the Strait. During Spring tides, diatoms were more abundant, usually grouped nearer the coastal basin and showed less physiological stress than during Neap tides. Our results suggest a significant general increase in the pPUA productivity with increasing physiological stress for the cell also significantly associated to low nitrate availability.

  11. Site-directed mutagenesis of aldehyde dehydrogenase-2 suggests three distinct pathways of nitroglycerin biotransformation.

    Science.gov (United States)

    Wenzl, M Verena; Beretta, Matteo; Griesberger, Martina; Russwurm, Michael; Koesling, Doris; Schmidt, Kurt; Mayer, Bernd; Gorren, Antonius C F

    2011-08-01

    To elucidate the mechanism underlying reduction of nitroglycerin (GTN) to nitric oxide (NO) by mitochondrial aldehyde dehydrogenase (ALDH2), we generated mutants of the enzyme lacking the cysteines adjacent to reactive Cys302 (C301S and C303S), the glutamate that participates as a general base in aldehyde oxidation (E268Q) or combinations of these residues. The mutants were characterized regarding acetaldehyde dehydrogenation, GTN-triggered enzyme inactivation, GTN denitration, NO formation, and soluble guanylate cyclase activation. Lack of the cysteines did not affect dehydrogenase activity but impeded GTN denitration, aggravated GTN-induced enzyme inactivation, and increased NO formation. A triple mutant lacking the cysteines and Glu268 catalyzed sustained formation of superstoichiometric amounts of NO and exhibited slower rates of inactivation. These results suggest three alternative pathways for the reaction of ALDH2 with GTN, all involving formation of a thionitrate/sulfenyl nitrite intermediate at Cys302 as the initial step. In the first pathway, which predominates in the wild-type enzyme and reflects clearance-based GTN denitration, the thionitrate apparently reacts with one of the adjacent cysteine residues to yield nitrite and a protein disulfide. The predominant reaction catalyzed by the single and double cysteine mutants requires Glu268 and results in irreversible enzyme inactivation. Finally, combined lack of the cysteines and Glu268 shifts the reaction toward formation of the free NO radical, presumably through homolytic cleavage of the sulfenyl nitrite intermediate. Although the latter reaction accounts for less than 10% of total turnover of GTN metabolism catalyzed by wild-type ALDH2, it is most likely essential for vascular GTN bioactivation.

  12. Distribution of genetic polymorphism of aldehyde dehydrogenase-2 (ALDH2 in Indonesian subjects

    Directory of Open Access Journals (Sweden)

    Septelia I. Wanandi

    2002-09-01

    Full Text Available Aldehyde dehydrogenase (ALDH plays a pivotal role in the alcohol metabolism. Decreased activity of ALDH enzyme has more influence on the hypersensitivity to alcohol than of alcohol dehydrogenase. ALDH enzyme exists in several isozymes. Among these isozymes, ALDH2 is a major isozyme that has a very high affinity for acetaldehyde. Recent studies suggested that the deficiency of ALDH2 may be inherited. Functional polymorphism of ALDH2 gene has been observed in a nucleotide of the 487th codon. In the atypical gene, this codon consists of AAA nucleotides for lysine, instead of GAA for glutamic acid in the wild type gene. In this study, we have analyzed the genetic polymorphism of ALDH2 gene among 100 Indonesian students using genomic DNA extracted from hair roots. Polymerase chain reaction (PCR and restriction fragment length polymorphism (RFLP methods were performed for this purpose. Three oligonucleotide primers were designed for two steps PCR. The reverse primer R was intentionally constructed not to be 100% complementary to the template strand, to generate a restriction site for Eco RI within the variable nucleotide in the PCR product of ALDH2 gene. This study indicates that 70 subjects (70% have wild type, 29 (29% atypical heterozygote and only 1 (1% atypical homozygote ALDH2 alleles. Conclusively, the atypical ALDH2 allele frequency in Indonesians (31/200 is higher than in Caucasoids (only about 5-10%, but less than in Mongoloids (40-50%. This may be due to the diverse ethnics of Indonesian population. (Med J Indones 2002; 11: 135-42 Keywords: alcohol hypersensitivity, genetic polymorphism, aldehyde dehydrogenase-2 (ALDH2 gene

  13. Mitochondrial aldehyde dehydrogenase obliterates insulin resistance-induced cardiac dysfunction through deacetylation of PGC-1α

    Science.gov (United States)

    Hu, Nan; Ren, Jun; Zhang, Yingmei

    2016-01-01

    Insulin resistance contributes to the high prevalence of type 2 diabetes mellitus, leading to cardiac anomalies. Emerging evidence depicts a pivotal role for mitochondrial injury in oxidative metabolism and insulin resistance. Mitochondrial aldehyde dehydrogenase (ALDH2) is one of metabolic enzymes detoxifying aldehydes although its role in insulin resistance remains elusive. This study was designed to evaluate the impact of ALDH2 overexpression on insulin resistance-induced myocardial damage and mechanisms involved with a focus on autophagy. Wild-type (WT) and transgenic mice overexpressing ALDH2 were fed sucrose or starch diet for 8 weeks and cardiac function and intracellular Ca2+ handling were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate Akt, heme oxygenase-1 (HO-1), PGC-1α and Sirt-3. Our data revealed that sucrose intake provoked insulin resistance and compromised fractional shortening, cardiomyocyte function and intracellular Ca2+ handling (p 0.05), mitochondrial injury (elevated ROS generation, suppressed NAD+ and aconitase activity, p < 0.05 for all), the effect of which was ablated by ALDH2. In vitro incubation of the ALDH2 activator Alda-1, the Sirt3 activator oroxylin A and the histone acetyltransferase inhibitor CPTH2 rescued insulin resistance-induced changes in aconitase activity and cardiomyocyte function (p < 0.05). Inhibiting Sirt3 deacetylase using 5-amino-2-(4-aminophenyl) benzoxazole negated Alda-1-induced cardioprotective effects. Taken together, our data suggest that ALDH2 serves as an indispensable cardioprotective factor against insulin resistance-induced cardiomyopathy with a mechanism possibly associated with facilitation of the Sirt3-dependent PGC-1α deacetylation. PMID:27634872

  14. Aldehyded Dextran and ε-Poly(L-lysine Hydrogel as Nonviral Gene Carrier

    Directory of Open Access Journals (Sweden)

    Yumiko Togo

    2013-01-01

    Full Text Available Background. The expression term of the gene transfected in cells needs to belong enough inorder to make a gene therapy clinically effective. The controlled release of the transfected gene can be utilized. The new biodegradable hydrogel material created by 20 w/w% aldehyded dextran and 10 w/w% ε-poly(L-lysine (ald-dex/PLL was developed. We examined whether it could be as a nonviral carrier of the gene transfer. Methods. A plasmid (Lac-Z was mixed with ald-dex/PLL. An in vitro study was performed to assess the expression of Lac-Z with X-gal stain after gene transfer into the cultured 293 cells and bone marrow cells. As a control group, PLL was used as a cationic polymer. Results. We confirmed that the transfection efficiency of the ald-dex/PLL had a higher transfection efficiency than PLL in 293 cells (plasmid of 2 μg: ald-dex/PLL 1.1%, PLL 0.23%, plasmid of 16 μg: ald-dex/PLL 1.23%, PLL 0.48%. In bone marrow cells, we confirmed the expression of Lac-Z by changing the quantity of aldehyded dextran. In the groups using ald-dextran of the quantity of 1/4 and 1/12 of PLL, their transfection efficiency was 0.43% and 0.41%, respectively. Conclusions. This study suggested a potential of using ald-dex/PLL as a non-carrier for gene transfer.

  15. Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity.

    Directory of Open Access Journals (Sweden)

    Martin Mahro

    Full Text Available In order to elucidate factors that determine substrate specificity and activity of mammalian molybdo-flavoproteins we performed site directed mutagenesis of mouse aldehyde oxidase 3 (mAOX3. The sequence alignment of different aldehyde oxidase (AOX isoforms identified variations in the active site of mAOX3 in comparison to other AOX proteins and xanthine oxidoreductases (XOR. Based on the structural alignment of mAOX3 and bovine XOR, differences in amino acid residues involved in substrate binding in XORs in comparison to AOXs were identified. We exchanged several residues in the active site to the ones found in other AOX homologues in mouse or to residues present in bovine XOR in order to examine their influence on substrate selectivity and catalytic activity. Additionally we analyzed the influence of the [2Fe-2S] domains of mAOX3 on its kinetic properties and cofactor saturation. We applied UV-VIS and EPR monitored redox-titrations to determine the redox potentials of wild type mAOX3 and mAOX3 variants containing the iron-sulfur centers of mAOX1. In addition, a combination of molecular docking and molecular dynamic simulations (MD was used to investigate factors that modulate the substrate specificity and activity of wild type and AOX variants. The successful conversion of an AOX enzyme to an XOR enzyme was achieved exchanging eight residues in the active site of mAOX3. It was observed that the absence of the K889H exchange substantially decreased the activity of the enzyme towards all substrates analyzed, revealing that this residue has an important role in catalysis.

  16. Densities, speeds of sound, and refractive indices of the ternary mixtures (toluene + methyl acetate + butyl acetate) and (toluene + methyl acetate + methyl heptanoate) at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Mariano, Alejandra [Departamento de Quimica, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400 (8300) Neuquen (Argentina); Postigo, Miguel [Departamento de Quimica, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400 (8300) Neuquen (Argentina)]. E-mail: postigo@uncoma.edu.ar; Gonzalez-Salgado, Diego [Departamento de Fisica Aplicada, Universidad de Vigo, Facultad de Ciencias del Campus de Ourense, E 32004 Ourense (Spain); Romani, Luis [Departamento de Fisica Aplicada, Universidad de Vigo, Facultad de Ciencias del Campus de Ourense, E 32004 Ourense (Spain)

    2007-02-15

    Density, {rho}, speed of sound, u, and refractive index, n {sub D}, at 298.15 K and atmospheric pressure have been measured over the entire composition range for (toluene + methyl acetate + butyl acetate) and (toluene + methyl acetate + methyl heptanoate) systems. Excess molar volumes, V {sup E}, isentropic compressibility, {kappa} {sub s}, isentropic compressibility deviations, {delta}{kappa} {sub s}, and changes of refractive index on mixing, {delta}n {sub D}, for the above systems, have been calculated from experimental data and fitted to Cibulka, Singh et al., and Nagata and Sakura equations, standard deviations from the regression lines are shown. Geometrical solution models, Tsao and Smith, Kholer, Jacob and Fitzner, Rastogi et al. were also applied to predict ternary properties from binary contributions.

  17. Measurement and modelization of VLE of binary mixtures of propyl acetate, butyl acetate or isobutyl acetate with methanol at pressure of 0.6 MPa

    Institute of Scientific and Technical Information of China (English)

    P Susial; D Garca; R Susial; YC Clavijo; A Martn

    2016-01-01

    The vapor–liquid equilibrium of binary mixtures of propyl acetate, butyl acetate and isobutyl acetate with meth-anol has been determined at a constant pressure of 0.6 MPa. Results have been modeled with the Peng–Robinson equation, a traditional cubic equation of state widely employed in chemical industries, as well as with the perturbed-chain statistical associating fluid PC-SAFT theory of Gross–Sadowski. By correlation of the binary inter-action parameters of these equations, the measured vapor–liquid equilibrium data can be accurately predicted. Thus, this work shows that these models are able to represent the experimental data for systems with associating compounds via hydrogen bonding.

  18. EFFECT OF COLD EXPOSURE AND FASTING ON HEPATIC ACETATE METABOLISM

    Science.gov (United States)

    present investigation the carbohydrate content of the liver was drastically reduced by fasting rats both at 25 C. and 0 C. Acetate oxidation is greatly depressed by the lowering of the hepatic carbohydrate level. (Author)

  19. Development of Chitosan Acetate Films for Transdermal Delivery of ...

    African Journals Online (AJOL)

    Erah

    India. Abstract. Purpose: To formulate and evaluate chitosan acetate films designed for transdermal delivery of ... been found to have antibacterial activity and can be used as such, .... blotted with filter paper and weighed on a digital balance.

  20. CHARACTERIZATION OF REGENERATED CELLULOSE MEMBRANES HYDROLYZED FROM CELLULOSE ACETATE

    Institute of Scientific and Technical Information of China (English)

    Yun Chen; Xiao-peng Xiong; Guang Yang; Li-na Zhang; Sen-lin Lei; Hui Lianga

    2002-01-01

    A series of cellulose acetate membranes were prepared by using formamide as additive, and then were hydrolyzedin 4 wt% aqueous NaOH solution for 8 h to obtain regenerated cellulose membranes. The dependence of degree ofsubstitution, structure, porous properties, solubility and thermal stability on hydrolysis time was studied by chemical titration,Fourier transform infrared spectroscopy, scanning electron microscopy, wide-angle X-ray diffraction, and differentialscanning calorimetry, respectively. The results indicated that the pore size of the regenerated cellulose membranes wasslightly smaller than that of cellulose acetate membrane, while solvent-resistance, crystallinity and thermostability weresignificantly improved. This work provides a simple way to prepare the porous cellulose membranes, which not only kept thegood pore characteristics of cellulose acetate membranes, but also possessed solvent-resistance, high crystallinity andthermostability. Therefore, the application range of cellulose acetate membranes can be expanded.