WorldWideScience

Sample records for acetic acid esters

  1. 75 FR 52269 - Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption

    Science.gov (United States)

    2010-08-25

    ... AGENCY 40 CFR Part 180 Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of acetic acid ethenyl ester, polymer with oxirane... permissible level for residues of acetic acid ethenyl ester, polymer with oxirane on food or feed...

  2. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  3. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    4-Chloroindole-3-acetic acid methyl ester was identified unequivocally in Lathyrus latifolius L., Vicia faba L. and Pisum sativum L. by thin layer chromatography, gas chromatography and mass spectrometry. The gas chromatographic system was able to separate underivatized chloroindole-3-acetic acid...... methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  4. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetic acid, 2-chloro-, 1-(3,3... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  5. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    Science.gov (United States)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  6. Lipases and whole cell biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid and its ester.

    Science.gov (United States)

    Majewska, Paulina; Serafin, Monika; Klimek-Ochab, Magdalena; Brzezińska-Rodak, Małgorzata; Żymańczyk-Duda, Ewa

    2016-06-01

    A wide spectrum of commercially available lipases and microbial whole cells catalysts were tested for biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid 1 and its butyryl ester. The best results were achieved for biocatalytic hydrolysis of ester: 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid 2 performed by lipase from Candida cylindracea, what gave optically active products with 85% enantiomeric excess, 50% conversion degree and enantioselectivity 32.9 for one pair of enantiomers. Also enzymatic systems of Penicillium minioluteum and Fusarium oxysporum were able to hydrolyze tested compound with high enantiomeric excess (68-93% ee), enantioselectivity (44 for one pair of enantiomers) and conversion degree about 50-55%. Enzymatic acylation of hydroxyphosphinate was successful in case when porcine pancreas lipase was used. After 4days of biotransformation the conversion reaches 45% but the enantiomeric enrichment of the isomers mixture do not exceed 43%. Obtained chiral compounds are valuable derivatizing agents for spectroscopic (NMR) evaluation of enantiomeric excess for particular compounds (e.g. amino acids). PMID:26989983

  7. Synthesis of the [beta]-D-glucosyl ester of [carbonyl-[sup 13]C]-indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jakas, A.; Magnus, V. (Rudjer Boskovic Inst., Zagreb (Croatia)); Horvat, S.; Sandberg, G. (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden))

    1993-10-01

    An efficient, operationally simple synthetic approach to 1-O-([carbonyl-[sup 13]C]-indole-3'-ylacetyl)-[beta]-D-glucopyranose is described. The synthesis was carried out by fusing a fully benzylated 1-O-glucosylpseudourea intermediate with [carbonyl-[sup 13]C]-indole-3-acetic acid, followed by hydrogenolytic removal of the protective groups. (Author).

  8. [Allosteric regulation of glucosamine synthetase activity by naphthoquinone derivatives and ethyl ester of di-(4-oxycumarinyl-3)-acetic acid].

    Science.gov (United States)

    Sharaev, P N; Bogdanov, N G; Sarycheva, I K; Zhukova, E E

    1981-02-01

    The effects of derivatives of naphthoquinone, e.g. 2-methyl-3-phytyl-1,4-naphthoquinone (vitamin K1), 2-methyl-1,4-naphthoquinone (vitamin K3), 3-dihydro-2-methyl-1,4-naphthoquinone-2-sodium sulfonate (vicasol), derivatives of naphthohydroxyquinone, e.g. 2-methyl-1,4-naphthohydroxyquinone 1-monoacetate, 2-methyl-1,4-naphthohydroxyquinone 1,4-diacetate and the oxycumarine derivative di-(4-oxycumarinyl-3)-acetate ethyl ester (pelentan) on the activity of purified glutamine synthetase (EC 5.3.1.19) from rat liver were studied. The enzyme activity was increased under effects of vitamins K1 and K3 and was inhibited by pelentan. The data obtained are indicative of the allosteric effect of these compounds on the enzyme. PMID:7195738

  9. Scientific Opinion on the safety and efficacy of straight-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing saturated alcohols and acetals containing saturated aldehydes (chemical group 1 when used as flavourings for all animal species

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-04-01

    Full Text Available Chemical group 1 (CG 1 consists of straight-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing saturated alcohols and acetals containing saturated aldehydes of which 86 are currently authorised for use as flavours in food. The FEEDAP Panel was unable to perform an assessment of ethyl oleate because of its insufficient purity. The following compounds are considered to be safe for all animal species at the use level proposed for feed flavourings: formic acid, acetic acid, propionic acid, octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, oleic acid, decanol, dodecanol, decyl acetate and dodecyl acetate. The remaining substances are considered safe for all animal species at 5 mg/kg complete feed (with a margin of safety between 1 and 120 and at 25 mg/kg complete feed (ethyl acetate and hexyl acetate, with a margin of safety between 2 and 6; and at 1 mg/kg complete feed for pigs and poultry and 1.5 mg/kg complete feed for all other species (ethylacrylate, ethyl hex-3-enoate, ethyl trans-2-butenoate, ethyl isobutyrate, ethyl isovalerate, butyl isovalerate, methyl isovalerate, hexyl isobutyrate, methyl 2-methyl butyrate, pentyl isovalerate, butyl 2-methyl butyrate, hexyl isovalerate, ethyl 2-methyl butyrate, hexyl 2-methyl butyrate and methyl 2-methylvalerate. No safety concern would arise for the consumer from the use of compounds belonging to CG 1 up to the highest safe level in feedingstuffs for all animal species. The FEEDAP Panel considers it prudent to treat all compounds under assessment as irritants to skin, eyes and respiratory tract and as skin sensitizers. No risk for the safety for the environment is foreseen. Since all 85 compounds are used in food as flavourings, no further demonstration of efficacy is necessary.

  10. Scientific Opinion on the safety and efficacy of branched-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing branched-chain alcohols and acetals containing branched-chain aldehydes (chemical group 2 when used as flavourings for all animal species

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2012-10-01

    Full Text Available

    Chemical group 2 consists of branched-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing branched-chain alcohols and acetals containing branched-chain aldehydes, of which 34 are currently authorised for use as flavours in food. The use of 2-methylpropionic acid, isopentyl acetate, 3-methylbutyl butyrate and 2-methylbutyl acetate is safe at the proposed use level of 25 mg/kg complete feed for cattle, salmonids and non food producing animals and at 5 mg/kg complete feed for pigs and poultry. 2-Methylpropan-1-ol, isopentanol, 2-ethylhexan-1-ol, 2-methylpropanal, 3-methylbutanal, 2-methylbutyraldehyde, 3-methylbutyric acid, 2-methylvaleric acid, 2-ethylbutyric acid, 2-methylbutyric acid, 2-methylheptanoic acid, 4-methyloctanoic acid, isobutyl acetate, isobutyl butyrate, 3-methylbutyl propionate, 3-methylbutyl formate, glyceryl tributyrate, isobutyl isobutyrate, isopentyl isobutyrate, isobutyl isovalerate, isopentyl 2-methylbutyrate, 2-methylbutyl isovalerate and 2-methylbutyl butyrate are safe at the proposed use level of 5 mg/kg complete feed for all animal species. 3,7-Dimethyloctan-1-ol, 2-methylundecanal, 4-methylnonanoic acid, 3-methylbutyl hexanoate, 3-methylbutyl dodecanoate, 3-methylbutyl octanoate and 3-methylbutyl 3-methylbutyrate are safe at a maximum of 1.5 mg/kg complete feed for cattle, salmonids and non food-producing animals and of 1.0 mg/kg complete feed for pigs and poultry. No safety concern was identified for the consumer from the use of these compounds up to the highest safe level in feedingstuffs for all animal species. All compounds should be considered as irritants to skin, eyes and respiratory tract, and as skin sensitisers. The compounds do not pose a risk to the environment when used at concentrations considered safe for the target species. Since all compounds are used in food as flavourings, no further demonstration of efficacy is necessary.

  11. Synthesis and Molecular Structure of Acetic Acid-3,5-diacetoxy-2-acetoxymethyl-6-(4-quinoxalin-2-yl-phenoxy)-tetrahydro-pyran-4-yl-ester

    Institute of Scientific and Technical Information of China (English)

    WEI Hui-Qin; ZENG Run-Sheng; WU Gui-Ping; WANG Bao-An; ZOU Jian-Ping

    2006-01-01

    The title compound, acetic acid-3,5-diacetoxy-2-acetoxymethyl-6-(4-quinoxalin-2-yl-phenoxy)-tetrahydro-pyran-4-yl-ester 8 (C28H28N2O10, Mr = 552.54), has been synthesized and its crystal structure was determined by X-ray diffraction analysis. It crystallizes in monoclinic,space group P21, a = 10.060(8), b = 5.648(4), c=24.11(2)(A), β=91.078(10)O, Z = 2, V =1369.9(19)(A)3, Dc = 1.339 g/cm3,μ(MoKα) = 1.03 cm-1, F(000) = 580.00, T=193.1 K,θmax =25.03, (△/σ)max = 0.0000, Flack = -0.0(24), the final R = 0.0680 and wR= 0.140 (w =1/[0.0016Fo2+ 1.0000σ(Fo2)]/(4Fo2)) for 3126 observed reflections (I>2σ(I)). The pyranoid ring adopts chair conformation in the sugar moiety, and all of the acetyl groups are in the e bond of the pyranoid ring, so the sugar moiety is very stable.

  12. Antibiofilm Properties of Acetic Acid

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup;

    2014-01-01

    -negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms....

  13. Kinetics and Mechanism of Oxidation of Phenyl Acetic Acid and Dl-Mandelic Acid by Permanganate in Acid Medium

    OpenAIRE

    B. Syama Sundar; P.S.Radhakrishna murti

    2014-01-01

    Kinetics of oxidation of phenyl acetic acid and DL- Mandelic acid by potassium permanganate in aqueous acetic acid and perchloric acid mixture reveals that the kinetic orders are first order in oxidant, first order in H+ and zero order in substrate for phenyl acetic acid. DL-Mandelic acid exhibits first order in oxidant and zero order in substrate. The results are rationalised by a mechanism involving intermediate formation of mandelic acid in case of Phenyl acetic acid and ester formation wi...

  14. ACETIC ACID AND A BUFFER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  15. Kinetics and Mechanism of Oxidation of Phenyl Acetic Acid and Dl-Mandelic Acid by Permanganate in Acid Medium

    Directory of Open Access Journals (Sweden)

    B.Syama Sundar

    2014-06-01

    Full Text Available Kinetics of oxidation of phenyl acetic acid and DL- Mandelic acid by potassium permanganate in aqueous acetic acid and perchloric acid mixture reveals that the kinetic orders are first order in oxidant, first order in H+ and zero order in substrate for phenyl acetic acid. DL-Mandelic acid exhibits first order in oxidant and zero order in substrate. The results are rationalised by a mechanism involving intermediate formation of mandelic acid in case of Phenyl acetic acid and ester formation with Mn (VII in case of DL-Mandelic acid. The following order of reactivity is observed: DL-Mandelic acid > Phenyl acetic acid. The high reactivity of DL-Mandelic acid over phenyl acetic acid may be due to different mechanisms operating with the two substrates and benzaldehyde is the final product in both the cases.

  16. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies.

  17. THE DISTRIBUTION COEFFICIENTS OF ACETIC ACID BETWEEN WATER AND SOLVENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Mehmet MAHRAMANLIOĞLU

    2001-03-01

    Full Text Available Distribution coefficients of acetic acid between aqueous phase and solvents (water-C6-C10 alcohols, butyl acetate, ether and benzene were studied. Synergetic effect was obtained for alcohol and ester systems. A slightly positive deviation was obtained for benzene–ester mixtures. The best distribution coefficient was obtained for hexanol-butyl acetate systems. The coefficients of Redlisch-Kister equation were obtained for the deviations.

  18. 21 CFR 582.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  19. Hydrolyses of alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D

    1983-01-01

    Using simultaneous coupling azo dye techniques kidney enzymes active against alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester are characterized. The enzymes show identical distribution in the section. The banding patterns in zymograms are the same after...

  20. 21 CFR 172.859 - Sucrose fatty acid esters.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  1. 21 CFR 184.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  2. Synergism between thapsigargin and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate on the release of [C]arachidonic acid and histamine from rat peritoneal mast cells

    DEFF Research Database (Denmark)

    Jacobsen, S.; Hansen, Harald S.; Jensen, B.

    1987-01-01

    Thapsigargin is a potent skin irritating sesquiterpene lactone isolated from the roots of Thapsia garganica L. (Apiaceae). In rat peritoneal mast cells thapsigargin induced a calcium-dependent non-cytotoxic [C]arachidonic acid and histamine release. A minor amount of the released [C]arachidonic a...

  3. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  4. Direct Oxidation of Ethene to Acetic Acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Direct oxidation of ethene to acetic acid over Pd-SiW12/SiO2 catalysts prepared by several methods was studied. A better method for reducing palladium composition of the catalysts was found. Acetic acid was obtained with selectivity of 82.7% and once-through space time yield (STY) of 257.4 g/h×L.

  5. Acrylic Acid and Esters Will Be Oversupply

    Institute of Scientific and Technical Information of China (English)

    Zheng Chengwang

    2007-01-01

    @@ Drastic capacity growth The production capacity of acrylic acid in China has grown drastically in recent years. With the completion of the 80 thousand t/a acrylic acid and 130 thous and t/a acrylic ester project in Shenyang Paraffin Chemical Industrial Co., Ltd., (CCR2006,No. 31) the capacity of acrylic acid in China has reached 882 thousand t/a.

  6. Long-chain alkanoic acid esters of lupeol from Dorstenia harmsiana Engl. (Moraceae).

    Science.gov (United States)

    Poumale, Herve Martial P; Awoussong, Kenzo Patrice; Randrianasolo, Rivoarison; Simo, Christophe Colombe F; Ngadjui, Bonaventure Tchaleu; Shiono, Yoshihito

    2012-01-01

    In addition to lupeol (1a), three long-chain alkanoic acid esters of lupeol, in which two were new, were isolated from the hexane and ethyl acetate twigs extract of Dorstenia harmsiana Engl. (Moraceae). The structures of the new compounds were elucidated on the basis of 1D and 2D NMR experiments. Some isolated compounds were evaluated for their antimicrobial activities. The lupeol and its three long-chain alkanoic acid esters showed antifungal and antibacterial activities.

  7. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    Science.gov (United States)

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  8. Chemistry and electrochemistry in trifluoroacetic acid. Comparison with acetic acid

    International Nuclear Information System (INIS)

    As the trifluoroacetic acid is, with the acetic acid, one of most often used carboxylic acids as solvent, notably in organic chemistry, this research thesis addresses some relatively simple complexing and redox reactions to highlight the peculiar feature of this acid, and to explain its very much different behaviour with respect to acetic acid. The author develops the notion of acidity level in solvents of low dielectric constant. The second part addresses a specific solvent: BF3(CH3COOH)2. The boron trifluoride strengthens the acidity of acetic acid and modifies its chemical and physical-chemical properties. In the third part, the author compares solvent properties of CF3COOH and CH3COOH. Noticed differences explain why the trifluoroacetic acid is a more interesting reaction environment than acetic acid for reactions such as electrophilic substitutions or protein solubilisation

  9. Theophylline-7-acetic acid derivatives with amino acids as anti-tuberculosis agents.

    Science.gov (United States)

    Voynikov, Yulian; Valcheva, Violeta; Momekov, Georgi; Peikov, Plamen; Stavrakov, Georgi

    2014-07-15

    A series of amides were synthesized by condensation of theophylline-7-acetic acid and eight commercially available amino acid methyl ester hydrochlorides. Consecutive hydrolysis of six of the amido-esters resulted in the formation of corresponding amido-acids. The newly synthesized compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv. The activity varied depending on the amino acid fragments and in seven cases exerted excellent values with MICs 0.46-0.26 μM. Assessment of the cytotoxicity revealed that the compounds were not cytotoxic against the human embryonal kidney cell line HEK-293T. The theophylline-7-acetamides containing amino acid moieties appear to be promising lead compounds for the development of antimycobacterial agents.

  10. Phase equilibrium modelling for mixtures with acetic acid using an association equation of state

    DEFF Research Database (Denmark)

    Muro Sunè, Nuria; Kontogeorgis, Georgios; von Solms, Nicolas;

    2008-01-01

    Acetic acid is a very important compound in the chemical industry with applications both as solvent and intermediate in the production of, e.g., polyesters. The design of these processes requires knowledge of the phase equilibria of mixtures containing acetic acid and a wide variety of compounds...... to a wide variety of mixtures containing acetic acid, including gas solubilities, cross-associating systems (with water and alcohols), and polar chemicals like acetone and esters. Vapor-liquid and liquid-liquid equilibria are considered for both binary and ternary mixtures. With the exception of a somewhat...... inferior performance for the water-acetic acid VLE, which does not seem to affect substantially the performance for the multicomponent systems studied, CPA performs satisfactorily in most cases, using a single interaction parameter over extensive temperature ranges. For accurate description of water-acetic...

  11. Affinity labelling enzymes with esters of aromatic sulfonic acids

    Science.gov (United States)

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  12. Ionic liquid mediated esterification of alcohol with acetic acid

    Institute of Scientific and Technical Information of China (English)

    Beilei ZHOU; Yanxiong FANG; Hao GU; Saidan ZHANG; Baohua HUANG; Kun ZHANG

    2009-01-01

    Highly efficient esterification of alcohols with acetic acid by using a Bransted acidic ionic liquid, i.e., 1-methyl-2-pyrrolidonium hydrogen sulfate ([Hnmp]HSo4), as catalyst has been realized. The turnover numbers (TON) were able to reach up to 11000 and turnover frequency (TOF) was 846. The catalytic system is suitable for the esterification of long chain aliphatic alcohols, benzyl alcohol and cyclohexanol with good yields of esters. The procedure of separating the product and catalyst is simple, and the catalyst could be reused. [Hnmp]HSO4 had much weaker corrosiveness than H2SO4. The corrosive rate of H2SO4 was 400 times more than that of [Hnmp]HSO4 to stainless steel.

  13. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  14. Synthesis of stearic acid triethanolamine ester over solid acid catalysts

    Institute of Scientific and Technical Information of China (English)

    Tao Geng; Qiu Xiao Li; Ya Jie Jiang; Wei Wang

    2010-01-01

    The synthesis of stearic acid triethanolamine ester over solid acid catalysts was investigated.The results showed that the catalytic activity and selectivity of zirconium sulfate supported on SBA-15(6)(pore diameter 6 nm)is better than that of commonly used hypophosphorous acid,zirconium sulfate supported on MCM-41 and zirconium sulfate supported on SBA-15(9)(pore diameter 9 nm).

  15. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    Science.gov (United States)

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  16. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    Science.gov (United States)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  17. Adaptation and tolerance of bacteria against acetic acid.

    Science.gov (United States)

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange

  18. [Anaerobic biodegradation of phthalic acid esters (Paes) in municipal sludge].

    Science.gov (United States)

    Liang, Zhi-Feng; Zhou, Wen; Lin, Qing-Qi; Yang, Xiu-Hong; Wang, Shi-Zhong; Cai, Xin-De; Qiu, Rong-Liang

    2014-04-01

    Phthalic acid esters (PAEs), a class of organic pollutants with potent endocrine-disrupting properties, are widely present in municipal sludge. Study of PAEs biodegradation under different anaerobic biological treatment processes of sludge is, therefore, essential for a safe use of sludge in agricultural practice. In this study, we selected two major sludge PAEs, i.e. di-n-butyl phthalate (DBP) and di-(2-enthylhexyl) phthalate (DEHP), to investigate their biodegradation behaviors in an anaerobic sludge digestion system and a fermentative hydrogen production system. The possible factors influencing PAEs biodegradation in relation to changes of sludge properties were also discussed. The results showed that the biodegradation of DBP reached 99.6% within 6 days, while that of DEHP was 46.1% during a 14-day incubation period in the anaerobic digestion system. By comparison, only 19.5% of DBP was degraded within 14 days in the fermentative hydrogen production system, while no degradation was detected for DEHP. The strong inhibition of the degradation of both PAEs in the fermentative hydrogen production system was ascribed to the decreases in microbial biomass and ratios of gram-positive bacteria/gram-negative bacteria and fungi/ bacteria, and the increase of concentrations of volatile fatty acids (e. g. acetic acid, propionic acid and butyric acid) during the fermentative hydrogen-producing process.

  19. [Degradation of oxytetracycline with ozonation in acetic acid solvent].

    Science.gov (United States)

    Li, Shi-Yin; Li, Xiao-Rong; Zhu, Yi-Ping; Zhu, Jiang-Peng; Wang, Guo-Xiang

    2012-12-01

    Use acetic acid as the media of ozone degradation of oxytetracycline (OTC), and effects of the initial dosing ratio of ozone/OTC, ozone flow, free radical scavenger, metal ions on the removal rate of OTC were investigated respectively. The results showed that acetic acid had a high ozone stability and solubility. OTC had a high removal rate and degradation rate in acetic acid solution. With the increase of OTC dosage, the removal rate of OTC decreased in acetic acid. Removal rate of OTC was increased distinctly when ozone flow increased properly. It was also observed that free radical scavenger had a significantly negative effect on OTC ozonation degradation in acetic acid. Furthermore the main reactions of OTC ozone oxidation were direct oxidation and indirect oxidation in acetic acid. When Fe3+ and Co2+ were existent in acetic acid, the degradation of OTC was inhibited significantly. PMID:23379161

  20. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii.

    Science.gov (United States)

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2016-04-01

    Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic-acid-tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo-lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin-treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress.

  1. Use of fumaric acid esters in psoriasis

    Directory of Open Access Journals (Sweden)

    Roll Antonie

    2007-01-01

    Full Text Available Fumaric acid esters (FAE are chemical compounds derived from the unsaturated dicarbonic acid fumaric acid. The usage of FAEs in treatment of psoriasis was introduced in the late 1950′s. In the 1980s more standardized oral preparations of FAEs were developed containing dimethylfumarate(DMF and salts of monoethylfumarate(MEF as main compounds. In 1994, Fumaderm ® an enteric-coated tablet containing DMF and calcium, magnesium, and zinc salts of MEF was approved for the treatment of psoriasis in Germany and since then has become the most commonly used systemic therapy in this country. Fumaric acids have been proven to be an effective therapy in patients with psoriasis even though the mechanisms of action are not completely understood. About 50-70% of the patients achieve PASI 75 improvement within four months of treatment and without any long-term toxicity, immunosuppressive effects, or increased risk of infection or malignancy. Tolerance is limited by gastrointestinal side effects and flushing of the skin. This article reviews pharmacokinetics, uses, contraindications, dosages, and side effects of treatment with FAEs.

  2. Fractionation and some properties of acetic-ester synthesizing enzyme from Cladosporium cladosporioides, no. 9

    International Nuclear Information System (INIS)

    Isoamyl acetate was enzymatically synthesized from acetyl-CoA and isoamyl alcohol with the cell-free extract from Cladosporium cladosporioides No. 9. The acetic-ester synthesizing enzyme was fractionated from the cell-free extract by procedures including (NH4)2SO4 fractionation, gel filtration on Sephadex G-150, and column chromatography on DEAE-Sephadex A-50. This enzyme was homogeneous on SDS gel electrophoresis and its molecular weight was approximately 22,000. The enzyme was obtained in about 50-fold purification in specific activity over that of the cell-free extract. The enzyme was most active at pH 6.0 and 250C, and was relatively stable between pH 6.0 and 7.5. (auth.)

  3. NF EN 14103. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the ester and methylic ester content of linoleic acid; NF EN 14103. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en ester et en ester methylique de l'acide linolenique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This European standard aims at determining the ester and methylic ester content of fatty acids methylic esters (FAME) used as pure bio-fuels or as constituent of a heating or diesel fuel. This method allows also to determine the methylic ester content of linoleic acid. It allows to verify that the ester content of FAMEs is greater than 90% (m/m) and that the linoleic acid content is comprised between 1% (m/m) and 15% (m/m). The method is applicable to FAMEs with methylic ester contents comprised between C14 and C24. (J.S.)

  4. Cellulose esters synthesized using a tetrabutylammonium acetate and dimethylsulfoxide solvent system

    Science.gov (United States)

    Yu, Yongqi; Miao, Jiaojiao; Jiang, Zeming; Sun, Haibo; Zhang, Liping

    2016-07-01

    Cellulose acetate (CA) and cellulose acetate propionate (CAP) were homogeneously synthesized in a novel tetrabutylammonium acetate/dimethyl sulfoxide (DMSO) solvent system, without any catalyst, at temperatures below 70 °C. The molecular structures of the cellulose esters (CEs) and distributions of the substituents in the anhydroglucose repeating units were determined using 13C cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy, and the degree of substitution (DS) values were determined using 1H nuclear magnetic resonance spectroscopy. The structures of the CEs, regenerated cellulose (RC), and pulp were determined using Fourier transform infrared spectroscopy. The thermal properties of the products were determined using thermogravimetric analysis. The temperatures of initial decomposition of the CEs were up to 40 °C higher than those of the RC and pulp. All the CEs were highly soluble in DMSO, but were insoluble in acetone. CAs with DS values less than 2.6 swelled or were poorly dissolved in CHCl3, but those with DS values above 2.9 dissolved rapidly. CAPs with DS values above 2.6 had good solubilities in ethyl acetate.

  5. Hydrolytic activity of -alkoxide/acetato-bridged binuclear Cu(II) complexes towards carboxylic acid ester

    Indian Academy of Sciences (India)

    Weidong Jiang; Bin Xu; Zhen Xiang; Shengtian Huang; Fuan Liu; Ying Wang

    2013-09-01

    Two -alkoxide/acetate-bridged small molecule binuclear copper(II) complexes were synthesized, and used to promote the hydrolysis of a classic carboxylic acid ester, -nitrophenyl picolinate (PNPP). Both binuclear complexes exhibited good hydrolytic reactivity, giving rise to . 15547- and 17462-fold acceleration over background value for PNPP hydrolysis at neutral conditions, respectively. For comparing, activities of the other two mononuclear analogues were evaluated, revealing that binuclear complexes show approximately 150- and 171-fold kinetic advantage over their mononuclear analogues.

  6. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Isabel Bento

    2006-11-01

    Full Text Available A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2nCO2R of different lengths (n = 0-6, 9, 10 are described.Nucleophilic substitution reactions on halo esters (X(CH2nCO2R by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultinuclear NMR and IR spectroscopies, MS spectrometry and elemental analysis; theNMR spectroscopic data were used for structural assignment of the N-1 and N-2 isomers.The molecular structure of indazol-2-yl-acetic acid (5b was determined by X-raydiffraction, which shows a supramolecular architecture involving O2-H...N1intermolecular hydrogen bonds.

  7. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    Science.gov (United States)

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  8. Kinetics Studies on Esterification Reaction of Acetic acid with Iso-amyl Alcohol over Ion Exchange Resin as Catalysts

    Directory of Open Access Journals (Sweden)

    Bhaskar D. Kulkarni

    2014-01-01

    Full Text Available The low molecular weight organic esters have pleasing smell and are found in applications in the food industry for synthetic essence and perfume. Esterification reactions are ubiquitous reactions especially in pharmaceutical, perfumery and polymer industries, wherein; both heterogeneous and homogeneous catalysts have been extensively used. Iso-amyl acetate (or Iso-pentyl acetate is often called as banana oil, since it has the recognizable odor of this fruit. Iso-amyl acetate is synthesized by esterification of acetic acid with iso-amyl alcohol. (Eq.1. Since the equilibrium does not help the formation of the ester, it must be shifted to the right, in favor of the product, by using a surplus of one of the starting materials. Iso-amyl acetate is a kind of flavor reagent with fruit taste. The use of H2SO4 often originates the problems such as corrosion for equipments and pollution for environment.

  9. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.

  10. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    Science.gov (United States)

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc. PMID:26853081

  11. Germination and adhesion of fungal conidia on polycarbonate membranes and on apple fruit exposed to mycoactive acetate esters.

    Science.gov (United States)

    Filonow, Alexander B

    2003-02-01

    The adhesion and germination of conidia of nine fungal species were assessed on polycarbonate membranes or on the skin of apple fruit in sealed glass bottles injected or not injected with acetate esters. Adhesion was determined after dislodging conidia from surfaces using a sonication probe. Adhesion and germination of conidia of Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Penicillium citrinum, Penicillium claviforme, or Trichoderma sp. on membranes after 48 h were not increased in a 1.84 microg mL(-1) headspace of butyl acetate (BA), ethyl acetate, hexyl acetate, 2-methylbutyl acetate, pentyl acetate, or propyl acetate. Adhesion and germination of Botrytis cinerea, Penicillium expansum, and Penicillium roquefortii conidia were stimulated by all esters. Only conidia of B. cinerea and P. expansum exhibited increased adhesion and germination on the skin of apple fruit in bottles exposed to 0.92 microg mL(-1) of BA. Only conidia of B. cinerea and P. expansum produced decay in inoculated puncture wounds on fruit. Freshly made puncture wounds or 24-h-old puncture wounds in fruit were more adhesive than the unpunctured skin of fruit to conidia of B. cinerea or P. expansum. Fresh wounds were more adhesive to both fungi than 24-h-old puncture wounds. The skin and wounds of fruit were as adhesive to B. cinerea conidia as they were to P. expansum conidia. A 4-h exposure to 1.43 microg mL(-1) of BA increased adhesion of B. cinerea and P. expansum conidia in 24-h-old wounds. Results suggest that acetate-ester stimulation most likely is not a rare phenomenon in the fungi. For nutrient-dependent decay pathogens of apple fruit, acetate esters may be an alternative chemical cue used to maintain adhesion of conidia to wound surfaces. PMID:12718401

  12. [Research of imidazo[1,2-a]benzimidazole derivatives. XXX. Synthesis and properties of (imidazo[1,2-a]benzimidazolyl-2)acetic acid derivatives].

    Science.gov (United States)

    Anisimova, V A; Tolpygin, I E; Spasov, A A; Serdiuk, T S; Sukhov, A G

    2011-01-01

    Ethyl esters of (9-subtituted-imidazo[1,2-a]benzimidazolyl-2)acetic acids were synthesized. The chemical properties of these esters (hydrolysis, decarboxylation, hydrazinolysis) and biological activity (fungicidal, antimicrobial, antiarrhythmic activity, and also affects on the brain rhythmogenesis) of the prepared compounds were studied.

  13. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  14. On the predictive capabilities of CPA for applications in the chemical industry: Mulficomponent mixtures containing methyl-methacrylate, dimethyl-ether or acetic acid

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios

    2014-01-01

    with acetic acid, esters, ethers and alcohols, and in this case for water-acetic acid the CPA-Huron Vidal (CPA-HV) version of the model is used. For the latter binary mixture, new CPA-HV binary parameter sets are estimated using, among others, data for activity coefficients at infinite dilutions. The modeling...... for the acetic acid-water system for which different parameter sets at different temperatures can be recommended. Even with the use of CPA-HV mixing rules, modeling of the acetic acid-water system with few interaction parameters remains a challenging task. Excellent simultaneous VLE and LLE correlation...... is obtained for complex systems such as aqueous mixtures with ethers and esters. The multicomponent results are, with a few exceptions, very satisfactory, especially for the vapor-liquid equilibrium cases. For the demanding aqueous acetic acid-water containing systems, one parameter set is recommended...

  15. Stereospecific ligands and their complexes. XX. Synthesis, characterization and antimicrobial activity of palladium(II) complexes with some alkyl esters of ethylenediamine-N,N‧-di-S,S-(2,2‧-dibenzyl)acetic acid

    Science.gov (United States)

    Dimitrijević, Dejana P.; Radić, Gordana P.; Jevtić, Verica V.; Mišić, Milena; Baskić, Dejan; Trifunović, Srećko R.

    2014-08-01

    Four new palladium(II) complexes of general formula [PdCl2(R2-S,S-eddba)] (R = ethyl, n-propyl, n-butyl and n-pentyl; S,S-eddba = ethylenediamine-N,N‧-di-S,S-(2,2‧-dibenzyl)acetate) have been synthesized and characterized by microanalysis, infrared, 1H and 13C NMR spectroscopy. In vitro antimicrobial activity for ligands L1-L4 general formula R2-S,S-eddba and complexes C1-C4 was investigated.

  16. Methane-to-acetic acid synthesis matriculates at Penn State

    Energy Technology Data Exchange (ETDEWEB)

    Rotman, D.

    1994-04-20

    Direct conversion of methane to commercially valuable chemicals remains one of the grails of industrial chemistry. But scientists at Pennsylvania State University (University Park) appear to have made a significant step forward, reporting the direct catalytic conversion of methane into acetic acid under relatively mild conditions. Commercial acetic production involves a three-step process, including steam reforming of methane to synthesis gas (syngas) and the carbonylation of methanol of acetic acid.

  17. Rare linking hydrogels based on acrylic acid and carbohydrate esters

    Directory of Open Access Journals (Sweden)

    U. Akhmedov

    2012-09-01

    Full Text Available The process of copolymerization of acrylic acid and esters poliallil sucrose; pentaerythritol and sorbitol, some of its laws are identified. The kinetic regularities of copolymerization and the optimum conditions of synthesis was established.

  18. 27 CFR 21.107 - Ethyl acetate.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ethyl acetate. 21.107....107 Ethyl acetate. (a) 85 percent ester: (1) Acidity (as acetic acid). Not more than 0.015 percent by...); for incorporation by reference, see § 21.6(b).) When 100 ml of ethyl acetate are distilled by...

  19. Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats.

    Science.gov (United States)

    Yamashita, Hiromi

    2016-07-29

    Fatty acids derived from adipose tissue are oxidized by β-oxidation to form ketone bodies as final products under the starving condition. Previously, we found that free acetic acid was formed concomitantly with the production of ketone bodies in isolated rat liver perfusion, and mitochondrial acetyl CoA hydrolase was appeared to be involved with the acetic acid production. It was revealed that acetic acid was formed as a final product of enhanced β-oxidation of fatty acids and utilized as a fuel in extrahepatic tissues under the starving condition. Under the fed condition, β-oxidation is suppressed and acetic acid production is decreased. When acetic acid was taken daily by obesity-linked type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats under the fed condition, it protected OLETF rats against obesity. Furthermore, acetic acid contributed to protect from the accumulation of lipid in the liver as well as abdominal fat in OLETF rats. Transcripts of lipogenic genes in the liver were decreased, while transcripts of myoglobin and Glut4 genes in abdominal muscles were increased in the acetic acid-administered OLETF rats. It is indicated that exogenously administered acetic acid would have effects on lipid metabolism in both the liver and the skeletal muscles, and have function that works against obesity and obesity-linked type 2 diabetes.

  20. Isobaric Vapor-Liquid Equilibrium of Binary Systems: p-Xylene + (Acetic Acid, Methyl Acetate and n-Propyl Acetate)and Methyl Acetate + n-Propyl Acetate in an Acetic Acid Dehydration Process

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiuhui; ZHONG Weimin; PENG Changjun; QIAN Feng

    2013-01-01

    The vapor-liquid equilibrium data of four binary systems(acetic acid + p-xylene,methyl acetate + n-propyl acetate,n-propyl acetate + p-xylene and methyl acetate + p-xylene)are measured at 101.33 kPa with Ellis equilibrium still,and then both the NRTL and UNIQUAC models are used in combination with the HOC model for correlating and estimating the vapor-liquid equilibrium of these four binary systems.The estimated binary VLE results using correlated parameters agree well with the measured data except the methyl acetate + p-xylene system which easily causes bumping and liquid rushing out of the sampling tap due to their dramatically different boiling points.The correlation results by NRTL and UNIQUAC models have little difference on the average absolute deviations of temperature and composition of vapor phase,and the results by NRTL model are slightly better than those by UNIQUAC model except for the methyl acetate + n-propyl acetate system,for which the latter gives more accurate correlations.

  1. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    Science.gov (United States)

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.

  2. SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF OXIME ESTERS FROM DIHYDROCUMIC ACID

    Directory of Open Access Journals (Sweden)

    Yanqing Gao,

    2012-07-01

    Full Text Available Dihydrocumic acid was prepared from β-pinene through oxidation and dehydration. Then, ten oxime esters from dihydrocumic acid were synthesized. Reaction conditions of the oxime esters were adjusted and their structures were characterized by IR, 1H-NMR, MS, and elemental analysis. The antibacterial activity of these newly synthesized oxime esters against Gram-negative bacteria and Gram-positive bacteria was also investigated using the inhibition zone method. The preliminary results indicated that seven compounds displayed better antibacterial activity against Gram-negative bacteria compared with bromogeramine, a commercially available antibacterial agent.

  3. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    Science.gov (United States)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  4. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    Science.gov (United States)

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process. PMID:26992903

  5. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    Science.gov (United States)

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.

  6. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Science.gov (United States)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  7. A Convenient Synthesis of Amino Acid Methyl Esters

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-05-01

    Full Text Available A series of amino acid methyl ester hydrochlorides were prepared in good toexcellent yields by the room temperature reaction of amino acids with methanol in thepresence of trimethylchlorosilane. This method is not only compatible with natural aminoacids, but also with other aromatic and aliphatic amino acids.

  8. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    Science.gov (United States)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  9. Solubilities of Isophthalic Acid in Acetic Acid + Water Solvent Mixtures

    Institute of Scientific and Technical Information of China (English)

    CHENG Youwei; HUO Lei; LI Xi

    2013-01-01

    The solubilities of isophthalic acid (1) in binary acetic acid (2) + water (3) solvent mixtures were determined in a pressurized vessel.The temperature range was from 373.2 to 473.2K and the range of the mole fraction of acetic acid in the solvent mixtures was from x2 =0 to 1.A new method to measure the solubility was developed,which solved the problem of sampling at high temperature.The experimental results indicated that within the temperature range studied,the solubilities of isophthalic acid in all mixtures showed an increasing trend with increasing temperature.The experimental solubilities were correlated by the Buchowski equation,and the calculate results showed good agreement with the experimental solubilities.Furthermore,the mixed solvent systems were found to exhibit a maximum solubility effect on the solubility,which may be attributed to the intermolecular association between the solute and the solvent mixture.The maximum solubility effect was well modeled by the modified Wilson equation.

  10. Bioreversible Derivatives of Phenol. 2. Reactivity of Carbonate Esters with Fatty Acid-like Structures Towards Hydrolysis in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Claus Larsen

    2007-10-01

    Full Text Available A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 – 12.5 at 37°C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents. The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from ω-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  11. Microwave-assisted preparation of naphthenic acid esters

    Directory of Open Access Journals (Sweden)

    VERA CIRIN-NOVTA

    2006-12-01

    Full Text Available The synthesis of esters of natural petroleum acids of the naphthenic type assisted with microwave irradiation under the conditions of acid catalysis was carried out with various alcohols: methanol, ethanol, n-butanol and tert-butyl alcohol. Microwave dielectric heating of the reaction mixture in an unmodified microwave oven with activation of the naphthenic acids with sulfuric and p-toluenesulfonic acid afforded the esters of the naphthenic acids. Depending on the catalyst and the steric and nucleophilic properties of the alcohols, the yield of naphthenic esters ranged from 31.25 % to 88.90 %. As a consequence of microwave dielectric heating, the esterification time was reduced from 6–10 h to 5 min.

  12. Probiotic and Acetic Acid Effect on Broiler Chickens Performance

    OpenAIRE

    Martin Král; Mária Angelovičová; Ľubica Mrázová; Jana Tkáčová; Martin Kliment

    2011-01-01

    Probiotics and organic acids are widely accepted as an alternative to in-feed antibiotics in poultry production. We carried the experiment with broiler chickens. In experiment we research effect of probiotic and acetic acids on the performance of broiler chickens. A total number of 200 one day old broiler chickens were distributed to two dietary groups. Broiler chickens in control group were fed with standard feed mixture and experimental group 1% vinegar contained 5% acetic acid used in drin...

  13. Protection of historical lead against acetic acid vapour

    OpenAIRE

    Pecenová Z.; Kouřil M.

    2016-01-01

    Historical lead artefacts (small figurines, appliques, bull (metal seal) can be stored in depository and archives in inconvenient storage conditions. The wooden show-case or paper packagings release volatile organic compound to the air during their degradation. These acids, mainly acetic acid are very corrosive for lead. The thin layer of corrosion products which slows atmospheric corrosion is formed on lead surface in atmospheric condition. In presence of acetic acid vapour the voluminous co...

  14. Scientific Opinion on the safety and efficacy of primary aliphatic saturated or unsaturated alcohols/aldehydes/acids/acetals/esters with a second primary, secondary or tertiary oxygenated functional group including aliphatic lactones (chemical group 9 when used as flavourings for all animal species

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2012-10-01

    Full Text Available

    Chemical group 9 consists of primary aliphatic saturated or unsaturated alcohols/aldehydes/acids/acetals/esters with a second primary, secondary or tertiary oxygenated functional group including aliphatic lactones, of which 30 are currently authorised for use as flavours in food. The FEEDAP Panel was unable to perform an assessment of 2-oxopropanal because of issues related to the purity of the compound. The FEEDAP Panel concludes that lactic acid, succinic acid, fumaric acid, 4-oxovaleric acid, ethyl lactate, butyl lactate, butyl-O-butyryllactate, hex-3-enyl lactate, hexyl lactate, ethyl acetoacetate, ethyl 4-oxovalerate, diethylsuccinate and diethyl malonate are considered to be safe for all animal species at the use levels proposed when used as feed flavourings; octano-1,4-lactone, nonano-1,4-lactone, decano-1,4-lactone and undecano-1,4-lactone are safe at 20 mg/kg complete feed; butyro-1,4-lactone, pentano-1,4-lactone, hexano-1,4-lactone, heptano-1,4-lactone, octano-1,5-lactone, nonano-1,5-lactone, decano-1,5-lactone and undecano-1,5-lactone at 5 mg/kg complete feed; dodecano-1,4-lactone, dodecano-1,5-lactone, tetradecano-1,5-lactone, and pentadecano-1,15-lactone at a maximum of 1.5 mg/kg complete feed for cattle, salmonids and non food producing animals and of 1 mg/kg complete feed for pigs and poultry. No safety concern was identified for the consumer from the use of compounds belonging to CG 9 up to the highest safe level in feedingstuffs for all animal species. All compounds should be considered as irritants to skin, eyes and respiratory tract, and as skin sensitizers. The compounds do not pose a risk to the environment when used at concentrations considered safe for the target species. Since all compounds are used in food as flavourings, no further demonstration of efficacy is necessary.

  15. Uranyl complexes of n-alkanediaminotetra-acetic acids

    International Nuclear Information System (INIS)

    The uranyl complexes of n-propanediaminetetra-acetic acid, n-butanediaminetetra-acetic acid and n-hexanediaminetetra-acetic acid have been studied by potentiometry, with computer evaluation of the titration data by the MINIQUAD program. Stability constants of the 1:1 and 2:1 metal:ligand chelates have been determined as well as the respective hydrolysis and polymerization constants at 25 deg in 0.10M and 1.00M KNO3. The influence of the length of the alkane chain of the ligands on the complexes formed is discussed. (author)

  16. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid.

    Science.gov (United States)

    Tivendale, Nathan D; Davidson, Sandra E; Davies, Noel W; Smith, Jason A; Dalmais, Marion; Bendahmane, Abdelhafid I; Quittenden, Laura J; Sutton, Lily; Bala, Raj K; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B; Ross, John J

    2012-07-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  17. Acetic acid assisted cobalt methanesulfonate catalysed chemoselective diacetylation of aldehydes

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Zhi Guo Song; Hong Gong; Heng Jiang

    2008-01-01

    Cobalt methanesulfonate in combination with acetic acid catalysed the chemoselective diacetylation of aldehyde with acetic anhydride at room temperature under solvent free conditions. After reaction, cobalt methanesulfonate can be easily recovered and mused many times. The reaction was mild and efficient with good to high yields.

  18. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters

    Indian Academy of Sciences (India)

    Aamer Saeed; Zaman Ashraf

    2006-09-01

    A number of important aromatic carboxylic acids precursors, or intermediates in the syntheses of natural products, are converted into methyl esters and reduced to the corresponding primary alcohols using a sodium borohydride-THF-methanol system. The alcohols are obtained in 70-92% yields in 2-5 hours, in a pure state. This two-step procedure not only provides a better alternative to aluminum hydride reduction of acids but also allows the selective reduction of esters in presence of acids, amides, nitriles or nitro functions which are not affected under these conditions.

  19. Effects of high-melting methyl esters on crystallization properties of fatty acid methyl ester mixtures

    Science.gov (United States)

    Biodiesel is a renewable alternative diesel fuel made from vegetable oils and animal fats. The most common form of biodiesel in the United States are fatty acid methyl esters (FAME) from soybean, canola, and used cooking oils, waste greases, and tallow. Cold flow properties of biodiesel depend on th...

  20. A NOVEL COPOLYMER-BOUND CIS- DICARBONYLRHODIUM COMPLEX FOR THE CARBONYLATION OF METHANOL TO ACETIC ACID AND ACETIC ANHYDRIDE

    Institute of Scientific and Technical Information of China (English)

    YUAN Guoqing; CHEN Yuying; CHEN Rongyao

    1989-01-01

    A series of porous microspheres of linear and ethylene diacrylate (M ') cross-linked copolymers of 2 - vinylpyridine (V) and methyl acrylate (M) reacted with tetracarbonyldichlorodirhodium to form a series of cis-dicarbonylrhodium chelate complex (MVRh and MVM 'Rh). They are thermally stable yet very reactive in the carbonylation of methanol to acetic acid, and of methanol - acetic acid mixture to acetic acid and acetic anhydride with a selectivity of 100% under relatively mild and anhydrous conditions.

  1. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains. PMID:27430512

  2. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-06-14

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  3. Rapid conversion of the ester prodrug abiraterone acetate results in intestinal supersaturation and enhanced absorption of abiraterone: In vitro, rat in situ and human in vivo studies

    OpenAIRE

    Stappaerts, Jef; Geboers, Sophie; Snoeys, Jan; Brouwers, Joachim; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

    2015-01-01

    The aim of this study was to evaluate the intestinal disposition of abiraterone acetate, an ester prodrug of the anticancer agent abiraterone. Stability of the prodrug and solubility and dissolution characteristics of both abiraterone and abiraterone acetate were monitored in vitro. Moreover, the in vivo intraluminal concentrations of abiraterone and abiraterone acetate upon intake of one tablet of 250mg abiraterone acetate were assessed in healthy volunteers. The intestinal absorption result...

  4. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties

    Directory of Open Access Journals (Sweden)

    Eva Vavříková

    2016-06-01

    Full Text Available A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica, which accepted C5- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C2, malonic (C3, succinic (C4 and maleic (C4 acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin–Ciocalteau reagent (FCR and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl than isoquercitrin; ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies.

  5. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties

    Science.gov (United States)

    Vavříková, Eva; Langschwager, Fanny; Jezova-Kalachova, Lubica; Křenková, Alena; Mikulová, Barbora; Kuzma, Marek; Křen, Vladimír; Valentová, Kateřina

    2016-01-01

    A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside) esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica), which accepted C5- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C2), malonic (C3), succinic (C4) and maleic (C4) acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin–Ciocalteau reagent (FCR) and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl) than isoquercitrin; ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies. PMID:27338349

  6. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties.

    Science.gov (United States)

    Vavříková, Eva; Langschwager, Fanny; Jezova-Kalachova, Lubica; Křenková, Alena; Mikulová, Barbora; Kuzma, Marek; Křen, Vladimír; Valentová, Kateřina

    2016-01-01

    A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside) esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica), which accepted C₅- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C₂), malonic (C₃), succinic (C₄) and maleic (C₄) acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin-Ciocalteau reagent (FCR) and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl) than isoquercitrin; ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies. PMID:27338349

  7. Proton Exchange Membrane from the Blend of Copolymers of Vinyl Acetate- Acrylic Ester and Styrene-Acrylic Ester for Power Generation Using Fuel Cell

    Directory of Open Access Journals (Sweden)

    Alvaro Realpe

    2014-10-01

    Full Text Available Proton exchange membranes for fuel cells were synthesized from the blend of copolymers of vinyl acetate-acrylic ester and styrene-acrylic ester, which were modified by sulfonation and addition of silica gel. Water uptake, ion exchange capacity, infrared spectroscopy and tensile tests were applied to characterize the prepared membranes. The results show that the prepared membranes with the processes of sulfonation and loaded with silica have the highest water uptake (92,7%. On the other hand, the sulfonation process lead to membranes with high ion exchange capacity and high mechanical strength (0,68 meq/g and 1,29 MPa, respectively. Therefore, the sulfonated membrane represents an alternative for the application as proton exchange membrane in fuel cells.

  8. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    Energy Technology Data Exchange (ETDEWEB)

    Araujo-Andrade, C. [Unidad Académica de Física de la Universidad Autónoma de Zacatecas, Zacatecas (Mexico); Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Reva, I., E-mail: reva@qui.uc.pt; Fausto, R. [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)

    2014-02-14

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol{sup −1} energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol{sup −1}) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol{sup −1}). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm{sup −1}, where the first OH stretching overtone

  9. Biodiesel Production Using Supercritical Methanol with Carbon Dioxide and Acetic Acid

    Directory of Open Access Journals (Sweden)

    Chao-Yi Wei

    2013-01-01

    Full Text Available Transesterification of oils and lipids in supercritical methanol is commonly carried out in the absence of a catalyst. In this work, supercritical methanol, carbon dioxide, and acetic acid were used to produce biodiesel from soybean oil. Supercritical carbon dioxide was added to reduce the reaction temperature and increase the fats dissolved in the reaction medium. Acetic acid was added to reduce the glycerol byproduct and increase the hydrolysis of fatty acids. The Taguchi method was used to identify optimal conditions in the biodiesel production process. With an optimal reaction temperature of 280°C, a methanol-to-oil ratio of 60, and an acetic acid-to-oil ratio of 3, a 97.83% yield of fatty acid methyl esters (FAMEs was observed after 90 min at a reaction pressure of 20 MPa. While the common approach to biodiesel production results in a glycerol byproduct of about 10% of the yield, the practices reported in this research can reduce the glycerol byproduct by 30.2% and thereby meet international standards requiring a FAME content of >96%.

  10. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    Science.gov (United States)

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-01

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis. PMID:11042207

  11. Additive effects of acetic acid upon hydrothermal reaction of amylopectin

    International Nuclear Information System (INIS)

    It is well known that over 0.8 kg kg−1 of starch is consisted of amylopectin (AP). In this study, production of glucose for raw material of ethanol by hydrothermal reaction of AP as one of the model compound of food is discussed. Further, additive effects of acetic acid upon hydrothermal reactions of AP are also investigated. During hydrothermal reaction of AP, production of glucose occurred above 453 K, and the glucose yield increased to 0.48 kg kg−1 at 473 K. Upon hydrothermal reaction of AP at 473 K, prolongation of the holding time was not effective for the increase of the glucose yield. Upon hydrothermal reaction of AP at 473 K for 0 s, the glucose yield increased significantly by addition between 0.26 mol L−1 and 0.52 mol L−1 of acetic acid. However, the glucose yield decreased and the yield of the other constituents increased with the increases of concentration of acetic acid from 0.65 mol L−1 to 3.33 mol L−1. It was considered that hydrolysis of AP to yield glucose was enhanced due to the increase of the amount of proton derived from acetic acid during hydrothermal reaction with 0.52 mol L−1 of acetic acid. -- Highlights: ► Glucose production by hydrothermal reaction of amylopectin (AP) at 473 K. ► Glucose yield increased to 0.48 kg kg-1 at 473 K. ► Prolongation of holding time was not effective for glucose yield. ► Glucose yield increased significantly by acetic acid (0.26–0.52 mol L-1) addition. ► Hydrolysis of AP to glucose was enhanced due to increase of proton from acetic acid.

  12. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... fruits and vegetables Dehydrated fruit and vegetable juices Edible vegetable fat-water emulsions As... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172.848 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  13. Synthesis and insecticidal activities of new pyrethroid acid oxime ester derivatives

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of compounds containing oxime-ester linkage in place of the ester linkage in pyrethroid ester are designed and prepared. Bioassay data of insecticidal activities of these compounds on Ostrinia nubilalis (H.) and Culex pipines (L.) are presented. Among them 4-dimethyaminobenzaldehyde oxime ester of 2,2,3,3-tetramethylcyclopropanecarboxylic acid and 4-dimethyamino benzaldehyde oxime ester of cyclopropanecarboxylic acid are found to be potent insecticide against Ostrinia nubilalis (H.). Structure-activity relationship of the compounds is discussed.

  14. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2010-06-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  15. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-01

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016.

  16. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-01

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. PMID:27090191

  17. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  18. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  19. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  20. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Christiansen, Sofie Egholm; Thomsen, M.L.D.;

    2007-01-01

    The aerobic oxidation of aqueous ethanol to produce acetic acid and ethyl acetate was studied using heterogeneous gold catalysts. Comparing the performance of Au/MgAl2O4 and Au/TiO2 showed that these two catalysts exhibited similar performance in the reaction. By proper selection of the reaction...... conditions, yields of 90-95% of acetic acid could be achieved at moderate temperatures and pressures. Based on our findings, a reaction pathway for the catalytic oxidation of ethanol via acetaldehyde to acetic acid is proposed, and the rate-determining step (RDS) in the mechanism is found to be the (possibly......, the possibilities for producing ethyl acetate by the aerobic oxidation of ethanol is also studied. At low ethanol concentrations, the main product is acetic acid; at concentrations >60 wt%, it is ethyl acetate....

  1. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Science.gov (United States)

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  2. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Partial phosphoric acid esters of polyester resins... of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section... prescribed conditions: (a) For the purpose of this section, partial phosphoric acid esters of...

  3. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    Science.gov (United States)

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  4. Crystal structure of febuxostat–acetic acid (1/1

    Directory of Open Access Journals (Sweden)

    Min Wu

    2015-05-01

    Full Text Available The asymmetric unit of the title compound [systematic name: 2-(3-cyano-4-isobutyloxyphenyl-4-methylthiazole-5-carboxylic acid–acetic acid (1/1], C16H16N2O3S·CH3COOH, contains a febuxostat molecule and an acetic acid molecule. In the febuxostat molecule, the thiazole ring is nearly coplanar with the benzene ring [dihedral angle = 3.24 (2°]. In the crystal, the febuxostat and acetic acid molecules are linked by O—H...O, O—H...N hydrogen bonds and weak C—H...O hydrogen bonds, forming supramolecular chains propagating along the b-axis direction. π–π stacking is observed between nearly parallel thiazole and benzene rings of adjacent molecules; the centroid-to-centroid distances are 3.8064 (17 and 3.9296 (17 Å.

  5. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Jensen, J B; Egsgaard, H; Van Onckelen, H;

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid chromatogr...

  6. Catalytic Esterification of Methyl Alcohol with Acetic Acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Esterification of methyl alcohol with acetic acid catalysed by Amberlyst-15 (cation-exchange resin) was carried out in a batch reactor in the temperature ranging between 318-338 K, at atmospheric pressure. The reaction rate increased with increase in catalyst concentration and reaction temperature, but decreased with an increase in water concentration. Stirrer speed had virtually no effect on the rate under the experimental conditions. The rate data were correlated with a second-order kinetic model based on homogeneous reaction. The apparent activation energy was found to be 22.9kJ.mo1-1 for the formation of methyl acetate. The methyl acetate production was carried out aa batch and continuous in a packed bed restive distillation column with high purity methyl acetate produced.

  7. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  8. Conversion of carbohydrates to levulinic acid esters

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to the field of converting carbohydrates into levulinic acid, a platform chemical for many chemical end products. More specifically the invention relates to a method for converting carbohydrates such as mono-, di- or polysaccharides, obtained from for example biomass...

  9. Organising pneumonia associated with fumaric acid ester treatment for psoriasis.

    LENUS (Irish Health Repository)

    Deegan, Alexander Paul

    2012-02-01

    INTRODUCTION: We present the case of a 49-year old male who presented with dyspnoea, cough, weight loss, night sweats and general malaise. He had been on treatment with oral fumaric acid esters (FAE, Fumaderm(R); Biogen Idec GmbH, Ismaning, Germany) for 6 months. METHODS: Report of a case. RESULTS: His chest X-ray showed patchy infiltrates in the left upper lobe which failed to resolve under empiric antibiotic therapy. A computed tomography of thorax revealed bilateral, mostly peripheral foci of consolidation with air bronchograms. Transbronchial biopsies showed a pattern of organising pneumonia (OP). CONCLUSIONS: Therapy with oral prednisolone (40 mg\\/day) resulted in a rapid clinical and radiological improvement. An association of FAE and OP has not previously been reported. Please cite this paper as: Deegan AP, Kirby B, Rogers S, Crotty TB and McDonnell TJ. Organising pneumonia associated with fumaric acid ester treatment for psoriasis.

  10. Enzymatic synthesis and application of fatty acid ascorbyl esters

    OpenAIRE

    Stojanović Marija M.; Carević Milica B.; Mihailović Mladen D.; Knežević-Jugović Zorica D.; Petrović Slobodan D.; Bezbradica Dejan I.

    2013-01-01

    Fatty acid ascorbyl esters are liposoluble substances that possess good antioxidative properties. These compounds could be synthesized by using various acyl donors for acylation of vitamin C in reaction catalyzed by chemical means or lipases. Enzymatic process is preferred since it is regioselective, performed under mild reaction conditions, with the obtained product being environmentally friendly. Polar organic solvents, ionic liquids, and supercritical fluids has been successfully use...

  11. Enzymatic synthesis and application of fatty acid ascorbyl esters

    Directory of Open Access Journals (Sweden)

    Stojanović Marija M.

    2013-01-01

    Full Text Available Fatty acid ascorbyl esters are liposoluble substances that possess good antioxidative properties. These compounds could be synthesized by using various acyl donors for acylation of vitamin C in reaction catalyzed by chemical means or lipases. Enzymatic process is preferred since it is regioselective, performed under mild reaction conditions, with the obtained product being environmentally friendly. Polar organic solvents, ionic liquids, and supercritical fluids has been successfully used as a reaction medium, since commonly used solvents with high Log P values are inapplicable due to ascorbic acid high polarity. Acylation of vitamin C using fatty acids, their methyl-, ethyl-, and vinyl esters, as well as triglycerides has been performed, whereas application of the activated acyl donors enabled higher molar conversions. In each case, majority of authors reported that using excessive amount of the acyl donor had positive effect on yield of product. Furthermore, several strategies have been employed for shifting the equilibrium towards the product by water content control. These include adjusting the initial water activity by pre-equilibration of reaction mixture, enzyme preparation with water vapor of saturated salt solutions, and the removal of formed water by the addition of molecular sieves or salt hydrate pairs. The aim of this article is to provide a brief overview of the procedures described so far for the lipase-catalyzed synthesis of fatty acid ascorbyl esters with emphasis on the potential application in food, cosmetics, and pharmaceutics. Furthermore, it has been pointed out that the main obstacles for process commercialization are long reaction times, lack of adequate purification methods, and high costs of lipases. Thus, future challenges in this area are testing new catalysts, developing continuous processes for esters production, finding cheaper acyl donors and reaction mediums, as well as identifying standard procedures for

  12. Evaluation of salicylic acid fatty ester prodrugs for UV protection.

    Science.gov (United States)

    Im, Jong Seob; Balakrishnan, Prabagar; Oh, Dong Hoon; Kim, Jung Sun; Jeon, Eun-Mi; Kim, Dae-Duk; Yong, Chul Soon; Choi, Han-Gon

    2011-07-01

    The purpose of this study was to investigate the physicochemical properties and in vitro evaluation of fatty ester prodrugs of salicylic acid for ultraviolet (UV) protection. The physicochemical properties such as lipophilicity, chemical stability and enzymatic hydrolysis were investigated with the following fatty ester prodrugs of salicylic acid: octanoyl (C8SA), nonanoyl (C9SA), decanoyl (C10SA), lauroyl (C12SA), myristoyl (C14SA) and palmitoyl oxysalicylate (C16SA). Furthermore, their skin permeation and accumulation were evaluated using a combination of common permeation enhancing techniques such as the use of a lipophilic receptor solution, removal of stratum corneum and delipidization of skin. Their k' values were proportional to the degree of carbon-carbon saturation in the side chain. All these fatty esters were highly stable in 2-propanol, acetonitrile and glycerin, but unstable in methanol and ethanol. They were relatively unstable in liver and skin homogenates. In particular, C16SA was mostly hydrolyzed to its parent compound in hairless mouse liver and skin homogenates, suggesting that it might be converted to salicylic acid after its topical administration. In the skin permeation and accumulation study, C16SA showed the poorest permeation in all skins, suggesting that it could not be permeated in the skin. Furthermore, C14SA and C16SA were less accumulated in delipidized skin compared with normal skin or stripped skin, suggesting that these esters had relatively strong affinities for lipids compared with the other prodrugs in the skin. C16SA showed significantly higher dermal accumulation in all skins compared with its parent salicylic acid. Thus, the palmitoyl oxysalicylate (C16SA) might be a potential candidate for UV protection due to its absence of skin permeation, smaller uptake in the lipid phase and relatively lower skin accumulation.

  13. First Acetic Acid Survey with CARMA in Hot Molecular Cores

    CERN Document Server

    Shiao, Y -S Jerry; Remijan, Anthony J; Snyder, Lewis E; Friedel, Douglas N

    2010-01-01

    Acetic acid (CH$_3$COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is co-spatial within the telescope beam. Previous work has presumed that similar cores with co-spatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations become available of large O and N-containing molecules? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at 3 mm wavelengths towards G19.61-0.23, G29.96-0.02 and IRAS 16293-2422. We have successfully detected CH$_3$COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH$_3$COOH is 2.0(1.0)$\\times 10^{16}$ cm$^{-2}$ and the...

  14. Oxidized cellulose esters: I. Preparation and characterization of oxidized cellulose acetates--a new class of biodegradable polymers.

    Science.gov (United States)

    Kumar, V; Yang, D

    2002-01-01

    Oxidized cellulose acetates (OCA), with a degree of substitution (DS) value ranging between 1.1 and 2.3 and a free carboxylic acid group content of 20% (w/w), have been prepared by reacting oxidized cellulose (OC, COOH content 20% w/w) with a mixture of acetic acid and acetic anhydride in the presence of sulfuric acid as a catalyst. The DS of OCA, in general, increased with increasing reaction temperature, reaction time, and concentration of acetic anhydride in the reaction mixture. The yield of OCA, in contrast, increased with increasing concentration of acetic anhydride and decreased with increasing reaction time and temperature. The intrinsic viscosity of OCA varied between 0.100 and 0.275, depending on the reaction conditions used during its preparation. In general, an increase in reaction temperature and the use of a prolonged reaction time decreased the intrinsic viscosity of OCA. No correlation was found between DS and intrinsic viscosity of OCA. The apparent pKa of OCA is 3.7-3.9. The new OCA polymers are practically insoluble in water and slowly dissolve in pH 7.4 phosphate buffer solution. They are, however, soluble in a range of organic solvents (e.g. ethyl acetate, acetone, acetone/water, chloroform/methylene chloride, dimethylsulfoxide, dimethylformamide, and/or chloroform/methanol). PMID:12102594

  15. Fries Rearrangement of Phenyl Acetate over Solid Acid Catalyst

    Institute of Scientific and Technical Information of China (English)

    CanXiongGUO; YanLIU; 等

    2002-01-01

    A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD,IR,XPS,pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.

  16. Fries Rearrangement of Phenyl Acetate over Solid Acid Catalyst

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD, IR, XPS, pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.

  17. Melanogenesis-inhibitory saccharide fatty acid esters and other constituents of the fruits of Morinda citrifolia (noni).

    Science.gov (United States)

    Akihisa, Toshihiro; Tochizawa, Shun; Takahashi, Nami; Yamamoto, Ayako; Zhang, Jie; Kikuchi, Takashi; Fukatsu, Makoto; Tokuda, Harukuni; Suzuki, Nobutaka

    2012-06-01

    Five new saccharide fatty acid esters, named nonioside P (3), nonioside Q (4), nonioside R (8), nonioside S (10), and nonioside T (14), and one new succinic acid ester, butyl 2-hydroxysuccinate (=4-butoxy-3-hydroxy-4-oxobutanoic acid) (31), were isolated, along with 26 known compounds, including eight saccharide fatty acid esters, 1, 2, 5, 6, 7, 9, 12, and 13, three hemiterpene glycosides, 15, 17, and 18, six iridoid glycosides, 21-25, and 27, and nine other compounds, 20, 28, 29, and 32-37, from a MeOH extract of the fruit of Morinda citrifolia (noni). Upon evaluation of these and five other glycosidic compounds, 11, 16, 19, 26, and 30, from M. citrifolia fruit extract for their inhibitory activities against melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), most of the saccharide fatty acid esters, hemiterpene glycosides, and iridoid glycosides showed inhibitory effects with no or almost no toxicity to the cells. These compounds were further evaluated with respect to their cytotoxic activities against two human cancer cell lines (HL-60 and AZ521) and their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced with 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells.

  18. Acrylic acid obtaining from methanol and acetic acid in the presence of complex oxide catalysts

    OpenAIRE

    Небесний, Роман Володимирович; Піх, Зорян Григорович; Шпирка, Ірина Іванівна; Івасів, Володимир Васильович; Небесна, Юлія Віталіївна; Фуч, Уляна Василівна

    2015-01-01

    The purpose of this work is to research process of single-stage acrylic acid obtaining from methanol and acetic acid, namely: to develop effective catalysts for the process of methanol oxidation to formaldehyde with its further aldol condensation with acetic acid to acrylic acid, and to determine optimum conditions for the process. Complex oxide catalysts consisting of oxides of boron, phosphorus, tungsten and vanadium supported on the silica gel have been investigated. The effect of vanadium...

  19. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Science.gov (United States)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  20. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    Science.gov (United States)

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation.

  1. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Science.gov (United States)

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  2. Liquid-Liquid equilibria of the water-acetic acid-butyl acetate system

    Directory of Open Access Journals (Sweden)

    E. Ince

    2002-04-01

    Full Text Available Experimental liquid-liquid equilibria of the water-acetic acid-butyl acetate system were studied at temperatures of 298.15± 0.20, 303.15± 0.20 and 308.15± 0.20 K. Complete phase diagrams were obtained by determining solubility and tie-line data. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The UNIFAC group contribution method was used to predict the observed ternary liquid-liquid equilibrium (LLE data. It was found that UNIFAC group interaction parameters used for LLE did not provide a good prediction. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  3. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs)

    International Nuclear Information System (INIS)

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  4. [Enantioseparation of 2-phenylcarboxylic acid esters by capillary gas chromatography].

    Science.gov (United States)

    Shi, Xueyan; Liu, Feipeng; Bian, Qinghua

    2016-01-01

    Chiral 2-arylcarboxylic acid derivatives are important intermediates for preparing 2-arylcarboxylic acids, which are non-steroidal anti-inflammatory drugs (NSAIDs). In order to separate 2-phenylcarboxylic acid ester enantiomers by capillary gas chromatography (CGC), 2, 6-di-O-pentyl-3-O-butyryl-β-cyclodextrin and 2,6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin were used as CGC chiral stationary phases, separately, and their enantioseparation abilities to enantiomers of methyl 2-phenylbutanoate, ethyl 2-phenylbutanoate, isopropyl 2-phenylbutanoate, methyl 2-phenylpropionate and cyclopentyl 2-phenylpropionate were examined. It was found that methyl 2-phenylbutanoate, methyl 2-phenylpropionate and cyclopentyl 2-phenylpropionate were successfully separated by using 2,6-di-O-pentyl-3-O-butyryl-β-cyclodextrin and 2,6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin as CGC chiral stationary phases, respectively. The enantiomer separation abilities of 2, 6-di-O-pentyl-3-O-butyryl-β-cyclodextrin to the three pairs of 2-phenylcarboxylic acid esters tested are superior to those of 2, 6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin. PMID:27319170

  5. Protection of historical lead against acetic acid vapour

    Directory of Open Access Journals (Sweden)

    Pecenová Z.

    2016-03-01

    Full Text Available Historical lead artefacts (small figurines, appliques, bull (metal seal can be stored in depository and archives in inconvenient storage conditions. The wooden show-case or paper packagings release volatile organic compound to the air during their degradation. These acids, mainly acetic acid are very corrosive for lead. The thin layer of corrosion products which slows atmospheric corrosion is formed on lead surface in atmospheric condition. In presence of acetic acid vapour the voluminous corrosion products are formed and fall off the surface. These corrosion products do not have any protection ability. The lead could be protected against acid environment by layer of “metal soup” which is formed on surface after immersion in solution of salt of carboxylic acid for 24 hours. The solutions of acids (with vary long of carbon chain and their salts are examined. Longer carbon chain provides better efficiency convers layer. The disadvantages are low solubility of carboxylic acids in water and bad abrasion resistance of formed layer.

  6. Antifungal activity of 4-substituted crotonic acid esters.

    Science.gov (United States)

    Gershon, H; Shanks, L; Gawiak, D E

    1976-08-01

    Twenty-three 4-substituted crotonic acid esters were tested for antifungal activity against Candida albicans, Aspergillus niger, Mucor mucedo, and Trichophyton mentagrophytes. For the analogues of the methyl ester containing substituents in the 4 position, the following order of fungitoxicity was observed: I greater than Br greater than Cl greater than CH3S greater than CH3O greater than F=H. Of the homologues of the esters of the 4-iodo and 4-bromo compounds which included methyl, ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl, ethyl 4-iodocrotonate was most toxic to the four fungi at pH 7.0 in the presence of 10% beef serum (C. albicans, 18mug/ml, A. niger, 40 mug/ml, M. mucedo, 5 mug/ml, T. mentagrophytes, 4 mug/ml). It is believed that the mechanism of fungitoxicity is due, in part, to a nucleophilic reaction involving SH-containing compounds. This is based on the correlation of fungitoxicity with the order of leaving groups in the nucleophilic reaction and the protection against the toxicity of the test compounds to the fungi by cysteine and glutathione.

  7. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    Science.gov (United States)

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  8. Acetic Acid Production by an Electrodialysis Fermentation Method with a Computerized Control System

    OpenAIRE

    Nomura, Yoshiyuki; Iwahara, Masayoshi; Hongo, Motoyoshi

    1988-01-01

    In acetic acid fermentation by Acetobacter aceti, the acetic acid produced inhibits the production of acetic acid by this microorganism. To alleviate this inhibitory effect, we developed an electrodialysis fermentation method such that acetic acid is continuously removed from the broth. The fermentation unit has a computerized system for the control of the pH and the concentration of ethanol in the fermentation broth. The electrodialysis fermentation system resulted in improved cell growth an...

  9. Microwave Irradiation Promoted Synthesis of Aryloxy Acetic Acids

    Institute of Scientific and Technical Information of China (English)

    LIN Min; ZHOU Jin-mei; XIA Hai-ping; YANG Rui-feng; LIN Chen

    2004-01-01

    Several aryloxy acetic acids were synthesized under microwave irradiation. The factors, which affect the reaction, were investigated and optimized. It was revealed that the best yields(92.7%-97.4%) were obtained when the molar ratio of the reactants was n(ArOH) : n(NaOH): n(ClCH2CO2H) =1: 2.5: 1.2 with microwave irradiation power of 640 W for 65-85 s.

  10. Kinetics of xylose dehydration into furfural in acetic acid

    Institute of Scientific and Technical Information of China (English)

    Zhou Chen; Weijiang Zhang; Jiao Xu; Pingli Li

    2015-01-01

    In this paper kinetics of xylose dehydration into furfural using acetic acid as catalyst was studied comprehensively and systematical y. The reaction order of both furfural and xylose dehydration was determined and the reaction activation energy was obtalned by nonlinear regression. The effect of acetic acid concentration was also investi-gated. Reaction rate constants were galned. Reaction rate constant of xylose dehydration is k1 ¼ 4:189 . 1010 ½A.0:1676 exp −108:6.1000RT . ., reaction rate constant of furfural degradation is k2 ¼ 1:271 . 104½A.0:1375 exp−63:413.1000RT . and reaction rate constant of condensation reaction is k3 ¼ 3:4051 . 1010½A.0:1676 exp−104:99.1000RT .. Based on this, the kinetics equation of xylose dehydration into furfural in acetic acid was set up according to theory of Dunlop and Furfural generating rate equation is dd½F.t ¼ k1½X.0e−k1t−k2½F.−k3½X.0e−k1t½F.. © 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.

  11. 75 FR 40736 - Acetic Acid; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-07-14

    ... AGENCY 40 CFR Part 180 Acetic Acid; Exemption from the Requirement of a Tolerance AGENCY: Environmental... for acetic acid by establishing an exemption from the requirement of a tolerance for residues of acetic acid, also known as vinegar in or on all food crops resulting from unintentional spray and...

  12. Acetic Acid bacteria: physiology and carbon sources oxidation.

    Science.gov (United States)

    Mamlouk, Dhouha; Gullo, Maria

    2013-12-01

    Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called "oxidative fermentations", especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.

  13. Morphological diversity of Blastocystis hominis in sodium acetate-acetic acid-formalin-preserved stool samples stained with iron hematoxylin.

    OpenAIRE

    Macpherson, D. W.; MacQueen, W M

    1994-01-01

    The objective of this investigation was to study the morphological characteristics of Blastocystis hominis in sodium acetate-acetic acid-Formalin-preserved stool samples. Routinely processed samples were examined for morphological detail, including size, shape, nuclear detail, and central body characteristics. Morphological findings revealing the importance of recognizing B. hominis in the diagnostic laboratory are described.

  14. Morphological diversity of Blastocystis hominis in sodium acetate-acetic acid-formalin-preserved stool samples stained with iron hematoxylin.

    Science.gov (United States)

    MacPherson, D W; MacQueen, W M

    1994-01-01

    The objective of this investigation was to study the morphological characteristics of Blastocystis hominis in sodium acetate-acetic acid-Formalin-preserved stool samples. Routinely processed samples were examined for morphological detail, including size, shape, nuclear detail, and central body characteristics. Morphological findings revealing the importance of recognizing B. hominis in the diagnostic laboratory are described. PMID:7510311

  15. Synthesis of N-(methoxycarbonyl or isopropylcarbamoyl- methoxyphosphonyl)-α-amino acid ester and their stereomers

    Institute of Scientific and Technical Information of China (English)

    陈茹玉; 李慧英

    1996-01-01

    N-(methoxycarbonyl-methoxyphosphonyl)-α-amino add esters (I) were synthesized via the reaction of the corresponding phosphonyl chloride with amino acid ester hydrochlorides in the presence of a base. Compound I was aminated to yield N-(isopropylcarbainoyl-methoxyphosphonyl)-α-amino acid esters (II). With l-amino acids as starting materials, the isomers of products I and II were separated and their configurations were confirmed by the single crystal X-ray diffraction of II.

  16. A Convenient, General Synthesis of 1,1-Dimethylallyl Esters as Protecting Groups for Carboxylic Acids

    Science.gov (United States)

    Sedighi, Minoo; Lipton, Mark A.

    2006-01-01

    Carboxylic acids were converted in high yield to their 1,1-dimethylallyl (DMA) esters in two steps. Palladium-catalyzed deprotection of DMA esters was shown to be compatible with tert-butyl, benzyl and Fmoc protecting groups, and Fmoc deprotection could be carried out selectively in the presence of DMA esters. DMA esters were also shown to be resistant to nucleophilic attack, suggesting that they will serve as alternatives to tert-butyl esters when acidic deprotection conditions need to be avoided. PMID:15816730

  17. A convenient, general synthesis of 1,1-dimethylallyl esters as protecting groups for carboxylic acids.

    Science.gov (United States)

    Sedighi, Minoo; Lipton, Mark A

    2005-04-14

    [reaction: see text] Carboxylic acids were converted in high yield to their 1,1-dimethylallyl (DMA) esters in two steps. Palladium-catalyzed deprotection of DMA esters was shown to be compatible with tert-butyl, benzyl, and Fmoc protecting groups, and Fmoc deprotection could be carried out selectively in the presence of DMA esters. DMA esters were also shown to be resistant to nucleophilic attack, suggesting that they will serve as alternatives to tert-butyl esters when acidic deprotection conditions need to be avoided.

  18. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters.

    Science.gov (United States)

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-02-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.

  19. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    Science.gov (United States)

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria.

  20. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    Science.gov (United States)

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. PMID:25575969

  1. A potential tocopherol acetate loaded palm oil esters-in-water nanoemulsions for nanocosmeceuticals

    OpenAIRE

    Rahman Raja; Salleh Abu; Zakaria Mohd; Basri Mahiran; Teo Brian; Rahman Mohd

    2010-01-01

    Abstract Background Cosmeceuticals are cosmetic-pharmaceutical hybrids intended to enhance health and beauty of the skin. Nanocosmeceuticals use nano-sized system for the delivery of active ingredients to the targeted cells for better penetration. In this work, nanoemulsion from palm oil esters was developed as a delivery system to produce nanocosmeceuticals. The stability of the resulting formulation was tested using various methods. In addition, the effect of components i.e. Vitamin E and P...

  2. A potential tocopherol acetate loaded palm oil esters-in-water nanoemulsions for nanocosmeceuticals

    Directory of Open Access Journals (Sweden)

    Rahman Raja

    2010-02-01

    Full Text Available Abstract Background Cosmeceuticals are cosmetic-pharmaceutical hybrids intended to enhance health and beauty of the skin. Nanocosmeceuticals use nano-sized system for the delivery of active ingredients to the targeted cells for better penetration. In this work, nanoemulsion from palm oil esters was developed as a delivery system to produce nanocosmeceuticals. The stability of the resulting formulation was tested using various methods. In addition, the effect of components i.e. Vitamin E and Pluronic F-68 on the formulation was also studied. Results Both vitamin E and Pluronic F-68 were found to co-emulsify and co-stabilized the formulations. The best formulation was found to be the one having the composition of 10% Palm Oil Esters (POEs, 10% vitamin E, 24% Tween 80, 2.4% Pluronic F-68 and 53.6% deionised water. Those compositions are considered to be the best as a nanocosmeceutical product due to the small particle size (94.21 nm, low occurrence of Ostwald ripening and stable at different storing temperatures (5, 25 and 45°C for four weeks. Conclusions Palm oil esters-in-water nanoemulsions loaded with vitamin E was successfully formulated and has the potential for the use as nanocosmeceuticals.

  3. Regulation of urokinase receptors in monocytelike U937 cells by phorbol ester phorbol myristate acetate

    DEFF Research Database (Denmark)

    Picone, R; Kajtaniak, E L; Nielsen, L S;

    1989-01-01

    and distribution of uPA in tumor cells and tissues suggest that the uPA/uPAR interaction may be important in regulating extracellular proteolysis-dependent processes (e.g., invasion, tissue destruction). Phorbol myristate acetate (PMA), an inducer of U937 cell differentiation to macrophage-like cells, elicits...

  4. The effect of oral sodium acetate administration on plasma acetate concentration and acid-base state in horses

    Directory of Open Access Journals (Sweden)

    Lindinger Michael I

    2007-12-01

    Full Text Available Abstract Aim Sodium acetate (NaAcetate has received some attention as an alkalinizing agent and possible alternative energy source for the horse, however the effects of oral administration remain largely unknown. The present study used the physicochemical approach to characterize the changes in acid-base status occurring after oral NaAcetate/acetic acid (NAA administration in horses. Methods Jugular venous blood was sampled from 9 exercise-conditioned horses on 2 separate occasions, at rest and for 24 h following a competition exercise test (CET designed to simulate the speed and endurance test of 3-day event. Immediately after the CETs horses were allowed water ad libitum and either: 1 8 L of a hypertonic NaAcetate/acetic acid solution via nasogastric tube followed by a typical hay/grain meal (NAA trial; or 2 a hay/grain meal alone (Control trial. Results Oral NAA resulted in a profound plasma alkalosis marked by decreased plasma [H+] and increased plasma [TCO2] and [HCO3-] compared to Control. The primary contributor to the plasma alkalosis was an increased [SID], as a result of increased plasma [Na+] and decreased plasma [Cl-]. An increased [Atot], due to increased [PP] and a sustained increase in plasma [acetate], contributed a minor acidifying effect. Conclusion It is concluded that oral NaAcetate could be used as both an alkalinizing agent and an alternative energy source in the horse.

  5. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    Science.gov (United States)

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  6. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    Science.gov (United States)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  7. KINETIC STUDY OF CARBONYLATION OF METHANOL TO ACETIC ACID AND ACETIC ANHYDRIDE OVER A NOVEL COPOLYMER- BOUND CIS- DICARBONYLRHODIUM COMPLEX

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuying; YUAN Guoqing; CHEN Rongyao

    1989-01-01

    The kinetic study of carbonylation of methanol-acetic acid mixture to acetic acid and acetic anhydride over a cis-dicarbonylrhodium complex (MVM' Rh)coordinated with the ethylene diacrylate (M')crosslinked copolymer of methyl acrylate (M) and 2 - vinylpyridine (V) shows that the rate of reaction is zero order with respect to both reactants methanol and carbon monoxide, but first order in the concentrations of promoter methyl iodide and rhodium in the complex . Polar solvents can accelerate the reaction .Activation parameters were calculated from the experimental results, being comparable to that of the homogeneous system . A mechanism similar to that of soluble rhodium catalyst was proposed .

  8. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  9. Kinetics of esterification of methanol and acetic acid with mineral homogeneous acid catalyst

    Institute of Scientific and Technical Information of China (English)

    Mallaiah Mekala; Venkat Reddy Goli

    2015-01-01

    In this work, esterification of acetic acid and methanol to synthesize methyl acetate in a batch stirred reactor is studied in the temperature range of 305.15–333.15 K. Sulfuric acid is used as the homogeneous catalyst with concentrations ranging from 0.0633 mol·L−1 to 0.3268 mol·L−1. The feed molar ratio of acetic acid to methanol is varied from 1:1 to 1:4. The influences of temperature, catalyst concentration and reactant concentration on the reaction rate are investigated. A second order kinetic rate equation is used to correlate the experimental data. The forward and backward reaction rate constants and activation energies are determined from the Arrhenius plot. The developed kinetic model is compared with the models in literature. The developed kinetic equation is useful for the simulation of reactive distillation column for the synthesis of methyl acetate.

  10. Chromatographic, Spectrometric and NMR Characterization of a New Set of Glucuronic Acid Esters Synthesized by Lipase

    Directory of Open Access Journals (Sweden)

    Michel Marlier

    2007-01-01

    Full Text Available An enzymatic synthesis was developed on a new set of D-glucuronic acid esters and particularly the tetradecyl-D-glucopyranosiduronate also named tetradecyl D-glucuronate. Chromatographic analyses revealed the presence of the ester as a mixture of anomeric forms for carbon chain lengths superior to 12. TOF/MS and MS/MS studies confirmed the synthesis of glucuronic acid ester. The NMR study also confirmed the structure of glucuronic acid esters and clearly revealed an anomeric (α/β ratio equivalent to 3/2

  11. Conversion regular patterns of acetic acid,propionic acid and butyric acid in UASB reactor

    Institute of Scientific and Technical Information of China (English)

    LIU Min; REN Nan-qi; CHEN Ying; ZHU Wen-fang; DING Jie

    2004-01-01

    On the basis of continuous tests and batch tests, conversion regular patterns of acetate, propionate and butyrate in activated sludge at different heights of the UASB reactor were conducted. Results indicated that the conversion capacity of the microbial is decided by the substrate characteristic when sole VFA is used as the only substrate. But when mixed substrates are used,the conversion regulations would have changed accordingly. Relationships of different substrates vary according to their locations. In the whole reactor, propionate's conversion is restrained by acetate and butyrate of high concentration. On the top and at the bottom of the reactor, conversion of acetate, but butyrate, is restrained by propionate. And in the midst, acetate's conversion is accelerated by propionate while that of butyrate is restrained. It is proved, based on the analysis of specific conversion rate, that the space distribution of the microbe is the main factor that affects substrates' conversion. The ethanol-type fermentation of the acidogenic-phase is the optimal acid-type fermentation for the two-phase anaerobic process.

  12. EFFECT OF GOSSYPOL ACETIC ACID ON CHROMOSOME ABERRATIONS AND ANEUPLOIDIES IN OOCYTES AND ZYGOTES OF MICE

    Institute of Scientific and Technical Information of China (English)

    WANGRen-Li; ZHANGZhong-Shu

    1989-01-01

    It was reported that gossypol acetic acid could effectively inhibit th~ implantation in ratA. This finding indicated that gossypol acet/c acid might also be used as a female contraceptive. The Present study further investigated the genetic effect of gossypol acetic

  13. Depigmenting Effect of Kojic Acid Esters in Hyperpigmented B16F1 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Ahmad Firdaus B. Lajis

    2012-01-01

    Full Text Available The depigmenting effect of kojic acid esters synthesized by the esterification of kojic acid using Rhizomucor miehei immobilized lipase was investigated in B16F1 melanoma cells. The depigmenting effect of kojic acid and kojic acid esters was evaluated by the inhibitory effect of melanin formation and tyrosinase activity on alpha-stimulating hormone- (α-MSH- induced melanin synthesis in B16F1 melanoma cells. The cellular tyrosinase inhibitory effect of kojic acid monooleate, kojic acid monolaurate, and kojic acid monopalmitate was found similar to kojic acid at nontoxic doses ranging from 1.95 to 62.5 μg/mL. However, kojic acid monopalmitate gave slightly higher inhibition to melanin formation compared to other inhibitors at doses ranging from 15.63 to 62.5 μg/mL. Kojic acid and kojic acid esters also show antioxidant activity that will enhance the depigmenting effect. The cytotoxicity of kojic acid esters in B16F1 melanoma cells was significantly lower than kojic acid at high doses, ranging from 125 and 500 μg/mL. Since kojic acid esters have lower cytotoxic effect than kojic acid, it is suggested that kojic acid esters can be used as alternatives for a safe skin whitening agent and potential depigmenting agents to treat hyperpigmentation.

  14. Determining Phthalic Acid Esters Using Terahertz Time Domain Spectroscopy

    Science.gov (United States)

    Liu, L.; Shen, L.; Yang, F.; Han, F.; Hu, P.; Song, M.

    2016-09-01

    In this report terahertz time domain spectroscopy (THz-TDS) is applied for determining phthalic acid esters (PAEs) in standard materials. We reported the THz transmission spectrum in the frequency range of 0.2 to 2.0 THz for three PAEs: di-n-butyl phthalate (DBP), di-isononyl phthalate (DINP), and di-2-ethylhexyl phthalate ester (DEHP). The study provided the refractive indices and absorption features of these materials. The absorption spectra of three PAEs were simulated by using Gaussian software with Density Functional Theory (DFT) methods. For pure standard PAEs, the values of the refractive indices changed between 1.50 and 1.60. At 1.0 THz, the refractive indices were 1.524, 1.535, and 1.563 for DINP, DEHP, and DBP, respectively. In this experiment different concentrations of DBP were investigated using THz-TDS. Changes were measured in the low THz frequency range for refractive indices and characteristic absorption. The results indicated that THz-TDS is promising as a new method in determining PAEs in many materials. The results of this study could be used to support the practical application of THz-TDS in quality detection and food monitoring. In particular, this new technique could be used in detecting hazardous materials and other substances present in wine or foods.

  15. Probiotic and Acetic Acid Effect on Broiler Chickens Performance

    Directory of Open Access Journals (Sweden)

    Martin Král

    2011-05-01

    Full Text Available Probiotics and organic acids are widely accepted as an alternative to in-feed antibiotics in poultry production. We carried the experiment with broiler chickens. In experiment we research effect of probiotic and acetic acids on the performance of broiler chickens. A total number of 200 one day old broiler chickens were distributed to two dietary groups. Broiler chickens in control group were fed with standard feed mixture and experimental group 1% vinegar contained 5% acetic acid used in drinking water and probiotics mixed with feed mixture. Body weight, FCR and GIT pH were recorded. The performance showed no statistically significant increase in body weight (P>0.05 in the weeks 1, 2, 3 and 4 of age. The body weight of broiler chickens was significant increase (P0.05 in weeks 5, and 6 of age. In different segments of the GIT was not statistically significant (P>0.05 difference of pH between the control and experimental groups.

  16. Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    Four different pretreatments with and without addition of low concentration organic acids were carried out on corn stover at 195 °C for 15 min. The highest xylan recovery of 81.08% was obtained after pretreatment without acid catalyst and the lowest of 58.78% after pretreatment with both acetic...... and lactic acid. Glucan recovery was less sensitive to the pretreatment conditions than xylan recovery. The pretreatment with acetic and lactic acid yielded the highest glucan recovery of 95.66%. The glucan recoveries of the other three pretreatments varied between 83.92% and 94.28%. Fermentability tests...... material was obtained following pretreatment at 195 °C for 15 min with acetic acid employed. The estimated total ethanol production was 241.1 kg/ton raw material by assuming fermentation of both C-6 and C-5, and 0.51 g ethanol/g sugar....

  17. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    International Nuclear Information System (INIS)

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  18. Identification of rapeseed oil fatty acid esters in transesterification reactions by gas chromatography - mass spectrometry method

    International Nuclear Information System (INIS)

    Rapeseed oil transesterification with different alcohols - methyl, ethyl, n-propyl and isopropyl alcohol - has been carried out. Yields of fatty acid alkyl esters obtained from rapeseed oil were determined using the internal standard method. Results of interpretation of the obtained ester mass spectra are reported. The specimen of Latvian rape oil contains: 57.6% of oleic acid, 18.2% of linoleic acid, 8.2% linolenic acid, 3.3% palmitic acid, 2% of stearic acid and less than 1% of arachidic acid. Values of Kovats retention indices of the rapeseed oil fatty acid esters on the capillary columns DB-5 MS and DB-17 MS have been compared. More selective separation of fatty acid alkyl esters has been achieved on the stationary phase with higher content of phenyl groups (DB-17 MS). (authors)

  19. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Science.gov (United States)

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3700 Fatty acid, ester with styrenated phenol... chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  20. Synthesis and Characteristics of an Aspartame Analogue, L-Asparaginyl L-3-Phenyllactic Acid Methyl Ester

    Institute of Scientific and Technical Information of China (English)

    Hu TAO; Da-Fu CUI; You-Shang ZHANG

    2004-01-01

    An aspartame analogue,L-asparaginyl L-3-phenyllactic acid methyl ester was synthesized with aspartic acid replaced by asparagine and peptide bond replaced by ester bond.The aspartic acid of aspartame could be replaced by asparagine as reported in the literature.In this analogue,the hydrogen ofamide group could still form a hydrogen bond with the oxygen of ester bond and the ester bond was isosteric with peptide bond.However,the product was not sweet,showing that the peptide bond could not be replaced by ester bond.The peptide C-N bond behaves as a double bond that is not free to rotate and the C,O,N and H atoms are in the same plane.The replacement of peptide bond by ester bond destroyed the unique conformation of peptide bond,resulting in the loss of sweet taste.

  1. Synthesis and characteristics of an aspartame analogue, L-asparaginyl L-3-phenyllactic acid methyl ester.

    Science.gov (United States)

    Tao, Hu; Cui, Da-Fu; Zhang, You-Shang

    2004-06-01

    An aspartame analogue, L-asparaginyl L-3-phenyllactic acid methyl ester was synthesized with aspartic acid replaced by asparagine and peptide bond replaced by ester bond. The aspartic acid of aspartame could be replaced by asparagine as reported in the literature. In this analogue, the hydrogen of amide group could still form a hydrogen bond with the oxygen of ester bond and the ester bond was isosteric with peptide bond. However, the product was not sweet, showing that the peptide bond could not be replaced by ester bond. The peptide C-N bond behaves as a double bond that is not free to rotate and the C, O, N and H atoms are in the same plane. The replacement of peptide bond by ester bond destroyed the unique conformation of peptide bond, resulting in the loss of sweet taste.

  2. Phthalic acid esters found in municipal organic waste

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Ahring, Birgitte Kiær

    2003-01-01

    Contamination of the organic fraction of municipal solid waste (OFMSW) with xenobiotic compounds and their fate during anaerobic digestion was investigated. The phthalic acid ester di-(2- ethylhexyl)phthalate (DEHP) was identified as the main contaminant in OFMSW in concentrations more than half...... was observed. However, after treatment of the effluent from the thermophilic reactor in a hyper-thermophilic digester (HRT: 5 days) 0 CO 34-53% of the DEHP content was removed and the DBP removal was increased to further 62-74%. Removal rates (k(h)) of DEHP and DBP were found to be 0.11-0.32 d(-1) and 0...... is enhanced at higher temperature and higher degradation of solid organic matter, to which the highly hydrophobic DEHP is adsorbed. The investigated reactor configuration with a thermophilic and a hyper-thermophilic treatment is, therefore, a good option for CD combining high rate degradation of organic...

  3. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    Science.gov (United States)

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae. PMID:25698512

  4. Anaerobic Conversion of Lactic Acid to Acetic Acid and 1,2-Propanediol by Lactobacillus buchneri

    OpenAIRE

    Oude Elferink, S.J.W.H.; Krooneman, J.; Gottschal, J.C.; Spoelstra, S F; FABER, F; Driehuis, F

    2001-01-01

    The degradation of lactic acid under anoxic conditions was studied in several strains of Lactobacillus buchneri and in close relatives such as Lactobacillus parabuchneri, Lactobacillus kefir, and Lactobacillus hilgardii. Of these lactobacilli, L. buchneri and L. parabuchneri were able to degrade lactic acid under anoxic conditions, without requiring an external electron acceptor. Each mole of lactic acid was converted into approximately 0.5 mol of acetic acid, 0.5 mol of 1,2-propanediol, and ...

  5. Required catalytic properties for alkane production from carboxylic acids: Hydrodeoxygenation of acetic acid

    Institute of Scientific and Technical Information of China (English)

    Zhong; He; Xianqin; Wang

    2013-01-01

    The supported Pt catalysts(1 wt%)were prepared by the incipient impregnation method and analyzed using synchrotron-based X-ray diffraction,BET surface area,oxygen adsorption,CO pulse chemisorption,temperature-programmed desorption(TPD)of acetic acid,H2-TPD,NH3-TPD,O2-TPD,and H2-TPR.The reactivity of Pt-based catalysts was studied using a fixed bed reactor at 300 C and 4 MPa for hydrodeoxygenation of acetic acid,where Pt/TiO2 was very selective for ethane production.TPD experiments revealed that several conditions must be satisfied to achieve this high selectivity to ethane from acetic acid,such as Pt sites,moderate acidity,and medium metal-oxygen bond strength in the oxide support.This work provides insights in developing novel catalytic materials for hydrocarbon productions from various organics including bio-fuels.

  6. Selenium dioxide catalysed oxidation of acetic acid hydrazide by bromate in aqueous hydrochloric acid medium

    Indian Academy of Sciences (India)

    R S Yalgudre; G S Gokavi

    2012-07-01

    Selenium dioxide catalysed acetic acid hydrazide oxidation by bromate was studied in hydrochloric acid medium. The order in oxidant concentration, substrate and catalyst were found to be unity. Increasing hydrogen ion concentration increases the rate of the reaction due to protonation equilibria of the oxidant. The mechanism of the reaction involves prior complex formation between the catalyst and substrate, hydrazide, followed by its oxidation by diprotonated bromate in a slow step. Acetic acid was found to be the oxidation product. Other kinetic data like effect of solvent polarity and ionic strength on the reaction support the proposed mechanism.

  7. Unusal pattern of product inhibition: batch acetic acid fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  8. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria.

    Science.gov (United States)

    Kiryu, Takaaki; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2015-01-01

    Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid. PMID:25965080

  9. Rapid conversion of the ester prodrug abiraterone acetate results in intestinal supersaturation and enhanced absorption of abiraterone: in vitro, rat in situ and human in vivo studies.

    Science.gov (United States)

    Stappaerts, Jef; Geboers, Sophie; Snoeys, Jan; Brouwers, Joachim; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

    2015-02-01

    The aim of this study was to evaluate the intestinal disposition of abiraterone acetate, an ester prodrug of the anticancer agent abiraterone. Stability of the prodrug and solubility and dissolution characteristics of both abiraterone and abiraterone acetate were monitored in vitro. Moreover, the in vivo intraluminal concentrations of abiraterone and abiraterone acetate upon intake of one tablet of 250 mg abiraterone acetate were assessed in healthy volunteers. The intestinal absorption resulting from the intraluminal behavior of the ester prodrug was determined using the rat in situ intestinal perfusion technique with mesenteric blood sampling. Simulated and aspirated human intestinal fluids of the fasted state were used as solvent systems. Upon incubation of abiraterone acetate in human intestinal fluids in vitro, rapid hydrolysis of the prodrug was observed, generating abiraterone concentrations largely exceeding the apparent solubility of abiraterone, suggesting the existence of intestinal supersaturation. These findings were confirmed in vivo, by intraluminal sampling of duodenal fluids upon oral intake of an abiraterone acetate tablet by healthy volunteers. Rat in situ intestinal perfusion experiments performed with suspensions of abiraterone and abiraterone acetate in human intestinal fluids of the fasted state revealed significantly higher flux values upon perfusion with the prodrug than with abiraterone. Moreover, rat in situ intestinal perfusion with abiraterone acetate suspensions in simulated fluids of the fasted state in presence or absence of esterases demonstrated that increased hydrolytic activity of the perfusion medium was beneficial to the intestinal absorption of abiraterone. In conclusion, the rapid hydrolysis of abiraterone acetate in the intraluminal environment appears to result in fast and extensive generation of abiraterone supersaturation, creating a strong driving force for abiraterone absorption. PMID:25592324

  10. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

    Science.gov (United States)

    Tang, Mingjin; Larish, Whitney A; Fang, Yuan; Gankanda, Aruni; Grassian, Vicki H

    2016-07-21

    We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites.

  11. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs); Sintese de novas amidas graxas a partir da aminolise de esteres metilicos

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Carolina R.; Montes D' Oca, Caroline da Ros; Duarte, Rodrigo da C.; Kurz, Marcia H.S.; Primel, Ednei G.; Clementin, Rosilene M.; Villarreyes, Joaquin Ariel M.; Montes D' Oca, Marcelo G., E-mail: dqmdoca@furg.b [Universidade Federal do Rio Grande, RS (Brazil). Escola de Quimica e Alimentos

    2010-07-01

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  12. Acetic acid induces pH-independent cellular energy depletion in Salmonella enterica.

    Science.gov (United States)

    Tan, Sin Mei; Lee, Sui Mae; Dykes, Gary A

    2015-03-01

    Weak organic acids are widely used as preservatives and disinfectants in the food industry. Despite their widespread use, the antimicrobial mode of action of organic acids is still not fully understood. This study investigated the effect of acetic acid on the cell membranes and cellular energy generation of four Salmonella strains. Using a nucleic acid/protein assay, it was established that acetic acid did not cause leakage of intracellular components from the strains. A scanning electron microscopy study further confirmed that membrane disruption was not the antimicrobial mode of action of acetic acid. Some elongated Salmonella cells observed in the micrographs indicated a possibility that acetic acid may inhibit DNA synthesis in the bacterial cells. Using an ATP assay, it was found that at a neutral pH, acetic acid caused cellular energy depletion with an ADP/ATP ratio in the range between 0.48 and 2.63 (pacid molecules. The antimicrobial effect of acetic acid was better under acidic conditions (ADP/ATP ratio of 5.56 ± 1.27; pacid molecules can act together. We concluded that the inhibitory effect of acetic acid is not solely attributable to acidic pH but also to undissociated acid molecules. This finding has implication for the use of acetic acid as an antimicrobial against Salmonella on food products, such as chicken meat, which can buffer its pH.

  13. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    Science.gov (United States)

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues. PMID:26572799

  14. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters.

    Science.gov (United States)

    Li, Yuehui; Topf, Christoph; Cui, Xinjiang; Junge, Kathrin; Beller, Matthias

    2015-04-20

    Ethers are of fundamental importance in organic chemistry and they are an integral part of valuable flavors, fragrances, and numerous bioactive compounds. In general, the reduction of esters constitutes the most straightforward preparation of ethers. Unfortunately, this transformation requires large amounts of metal hydrides. Presented herein is a bifunctional catalyst system, consisting of Ru/phosphine complex and aluminum triflate, which allows selective synthesis of ethers by hydrogenation of esters or carboxylic acids. Different lactones were reduced in good yields to the desired products. Even challenging aromatic and aliphatic esters were reduced to the desired products. Notably, the in situ formed catalyst can be reused several times without any significant loss of activity. PMID:25728921

  15. Kinetic Study of Esterification of Acetic Acid with n-butanol and isobutanol Catalyzed by Ion Exchange Resin

    Directory of Open Access Journals (Sweden)

    Amrit Pal Toor

    2011-05-01

    Full Text Available Esters are an important pharmaceutical intermediates and very useful perfumery agents. In this study the esterification of acetic acid with n-butanol and iso-butanol over an acidic cation exchange resin, Amberlyst 15 were carried out. The effects of certain parameters such as temperature, catalyst loading, initial molar ratio between reactants on the rate of reaction were studied. The experiments were conducted in a stirred batch reactor in the temperature range of 351.15 K to 366.15K.Variation of parameters on rate of reaction demonstrated that the reaction was intrinsically controlled.The activation energy for the esterification of acetic acid with n-butanol and iso butanol is found to be 28.45 k J/mol and 23.29 kJ/mol respectively. ©2011 BCREC UNDIP. All rights reserved.(Received: 16th December 2010, Revised: 19th March 2011; Accepted: 7th April 2011[How to Cite: A.P. Toor, M. Sharma, G. Kumar, and R. K. Wanchoo. (2011. Kinetic Study of Esterification of Acetic Acid with n-butanol and isobutanol Catalyzed by Ion Exchange Resin. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 23-30. doi:10.9767/bcrec.6.1.665.23-30][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.665.23-30 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/665 ] | View in 

  16. Study on fluorescence spectra of molecular association of acetic acid-water

    Institute of Scientific and Technical Information of China (English)

    Caiqin Han; Ying Liu; Yang Yang; Xiaowu Ni; Jian Lu; Xiaosen Luo

    2009-01-01

    Fluorescence spectra of acetic acid-water solution excited by ultraviolet (UV) light are studied, and the relationship between fluorescence spectra and molecular association of acetic acid is discussed. The results indicate that when the exciting light wavelength is longer than 246 nm, there are two fluorescence peaks located at 305 and 334 nm, respectively. By measuring the excitation spectra, the optimal wavelengths of the two fluorescence peaks are obtained, which are 258 and 284 nm, respectively. Fluorescence spectra of acetic acid-water solution change with concentrations, which is primarily attributed to changes of molecular association of acetic acid in aqueous solution. Through theoretical analysis, three variations of molecular association have been obtained in acetic acid-water solution, which are the hydrated monomers, the linear dimers, and the water separated dimers. This research can provide references to studies of molecular association of acetic acid-water, especially studies of hydrogen bonds.

  17. 75 FR 20785 - Polyglyceryl Phthalate Ester of Coconut Oil Fatty Acids; Exemption from the Requirement of a...

    Science.gov (United States)

    2010-04-21

    ... AGENCY 40 CFR Part 180 Polyglyceryl Phthalate Ester of Coconut Oil Fatty Acids; Exemption from the..., concerning polyglyceryl phthalate ester of coconut oil fatty acids; exemption from the requirement of a... phthalate ester of coconut oil fatty acids'' pursuant to a petition by the Joint Inserts Task Force,...

  18. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    Science.gov (United States)

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did.

  19. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    Science.gov (United States)

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did. PMID:21316945

  20. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  1. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    Science.gov (United States)

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation. PMID:25216642

  2. An efficient Biginelli one-pot synthesis of new benzoxazole-substituted dihydropyrimidinones and thiones catalysed by trifluoro acetic acid under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    D.Shobha; M.Adharvana Chari; K.H.Ahn

    2009-01-01

    An efficient synthesis of benzoxazole-substituted 3,4-dihydropyrimidinones(DHPMs)using trifluoro acetic acid as the catalyst for the first time from an aldehyde,β-keto ester and benzoxazole-substituted urea/thiourea under solvent-free conditions is described.Compared to the classical Biginelli reaction conditions,this new method consistently has the advantage of excellent yields(80-91%)and short reaction time(40-130 min)at reflux temperature.

  3. Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Eriksen, Dawn T; HamediRad, Mohammad; Yuan, Yongbo; Zhao, Huimin

    2015-07-17

    Fatty acid ethyl esters (FAEEs) are a form of biodiesel that can be microbially produced via a transesterification reaction of fatty acids with ethanol. The titer of microbially produced FAEEs can be greatly reduced by unbalanced metabolism and an insufficient supply of fatty acids, resulting in a commercially inviable process. Here, we report on a pathway engineering strategy in Saccharomyces cerevisiae for enhancing the titer of microbially produced FAEEs by providing the cells with an orthogonal route for fatty acid synthesis. The fatty acids generated from this heterologous pathway would supply the FAEE production, safeguarding endogenous fatty acids for cellular metabolism and growth. We investigated the heterologous expression of a Type-I fatty acid synthase (FAS) from Brevibacterium ammoniagenes coupled with WS/DGAT, the wax ester synthase/acyl-coenzyme that catalyzes the transesterification reaction with ethanol. Strains harboring the orthologous fatty acid synthesis yielded a 6.3-fold increase in FAEE titer compared to strains without the heterologous FAS. Variations in fatty acid chain length and degree of saturation can affect the quality of the biodiesel; therefore, we also investigated the diversity of the fatty acid production profile of FAS enzymes from other Actinomyces organisms. PMID:25594225

  4. Pseudo catalytic transformation of volatile fatty acids into fatty acid methyl esters.

    Science.gov (United States)

    Jung, Jong-Min; Cho, Jinwoo; Kim, Ki-Hyun; Kwon, Eilhann E

    2016-03-01

    Instead of anaerobic digestion of biodegradable wastes for producing methane, this work introduced the transformation of acidogenesis products (VFAs) into fatty acid methyl esters (FAMEs) to validate the feasible production of short-chained fatty alcohols via hydrogenation of FAMEs. In particular, among VFAs, this work mainly described the mechanistic explanations for transforming butyric acid into butyric acid methyl ester as a case study. Unlike the conventional esterification process (conversion efficiency of ∼94%), the newly introduced esterification under the presence of porous materials via the thermo-chemical process reached up to ∼99.5%. Furthermore, the newly introduced esterification via the thermo-chemical pathway in this work showed extremely high tolerance of impurities: the conversion efficiency under the presence of impurities reached up to ∼99±0.3%; thus, the inhibition behaviors attributed from the impurities used for the experimental work were negligible. PMID:26720136

  5. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Science.gov (United States)

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  6. Development of Acetic Acid Removal Technology for the UREX+Process

    International Nuclear Information System (INIS)

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstream steps can be avoided. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid

  7. Development of Acetic Acid Removal Technology for the UREX+Process

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  8. Acetic acid in aged vinegar affects molecular targets for thrombus disease management.

    Science.gov (United States)

    Jing, Li; Yanyan, Zhang; Junfeng, Fan

    2015-08-01

    To elucidate the mechanism underlying the action of dietary vinegar on antithrombotic activity, acetic acid, the main acidic component of dietary vinegar, was used to determine antiplatelet and fibrinolytic activity. The results revealed that acetic acid significantly inhibits adenosine diphosphate (ADP)-, collagen-, thrombin-, and arachidonic acid (AA)-induced platelet aggregation. Acetic acid (2.00 mM) reduced AA-induced platelet aggregation to approximately 36.82 ± 1.31%, and vinegar (0.12 mL L(-1)) reduced the platelet aggregation induced by AA to 30.25 ± 1.34%. Further studies revealed that acetic acid exerts its effects by inhibiting cyclooxygenase-1 and the formation of thromboxane-A2. Organic acids including acetic acid, formic acid, lactic acid, citric acid, and malic acid also showed fibrinolytic activity; specifically, the fibrinolytic activity of acetic acid amounted to 1.866 IU urokinase per mL. Acetic acid exerted its fibrinolytic activity by activating plasminogen during fibrin crossing, thus leading to crosslinked fibrin degradation by the activated plasmin. These results suggest that organic acids in dietary vinegar play important roles in the prevention and cure of cardiovascular diseases.

  9. Leaching of spent lead acid battery paste components by sodium citrate and acetic acid.

    Science.gov (United States)

    Zhu, Xinfeng; He, Xiong; Yang, Jiakuan; Gao, Linxia; Liu, Jianwen; Yang, Danni; Sun, Xiaojuan; Zhang, Wei; Wang, Qin; Kumar, R Vasant

    2013-04-15

    A sustainable method, with minimal pollution and low energy cost in comparison with the conventional smelting methods, is proposed for treating components of spent lead-acid battery pastes in aqueous organic acid(s). In this study, PbO, PbO2, and PbSO4, the three major components in a spent lead paste, were individually reacted with a mixture of aqueous sodium citrate and acetic acid solution. Pure lead citrate precursor of Pb3(C6H5O7)2 · 3H2O is the only product crystallized in each leaching experiment. Conditions were optimized for individual lead compounds which were then used as the basis for leaching real industrial spent paste. In this work, efficient leaching process is achieved and raw material cost is reduced by using aqueous sodium citrate and acetic acid, instead of aqueous sodium citrate and citric acid as reported in a pioneering hydrometallurgical method earlier. Acetic acid is not only cheaper than citric acid but is also more effective in aiding dissolution of the lead compounds thus speeding up the leaching process in comparison with citric acid. Lead citrate is readily crystallized from the aqueous solution due to its low solubility and can be combusted to directly produce leady oxide as a precursor for making new battery pastes.

  10. Synthesis of some glucose-fatty acid esters by lipase from Candida antarctica and their emulsion functions.

    Science.gov (United States)

    Ren, Kangzi; Lamsal, Buddhi P

    2017-01-01

    The synthesis of glucose esters with palmitic acid, lauric acid and hexanoic acid using lipase enzyme was studied and their emulsion functionality in oil-in-water system were compared. Reactions at 3:1M ratio of fatty acids-to-glucose had the highest conversion percentages (over 90% for each of the fatty acid). Initial conversion rate increased as substrate solubility increased. Ester bond formation was confirmed by nuclear magnetic resonance technique that the chemical shifts of glucose H-6 and α-carbon protons of fatty acids in the ester molecules shifted to the higher fields. Contact angle of water on esters' pelleted surface increased as the hydrophobicity increased. Glucose esters' and commercial sucrose esters' functionality as emulsifiers were compared. Glucose esters delayed, but did not prevent coalescence, because the oil droplets diameter doubled during 7days. Sucrose esters prevented coalescence during 7days since the droplets diameter did not have significant change. PMID:27507510

  11. [Removal of tattoos by CO2 laser and acetic acid].

    Science.gov (United States)

    Di Quirico, R; Pallini, G; Di Domenicantonio, G; Astolfi, A; Bindi, F; Gianfelice, F

    1992-10-31

    The Authors pay attention to small tattoo removal by means of the utilization of the CO2 laser. Moreover, the Authors emphasize the drawback of double treatment which, usually, the patient suffers in tattoo removal by CO2 laser. Then, the pressure of the Authors is small sized tattoo removal in only one sitting achieving so an excellent esthetic result. Besides, the Authors, in this medical study, explains two methods for tattoo removal. In the study's results, the Authors describes the manner and the time of the two lesion recovery by the different manners of treatment. Finally, the Authors affirms the great consequence of the surgical CO2 laser, they don't fail, however, to affirm that the laser and acetic acid combination is an excellent procedure for small tattoo removal. PMID:1480288

  12. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    Science.gov (United States)

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

  13. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    Science.gov (United States)

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss.

  14. Inflammatory cells′ role in acetic acid-induced colitis

    Directory of Open Access Journals (Sweden)

    Mohammad H Sanei

    2014-01-01

    Full Text Available Background: Free radicals are the known mechanisms responsible for inducing colitis with two origins: Inflammatory cells and tissues. Only the inflammatory cells can be controlled by corticosteroids. Our aim was to assess the importance of neutrophils as one of the inflammatory cells in inducing colitis and to evaluate the efficacy of corticosteroids in the treatment of inflammatory bowel disease (IBD. Materials and Methods: Thirty-six mice were divided into six groups of six mice each. Colitis was induced in three groups by exposing them to acetic acid through enema (group 1, ex vivo (group 3, and enema after immune suppression (group 5. Each group had one control group that was exposed to water injection instead of acetic acid. Tissue samples were evaluated and compared based on macroscopic damages and biochemical and pathological results. Results: Considering neutrophilic infiltration, there were significant differences between groups 1, 3, 5, and the control of group 1. Groups 3, 5, and their controls, and group 1 and the control of group 3 had significant differences in terms of goblet depletion. Based on tissue originated H 2 O 2 , we found significant differences between group 1 and its control and group 3, and also between groups 5 and the control of group 3. All the three groups were significantly different from their controls based on Ferric Reducing Ability of Plasma (FRAP and such differences were also seen between group 1 with two other groups. Conclusion: Neutrophils may not be the only cause of oxidation process in colitis, and also makes the effectiveness of corticosteroids in the treatment of this disease doubtful.

  15. The assignment of the configuration for α-hydroxy acid esters using a CEC strategy.

    Science.gov (United States)

    Peng, Ruixue; Lin, Lili; Zhang, Yuheng; Wu, Wangbin; Lu, Yan; Liu, Xiaohua; Feng, Xiaoming

    2016-06-21

    A simple and efficient (1)H NMR method for determining the absolute configuration of chiral α-hydroxy acid esters using a competing enantioselective conversion (CEC) strategy was developed. The α-hydroxy acid esters were acylated in the presence of Feng's chiral N,N'-dioxide-scandium(iii) complex, and the faster reaction was identified when one enantiomer of the chiral α-hydroxy acid ester was treated with both enantiomers of the ligand by NMR analysis of the reaction mixture without further purification. A mnemonic is presented to aid the assignment of the absolute configuration of the substrates. PMID:27189590

  16. Separation of Acetic Acid from Aqueous Solution using Various Organic Solvents

    Directory of Open Access Journals (Sweden)

    Md. Zaved Hossain Khan

    2014-01-01

    Full Text Available 800x600 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 In the study a model has been developed to separate the acetic acid from aqueous solution by liquid-liquid extraction and find out the proper solvent for this separation. Various solvents such as n-butanol, iso butanol, amyl alcohol and ethyl acetate are used for separation of acetic acid from water. The binodal curves (mutual solubility curves for acetic acid distributed between water and an organic solvent were obtained by titrating known mixtures of two components (water and solvents with the third component acetic acid to the point of first appearance of permanent turbidity. In order to determine the tie-lines, the absorbance of the coexisting phases, obtained by the separation of ternary mixtures within the binodal curve are needed to be determined. The absorbance of each point had been determined by a UV spectrophotometer. Distribution diagrams are obtained by plotting weight percent of acetic acid in solvent phase against the weight percent of acetic acid in water phase. Selectivity diagrams are also obtained by plotting (wt. % of acetic acid / (percent of acetic acid + percent of water in solvent phase against the same quantity in the diluent phase. The separation factor is determined numerically from the tie-line data.

  17. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods

    Directory of Open Access Journals (Sweden)

    K Beheshti-Maal

    2010-06-01

    Full Text Available Background and Objectives: Acetic acid bacteria (AAB are useful in industrial production of vinegar. The present study aims at isolation and identification of acetic acid bacteria with characterization, optimization, and evaluation of their acetic acid productivity."nMaterials and Methods: Samples from various fruits were screened for presence of acetic acid bacteria on glucose, yeast extract, calcium carbonate (GYC medium. Carr medium supplemented with bromocresol green was used for distinguishing Acetobacter from Gluconobacter. The isolates were cultured in basal medium to find the highest acetic acid producer. Biochemical tests followed by 16S rRNA and restriction analyses were employed for identification of the isolate and phylogenic tree was constructed. Bacterial growth and acid production conditions were optimized based on optimal inoculum size, pH, temperature, agitation, aeration and medium composition."nResults: Thirty-seven acetic acid bacteria from acetobacter and gluconobacter members were isolated. Acetic acid productivity yielded 4 isolates that produced higher amounts of acid. The highest producer of acid (10.03% was selected for identification. The sequencing and restriction analyses of 16S rRNA revealed a divergent strain of Acetobacter pasteurianus (Gene bank accession number # GU059865. The optimum condition for acid production was a medium composed of 2% glucose, 2% yeast extract, 3% ethanol and 3% acid acetic at inoculum size of 4% at 3L/Min aeration level in the production medium. The isolate was best preserved in GYC medium at 12oC for more than a month. Longer preservation was possible at -70oC."nConclusion: The results are suggestive of isolation of an indigenous acetic acid bacteria. Pilot plan is suggested to study applicability of the isolated strain in acetic acid production.

  18. [Phthalic acid esters (PAEs) pollution in farmland soils: a review].

    Science.gov (United States)

    Wang, Kai-Rong; Cui, Ming-Ming; Shi, Yan-Xi

    2013-09-01

    The environmental pollution and food safety problems caused by phthalic acid esters (PAEs) have been attracted 'extensive attention around the world. As a large PAEs producer and consumer, China is facing severe PAEs environmental pollution problems. This paper reviewed the present pollution status of six PAEs classified by the U.S. Environmental Protection Agency as the priority pollutants in China farmland soils, analyzed the sources of these six PAEs in this country, and discussed the absorption and accumulation characteristics of the PAEs in different crops as well as the bio-toxic effects of PAEs pollutants. The PAEs concentrations in China farmland soils are significantly higher those in the farmland soils of the United States and European countries. The main sources of PAEs in China farmland soils are atmospheric deposition, agricultural films, sewage sludge application, and wastewater irrigation. There exist significant differences in the characteristics of PAEs absorption, accumulation, and distribution among different crops. PAEs not only have negative effects on soil quality, crop growth, and crop physiological and biochemical properties, but also possess bio-accumulative characteristics. The weaknesses in current researches were pointed out, and the suggestions for the further researches were given, e. g., to expand the scope of PAEs pollution survey, to explore the toxic mechanisms of PAEs on crops, and to develop the techniques for in situ remediation of PAEs-polluted soils.

  19. Recovery of Ammonium Nitrate and Reusable Acetic Acid from Effluent Generated during HMX Production

    Directory of Open Access Journals (Sweden)

    V. D. Raut

    2004-04-01

    Full Text Available Production of HMX on commercial scale is mainly carried out by modified Bachmann process, and acetic acid constitutes major portion of effluenttspent liquor produced during this process. The recovery of glacial acetic acid from this spent liquor is essential to make the process commercially viable besides making it eco-friendly by minimising the quantity of disposable effluent. The recovery of glacial acetic acid from spent liquor is not advisable by simple distillation since it contains, in addition to acetic acid, a small fraction of nitric acid, traces of RDX, HMX, and undesired nitro compounds. The process normally involves neutralising the spent mother liquor with liquor ammonia and then distillating the ueutralised mother liquor under vacuum to recover dilute acetic acid (strength approx. 30 %. The dilute acetic acid, in turn, is concentrated to glacial acetic acid by counter current solvent extraction, followed by distillation. The process is very lengthy and the energy requirement is also veryhigh, rendering the process economically unviable. Hence, a novel method has been developed on bench-scale to obtain glacial acetic acid directly from the mother liquor after the second ageing process.

  20. Progress in Acetic Acid Industry%醋酸工业现状及发展

    Institute of Scientific and Technical Information of China (English)

    李好管; 闫慧芳

    2001-01-01

    醋酸是用途最广泛的有机酸之一。分析了醋酸的生产和消费趋势;综述了醋酸工艺的进展;介绍了具有工业化前景或学术价值的醋酸合成新工艺的研究开发概况。对我国醋酸工业发展提出了建议。%Acetic acid is one of the organic acids which have many uses.This paper analyzed the production and consumption of acetic acid,summarized the progress of acetic acid technology,introduced the research and development of acetic acid new process.Some suggestions on China's acetic acid industry were also put forward.

  1. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    Science.gov (United States)

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  2. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Science.gov (United States)

    2010-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to...

  3. Phenyl Acetate Preparation from Phenol and Acetic Acid: Reassessment of a Common Textbook Misconception.

    Science.gov (United States)

    Hocking, M. B.

    1980-01-01

    Reassesses a common textbook misconception that "...phenols cannot be esterified directly." Results of experiments are discussed and data tables provided of an effective method for the direct preparation of phenyl acetate. (CS)

  4. Use of glacial acetic acid to enhance bisexual monitoring of tortricid pests with kairomone lures in pome fruits.

    Science.gov (United States)

    Knight, A L; Hilton, R; Basoalto, E; Stelinski, L L

    2014-12-01

    Studies were conducted to assess glacial acetic acid (GAA) with various host plant volatiles (HPVs) and the sex pheromone, (E,E)-8, 10-dodecadien-1-ol, of codling moth, Cydia pomonella (L), as lures in traps for tortricid pests that often co-occur in tree fruits in the western United States. In addition to codling moth, field trapping studies were conducted with oriental fruit moth, Grapholita molesta (Busck), obliquebanded leafroller Choristoneura rosaceana (Harris), the leafroller Pandemis pyrusana Kearfott, and the eyespotted budmoth, Spilonota ocellana (Denis and Schiffermüller). HPVs included ethyl (E,Z)-2,4-decadienoate (pear ester), (E)-4,8-dimethyl-1,3,7-nonatriene, butyl hexanoate, (E)-β-ocimene, (E)-β-farnesene, and farnesol. Three types of GAA co-lures differing in a 10-fold range in weekly evaporation rates were tested. The evaporation rate of GAA co-lures was an important factor affecting moth catches. The highest rate tested captured fewer codling moth but more leafrollers and eyespotted budmoth. GAA co-lures caught both sexes of each species. The field life of butyl hexanoate and (E)-β-ocimene lures were much shorter than pear ester or sex pheromone lures. Adding GAA to pear ester or to (E)-β-ocimene significantly increased the catches of only codling moth or oriental fruit moth, respectively. Combining pear ester or (E)-β-ocimene with GAA did not affect the catch of either species compared with the single more attractive HPV. Adding HPVs to GAA did not increase the catches of either leafroller species or eyespotted budmoth. Traps baited with pear ester, sex pheromone, and GAA for monitoring codling moth were also effective in classifying pest pressure of both leafroller species within orchards.

  5. Oxidative stability of fatty acid alkyl esters: a review.

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2015-12-01

    Full Text Available The purpose of this study was to investigate and to process the current literary knowledge of the physico-chemical properties of vegetable oil raw used for biodiesel production in terms of its qualitative stability. An object of investigation was oxidative stability of biodiesel. In the study, we focused on the qualitative physico-chemical properties of vegetable oils used for biodiesel production, oxidative degradation and its mechanisms, oxidation of lipids, mechanisms of autooxidation, effectivennes of different synthetic antioxidants in relation to oxidative stability of biodiesel and methods of oxidative stability determination. Knowledge of the physical and chemical properties of vegetable oil as raw material and the factors affecting these properties is critical for the production of quality biodiesel and its sustainability. According to the source of oilseed, variations in the chemical composition of the vegetable oil are expressed by variations in the molar ratio among different fatty acids in the structure. The relative ratio of fatty acids present in the raw material is kept relatively constant after the transesterification reaction. The quality of biodiesel physico-chemical properties is influenced by the chain length and the level of unsaturation of the produced fatty acid alkyl esters. A biodiesel is thermodynamically stable. Its instability primarily occurs from contact of oxygen present in the ambient air that is referred to as oxidative instability. For biodiesel is oxidation stability a general term. It is necessary to distinguish ‘storage stability' and ‘thermal stability', in relation to oxidative degradation, which may occur during extended periods of storage, transportation and end use. Fuel instability problems can be of two related types, short-term oxidative instability and long-term storage instability. Storage instability is defined in terms of solid formation, which can plug nozzles, filters, and degrade engine

  6. Enhancement of Emulsifying Properties of Cuttlefish Skin Gelatin by Modification with N-hydroxysuccinimide Esters of Fatty Acids

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Encarnacion, A.B.; Wierenga, P.A.; Gruppen, H.

    2013-01-01

    Cuttlefish (Sepia pharaonis) skin gelatin modified with N-hydroxysuccinimide esters of various fatty acids including capric acid (C10:0), lauric acid (C12:0), and myristic acid (C14:0) at different molar ratios was characterized and determined for emulsifying property. Fatty acid esters were incorpo

  7. Microbiological preservation of cucumbers for bulk storage by the use of acetic acid and food preservatives

    Science.gov (United States)

    Microbial growth did not occur when cucumbers were preserved without a thermal process by storage in solutions containing acetic acid, sodium benzoate, and calcium chloride to maintain tissue firmness. The concentrations of acetic acid and sodium benzoate required to assure preservation were low en...

  8. Cervical cancer risk factors and feasibility of visual inspection with acetic acid screening in Sudan

    DEFF Research Database (Denmark)

    Ibrahim, Ahmed; Rasch, Vibeke; Pukkala, Eero;

    2011-01-01

    To assess the risk factors of cervical cancer and the feasibility and acceptability of a visual inspection with acetic acid (VIA) screening method in a primary health center in Khartoum, Sudan.......To assess the risk factors of cervical cancer and the feasibility and acceptability of a visual inspection with acetic acid (VIA) screening method in a primary health center in Khartoum, Sudan....

  9. Fabrication of First Chinese Made Reactor for Oxosvnthesis of Acetic Acid in Xi'an

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The first set of Chinese made reactor for oxo-synthesis of acetic acid has been fabricated by the Xi'an Nuclear Equipment Company,Ltd.This reactor has been transported to the site of equipment installation at the acetic acid production project owned by Shandong Yimeng Company,Ltd.,which has shattered the long-time precedent of relying upon imported equipment.

  10. Efficacy of Acetic Acid against Listeria monocytogenes Attached to Poultry Skin during Refrigerated Storage

    Directory of Open Access Journals (Sweden)

    Elena Gonzalez-Fandos

    2014-09-01

    Full Text Available This work evaluates the effect of acetic acid dipping on the growth of L. monocytogenes on poultry legs stored at 4 °C for eight days. Fresh inoculated chicken legs were dipped into either a 1% or 2% acetic acid solution (v/v or distilled water (control. Changes in mesophiles, psychrotrophs, Enterobacteriaceae counts and sensorial characteristics (odor, color, texture and overall appearance were also evaluated. The shelf life of the samples washed with acetic acid was extended by at least two days over the control samples washed with distilled water. L. monocytogenes counts before decontamination were 5.57 log UFC/g, and after treatment with 2% acetic acid (Day 0, L. monocytogenes counts were 4.47 log UFC/g. Legs washed with 2% acetic acid showed a significant (p < 0.05 inhibitory effect on L. monocytogenes compared to control legs, with a decrease of about 1.31 log units after eight days of storage. Sensory quality was not adversely affected by acetic acid. This study demonstrates that while acetic acid did reduce populations of L. monocytogenes on meat, it did not completely inactivate the pathogen. The application of acetic acid may be used as an additional hurdle contributing to extend the shelf life of raw poultry and reducing populations of L. monocytogenes.

  11. Electron attachment and electron ionization of acetic acid clusters embedded in helium nanodroplets

    NARCIS (Netherlands)

    da Silva, F. Ferreira; Jaksch, S.; Martins, G.; Dang, H. M.; Dampc, M.; Denifl, S.; Maerk, T. D.; Limao-Vieira, P.; Liu, J.; Yang, S.; Ellis, A. M.; Scheier, P.

    2009-01-01

    The effect of incident electrons on acetic acid clusters is explored for the first time. The acetic acid clusters are formed inside liquid helium nanodroplets and both cationic and anionic products ejected into the gas phase are detected by mass spectrometry. The cation chemistry (induced by electro

  12. Synthesis and characterization of new biodegradable thermosensitive polyphosphazenes with lactic acid ester and methoxyethoxyethoxy side groups

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Two novel biodegradable thermosensitive polyphosphazenes with lactic acid ester and methoxyethoxyethoxy side groups were synthesized via the macromolecular substitution reactions of poly(dichlorophosphazene) with the sodium salt of lactic acid ester and sodium methoxyethoxyethoxide.Their structures were confirmed by ~(31)p NMR,~1H NMR,~(13)C NMR,IR,DSC,and elemental analysis.The lower critical solution temperature(LCST) behavior in water and in vitro degradation property of the polymers was investigated....

  13. Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: overview and application.

    Science.gov (United States)

    Yoshii, Yukie; Furukawa, Takako; Saga, Tsuneo; Fujibayashi, Yasuhisa

    2015-01-28

    Understanding cancer-specific metabolism is important for identifying novel targets for cancer diagnosis and therapy. Induced acetate/acetyl CoA metabolism is a notable feature that is related to fatty acid synthesis supporting tumor growth. In this review, we focused on the recent findings related to cancer acetate/acetyl CoA metabolism. We also introduce [1-¹¹C]acetate positron emission tomography (PET), which is a useful tool to visualize up-regulation of acetate/acetyl CoA metabolism in cancer, and discuss the utility of [1-¹¹C]acetate PET in cancer diagnosis and its application to personalized medicine.

  14. Recovery of Dilute Acetic Acid by Catalytic Distillation Using NKC-9 as Catalyst

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhigang; LI Xiaofeng; XU Shimin; LI Xingang

    2006-01-01

    The reaction kinetics of dilute acetic acid with methanol using NKC-9 as catalyst was studied at temperatures of 308 K, 318 K, 323 K, 328 K. The kinetic model based on Langmuir-Hinshelwood rate model was derived and the activation energy was 6.13 x 104 kJ/kmol. The experiment of recovery of dilute acetic acid was conducted in a packed bed catalytic distillation column. The optimal process parameters and operational conditions determined to make up to 85.9% conversion of acetic acid are as follows:the height of catalyst bed is 1 100 mm, reflux ratio is 4: 1, and the ratio of methanol to acetic acid is 2: 1. The method can be used as a guide in industrial scale recovery of 15%-30% dilute acetic acid.

  15. Supported Ionic Liquid Phase (SILP) Catalysis for the Production of Acetic acid by Methanol Carbonylation

    DEFF Research Database (Denmark)

    Hanning, Christopher William

    The work presented here is focused on the development of a new reaction process. It applies Supported Ionic Liquid Phase (SILP) catalysis to a specific reaction. By reacting methanol and carbon monoxide over a rhodium catalyst, acetic acid can be formed. This reaction is important on a large scale...... industrially, with millions of tonnes of acetic acid being produced annually. Acetic acid is an important precursor for making adhesives, plastics and fabrics. By using the SILP concept we are able to carry out the reaction in a continuous system, allowing a steady production of acetic acid without having...... were no longer classified as ionic liquids due to melting points above 100◦C). The phosphonium salts showed even better activity in the system compared to the ionic liquids. Overall the work has shown that this process for the manufacture of acetic acid is viable industrially. This is backed up...

  16. Kinetics of reaction between acetic acid and Ag2+ in nitric acid medium

    International Nuclear Information System (INIS)

    The reaction kinetics between acetic acid and Ag2+ in nitric acid medium is studied by spectrophotometry. The effects of concentrations of acetic acid (HAc), H+, NO3- and temperature on the reaction are investigated. The rate equation has been determined to be -dc(Ag2+)/dt=kc(Ag2+)c(HAc)c-1(H+), where k = (610±15) (mol/L)-1·min-1 with an activation energy of about (48.8±3.5) kJ·mol-1 when the temperature is 25degC and the ionic strength is 4.0 mol/L. The reduction rate of Ag2+ increases with the increase of HAc concentration or temperature and the decrease of HNO3 concentration. However, the effect of NO3- concentrations on the reaction rate is negligible. (author)

  17. Pemisahan dan Pemurnian Phthalic Acid Ester dari Minyak Nyamplung

    Directory of Open Access Journals (Sweden)

    William Ekaputra Taifan

    2013-09-01

    Full Text Available Minyak nyamplung dikenal sebagai minyak yang tidak dapat dikonsumsi. Oleh sebab itu, penelitian tentang minyak ini hanya fokus pada konversi minyak menjadi biodiesel. Pada penelitian ini, kami berusaha untuk memisahkan resin beracun dari fraksi metanol menggunakan ekstraksi pelarut diikuti kolom kromatografi. Resin beracun ini diidentifikasi sebagai phthalic acid ester (PAE. PAE ini biasanya digunakan sebagai zat aditif di industri polimer. Minyak nyamplung mengandung 1,8% PAE, yang masih jauh melebihi nilai ambang batas. Isolasi PAE dari minyak ini diharapkan dapt mengubah minyak yang tidak dapat dikonsumsi menjadi suplemen makanan yang bernilai. Proses isolasi PAE dimulai dengan memisahkan senyawa yang diinginkan dari lipid menggunakan ekstraksi pelarut bertingkat dengan metanol dan n-heksan. Analisa mass spectra dari fraksi pertama dan fraksi kedua metanol menunjukkan kandungan PAE sebesar 60% dan 6% pada tiap fraksi. Fraksi heksan tidak mengandung PAE. PAE yang terkandung pada fraksi metanol diisolasi lebih lanjut dari asam lemak menggunakan liquid column chromatography dengan n-heksan – etil asetat sebagai mobile phase. Bis- 2ethylhexyl phthalate diidentifikasi pada ketiga fraksi sesuai dengan hasil analisa GC-MS. Fraksi pertama diambil pada kondisi mobile phase 5% etil asetat, sedangkan fraksi kedua merupakan campuran 5% etil asetat dan 10% etil asetat. Fraksi ketiga diambil pada kondisi mobile phase 10% etil asetat mengandung PAE sebesar 98%. Fraksi keempat merupakan campuran 10% dan 15% mobile phase dan mengandung PAE sebesar 97%. Akhirnya, kandungan PAE pada fraksi metanol sebesar 58%. Dari hasil analisa, dapat disimpulkan bahwa mobile phase yang optimum untuk kromatografi adalah 10- 15% etil asetat dalam n-heksan.

  18. Spectroscopic and quantum chemical analysis of Isonicotinic acid methyl ester

    Science.gov (United States)

    Shoba, D.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-02-01

    In this present study, an organic compound Isonicotinic acid methyl ester (INAME) was structurally characterized by FTIR, FT-Raman, and NMR and UV spectroscopy. The optimized geometrical parameters and energies of all different and possible conformers of INAME are obtained from Density Functional Theory (DFT) by B3LYP/6-311++G(d,p) method. There are three conformers (SI, SII-1, and SII-2) for this molecule (ground state). The most stable conformer of INAME is SI conformer. The molecular geometry and vibrational frequencies of INAME in the ground state have been calculated by using HF and density functional method (B3LYP) 6-311++G (d,p) basis set. Detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The computed vibrational frequencies were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and first hyper polarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results show that the INAME molecule may have microscopic nonlinear optical (NLO) behavior with non zero values. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method.

  19. Gravity induced, asymmetric unloading of indole-3-acetic acid from the stele of Zea mays into the mesocotyl cortex

    International Nuclear Information System (INIS)

    Previous studies from this laboratory have demonstrated an increase within 3 min in both free and ester indole-3-acetic acid (IAA) on the lower side of the mesocotyl cortex of a gravity stimulated Zea mays seedling. Since both free and ester IAA are being transported from endosperm to shoot through the stele these results suggest that the gravity stimulus affects movement of IAA and/or its esters from stele to cortex. To test this postulate they injected 5-(3H)-IAA into the endosperm and, after a 30 min period with the plants held vertically, severed the kernel from the shoot and placed the plants in a horizontal position. After 60 min the distribution of radioactivity in the mesocotyl cortex was 55 + 3% in the lower half and 45 + 3% in the upper half. These results support the working theory that a target for the gravity stimulus is the gating mechanism for the movement of hormone from stele to cortex

  20. Ethylene-enhanced catabolism of ( sup 14 C)indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues. [Citrus sinensis

    Energy Technology Data Exchange (ETDEWEB)

    Sagee, O.; Riov, J.; Goren, J. (Hebrew Univ. of Jerusalem, Rehovot (Israel))

    1990-01-01

    Exogenous ({sup 14}C)indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of ({sup 14}C)IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene endogenous IAA levels.

  1. Choline Chloride Catalyzed Amidation of Fatty Acid Ester to Monoethanolamide: A Green Approach.

    Science.gov (United States)

    Patil, Pramod; Pratap, Amit

    2016-01-01

    Choline chloride catalyzed efficient method for amidation of fatty acid methyl ester to monoethanolamide respectively. This is a solvent free, ecofriendly, 100% chemo selective and economically viable path for alkanolamide synthesis. The Kinetics of amidation of methyl ester were studied and found to be first order with respect to the concentration of ethanolamine. The activation energy (Ea) for the amidation of lauric acid methyl ester catalyzed by choline chloride was found to be 50.20 KJ mol(-1). The 98% conversion of lauric acid monoethanolamide was obtained at 110°C in 1 h with 6% weight of catalyst and 1:1.5 molar ratio of methyl ester to ethanolamine under nitrogen atmosphere. PMID:26666271

  2. Metabolism of Flavone-8-acetic Acid in Mice.

    Science.gov (United States)

    Pham, Minh Hien; Auzeil, Nicolas; Regazzetti, Anne; Scherman, Daniel; Seguin, Johanne; Mignet, Nathalie; Dauzonne, Daniel; Chabot, Guy G

    2016-08-01

    Flavone-8-acetic acid (FAA) is a potent antivascular agent in mice but not in humans. Assuming that FAA was bioactivated in mice, we previously demonstrated that 6-OH-FAA was formed from FAA by mouse microsomes but not by human microsomes; its antivascular activity was 2.1- to 15.9-fold stronger than that of FAA, and its antivascular activity was mediated through the Ras homolog gene family (Rho) protein kinase A (RhoA) pathway. The present work aimed to study FAA metabolism in order to verify if 6-OH-FAA is formed in mice. Using synthesized standards and high-performance liquid chromatography (HPLC) coupled with ultraviolet (UV) detection and mass spectrometry (MS) analysis, we herein demonstrated, for the first time, that in vitro FAA and its monohydroxylated derivatives could directly undergo phase II metabolism forming glucuronides, and two FAA epoxides were mostly scavenged by NAC and GSH forming corresponding adducts. FAA was metabolized in mice. Several metabolites were formed, in particular 6-OHFAA. The antitumor activity of 6-OH-FAA in vivo is worthy of investigation. PMID:27466491

  3. Metabolic regulation of the plant hormone indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  4. Selective synthesis of thiodiglycol dicarboxylic acid esters via -TsOH/C-catalysed direct esterification

    Indian Academy of Sciences (India)

    Dahong Jiang; Min Huang

    2012-09-01

    The esterification of thiodiglycol and long alkyl-chain carboxylic acids is reported. Reaction of thiodiglycol with carboxylic acid via -TsOH/C-catalysed direct esterification afforded thiodiglycol dicarboxylic acid esters in good yields and chemoselectivity. The use of immobilized -TsOH on activated carbon as catalyst is crucial for the transformation.

  5. Preparation of fatty acid methyl esters from Osage orange (Maclura pomifera) oil and evaluation as biodiesel

    Science.gov (United States)

    Fatty acid methyl esters were prepared in high yield by transesterification of Osage orange (Maclura pomifera) oil. Extracted using supercritical CO2, the crude oil was initially treated with mineral acid and methanol to lower its content of free fatty acids, thus rendering it amenable to homogeneou...

  6. Reaction of Elemol with Acetic acid –Perchloric acid: Characterization of a novel oxide and (+)-β-cyperone

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; Govenkar, M.B.; Paknikar, S.K.

    The minor unidentified compounds of acetic acid- perchloric acid dehydration of elemol (1) have been fully characterized. The structure and relative stereochemistry as shown in (2) of the less polar fragrant compound named as elemoxide was deduced...

  7. Effect of acetic acid on rice seeds coated with rice husk ash

    OpenAIRE

    2013-01-01

    Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência), five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed) and five concentrations of acetic acid (0, 3,...

  8. Experimental Measurements and Correlations Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + Sec-butyl Acetate at 101.3 kPa

    Institute of Scientific and Technical Information of China (English)

    LI Ling; HE Yong; WU Yanxiang; ZOU Wenhu

    2013-01-01

    Isobaric vapor-liquid equilibrium(VLE) data for acetic acid + sec-butyl acetate and water + acetic acid + sec-butyl acetate systems were determined at 101.3 kPa using a modified Rose type.The nonideality of the vapor phase caused by the association of the acetic acid was corrected by the chemical theory and Hayden-O'Connell method.Thermodynamic consistency was tested for the binary VLE data.The experimental data were correlated successfully with the Non-Random Two Liquids (NRTL) model.The Root Mean Square Deviation (RMSD) of the ternary system was 0.0038.The saturation vapor pressure of sec-butyl acetate at 329 to 385 K was measured by means of two connected equilibrium cells.The vapor pressures of water and sec-butyl acetate were correlated with the Antoine equation.The binary interaction parameters and the ternary VLE data were obtained from this work.

  9. Beneficial Effect of Acetic Acid on the Xylose Utilization and Bacterial Cellulose Production by Gluconacetobacter xylinus.

    Science.gov (United States)

    Yang, Xiao-Yan; Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Luo, Jun; Wang, Bo; Chen, Xue-Fang; Lin, Xiao-Qing; Chen, Xin-De

    2014-09-01

    In this work, acetic acid was found as one promising substrate to improve xylose utilization by Gluconacetobacter xylinus CH001. Also, with the help of adding acetic acid into medium, the bacterial cellulose (BC) production by G. xylinus was increased significantly. In the medium containing 3 g l(-1) acetic acid, the optimal xylose concentration for BC production was 20 g l(-1). In the medium containing 20 g l(-1) xylose, the xylose utilization and BC production by G. xylinus were stimulated by acetic acid within certain concentration. The highest BC yield (1.35 ± 0.06 g l(-1)) was obtained in the medium containing 20 g l(-1) xylose and 3 g l(-1) acetic acid after 14 days. This value was 6.17-fold higher than the yield (0.21 ± 0.01 g l(-1)) in the medium only containing 20 g l(-1) xylose. The results analyzed by FE-SEM, FTIR, and XRD showed that acetic acid affected little on the microscopic morphology and physicochemical characteristics of BC. Base on the phenomenon observed, lignocellulosic acid hydrolysates (xylose and acetic acid are main carbon sources present in it) could be considered as one potential substrate for BC production.

  10. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  11. In vitro skin permeation and retention of 5-aminolevulinic acid ester derivatives for photodynamic therapy.

    Science.gov (United States)

    De Rosa, Fernanda Scarmato; Tedesco, Antônio Cláudio; Lopez, Renata Fonseca Vianna; Pierre, Maria Bernadete Riemma; Lange, Norbert; Marchetti, Juliana Maldonado; Rotta, Jeane Cristina Gomes; Bentley, Maria Vitória Lopes Badra

    2003-04-29

    In photodynamic therapy (PDT), 5-aminiolevulinic acid (5-ALA) applied topically is converted, via the heme cycle, into protoporphyrin IX (PpIX), a photosensitizing agent, which upon excitation with light can induce tumor destruction. Due to its hydrophilic and zwitterionic characteristics, 5-ALA has limited penetration into the skin. More lipophilic 5-ALA ester derivatives are expected to cross stratum corneum more easily than 5-ALA. According to the determination of the partition coefficients of 5-ALA methyl, n-butyl, n-hexyl and n-octyl esters, these compounds showed an increased affinity to the SC, with 5-ALA hexyl ester and 5-ALA-octyl ester having the highest partition coefficients. Our in vitro skin permeation studies demonstrated an increased permeated amount for hexyl-ALA after 6 h of incubation, compared to other esters and 5-ALA. After 6 h, more 5-ALA-hexyl ester and -octyl ester were retained at viable epidermis and dermis than 5-ALA. According to these results, and considering that the conversion of 5-ALA into PpIX occurs preferentially in epidermis, it can be supposed that topical use of ester derivatives with longer chains (C(6) or C(8)) is an interesting proposal to optimize topical 5-ALA-PDT

  12. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 ± 0.7% and 8.8 ± 3.2% w/w, respectively, which were lower than the control (17.8 ± 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 ± 0.6% w/w for 2 g L -1 acetic acid and 4.2 ± 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  13. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    Science.gov (United States)

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid.

  14. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences.

  15. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    Science.gov (United States)

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters. PMID:18177968

  16. Redox intermediates of flavonoids and caffeic acid esters from propolis: an EPR spectroscopy and cyclic voltammetry study.

    Science.gov (United States)

    Rapta, P; Misík, V; Stasko, A; Vrábel, I

    1995-05-01

    The redox properties of flavonoids: chrysin (1), tectochrysin (2), galangin (3), isalpinin (4), pinostrobin (5), pinobanksin (6), pinobanksin-3-acetate (7), and of caffeic acid ester (8) and diacetylcaffeic acid ester (9), all isolated from propolis, were investigated by cyclic voltammetry in acetonitrile. The choice of aprotic solvent lowered the reactivity of the radical intermediates and made possible to identify redox steps and intermediates not detected so far. The oxidation potentials (vs. saturated calomel electrode) of the investigated compounds were in the region of 1.5 V for 3 and 4; 1.9 V for 1, 2, and 5; 2.0 V for 6 and 7; 1.29 V for 8; and 2.3 V for 9. These oxidation potentials were mainly influenced by the presence of a double bond in 2,3-position and substituent R1 in position 3. Comparison with our earlier data revealed that flavonoids, 1-4, and caffeic acid ester 8 with lower oxidation potentials showed the maximal lipid antioxidant activity, whereas those with higher potentials (5, 6, 7, and 9) are less active. On reduction of 1-9 several one-electron-steps were typically observed in the potential regions: -1.5 V, -1.8 V, and -2 V. where in simultaneous EPR experiments anion radicals of 1 and 3 were observed with the center of unpaired spin density on ring A. Upon oxidation of flavonoids 1-4 carbonyl carbon-centered radicals, .C(O)R, were identified as consecutive products using the EPR spin trapping technique. PMID:7797098

  17. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    OpenAIRE

    Isabel Bento; Teresa Duarte, M.; M. João M. Curto; Inês F. Antunes; Hélène Ramos; Fátima C. Teixeira

    2006-01-01

    A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2)nCO2R of different lengths (n = 0-6, 9, 10) are described.Nucleophilic substitution reactions on halo esters (X(CH2)nCO2R) by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultin...

  18. A Convenient Route to 4-Carboxy-4-Anilidopiperidine Esters and Acids

    Directory of Open Access Journals (Sweden)

    Gjermund Henriksen

    2012-03-01

    Full Text Available The route selection and development of a convenient synthesis of 4-carboxy-4-anilidopiperidines is described. Previous routes were hampered by the low yield of the target esters as well as the inability to convert the esters to the required free acids. Considerations for large-scale production led to a modified synthesis that utilised a tert-butyl ester of 4-carboxy-4-anilidopiperidines which resulted in a dramatic increase in the overall yield of the target N-propionylated- 4-anilidopiperidine-4-carboxylic acids and their corresponding methyl esters. These compounds are now available for use as precursors and reference standards, of particular value for the production of 11C and 18F-labelled 4-carboxy-4-anilidopiperidine radiotracers.

  19. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium.

    Science.gov (United States)

    Narendranath, N V; Thomas, K C; Ingledew, W M

    2001-03-01

    Specific growth rates (mu) of two strains of Saccharomyces cerevisiae decreased exponentially (R2 > 0.9) as the concentrations of acetic acid or lactic acid were increased in minimal media at 30 degrees C. Moreover, the length of the lag phase of each growth curve (h) increased exponentially as increasing concentrations of acetic or lactic acid were added to the media. The minimum inhibitory concentration (MIC) of acetic acid for yeast growth was 0.6% w/v (100 mM) and that of lactic acid was 2.5% w/v (278 mM) for both strains of yeast. However, acetic acid at concentrations as low as 0.05-0.1% w/v and lactic acid at concentrations of 0.2-0.8% w/v begin to stress the yeasts as seen by reduced growth rates and decreased rates of glucose consumption and ethanol production as the concentration of acetic or lactic acid in the media was raised. In the presence of increasing acetic acid, all the glucose in the medium was eventually consumed even though the rates of consumption differed. However, this was not observed in the presence of increasing lactic acid where glucose consumption was extremely protracted even at a concentration of 0.6% w/v (66 mM). A response surface central composite design was used to evaluate the interaction between acetic and lactic acids on the specific growth rate of both yeast strains at 30 degrees C. The data were analysed using the General Linear Models (GLM) procedure. From the analysis, the interaction between acetic acid and lactic acid was statistically significant (P < or = 0.001), i.e., the inhibitory effect of the two acids present together in a medium is highly synergistic. PMID:11420658

  20. Enzymatic synthesis of oligo- and polysaccharide fatty acid esters

    NARCIS (Netherlands)

    Broek, van den L.A.M.; Boeriu, C.G.

    2013-01-01

    Amphiphilic oligo- and polysaccharides (e.g. polysaccharide alkyl or alkyl-aryl esters) form a new class of polymers with exceptional properties. They function as polymeric surfactants, whilst maintaining most of the properties of the starting polymeric material such as emulsifying, gelling, and fil

  1. Fatty Acid Methyl Esters as Biosolvents of Epoxy Resins: A Physicochemical Study

    OpenAIRE

    Medina-González, Yaocihuatl; De Caro, Pascale; Thiebaud-Roux, Sophie; Lacaze-Dufaure, Corinne

    2007-01-01

    The C8 to C18 fatty acid methyl esters (FAME) have been compared as solvents for two epoxy resin pre-polymers, bisphenol A diglycidyl ether (DGEBA) and triglycidyl paminophenol ether (TGPA). It was found that the solubilization limits vary according to the ester and that methyl caprylate is the best solvent of both resins. To explain these solubility performances, physical and chemical properties of FAME were studied, such as the Hansen parameters, viscosity, binary diffusion coefficient and ...

  2. Improvement on stability of square planar rhodium (Ⅰ) complexes for carbonylation of methanol to acetic acid

    Institute of Scientific and Technical Information of China (English)

    蒋华; 潘平来; 袁国卿; 陈新滋

    1999-01-01

    A series of square planar cis-dicarbonyl polymer coordinated rhodium complexes with uncoordinated donors near the central rhodium atoms for carbonylation of methanol to acetic acid are reported. Data of IR, XPS and thermal analysis show that these complexes are very stable. The intramolecular substitution reaction is proposed for their high stability. These complexes show excellent catalytic activity, selectivity and less erosion to the equipment for the methanol carbonylation to acetic acid. The distillation process may be used instead of flash vaporization in the manufacture of acetic acid, which reduces the investment on the equipment.

  3. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

    Science.gov (United States)

    Chen, Yingying; Stabryla, Lisa; Wei, Na

    2016-01-29

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.

  4. Acetic acid production from marine algae. Progress report No. 2, September 30 to December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J E; Wise, D L

    1978-03-10

    Preliminary results on the production of acetic acid from marine algae by anaerobic fermentation indicates that the rate is quite fast. First order rate constants of 0.77 day/sup -1/ have been observed. This rate constant gives a half-life of less than one day. In other words, with a properly designed product removal system a five day retention time would yield 98% of theoretical conversion. Determination of the theoretical conversion of marine algae to acetic acid is the subject of much experimentation. The production of one acetic acid molecule (or equivalent in higher organic acids) for each three carbon atoms in the substrate has been achieved; but it is possible that with a mixed culture more than one acetic acid molecule may be produced for each three carbons in the substrate.

  5. Electrochemical evaluation of the inhibitory effects of acetic acid on Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    Yuan Zhenhong; Zhao Jinsheng; Yan Yongjie; Yang Zhengyu

    2006-01-01

    A mediated electrochemical method was proposed for toxic evaluation of acetic acid on S. cerevisiae AS.380, and menadione/ferricyanide was chosen as the mediator system. The variance in electrochemical response in the absence and presence of increasing concentrations of acetic acid were used to indicate the inhibitory effects of weak acid on the yeast. The inhibitory effects of acetic acid on glucose consumption during menadione mediated reduction of ferricyanide were also measured for comparison purpose. The relative limiting current and the glucose consumption were reduced by 64.5 % and 61%, respectively, in the presence of 4g/L acetic acid at pH 4.0. The results showed that the electrochemical method can provide us with an appropriate and convenient tool for cytotoxic evaluation.

  6. Synthesis and Crystal Structure of 4-(4,6-Dimethoxylpyrimidin-2-yl)-3-thiourea Carboxylic Acid Ethyl Ester

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yang; HUANG Jie; SONG Ji-Rong; REN Ying-Hui; XU Kang-Zhen

    2008-01-01

    4-(4,6-Dimethoxyl-pyrimidin-2-yl)-3-thiourea carboxylic acid ethyl ester was synthesized by the reaction of 2-amino-4,6-dimethoxyl pyrimidine,potassium thiocyanate and methyl chloroformate in ethyl acetate.Single crystals suitable for X-ray measurement were obtained by recrystallization with the solvent of dimethyl formamidc at room temperature.The crystal structure was determined by X-ray diffraction analysis.Crystallographic data:C10H14N4O4S,Mr=286.31,monoclinic,space group C2/c with a=2.5309(3),b=0.67682(6),c=1.74237(19)nm,β=114.744(3)°,V=2.7106(5)nm3,Dc=1.403 g/cm3,μ=0.225mm-1,F(000)=1200,Z=8,R=0.0514 and wR=0.1529.

  7. Synthesis and Crystal Structure of 4-(4,6-dimethoxyl -pyrimidin-2-yl)-3-thiourea Carboxylic Acid Methyl Ester

    Institute of Scientific and Technical Information of China (English)

    HUANG Jie; SONG Ji-Rong; REN Ying-Hui; XU Kang-Zhen; MA Hai-Xia

    2006-01-01

    The title compound 4-(4,6-dimethoxylpyrimidin-2-yl)-3-thiourea carboxylic acid methyl ester was synthesized by the reaction of 2-amino-4,6-dimethoxyl pyrimidine, potassium thiocyanate and methyl chloroformate in ethyl acetate. Single crystals suitable for X-ray measurement were obtained by recrystallization with the solvent of dimethyl formamide at the room temperature. The structure was characterized by elemental analysis and IR and determined by X-ray diffraction analysis. Crystallographic data: C9H12N4O4S, Mr = 272.29, monoclinic, space group C2/m with a = 1.6672(3), b = 0.66383(12), c = 1.1617(2) nm, β = 109.275(2)°, V = 1.2136(4) nm3, Dc = 1.490 g/cm3, μ = 0.281 mm-1, F(000) = 568, Z = 4, R1 = 0.0341and wR2 = 0.1042.

  8. Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite

    OpenAIRE

    Ferreira, P; Fonseca, I.; Ramos, A.; Vital, J; Castanheiro, Jose

    2009-01-01

    The esterification of glycerol with acetic acid was carried out over dodecamolybdophosphoric acid (PMo) encaged in the USY zeolite. The products of glycerol acetylation were monoacetin, diacetin and triacetin. A series of PMo encaged in the NaUSY zeolite with different PMo loading from 0.6 to 5.4 wt.% were prepared. It was observed that the catalytic activity increases with the amount of PMo immobilized in the NaUSY zeolite, being the PMo3_NaUSY (with 1.9 wt.%) the most active sample...

  9. Novel Approach: Tungsten Oxide Nanoparticle as a Catalyst for Malonic Acid Ester Synthesis via Ozonolysis

    Directory of Open Access Journals (Sweden)

    Bilal A. Wasmi

    2014-01-01

    Full Text Available Malonic acid ester was synthesized via the one-step ozonolysis of palm olein. Malonic acid ester was spectroscopically characterized using gas chromatography mass spectroscopy (GC-MS. Tungsten oxide nanoparticles were used as the catalyst, which was characterized via X-ray powder diffraction (XRD and field emission scanning electron microscopy (FE-SEM. Tungsten oxide provided several advantages as a catalyst for the esterification malonic acid such as simple operation for a precise ozonation method, an excellent yield of approximately 10%, short reaction times of 2 h, and reusability due to its recyclability.

  10. Low-temperature phase behavior of fatty acid methyl esters by differential scanning calorimetry (DSC)

    Science.gov (United States)

    Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...

  11. 40 CFR 721.10142 - Oxabicycloalkane carboxylic acid alkanediyl ester (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Oxabicycloalkane carboxylic acid alkanediyl ester (generic). 721.10142 Section 721.10142 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10142 Oxabicycloalkane carboxylic acid...

  12. Plasma Cholesterol Ester Fatty Acids: A New Biochemical Abnormality in Obstructive Jaundice

    OpenAIRE

    Scriven, M. W.; Horrobin, D. F.; Puntis, M. C. A.

    1995-01-01

    Changes in fatty acid patterns may explain many of the observed abnormalities found in obstructive jaundice. This study looked at fatty acids in plasma cholesterol esters, in a group of patients with obstructive jaundice and a matched group of controls. Significant abnormalities were demonstrated, most importantly a fall in essential fatty acids, in the jaundiced group. Overall the saturation of this fraction, as assessed by double bond index, rose. The essential fatty acids ar...

  13. 2-吲哚乙酸乙酯的合成%Synthesis of 2-indoleacetic Acid Ethyl Ester

    Institute of Scientific and Technical Information of China (English)

    陈芬; 覃宇

    2015-01-01

    丙二酸二乙酯在醇溶液中,与氢氧化钾皂化得到丙二酸单乙酯钾盐,然后在N, N'-羰基二咪唑(CDI)作用下,与2-硝基苯乙酸进行亲核加成得到4-(2-硝基苯基)-乙酰乙酸乙酯,再经三氯化钛的催化还原环化制得医药中间体2-吲哚乙酸乙酯,收率达72.2%。%2- indole acetic acid ethyl ester, the important drug intermediate, was synthesized from diethyl malonate by saponification reaction with potassium hydroxide in the presence of alcohol solution to give ethyl malonate potassium salt and nucleophilic addition with 2-nitrophenyl acetic acid to give 4-(2-nitrophenyl)-ethylacetoacetate using N,N'-carbonyldiimidazole(CDI), and then reduct cyclization reaction upon the catalysis of titanium trichloride with an overall yield of about 72.2%.

  14. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?

    Science.gov (United States)

    Cook, Sam D; Nichols, David S; Smith, Jason; Chourey, Prem S; McAdam, Erin L; Quittenden, Laura; Ross, John J

    2016-06-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  15. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal...

  16. Oxidative aromatization of Hantzsch 1,4-dihydropyridines by aqueous hydrogen peroxide-acetic acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simple method for the oxidative aromatization of Hantzsch 1,4-dihydropyridines to the corresponding pyridines is achieved by using hydrogen peroxide as green oxidant and acetic acid as catalyst in aqueous solution.

  17. Synthesis of 2-(Benzodioxol-2-yl)acetic Acids as PPARδ Agonists

    Institute of Scientific and Technical Information of China (English)

    Jian Lei KANG; Zhi Bing ZHENG; Dan QIN; Li Li WANG; Song LI

    2006-01-01

    A new series of compounds, 2-(benzodioxol-2-yl)acetic acids, have been synthesized. Their structures were confirmed by MS and 1H-NMR. The preliminary pharmacological screening showed that these compounds exhibited potent human PPARδ agonist activities.

  18. Impact of acetic acid concentration of fermented liquid feed on growth performance of piglets

    DEFF Research Database (Denmark)

    Canibe, Nuria; Pedersen, Anni Øyan; Jensen, Bent Borg

    2010-01-01

    of microbial metabolites, namely acetic acid, possibly in combination with low feed pH, has been suggested to be determinant in reducing feed intake by impairing palatability. However, this hypothesis has never been investigated. A study was carried out to determine the impact of increasing levels of acetic...... acid in FLF on feed intake of weaners. Three experimental FLF diets were prepared to contain varying levels of acetic acid (30, 60, and 120 mM). Twenty piglets per treatment, weaned at 4 weeks of age and housed individually, were fed the experimental diets during six weeks starting at weaning. Feed...... intake and body weight were registered weekly. The results showed that high acetic acid concentration in FLF, accompanied by a slight lower pH level, tended to decrease feed intake without affecting body weight gain. This discrepancy could partly be explained by the difficulty in measuring accurately...

  19. Bioproduction of usnic acid from acetate by kaolinite immobilized cells of Cladonia substellata Vain.

    Directory of Open Access Journals (Sweden)

    Eugenia C. Pereira

    2014-02-01

    Full Text Available Cells of the lichen Cladonia substellata, immobilized in kaolinite and supplied with acetate, produce at room temperature large amounts of usnic acid which can be recovered from the washing solution.

  20. SINOPEC,BP TO LAUNCH ACETIC ACID JOINT VENTURE IN NANJING

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Sinopec Corp and BP signed a 50%-50% joint venture contract on March 15 to build a world-class 500,000-ton acetic acid plant in Nanjing, the capital of East China's Jiangsu Province. The joint venture, which is expected to be on stream in the second half of 2007,will adopt BP's world leading CativaR technology to make this project become a acetic acid production base with great competitiveness.

  1. Growing and laying performance of Japanese quail fed diet supplemented with different concentrations of acetic acid

    Directory of Open Access Journals (Sweden)

    Youssef A. Attia

    2013-04-01

    Full Text Available In order to evaluate the effect of acetic acid on growing and laying performance of Japanese Quail (JQ, 180 15-day-old JQ were divided into 4 groups. During the growing (15-42 days of age and laying (43-84 days of age periods, the groups fed the same basal diets supplemented with 0, 1.5, 3 and 6% of acetic acid. Each diet was fed to five replicates of 9 JQ (3 males:6 females during the growing period. During the laying period, 128 birds were housed in 32 cages (4 birds per cage, 1 male and 3 females, 8 replicates per treatment. Birds were housed in wire cages (46L×43W×20H cm in an open room. Acetic acid supplementation at 3% in the diets significantly increased the growth and laying rate and the Haugh unit score. The liver percentage significantly decreased with acetic acid at 6%. Acetic acid at 3% significantly increased hemoglobin concentrations at 6 weeks of age and increased weight of day old chicks hatched. Acetic acid affected the immune system as manifested by an excess of cellular reactions in the intestine as well as lymphoid hyperplasia in the spleen tissue. Degenerative changes in the covering epithelium of the intestinal villi were noted at the 6% concentration of acetic acid. Hepatocyte vacuolation and fatty changes were also observed at this concentration of treatment. In conclusion, 3% acetic acid may be used as a feed supplement for JQ during the growing and laying period to improve the productive performance.

  2. Evolution of Acetic Acid Bacteria During Fermentation and Storage of Wine

    OpenAIRE

    Joyeux, A.; Lafon-Lafourcade, S.; Ribéreau-Gayon, P.

    1984-01-01

    Acetic acid bacteria were present at all stages of wine making, from the mature grape through vinification to conservation. A succession of Gluconobacter oxydans, Acetobacter pasteurianus, and Acetobacter aceti during the course of these stages was noted. Low levels of A. aceti remained in the wine; they exhibited rapid proliferation on short exposure of the wine to air and caused significant increases in the concentration of acetic acid. Higher temperature of wine storage and higher wine pH ...

  3. Production of alcohol and acetic acid from pineapple wastes in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Muttamara, S.; Nirmala, D.J.

    1982-01-01

    Pineapple cannery wastes were supplemented with (NH/sub 4/)/sub 2/SO/sub 4/ and KH/sub 2/PO/sub 4/ and fermented with Saccharomyces cerevisiae to produce ethanol. The liquid portion of the fermentation broth was inoculated with Acetobacter aceti to produce acetic acid. Maximum yields of ethanol and acetic acid were 5.8% and 1.9%, respectively. The solid residue had feed value.

  4. KINETIC OF ESTERIFICATION OF ETHYL ALCOHOL BY ACETIC ACID ON A CATALYTIC RESIN

    Directory of Open Access Journals (Sweden)

    Erol İNCE

    2002-01-01

    Full Text Available The conversion kinetics of diluted acetic acid to ethyl acetate by ethanol esterification in a batch reactor in liquid phase with an acidic polymer catalyst (lewatit series was studied. The intrinsic rate constants have been correlated with the reaction temperature, concentration of catalyst, initial ratios of reactants and initial water concentrations. The kinetic analysis was restricted to the system at hand in which a liquid and vapor phase are at equilibrium.

  5. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima

    2015-11-14

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate results almost exclusively on the homo-coupling product whereas with such catalyst, 1-decene gives ISOMET (isomerization and metathesis olefin) products. The olefin metathesis in the presence of esters is very selective without any secondary cross-metathesis products demonstrating that a high selective olefin metathesis could operate at 150 °C. Additionally, a cross-metathesis of unsaturated FAEs and α-olefins allowed the synthesis of the corresponding ester with longer hydrocarbon skeleton without isomerisation.

  6. Continuous Ethanol Production with a Membrane Bioreactor at High Acetic Acid Concentrations

    Directory of Open Access Journals (Sweden)

    Päivi Ylitervo

    2014-07-01

    Full Text Available The release of inhibitory concentrations of acetic acid from lignocellulosic raw materials during hydrolysis is one of the main concerns for 2nd generation ethanol production. The undissociated form of acetic acid can enter the cell by diffusion through the plasma membrane and trigger several toxic effects, such as uncoupling and lowered intracellular pH. The effect of acetic acid on the ethanol production was investigated in continuous cultivations by adding medium containing 2.5 to 20.0 g·L−1 acetic acid at pH 5.0, at a dilution rate of 0.5 h−1. The cultivations were performed at both high (~25 g·L−1 and very high (100–200 g·L−1 yeast concentration by retaining the yeast cells inside the reactor by a cross-flow membrane in a membrane bioreactor. The yeast was able to steadily produce ethanol from 25 g·L−1 sucrose, at volumetric rates of 5–6 g·L−1·h−1 at acetic acid concentrations up to 15.0 g·L−1. However, the yeast continued to produce ethanol also at a concentration of 20 g·L−1 acetic acid but at a declining rate. The study thereby demonstrates the great potential of the membrane bioreactor for improving the robustness of the ethanol production based on lignocellulosic raw materials.

  7. Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches.

    Science.gov (United States)

    Majzoobi, Mahsa; Beparva, Paniz

    2014-03-15

    The effects of two common organic acids; lactic and acetic acids (150 mg/kg) on physicochemical properties of native and cross-linked wheat starches were investigated prior and after gelatinization. These acids caused formation of some cracks and spots on the granules. The intrinsic viscosity of both starches decreased in the presence of the acids particularly after gelatinization. Water solubility increased while water absorption reduced after addition of the acids. The acids caused reduction in gelatinization temperature and enthalpy of gelatinization of both starches. The starch gels became softer, less cohesive, elastic and gummy when acids were added. These changes may indicate the degradation of the starch molecules by the acids. Cross-linked wheat starch was more resistant to the acids. However, both starches became more susceptible to the acids after gelatinization. The effect of lactic acid on physicochemical properties of both starches before and after gelatinization was greater than acetic acid.

  8. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.

    Science.gov (United States)

    Sainz, F; Navarro, D; Mateo, E; Torija, M J; Mas, A

    2016-04-01

    The oxidative metabolism of acetic acid bacteria (AAB) can be exploited for the production of several compounds, including D-gluconic acid. The production of D-gluconic acid in fermented beverages could be useful for the development of new products without glucose. In the present study, we analyzed nineteen strains belonging to eight different species of AAB to select those that could produce D-gluconic acid from D-glucose without consuming D-fructose. We tested their performance in three different media and analyzed the changes in the levels of D-glucose, D-fructose, D-gluconic acid and the derived gluconates. D-Glucose and D-fructose consumption and D-gluconic acid production were heavily dependent on the strain and the media. The most suitable strains for our purpose were Gluconobacter japonicus CECT 8443 and Gluconobacter oxydans Po5. The strawberry isolate Acetobacter malorum (CECT 7749) also produced D-gluconic acid; however, it further oxidized D-gluconic acid to keto-D-gluconates.

  9. Synthesis and Antimicrobial Activity of Some Derivatives on the Basis (7-hydroxy-2-oxo-2H-chromen-4-yl-acetic Acid Hydrazide

    Directory of Open Access Journals (Sweden)

    Elizabeth Has-Schon

    2006-03-01

    Full Text Available (7-Hydroxy-2-oxo-2H-chromen-4-yl-acetic acid hydrazide (2 was prepared from (7-hydroxy-2-oxo-2H-chromen-4-yl-acetic acid ethyl ester (1 and 100% hydrazine hydrate. Compound 2, is the key intermediate for the synthesis of several series of new compounds such as Schiff’s bases 3a-l, formic acid N'-[2-(7-hydroxy-2-oxo-2H- chromen-4-ylacetyl] hydrazide (4, acetic acid N'-[2-(7-hydroxy-2-oxo-2H-chromen-4- yl-acetyl] hydrazide (5, (7-hydroxy-2-oxo-2H-chromen-4-yl-acetic acid N'-[2-(4- hydroxy-2-oxo-2H-chromen-3-yl-2-oxoethyl] hydrazide (6, 4-phenyl-1-(7-hydroxy-2- oxo-2H-chromen- 4-acetyl thiosemicarbazide (7, ethyl 3-{2-[2-(7-hydroxy-2-oxo-2H- chromen-4-yl-acetyl]hydrazono}butanoate (8, (7-hydroxy-2-oxo-2H-chromen-4-yl- acetic acid N'-[(4-trifluoromethylphenyliminomethyl] hydrazide (9 and (7-hydroxy-2- oxo-2H-chromen-4-ylacetic acid N'-[(2,3,4-trifluorophenylimino-methyl] hydrazide (10. Cyclo- condensation of compound 2 with pentane-2,4-dione gave 4-[2-(3,5- dimethyl-1H-pyrazol-1-yl-2-oxoethyl]-7-hydroxy-2H-chromen-2-one (11, while with carbon disulfide it afforded 7-hydroxy-4-[(5-mercapto-1,3,4-oxadiazol-2-ylmethyl]-2H- chromen-2-one (12 and with potassium isothiocyanate it gave 7-hydroxy-4-[(5- mercapto-4H-1,2,4-triazol-3-ylmethyl]-2H-chromen-2-one (14. Compound 7 was cyclized to afford 2-(7-hydroxy-2-oxo-2H-chromen-4-yl-N ́-(4-oxo-2-phenylimino- thiazolidin-3-yl acetamide (15.

  10. The occurrence of 2-hydroxy-6-methoxybenzoic acid methyl ester in Securidaca longepedunculata Fresen root bark

    Directory of Open Access Journals (Sweden)

    Lognay G.

    2000-01-01

    Full Text Available As part of our ongoing search for natural fumigants from Senegalese plants, we have investigated Securicicidaca longepedunculata root barks and demonstrated that 2-hydroxy-benzoic acid methyl ester (methyl salicylate, I is responsible of their biocide effect against stored grain insects. A second unknown apparented product, II has been systematically observed in all analyzed samples. The present paper describes the identification of this molecule. The analytical investigations including GCMS, GLC and 1H-NMR. spectrometry led to the conclusion that II corresponds to the 2-hydroxy-6-methoxybenzoic acid methyl ester.

  11. Anticancer Activities of Substituted Cinnamic Acid Phenethyl Esters on Human Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    LIShu-chun; LIHui; ZHANGFa; LIZhong-jun; CUIJing-rong

    2003-01-01

    Caffeic acid phenethyl ester (CAPE) and sixteen substituted cinnamic acid phenethyl esters were prepared via conventional procedures in order to test their in vitro anticancer activities by either MTT assay or SRB assay on six different human cancer cell lines. The results indicated that in the concentration of 10μmol·L-1 the lead compmuM CAPE possessed anficancer activities against human HL-60, Bel-7402, and Hela cell lines, and two other compounds possessed potent anticancer activities against Bel-7402 and Hela cell lines.

  12. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Swinnen, Steve; Fernández-Niño, Miguel; González-Ramos, Daniel; van Maris, Antonius J A; Nevoigt, Elke

    2014-06-01

    High acetic acid tolerance of Saccharomyces cerevisiae is a relevant phenotype in industrial biotechnology when using lignocellulosic hydrolysates as feedstock. A screening of 38 S. cerevisiae strains for tolerance to acetic acid revealed considerable differences, particularly with regard to the duration of the latency phase. To understand how this phenotype is quantitatively manifested, four strains exhibiting significant differences were studied in more detail. Our data show that the duration of the latency phase is primarily determined by the fraction of cells within the population that resume growth. Only this fraction contributed to the exponential growth observed after the latency phase, while all other cells persisted in a viable but non-proliferating state. A remarkable variation in the size of the fraction was observed among the tested strains differing by several orders of magnitude. In fact, only 11 out of 10(7)  cells of the industrial bioethanol production strain Ethanol Red resumed growth after exposure to 157 mM acetic acid at pH 4.5, while this fraction was 3.6 × 10(6) (out of 10(7)  cells) in the highly acetic acid tolerant isolate ATCC 96581. These strain-specific differences are genetically determined and represent a valuable starting point to identify genetic targets for future strain improvement.

  13. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Meijnen, Jean-Paul; Randazzo, Paola; Foulquié-Moreno, María R; van den Brink, Joost; Vandecruys, Paul; Stojiljkovic, Marija; Dumortier, Françoise; Zalar, Polona; Boekhout, Teun; Gunde-Cimerman, Nina; Kokošar, Janez; Štajdohar, Miha; Curk, Tomaž; Petrovič, Uroš; Thevelein, Johan M

    2016-01-01

    BACKGROUND: Acetic acid is one of the major inhibitors in lignocellulose hydrolysates used for the production of second-generation bioethanol. Although several genes have been identified in laboratory yeast strains that are required for tolerance to acetic acid, the genetic basis of the high acetic

  14. Antifungal properties of 2-bromo-3-fluorosuccinic acid esters and related compounds.

    Science.gov (United States)

    Gershon, H; Shanks, L

    1977-04-01

    Twelve esters (C1-C6) of erythro- and threo-2-bromo-3-fluorosuccinic acid and related compounds were tested for antifungal activity against Candida albicans, Aspergillus niger, Mucor mucedo, and Trichophyton mentagrophytes at pH 5.7 and 7.0 in the absence and presence of 10% beef serum in Sabouraud dextrose agar. At pH 7.0 in the presence of 10% beef serum, no consistent pattern in the fungitoxicity of the erythro- and threo-2-bromo-3-fluorosuccinate esters was seen. Increasing the length of the ester function affects fungitoxicity as follows: C2 greater than C1 greater than C3 greater than C4 greater than C5 greater than C6. The most fungitoxic compound in this study was threo-ethyl 2-bromo-3-fluorosuccinate (C. albicans, 14 mug/ml; A. niger, 30 mug/ml; M. mucedo, 9 mug/ml; T. mentagrophytes, 5 mug/ml). Due to the ease of dehydrohalogenation, the fungitoxicity of 2-bromo-3-fluorosuccinic acid esters may be the result of a mixture composed of the parent compound, the bromo- and fluorofumaric acid esters, and HF and HBr of which part may be formed extracellularly and part within the cell.

  15. Conformational equilibria and large-amplitude motions in dimers of carboxylic acids: rotational spectrum of acetic acid-difluoroacetic acid.

    Science.gov (United States)

    Gou, Qian; Feng, Gang; Evangelisti, Luca; Caminati, Walther

    2014-10-01

    We report the rotational spectra of two conformers of the acetic acid-difluoroacetic acid adduct (CH3COOH-CHF2COOH) and supply information on its internal dynamics. The two conformers differ from each other, depending on the trans or gauche orientation of the terminal -CHF2 group. Both conformers display splittings of the rotational transitions, due to the internal rotation of the methyl group of acetic acid. The corresponding barriers are determined to be V3(trans)=99.8(3) and V3(gauche)=90.5(9) cm(-1) (where V3 is the methyl rotation barrier height). The gauche form displays a further doubling of the rotational transitions, due to the tunneling motion of the -CHF2 group between its two equivalent conformations. The corresponding B2 barrier is estimated to be 108(2) cm(-1). The increase in the distance between the two monomers upon OH→OD deuteration (the Ubbelohde effect) is determined.

  16. Pretreatment of corn stover with diluted acetic acid for enhancement of acidogenic fermentation.

    Science.gov (United States)

    Zhao, Xu; Wang, Lijuan; Lu, Xuebin; Zhang, Shuting

    2014-04-01

    A Box-Behnken design of response surface method was used to optimize acetic acid-catalyzed hydrothermal pretreatment of corn stover, in respect to acid concentration (0.05-0.25%), treatment time (5-15 min) and reaction temperature (180-210°C). Acidogenic fermentations with different initial pH and hydrolyzates were also measured to evaluate the optimal pretreatment conditions for maximizing acid production. The results showed that pretreatment with 0.25% acetic acid at 191°C for 7.74 min was found to be the most optimal condition for pretreatment of corn stover under which the production of acids can reach the highest level. Acidogenic fermentation with the hydrolyzate of pretreatment at the optimal condition at the initial pH=5 was shown to be butyric acid type fermentation, producing 21.84 g acetic acid, 7.246 g propionic acid, 9.170 butyric acid and 1.035 g isovaleric acid from 100g of corn stover in 900 g of water containing 2.25 g acetic acid.

  17. Thermal decarboxylation of acetic acid: Implications for origin of natural gas

    Science.gov (United States)

    Kharaka, Y.K.; Carothers, W.W.; Rosenbauer, R.J.

    1983-01-01

    Laboratory experiments on the thermal decarboxylation of solutions of acetic acid at 200??C and 300??C were carried out in hydrothermal equipment allowing for on-line sampling of both the gas and liquid phases for chemical and stable-carbon-isotope analyses. The solutions had ambient pH values between 2.5 and 7.1; pH values and the concentrations of the various acetate species at the conditions of the experiments were computed using a chemical model. Results show that the concentrations of acetic acid, and not total acetate in solution, control the reaction rates which follow a first order equation based on decreasing concentrations of acetic acid with time. The decarboxylation rates at 200??C (1.81 ?? 10-8 per second) and 300??C (8.17 ?? 10-8 per second) and the extrapolated rates at lower temperatures are relatively high. The activation energy of decarboxylation is only 8.1 kcal/mole. These high decarboxylation rates, together with the distribution of short-chained aliphatic acid anions in formation waters, support the hypothesis that acid anions are precursors for an important portion of natural gas. Results of the ??13C values of CO2, CH4, and total acetate show a reasonably constant fractionation factor of about 20 permil between CO2 and CH4 at 300??C. The ??13C values of CO2 and CH4 are initially low and become higher as decarboxylation increases. ?? 1983.

  18. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed.

  19. Ionic liquids as novel solvents for the synthesis of sugar fatty acid ester.

    Science.gov (United States)

    Mai, Ngoc Lan; Ahn, Kihun; Bae, Sang Woo; Shin, Dong Woo; Morya, Vivek Kumar; Koo, Yoon-Mo

    2014-12-01

    Sugar fatty acid esters are bio-surfactants known for their non-toxic, non-ionic, and high biodegradability . With great emulsifying and conditioning effects, sugar fatty acids are widely used in the food, pharmaceutical, and cosmetic industries. Biosynthesis of sugar fatty acid esters has attracted growing attention in recent decades. In this study, the enzymatic synthesis of sugar fatty acid esters in ionic liquids was developed, optimized, and scaled up. Reaction parameters affecting the conversion yield of lipase-catalyzed synthesis of glucose laurate from glucose and vinyl laurate (i.e. temperature, vinyl laurate/glucose molar ratio, and enzyme loads) were optimized by response surface methodology (RSM). In addition, production was scaled up to 2.5 L, and recycling of enzyme and ionic liquids was investigated. The results showed that under optimal reaction conditions (66.86 °C, vinyl laurate/glucose molar ratio of 7.63, enzyme load of 73.33 g/L), an experimental conversion yield of 96.4% was obtained which is close to the optimal value predicted by RSM (97.16%). A similar conversion yield was maintained when the reaction was carried out at 2.5 L. Moreover, the enzymes and ionic liquids could be recycled and reused effectively for up to 10 cycles. The results indicate the feasibility of ionic liquids as novel solvents for the biosynthesis of sugar fatty acid esters.

  20. Microbiological preservation of cucumbers for bulk storage using acetic acid and food preservatives.

    Science.gov (United States)

    Pérez-Díaz, I M; McFeeters, R F

    2008-08-01

    Microbial growth did not occur when cucumbers were preserved without a thermal process by storage in solutions containing acetic acid, sodium benzoate, and calcium chloride to maintain tissue firmness. The concentrations of acetic acid and sodium benzoate required to ensure preservation were low enough so that stored cucumbers could be converted to the finished product without the need to wash out and discard excess acid or preservative. Since no thermal process was required, this method of preservation would be applicable for storing cucumbers in bulk containers. Acid tolerant pathogens died off in less than 24 h with the pH, acetic acid, and sodium benzoate concentrations required to assure the microbial stability of cucumbers stored at 30 degrees C. Potassium sorbate as a preservative in this application was not effective. Yeast growth was observed when sulfite was used as a preservative.

  1. Formic and acetic acid: Valence threshold photoelectron and photoionisation total ion yield studies

    International Nuclear Information System (INIS)

    Highlights: ► High-resolution threshold photoelectron spectrum of formic acid. ► High-resolution total photo-ion yield spectrum of formic acid. ► High-resolution threshold photoelectron spectrum of acetic acid. ► High-resolution total photo-ion yield spectrum of acetic acid. -- Abstract: The carboxylic acids (formic and acetic) have been studied using threshold photoelectron (TPE) and total photoion yield (TPIY) spectroscopies; simultaneously obtained spectra of formic acid (HCOOH) were recorded over the entire valence ionisation region from 11–21 eV at a resolution of ∼12 meV. Higher resolution spectra (∼6 meV) were also obtained in the energy region of the lowest two cationic states. Analysis of the TPE spectrum in this energy range agreed very favorably with the best available conventional photoelectron (PE) spectrum of formic acid. Autoionising Rydberg structure was observed in the TPIY spectrum of formic acid and is attributed primarily to the presence of the npa′ ← 8a′ Rydberg series converging on to the 32A′ ionic state of formic acid. Preliminary results, at a resolution of ∼8 meV, were obtained for acetic acid (CH3COOH) over the onset of the ionisation energy region. The TPE spectrum was found to be very similar to the best published photoelectron spectrum, but no Rydberg structure was observed in the TPIY spectrum.

  2. Substituent effects and pH profiles for stability constants of arylboronic acid diol esters.

    Science.gov (United States)

    Martínez-Aguirre, Mayte A; Villamil-Ramos, Raul; Guerrero-Alvarez, Jorge A; Yatsimirsky, Anatoly K

    2013-05-17

    Stability constants of boronic acid diol esters in aqueous solution have been determined potentiometrically for a series of meta-, para-substituted phenylboronic acids and diols of variable acidity. The constants β(11-1) for reactions between neutral forms of reactants producing the anionic ester plus proton follow the Hammett equation with ρ depending on pKa of diol and varying from 2.0 for glucose to 1.29 for 4-nitrocatechol. Observed stability constants (K(obs)) measured by UV-vis and fluorometric titrations at variable pH for esters of 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) generally agree with those expected on the basis of β(11-1) values, but the direct fitting of K(obs) vs pH profiles gives shifted pKa values both for boronic acids and diol as a result of significant interdependence of fitting parameters. The subsituent effects on absorption and fluorescence spectra of Tiron arylboronate esters are characterized. The K(obs) for Tiron determined by (11)B NMR titrations are approximately 1 order of magnitude smaller than those determined by UV-vis titrations under identical conditions. A general equation, which makes possible an estimate of β(11-1) for any pair of boronic acid and diol from their pKa values, is proposed on the basis of established Brönsted-type correlation of Hammett parameters for β(11-1) with acidity of diols. The equation allows one to calculate stability constants expected only on basis of acid-base properties of the components, thus permitting more strict evaluation of contributions of additional factors such as steric or charge effects to the ester stability.

  3. [Primary research on anti-tumor activity of panaxadiol fatty acid esters].

    Science.gov (United States)

    Zhang, Chun-Hong; Zhang, Lian-Xue; Li, Xiang-Gao; Gao, Yu-Gang; Liu, Ya-Jing

    2006-11-01

    For making use of Ginseng resources and finding new anti-tumor drugs, the anti-tumor activity of three kinds of new panaxadiol fatty acid ester derivates: 3beta-acetoxy panaxadiol (I), 3beta-palmitic acid aceloxy panaxadiol (II), 3beta-octadecanoic acid aceloxy panaxadiol (Ill) and panaxaiol were compared through the method of cell stain and counting. Tumor cell was Vero cell line. Positive control was 5-FU. Blank was RPM11640 culture medium. Negative control was RPM11640 culture medium and the solvent for subjected drugs. The result showed that compound I had the strongest anti-tumor activity, second was panaxadiol, II and III had the same and the weakest antitumor activity. Furthermore, the anti-tumor activities of panaxadiol fatty acid ester derivates showed positive correlation with subjects' concentrations, but no relationship with molecular weight of fatty acid. PMID:17228662

  4. Preparation of sphingolipid fatty acid methyl esters for determination by gas-liquid chromatography.

    Science.gov (United States)

    MacGee, J; Williams, M G

    1981-01-30

    Sphingolipid fatty acids are first converted to a mixture of free acids and their n-butyl esters by heating the specimen at 85 degree C in aqueous butanolic hydrogen chloride; the butyl esters are then saponified with methanolic potassium hydroxide. After acidification and extraction into hexane, the fatty acids are extracted into a very small volume of aqueous trimethyl(m-trifluorotolyl)ammonium hydroxide (TMTFTH), injection of an aliquot of the TMTFTH extract into the gas chromatograph yields the fatty acid methyl esters by pyrolytic methylation of the quaternary ammonium salts of the fatty acids. The preparation of a specimen ready for the gas--liquid chromatographic (GLC) analysis with quantitative recovery of the sphingolipid fatty acids can be accomplished in less than 2 h. By comparison, none of a number of well-accepted techniques for the release of sphingomyelin fatty acids by hydrolysis or methanolysis released the fatty acids quantitatively in less than 3 h, and all required additional manipulations before GLC analysis. PMID:7217267

  5. Encapsulation of ployunsaturated fatty acid esters with solid lipid particles

    Science.gov (United States)

    Polyunsaturated fatty acids (PUFA) such as a-linolenic acid (ALA) and docosahexaenoic acid (DHA) are known to improve cardiovascular and nervous system health. These compounds are increasingly used in food and animal feed formulations. However, the high degree of unsaturation in these structures can...

  6. Kinetics Studies on Esterification Reaction of Acetic acid with Iso-amyl Alcohol over Ion Exchange Resin as Catalysts

    OpenAIRE

    Kulkarni, Bhaskar D

    2014-01-01

    The low molecular weight organic esters have pleasing smell and are found in applications in the food industry for synthetic essence and perfume. Esterification reactions are ubiquitous reactions especially in pharmaceutical, perfumery and polymer industries, wherein; both heterogeneous and homogeneous catalysts have been extensively used. Iso-amyl acetate (or Iso-pentyl acetate) is often called as banana oil, since it has the recognizable odor of this fruit. I...

  7. Synthesis and evaluation of odour-active methionyl esters of fatty acids via esterification and transesterification of butter oil.

    Science.gov (United States)

    Li, Cheng; Sun, Jingcan; Fu, Caili; Yu, Bin; Liu, Shao Quan; Li, Tianhu; Huang, Dejian

    2014-02-15

    Methionol-derived fatty acid esters were synthesised by both chemical and lipase catalysed esterification between fatty acids and methionol. Beneficial effects of both methods were compared qualitatively and quantitatively by GC-MS/GC-FID results. And the high acid and heat stability of our designed methionyl esters meet the requirement of the food industry. Most importantly, the sensory test showed that fatty acid carbon-chain length had an important effect on the flavour attributes of methionyl esters. Moreover, through Lipozyme TL IM-mediated transesterification, valuable methionol-derived esters were synthesised from the readily available natural material butter oil as the fatty acid source. The conversion of methionol and yield of each methionyl ester were also elucidated by GC-MS-FID.

  8. Effect of acetic acid on rice seeds coated with rice husk ash

    Directory of Open Access Journals (Sweden)

    Lizandro Ciciliano Tavares

    2013-06-01

    Full Text Available Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência, five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM, with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.

  9. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance.

  10. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. PMID:25485864

  11. Synthesis and characterization of biodegradable polymer: Poly (ethene maleic acid ester-co-D,L-lactide acid)

    Institute of Scientific and Technical Information of China (English)

    Mei Na Huang; Yan Feng Luo; Jia Chen; Yong Gang Li; Chun Hua Fu; Yuan Liang Wang

    2007-01-01

    A novel biodegradable polymer-poly (ethene maleic acid ester-co-D,L-lactide acid) was synthesized by copolymerizing lactide and prepolymer, which was prepared by the condensation of maleic anhydride and glycol, using p-toluene sulphonic acid as a catalyst, attempting to improve the hydrophilicity, increase flexibility and modulate the degradation rate. FTIR, 1H NMR, MALLS and DSC were employed to characterize these polymers.

  12. Enzymatic Synthesis of l-Ascorbyl Fatty Acid Esters Under Ultrasonic Irradiation and Comparison of Their Antioxidant Activity and Stability.

    Science.gov (United States)

    Jiang, Chen; Lu, Yuyun; Li, Zhuo; Li, Cunzhi; Yan, Rian

    2016-06-01

    A series of novel l-ascorbyl fatty acid esters were synthesized by catalization of Novozym(®) 435 under ultrasonic irradiation and characterized by infrared spectroscopy, electrospray ionization mass spectra, and nuclear magnetic resonance. Their properties especially antioxidant activity and stability were investigated. The results showed that the reducing power, the scavenging activity of hydroxyl radical and 2,2-diphenyl-1-picrylhydrazyl radical were decreased with the increase of the number of carbon atoms in fatty acid. The hydroxyl radical scavenging activity and reducing power of l-ascorbyl saturated fatty acid esters were better than that of tert-butylhydroquinone. The induction period in lipid oxidation of l-ascorbyl saturated fatty acid esters and tert-butylhydroquinone were longer than that of l-ascorbyl unsaturated fatty acid esters and l-ascorbic acid both in soybean oil and lard. Besides, the l-ascorbyl fatty acid esters showed different stabilities in different conditions by comparing with l-ascorbic acid, and the l-ascorbyl saturated fatty acid esters were more stable than l-ascorbyl unsaturated fatty acid esters in ethanol solution. PMID:27100741

  13. Beyond fatty acid methyl esters: Expanding the renewable carbon profile with alkenones from Isochrysis sp.

    Science.gov (United States)

    In addition to characteristic fatty acid methyl esters (FAMEs), biodiesel produced from Isochrysis sp. contains a significant amount (14% dry weight) of predominantly C37 and C38 longchain alkenones. These compounds are members of a class of lipids known collectively as polyunsaturated long-chain al...

  14. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum.

    Science.gov (United States)

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  15. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY SUPERCRITICAL FLUID CHROMATOGRAPHY

    Science.gov (United States)

    The application of supercritical fluid chromatography (SFC) to the analysis of T-MAZ ethoxylated sorbitan fatty acid esters is described. FC separation methods utilize a density programming technique and a 50 um I.D. capillary column. his work demonstrates that capillary column S...

  16. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum.

    Science.gov (United States)

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property.

  17. Evaluation of mosquito repellent activity of isolated oleic acid, eicosyl ester from Thalictrum javanicum

    Directory of Open Access Journals (Sweden)

    Abinaya Gurunathan

    2016-01-01

    Full Text Available To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicumand to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti(dengue vector and Culex quinquefasciatus(filarial vector. Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase. Ecdysone 20-monooxygenase assay (radioimmuno assay was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm and C. quinquefasciatus (LC50/24 h - 12.5 ppm than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively. The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatusthan the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicummay be considered as a potent source of mosquito larvicidal property.

  18. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum

    Science.gov (United States)

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S.

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  19. Low-temperature side-chain cleavage and decarboxylation of polythiophene esters by acid catalysis

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Norrman, Kion; Krebs, Frederik C

    2012-01-01

    substituents have been examined by TGA‐MS using different sulphonic acids. A substantial lowering of the cleavage temperature is observed, and the ester cleavage can even be performed in situ on roll‐to‐roll‐coated films on polyethylene terephthalate (PET). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A...

  20. Cold flow properties of fatty acid methyl esters: Additives versus diluents

    Science.gov (United States)

    Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...

  1. 4-[(2-Hydroxy-4-pentadecyl-benzylidene-amino]-benzoic Acid Methyl Ester

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2013-11-01

    Full Text Available A new Schiff base, 4-[(2-hydroxy-4-pentadecyl-benzylidene-amino]-benzoic acid methyl ester was synthesized and its UV, IR, 1H-NMR, 13C-NMR and ESI-MS spectroscopic data are presented.

  2. Synthesis of Versatile Building Blocks through Asymmetric Hydrogenation of Functionalized Itaconic Acid Mono-Esters

    NARCIS (Netherlands)

    Hekking, Koen F.W.; Lefort, Laurent; Vries, André H.M. de; Delft, Floris L. van; Schoemaker, Hans E.; Vries, Johannes G. de; Rutjes, Floris P.J.T.

    2008-01-01

    The rhodium-catalyzed asymmetric hydrogenation of several β-substituted itaconic acid mono-esters, using a library of monodentate phosphoramidite and phosphite ligands is described. Two β-alkyl-substituted substrates were readily hydrogenated by the rhodium complex Rh(COD)2BF4 in combination with (S

  3. Synthesis and antiproliferative activity of new bioconjugates of Salinomycin with amino acid esters.

    Science.gov (United States)

    Antoszczak, Michał; Sobusiak, Maria; Maj, Ewa; Wietrzyk, Joanna; Huczyński, Adam

    2015-09-01

    New Salinomycin (SAL) bioconjugates with amino acid methyl esters were obtained and their antiproliferative activity against cancer cell lines including drug-resistant ones was studied. New compounds exhibit antiproliferative activity towards leukemia and doxorubicin-resistant colon adenocarcinoma cell line and are more effective and less toxic than the commonly currently used anticancer drugs.

  4. Large prebiotic molecules in space: photo-physics of acetic acid and its isomers

    CERN Document Server

    Puletti, Fabrizio; Mulas, Giacomo; Cecchi-Pestellini, Cesare

    2009-01-01

    An increasing number of large molecules have been positively identified in space. Many of these molecules are of biological interest and thus provide insight into prebiotic organic chemistry in the protoplanetary nebula. Among these molecules, acetic acid is of particular importance due to its structural proximity to glycine, the simplest amino acid. We compute electronic and vibrational properties of acetic acid and its isomers, methyl formate and glycolaldehyde, using density functional theory. From computed photo-absorption cross-sections, we obtain the corresponding photo-absorption rates for solar radiation at 1 AU and find them in good agreement with previous estimates. We also discuss glycolaldehyde diffuse emission in Sgr B2(N), as opposite to emissions from methyl formate and acetic acid that appear to be concentrate in the compact region Sgr B2(N-LMH).

  5. Cataluminescence sensor for gaseous acetic acid using a thin film of In2O3

    International Nuclear Information System (INIS)

    We report on a cataluminescence sensor for the determination of gaseous acetic acid. It is based on a 60-nm thick sol-gel film of In2O3 on a ceramic support. SEM, XPS and surface profiling were applied for its characterization. It is found that aluminum ions of the ceramic substrate penetrate into the film and produce a synergetic catalytic effect. The sensor displays high sensitivity and specificity for acetic acid, a low detection limit, a wide linear range and a fast response. No (or only very low) interference was observed by formic acid, ammonia, acrolein, benzene, formaldehyde, ethanol, and acetaldehyde. The sensor was successfully applied to the determination of acetic acid in spiked air samples. We also discuss a conceivable mechanism (based on the reaction products) for the cataluminescence resulting from the oxidation reaction on the surface of the sensor film. (author)

  6. Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Egebo, L A; Nielsen, S V; Jochimsen, B U

    1991-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid (IAA). Examination of this catabolism in strain 110 by in vivo experiments has revealed an enzymatic activity catalyzing the degradation of IAA and 5-hydroxy-indole-3-acetic acid. The activity requires...... an oxygen-consuming opening of the indole ring analogous to the one catalyzed by tryptophan 2,3-dioxygenase. The pattern of metabolite usage by known tryptophan-auxotrophic mutants and studies of metabolites by high-performance liquid chromatography indicate that anthranilic acid is a terminal degradation...

  7. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii.

    Directory of Open Access Journals (Sweden)

    Fernando Rodrigues

    Full Text Available Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2, C(3 and C(4. The incorporation of [U-(14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.

  8. Concentration and stabilization of C₂₀-₂₂ n-3 polyunsaturated fatty acid esters from the oil of Sardinella longiceps.

    Science.gov (United States)

    Chakraborty, Kajal; Joseph, Deepu; Joseph, Dexy

    2016-05-15

    Methyl esters of C20-22n-3 polyunsaturated fatty acids derived from sardine oil triglycerides were concentrated to 86% purity with greater than 30% recovery by argentated chromatography. The synergistic effect of ethyl acetate fractions of seaweeds Kappaphycus alvarezii, Hypnea musciformis and Jania rubens used in 0.1:0.2:0.2 (%, w/w) ratio in arresting oxidative degradation of the n-3 PUFA methyl ester concentrate was demonstrated during accelerated storage. The induction time (6.8h) and antioxidant activity indices (>24) were greater for n-3 PUFA concentrates supplemented with seaweed extracts than antioxidants BHT and α-tocopherol (<5h and <17, respectively). Nuclear Magnetic Resonance spectroscopy was employed to study the oxidative changes of fatty acid signals of PUFA concentrate during accelerated storage. Potential of seaweeds to improve the storage stability of C20-22n-3 fatty acid methyl esters was studied. This study has applications in development of food and pharmaceutical products. PMID:26776041

  9. Comparative analysis of acetic and citric acid on internal milieu of broiler chickens

    Directory of Open Access Journals (Sweden)

    Marcela Capcarova

    2014-02-01

    Full Text Available Normal 0 21 false false false CS JA X-NONE The aim of the present study was to analyse the effect of two organic acids (acetic and citric acid inclusion on serum parameters and the level of antioxidant status of broiler chickens. Some organic acidifiers reduce the growth of many intestinal bacteria, reduce intestinal colonisation and reduce infectious processes, decrease inflammatory processes at the intestinal mucosa, increase villus height and function of secretion, digestion and absorption of nutrients. Broiler chickens hybrid Ross 308 (n=180 were divided into 3 groups: one control (C and two experimental groups (E1, E2. Experimental animals received acetic and citric acid per os in water in single dose 0.25% for 42 days. After 42 days of feeding blood samples were collected (n=10 in each group. Significant decrease of serum triglycerides in citric acid group when compared with the control group was recorded. Acetic acid administration resulted in increased sodium level. Significant increase of albumin content in both experimental groups and increase of bilirubin content in citric group was recorded. Acids administration had no significant effect on other serum and antioxidant parameters. Acetic and citric acid had no harmful influenced on internal milieu of broiler chickens. The research on the field of organic acid will be worthy of further investigation.

  10. Preparation and Reactions of Amino Acid Ester Sulfones as New Remote Asymmetrical Induced Reagents

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Cheng-He; BAI,Xue; LI,Tan-Qing; WU,Jun; Alfred Hassner

    2004-01-01

    @@ The development of chiral auxiliary-controlled asymmetric synthesis has been receiving increasing interest in recent yearsfi,2] Various chiral auxiliary reagents have been observed[3] and a lot of results showed that variation of the chiral auxiliary could influence asymmetric induction. Recently, it has been reported the reaction of the aminated sulfones as a remote chiral auxiliary with α,β-unsaturated carbonyl compounds.[4] Here we would like to report the preparation of amino acid ester sulfones as new remote asymmetrical induced reagents and their reactions with α,β-unsaturated esters.

  11. Recovery of arabinan in acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Hedegaard, Mette Christina; Thomsen, Anne Belinda

    2009-01-01

    Acetic acid-catalyzed hydrothermal pretreatment was done on corn stover under 195 °C, 15 min with the acetic acid ranging from 5 × 10−3 to 0.2 g g−1 corn stover. After pretreatment, the water-insoluble solids (WISs) and liquors were collected respectively. Arabinan recoveries from both WIS...... and liquors were investigated. The results indicate that there was no detectable arabinan left in the WIS when the acetic acid of 0.1 and 0.2 g g−1 corn stover were used in the pretreatment. The arabinan contents in the other WISs were not more than 10%. However, the arabinan found in the liquors...... was not covering the amount of arabinan released from the raw corn stover. For the arabinan recovery from liquor fractions, the highest of 43.57% was obtained by the pretreatment of acetic acid of 0.01 g g−1 of corn stover and the lowest was only 26.77% when the acetic acid of 0.2 g g−1 corn stover was used...

  12. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    Directory of Open Access Journals (Sweden)

    Miguel Macías Macías

    2012-12-01

    Full Text Available Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP. To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L.

  13. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester.

    OpenAIRE

    Jonas, A J; Butler, I J

    1989-01-01

    Tryptophan ethyl ester, a lipid-soluble tryptophan derivative, was used to bypass defective gastrointestinal neutral amino acid transport in a child with Hartnup disease. The child's baseline tryptophan concentrations in serum (20 +/- 6 microM) and cerebrospinal fluid (1.0 +/- 0.2 microM) were persistently less than 50% of normal values. Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, was also less than 50% of normal (21 +/- 2 ng/ml). Serum tryptophan concentr...

  14. GC-MS ANALYSIS OF THE FATTY ACID METHYL ESTER IN JAPANESE QUAIL FAT

    OpenAIRE

    Ion Dragalin; Olga Morarescu; Maria Sedcenco; Radu Marin Rosca

    2015-01-01

    The accumulated as production waste fat from Faraon quail breeds has been investigated for the first time by using GC-MS technique, preventively converting it via methanolysis to fatty acid methyl esters. The test results, regarding the content of unsaturated fatty acids having a favorable to human body cis-configuration (77.8%), confirm their nutritional value and the possibility of using this fat in cosmetic, pharmaceutical and food industries.

  15. GC-MS ANALYSIS OF THE FATTY ACID METHYL ESTER IN JAPANESE QUAIL FAT

    Directory of Open Access Journals (Sweden)

    Ion Dragalin

    2015-12-01

    Full Text Available The accumulated as production waste fat from Faraon quail breeds has been investigated for the first time by using GC-MS technique, preventively converting it via methanolysis to fatty acid methyl esters. The test results, regarding the content of unsaturated fatty acids having a favorable to human body cis-configuration (77.8%, confirm their nutritional value and the possibility of using this fat in cosmetic, pharmaceutical and food industries.

  16. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    DEFF Research Database (Denmark)

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L-phenylalanine...... nor L-serine methyl ester, stimulate insulin secretion. In the presence of L-glutamine, however, the effect of L-serine was additive, while the methyl esters of L-serine and L-phenylalanine as well as native L-phenylalanine, potentiated the glucose-stimulated release of insulin. Measurements of islet...... glutamate dehydrogenase activity showed that only the two methyl esters of L-phenylalanine and L-serine activated the enzyme. It is concluded that the mechanism by which methyl esters of amino acids potentiate insulin release is most likely to be mediated by the activation of pancreatic beta-cell glutamate...

  17. Tribological study of a highly hydrolytically stable phenylboronic acid ester containing benzothiazolyl in mineral oil

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhipeng [School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, 200240 (China); Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Xiufeng; Zhang, Yawen [School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, 200240 (China); Ren, Tianhui, E-mail: thren@sjtu.edu.cn [School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, 200240 (China); Zhao, Yidong [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Zeng, Xiangqiong; Heide, E. van der [Laboratory for Surface Technology and Tribology, University of Twente, Drienerlolaan 5, 7522 NB Enschede (Netherlands)

    2014-07-01

    A novel long chain alkyl phenylboronic acid ester containing heterocyclic compound, bis (1-(benzothiazol-2-ylthio) propan-2-yl)-4-dodecylphenylboronic acid ester (DBBMT), was synthesized and characterized. The hydrolytic stability of the DBBMT was evaluated and the results show that DBBMT is of outstanding hydrolytic stability compared with normal borate esters, which indicates that the designed molecular structure, by introducing benzene ring to conjugate with the electron-deficient boron and the benzothiazole as a hinder group, is effective on obtaining a hydrolytically stable long chain alkyl phenylboronic acid ester. The tribological properties of DBBMT and ZDDP in mineral base oil were evaluated using a four-ball tribometer, which suggests that the DBBMT possesses comprehensive tribological properties and could be a potential candidate for the replacement of ZDDP. Furthermore, in order to understand the tribological behaviors, the worn surface was analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) spectroscopy. The results indicate that the elements S, B, O and Fe perform complicated tribochemical reactions to form the compact tribological film composed of B{sub 2}O{sub 3}, FeS, Fe{sub 3}O{sub 4} and FeSO{sub 4}.

  18. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester.

    Science.gov (United States)

    Jonas, A J; Butler, I J

    1989-07-01

    Tryptophan ethyl ester, a lipid-soluble tryptophan derivative, was used to bypass defective gastrointestinal neutral amino acid transport in a child with Hartnup disease. The child's baseline tryptophan concentrations in serum (20 +/- 6 microM) and cerebrospinal fluid (1.0 +/- 0.2 microM) were persistently less than 50% of normal values. Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, was also less than 50% of normal (21 +/- 2 ng/ml). Serum tryptophan concentrations increased only modestly and briefly after an oral challenge with 200 mg/kg of oral L-tryptophan, reflecting the absorptive defect. An oral challenge with 200 mg/kg of tryptophan ethyl ester resulted in a prompt increase in serum tryptophan to a peak of 555 microM. Sustained treatment with 20 mg/kg q6h resulted in normalization of serum (66 +/- 15 microM) and cerebrospinal fluid tryptophan concentrations (mean = 2.3 microM). Cerebrospinal fluid 5-HIAA increased to more normal concentrations (mean = 33 ng/ml). No toxicity was observed over an 8-mo period of treatment, chronic diarrhea resolved, and body weight, which had remained unchanged for 7 mo before ester therapy, increased by approximately 26%. We concluded that tryptophan ethyl ester is effective at circumventing defective gastrointestinal neutral amino acid transport and may be useful in the treatment of Hartnup disease. PMID:2472426

  19. Fatty acid esters produced by Lasiodiplodia theobromae function as growth regulators in tobacco seedlings.

    Science.gov (United States)

    Uranga, Carla C; Beld, Joris; Mrse, Anthony; Córdova-Guerrero, Iván; Burkart, Michael D; Hernández-Martínez, Rufina

    2016-04-01

    The Botryosphaeriaceae are a family of trunk disease fungi that cause dieback and death of various plant hosts. This work sought to characterize fatty acid derivatives in a highly virulent member of this family, Lasiodiplodia theobromae. Nuclear magnetic resonance and gas chromatography-mass spectrometry of an isolated compound revealed (Z, Z)-9,12-ethyl octadecadienoate, (trivial name ethyl linoleate), as one of the most abundant fatty acid esters produced by L. theobromae. A variety of naturally produced esters of fatty acids were identified in Botryosphaeriaceae. In comparison, the production of fatty acid esters in the soil-borne tomato pathogen Fusarium oxysporum, and the non-phytopathogenic fungus Trichoderma asperellum was found to be limited. Ethyl linoleate, ethyl hexadecanoate (trivial name ethyl palmitate), and ethyl octadecanoate, (trivial name ethyl stearate), significantly inhibited tobacco seed germination and altered seedling leaf growth patterns and morphology at the highest concentration (0.2 mg/mL) tested, while ethyl linoleate and ethyl stearate significantly enhanced growth at low concentrations, with both still inducing growth at 98 ng/mL. This work provides new insights into the role of naturally esterified fatty acids from L. theobromae as plant growth regulators with similar activity to the well-known plant growth regulator gibberellic acid. PMID:26926564

  20. Studies of esters and their isotopomers using the molecular beam fourier transform microwave (MB-FTMW) spectroscopy

    OpenAIRE

    Sutikdja, Lilian Wijaya

    2014-01-01

    A fundamental nomenclature for the aliphatic compounds especially the saturated hydrocarbons has been defined and applied to all esters reported in this dissertation. It can be shown that with the redefined nomenclature each conformer can be easily identified by name and since the conformational information is included in the notation it is also effective to indicate directly the geometry of the respective conformer. Totally four acetic acid esters (isoamyl acetate, n-propyl acetate, n-butyl ...

  1. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 20, Revision 3 (FGE.20Rev3): Benzyl alcohols, benzaldehydes, a related acetal, benzoic acids, and related esters from chemical groups 23 and 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister;

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider in this revision 3 of Flavouring Group Evaluation 20, the SCF Opinion on benzoic acid. Furthermore information on stereoisomeric composition for two substa...

  2. Synthesis and transdermal properties of acetylsalicylic acid and selected esters.

    Science.gov (United States)

    Gerber, Minja; Breytenbach, Jaco C; Hadgraft, Jonathan; du Plessis, Jeanetta

    2006-03-01

    The primary aim of this study was to determine the transdermal penetration of acetylsalicylic acid and some of its derivatives, to establish a correlation, if any, with selected physicochemical properties and to determine if transdermal application of acetylsalicylic acid and its derivatives will give therapeutic drug concentrations with respect to transdermal flux. Ten derivatives of acetylsalicylic acid were prepared by esterification of acetylsalicyloyl chloride with ten different alcohols. The experimental aqueous solubility, logD and transdermal flux values were determined for acetylsalicylic acid and its derivatives at pH 4.5. In vitro penetration was measured through excised female human abdominal skin in diffusion cells. The experimental aqueous solubility of acetylsalicylic acid (6.56 mg/ml) was higher than that of the synthesised acetylsalicylate derivatives (ranging from 1.76 x 10(-3) to 3.32 mg/ml), and the logD of acetylsalicylic acid (-0.85) was lower than that of its derivatives (ranging from -0.25 to 1.95). There was thus an inverse correlation between the aqueous solubility data and the logD values. The experimental transdermal flux of acetylsalicylic acid (263.83 nmol/cm(2)h) was much higher than that of its derivatives (ranging from 0.12 to 136.02 nmol/cm(2)h).

  3. 磺酸功能化离子液体催化不饱和脂肪酸甲酯的环氧化研究%Epoxidation of Unsaturated Fatty Acid Methyl Esters in the Presence of SO3H-functional Br(o)nsted Acidic Ionic Liquid as Catalyst

    Institute of Scientific and Technical Information of China (English)

    蔡双飞; 王利生

    2011-01-01

    The epoxidation of unsaturated fatty acid methyl esters (FAMEs) by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Br(o)nsted acidic ionic liquid (IL) [C3SO3HMIM][HSO4] as catalyst. The effects of hydrogen peroxide/ethylenic unsaturation ratio, acetic acid concentration, IL concentration, recycling of the IL catalyst, and temperature on the conversion to oxirane were studied. The kinetics and thermodynamics of unsaturated FAMEs epoxidation and the kinetics of oxirane cleavage of the epoxidized FAMEs by acetic acid were also studied. The conversion of ethylenic unsaturation group to oxirane, the reaction rate of the conversion to oxirane, and the rate of hydrolysis (oxirane cleavage) were higher by using the IL catalyst.

  4. 白酒中乙酯类成分的气相色谱-质谱分析%Analysis of Ester in Some Spirit by Gas Chromatography-Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    骆传环; 黄荣清; 肖炳坤; 梁乾德

    2004-01-01

    To determine fragrance character of Spirit “Bai” from Shandong. Spirit “Lu”was positive control, “Er”, egative control, three samples were extracted with either,then analyzed qualitatively and quantitatively with ISTD N-amyl acetate (EP) by gas chromatography-mass spectrometry (GC/MS). Fragranter components including ethyl acid ester(E),butanotic acid ester (B),lactic acid ester (L), pentoic acid ester(p), and hexanoic acid ester(H) were chosen. The result showed that the level of esters were higher in Bai close to “Lu”, so “Bai” can be called concentration fragrant type spirit.

  5. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    Science.gov (United States)

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS.

  6. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    Directory of Open Access Journals (Sweden)

    Sergio eGiannattasio

    2013-02-01

    Full Text Available Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.

  7. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    Science.gov (United States)

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS. PMID:26593546

  8. Transformation of acetate carbon into carbohydrate and amino acid metabilites during decomposition in soil

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst; Paul, E. A.

    1971-01-01

    Carbon-14-labelled acetate was added to a heavy clay soil of pH 7.6 to study the transformation of acetate carbon into carbohydrate and amino acid metabolites during decomposition. The acetate was totally metabolized after 6 days of incubation at 25°C when 70% of the labelled carbon had been...... evolved as CO2. Maximum incorporation of trace-C into the various organic fractions was observed after 4 days when 19% of residual, labelled carbon in the soil was located in carbohydrates, 29 % in amino acids and 21 % in the insoluble residue of the soil. The curves showing the amounts of labelled carbon...... located in carbohydrates and amino acid metabolites show a curvilinear form during the first 30 days of incubation, indicating a variety of chemical compounds decaying at different rates. After this time, the decay curves became straight lines indicating a greater homogeneity of the metabolites. After 200...

  9. Acetic acid-catalyzed formation of N-phenylphthalimide from phthalanilic acid: a computational study of the mechanism.

    Science.gov (United States)

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-05-28

    In glacial acetic acid, phthalanilic acid and its monosubstituents are known to be converted to the corresponding phthalimides in relatively good yields. In this study, we computationally investigated the experimentally proposed two-step (addition-elimination or cyclization-dehydration) mechanism at the second-order Møller-Plesset perturbation (MP2) level of theory for the unsubstituted phthalanilic acid, with an explicit acetic acid molecule included in the calculations. In the first step, a gem-diol tetrahedral intermediate is formed by the nucleophilic attack of the amide nitrogen. The second step is dehydration of the intermediate to give N-phenylphthalimide. In agreement with experimental findings, the second step has been shown to be rate-determining. Most importantly, both of the steps are catalyzed by an acetic acid molecule, which acts both as proton donor and acceptor. The present findings, along with those from our previous studies, suggest that acetic acid and other carboxylic acids (in their undissociated forms) can catalyze intramolecular nucleophilic attacks by amide nitrogens and breakdown of the resulting tetrahedral intermediates, acting simultaneously as proton donor and acceptor. In other words, double proton transfers involving a carboxylic acid molecule can be part of an extensive bond reorganization process from cyclic hydrogen-bonded complexes.

  10. Changes in Growth, Auxin- and Ribonucleic Acid Metabolism in Wheat Coleoptile Sections Following Pulse Treatment with Indole-3-Acetic Acid

    DEFF Research Database (Denmark)

    Truelsen, T.A.; Galston, A.W.

    1966-01-01

    Growth reactions of wbeat coleoptile sections following a brief pretreament in indole-3-acetic acid (LAA) were studied. The growth versus concentration curves 24 hours after the treatment showed a minimum value surrounded by bigber values. The minimum was never at concentrations lower than 10-5M l...... was mirroretl in effects of IAA on hte net synthesis of ribonucleic acid....

  11. Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction using tri-n-octylamine

    NARCIS (Netherlands)

    Rasrendra, C. B.; Girisuta, B.; van de Bovenkamp, H. H.; Winkelman, J. G. M.; Leijenhorst, E. J.; Venderbosch, R. H.; Windt, M.; Meier, D.; Heeres, H. J.

    2011-01-01

    The application of reactive extraction to isolate organic acids, particularly acetic acid, from the aqueous stream of phase splitted pyrolysis oil using a long chain aliphatic tertiary amine is reported. Acetic acid recovery was optimized by selecting the proper amine and diluent combination and adj

  12. Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli.

    Science.gov (United States)

    Ladkau, Nadine; Assmann, Miriam; Schrewe, Manfred; Julsing, Mattijs K; Schmid, Andreas; Bühler, Bruno

    2016-07-01

    The expansion of microbial substrate and product scopes will be an important brick promoting future bioeconomy. In this study, an orthogonal pathway running in parallel to native metabolism and converting renewable dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to 12-aminododecanoic acid methyl ester (ADAME), a building block for the high-performance polymer Nylon 12, was engineered in Escherichia coli and optimized regarding substrate uptake, substrate requirements, host strain choice, flux, and product yield. Efficient DAME uptake was achieved by means of the hydrophobic outer membrane porin AlkL increasing maximum oxygenation and transamination activities 8.3 and 7.6-fold, respectively. An optimized coupling to the pyruvate node via a heterologous alanine dehydrogenase enabled efficient intracellular L-alanine supply, a prerequisite for self-sufficient whole-cell transaminase catalysis. Finally, the introduction of a respiratory chain-linked alcohol dehydrogenase enabled an increase in pathway flux, the minimization of undesired overoxidation to the respective carboxylic acid, and thus the efficient formation of ADAME as main product. The completely synthetic orthogonal pathway presented in this study sets the stage for Nylon 12 production from renewables. Its effective operation achieved via fine tuning the connectivity to native cell functionalities emphasizes the potential of this concept to expand microbial substrate and product scopes. PMID:26969251

  13. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    Science.gov (United States)

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria. PMID:26704949

  14. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    Science.gov (United States)

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  15. Radiation-thermal decomposition of nitric and acetic acids in the aqueous nitrate solution

    International Nuclear Information System (INIS)

    Kinetics of radiation, thermal and radiation-thermal decompositions of nitric and acetic acid mixture was investigated in aqueous sodium nitrate solution in homogeneous conditions as well as by interaction of solid phase as sand rock. Temperature dependences of rate of radiation, thermal and radiation-thermal decompositions of the acids were calculated using experimental data. Resulting solutions make possible the calculation of acid decomposition dynamics accounting conditions of underground radioactive waste disposals

  16. Anticoccidial effects of acetic acid on performance and pathogenic parameters in broiler chickens challenged with Eimeria tenella

    Directory of Open Access Journals (Sweden)

    Rao Z. Abbas

    2011-02-01

    Full Text Available The objective of the present study was to evaluate the anticoccidial effect of the different concentrations of the acetic acid in the broiler chickens in comparison with the amprolium anticoccidial. A total of 198 chicks were placed 11 per pen with three pens per treatment. The different concentrations (1%, 2% and 3% of acetic acid and amproilum (at the dose rate of 125ppm were given to the experimental groups in drinking water from 10-19th days of age. One group was kept as infected non medicated control and one as non infected non medicated control. All the groups were inoculated orally with 75,000 sporulated oocysts at the 12th day of age except non infected non medicated control. Anticoccidial effect was evaluated on the basis of performance (weight gain, feed conversion ratio and pathogenic (oocyst score, lesion score and mortality %age parameters. Among acetic acid medicated groups, the maximum anticoccidial effect was seen in the group medicated with 3% acetic acid followed by 2% and 1% acetic acid medicated groups. Amprolium and 3% acetic acid were almost equivalent in suppressing the negative performance and pathogenic effects associated with coccidiosis (Eimeria tenella challenge. In summary, acetic acid has the potential to be used as alternative to chemotherapeutic drugs for Eimeria tenella control. Concentration-dependent anticoccidial effect of acetic acid suggests that further studies should be carried out to determine the possible maximum safe levels of acetic acid with least toxic effects to be used as anticoccidial.

  17. Modulation of phorbol ester-elicited events in mouse epidermis by dietary n-3 and n-6 fatty acids.

    Science.gov (United States)

    Belury, M A; Leyton, J; Patrick, K E; Cumberland, A G; Locniskar, M; Fischer, S M

    1991-09-01

    Because arachidonic acid-derived eicosanoids are potent modulators of hyperproliferation and inflammation during skin tumor promotion with the phorbol ester, 12-0-tetradecanoylphorbol-13-acetate (TPA) (17, 18), it was hypothesized that dietary modification of epidermal fatty acids might modulate TPA-induced biochemical events in mouse skin. Semipurified diets containing 10% total fat composed of corn oil (CO) or a combination of CO and menhaden oil (MO) or coconut oil (CT) were fed to SENCAR mice for 4 weeks. Fatty acid composition of epidermal phospholipids generally reflected fatty acid composition of dietary oils fed to the mice. Since fatty acid-derived eicosanoids are thought to be essential in tumorigenesis, we compared the effects of dietary fats on prostaglandin E (PGE) production in epidermis treated with a single dose of TPA. TPA-induced PGE production in mouse epidermis from mice fed the MO diet was significantly reduced compared to PGE production in epidermal homogenates from mice fed the CO or CT diets. Type of dietary fats did not appear to modulate TPA-induced vascular permeability, however hyperplasia was slightly elevated in skins of mice fed MO. The subcellular distribution of protein kinase C, the plasma membrane receptor for TPA predominantly located in the cytosol (80%), was altered in epidermis from mice fed the MO diet compared to preparations from mice fed CO or CT diets which exhibited normal protein kinase C distribution. Our results suggest that n-3 rich dietary lipids modulate TPA-elicited events in mouse skin to a greater extent than diets containing higher proportions of saturated or n-6 fatty acids.

  18. Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thi Thu Huong; Kim, Tae Hyun [Kongju National University, Cheonan (Korea, Republic of); Um, Byung Hwan [Hankyong National University, Anseong (Korea, Republic of)

    2015-12-15

    Liquid-liquid extraction (LLE) using various solvents was studied for recovery of acetic acid from a synthetic ethanol fermentation broth. The microbial fermentation of sugars presented in hydrolyzate gives rise to acetic acid as a byproduct. In order to obtain pure ethanol for use as a biofuel, fermentation broth should be subjected to acetic acid removal step and the recovered acetic acid can be put to industrial use. Herein, batch LLE experiments were carried out at 25°C using a synthetic fermentation broth comprising 20.0 g l{sup -1} acetic acid and 5.0 g l{sup -1} ethanol. Ethyl acetate (EtOAc), tri-n-octylphosphine oxide (TOPO), tri-n-octylamine (TOA), and tri-n-alkylphosphine oxide (TAPO) were utilized as solvents, and the extraction potential of each solvent was evaluated by varying the organic phase-to-aqueous phase ratios as 0.2, 0.5, 1.0, 2.0, and 4.0. The highest acetic acid extraction yield was achieved with TAPO; however, the lowest ethanol-to-acetic acid extraction ratio was obtained using TOPO. In a single-stage batch extraction, 97.0 % and 92.4 % of acetic acid could be extracted using TAPO and TOPO when the ratio of organic-to-aqueous phases is 4:1 respectively. A higher solvent-to-feed ratio resulted in an increase in the ethanol-to-acetic acid ratio, which decreased both acetic acid purity and acetic acid extraction yield.

  19. Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalysts

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Hanning, Christopher William;

    2012-01-01

    Heterogeneous catalyst systems comprising ruthenium hydroxide supported on different carrier materials, titania, alumina, ceria, and spinel (MgAl2O4), were applied in selective aerobic oxidation ethanol to form acetic acid, an important bulk chemical and food ingredient. The catalysts were...... of catalysts, oxidant pressure, reaction temperature, and substrate concentration were investigated. Quantitative yield of acetic acid was obtained with 1.2 wt % Ru(OH)x/CeO2 under optimized conditions (150 °C, 10 bar O2, 12 h of reaction time, 0.23 mol % Ru to substrate)....

  20. THE EFFECTS OF ANIMAL AGE AND ACETIC ACID CONCENTRATION ON PIGSKIN GELATIN CHARACTERISTICS

    OpenAIRE

    Y. Pranoto; A. Pertiwiningrum; Triatmojo, S.; M. Sompie

    2012-01-01

    This research was aimed to study the influence of animal age and concentration of the acetic acid solution on physical and chemical properties of pigskin gelatin. The experiment used Completely Randomized Design (CRD) with two factors. The first factor was animal age consisted of 3 levels (5, 7 and 9 months). The second factor was concentration of acetic acid solution consisted of 3 levels (2, 4 and 6 percents). The result showed that animal age had significant effect (P0.05) on the yields,...

  1. Acetic Acid Bacteria and the Production and Quality of Wine Vinegar

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either “fast” or “traditional”, the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties.

  2. Visualization of Early Events in Acetic Acid Denaturation of HIV-1 Protease: A Molecular Dynamics Study

    OpenAIRE

    Borkar, Aditi Narendra; Rout, Manoj Kumar; Hosur, Ramakrishna V.

    2011-01-01

    Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR) was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH) solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH re...

  3. Isolation from Cussonia barteri of 1'-O-chlorogenoylchlorogenic acid and 1'-O-chlorogenoylneochlorogenic acid, a new type of quinic acid esters.

    Science.gov (United States)

    Papajewski, S; Vogler, B; Conrad, J; Klaiber, I; Roos, G; Walter, C U; Süssmuth, R; Kraus, W

    2001-11-01

    1'-O-Chlorogenoylchlorogenic acid and 1'-O-chlorogenoylneochlorogenic acid, a new type of quinic acid esters, have been isolated, in addition to six known quinic acid esters, rutin, and a mixture of saponins, from the methanol extract of Cussonia barteri Seemann (Araliaceae) leaves collected in Cameroon. Structure determination was achieved by NMR, mass, IR, and UV spectroscopy. All compounds were tested for inhibitory activity on 5-lipoxygenase and cyclooxygenase-1, for antimicrobial activity against Bacillus subtilis, Pseudomonas fluorescens, and Cladosporium cucumerinum, and for haemolytic activity. PMID:11731915

  4. Preparation of Peracetic Acid from Acetic Acid and Hydrogen Peroxide: Experimentation and Modeling

    Institute of Scientific and Technical Information of China (English)

    赵雪冰; 张婷; 周玉杰; 刘德华

    2008-01-01

    Based on the kinetic equations and equilibrium constants, some mathematic models were developed for calculating peracetic acid (PAA) concentration, equilibrium conversion rate of hydrogen peroxide, etc. The effects of several parameters on PAA synthesis were investigated by experimentation and modeling. The equilibrium constants determined from the forward and reverse rate constants at 293, 303,313 and 323 K were 2.91, 2.81, 2.72 and 2.63, respectively. The models could predict the values of equilibrium concentration of PAA with average relative deviation of less than 10%. Both of the experimental and model-calculated results demonstrated that temperature and catalyst loading were the most important factors affecting the rate of PAA synthesis, but high temperature led to the decrease of equilibrium concentration of PAA. According to the model, the reaction could achieve equilibrium within 24 h when operated at 303 K with 1%~1.5%(ω) sulfuric acid as catalyst. Additionally, when using anhydrous acetic acid and 30% hydrogen peroxide to prepare PAA, the volumetric ratio of the two solutions should be in the range of 1.2~1.5 in order to obtain the highest equilibrium concentration of PAA. This study can serve as a step towards the further optimization of PAA synthesis and some other related investigations.

  5. Reaction Kinetics Between Acetic Acid and Ag2+

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The application of the salt-free reagents in the spent fuel reprocessing process has been investigated so much in the last years. Preferable result was obtained in the application of acetohydroxamic acid in the

  6. Fatty Acid Methyl Esters of Melon Seed Oil: Characterisation for Potential Diesel Fuel Application

    Directory of Open Access Journals (Sweden)

    Paul M. EJIKEME

    2011-06-01

    Full Text Available Fatty acid methyl esters (FAME, biodiesel, are alternative diesel fuels usually obtained from renewable sources, mainly, vegetable and animal oils through transesterification among other processes. Melon seed oil was extracted from melon seeds bought from a local market, degummed and alkali refined using standard methods. FAME of the oil was produced using methanol in the molar ration of 1:6, 1% sodium hydroxide catalyst at the reaction temperature of 60 deg C for the duration of 1h. Results obtained showed that the fatty acid methyl esters had a specific gravity of 0.8786, viscosity of 6.24 centistokes, pH of 7.23, heating value of 36.34 J/g and flash point of 148 deg C. The FAME yield was 87.35% under the reaction conditions that applied. The infrared spectra of both the refined oil and the methyl esters from it, showed peaks at 1721.3cm-1 and 1167.8cm-1 (C=O and C-O stretches large and medium absorbance's for oils and methyl esters. Generally, the fuel properties of the FAME compared with values obtained under the same conditions for conventional petroleum diesel that was sourced from a retail outlet; suggesting that biodiesel from MSO could be used alone or in blends with petrodiesel to power compression ignition (diesel engines.

  7. Solid Phase Synthesis of 2-Substituted 1,3-Oxazin-6-ones Using Resin-bound Cyclic Malonic Acid Ester

    Institute of Scientific and Technical Information of China (English)

    LIU, Zhan-Xiang(刘占祥); RUAN, Xiu-Xiu(阮秀秀); HUANG, Xian(黄宪)

    2004-01-01

    A facile solid phase synthesis of 2-substituted 1,3-oxazin-6-ones using polymer-supported Meldrum's acid has been reported. Reaction of the resin-bound cyclic malonic acid ester with triethyl orthoformate and subsequent double substitution with amide, afforded the corresponding polymer-supported acylaminomethylene cyclic malonic acid ester, which upon thermal treatment led to 1, 3-oxazin-6-ones in good yields and with high purity.

  8. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2012-01-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  9. A convenient enantioselective decarboxylative aldol reaction to access chiral α-hydroxy esters using β-keto acids

    Directory of Open Access Journals (Sweden)

    Zhiqiang Duan

    2014-04-01

    Full Text Available We show a convenient decarboxylative aldol process using a scandium catalyst and a PYBOX ligand to generate a series of highly functionalized chiral α-hydroxy esters. The protocol tolerates a broad range of β-keto acids with inactivated aromatic and aliphatic α-keto esters. The possible mechanism is rationalized.

  10. Direct analysis of intact glycidyl fatty acid esters in edible oils using gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    H. van Steenbergen; K. Hrnčiřík; A. Ermacora; S. de Koning; H.-G. Janssen

    2013-01-01

    Glycidyl esters (GE), fatty acid esters of glycidol, are process contaminants formed during edible oil processing. A novel direct method for the determination of intact GE in oils and fats based on gas chromatography-mass spectrometry (GC-MS) is presented. The method consists of a simple extraction

  11. Linear and cyclic ester Oligomers of succinic acid and 1,4-butanediol: Biocatalytic synthesis and characterization

    NARCIS (Netherlands)

    Habeych Narvaez, D.I.; Eggink, G.; Boeriu, C.G.

    2011-01-01

    The lipase-catalyzed synthesis of cyclic ester oligomers from non-activated succinic acid (A) and 1,4-butanediol (B) in the presence of immobilized Candida antarctica lipase B was investigated. Batch and pulse fed-batch systems were implemented to increase the formation of cyclic ester products. The

  12. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ..., lard, palm oil from fruit, peanut oil, safflower oil, sesame oil, soybean oil, and tallow and the fatty... acids are used as a cloud inhibitor in vegetable and salad oils when use is not precluded by standards... 172.854 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  13. Acetic acid production from marine algae. Progress report No. 3, January 1, 1978--March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.E.; Wise, D.L.

    1978-06-01

    The program for acetic acid production from marine algae has made significant progress in the current quarter. Some of the significant developments during this period are: (1) conversion of the available reducing equivalents in Chondrus crispus to organic acids has been carried to better than 80% completion; (2) thermophilic fermentations produce higher ratios of acetic acid to total acid than is the case for mesophilic fermentations (80% vs. 50%); (3) a membrane extraction process for removing organic acid products has been developed which has potential for commercial use; (4) a large scale fermentation was shown to convert over 50% of the available carbon in five days; (5) a reducing equivalents balance on the large scale fermentation was closed to with 96% of theoretical.

  14. KRAFT MILL BIOREFINERY TO PRODUCE ACETIC ACID AND ETHANOL: TECHNICAL ECONOMIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    Haibo Mao

    2010-05-01

    Full Text Available The “near neutral hemicellulose extraction process” involves extraction of hemicellulose using green liquor prior to kraft pulping. Ancillary unit operations include hydrolysis of the extracted carbohydrates using sulfuric acid, removal of extracted lignin, liquid-liquid extraction of acetic acid, liming followed by separation of gypsum, fermentation of C5 and C6 sugars, and upgrading the acetic acid and ethanol products by distillation. The process described here is a variant of the “near neutral hemicellulose extraction process” that uses the minimal amount of green liquor to maximize sugar production while still maintaining the strength quality of the final kraft pulp. Production rates vary between 2.4 to 6.6 million gallons per year of acetic acid and 1.0 and 5.6 million gallons per year of ethanol, depending upon the pulp production rate. The discounted cash flow rate of return for the process is a strong function of plant size, and the capital investment depends on the complexity of the process. For a 1,000 ton per day pulp mill, the production cost for ethanol was estimated to vary between $1.63 and $2.07/gallon, and for acetic acid between $1.98 and $2.75 per gallon depending upon the capital equipment requirements for the new process. To make the process economically attractive, for smaller mill sizes the processing must be simplified to facilitate reductions in capital cost.

  15. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.

    Science.gov (United States)

    Huang, Xiang-Feng; Liu, Jia-Nan; Lu, Li-Jun; Peng, Kai-Ming; Yang, Gao-Xiang; Liu, Jia

    2016-04-01

    Rhodosporidium toruloides AS 2.1389 was tested using different concentrations of acetic acid as a low-cost carbon source for the production of microbial lipids, which are good raw materials for biodiesel production. It grew and had higher lipid contents in media containing 4-20 g/L acetic acid as the sole carbon source, compared with that in glucose-containing media under the same culture conditions. At acetic acid concentrations as high as 20 g/L and the optimal carbon-to-nitrogen ratio (C/N) of 200 in a batch culture, the highest biomass production was 4.35 g/L, with a lipid content of 48.2%. At acetic acid concentrations as low as 4 g/L, a sequencing batch culture (SBC) with a C/N of 100 increased biomass production to 4.21 g/L, with a lipid content of 38.6%. These results provide usable culture strategies for lipid production by R. toruloides AS 2.1389 when using diverse waste-derived volatile fatty acids.

  16. Gas chromatographic separation of fatty acid esters of cholesterol and phytosterols on an ionic liquid capillary column.

    Science.gov (United States)

    Hammann, Simon; Vetter, Walter

    2015-12-15

    Steryl esters are high molecular weight compounds (600-700g/mol) regularly present as a minor lipid class in animal and plant lipids. Different sterol backbones (e.g., cholesterol, β-sitosterol and brassicasterol) which can be esterified with various fatty acids can result in highly complex steryl ester patterns in food samples. The gas chromatographic (GC) analysis of intact steryl esters is challenging, since high elution temperatures are required for their elution. On nonpolar GC phases, steryl esters with fatty acids with differing degree of unsaturation (e.g., oleate and linoleate) cannot be separated and there are only few polar columns available with sufficient temperature stability. In this study, we used gas chromatography with mass spectrometry (GC/MS) and analyzed intact steryl esters on a commercial room temperature ionic liquid (RTIL) column which was shortened to a length of 12m. The column separated the steryl esters both by total carbon number and by degree of unsaturation of the fatty acid. For instance, cholesteryl esters with stearic acid (18:0), oleic acid (18:1n-9), linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3) could be resolved (R≥1.3) from each other. By analysis of synthesized standard substances, the elution orders for different steryl backbones and different fatty acids on a given sterol backbone could be determined. Analysis of spreads and plant oils allowed to determine retention times for 37 steryl esters, although a few co-elutions were observed. The ionic liquid column proved to be well-suited for the analysis of intact steryl esters.

  17. Antifungal properties of alpha,omega-alkanedicarboxylic acids and their dimethyl esters.

    Science.gov (United States)

    Gershon, H; Shanks, L

    1976-08-01

    Thirteen alpha, omega-alkanedicarboxylic acids (C2-C12, C14, and C16) and their dimethyl esters were tested against Aspergillus niger, Trichoderma viride, and Myrothecium verrucaria in Sabourauc dextrose agar at pH 4.0 AND 5.6. Toxicity to Canadida albicans, Trichophyton mentagrophytes, and Mucor mucedo was determined in the same medium at pH 5.6 and 7.0 in the absence and presence of 10% beef serum. The dicarboxylic acids possessed very poor to no antifungal activity against all six fungi. The fungitoxicity of the dimethyl esters to A. niger, T. viride, and M. verrucaria was C8 = C9 greater than C7 greater than C6 = C5 greater than C10 greater than C4 greater than C11 and to C. albicans, T. mentagrophytes, and M. mucedo C9 greater than C10 greater than C11 greater than C12 = C8 greater than C7 greater than C6 greater than C5 greater than C4 greater than C3. The fungitoxicity of the esters of fatty acids and alpha-omega-alkanedicarboxylic acids was influenced by chain length and not by the pH of the medium or the absence or presence of beef serum.

  18. Acetic Acid, the active component of vinegar, is an effective tuberculocidal disinfectant.

    Science.gov (United States)

    Cortesia, Claudia; Vilchèze, Catherine; Bernut, Audrey; Contreras, Whendy; Gómez, Keyla; de Waard, Jacobus; Jacobs, William R; Kremer, Laurent; Takiff, Howard

    2014-02-25

    Effective and economical mycobactericidal disinfectants are needed to kill both Mycobacterium tuberculosis and non-M. tuberculosis mycobacteria. We found that acetic acid (vinegar) efficiently kills M. tuberculosis after 30 min of exposure to a 6% acetic acid solution. The activity is not due to pH alone, and propionic acid also appears to be bactericidal. M. bolletii and M. massiliense nontuberculous mycobacteria were more resistant, although a 30-min exposure to 10% acetic acid resulted in at least a 6-log10 reduction of viable bacteria. Acetic acid (vinegar) is an effective mycobactericidal disinfectant that should also be active against most other bacteria. These findings are consistent with and extend the results of studies performed in the early and mid-20th century on the disinfectant capacity of organic acids. IMPORTANCE Mycobacteria are best known for causing tuberculosis and leprosy, but infections with nontuberculous mycobacteria are an increasing problem after surgical or cosmetic procedures or in the lungs of cystic fibrosis and immunosuppressed patients. Killing mycobacteria is important because Mycobacterium tuberculosis strains can be multidrug resistant and therefore potentially fatal biohazards, and environmental mycobacteria must be thoroughly eliminated from surgical implements and respiratory equipment. Currently used mycobactericidal disinfectants can be toxic, unstable, and expensive. We fortuitously found that acetic acid kills mycobacteria and then showed that it is an effective mycobactericidal agent, even against the very resistant, clinically important Mycobacterium abscessus complex. Vinegar has been used for thousands of years as a common disinfectant, and if it can kill mycobacteria, the most disinfectant-resistant bacteria, it may prove to be a broadly effective, economical biocide with potential usefulness in health care settings and laboratories, especially in resource-poor countries.

  19. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Science.gov (United States)

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  20. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Science.gov (United States)

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  1. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Directory of Open Access Journals (Sweden)

    Hitomi Maruta

    Full Text Available Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4 genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A, which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  2. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

    Directory of Open Access Journals (Sweden)

    Sandhya V G Nair

    Full Text Available Phloridzin (phlorizin or phloretin 2'-O-glucoside is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2, growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK, cell cycle machinery (CDKs, TERT, TOP2A, TOP2B as well as epigenetics regulators (HDACs. These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects

  3. Nickel-Catalyzed Cross-Coupling of Redox-Active Esters with Boronic Acids.

    Science.gov (United States)

    Wang, Jie; Qin, Tian; Chen, Tie-Gen; Wimmer, Laurin; Edwards, Jacob T; Cornella, Josep; Vokits, Benjamin; Shaw, Scott A; Baran, Phil S

    2016-08-01

    A transformation analogous in simplicity and functional group tolerance to the venerable Suzuki cross-coupling between alkyl-carboxylic acids and boronic acids is described. This Ni-catalyzed reaction relies upon the activation of alkyl carboxylic acids as their redox-active ester derivatives, specifically N-hydroxy-tetrachlorophthalimide (TCNHPI), and proceeds in a practical and scalable fashion. The inexpensive nature of the reaction components (NiCl2 ⋅6 H2 O-$9.5 mol(-1) , Et3 N) coupled to the virtually unlimited commercial catalog of available starting materials bodes well for its rapid adoption. PMID:27380912

  4. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.

    Science.gov (United States)

    Gitipour, Saeid; Ahmadi, Soheil; Madadian, Edris; Ardestani, Mojtaba

    2016-01-01

    In this research, the effect of soil washing in the removal of chromium- and cadmium-contaminated sludge samples collected from Pond 2 of the Tehran Oil Refinery was investigated. These metals are considered as hazardous substances for human health and the environment. The carcinogenicity of chromate dust has been established for a long time. Cadmium is also a potential environmental toxicant. This study was carried out by collecting sludge samples from different locations in Pond 2. Soil washing was conducted to treat the samples. Chemical agents, such as acetic acid, ethylenediaminetetra acetic acid (EDTA) and hydrochloric acid, were used as washing solutions to remove chromium and cadmium from sludge samples. The results of this study indicated that the highest removal efficiencies from the sludge samples were achieved using a 0.3 M HCl solution with 82.69% and 74.47% for chromium and cadmium, respectively. EDTA (0.1 M) in the best condition extracted 66.81% of cadmium and 72.52% of chromium from the sludges. The lowest efficiency values for the samples, however, were achieved using 3 M acetic acid with 41.7% and 46.96% removals for cadmium and chromium, respectively. The analysis of washed sludge indicated that the heavy metals removal decreased in the order of 3 M acetic acid acid appears to offer a greater potential as a washing agent in remediating the sludge samples.

  5. 布洛芬L-抗坏血酸酯的合成及镇痛活性%Synthesis and Analgesic Activity of Ibuprofen L-Ascorbic Acid Ester

    Institute of Scientific and Technical Information of China (English)

    戴阿娟; 汤鲁宏

    2011-01-01

    布洛芬和L-抗坏血酸在叔丁醇中,用Novozym 435固定化脂肪酶催化制得布洛芬L-抗坏血酸酯,收率30%,纯度大丁98%.热板试验和乙酸扭体试验的结果表明,与布洛芬和布洛芬精氨酸盐相比,布洛芬L-抗坏血酸酯镇痛作用显著.%Ibuprofen L-ascorbic acid ester was synthesized from ibuprofen and L-ascorbic acid in tert-butyl alcohol catalyzed by Novozyme 435 lipase with a yield of 30% and purity of 98%. The results of acetic acid writhing test and hot-plate res showed that ibuprofen L-ascorbic acid ester had significant analgesic activity compared with ibuprofen and ibuprofen arginine salt.

  6. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    Directory of Open Access Journals (Sweden)

    Lina Lindberg

    Full Text Available When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D and Zygosaccharomyces bailii (CBS7555 cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP2C 2.2× and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP2C 2.7×, when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to

  7. The CGC enantiomer separation of 2-arylcarboxylic acid esters by using β-cyclodextrin derivatives as chiral stationary phases.

    Science.gov (United States)

    Shi, Xueyan; Liu, Feipeng; Mao, Jianyou

    2016-03-17

    Chiral 2-arylcarboxylic acid esters are important intermediates in preparation of enantioenriched 2-arylpropionic acids type Non-steroidal anti-inflammatory drugs (NSAIDs). Enantiomer separation of 2-arylcarboxylic acid esters is crucial for evaluation of the asymmetric synthesis efficiency and the enantiomer excess of chiral 2-arylcarboxylic acid derivatives. The capillary gas chromatography (CGC) enantiomer separation of 17 pairs of 2-arylcarboxylic acid esters enantiomers was conducted by using seven different β-cyclodextrin derivatives (CDs) as chiral stationary phases. It was found that for the 7 pairs of 2-phenylpropionates enantiomers, CDs with both alkyl and acyl substituents especially 2,6-di-O-pentyl-3-O-butyryl-β-cyclodextrin exhibited better enantiomer separation abilities than the other CDs examined. For the 7 pairs of 2-(4-substituted phenyl)propionates enantiomers, 2,3,6-tri-O-methyl-β-cyclodextrin possessed better enantiomer separation abilities than the other CDs. Among the 3 pairs of 2-phenylbutyrates enantiomers examined, only methyl 2-phenylbutyrate enantiomers could be separated by three CDs among the 7 CDs tested, while enantiomers of ethyl 2-phenylbutyrate and isopropyl 2-phenylbutyrate couldn't be separated by any of the 7 CDs tested. Besides the structures of CDs, the structures of 2-arylcarboxylic acid esters including different ester moieties, substituents of phenyl, and different carboxylic acids moieties in 2-arylcarboxylic acid esters also affected the enantiomer separation results greatly. The CGC enantiomer separation results of 2-arylcarboxylic acid esters on different CDs are useful for solving the enantiomer separation problem of 2-arylcarboxylic acid esters. PMID:26920785

  8. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer

    Directory of Open Access Journals (Sweden)

    Ghulam Murtaza

    2015-03-01

    Full Text Available Of the various derivatives of caffeic acid, caffeic acid phenethyl ester (CAPE is a hydrophobic, bioactive polyphenolic ester obtained from propolis extract. The objective in writing this review article was to summarize all published studies on therapeutics of CAPE in inflammation and cancer to extract direction for future research. The possible molecular targets for the action of CAPE, include various transcription factors such as nuclear factor-κB, tissue necrosis factor-α, interleukin-6, cyclooxygenase-2, Nrf2, inducible nitric oxide synthase, nuclear factor of activated T cells, hypoxia-inducible factor-1α, and signal transducers and activators of transcription. Based on the valuable data on its therapeutics in inflammation and cancer, clinical studies of CAPE should also be conducted to explore its toxicities, if any.

  9. Antibacterial properties of soap containing some fatty acid esters.

    Science.gov (United States)

    Pandey, N K; Natraj, C V; Kalle, G P; Nambudiry, M E

    1985-02-01

    Synopsis Chemical microbial inhibitors compatible with formulations of soaps and deodorant perfumes are more effective if they are substantive to the skin. However, highly effective inhibitors are toxic and their substantivity on skin may accentuate the toxicity. Natural compounds such as short to medium chain fatty acids and their derivatives, which are known to be germicidal, offer a viable alternative to chemical inhibitors. We report here the synthesis of sodium 2-lauroyloxy propionate and an in vivo method to test its substantivity on skin following its incorporation in soaps. Among several compounds tested, sodium 2-lauroyloxy propionate was found to be highly substantive in soap formulation. PMID:19460009

  10. Calibration and intercomparison of acetic acid measurements using proton transfer reaction mass spectrometry (PTR-MS

    Directory of Open Access Journals (Sweden)

    K. B. Haase

    2012-07-01

    Full Text Available Acetic acid is one of the most abundant organic acids in the ambient atmosphere, with maximum mixing ratios reaching into the tens of parts per billion by volume (ppbv range. The identities and associated magnitudes of the major sources and sinks for acetic acid are poorly characterized, due in part to the limitation in available measurement techniques. This paper demonstrates that Proton Transfer Reaction Mass Spectrometry (PTR-MS can reliably quantify acetic acid vapor in ambient air. Three different PTR-MS configurations were calibrated at low ppbv mixing ratios using permeation tubes, which yielded calibration factors between 7.0 and 10.9 normalized counts per second per ppbv (ncps ppbv−1 at a drift tube field strength of 132 townsend (Td. Detection limits ranged from 0.06 to 0.32 ppbv with dwell times of 5 s. These calibration factors showed negligible humidity dependence. Using the experimentally determined calibration factors, PTR-MS measurements of acetic acid during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT campaign were validated against results obtained using Mist Chambers coupled with Ion Chromatography (MC/IC. An orthogonal least squares linear regression of paired data yielded a slope of 1.14 ± 0.06 (2σ, an intercept of 0.049 ± 20 (2σ ppbv, and an R2 of 0.78. The median mixing ratio of acetic acid on Appledore Island, ME during the ICARTT campaign was 0.530 ± 0.025 ppbv with a minimum of 0.075 ± 0.004 ppbv, and a maximum of 3.555 ± 0.171 ppbv.

  11. Calibration and intercomparison of acetic acid measurements using proton transfer reaction mass spectrometry (PTR-MS)

    Science.gov (United States)

    Haase, K.B.; Keene, W.C.; Pszenny, A.A.P.; Mayne, H.R.; Talbot, R.W.; Sive, B.C.

    2012-01-01

    Acetic acid is one of the most abundant organic acids in the ambient atmosphere, with maximum mixing ratios reaching into the tens of parts per billion by volume (ppbv) range. The identities and associated magnitudes of the major sources and sinks for acetic acid are poorly characterized, due in part to the limitation in available measurement techniques. This paper demonstrates that Proton Transfer Reaction Mass Spectrometry (PTR-MS) can reliably quantify acetic acid vapor in ambient air. Three different PTR-MS configurations were calibrated at low ppbv mixing ratios using permeation tubes, which yielded calibration factors between 7.0 and 10.9 normalized counts per second per ppbv (ncps ppbv−1) at a drift tube field strength of 132 townsend (Td). Detection limits ranged from 0.06 to 0.32 ppbv with dwell times of 5 s. These calibration factors showed negligible humidity dependence. Using the experimentally determined calibration factors, PTR-MS measurements of acetic acid during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign were validated against results obtained using Mist Chambers coupled with Ion Chromatography (MC/IC). An orthogonal least squares linear regression of paired data yielded a slope of 1.14 ± 0.06 (2σ), an intercept of 0.049 ± 20 (2σ) ppbv, and an R2 of 0.78. The median mixing ratio of acetic acid on Appledore Island, ME during the ICARTT campaign was 0.530 ± 0.025 ppbv with a minimum of 0.075 ± 0.004 ppbv, and a maximum of 3.555 ± 0.171 ppbv.

  12. Removal of dicyclohexyl acetic acid from aqueous solution using ultrasound, ozone and their combination.

    Science.gov (United States)

    Kumar, Pardeep; Headley, John; Peru, Kerry; Bailey, Jon; Dalai, Ajay

    2014-01-01

    Naphthenic acids are a complex mixture of organic components, some of which include saturated alkyl-substituted cycloaliphatic carboxylic acids and acyclic aliphatic acids. They are naturally found in hydrocarbon deposits like oil sand, petroleum, bitumen and crude oil. In this study, the oxidation of a relatively high molecular weight naphthenic acid (Dicyclohexyl acetic acid) was investigated using ozonation, ultrasonication and hydrogen peroxide alone and their combinations. Effects on oxidation of dicyclohexyl acetic acid (DAA) were measured for different concentrations of ozone ranging between 0.7 to 3.3 mg L(-1) and pH in the range 6 to 10. Ultrasonication and hydrogen peroxide alone were not effective to oxidize dicyclohexyl acetic acid, but combining ultrasonication with H2O2 had a significant effect on oxidation of dicyclohexyl acetic acid with maximum removal reaching to 84 ± 2.2% with 81 ± 2.1% reduction in chemical oxygen demand (COD). Synergistic effects were observed for combining ultrasonication with ozonation and resulted in 100% DAA removal with 98 ± 0.8% reduction in COD within 15 min at 3.3 mg L(-1) ozone concentration and 130 Watts ultrasonication power. The reaction conditions obtained for the maximum oxidation of DAA and COD removal were used for the degradation of naphthenic acids mixture extracted from oil sands process water (OSPW). The percentage oxidation of NAs mixture extracted from OSPW was 89.3 ± 1.1% in ozonation and combined ozonation and ultrasonication, but COD removal observed was 65 ± 1.2% and 78 ± 1.4% for ozonation and combined ozonation and ultrasonication treatments, respectively.

  13. Removal of dicyclohexyl acetic acid from aqueous solution using ultrasound, ozone and their combination.

    Science.gov (United States)

    Kumar, Pardeep; Headley, John; Peru, Kerry; Bailey, Jon; Dalai, Ajay

    2014-01-01

    Naphthenic acids are a complex mixture of organic components, some of which include saturated alkyl-substituted cycloaliphatic carboxylic acids and acyclic aliphatic acids. They are naturally found in hydrocarbon deposits like oil sand, petroleum, bitumen and crude oil. In this study, the oxidation of a relatively high molecular weight naphthenic acid (Dicyclohexyl acetic acid) was investigated using ozonation, ultrasonication and hydrogen peroxide alone and their combinations. Effects on oxidation of dicyclohexyl acetic acid (DAA) were measured for different concentrations of ozone ranging between 0.7 to 3.3 mg L(-1) and pH in the range 6 to 10. Ultrasonication and hydrogen peroxide alone were not effective to oxidize dicyclohexyl acetic acid, but combining ultrasonication with H2O2 had a significant effect on oxidation of dicyclohexyl acetic acid with maximum removal reaching to 84 ± 2.2% with 81 ± 2.1% reduction in chemical oxygen demand (COD). Synergistic effects were observed for combining ultrasonication with ozonation and resulted in 100% DAA removal with 98 ± 0.8% reduction in COD within 15 min at 3.3 mg L(-1) ozone concentration and 130 Watts ultrasonication power. The reaction conditions obtained for the maximum oxidation of DAA and COD removal were used for the degradation of naphthenic acids mixture extracted from oil sands process water (OSPW). The percentage oxidation of NAs mixture extracted from OSPW was 89.3 ± 1.1% in ozonation and combined ozonation and ultrasonication, but COD removal observed was 65 ± 1.2% and 78 ± 1.4% for ozonation and combined ozonation and ultrasonication treatments, respectively. PMID:25137539

  14. Improvement of foaming properties of cuttlefish skin gelatin by modification with N-hydroxysuccinimide esters of fatty acid

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Wierenga, P.A.; Gruppen, H.

    2011-01-01

    Conformation and foaming properties of cuttlefish skin gelatin modified by N-hydroxysuccinimide esters of different saturated fatty acids including capric acid (C10:0), lauric acid (C12:0) and myristic acid (C14:0) at different molar ratios (0.25, 0.50, 1.00 and 2.00) were investigated. Covalent att

  15. Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromolecule from flaxseed hulls

    NARCIS (Netherlands)

    Struijs, K.; Vincken, J.P.; Verhoef, R.P.; Voragen, A.G.J.; Gruppen, H.

    2008-01-01

    In flaxseed hulls, lignans are present in an oligomeric structure. Secoisolariciresinol diglucoside (SDG), ester-linked to hydroxy-methyl-glutaric acid (HMGA), forms the backbone of this lignan macromolecule. The hydroxycinnamic acids p-coumaric acid glucoside (CouAG) and ferulic acid glucoside (FeA

  16. Indole-3-acetic acid UDP-glucosyltransferase from immature seeds of pea is involved in modification of glycoproteins.

    Science.gov (United States)

    Ostrowski, Maciej; Hetmann, Anna; Jakubowska, Anna

    2015-09-01

    The glycosylation of auxin is one of mechanisms contributing to hormonal homeostasis. The enzyme UDPG: indole-3-ylacetyl-β-D-glucosyltransferase (IAA glucosyltransferase, IAGlc synthase) catalyzes the reversible reaction: IAA+UDPG↔1-O-IA-glucose+UDP, which is the first step in the biosynthesis of IAA-ester conjugates in monocotyledonous plants. In this study, we report IAA-glucosyltransferase isolated using a biochemical approach from immature seed of pea (Pisum sativum). The enzyme was purified by PEG fractionation, DEAE-Sephacel anion-exchange chromatography and preparative PAGE. LC-MS/MS analysis of tryptic peptides of the enzyme revealed the high identity with maize IAGlc synthase, but lack of homology with other IAA-glucosyltransferases from dicots. Biochemical characterization showed that of several acyl acceptors tested, the enzyme had the highest activity on IAA as the glucosyl acceptor (Km=0.52 mM, Vmax=161 nmol min(-1), kcat/Km=4.36 mM s(-1)) and lower activity on indole-3-propionic acid and 1-naphthalene acetic acid. Whereas indole-3-butyric acid and indole-3-propionic acid were competitive inhibitors of IAGlc synthase, D-gluconic acid lactone, an inhibitor of β-glucosidase activity, potentiated the enzyme activity at the optimal concentration of 0.3mM. Moreover, we demonstrated that the 1-O-IA-glucose synthesized by IAGlc synthase is the substrate for IAA labeling of glycoproteins from pea seeds indicating a possible role of this enzyme in the covalent modification of a class of proteins by a plant hormone. PMID:26057226

  17. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum

    OpenAIRE

    Abinaya Gurunathan; Jamuna Senguttuvan; S Paulsamy

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. Th...

  18. Syntheses of Macrocyclic Amides from L-Amino Acid Esters by RCM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of succinate-derived macrocyclic amides( 1 ) was synthesized via ring-closing metathesis (RCM) as the key step. The substrate included 12 to 15 members. The metathesis precursors were obtained from the amide coupling of tert-butyl 3-carboxyhex-5-enoate(2) with numerous side-chain alkenylated amino acid esters of general type(3)derived from L-lysine and L-ornithine.

  19. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    OpenAIRE

    Cheng-Fang Tsai; Yueh-Hsiung Kuo; Wei-Lan Yeh; Caren Yu-Ju Wu; Hsiao-Yun Lin; Sheng-Wei Lai; Yu-Shu Liu; Ling-Hsuan Wu; Jheng-Kun Lu; Dah-Yuu Lu

    2015-01-01

    Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE), a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current ...

  20. Synthesis and Properties of Lactic Acid-based Cross-linked Poly(ester-amide)

    Institute of Scientific and Technical Information of China (English)

    Yue Ying HE; Cong Ming XIAO

    2006-01-01

    A novel lactic acid-based cross-linked poly(ester-amide) (LCPEA) was synthesized. The gel fraction of the LCPEA could be modulated by the reaction conditions and it affected the mechanical and thermal properties of the LCPEA. The tensile strength, elastic modulus and bend strength of the LCPEA of 65% gel fraction were 4.65, 136.55 and 39.63 MPa, respectively. The thermal decomposition temperature (50 wt%) of the LCPEA was around 410 ℃.

  1. Importance of secondary sources in the atmospheric budgets of formic and acetic acids

    Directory of Open Access Journals (Sweden)

    F. Paulot

    2010-10-01

    Full Text Available We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are ~1200 and ~1400 Gmol/yr, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.

  2. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process

    NARCIS (Netherlands)

    Snelders, J.; Dornez, E.; Benjelloun-Mlayah, B.; Huijgen, W.J.J.; Wild, de P.J.; Gosselink, R.J.A.; Gerritsma, J.; Courtin, C.M.

    2014-01-01

    To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized

  3. Ultrastructure of sheep primordial follicles cultured in the presence of indol acetic acid, EGF, and FSH

    DEFF Research Database (Denmark)

    Andrade, Evelyn Rabelo; Hyttel, Poul; Landim-Alvarenga, Fernanda Da Cruz;

    2011-01-01

    The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA), Epidermal Growth Factor (EGF), and FSH. To evaluate ultrastructure of primordial follicles cultured...

  4. Critical phenomena in ethylbenzene oxidation in acetic acid solution at high cobalt(II) concentrations

    NARCIS (Netherlands)

    Gavrichkov, AA; Zakharov, [No Value

    2005-01-01

    Critical phenomena in ethylbenzene oxidation in an acetic acid solution at high cobalt(ill) concentrations (from 0.01 to 0.2 mol L-1) were studied at 60-90 degrees C by the gasometric (O-2 absorption), spectrophotometric (Co-III accumulation), and chemiluminescence (relative concentration of radical

  5. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Olcay, Hakan [University of Massachusetts, Amherst; Xu, Lijun [ORNL; Xu, Ye [ORNL; Huber, George [University of Massachusetts, Amherst

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  6. Acetic acid as an intervention strategy to decontaminate beef carcasses in mexican commercial slaughterhouse

    Directory of Open Access Journals (Sweden)

    Laura Reyes Carranza

    2013-09-01

    Full Text Available Beef can be contaminated during the slaughter process, thus other methods, besides the traditional water washing, must be adopted to preserve meat safety. The objective of this study was to evaluate the effect of 2% acetic acid interventions on the reduction of indicator bacteria on beef carcasses at a commercial slaughterhouse in Mexico. Reduction was measured by the count of mesophilic aerobic bacteria (TPC, total coliform (TC, and fecal coliform (FC (log CFU/ cm². Among the different interventions tested, treatments combining acetic acid solution sprayed following carcass water washing had greater microbial reduction level. Acetic acid solution sprayed at low pressure and longer time (10-30 psi/ 60 s reached higher TPC, TC, and FC reductions than that obtained under high pressure/ shorter time (1,700 psi/ 15 s; P<0.05. Exposure time significantly affected microbial reduction on carcasses. Acetic acid solution sprayed after carcass washing can be successfully used to control sources of indicator bacteria on beef carcasses under commercial conditions.

  7. Poly(vinyl chloride) polyacrylonitrile composite membranes for the dehydration of acetic acid

    NARCIS (Netherlands)

    Koops, G.H.; Nolten-Oude Hendrikman, J.A.M.; Mulder, M.H.V.; Smolders, C.A.

    1993-01-01

    Composite membranes have been prepared consisting of a poly(vinyl chloride) (PVC) top layer on either a dense polyacrylonitrile (PAN) layer (bi-layer membrane) or a porous PAN support layer (normal composite membrane) and studied with respect to the dehydration of acetic acid. Especially, the influe

  8. Visualization of early events in acetic acid denaturation of HIV-1 protease: a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Aditi Narendra Borkar

    Full Text Available Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH reveal that the PR denaturation begins by separation of dimer into intact monomers and it is only after this separation that the monomer units start denaturing. The denaturation of the monomers is flagged off by the loss of crucial interactions between the α-helix at C-terminal and surrounding β-strands. This causes the structure to transit from the equilibrium dynamics to random non-equilibrating dynamics. Residence time calculations indicate that denaturation occurs via direct interaction of the acetic acid molecules with certain regions of the protein in 9 M AcOH. All these observations have helped to decipher a picture of the early events in acetic acid denaturation of PR and have illustrated that the α-helix and the β-sheet at the C-terminus of a native and functional PR dimer should maintain both the stability and the function of the enzyme and thus present newer targets for blocking PR function.

  9. Kinetics of acetic acid synthesis from ethanol over a Cu/SiO2 catalyst

    DEFF Research Database (Denmark)

    Voss, Bodil; Schjødt, Niels Christian; Grunwaldt, Jan-Dierk;

    2011-01-01

    . The dehydrogenation experiments were carried out in a flow through lab scale tubular reactor. Based on 71 data sets a power law kinetic expression has been derived for the description of the dehydrogenation of acetaldehyde to acetic acid. The apparent reaction order was 0.89 with respect to water and 0...

  10. Molecular Cloning and Biochemical Characterization of Indole-3-acetic Acid Methyltransferase from Poplar (Populus trichocarpa)

    Science.gov (United States)

    Indole-3-acetic acid (IAA) is the most active endogenous auxin involved in various physiological processes in higher plants. Concentrations of IAA in plant tissues are regulated at multiple levels including de novo biosynthesis, degradation, and conjugation/deconjugation. In this paper, we report id...

  11. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    Science.gov (United States)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  12. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples.

    Science.gov (United States)

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-07-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples. PMID:27245345

  13. New fatty acid, aromatic ester and monoterpenic benzyl glucoside from the fruits of Withania coagulans Dunal.

    Science.gov (United States)

    Ali, Abuzer; Jameel, Mohammad; Ali, Mohammed

    2015-01-01

    The fruits of Withania coagulans Dunal (family: Solanaceae) are sweet, sedative, emetic, alterative and diuretic; used to treat asthma, biliousness, strangury, wounds, dyspepsia, flatulent colic, liver complaints and intestinal infections in the indigenous system of medicine. Phytochemical investigation of the methanolic extract of W. coagulans fruits led to the isolation of a new fatty acid, an aromatic ester and a monoterpenic benzyl glucoside characterised as n-octatriacont-17-enoic acid (3), geranilan-10-olyl dihydrocinnamoate (4) and geranilan-8-oic acid-10-olyl salicyloxy-2-O-β-D-glucofuranosyl-(6″→1‴)-O-β-D-glucofuranosyl-6‴-n-octadec-9‴',11‴'-dienoate (5) along with two known fatty acids, n-dotriacont-21-enoic acid (1) and n-tetratriacontanoic acid (2). The structures of isolated phytoconstituents were established on the basis of 1D and 2D NMR, FT-IR, UV, and MS data and chemical means.

  14. Use of citric acid esters as alternative fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Georg; Thuneke, Klaus; Remmele, Edgar [Technologie- und Foerderzentrum, Straubing (Germany); Schieder, Doris [Technische Univ. Muenchen, Straubing (Germany). Lehrstuhl fuer Chemie Biogener Rohstoffe

    2013-06-01

    Common fuels for (adapted) diesel engines are fossil diesel fuel, fatty acid methyl ester (FAME or biodiesel) or vegetable oils. Furthermore the citric acid esters tributylcitrate (TBC) and triethylcitrate (TEC) are expected to be a possible diesel substitute. Their use as fuel was applied for a patent in Germany in 2010. According to the patent applicant the advantages are low soot combustion, independence of energy imports due to the possibility of local production and a broad raw material base. Their fuel properties have been analysed in the laboratory and compared with the relevant fuel standards. Only some of the determined values are meeting the specifications, but on the other hand few rapeseed oil characteristics (e. g. oxidation stability and viscosity) can be improved if the citric acid esters are used as a blend component. The operating and emission behaviour of a vegetable oil compatible CHP unit fuelled with various rapeseed oil and TBC blends were investigated and a trouble free and soot emission reduced engine operation due to the high molecularly bound oxygen content was observed. Long term test runs are necessary for an entire technical validation. (orig.)

  15. Chromatographic analyses of fatty acid methyl esters by HPLC-UV and GC-FID

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Myller S.; Pinho, David M.M.; Suarez, Paulo A.Z., E-mail: psuarez@unb.br [Laboratorio de Materiais e Combustiveis, Instituto de Quimica, Universidade de Brasilia, DF (Brazil); Mendonca, Marcio A. [Faculdade de Agronomia e Medicina Veterinaria, Universidade de Brasilia, DF (Brazil); Resck, Ines S. [Laboratorio de Ressonancia Magnetica Nuclear, Universidade de Brasilia, DF (Brazil)

    2012-04-15

    An analytical method using high performance liquid chromatography with UV detection (HPLC-UV) (method A) was used for simultaneous determination of total amounts of triacylglycerides, diacylglycerides, monoacylglycerides and fatty acid methyl esters in alcoholysis of different oil (cotton, canola, sunflower, corn and soybean) samples. Analyses were carried out at 40 deg C for 20 min using a gradient of methanol (MeOH) and 2-propanol-hexane 5:4 (v/v) (PrHex): 100% of MeOH in 0 min, 50% of MeOH and 50% of PrHex in 10 min maintained with isocratic elution for 10 min. Another HPLC-UV method (method B) with acetonitrile isocratic elution for 34 min was used to determine the fatty acid composition of oils analyzing their methyl ester derivatives. Contents were determined with satisfactory repeatability (relative standard deviation, RSD < 3%), linearity (r{sup 2} > 0.99) and sensitivity (limit of quantification). Method B was compared with an official gas chromatographic method with flame ionization detection (GC-FID) from American Oil Chemists' Society (AOCS) in the determination of fatty acid methyl esters (FAME) in biodiesel real samples. (author)

  16. Scientific Opinion on the re-evaluation of montan acid esters (E 912 as a food additive

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS

    2013-06-01

    Full Text Available Following a request from the European Commission, the EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS was asked to deliver a scientific opinion re-evaluating the safety of montan acid esters (E 912 when used as a food additive. Montan acids are extracted from oxidised montan wax and esterified with ethylene glycol, 1,3-butanediol or triols, to form montan acid esters. Montan acid esters are authorised only for the surface treatment of fresh fruits. No data, specifically for montan acid esters, on toxicokinetics and reproductive and developmental toxicity were available. The available data on short-term and subchronic toxicity, genotoxicity and chronic toxicity and carcinogenicity were limited. Important deficiencies in the available studies on chronic toxicity and carcinogenicity were noticed. The data requested in the 1990s (i.e. chromosomal aberration in vitro, reproduction and teratogenicity studies, material characteristics, impurities, presence of PAHs were not submitted. Furthermore no data were submitted following an EFSA public call for data in 2012. The Panel identified some summary data in the European Chemicals Agency database (ECHA on registered substances that might have been relevant for the assessment of montan acid esters but the original study reports were not made available to EFSA. Based on these limitations in the toxicological database the Panel concluded that montan acid esters as a food additive could not be evaluated.

  17. PREPARATION AND CHARACTERIZATION OF ACETIC ACID LIGNIN-BASED EPOXY BLENDS

    OpenAIRE

    Fangeng Chen,; Pan Feng

    2012-01-01

    Lignin-based epoxy resin (LER) was prepared from phenolated lignin (PL) and epichlorohydrin (ECH) in the presence of sodium hydroxide. The eucalyptus acetic acid lignin (AAL) was first reacted with phenol in the presence of sulfuric acid to obtain PL. Then, PL was reacted with ECH in aqueous sodium hydroxide to obtain LER. LER was mixed with diglycidyl ether of bisphenol A (E-44) and then cured with triethylenetetramine (TETA). The initial thermal degradation temperature (Td) of the cured epo...

  18. THE STUDY OF HENNA LEAVES EXTRACT AS GREEN CORROSION INHIBITOR FOR MILD STEEL IN ACETIC ACID.

    OpenAIRE

    H. G. Chaudhari; R. T. Vashi

    2016-01-01

    The inhibitive action of henna leaves extract on mild steel in acetic acid solution have been investigated by weight-loss, A C impedence and potentiodynamic polarization measurements. The study indicates that as acid concentration increases corrosion rate increases. The corrosion inhibition efficiency increases with increase in concentration of extract. The result obtained revealed that henna leaves extract act as efficient inhibitor. The adsorption of the henna leaves extract obeyed Langmuir...

  19. PERVAPORATION SEPARATION OF WATER-ACETIC ACID MIXTURES THROUGH AN-co-AA MEMBRANES TREATED WITH RARE EARTH METAL IONS

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhiquan; ZHANG Fuyao; ZHANG Yifeng

    1995-01-01

    Pervaporation separation of water-acetic acid mixtures through Poly (AN-co-AA)membranes and rare earth metal ions treated Poly(AN-co-AA)membranes was investigated for the first time. The results showed that the treatment with rare earth metal ions could greatly improve the characteristics of the separation of water-acetic acid mixtures.

  20. Gibbs ensemble Monte Carlo simulation using an optimized potential model: pure acetic acid and a mixture of it with ethylene.

    Science.gov (United States)

    Zhang, Minhua; Chen, Lihang; Yang, Huaming; Sha, Xijiang; Ma, Jing

    2016-07-01

    Gibbs ensemble Monte Carlo simulation with configurational bias was employed to study the vapor-liquid equilibrium (VLE) for pure acetic acid and for a mixture of acetic acid and ethylene. An improved united-atom force field for acetic acid based on a Lennard-Jones functional form was proposed. The Lennard-Jones well depth and size parameters for the carboxyl oxygen and hydroxyl oxygen were determined by fitting the interaction energies of acetic acid dimers to the Lennard-Jones potential function. Four different acetic acid dimers and the proportions of them were considered when the force field was optimized. It was found that the new optimized force field provides a reasonable description of the vapor-liquid phase equilibrium for pure acetic acid and for the mixture of acetic acid and ethylene. Accurate values were obtained for the saturated liquid density of the pure compound (average deviation: 0.84 %) and for the critical points. The new optimized force field demonstrated greater accuracy and reliability in calculations of the solubility of the mixture of acetic acid and ethylene as compared with the results obtained with the original TraPPE-UA force field.

  1. Pengaruh Katalis H2SO4 pada Reaksi Epoksidasi Metil Ester PFAD (Palm Fatty Acid Distillate)

    OpenAIRE

    Sinaga, Mersi Suriani

    2010-01-01

    Ester epoksi selain sebagai pelunak juga dapat memperbaiki ketahanan komponen polivinil klorida (PVC) terhadap panas dan cahaya. Penelitian ini dilakukan untuk merumuskan kondisi katalis yang sesuai bagi pembuatan senyawa epoksi metil ester PFAD dari senyawa metil ester PFAD. Metil ester PFAD terdiri dari ester lemak jenuh dan tidak jenuh., metode pemisahan kristalisasi dengan pelarut metanol untuk memisahkan ester lemak jenuh dari ester lemak tak jenuh, yang bertujuan meningkatkan kemamp...

  2. Caffeic acid phenethyl ester prevents apoptotic cell death in the developing rat brain after pentylenetetrazole-induced status epilepticus.

    Science.gov (United States)

    Yiş, Uluç; Topçu, Yasemin; Özbal, Seda; Tuğyan, Kazım; Bayram, Erhan; Karakaya, Pakize; Yilmaz, Osman; Kurul, Semra Hız

    2013-11-01

    Population-based studies suggest that seizure incidence is highest during the first year of life, and early-life seizures frequently result in the development of epilepsy and behavioral alterations later in life. The early-life insults like status epilepticus often lead to epileptogenesis, a process in which initial brain injury triggers cascades of molecular, cellular, and network changes and eventually spontaneous seizures. Caffeic acid phenethyl ester is an active component of propolis obtained from honeybees and has neuroprotective properties. The aim of this study was to investigate whether caffeic acid phenethyl ester exerts neuroprotective effects on the developing rat brain after status epilepticus. Twenty-one dams reared Wistar male rats, and 21-day-old rats were divided into three groups: control group, pentylenetetrazole-induced status epilepticus group, and caffeic acid phenethyl ester-treated group. Status epilepticus was induced on the first day of experiment. Caffeic acid phenethyl ester injections (30 mg/kg intraperitoneally) started 40 min after the tonic phase of status epilepticus was reached, and the injections of caffeic acid phenethyl ester were repeated over 5 days. Rats were sacrificed, and brain tissues were collected on the 5th day of experiment after the last injection of caffeic acid phenethyl ester. Apoptotic cell death was evaluated. Histopathological examination showed that caffeic acid phenethyl ester significantly preserved the number of neurons in the CA1, CA3, and dentate gyrus regions of the hippocampus and the prefrontal cortex. It also diminished apoptosis in the hippocampus and the prefrontal cortex. In conclusion, this experimental study suggests that caffeic acid phenethyl ester administration may be neuroprotective in status epilepticus in the developing rat brain.

  3. Synthesis, Resolution, and Enantiomeric Purity Assay of 2-n-Butylbutanedioic Acid 4-t-Butyl Esters

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Racemic 2-n-butylbutanedioic acid 4-t-butyl esters were synthesized from methyl hexanoate and t-butyl α-iodoacetate via alkylation and subsequently selective hydrolyzation. The (R)-and (S)-2-n-butylbutanedioic acid 4-t-butyl esters were obtained by the resolution of the above-mentioned racemic compounds with(S)-( - ) or(R)-( + )-α-methylbenzylamine, respectively. The e.e. values of the two optical active products were determined to be above 99% by HPLC after the formation of two pairs of diastereoisomers with ( R)-( + )-α-methylbenzylamine and (S)-phenylalanine methyl ester.

  4. Synergistic cosolubilization of omega-3 fatty acid esters and CoQ10 in dilutable microemulsions.

    Science.gov (United States)

    Deutch-Kolevzon, Rivka; Aserin, Abraham; Garti, Nissim

    2011-10-01

    Water-dilutable microemulsions were prepared and loaded with two types of omega-3 fatty acid esters (omega-3 ethyl esters, OEE; and omega-3 triacylglycerides, OTG), each separately and together with ubiquinone (CoQ(10)). The microemulsions showed high and synergistic loading capabilities. The linear fatty acid ester (OEE) solubilization capacity was greater than that of the bulky and robust OTG. The location of the guest molecules within the microemulsions at any dilution point were determined by electrical conductivity, viscosity, DSC, SAXS, cryo-TEM, SD-NMR, and DLS. We found that OEE molecules pack well within the surfactant tails to form reverse micelles that gradually, upon water dilution, invert into bicontinuous phase and finally into O/W droplets. The CoQ(10) increases the stabilization and solubilization of the omega-3 fatty acid esters because it functions as a kosmotropic agent in the micellar system. The hydrophobic and bulky OTG molecule strongly interferes with the tail packing and spaces them significantly - mainly in the low and medium range water dilutions. When added to the micellar system, CoQ(10) forms some reverse hexagonal mesophases. The inversion into direct micelles is more difficult in comparison to the OEE system and requires additional water dilution. The OTG with or without CoQ(10) destabilizes the structures and decreases the solubilization capacity since it acts as a chaotropic agent to the micellar system and as a kosmotropic agent to hexagonal packing. These results explain the differences in the behavior of these molecules with vehicles that solubilize them in aqueous phases. Temperature disorders the bicontinuous structures and reduces the supersaturation of the system containing OEE with CoQ(10); as a result CoQ(10) crystallization is retarded. PMID:21723268

  5. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    International Nuclear Information System (INIS)

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L® and Novozym 388®, were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 oC and total reaction time 6 h. Lipozyme TL-100L® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  6. Synthesis of pinonic acid esters from ozonolysis of α-pinene%α-蒎烯臭氧化反应合成蒎酮酸酯

    Institute of Scientific and Technical Information of China (English)

    于静; 沈玉龙; 王丽红

    2012-01-01

    以天然产物松节油的主要成分α-蒎烯和醇为原料,二氯甲烷为溶剂,经臭氧氧化制得α-蒎烯臭氧化物,臭氧化物不加分离直接在三乙胺(TEA)催化下经乙酸酐重排(AA)裂解,一锅法合成了6种蒎酮酸酯类化合物。考察了乙酸酐用量、三乙胺用量、反应时间和反应温度等条件对蒎酮酸酯收率的影响,并通过正交试验对合成条件进行了优化。优化的实验条件为:nAA/nα-蒎烯=3.0∶1,nTEA/nα-蒎烯=0.75∶1,反应时间为60 min,反应温度为30℃,在该条件下合成的6种蒎酮酸酯收率均在60%以上,并采用1H NMR、13C NMR、IR、MS对6种化合物的结构进行了表征。该方法操作简便,条件温和,且收率高,是合成蒎酮酸酯类化合物的一种简易可行的方法。%Six pinonic acid esters were synthesized from one-pot ozonolysis reaction using α-pinene and alcohol as raw materials,dichloromethane as solvent,and decomposition of the prepared ozonide by acetic anhydride(AA) with triethylamine(TEA) as catalyst.The influences of acetic anhydride quantity,triethylamine quantity,reaction time and reaction temperature were investigated.The synthesis conditions were optimized by orthogonal experiment.The optimized conditions were as follows:nAA/nα-pinene = 3.0∶1,nTEA/nα-pinene = 0.75∶1,time and temperature 60 min and 30 ℃ respectively.The yields of six pinonic acid esters were above 60%.The structures of the six pinonic acid esters were identified and characterized by IR,1H NMR,13C NMR and MS.This method was a convenient and efficient way to synthesize pinonic acid esters,which had such advantages as simple operation,mild conditions and high yields.

  7. Development of Manufacturing Method of Highly Functional Material Gallic acid-CLA Ester Using Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, C. H.; Byun, M. W.; Jeong, I. Y.; Kim, D. H

    2006-01-15

    Increasing interest and current trends for natural materials with various health beneficial functions by radiation (RT)-biotechnology (BT) fusion by developed countries. However, the information and development of new functional materials using the RT-BT fusion technology is still limited. The target material developed and manufactured by RT-BT fusion technology may have a multi-functional effect on human health and it can be applied for pharmaceutical materials as well as functional food ingredient. The market of functional new materials has been grown dramatically and a multi-functional material manufactured by RT-BT fusion technology may have a great economic impact for both the domestic and overseas market. Development of GA-CLA ester by chemical synthetic method. Transformation of linoleic acid to conjugated linoleic acid by irradiation. Identification and confirmation of the biological functions including antioxidative, cancer cell proliferation inhibition, anti-microbial, enhancement of immune response and lipid metabolism of GA-CLA ester. Increase industrial applicability of the new materials. Development of GA-CLA ester by chemical synthetic method(2 patents submitted). Development of the optimum methodology of GA-CLA and its derivative, octadeca-9,12-dienyl-3,4,5-trihydroxy benzoate). Identification and confirmation of biological activities of GA-CLA. Extramural funding from the Ministry of Commerce, Industry, and Energy subjected by gallic acid-fatty acid derivatives (205,000,000 Won). Provides the basic data for successful project 'Development of cosmeceutical and cosmetics using gallic acid fatty acid derivatives' funded by Ministry of Commerce, Industry, and Energy and collaboration with the Technology-invested venture company, SunBiotech, Co. and problem-solving for industrial application. Complete the patent procedure and publish the results to international or domestic peer-reviewed journals.

  8. Development of Manufacturing Method of Highly Functional Material Gallic acid-CLA Ester Using Irradiation

    International Nuclear Information System (INIS)

    Increasing interest and current trends for natural materials with various health beneficial functions by radiation (RT)-biotechnology (BT) fusion by developed countries. However, the information and development of new functional materials using the RT-BT fusion technology is still limited. The target material developed and manufactured by RT-BT fusion technology may have a multi-functional effect on human health and it can be applied for pharmaceutical materials as well as functional food ingredient. The market of functional new materials has been grown dramatically and a multi-functional material manufactured by RT-BT fusion technology may have a great economic impact for both the domestic and overseas market. Development of GA-CLA ester by chemical synthetic method. Transformation of linoleic acid to conjugated linoleic acid by irradiation. Identification and confirmation of the biological functions including antioxidative, cancer cell proliferation inhibition, anti-microbial, enhancement of immune response and lipid metabolism of GA-CLA ester. Increase industrial applicability of the new materials. Development of GA-CLA ester by chemical synthetic method(2 patents submitted). Development of the optimum methodology of GA-CLA and its derivative, octadeca-9,12-dienyl-3,4,5-trihydroxy benzoate). Identification and confirmation of biological activities of GA-CLA. Extramural funding from the Ministry of Commerce, Industry, and Energy subjected by gallic acid-fatty acid derivatives (205,000,000 Won). Provides the basic data for successful project 'Development of cosmeceutical and cosmetics using gallic acid fatty acid derivatives' funded by Ministry of Commerce, Industry, and Energy and collaboration with the Technology-invested venture company, SunBiotech, Co. and problem-solving for industrial application. Complete the patent procedure and publish the results to international or domestic peer-reviewed journals

  9. Determination of ethanol in acetic acid-containing samples by a biosensor based on immobilized Gluconobacter cells

    Directory of Open Access Journals (Sweden)

    VALENTINA A. KRATASYUK

    2012-11-01

    Full Text Available Reshetilov AN, Kitova AE, Arkhipova AV, Kratasyuk VA, Rai MK. 2012. Determination of ethanol in acetic acid containing samples by a biosensor based on immobilized Gluconobacter cells. Nusantara Bioscience 4: 97-100. A biosensor based on Gluconobacter oxydans VKM B-1280 bacteria was used for detection of ethanol in the presence of acetic acid. It was assumed that this assay could be useful for controlling acetic acid production from ethanol and determining the final stage of the fermentation process. Measurements were made using a Clark electrode-based amperometric biosensor. The effect of pH of the medium on the sensor signal and the analytical parameters of the sensor (detection range, sensitivity were investigated. The residual content of ethanol in acetic acid samples was analyzed. The results of the study are important for monitoring the acetic acid production process, as they represent a method of tracking its stages

  10. NMR Studies of a New Binding Mode of the Amino Acid Esters by Porphyrinatozinc(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The binding mode of the amino acid ethyl esters(guest) by 5-(2-carboxylphenyl)-10,15,20-triphenylporphyrinatozinc(Ⅱ)(host 1) was studied by means of 1H NMR spectra. The binding mode is the hydrogen-bonding between the amino group of the guest and the carboxyl group of host 1 plus the coordination between the zinc atom of porphyrinatozinc(Ⅱ) and the carbonyl group of the guest. This is a novel binding mode of the metalloporphyrin to amino acid derivatives.

  11. Integrated process of distillation with side reactors for synthesis of organic acid esters

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  12. CHEMOTHERAPEUTIC POLYMERS ⅩⅩⅢ SYNTHESIS AND ANTITUMOR ACTIVITY OF POLYPHOSPHATES CONTAINING BOTH NUCLEIC ACID BASE AND PHOSPHONOACETIC ACID ETHYL ESTER

    Institute of Scientific and Technical Information of China (English)

    ZHUO Renxi; LIU Zhenghua; LI Li

    1989-01-01

    Eight new polyphosphates containing both nucleic acid base and phosphonoacetic acid ethyl ester were synthesized by the polycondensation of P, P- dichloride of phosphonoacetic acid ethyl ester with 1, 3-dihydroxyalkyl - 5 - fluorouracil, 1,3 - dihydroxyalkyl - uracil and 1, 3 - dihydroxyalkylthymine. These polyphosphates were tested against Ehrlich Ascites Carcinoma in mice. Polymer Ⅱa and Ⅱc exhibited excellent antitumor activity. Ⅱc also showed lower toxicity.

  13. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters.

    Science.gov (United States)

    Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2014-09-01

    In recent years, significant advances have been made to engineer robust microbes for overproducing biochemical products from renewable resources. These accomplishments have to a large extend been based on plasmid based methods. However, plasmid maintenance may cause a metabolic burden on the host cell and plasmid-based overexpression of genes can result in genetically unstable strains, which contributes to loss in productivity. Here, a chromosome engineering method based on delta integration was applied in Saccharomyces cerevisiae for the production of fatty acid ethyl esters (FAEEs), which can be directly used as biodiesel and would be a possible substitute for conventional petroleum-based diesel. An integration construct was designed and integrated into chromosomal delta sequences by repetitive transformation, which resulted in 1-6 copies of the integration construct per genome. The corresponding FAEE production increased up to 34 mg/L, which is an about sixfold increase compared to the equivalent plasmid-based producer. The integrated cassette in the yeast genome was stably maintained in nonselective medium after deletion of RAD52 which is essential for efficient homologous recombination. To obtain a further increase of FAEE production, genes encoding endogenous acyl-CoA binding protein (ACB1) and a bacterial NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (gapN) were overexpressed in the final integration strain, which resulted in another 40% percent increase in FAEE production. Our integration strategy enables easy engineering of strains with adjustable gene copy numbers integrated into the genome and this allows for an easy evaluation of the effect of the gene copy number on pathway flux. It therefore represents a valuable tool for introducing and expressing a heterologous pathway in yeast. PMID:24752598

  14. Improvement in ionic conductivities of poly-(2-vinylpyridine) by treatment with crotonic acid and vinyl acetic acid

    Indian Academy of Sciences (India)

    Anna Gogoi; Neelotpal Sen Sarma

    2015-06-01

    The synthesis, characterization and improved ionic conductivities of the salts of poly-(2-vinylpyridine) with crotonic acid and vinyl acetic acid are reported here. In this study, the alternating current conductivity measurements were carried out within the temperature range of 30–90° C and the frequency range of 1 Hz–100 kHz in solid state. A two- to three-fold increase in conductivity was observed for vinyl acetic acid salt whereas one- to twofold increase was observed for crotonic acid salt. The ionic transport numbers of the salts were measured with the help of the Wagner polarization technique which reveals that the percentage of ionic character of the salts are significantly higher compared with the polymer. The percentage of water uptake by the polymer and its salts were also observed.

  15. Abilities of some higher plants to hydrolyze the acetates of phenols and aromatic-aliphatic alcohols

    Directory of Open Access Journals (Sweden)

    Agnieszka Mironowicz

    2014-02-01

    Full Text Available In the biotransformations carried out under the same conditions, the whole intact plants of Spirodela punctata, Nephrolepis exaltata, Cyrtomium falcatum, Nephrolepis cordifolia and the suspension cultures of Helianthus tuberosus, Daucus carota and Petunia hybrida hydrolyze (partially or totally the ester bonds of the acetates of phenols and aromatic-aliphatic alcohols and also the menthyl acetate. Nevertheless, the methyl esters of aromatic acids, structurally similar to the former substrates, do not undergo hydrolysis. At the same time, the viability of first four plants was observed for different levels of acetate concentration. The method of continuous preparative hydrolysis of the same acetates was worked out in Cyrtomium falcatum culture.

  16. Depressing effect of phenoxyl acetic acids on flotation of minerals containing Ca2+/Mg2+ gangues

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Phenoxyl acetic acids were applied to determine their depressing effect on minerals containing Ca2+/Mg2+ gangues. Calcite,mixture of calcite and fluorite, and nickel ore were used in the flotation. And the depression mechanism was studied by the determination of contact angle, zeta potential, adsorptive capacity of collector, and IR analysis as well. It is found that 0.1 mmol/L of phenoxyl acetic acid derived from pyrogallol or gallic acid exhibits strong depressing ability on calcite in almost zero yields at pH value of 9.8, and calcite can be depressed in the flotation of calcite/fluorite mixture for approximate 87% yield of fluorite. The flotation result of practical nickel ore containing serpentine indicates that these two depressants may also show better depression performance to serpentine than traditional depressants such as sodium fluosilicate and carboxylmethyl cellulose. Analysis for the depression mechanism reveals that there exists strong chemical interaction between the depressants and minerals.

  17. Formic and acetic acid over the central Amazon region, Brazil. I - Dry season

    Science.gov (United States)

    Andreae, M. O.; Andreae, T. W.; Talbot, R. W.; Harriss, R. C.

    1988-01-01

    The concentrations of formic and acetic acids in the gas phase, atmospheric aerosol, and rainwater samples collected in Amazonia at ground level and in the atmosphere during the Amazon Boundary Layer Experiment in July/August 1985 were analyzed by ion exchange chromatography. The diurnal behavior of both acids at ground level and their vertical distribution in the forest canopy point to the existence of vegetative sources as well as to production by chemical reactions in the atmosphere. The concentrations of formic and acetic acids in the gas phase were about 2 orders of magnitude higher than the corresponding concentrations in the atmospheric aerosol. In rainwater, the total formate and acetate represented about one half of the anion equivalents, in contrast to less than 10 percent of the soluble anionic equivalents contributed by these acids in the atmospheric aerosol. The observed levels of these ions in rainwater are considered to be the result of a combination of chemical reactions in hydrometeors and the scavenging of the gaseous acids by cloud droplets.

  18. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    Science.gov (United States)

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  19. Chemometric analysis of mass spectra of cis and trans fatty acid picolinyl esters

    DEFF Research Database (Denmark)

    Leth, Torben

    1997-01-01

    Capillary GC of fatty acid methyl esters with MS detection only yields information about the molecular weight of the compound. However, if picolinyl esters of fatty acids are analysed in this way it is possible to obtain more information about their structure, perhaps even the cis or trans...... with a quadropole MS-detector. The mass spectra clearly show the molecular weight and the position of double bonds in the fatty acids, but whether the configuration is cis or trans is impossible to discern visually. However, with the use of principal component analysis, it is possible to distinguish between cis...... and trans fatty acids of C16:1, C18:1,n-9, C18:1,n-12, C18:2 and C22:1 in two- and three-dimensional score plots. With Soft Independent Modelling of Class Analogy (SIMCA), it is possible to calculate models that can predict from the mass spectra of unknown fatty acids whether they are of the cis or trans...

  20. Self-Motion Depending on the Physicochemical Properties of Esters as the Driving Force

    Science.gov (United States)

    Nakata, Satoshi; Matsuo, Kyoko; Kirisaka, Junko

    2007-04-01

    As a simple autonomous motor, the self-motion of various ester boats was investigated on water. The time variation of velocity and the duration of the motion decreased with an increase in the number of carbon atoms in the esters of acetic acid (propyl acetate, butyl acetate, and pentyl acetate). These characteristics of self-motion were qualitatively reproduced by a computer simulation based on the Newtonian motion equation that included the experimental results of surface tension depending on the concentration of ester of acetic acid and the enthalpy of evaporation. We believe that the present system regarding self-motion may be a useful tool for better understanding surface tension in chemistry in relation to physics and biology.

  1. Use of acetic and citric acids to control Salmonella Typhimurium in tahini (sesame paste).

    Science.gov (United States)

    Al-Nabulsi, Anas A; Olaimat, Amin N; Osaili, Tareq M; Shaker, Reyad R; Zein Elabedeen, Noor; Jaradat, Ziad W; Abushelaibi, Aisha; Holley, Richard A

    2014-09-01

    Since tahini and its products have been linked to Salmonella illness outbreaks and product recalls in recent years, this study assessed the ability of Salmonella Typhimurium to survive or grow in commercial tahini and when hydrated (10% w/v in water), treated with 0.1%-0.5% acetic or citric acids, and stored at 37, 21 and 10 °C for 28 d. S. Typhimurium survived in commercial tahini up to 28 d but was reduced in numbers from 1.7 to 3.3 log10 CFU/ml. However, in the moist or hydrated tahini, significant growth of S. Typhimurium occurred at the tested temperatures. Acetic and citric acids at ≤0.5% reduced S. Typhimurium by 2.7-4.8 log10 CFU/ml and 2.5-3.8 log10 CFU/ml, respectively, in commercial tahini at 28 d. In hydrated tahini the organic acids were more effective. S. Typhimurium cells were not detected in the presence of 0.5% acetic acid after 7 d or with 0.5% citric acid after 21 d at the tested temperatures. The ability of S. Typhimurium to grow or survive in commercial tahini and products containing hydrated tahini may contribute to salmonellosis outbreaks; however, use of acetic and citric acids in ready-to-eat foods prepared from tahini can significantly minimize the risk associated with this pathogen.

  2. A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process.

    Science.gov (United States)

    Shin, Chang-Hoon; Kim, Ju-Yup; Kim, Jun-Young; Kim, Hyun-Sang; Lee, Hyang-Sook; Mohapatra, Debasish; Ahn, Jae-Woo; Ahn, Jong-Gwan; Bae, Wookeun

    2009-03-15

    Recovery of acetic acid (HAc) from the waste etching solution discharged from silicon wafer manufacturing process has been attempted by using solvent extraction process. For this purpose 2-ethylhexyl alcohol (EHA) was used as organic solvent. In the pre-treatment stage >99% silicon and hydrofluoric acid was removed from the solution by precipitation. The synthesized product, Na(2)SiF(6) having 98.2% purity was considered of commercial grade having good market value. The waste solution containing 279 g/L acetic acid, 513 g/L nitric acid, 0.9 g/L hydrofluoric acid and 0.030 g/L silicon was used for solvent extraction study. From the batch test results equilibrium conditions for HAc recovery were optimized and found to be 4 stages of extraction at an organic:aqueous (O:A) ratio of 3, 4 stages of scrubbing and 4 stages of stripping at an O:A ratio of 1. Deionized water (DW) was used as stripping agent to elute HAc from organic phase. In the whole batch process 96.3% acetic acid recovery was achieved. Continuous operations were successfully conducted for 100 h using a mixer-settler to examine the feasibility of the extraction system for its possible commercial application. Finally, a complete process flowsheet with material balance for the separation and recovery of HAc has been proposed.

  3. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    Science.gov (United States)

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.

  4. Optimization of reaction parameters for enzymatic glyceride synthesis from fish oil: Ethyl esters versus free fatty acids

    DEFF Research Database (Denmark)

    Ravn, Helle Christine; Damstrup, Marianne L.; Meyer, Anne S.

    2012-01-01

    Enzymatic conversion of fish oil free fatty acids (FFA) or fatty acid ethyl esters (FAE) into glycerides via esterification or transesterification was examined. The reactions catalyzed by Lipozyme™ 435, a Candida antarctica lipase, were optimized. Influence on conversion yields of fatty acid chai...

  5. Sintesis Metil Ester Sulfonat Dari Asam Stearat Dan Metil Ester Sulfonat Dari Asam Oleat

    OpenAIRE

    Samosir, Yustina

    2011-01-01

    The Synthesis of Methyl Ester Sulfonate (MES) from stearic acid and from oleic acid through the stages of esterification reaction, that are esterification from stearic acid and oleic acid that forms methyl ester stearic acid and methyl ester oleic acid next stage was sulfonating the two of methyl esters to form a methyl ester sulfonate stearic acid and methyl ester oleic acid sulfonate. Furthermore, both fatty acid methyl ester sulfonate is neutralized with NaOH to obtain sulfonate salt. ...

  6. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    Science.gov (United States)

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.

  7. 21 CFR 582.4101 - Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat...

    Science.gov (United States)

    2010-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils,...

  8. Dehydrogenative Cross-Coupling Reaction between N-Aryl α-Amino Acid Esters and Phenols or Phenol Derivative for Synthesis of α-Aryl α-Amino Acid Esters.

    Science.gov (United States)

    Salman, Muhammad; Zhu, Zhi-Qiang; Huang, Zhi-Zhen

    2016-04-01

    A novel dehydrogenative cross-coupling (DCC) reaction between N-arylglycine esters and phenols or 1,3,5-trimethoxybenzene was developed by copper catalysis using di-tert-butyl peroxide (DTBP) as an oxidant. Under optimized conditions, a range of N-arylglycine esters 1 underwent the DCC reaction smoothly with various phenols 2 or 1,3,5-trimethoxybenzene 4 to give desired α-aryl α -amino acid esters 3 or 5, respectively, with high ortho regioselectivities in a moderate to excellent yield. A possible mechanism involving aromatic electrophilic substitution is proposed.

  9. Dehydrogenative Cross-Coupling Reaction between N-Aryl α-Amino Acid Esters and Phenols or Phenol Derivative for Synthesis of α-Aryl α-Amino Acid Esters.

    Science.gov (United States)

    Salman, Muhammad; Zhu, Zhi-Qiang; Huang, Zhi-Zhen

    2016-04-01

    A novel dehydrogenative cross-coupling (DCC) reaction between N-arylglycine esters and phenols or 1,3,5-trimethoxybenzene was developed by copper catalysis using di-tert-butyl peroxide (DTBP) as an oxidant. Under optimized conditions, a range of N-arylglycine esters 1 underwent the DCC reaction smoothly with various phenols 2 or 1,3,5-trimethoxybenzene 4 to give desired α-aryl α -amino acid esters 3 or 5, respectively, with high ortho regioselectivities in a moderate to excellent yield. A possible mechanism involving aromatic electrophilic substitution is proposed. PMID:26984111

  10. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    Directory of Open Access Journals (Sweden)

    Aleksandra Matuszyk

    2016-01-01

    Full Text Available Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  11. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    Science.gov (United States)

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  12. Influence of Bacillus subtilis and acetic acid on Cobb500 intestinal microflora.

    Directory of Open Access Journals (Sweden)

    Martin Král

    2014-11-01

    Full Text Available The beneficial modes of probiotic action include regulation of intestinal microbial homeostasis, stabilization of the gastrointestinal barrier function expression of bacteriocins and interference with the ability of pathogens to colonize and infect the mucosa. Organic acids as feed additives have been used to reduce or eliminate pathogenic bacteria and fungal contamination, control microbial growth and reduction of microbial metabolites. The aim of this study was to determine the effect of Bacillus subtilis, acetic acid and their combination on the intestinal microflora of broiler chickens (Cobb 500. The experiment was carried out on 4 groups each contains 100 chicks as follows: control (without addition, treatment 1 (acetic acid, treatment 2 (Bacillus subtilis and treatment 3 (acetic acid + Bacillus subtilis. Six samples from each group were selected as a sample (mixed sex. The highest average number of log CFU.g-1 Lactobacillus sp. was in the treatment 3 – 7.11 log CFU.g-1 and the lowest was in the control group – 6.85. The highest average number of log CFU.g-1 Enterococcus sp. was in the treatment 2 – 7.17 log CFU.g-1 and the lowest was in the control group – 5.65. In both observing additions of Bacillus subtilis and acetic acid increase the number of log CFU.g-1 Lactobacillus sp. and Enterococcus sp. compared with control group. The lower average number of log CFU.g-1 coliform bacteria was in the treatment 2 – 5.9 log CFU.g-1 and the higher was in control group – 6.98. The additional supplement decreased the number of log CFU.g-1 coliform bacteria in the treatment groups compared with the control.

  13. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    Science.gov (United States)

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely.

  14. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.; Grage, H.; Meinander, N.Q.; Hahn-Haegerdal, B. [Univ. of Lund (Sweden)

    1999-04-05

    The influence of the factors acetic acid, furfural, and p-hydroxybenzoic acid on the ethanol yield (Y{sub EtOH}) of Saccharomyces cerevisiae, bakers` yeast, S. cerevisiae ATCC 96581, and Candida shehatae NJ 23 was investigated using a 2{sup 3}-full factorial design with 3 centerpoints. The results indicated that acetic acid inhibited the fermentation by C. shehatae NJ 23 markedly more than by bakers` yeast, whereas no significant difference in tolerance towards the compounds was detected between the S. cerevisiae strains. Furfural and the lignin derived compound p-hydroxybenzoic acid did not affect any of the yeasts at the cell mass concentration used. The results indicated that the linear model was not adequate to describe the experimental data. Based on the results from the 2{sup 3}-full factorial experiment, an extended experiment was designed based on a central composite design to investigate the influence of the factors on the specific growth rate ({mu}), biomass yield (Y{sub x}), volumetric ethanol productivity (Q{sub EtOH}), and Y{sub EtOH}. Bakers` yeast was chosen in the extended experiment due to its better tolerance towards acetic acid, which makes it a more interesting organism for use in industrial fermentations of lignocellulosic hydrolysates.

  15. Effect of dietary supplementation of tocoferol acetate alone and with varying combinations on growth, survival and fatty acids profile of Macrobrachium rosenbergii larvae through Moina micrura enrichment

    OpenAIRE

    Parakarma, M.G.I.S.; Dube, K.; Venkateshwarlu, G.; Reddy, A.K.

    2009-01-01

    A study was carried out to determine the effect of tocopherol acetate along with cod liver oil astaxanthin enriched Moina micrura (MC- control, Ml- tocopherol acetate enriched, M2-tocopherol acetate combined with cod liver oil (CLO) enriched and M3- tocopherol acetate combined with astaxanthin enriched) on growth, survival and fatty acid composition of M. rosenbergii (de Man) larvae (TC- unenriched Moina fed larvae, Tl- tocopherol acetate enriched Moina fed larvae, T2- tocopherol acetate + CL...

  16. Theoretical study of the hydration of atmospheric nucleation precursors with acetic acid.

    Science.gov (United States)

    Zhu, Yu-Peng; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Xu, Kang-Ming; Wen, Hui; Zhang, Wei-Jun; Huang, Wei

    2014-09-11

    While atmosphere is known to contain a significant fraction of organic substance and the effect of acetic acid to stabilize hydrated sulfuric acids is found to be close that of ammonia, the details about the hydration of (CH3COOH)(H2SO4)2 are poorly understood, especially for the larger clusters with more water molecules. We have investigated structural characteristics and thermodynamics of the hydrates using density functional theory (DFT) at PW91PW91/6-311++G(3df,3pd) level. The phenomena of the structural evolution may exist during the early stage of the clusters formation, and we tentatively proposed a calculation path for the Gibbs free energies of the clusters formation via the structural evolution. The results in this study supply a picture of the first deprotonation of sulfuric acids for a system consisting of two sulfuric acid molecules, an acetic acid molecule, and up to three waters at 0 and 298.15 K, respectively. We also replace one of the sulfuric acids with a bisulfate anion in (CH3COOH)(H2SO4)2 to explore the difference of acid dissociation between two series of clusters and interaction of performance in clusters growth between ion-mediated nucleation and organics-enhanced nucleation.

  17. Inception of Acetic Acid/Water Cluster Growth in Molecular Beams.

    Science.gov (United States)

    Bende, Attila; Perretta, Giuseppe; Sementa, Paolo; Di Palma, Tonia M

    2015-10-01

    The influence of carboxylic acids on water nucleation in the gas phase has been explored in the supersonic expansion of water vapour mixed with acetic acid (AcA) at various concentrations. The sodium-doping method has been used to detect clusters produced in supersonic expansions by using UV photoionisation. The mass spectra obtained at lower acid concentrations show well-detected Na(+) -AcA(H2O)n and Na(+)-AcA2 (H2O)n clusters up to 200 Da and, in the best cooling expansions, emerging Na(+)-AcAm (H2O)n signals at higher masses and unresolved signals that extend beyond m/e values >1000 Da. These signals, which increase with increasing acid content in water vapour, are an indication that the cluster growth taking place arises from mixed water-acid clusters. Theoretical calculations show that small acid-water clusters are stable and their formation is even thermodynamically favoured with respect to pure water clusters, especially at lower temperatures. These findings suggest that acetic acid may play a significant role as a pre-nucleation embryo in the formation of aerosols in wet environments. PMID:26296812

  18. Influence of fatty acid on lipase-catalyzed synthesis of ascorbyl esters and their free radical scavenging capacity.

    Science.gov (United States)

    Stojanović, Marija; Carević, Milica; Mihailović, Mladen; Veličković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Bezbradica, Dejan

    2015-01-01

    Fatty acid (FA) ascorbyl esters are recently emerging food, cosmetic, and pharmaceutical additives, which can be prepared in an eco-friendly way by using lipases as catalysts. Because they are amphiphilic molecules, which possess high free radical scavenging capacity, they can be applied as liposoluble antioxidants as well as emulsifiers and biosurfactants. In this study, the influence of a wide range of acyl donors on ester yield in lipase-catalyzed synthesis and ester antioxidant activity was examined. Among saturated acyl donors, higher yields and antioxidant activities of esters were achieved when short-chain FAs were used. Oleic acid gave the highest yield overall and its ester exhibited a high antioxidant activity. Optimization of experimental factors showed that the highest conversion (60.5%) in acetone was achieved with 5 g L(-1) of lipase, 50 mM of vitamin C, 10-fold molar excess of oleic acid, and 0.7 mL L(-1) of initial water. Obtained results showed that even short- and medium-chain ascorbyl esters could be synthesized with high yields and retained (or even exceeded) free radical scavenging capacity of l-ascorbic acid, indicating prospects of broadening their application in emulsions and liposomes. PMID:25224149

  19. Palladium-Catalyzed α-Arylation of Aryl Acetic Acid Derivatives via Dienolate Intermediates with Aryl Chlorides and Bromides

    OpenAIRE

    Sha, Sheng-Chun; Zhang, Jiadi; Walsh, Patrick J.

    2015-01-01

    To date, examples of α-arylation of carboxylic acids remain scarce. Using a deprotonative cross-coupling process (DCCP), a method for palladium-catalyzed γ-arylation of aryl acetic acids with aryl halides has been developed. This protocol is applicable to a wide range of aryl bromides and chlorides. A procedure for the palladium-catalyzed α-arylation of styryl acetic acids is also described.

  20. A catalyst for the carbonylation of methanol to acetic acid in gaseous phase

    Institute of Scientific and Technical Information of China (English)

    潘平来; 柳忠阳; 朱长城; 袁国卿

    1996-01-01

    A novel Rh/Ys catalyst for the carbonylation of methanol to acetic acid in gaseous phase is reported. The porous carbon beads (Ys) prepared from the carbonation of poly(vinylidene chloride) were used as the support. This catalyst has a specific surface area of 1 000 m2/g, high mechanical strength and thermal stability. The average diameter of the pore is in the range of 0.8 - 1.2nm. Experimental evidence showed that this catalyst was of high activity and selectivity, which could compare to those of the homogeneous catalyst from Monsanto. The catalytic rate could get to 900 g AcOH/g Rh·h during the carbonylation of methanol to acetic acid. The fine spreading of Ph over the Ys surface is the key factor for the activity.

  1. Synthesis of 2, 4-- dichloro phenoxy acetic acid [ Carboxy- 14 C] as herbicide

    International Nuclear Information System (INIS)

    One of the important herbicide, that can be used for the practical mechanism investigations and studies of metabolism functions of different plants is 2,4 dichlorophenoxy acetic acid compound. In this article, the production method for labeling the titled compound is explained. At the first stage of this research work, barium[14C] carbonate is converted into potassium [14C] by using potassium azid at a reasonable temperature. Then, after a few synthesis reaction, the compound 2,4 dichlorophenoxy methyl iodide is produced via 2,4 dichlorophenoxy as a starting material. At the next stage, the real material as a herbicide: 2,4 dichlorophenoxy acetic acid [carboxy- 14C] is prepared and produced, by the coupling reaction between 2,4 dichlorophenoxy methyl iodide and potassium [14C] cyanide, and then the resulting nitrile has been hydrolyzed

  2. The influence of Ni loading on coke formation in steam reforming of acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    An, Lu; Dong, Changqing; Yang, Yongping; Zhang, Junjiao; He, Lei [National Engineering Laboratory of Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206 (China)

    2011-03-15

    Steam reforming of acetic acid on Ni/{gamma}-Al{sub 2}O{sub 3} with different nickel loading for hydrogen production was investigated in a tubular reactor at 600 C, 1 atm, H2O/HAc = 4, and WHSV = 5.01 g-acetic acid/g-cata.h{sup -1}. The catalysts were characterized by temperature programmed oxidation (TPO) and differential thermal analysis (DTA), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results showed that the amount of deposited carbidic-like carbon decreased and graphitic-like carbon increased with Ni loading increasing from 9 to 15 wt%. The Ni/{gamma}-Al{sub 2}O{sub 3} catalyst with 12 wt% Ni loading had higher catalytic activity and lower coke deposited rate. (author)

  3. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes

    Science.gov (United States)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1–S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  4. Lysosomal acid lipase deficiency: diagnosis and treatment of Wolman and Cholesteryl Ester Storage Diseases.

    Science.gov (United States)

    Porto, Anthony F

    2014-09-01

    Lysosomal acid lipase (LAL) is responsible for the hydrolysis of cholesterol esters and triglycerides. LAL is coded by the LIPA gene on chromosome 10q23.31. Its deficiency leads to two autosomal recessive disorders, Wolman disease (WD) and Cholesteryl Ester Storage Disease (CESD). WD has an estimated incidence of 1 in 500,000 live births and is the result of a complete loss of LAL and presents in infancy with vomiting, diarrhea, poor weight gain and hepatomegaly subsequently leading to death. CESD is the result of partial loss of LAL and its presentation is more variable. Patients may be asymptomatic or present with nonspecific gastrointestinal symptoms, hepatomegaly, elevated transaminases and dystipidemia which may be confused with the diagnosis of Non-alcoholic Fatty Liver Disease. CESD is currently underdiagnosed and has an estimated prevalence as high as I in 40,000 individuals. Radiologic findings in WD is calcification of the adrenal glands. Hepatomegaly is noted on CT scan in both WD and CESD. MRI may demonstrate accumulation of cholesterol esters and may be useful to study effects of potential medical therapies. The diagnosis of WD and CESD is based on LIPA gene sequencing and the measurement of LAL levels in peripheral blood leukocytes. Treatment of LAL deficiency is currently limited to control of cholesterol levels and to prevent premature atherosclerosis. Use of enzyme replacement therapy with recombinant human LAL in short-term studies has shown to be safe and effective. PMID:25345094

  5. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes.

    Science.gov (United States)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-26

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the "back-to-back" bisCD complex CuL(1) favoured higher catalytic efficiency and more pronounced enantioselectivity than the "face-to-face" complex CuL(2). The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL(1), which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL(1), even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  6. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)

    1998-12-31

    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  7. The role of MAPK signalling pathways in acetic acid-induced cell death of Saccharomyces cerevisiae

    OpenAIRE

    Azevedo, Flávio Humberto Torres Dias Feio de

    2011-01-01

    Dissertação de mestrado em Genética Molecular Mitogenic Activated Protein Kinase (MAPK) cascades are important signalling pathways that allow yeast cells to swiftly adapt to changing environmental conditions. Previous studies suggested that the High Osmolarity Glycerol (HOG) MAPK pathway and ceramide production are involved in acetic-acid induced apoptosis in yeast. Evidence that changes in the levels of endogenous ceramides can affect yeast cell fate has also been put forth...

  8. Healing Acceleration of Acetic Acid-induced Colitis by Marigold (Calendula officinalis) in Male Rats

    OpenAIRE

    Nader Tanideh; Akram Jamshidzadeh; Masood Sepehrimanesh; Masood Hosseinzadeh; Omid Koohi-Hosseinabadi; Asma Najibi; Mozhdeh Raam; Sajad Daneshi; Seyedeh-Leili Asadi-Yousefabad

    2016-01-01

    Background/Aim: Ulcerative colitis (UC) is a type of chronic inflammatory bowel disease with unknown etiology. Several therapeutic strategies such as consumption of medicinal plants have been used for its treatment. The aim of this study was to evaluate healing effects of Calendula officinalis hydroalcoholic extract in experimentally induced UC in rat. Materials and Methods: Ninety-six rats, weighing 200 ± 20 g, were randomly divided into eight equal groups. UC induced by 3% acetic acid and o...

  9. Kinetic studies on vapor phase carbonylation of methanol to acetic acid over Rh/Ys catalyst

    Institute of Scientific and Technical Information of China (English)

    柳忠阳; 潘平来; 朱长城; 袁国卿

    1997-01-01

    A novel catalyst Rh/Ys for the carbonylation of methanol to acetic acid with CH3I as the promoter shows excellent activity and selectivity.The reaction is kinetically controlled.The reaction rate is in proportion to the concentration of Rh and CH3I but has nothing to do with those of CH3OHH and CO.The surface active energy is Ea ~51.02 kJ/mol.A mechanism is also proposed.

  10. Copper methanesulfonate-acetic acid as a novel catalytic system for tetrahydropyranylation of alcohols and phenols

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A synergistic catalytic effect between copper methanesulfonate and acetic acid in tetrahydropyranylation of alcohols and phenol at room temperature under solvent free condition has been described. Both alcohols (primary, secondary and tertiary) and phenols reacted with 3,4-dihydro-2H-pyran smoothly to afford the corresponding tetrahydropyranyl ethers in good yields.(C) 2007 Min Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  11. Highly dispersed supported ruthenium oxide as an aerobic catalyst for acetic acid synthesis

    DEFF Research Database (Denmark)

    Laursen, Anders Bo; Gorbanev, Yury; Cavalca, Filippo;

    2012-01-01

    for the selective aerobic oxidation of ethanol to acetic acid. The RuOx was deposited onto different oxide supports using a new gas-phase reaction, which in all cases resulted in homogeneous nanoparticulate films. The RuOx particle size ranged from 0.3 to 1.5nm. The catalytic activity was evaluated on TiO2, Mg6Al2...

  12. Sustainable activity of hydrothermally synthesized mesoporous silicates in acetic acid esterification

    OpenAIRE

    ŞİMŞEK, VELİ; DEĞİRMENCİ, LEVENT; MÜRTEZAOĞLU, KIRALİ

    2015-01-01

    A hydrothermal method was applied in the synthesis of mesoporous silicates containing silicotungstic acid (STA). The synthesis procedures were developed by modification of procedures previously applied in the synthesis of MCM-41 and SBA-15. The synthesized catalysts were named MCM-41-S and SBA-15-S based on MCM-41 and SBA-15. Their activities were investigated in ethyl acetate production, which was selected as the model reaction. The results indicated that the activity of SBA-15-S catalysts i...

  13. Study of acetic acid production by immobilized acetobacter cells: oxygen transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ghommidh, C.; Navarro, J.M.; Durand, G.

    1982-03-01

    The immobilization of living Acetobacter cells by adsorption onto a large-surface-area ceramic support was studied in a pulsed flow reactor. The high oxygen transfer capability of the reactor enabled acetic acid production rates up to 10.4 g/L/h to be achieved. Using a simple mathematical model incorporating both internal and external mass transfer coefficients, it was shown that oxygen transfer in the microbial film controls the reactor productivity. (Refs. 10).

  14. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts

    OpenAIRE

    B. Chouaia; Gaiarsa, S.; Crotti, E.; Comandatore, F.; Degli Esposti, M.; I. RICCI; Alma, A.; Favia, G.; Bandi, C.; D. Daffonchio

    2014-01-01

    Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait...

  15. The Enhancement of Catharanthine Content in Catharanthus roseus Callus Culture Treated with Naphtalene Acetic Acid

    Directory of Open Access Journals (Sweden)

    DINGSE PANDIANGAN

    2006-09-01

    Full Text Available The research aim was to examine the enhancement of catharanthine content in Catharanthus roseus callus culture added with different concentration of Naphtalene Acetic Acid (NAA. NAA treatment produced callus that formed hairy roots. Fresh and dry weight of callus increased as the increasing of NAA concentration. The catharanthine content of C. roseus callus culture was increased by adding NAA as well. The highest catharanthine content was found in 2.5 ppm NAA added callus.

  16. The Enhancement of Catharanthine Content in Catharanthus roseus Callus Culture Treated with Naphtalene Acetic Acid

    OpenAIRE

    DINGSE PANDIANGAN; NELSON NAINGGOLAN

    2006-01-01

    The research aim was to examine the enhancement of catharanthine content in Catharanthus roseus callus culture added with different concentration of Naphtalene Acetic Acid (NAA). NAA treatment produced callus that formed hairy roots. Fresh and dry weight of callus increased as the increasing of NAA concentration. The catharanthine content of C. roseus callus culture was increased by adding NAA as well. The highest catharanthine content was found in 2.5 ppm NAA added callus.

  17. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    Science.gov (United States)

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  18. The stability of the acetic acid dimer in microhydrated environments and in aqueous solution.

    Science.gov (United States)

    Pašalić, Hasan; Tunega, Daniel; Aquino, Adélia J A; Haberhauer, Georg; Gerzabek, Martin H; Lischka, Hans

    2012-03-28

    The thermodynamic stability of the acetic acid dimer conformers in microhydrated environments and in aqueous solution was studied by means of molecular dynamics simulations using the density functional based tight binding (DFTB) method. To confirm the reliability of this method for the system studied, density functional theory (DFT) and second order Møller-Plesset perturbation theory (MP2) calculations were performed for comparison. Classical optimized potentials for liquid simulations (OPLS) force field dynamics was used as well. One focus of this work was laid on the study of the capabilities of water molecules to break the hydrogen bonds of the acetic acid dimer. The barrier for insertion of one water molecule into the most stable cyclic dimer is found to lie between 3.25 and 4.8 kcal mol(-1) for the quantum mechanical methods, but only at 1.2 kcal mol(-1) for OPLS. Starting from different acetic acid dimer structures optimized in gas phase, DFTB dynamics simulations give a different picture of the stability in the microhydrated environment (4 to 12 water molecules) as compared to aqueous solution. In the former case all conformers are converted to the hydrated cyclic dimer, which remains stable over the entire simulation time of 1 ns. These results demonstrate that the considered microhydrated environment is not sufficient to dissociate the acetic acid dimer. In aqueous solution, however, the DFTB dynamics shows dissociation of all dimer structures (or processes leading thereto) starting after about 50 ps, demonstrating the capability of the water environment to break up the relatively strong hydrogen bridges. The OPLS dynamics in the aqueous environment shows--in contrast to the DFTB results--immediate dissociation, but a similar long-term behavior.

  19. Amino acid esters substituted phosphorylated emtricitabine and didanosine derivatives as antiviral and anticancer agents.

    Science.gov (United States)

    Sekhar, Kuruva Chandra; Janardhan, Avilala; Kumar, Yellapu Nanda; Narasimha, Golla; Raju, Chamarthi Naga; Ghosh, S K

    2014-07-01

    Owing to the promising antiviral activity of amino acid ester-substituted phosphorylated nucleosides in the present study, a series of phosphorylated derivatives of emtricitabine and didanosine substituted with bioactive amino acid esters at P-atom were synthesized. Initially, molecular docking studies were screened to predict their molecular interactions with hemagglutinin-neuraminidase protein of Newcastle disease virus and E2 protein of human papillomavirus. The title compounds were screened for their antiviral ability against Newcastle disease virus (NDV) by their in ovo study in embryonated chicken eggs. Compounds 5g and 9c exposed well mode of interactions with HN protein and also exhibited potential growth of NDV inhibition. The remaining compounds exhibited better growth of NDV inhibition than their parent molecules, i.e., emtricitabine (FTC) and didanosine (ddI). In addition, the in vitro anticancer activity of all the title compounds were screenedagainst HeLa cell lines at 10 and 100 μg/mL concentrations. The compounds 5g and 9c showed an effective anticancer activity than that of the remaining title compounds with IC50 values of 40 and 60 μg/mL, respectively. The present in silico and in ovo antiviral and in vitro anticancer results of the title compounds are suggesting that the amino acid ester-substituted phosphorylated FTC and ddI derivatives, especially 5g and 9c, can be used as NDV inhibitors and anticancer agents for the control and management of viral diseases with cancerous condition. PMID:24789416

  20. Molecular dynamics simulations of the auxin-binding protein 1 in complex with indole-3-acetic acid and naphthalen-1-acetic acid.

    Science.gov (United States)

    Grandits, Melanie; Oostenbrink, Chris

    2014-10-01

    Auxin-binding protein 1 (ABP1) is suggested to be an auxin receptor which plays an important role in several processes in green plants. Maize ABP1 was simulated with the natural auxin indole-3-acetic acid (IAA) and the synthetic analog naphthalen-1-acetic acid (NAA), to elucidate the role of the KDEL sequence and the helix at the C-terminus. The KDEL sequence weakens the intermolecular interactions between the monomers but stabilizes the C-terminal helix. Conformational changes at the C-terminus occur within the KDEL sequence and are influenced by the binding of the simulated ligands. This observation helps to explain experimental findings on ABP1 interactions with antibodies that are modulated by the presence of auxin, and supports the hypothesis that ABP1 acts as an auxin receptor. Stable hydrogen bonds between the monomers are formed between Glu40 and Glu62, Arg10 and Thr97, Lys39, and Glu62 in all simulations. The amino acids Ile22, Leu25, Trp44, Pro55, Ile130, and Phe149 are located in the binding pocket and are involved in hydrophobic interactions with the ring system of the ligand. Trp151 is stably involved in a face to end interaction with the ligand. The calculated free energy of binding using the linear interaction energy approach showed a higher binding affinity for NAA as compared to IAA. Our simulations confirm the asymmetric behavior of the two monomers, the stronger interaction of NAA than IAA and offers insight into the possible mechanism of ABP1 as an auxin receptor.

  1. Tipepidine enhances the antinociceptive-like action of carbamazepine in the acetic acid writhing test.

    Science.gov (United States)

    Kawaura, Kazuaki; Miki, Risa; Urashima, Yuri; Honda, Sokichi; Shehata, Ahmed M; Soeda, Fumio; Shirasaki, Tetsuya; Takahama, Kazuo

    2011-01-25

    Several antidepressants have been used to treat severe pain in clinics. Recently, we reported that the centrally acting non-narcotic antitussive (cough suppressant drug), tipepidine produces an antidepressant-like effect in the forced swimming test, although the mechanism of action appears to be quite different from that of known antidepressants. In the present study, we investigated whether a combination of tipepidine and carbamazepine acts synergistically to induce an antinociceptive effect in the acetic acid-induced writhing test in mice. Prior to studying the combination of tipepidine and carbamazepine, the analgesic action of tipepidine alone was also examined in mice. Tipepidine at 5-40mg/kg i.p. significantly reduced the number of writhes induced by acetic acid in mice. Carbamazepine at 20mg/kg i.p. also significantly reduced the writhing reaction. Furthermore, co-administration of carbamazepine (5 and 10mg/kg, i.p.) and tipepidine (2.5mg/kg i.p.) significantly decreased the number of writhes induced by acetic acid. This finding suggests that a combination of carbamazepine and tipepidine may be a new strategy for the treatment of neuropathic pain such as what occurs in trigeminal neuralgia, because the use of carbamazepine is often limited by its adverse effects and by reduction of its analgesic efficacy by microsomal enzyme induction. PMID:21114989

  2. Hydrogen Generation from Catalytic Steam Reforming of Acetic Acid by Ni/Attapulgite Catalysts

    Directory of Open Access Journals (Sweden)

    Yishuang Wang

    2016-11-01

    Full Text Available In this research, catalytic steam reforming of acetic acid derived from the aqueous portion of bio-oil for hydrogen production was investigated using different Ni/ATC (Attapulgite Clay catalysts prepared by precipitation, impregnation and mechanical blending methods. The fresh and reduced catalysts were characterized by XRD, N2 adsorption–desorption, TEM and temperature program reduction (H2-TPR. The comprehensive results demonstrated that the interaction between active metallic Ni and ATC carrier was significantly improved in Ni/ATC catalyst prepared by precipitation method, from which the mean of Ni particle size was the smallest (~13 nm, resulting in the highest metal dispersion (7.5%. The catalytic performance of the catalysts was evaluated by the process of steam reforming of acetic acid in a fixed-bed reactor under atmospheric pressure at two different temperatures: 550 °C and 650 °C. The test results showed the Ni/ATC prepared by way of precipitation method (PM-Ni/ATC achieved the highest H2 yield of ~82% and a little lower acetic acid conversion efficiency of ~85% than that of Ni/ATC prepared by way of impregnation method (IM-Ni/ATC (~95%. In addition, the deactivation catalysts after reaction for 4 h were analyzed by XRD, TGA-DTG and TEM, which demonstrated the catalyst deactivation was not caused by the amount of carbon deposition, but owed to the significant agglomeration and sintering of Ni particles in the carrier.

  3. Mechanical behavior of alumina and alumina-feldspar based ceramics in an acetic acid (4%) environment

    International Nuclear Information System (INIS)

    This study investigates the mechanical properties of alumina-feldspar based ceramics when exposed to an aggressive environment (acetic acid 4%). Alumina ceramics containing different concentrations of feldspar (0%, 1%, 5%, 10%, or 40%) were sintered at either 1300, 1600, or 1700 oC. Flaws (of width 0%, 30%, or 50%) were introduced into the specimens using a saw. Half of these ceramic bodies were exposed to acetic acid. Their flexural strength, KIC, and porosity were measured and the fractured samples were evaluated using scanning electronic- and optical microscopy. It was found that in the ceramic bodies sintered at 1600 oC, feldspar content up to 10% improved flexural strength and KIC, and reduced porosities. Generally, it was found that acetic acid had a weakening effect on the flexural strength of samples sintered at 1700 oC but a beneficial effect on KIC of ceramics sintered at 1600 oC. It was concluded that alumina-based ceramics with feldspar content up to 10% and sintered at higher temperatures would perform better in an aggressive environment similar to oral cavity.

  4. Improving the environmental profile of wood panels via co-production of ethanol and acetic acid.

    Science.gov (United States)

    Earles, J Mason; Halog, Anthony; Shaler, Stephen

    2011-11-15

    The oriented strand board (OSB) biorefinery is an emerging technology that could improve the building, transportation, and chemical sectors' environmental profiles. By adding a hot water extraction stage to conventional OSB panel manufacturing, hemicellulose polysaccharides can be extracted from wood strands and converted to renewably sourced ethanol and acetic acid. Replacing fossil-based gasoline and acetic acid has the potential to reduce greenhouse gas (GHG) emissions, among other possible impacts. At the same time, hemicellulose extraction could improve the environmental profile of OSB panels by reducing the level of volatile organic compounds (VOCs) emitted during manufacturing. In this study, the life cycle significance of such GHG, VOC, and other emission reductions was investigated. A process model was developed based on a mix of laboratory and industrial-level mass and energy flow data. Using these data a life cycle assessment (LCA) model was built. Sensitive process parameters were identified and used to develop a target production scenario for the OSB biorefinery. The findings suggest that the OSB biorefinery's deployment could substantially improve human and ecosystem health via reduction of select VOCs compared to conventionally produced OSB, gasoline, and acetic acid. Technological advancements are needed, however, to achieve desirable GHG reductions. PMID:21967719

  5. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass.

    Science.gov (United States)

    Lynam, Joan G; Coronella, Charles J; Yan, Wei; Reza, Mohammad T; Vasquez, Victor R

    2011-05-01

    As a renewable non-food resource, lignocellulosic biomass has great potential as an energy source or feedstock for further conversion. However, challenges exist with supply logistics of this geographically scattered and perishable resource. Hydrothermal carbonization treats any kind of biomass in 200 to 260°C compressed water under an inert atmosphere to produce a hydrophobic solid of reduced mass and increased fuel value. A maximum in higher heating value (HHV) was found when 0.4 g of acetic acid was added per g of biomass. If 1g of LiCl and 0.4 g of acetic acid were added per g of biomass to the initial reaction solution, a 30% increase in HHV was found compared to the pretreatment with no additives, along with greater mass reduction. LiCl addition also reduces reaction pressure. Addition of acetic acid and/or LiCl to hydrothermal carbonization each contribute to increased HHV and reduced mass yield of the solid product. PMID:21411315

  6. Behaviour of Tributylamine as Entrainer for the Separation of Water and Acetic Acid with Reactive Extractive Distillation

    Institute of Scientific and Technical Information of China (English)

    雷志刚; 李成岳; 陈标华

    2003-01-01

    A new separation method, reactive extractive distillation, was put forward for separating water and acetic acid. The separation mechanism was analyzed through infrared spectra technique. Isobaric vapor-liquid equilibrium (VLE) data at 101.33 kPa for the binary or ternary systems consisting of water, acetic acid and tributylamine were measured. The activity coefficients were correlated by using Wilson, NRTL, and UNIQUAC Equations.The VLE experiment showed that tributylamine could enhance the relative volatility of water to acetic acid. An extractive distillation experiment was carried out and proved that tributylamine was a good extractive solvent.

  7. Caffeic Acid Phenethyl Ester as a Protective Agent against Nephrotoxicity and/or Oxidative Kidney Damage: A Detailed Systematic Review

    OpenAIRE

    Sumeyya Akyol; Veli Ugurcu; Aynur Altuntas; Rukiye Hasgul; Ozlem Cakmak; Omer Akyol

    2014-01-01

    Caffeic acid phenethyl ester (CAPE), an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury ...

  8. Synthesis, Crystal Structure and Biological Activities of Novel Anthranilic(Isophthalic) Acid Esters

    Institute of Scientific and Technical Information of China (English)

    YAN Tao; YU Guan-ping; LIU Peng-fei; XIONG Li-xia; YU Shu-jing; LI Zheng-ming

    2012-01-01

    In search of environmentally benign insecticides with high activity,low toxicity and low resistance,a series of novel anthranilic(isophthalic) acid esters was designed and synthesized based on the structure of ryanodine modulating agent.All the compounds were characterized by 1H NMR spectra,elemental analysis or high resolution mass spectrometry(HRMS).The preliminary results of biological activity assessment indicate that some of the title compounds exhibit certain but unremarkable insecticidal activity against Mythimna separata Walker at 200 mg/L and fungicidal activities against five funguses at 50 mg/L.

  9. Development of a New Environment-conscious Transformer Impregnated with Palm Fatty Acid Ester (PFAE)

    Science.gov (United States)

    Hikosaka, Tomoyuki; Yamazaki, Akina; Hatta, Yasunori; Koide, Hidenobu; Kanoh, Takaaki; Suzuki, Takashi; Yamada, Junichi; Uemura, Shingo

    We have developed a new environment-conscious transformer impregnated with vegetable based insulating oil which called PFAE (Palm Fatty Acid Ester). PFAE has 0.6 times less viscosity and 1.3 times higher dielectric constant compared to mineral oil. This means that a PFAE immersed transformer has better cooling efficiency and better insulating performance in paper-and-oil composite insulation systems, resulting in size reduction in comparison to conventional mineral oil immersed transformers. In this paper, insulating performance of lead to plane electrode models, cooling performance of a PFAE immersed transformer, and the result of analytical study of dissolved gas for abnormal diagnosis are described.

  10. Synthesis ,Structure and Biological Activities of Some Novel Anthranilic Acid Esters Containing N-Pyridyl-pyrazole

    Institute of Scientific and Technical Information of China (English)

    DONG,Weili; XU,Junying; XIONG,Lixia; LIU,Xinghai; LI,Zhengming

    2009-01-01

    In search of environmentally benign insecticides with high activity,low toxicity and low residue,a novel series of anthranilic acid esters containing N-pyridylpyrazole were designed and synthesized.All of the compounds were characterized and confirmed by IR,1H NMR,MS and elemental analysis.The single crystal structure of 14d was determined by X-ray diffraction.The bioassay tests showed that the synthesized compounds exhibited good insecti-tidal activities against Mythimna separata Walker and Culex pipiens pallens.

  11. Synthesis and Antitumor Activity of Amino Acid Ester Derivatives Containing 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Jing Xiong

    2009-08-01

    Full Text Available A series of amino acid ester derivatives containing 5-fluorouracil were synthesized using 1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride (EDC•HCl and N-hydroxybenzotriazole (HOBt as a coupling agent. The structures of the products were assigned by NMR, MS, IR etc. The in vitro antitumor activity tests against leukaemia HL-60 and liver cancer BEL-7402 indicated that (R-ethyl 2-(2-(5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H-ylacetamido-3-(4-hydroxyphenyl propanoate showed more inhibitory effect against BEL-7402 than 5-FU.

  12. Synthesis and Biological Activity of Arylspiroborate Salts Derived from Caffeic Acid Phenethyl Ester

    Directory of Open Access Journals (Sweden)

    Martin J. G. Hébert

    2015-01-01

    Full Text Available Two novel boron compounds containing caffeic acid phenethyl ester (CAPE derivatives have been prepared and characterized fully. These new compounds and CAPE have been investigated for potential antioxidant and antimicrobial properties and their ability to inhibit 5-lipoxygenase and whether chelation to boron improves their biological activity. Sodium salt 4 was generally more active than ammonium salt 5 in the biological assays and surpassed the radical scavenging ability of CAPE. Compounds 4 and 5 were more active than CAPE and Zileuton in human polymorphonuclear leukocytes. These results clearly show the effectiveness of the synthesized salts as transporter of CAPE.

  13. Unimolecular decomposition of formic and acetic acids: A shock tube/laser absorption study

    KAUST Repository

    Elwardany, A.

    2014-07-16

    The thermal decomposition of formic acid (HCOOH) and acetic acid (CH3COOH), two carboxylic acids which play an important role in oxygenate combustion chemistry, were investigated behind reflected shock waves using laser absorption. The rate constants of the primary decomposition pathways of these acids:(HCOOH → CO + H2 O (R 1); HCOOH → CO2 + H2 (R 2); CH3 COOH → CH4 + CO2 (R 3); CH3 COOH → CH2 CO + H2 O (R 4)) were measured using simultaneous infrared laser absorption of CO, CO2 and H2O at wavelengths of 4.56, 4.18 and 2.93 microns, respectively. Reaction test conditions covered temperatures from 1230 to 1821 K and pressures from 1.0 to 6.5 atm for dilute mixtures of acids (0.25-0.6%) in argon. The rate constants of dehydration (R1) and decarboxylation (R2) reactions of formic acid were calculated by fitting exponential functions to the measured CO, CO2 and H2O time-history profiles. These two decomposition channels were found to be in the fall-off region and have a branching ratio, k1/k2, of approximately 20 over the range of pressures studied here. The best-fit Arrhenius expressions of the first-order rates of R1 and R2 were found to be:(k1 (1 atm) = 1.03 × 1011 exp (- 25651 / T) s- 1 (± 37 %); k1 (6.5 atm) = 9.12 × 1012 exp (- 30275 / T) s- 1 (± 32 %); k2 (1 atm) = 1.79 × 108 exp (- 21133 / T) s- 1 (± 41 %); k2 (6.5 atm) = 2.73 × 108 exp (- 20074 / T) s- 1 (± 37 %)). The rate constants for acetic acid decomposition were obtained by fitting simulated profiles, using an acetic acid pyrolysis mechanism, to the measured species time-histories. The branching ratio, k4/k3, was found to be approximately 2. The decarboxylation and dehydration reactions of acetic acid appear to be in the falloff region over the tested pressure range:(k3 (1 atm) = 3.18 × 1011 exp (- 28679 / T) s- 1 (± 30 %); k3 (6 atm) = 3.51 × 1012 exp (- 31330 / T) s- 1 (± 26 %); k4 (1 atm) = 7.9 × 1011 exp (- 29056 / T) s- 1 (± 34 %); k4 (6 atm) = 6.34 × 1012 exp (- 31330 / T) s

  14. Breast Cancer Genetic and Molecular Subtype Impacts Response to Omega-3 Fatty Acid Ethyl Esters.

    Science.gov (United States)

    Chen, Ching Hui; Fabian, Carol; Hursting, Stephen; deGraffenried, Linda A

    2016-01-01

    Epidemiological studies have correlated frequent omega-3 (n-3) fatty acid consumption with a lower risk for breast cancer; however, recent prospective studies have been less conclusive. Efforts in the preventive setting have focused on the use of n-3 fatty acids, and the pharmaceutical ethyl esters (EE) of these natural compounds, for high-risk patient populations. Limited understanding of specific mechanisms by which these agents function has hampered identification of the cancer subtype(s) that would gain the greatest therapeutic benefit. In this study, we investigated the in vitro effects of n-3 EEs in four distinct breast cancer subtypes and explored how they affect not only breast cancer cell survival but also modulate the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptor gamma signaling pathways. Similar to the high variance in response observed in human studies, we found that the effectiveness of n-3 EEs depends on the molecular characteristics of the MCF-7, CAMA-1, MDA-MB-231, and SKBR3 breast cancer cell lines and is closely associated with the suppression of NF-κB. These data strongly suggest that the use of n-3 fatty acids and their pharmaceutical ether esters in the prevention and therapeutic setting should be guided by specific tumor characteristics. PMID:27367296

  15. Radioimmunoassay for anileridine, meperidine, and other N-substituted phenylpiperidine carboxylic acid esters

    Energy Technology Data Exchange (ETDEWEB)

    Van Vunakis, H.; Freeman, D.S.; Gjika, H.B.

    1975-10-01

    Antibodies that bind an /sup 125/I-tyramyl derivative of N-succinylanileridine have been produced in animals immunized with N-succinylanileridine-hemocyanin conjugate. Several congeners and metabolites have been tested as competitors of this antigen-antibody reaction. The concentrations (in picomoles) required for 50 percent inhibition have been found to be: anileridine (0.2), meperidine (3.5), piminodine (3.8), diphenoxylate (20.5), normeperidine (20.0), meperidine acid (45,000) and anileridine acid (3,400). Although ester hydrolysis results in changes in inhibiting capacities on the order of 10/sup 4/, major structural changes in the substituent on the nitrogen of the piperidine ring are not readily recognized by the antibody. This radioimmunoassay can be used to study a variety of N-substituted phenylpiperidine carboxylic acid esters by relating the results to the standard curve obtained for the drug under investigation. For all practical purposes, alphaprodine, morphine and methadone do not interfere with the assay.

  16. Radioimmunoassay for anileridine, meperidine, and other N-substituted phenylpiperidine carboxylic acid esters

    International Nuclear Information System (INIS)

    Antibodies that bind an 125I-tyramyl derivative of N-succinylanileridine have been produced in animals immunized with N-succinylanileridine-hemocyanin conjugate. Several congeners and metabolites have been tested as competitors of this antigen-antibody reaction. The concentrations (in picomoles) required for 50 percent inhibition have been found to be: anileridine (0.2), meperidine (3.5), piminodine (3.8), diphenoxylate (20.5), normeperidine (20.0), meperidine acid (45,000) and anileridine acid (3,400). Although ester hydrolysis results in changes in inhibiting capacities on the order of 104, major structural changes in the substituent on the nitrogen of the piperidine ring are not readily recognized by the antibody. This radioimmunoassay can be used to study a variety of N-substituted phenylpiperidine carboxylic acid esters by relating the results to the standard curve obtained for the drug under investigation. For all practical purposes, alphaprodine, morphine and methadone do not interfere with the assay

  17. Acetic acid production from marine algae. Progress report No. 4, April 1-June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J. E.; Wise, D. L.

    1978-08-28

    To date fermentations of marine algal species run at a controlled pH of 5.5 to 6.0 have exhibited essentially complete conversion to organic acids in as little as 16 days. (By complete conversion is meant conversion of each hexose unit to three acetic acid molecules or higher organic acids on a reducing equivalent basis.) As a result of these rapid rates and high conversions economic calculations have shown that processing costs are sufficiently low to encourage commercial development of this process. In the course of this work a diffusion membrane extraction system has been developed for removing organic acids from the fermentation broth. In addition, a fixed packed bed fermenter with a capacity of approximately 300 liters has been constructed and operated for a six month period. Another significant result is that fermentation at thermophilic temperatures (55/sup 0/C) gives higher ratios of acetic acid to total acid product than at mesophilic temperatures (37/sup 0/C). Manuscripts of two technical presentations based on this work are attached.

  18. Safety Assessment of Citric Acid, Inorganic Citrate Salts, and Alkyl Citrate Esters as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-05-26

    The CIR Expert Panel (Panel) assessed the safety of citric acid, 12 inorganic citrate salts, and 20 alkyl citrate esters as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration. Citric acid is reported to function as a pH adjuster, chelating agent, or fragrance ingredient. Some of the salts are also reported to function as chelating agents, and a number of the citrates are reported to function as skin-conditioning agents but other functions are also reported. The Panel reviewed available animal and clinical data, but because citric acid, calcium citrate, ferric citrate, manganese citrate, potassium citrate, sodium citrate, diammonium citrate, isopropyl citrate, stearyl citrate, and triethyl citrate are generally recognized as safe direct food additives, dermal exposure was the focus for these ingredients in this cosmetic ingredient safety assessment.

  19. Liquid structure of acetic acid-water and trifluoroacetic acid-water mixtures studied by large-angle X-ray scattering and NMR.

    Science.gov (United States)

    Takamuku, Toshiyuki; Kyoshoin, Yasuhiro; Noguchi, Hiroshi; Kusano, Shoji; Yamaguchi, Toshio

    2007-08-01

    The structures of acetic acid (AA), trifluoroacetic acid (TFA), and their aqueous mixtures over the entire range of acid mole fraction xA have been investigated by using large-angle X-ray scattering (LAXS) and NMR techniques. The results from the LAXS experiments have shown that acetic acid molecules mainly form a chain structure via hydrogen bonding in the pure liquid. In acetic acid-water mixtures hydrogen bonds of acetic acid-water and water-water gradually increase with decreasing xA, while the chain structure of acetic acid molecules is moderately ruptured. Hydrogen bonds among water molecules are remarkably formed in acetic acid-water mixtures at xATFA molecules form not a chain structure but cyclic dimers through hydrogen bonding in the pure liquid. In TFA-water mixtures O...O hydrogen bonds among water molecules gradually increase when xA decreases, and hydrogen bonds among water molecules are significantly formed in the mixtures at xATFA molecules are considerably dissociated to hydrogen ions and trifluoroacetate in the mixtures. 1H, 13C, and 19F NMR chemical shifts of acetic acid and TFA molecules for acetic acid-water and TFA-water mixtures have indicated strong relationships between a structural change of the mixtures and the acid mole fraction. On the basis of both LAXS and NMR results, the structural changes of acetic acid-water and TFA-water mixtures with decreasing acid mole fraction and the effects of fluorination of the methyl group on the structure are discussed at the molecular level. PMID:17628099

  20. Membrane fractionation of herring marinade for separation and recovery of fats, proteins, amino acids, salt, acetic acid and water

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Lizarazu, Juncal Martin; Razi Parjikolaei, Behnaz;

    2015-01-01

    containing sugars, amino acids and smaller peptides and a NF permeate containing salt and acetic acid ready for reuse. 42% of the spent marinade is recovered to substitute fresh water and chemicals. The Waste water amount is reduced 62.5%. Proteins are concentrated 30 times, while amino acids and smaller......In the production of marinated herring, nearly one ton of acidic saline marinade is produced per 1.5 tons herring fillet. This spent marinade contains highly valuable compounds such as proteins and amino acids. Membranes are suited to recover these substances. In this work, six membrane stages...... are employed: microfiltration (MF) (0.2 lm), ultrafiltration (UF) (50, 20, 10 and 1 kDa) and nanofiltration (NF). The most promising stages are 50 kDa UF and NF based on SDS–PAGE analyses and total amino acid concentration. The 50 kDa stage produces a protein concentrate (>17 kDa). NF produces a retentate...

  1. Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces.

    Science.gov (United States)

    Lu, Y; Wang, J; Deng, Z; Wu, H; Deng, Q; Tan, H; Cao, L

    2013-09-01

    An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch. PMID:23692633

  2. Anaerobic Biodegradation of Tetrachloroethylene with Acetic Acid as Cometabolism Substrate under Anaerobic Condition

    Institute of Scientific and Technical Information of China (English)

    LI Ye; LIU Fei; CHEN Honghan; SHI Jinhua; WANG Yufan

    2008-01-01

    A series of batch-type experiments with acetate acid as the primary substrate wereperformed using enrichment cultures developed from the anaerobic sludge to investigate the effect ofacetate acid on tetrachloroethylene (PCE) biodegradation. Experimental results indicated that acetateacid was an efficient electron donor in affecting the biotransformability of PCE. Trichloroethylene(TCE) was the primary dehalogenation product, and small amounts of dichloroethylenes (DCEs) werealso detected. No significant further DCEs degradation was detected. PCE degradation rate in theexperiment was 36.6 times faster than background rate in natural groundwater.

  3. Electrochemical oxidation of substituted benzylamines in aquo-acetic acid medium: substituent and solvent effects

    Indian Academy of Sciences (India)

    A Thirumoorthi; K P Elango

    2007-07-01

    Electrochemical oxidation of nine para- and meta-substituted benzylamines in varying mole fractions of acetic acid in water has been investigated in the presence of 0.1 M sulphuric acid as supporting electrolyte. The oxidation potentials correlate well with Hammett’s substituent constants affording negative reaction constants. The correlation of potential values with macroscopic solvent parameters is non-linear suggesting that the operation of both specific and non-specific solvent-solvent-solute interaction mechanisms. Multiple correlation analysis of the experimental data with Kamlet-Taft solvatochromic parameters is employed.

  4. Potential antibacterial activity of coumarin and coumarin-3-acetic acid derivatives.

    Science.gov (United States)

    Chattha, Fauzia Anjum; Munawar, Munawar Ali; Nisa, Mehrun; Ashraf, Mohammad; Kousar, Samina; Arshad, Shafia

    2015-05-01

    Coumarin and coumarin-3-acetic acid derivatives were synthesized by reacting phenols with malic acid, ethyl acetoacetate and ethyl acetylsuccinate in appropriate reaction conditions. All synthesized compounds were subjected to test for their antimicrobial activities against variety of gram positive (Bacillus subtilis, Staphylococcus aureus) and gram negative bacterial stains (Shigella sonnei, Escherichia coli) by agar dilution method. Several of them exhibited appreciable good antibacterial activity against the different strains of gram positive and gram negative bacteria. These findings suggest a great potential of these compounds for screening and use as antibacterial agents for further studies with a battery of bacteria.

  5. Potential grape-derived contributions to volatile ester concentrations in wine.

    Science.gov (United States)

    Boss, Paul K; Pearce, Anthony D; Zhao, Yanjia; Nicholson, Emily L; Dennis, Eric G; Jeffery, David W

    2015-01-01

    Grape composition affects wine flavour and aroma not only through varietal compounds, but also by influencing the production of volatile compounds by yeast. C9 and C12 compounds that potentially influence ethyl ester synthesis during fermentation were studied using a model grape juice medium. It was shown that the addition of free fatty acids, their methyl esters or acyl-carnitine and acyl-amino acid conjugates can increase ethyl ester production in fermentations. The stimulation of ethyl ester production above that of the control was apparent when lower concentrations of the C9 compounds were added to the model musts compared to the C12 compounds. Four amino acids, which are involved in CoA biosynthesis, were also added to model grape juice medium in the absence of pantothenate to test their ability to influence ethyl and acetate ester production. β-Alanine was the only one shown to increase the production of ethyl esters, free fatty acids and acetate esters. The addition of 1 mg∙L(-1) β-alanine was enough to stimulate production of these compounds and addition of up to 100 mg∙L(-1) β-alanine had no greater effect. The endogenous concentrations of β-alanine in fifty Cabernet Sauvignon grape samples exceeded the 1 mg∙L(-1) required for the stimulatory effect on ethyl and acetate ester production observed in this study. PMID:25939071

  6. Cloning, Sequence Analysis, and Expression in Escherichia coli of the Gene Encoding an α-Amino Acid Ester Hydrolase from Acetobacter turbidans

    NARCIS (Netherlands)

    Polderman-Tijmes, Jolanda J.; Jekel, P; de Vries, Erik; van Merode, Annet; Floris, René; Laan, Jan-Metske van der; Sonke, Theo; Janssen, Dick B.

    2002-01-01

    The α-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing β-lactam antibiotics, such as cephalexin and ampicillin. N-terminal amino acid sequencing of the purified α-amino acid ester hydrolase allowed cloning and genetic characterization of the

  7. Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding an alpha-amino acid ester hydrolase from Acetobacter turbidans

    NARCIS (Netherlands)

    Polderman-Tijmes, JJ; Jekel, PA; de Vries, EJ; van Merode, Annet; Floris, R; van der Laan, JM; Sonke, T; Janssen, DB

    2002-01-01

    The alpha-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing beta-lactam antibiotics, such as cephalexin and ampicillin. N-terminal amino acid sequencing of the purified alpha-amino acid ester hydrolase allowed cloning and genetic characterizat

  8. QSTR studies regarding the ECOSAR toxicity of benzene-carboxylic acid' esters to fathead minnow fish (Pimephales promelas).

    Science.gov (United States)

    Tarko, Laszlo; Putz, Mihai V; Ionascu, Cosmin; Putz, Ana-Maria

    2014-01-01

    The present work employs 152 benzene-carboxylic acid' esters having computed the toxicity within the range [2.251, 10.222] for fathead minnow fish (Pimephales promelas). Calibration set includes many pairs having very similar chemical structure, size, shape and hydrophilicity, but very different value of ECOSAR toxicity or vice versa. The QSTR study, which uses all esters as calibration set, emphasized a large percent (16.2%) of outliers. In this QSTR study most of the estimated values of toxicity for outliers are much lower than ECOSAR toxicity. The LogP and some aromaticity descriptors are predictors. The best QSTR for esters having low value (toxicity and the best QSTR for esters having high value (> 5.5) of ECOSAR toxicity are obtained when the number of outliers is very small. These QSTRs are different enough and highlight opposite influences of certain descriptors on toxicity. The results emphasize two possibilities: (a) the esters having low value of ECOSAR toxicity and the esters having high value of ECOSAR toxicity are included in two different classes from the point of view of structure-toxicity relationship and/or (b) many high values of ECOSAR toxicity are wrong. By comparison, a QSTR using experimental values of toxicity against rats for 37 benzene-carboxylic esters included in the same database gives good correlation experimental/computed values of toxicity, the number of outliers is null and the result of validation test is good. PMID:24724900

  9. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2011-06-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008 proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM–10 mM was oxidized by OH radical. Products were analyzed by ion chromatography (IC, electrospray ionization mass spectrometry (ESI-MS, and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  10. Direct Oxidation of Ethene to Acetic Acid over Pd-H4SiW12O40-Based Catalyst

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@The direct oxidation of ethene to acetic acid has the advantages of abundant raw materials and low cost of equipment[1],hence the research for this process has been of much interest in industry application.

  11. INTERACTIONS OF GOSSYPOL ACETIC ACID,INJECTIO LEONURI AND PROGESTERONE ON MYOMETRIALSTRIPS AN IN VITRO EXPERIMENT OF ELECTRIC FIELD STIMULAION

    Institute of Scientific and Technical Information of China (English)

    TENGJia-Min; TANGDa-Chun; XIAWen-Jia; WUXi-Rui

    1989-01-01

    Effects ofgossypol acetic acid, Injectio Leonuri and progesterone on contractility, tension and stimulation threshold of myometrial strips isolated from mature, nonpregnant rabbits were studied in an electric field stimulation experiment. Results showed that:

  12. Ultrasound assisted synthesis of isopropyl esters from palm fatty acid distillate.

    Science.gov (United States)

    Deshmane, Vishwanath G; Gogate, Parag R; Pandit, Aniruddha B

    2009-03-01

    Esterification is one of the most preferred synthesis routes for organic esters which are most frequently used as plasticizers, solvents and perfumery and flavour chemicals. The present work deals with acid catalyzed synthesis of isopropyl esters from palm fatty acid distillate (PFAD) in the presence of ultrasonic irradiations operating at 25kHz frequency and 1kW of supplied power. Effect of different operating parameters such as molar ratio of reactants, catalyst quantity and operating temperature has been studied with an aim of optimization. It has been observed that ultrasound enhances the rate of reaction and the extent of equilibrium conversion. The optimum parameters for this process have been found to be 1:5 molar ratio of PFAD to isopropanol, catalyst concentration of 5% of PFAD and 60 degrees C reaction temperature. Maximum conversion levels of about 80% have been obtained in 6h of reaction time under these optimized conditions. Analysis of the kinetic data indicates that the reaction follows first order reversible path. PMID:18977682

  13. The amphiphilic alkyl ester derivatives of l-ascorbic acid induce reorganization of phospholipid vesicles.

    Science.gov (United States)

    Giudice, Francesca; Ambroggio, Ernesto E; Mottola, Milagro; Fanani, Maria Laura

    2016-09-01

    l-ascorbic acid alkyl esters (ASCn) are lipophilic forms of vitamin C, which maintain some of its antioxidant power. Those properties make this drug family attractive to be used in pharmacological preparations protecting other redox-sensible drugs or designed to reduce possible toxic oxidative processes. In this work, we tested the ability of l-ascorbic acid alkyl esters (ASCn) to modulate the structure, permeability, and rheological properties of phospholipid bilayers. The ASCn studied here (ASC16, ASC14, and ASC12) alter the structural integrity as well as the rheological properties of phospholipid membranes without showing any evident detergent activity. ASC14 appeared as the most efficient drug in destabilize the membrane structure of nano- and micro-size phospholipid liposomes inducing vesicle content leakage and shape elongation on giant unilamellar vesicles. It also was the most potent enhancer of membrane microviscosity and surface water structuring. Only ASC16 induced the formation of drug-enriched condensed domains after its incorporation into the lipid bilayer, while ASC12 appeared as the less membrane-disturbing compound, likely because of its poor, and more superficial, partition into the membrane. We also found that incorporation of ASCn into the lipid bilayers enhanced the reduction of membrane components, compared with soluble vitamin C. Our study shows that ASCn compounds, which vary in the length of the acyl chain, show different effects on phospholipid vesicles used as biomembrane models. Those variances may account for subtly differences in the effectiveness on their pharmacological applications. PMID:27342371

  14. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    KAUST Repository

    Urban, Jiří T.

    2011-09-26

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  15. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    Science.gov (United States)

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  16. MOF-Derived Tungstated Zirconia as Strong Solid Acids toward High Catalytic Performance for Acetalization.

    Science.gov (United States)

    Wang, Peng; Feng, Jian; Zhao, Yupei; Wang, Shaobin; Liu, Jian

    2016-09-14

    A strong solid acid, tungstated zirconia (WZ), has been prepared first using tungstate immobilized UiO-66 as precursors through a "double-solvent" impregnation method under mild calcination temperature. With moderate W contents, the as-synthesized WZ catalysts possess a high density of acid sites, and the proper heat treatment also has facilely led to a bunch of oligomeric tungsten clusters on stabilized tetragonal ZrO2. The resultant solid acids show an improved catalytic performance toward the benzaldehyde's acetalization in comparison with traditional zirconium hydroxide-prepared WZ. Notably, due to large surface area and additionally introduced strong acid sites, the MOF-derived WZ catalysts afforded conversion up to 86.0%. The facile method endows the WZ catalysts with superior catalytic activities and excellent recyclability, thus opening a new avenue for preparation of metal oxide-based solid superacids and superbases. PMID:27557351

  17. Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia. II - Wet season

    Science.gov (United States)

    Talbot, R. W.; Andreae, M. O.; Berresheim, H.; Jacob, D. J.; Beecher, K. M.

    1990-01-01

    Potential sources and sinks of formic, acetic, and pyruvic acids over the Amazon forest were investigated using a photochemical model and data collected on gas phase concentrations of these acids in the forest canopy, boundary layer, and free troposphere over the central Amazon Basin during the 1987 wet season. It was found that the atmospheric reactions previously suggested in the literature as sources of carboxylic acids (i.e., the gas phase decomposition of isoprene, the reaction between CH3CO3 and a peroxide, and aqueous phase oxidation of CH2O) appear to be too slow to explain the observed concentrations, suggesting that other atmospheric reactions, so far unidentified, could make a major contribution to the carboxylic acid budgets.

  18. Preparation of a novel colorimetric luminescence sensor strip for the detection of indole-3-acetic acid.

    Science.gov (United States)

    Liu, Yan; Dong, Haitao; Zhang, Wenzhu; Ye, Zhiqiang; Wang, Guilan; Yuan, Jingli

    2010-06-15

    A novel colorimetric luminescence sensor strip for the detection of indole-3-acetic acid (IAA) has been fabricated by using green emissive quantum dots of cadmium telluride (CdTe QDs) as a background layer and a red emissive europium chelate, [4'-(9-anthryl)-2,2':6',2''-terpyridine-6,6''-diyl]bis(methylenenitrilo) tetrakis(acetate)-Eu(3+) (ATTA-Eu(3+)), as a specific sensing layer coated on the surface of glass slide, respectively. The luminescence response of the sensor strip is given by the dramatic changes in emission colors from green to red at different IAA concentrations. This approach provides a simple, rapid, sensitive and accurate method for the detection of IAA without using any special scientific instruments. PMID:20353890

  19. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement.

    Science.gov (United States)

    Ding, Jun; Bierma, Jan; Smith, Mark R; Poliner, Eric; Wolfe, Carole; Hadduck, Alex N; Zara, Severino; Jirikovic, Mallori; van Zee, Kari; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2013-08-01

    Acetic acid inhibition of yeast fermentation has a negative impact in several industrial processes. As an initial step in the construction of a Saccharomyces cerevisiae strain with increased tolerance for acetic acid, mutations conferring resistance were identified by screening a library of deletion mutants in a multiply auxotrophic genetic background. Of the 23 identified mutations, 11 were then introduced into a prototrophic laboratory strain for further evaluation. Because none of the 11 mutations was found to increase resistance in the prototrophic strain, potential interference by the auxotrophic mutations themselves was investigated. Mutants carrying single auxotrophic mutations were constructed and found to be more sensitive to growth inhibition by acetic acid than an otherwise isogenic prototrophic strain. At a concentration of 80 mM acetic acid at pH 4.8, the initial uptake of uracil, leucine, lysine, histidine, tryptophan, phosphate, and glucose was lower in the prototrophic strain than in a non-acetic acid-treated control. These findings are consistent with two mechanisms by which nutrient uptake may be inhibited. Intracellular adenosine triphosphate (ATP) levels were severely decreased upon acetic acid treatment, which likely slowed ATP-dependent proton symport, the major form of transport in yeast for nutrients other than glucose. In addition, the expression of genes encoding some nutrient transporters was repressed by acetic acid, including HXT1 and HXT3 that encode glucose transporters that operate by facilitated diffusion. These results illustrate how commonly used genetic markers in yeast deletion libraries complicate the effort to isolate strains with increased acetic acid resistance.

  20. N-( p-Ethynylbenzoyl) derivatives of amino acid and dipeptide methyl esters - Synthesis and structural study

    Science.gov (United States)

    Eißmann, Frank; Weber, Edwin

    2011-11-01

    A series of N-( p-ethynylbenzoyl) derivatives ( 1-4) of the amino acids glycine and L-alanine as well as the dipeptides glycylglycine and L-alanylglycine has been synthesized via a two-step reaction sequence including the reaction of an appropriate N-( p-bromobenzoyl) precursor with trimethylsilylacetylene followed by deprotection of the trimethylsilyl protecting group, respectively. X-ray crystal structures of the amino acid and dipeptide methyl esters 1-4 are reported. The amide and peptide bonds within each molecular structure are planar and adopt the trans-configuration. The packing structures are governed by N sbnd H⋯O interactions leading to the formation of characteristic strand motifs. Further stabilization results from weaker C sbnd H⋯O and C sbnd H⋯π contacts.