WorldWideScience

Sample records for acetate surface modified

  1. Electrical, thermophysical and micromechanical properties of ethylene-vinyl acetate elastomer composites with surface modified BaTiO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xingyi; Xie Liyuan; Jiang Pingkai; Wang Genlin; Liu Fei, E-mail: xyhuang@sjtu.edu.c, E-mail: pkjiang@sjtu.edu.c [Shanghai Key Lab of Electrical Insulation and Thermal Aging, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2009-12-21

    In this study, we investigated the influence of the surface modified BaTiO{sub 3} nanoparticles on the electrical, thermophysical and micromechanical properties of ethylene-vinyl acetate (EVM) vulcanizates. Gamma-aminopropyl triethoxysilane was used as a silane coupling agent for the surface treatment of the BaTiO{sub 3} nanoparticles. It was found that the incorporation of surface modified BaTiO{sub 3} nanoparticles into the EVM matrix not only increased the permittivity, thermal conductivity and the mechanical strength but also showed a comparative dielectric loss tangent with pure EVM vulcanizates. In particular, the nanocomposites exhibit relatively high dielectric strength and good ductility even at the loading level of 50 vol%. The improved properties not only originate from the homogeneous dispersion of BaTiO{sub 3} nanoparticles but also should be ascribed to the strong interfacial interaction between the surface modified BaTiO{sub 3} nanoparticles and EVM matrix. We also investigated the dielectric relaxation behaviour of the BaTiO{sub 3} filled EVM nanocomposites by using Jonscher's theory of universal dielectric response.

  2. Adsorption of ethyl acetate onto modified clays and its regeneration with supercritical CO2

    Directory of Open Access Journals (Sweden)

    A. M. Cavalcante

    2005-03-01

    Full Text Available Modified clays were used to remove ethyl acetate from aqueous solutions. These clays were regenerated using supercritical CO2. Structural changes in the montmorillonite clay after treatment with quaternary amines were studied. The surface properties of the modified clay changed from highly hydrophilic to highly organophilic. The clay was regenerated by percolation of a stream of CO2 through the porous montmorillonite matrix. Different pressures and temperatures were employed, resulting in different fluid conditions (gas, liquid, and supercritical. The experimental data was fitted with a simplified model. The best desorption result was found under supercritical conditions. A crossover effect was observed. The capacity of the modified clay as a pollutant attenuator remained almost unchanged after a regeneration cycle.

  3. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.

    Science.gov (United States)

    Sun, Lei; Chen, Dongmei; Wan, Shungang; Yu, Zebin

    2015-12-01

    Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of humic acid on the underpotential deposition-stripping voltammetry of copper in acetic acid soil extract solutions at mercaptoacetic acid-modified gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Gregoire; Beni, Valerio; Dillon, Patrick H.; Barry, Thomas; Arrigan, Damien W.M

    2004-05-24

    Electrochemical measurements were undertaken for the investigation of the underpotential deposition-stripping process of copper at bare and modified gold electrodes in 0.11 M acetic acid, the first fraction of the European Union's Bureau Communautaire de References (BCR) sequential extraction procedure for fractionating metals within soils and sediments. Gold electrodes modified with mercaptoacetic acid showed higher sensitivity for the detection of copper than bare gold electrodes, both in the absence and in the presence of humic acid in acetic acid solutions, using the underpotential deposition-stripping voltammetry (UPD-SV) method. In the presence of 50 mg l{sup -1} of humic acid, the mercaptoacetic acid modified electrode proved to be 1.5 times more sensitive than the bare gold electrode. The mercaptoacetic acid monolayer formed on the gold surface provided efficient protection against the adsorption of humic acid onto the gold electrode surface. Variation of the humic acid concentration in the solution showed little effect on the copper stripping signal at the modified electrode. UPD-SV at the modified electrode was applied to the analysis of soil extract samples. Linear correlation of the electrochemical results with atomic spectroscopic results yielded the straight-line equation y ({mu}g l{sup -1}) = 1.10x - 44 (ppb) (R=0.992, n=6), indicating good agreement between the two methods.

  5. Surface display for metabolic engineering of industrially important acetic acid bacteria

    Directory of Open Access Journals (Sweden)

    Marshal Blank

    2018-04-01

    Full Text Available Acetic acid bacteria have unique metabolic characteristics that suit them for a variety of biotechnological applications. They possess an arsenal of membrane-bound dehydrogenases in the periplasmic space that are capable of regiospecific and enantioselective partial oxidations of sugars, alcohols, and polyols. The resulting products are deposited directly into the medium where they are easily recovered for use as pharmaceutical precursors, industrial chemicals, food additives, and consumer products. Expression of extracytoplasmic enzymes to augment the oxidative capabilities of acetic acid bacteria is desired but is challenging due to the already crowded inner membrane. To this end, an original surface display system was developed to express recombinant enzymes at the outer membrane of the model acetic acid bacterium Gluconobacter oxydans. Outer membrane porin F (OprF was used to deliver alkaline phosphatase (PhoA to the cell surface. Constitutive high-strength p264 and moderate-strength p452 promoters were used to direct expression of the surface display system. This system was demonstrated for biocatalysis in whole-cell assays with the p264 promoter having a twofold increase in PhoA activity compared to the p452 promoter. Proteolytic cleavage of PhoA from the cell surface confirmed proper delivery to the outer membrane. Furthermore, a linker library was constructed to optimize surface display. A rigid (EAAAK1 linker led to the greatest improvement, increasing PhoA activity by 69%. This surface display system could be used both to extend the capabilities of acetic acid bacteria in current biotechnological processes, and to broaden the potential of these microbes in the production of value-added products.

  6. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro.

    Science.gov (United States)

    Liu, Chundong; Zhang, Yanli; Wang, Lichao; Zhang, Xinhua; Chen, Qiuyue; Wu, Buling

    2015-01-01

    To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti) surfaces modified with strontium (Sr) for bone implant applications. Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts. The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes. These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C.

  7. Surface decontamination studies using polyvinyl acetate based strippable polymer

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lal, K.B.

    2004-01-01

    Polyvinyl acetate based strippable polymer has been developed for surface decontamination. Stainless steel, mild steel, polyvinyl chloride and rubber have been selected as candidate materials for the radioactive decontamination studies. The ease of strippability and homogeneity of the polymer coating has been studied using infrared spectrophotometer. Decontamination of used radioactive respirator has been carried out and the peels obtained have been subjected to leaching and incineration studies. The infrared spectrophotometric studies also have been conducted to study the interaction between polyvinyl acetate and ions, like cesium, strontium and cobalt. (author)

  8. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro.

    Directory of Open Access Journals (Sweden)

    Chundong Liu

    Full Text Available To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti surfaces modified with strontium (Sr for bone implant applications.Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts.The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes.These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C.

  9. Electrooxidations of ethanol, acetaldehyde and acetic acid using PtRuSn/C catalysts prepared by modified alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Gang [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Swaidan, Raja [Department of Chemical Engineering, Cooper Union, New York, NY 10003 (United States); Cui, Guofeng [School of Chemistry and Chemical Engineering, Sun-Yat Sen University, Guangzhou 510275 (China)

    2007-10-11

    Well-dispersed ternary PtRuSn catalysts of various atomic ratios (60:30:10, 60:20:20 and 60:10:30) were deposited onto carbon using modified alcohol-reduction process for electrochemical oxidation of ethanol. The alloy phase structure and surface morphology for each variation of the PtRuSn/C catalysts were determined by XRD and HRTEM. In order to evaluate the contributions of Ru and Sn in the different stages of ethanol oxidation, electrochemical oxidations of adsorbed CO, ethanol, acetaldehyde and acetic acid were performed on each PtRuSn/C catalyst. The results indicated that the Ru-rich PtRuSn/C catalyst (60:30:10) exhibited the lowest onset potential for the electrooxidations of adsorbed CO, ethanol and acetaldehyde, revealing that the removal through oxidation of the intermediate C{sub 1} and C{sub 2} species from Pt sites is primarily attributed to the Ru and Pt{sub 3}Sn alloy structures. However, for the overall oxidation of ethanol, the Sn-rich PtRuSn/C catalyst (60:10:30) containing PtSn phase and SnO{sub 2} structure is favorable for the activation of C-C bond breaking, thereby generating higher current density (mass activity) at higher potentials. Moreover, in the electrooxidation of acetic acid, a remarkable improvement for oxidizing acetic acid to C{sub 1} species was observed in the Sn-rich PtRuSn/C catalyst (60:10:30), while the Ru-rich PtRuSn/C catalyst (60:30:10) was almost incapable of breaking the C-C bond to further oxidize acetic acid. The possible reasons for the different reactivities on the studied PtRuSn/C catalysts were discussed based on the removal of intermediates and activation of the C-C bonds on the different surfaces. (author)

  10. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  11. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zheng, Bin; Zheng, Xiaohong; Wang, Jingtao; Yuan, Weikang; Jiang, Zhongyi [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2007-11-15

    Hybrid membranes composed of chitosan (CS) as organic matrix and surface-modified Y zeolite as inorganic filler are prepared and their applicability for DMFC is demonstrated by methanol permeability, proton conductivity and swelling property. Y zeolite is modified using silane coupling agents, 3-aminopropyl-triethoxysilane (APTES) and 3-mercaptopropyl-trimethoxysilane (MPTMS), to improve the organic-inorganic interfacial morphology. The mercapto group on MPTMS-modified Y zeolite is further oxidized into sulfonic group. Then, the resultant surface-modified Y zeolites with either aminopropyl groups or sulfonicpropyl groups are mixed with chitosan in acetic acid solution and cast into membranes. The transitional phase generated between chitosan matrix and zeolite filler reduces or even eliminates the nonselective voids commonly exist at the interface. The hybrid membranes exhibit a significant reduction in methanol permeability compared with pure chitosan and Nafion117 membranes, and this reduction extent becomes more pronounced with the increase of methanol concentration. By introducing -SO{sub 3}H groups onto zeolite surface, the conductivity of hybrid membranes is increased up to 2.58 x 10{sup -2} S cm{sup -1}. In terms of the overall selectivity index ({beta} = {sigma}/P), the hybrid membrane is comparable with Nafion117 at low methanol concentration (2 mol L{sup -1}) and much better (three times) at high methanol concentration (12 mol L{sup -1}). (author)

  12. Bioactivity of cellulose acetate/hydroxyapatite nanoparticle composite fiber by an electro-spinning process.

    Science.gov (United States)

    Kwak, Dae Hyun; Lee, Eun Ju; Kim, Deug Joong

    2014-11-01

    Hydroxyapatite/cellulose acetate composite webs were fabricated by an electro-spinning process. This electro-spinning process makes it possible to fabricate complex three-dimensional shapes. Nano fibrous web consisting of cellulose acetate and hydroxyapatite was produced from their mixture solution by using an electro-spinning process under high voltage. The surface of the electro-spun fiber was modified by a plasma and alkaline solution in order to increase its bioactivity. The structure, morphology and properties of the electro-spun fibers were investigated and an in-vitro bioactivity test was evaluated in simulated body fluid (SBF). Bioactivity of the electro-spun web was enhanced with the filler concentration and surface treatment. The surface changes of electro-spun fibers modified by plasma and alkaline solution were investigated by FT-IR (Fourier Transform Infrared Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy).

  13. The influence of surface oxygen and hydroxyl groups on the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate on pure Pd(1 0 0): A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanping [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Dong, Xiuqin [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Zhang, Minhua, E-mail: mhzhangtj@163.com [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China)

    2016-12-01

    Highlights: • All dehydrogenation reactions in vinyl acetate synthesis on Pd(1 0 0) were studied. • The energy barriers of the transition state of the three reactions were calculated. • The influence of surface Os and OHs on all dehydrogenation actions was discussed. - Abstract: On the basis of a Langmuir–Hinshelwood-type mechanism, the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate (VAH) on pure Pd(1 0 0) with surface oxygen atoms (Os) and hydroxyl groups (OHs) was studied with density functional theory (DFT) method. Our calculation results show that both Os and OHs can consistently reduce the activation energies of dehydrogenation of ethylene, acetic acid and VAH to some degree with only one exception that OHs somehow increase the activation energy of VAH. Based on Langmuir–Hinshelwood mechanism, the three dehydrogenation reactions in presence of surface Os and OHs are almost consistently favored, compared with the corresponding processes on clean Pd(1 0 0) surfaces, and thus a Langmuir–Hinshelwood-type mechanism may not be excluded beforehand when investigating the microscopic performance of the oxygen-assisted vinyl acetate synthesis on Pd(1 0 0) catalysts.

  14. Acetate-assisted Synthesis of Chromium(III) Terephthalate and Its Gas Adsorption Properties

    International Nuclear Information System (INIS)

    Zhou, Jingjing; Liu, Kaiyu; Kong, Chunlong; Chen, Liang

    2013-01-01

    We report a facile synthetic approach of high-quality chromium(III) terephthalate [MIL-101(Cr)] by acetate-assisted method in the absence of toxic HF. Results indicate that the morphology and surface area of the MIL-101(Cr) can be tuned by modifying the molar ratio of acetate/Cr(NO 3 ) 3 . The Brunauer-Emmett-Teller (BET) surface area of MIL-101(Cr) synthesized at the optimized condition can exceed 3300 m 2 /g. It is confirmed that acetate could promote the dissolution of di-carboxylic linker and accelerate the nucleation ratio. So the pure and small size of MIL-101(Cr) with clean pores can be obtained. CO 2 , CH 4 and N 2 adsorption isotherms of the samples are studied at 298 K and 313 K. Compared with the traditional method, MIL-101(Cr) synthesized by acetate-assisted method possess enhanced CO 2 selective adsorption capacity. At 1.0 bar 298 K, it exhibits 47% enhanced CO 2 adsorption capacity. This may be attributed to the high surface area together with clean pores of MIL-101(Cr)

  15. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    Science.gov (United States)

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  16. Insights into the mechanism of acetic acid hydrogenation to ethanol on Cu(111) surface

    International Nuclear Information System (INIS)

    Zhang, Minhua; Yao, Rui; Jiang, Haoxi; Li, Guiming; Chen, Yifei

    2017-01-01

    Highlights: • The scission of C–OH bond of acetic acid is the rate-determined step in acetic acid hydrogenation to ethanol on Cu(111). • Acetic acid adsorption and reaction barrier of C–OH scission of acetic acid are factors related to acetic acid conversion. • Acetaldehyde adsorption and reaction barriers of O–H formation of C_2–oxygenates are factors related to ethanol selectivity. - Abstract: Density functional theory (DFT) calculations were employed to theoretically explain the reaction mechanism of acetic acid hydrogenation to ethanol on Cu catalyst. The activation barriers of key elementary steps and the adsorption configurations of key intermediates involved in acetic acid hydrogenation on Cu(111) surface were investigated. The results indicated that the direct dissociation of acetic acid to acetyl (CH_3COOH → CH_3CO + OH) is the rate-determined step. The activation barrier of acetic acid scission to acetyl and the adsorption energy of acetic acid are two descriptors which could determine the conversion of acetic acid. The descriptors might have effects on the ethanol selectivity including: the adsorption energy of acetaldehyde and the activation barriers for O−H bond formation of C_2-oxygenates (CH_3CO + H → CH_3COH, CH_3CHO + H → CH_3CHOH and CH_3CH_2O + H → CH_3CH_2OH). These proposed descriptors could be used as references to design new Cu-based catalysts that have excellent catalytic performance.

  17. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  18. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    International Nuclear Information System (INIS)

    Kusworo, T. D.; Aryanti, N.; Firdaus, M. M. H.; Sukmawati, H.

    2015-01-01

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second

  19. Insights into the mechanism of acetic acid hydrogenation to ethanol on Cu(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minhua; Yao, Rui; Jiang, Haoxi; Li, Guiming [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Chen, Yifei, E-mail: yfchen@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2017-08-01

    Highlights: • The scission of C–OH bond of acetic acid is the rate-determined step in acetic acid hydrogenation to ethanol on Cu(111). • Acetic acid adsorption and reaction barrier of C–OH scission of acetic acid are factors related to acetic acid conversion. • Acetaldehyde adsorption and reaction barriers of O–H formation of C{sub 2}–oxygenates are factors related to ethanol selectivity. - Abstract: Density functional theory (DFT) calculations were employed to theoretically explain the reaction mechanism of acetic acid hydrogenation to ethanol on Cu catalyst. The activation barriers of key elementary steps and the adsorption configurations of key intermediates involved in acetic acid hydrogenation on Cu(111) surface were investigated. The results indicated that the direct dissociation of acetic acid to acetyl (CH{sub 3}COOH → CH{sub 3}CO + OH) is the rate-determined step. The activation barrier of acetic acid scission to acetyl and the adsorption energy of acetic acid are two descriptors which could determine the conversion of acetic acid. The descriptors might have effects on the ethanol selectivity including: the adsorption energy of acetaldehyde and the activation barriers for O−H bond formation of C{sub 2}-oxygenates (CH{sub 3}CO + H → CH{sub 3}COH, CH{sub 3}CHO + H → CH{sub 3}CHOH and CH{sub 3}CH{sub 2}O + H → CH{sub 3}CH{sub 2}OH). These proposed descriptors could be used as references to design new Cu-based catalysts that have excellent catalytic performance.

  20. Insights into the mechanism of acetic acid hydrogenation to ethanol on Cu(111) surface

    Science.gov (United States)

    Zhang, Minhua; Yao, Rui; Jiang, Haoxi; Li, Guiming; Chen, Yifei

    2017-08-01

    Density functional theory (DFT) calculations were employed to theoretically explain the reaction mechanism of acetic acid hydrogenation to ethanol on Cu catalyst. The activation barriers of key elementary steps and the adsorption configurations of key intermediates involved in acetic acid hydrogenation on Cu(111) surface were investigated. The results indicated that the direct dissociation of acetic acid to acetyl (CH3COOH → CH3CO + OH) is the rate-determined step. The activation barrier of acetic acid scission to acetyl and the adsorption energy of acetic acid are two descriptors which could determine the conversion of acetic acid. The descriptors might have effects on the ethanol selectivity including: the adsorption energy of acetaldehyde and the activation barriers for Osbnd H bond formation of C2-oxygenates (CH3CO + H → CH3COH, CH3CHO + H → CH3CHOH and CH3CH2O + H → CH3CH2OH). These proposed descriptors could be used as references to design new Cu-based catalysts that have excellent catalytic performance.

  1. Surface-modified electrodes (SME)

    NARCIS (Netherlands)

    Schreurs, J.P.G.M.; Barendrecht, E.

    1984-01-01

    This review deals with the literature (covered up to August 1983), the characterization and the applications of Surface-Modified Electrodes (SME). As a special class of SME's, the Enzyme-Modified Electrode (EME) is introduced. Three types of modification procedures are distinguished; i.e. covalent

  2. Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate

    Science.gov (United States)

    Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.

    2017-03-28

    One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.

  3. Development of an alcohol dehydrogenase biosensor for ethanol determination with toluidine blue O covalently attached to a cellulose acetate modified electrode.

    Science.gov (United States)

    Alpat, Senol; Telefoncu, Azmi

    2010-01-01

    In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH). Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA) bonded to toluidine blue O (TBO). Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO) was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10(-5) M and 4 × 10(-4) M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10(-6) M. At the end of the 20(th) day, the biosensor still retained 50% of its initial activity.

  4. Development of an Alcohol Dehydrogenase Biosensor for Ethanol Determination with Toluidine Blue O Covalently Attached to a Cellulose Acetate Modified Electrode

    Directory of Open Access Journals (Sweden)

    Azmi Telefoncu

    2010-01-01

    Full Text Available In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH. Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA bonded to toluidine blue O (TBO. Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10−5 M and 4 × 10−4 M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10−6 M. At the end of the 20th day, the biosensor still retained 50% of its initial activity.

  5. Raman spectroscopy of poly (3-hydroxybutyrate) modified with poly (vinyl acetate) by radiation- induced copolymerization

    International Nuclear Information System (INIS)

    Gonzalez, Maykel; Galego Fernandez, Norma; Ortiz del Toro, Pedro; Rapado, Manuel; Paredes

    2007-01-01

    Poly (3-hydroxybutyrate) (PHB) is an important material used in the field of medicine. However in common conditions, PHB has some deficiencies. It is very brittle and slightly hydrophobic polymer. This somewhat limit its applications. Radiation chemistry can be used to improve its chemical properties. In the present study, the substrate, modified by radiation-induced graft copolymerization with vinyl acetate (VAc), was characterized using FTIR and Raman spectroscopy. FTIR spectroscopy did not reveal any significant bands but Raman spectroscopy revealed the formation of a new band that characterize the material

  6. Study on the synthesis and physicochemical properties of starch acetate with low substitution under microwave assistance.

    Science.gov (United States)

    Lin, Derong; Zhou, Wei; Zhao, Jingjing; Lan, Weijie; Chen, Rongming; Li, Yutong; Xing, Baoshan; Li, Zhuohao; Xiao, Mengshi; Wu, Zhijun; Li, Xindan; Chen, Rongna; Zhang, Xingwen; Chen, Hong; Zhang, Qing; Qin, Wen; Li, Suqing

    2017-10-01

    In this study, synthesis and physicochemical properties of starch acetate with low substitution under microwave were studied. A three-level-three-factorial Central Composite Design using Response Surface Methodology (RSM) was employed to optimize the reaction conditions. The optimal parameters are as follows: amount of acetic anhydride of 12%, radiation time of 11min, and microwave power of 100W. These optimal conditions predicted by RSM were confirmed that the degree of substitution (DS) of acetate starch is 0.0691mg/g and the physical and chemical properties of natural corn starch (NCS) and corn starch acetate (ACS) were further studied.The transparency, water separation, water absorption, expansion force, and solubility of ACS low substitution are better than NCS, while the NCS's hydrolysis percentage is higher than ACS, which indicate that the modified corn starch has better performance than native corn starch. The surface morphology of the corn starch acetate was examined by scanning electron microscope (SEM), which showed that it had a smooth surface and a spherical and polygonal shape. However, samples' shape is irregular. Crystal structure was observed by X-ray diffraction, and the ACS can determine the level of microwave technology that can destroy the extent of the crystal and amorphous regions. Fourier transform infrared (FTIR) spectroscopy shows that around 1750cm -1 carbonyl signal determines acetylation bonding successfully. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Osteoblast cell response to surface-modified carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Faming; Weidmann, Arne; Nebe, J. Barbara; Burkel, Eberhard

    2012-01-01

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  8. Poly(ethylene glycol)-grafted cyclic acetals based polymer networks with non-water-swellable, biodegradable and surface hydrophilic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ruixue, E-mail: qdruinyan@hotmail.com [Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai (China); Zhang, Nan; Wu, Wentao [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Wang, Kemin, E-mail: kemin-wang@hotmail.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China)

    2016-05-01

    Cyclic acetals based biomaterial without acidic products during hydrolytic degradation is a promising candidate for tissue engineering applications; however, low hydrophilicity is still one limitation for its biomedical application. In this work, we aim to achieve non-water-swellable cyclic acetal networks with improved hydrophilicity and surface wettability by copolymerization of cyclic acetal units based monomer, 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1, 3-dioxane-2-ethanol diacrylate (EHD) and methoxy poly(ethylene glycol) monoacrylate (mPEGA) under UV irradiation, to avoid swelling of conventional hydrogels which could limit their applicability in particular of the mechanical properties and geometry integrity. Various EHD/mPEGA networks were fabricated with different concentrations of mPEGA from 0 to 30%, and the results showed photopolymerization behavior, mechanical property and thermal stability could not be significantly affected by addition of mPEGA, while the surface hydrophilicity was dramatically improved with the increase of mPEGA and could achieve a water contact angle of 37° with 30% mPEGA concentration. The obtained EHD/mPEGA network had comparative degradation rate to the PECA hydrogels reported previously, and MTT assay indicated it was biocompatible to L929 cells. - Highlights: • Cyclic acetals contained EHD/mPEGA networks were fabricated by photopolymerization. • It can be degraded under simulated physiological condition without acidic products. • Surface hydrophilicity was increased without swelling in water.

  9. TiO{sub 2} modified with Ag nanoparticles synthesized via ultrasonic atomization-UV reduction and the use of kinetic models to determine the acetic acid photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yingcao, E-mail: xuyingcao@aliyun.com [State Key Laboratory of Urban Water Resource, Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Applied Chemistry Department, School of Science, Northeast Agriculture University, Harbin 150030 (China); You, Hong, E-mail: youhong@hit.edu.cn [State Key Laboratory of Urban Water Resource, Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2014-12-01

    Highlights: • The first use of ultrasonic atomization-UV reduction for modifying Ag on TiO{sub 2}. • The first use of kinetics models for the establishment of the photocatalytic degradation of acetic acid using a hyperbolic mathematical model and introducing the concentration factor (α) in the dynamic model. • Photocatalytic experiment design using double-sided TiO{sub 2} and a double-light source. - Abstract: TiO{sub 2} surfaces modified with noble metal nanoparticles have been found to effectively reduce the photogenerated carrier recombination rate and significantly extend the light absorption properties of TiO{sub 2}, thereby greatly increasing its photocatalytic activity. In this paper, highly ordered, double-sided TiO{sub 2} nanotube arrays were prepared using an anodic oxidation method in a home-made reactor using glycerol/water (volume ratio 2:1) and NH{sub 4}F (0.25 mol/L) as the electrolyte, titanium plates (10 cm × 2 cm × 0.5 mm) as the anode and graphite as the cathode at a constant voltage of 25 V. After a 2-h reaction, anatase TiO{sub 2} nanotubes were obtained upon calcination at 450 °C for 4 h. The Ag nanoparticles on the surfaces of the TiO{sub 2} were prepared via ultrasonic atomization-ultraviolet light reduction. First, a silver nitrate solution was sputtered into small droplets under ultrasonication. Then, the Ag{sup +} droplets were reduced to Ag nanoparticles. The surface morphologies, structures and elemental compositions were characterized using SEM, EDS, XRD and XPS. The photocatalytic activities were determined in acetic acid solutions (40–200 mg/L), and a mathematical model for catalytic degradation was established based on a hyperbolic model. The SEM results showed that the diameters of the as-prepared Ag/TiO{sub 2} are approximately 100 nm and that the lengths are approximately 1.8 μm. The XRD crystal structure analysis shows that the anatase phase of the TiO{sub 2} does not change during the Ag modification, and there was

  10. Surface treated fly ash filled modified epoxy composites

    Directory of Open Access Journals (Sweden)

    Uma Dharmalingam

    2015-01-01

    Full Text Available Abstract Fly ash, an inorganic alumino silicate has been used as filler in epoxy matrix, but it reduces the mechanical properties due to its poor dispersion and interfacial bonding with the epoxy matrix. To improve its interfacial bonding with epoxy matrix, surface treatment of fly ash was done using surfactant sodium lauryl sulfate and silane coupling agent glycidoxy propyl trimethoxy silane. An attempt is also made to reduce the particle size of fly ash using high pressure pulverizer. To improve fly ash dispersion in epoxy matrix, the epoxy was modified by mixing with amine containing liquid silicone rubber (ACS. The effect of surface treated fly ash with varying filler loadings from 10 to 40% weight on the mechanical, morphological and thermal properties of modified epoxy composites was investigated. The surface treated fly ash was characterized by particle size analyzer and FTIR spectra. Morphological studies of surface treated fly ash filled modified epoxy composites indicate good dispersion of fillers in the modified epoxy matrix and improves its mechanical properties. Impact strength of the surface treated fly ash filled modified epoxy composites show more improvement than unmodified composites.

  11. Surface properties, crystallinity and optical properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    Energy Technology Data Exchange (ETDEWEB)

    Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Abdullah, Hasan Zuhudi, E-mail: hasan@uthm.edu.my; Idris, Maizlinda Izwana, E-mail: izwana@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Anodic oxidation is an electrochemical method for the production of ceramic films on a metallic substrate. It had been widely used to deposit the ceramic coatings on the metals surface. This method has been widely used in surface modification of biomaterials especially for dental implants. In this study, the surface morphology, crystallinity and optical properties of titanium foil was modified by anodising in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA). The experiments were carried out at high voltage (350 V), different anodising time (5 and 10 minutes) and current density (10-70 mA.cm{sup −2}) at room temperature. Anodised titanium was characterised by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and UV-Vis spectrometry. The result of the experiment showed that surface morphology, crystallinity and optical properties depended strongly on the current density and anodising time. More porous surface and large amount of anatase and rutile was produced at higher current density and longer anodising time. Apart from that, it is also revealed that the energy band gap of anodised titanium increases as the increase in current density due to the presence of anatase and rutile TiO{sub 2}.

  12. Characterization on glow-discharge-treated cellulose acetate membrane surfaces for single-layer enzyme electrode studies

    Czech Academy of Sciences Publication Activity Database

    Biederman, H.; Boyaci, I. H.; Bílková, P.; Slavinská, D.; Mutlu, S.; Zemek, Josef; Trchová, M.; Klimovič, J.; Mutlu, M.

    2001-01-01

    Roč. 81, - (2001), s. 1341-1352 ISSN 0021-8995 Institutional research plan: CEZ:AV0Z1010914 Keywords : cellulose acetate membrane * plasma polymerization * surface treatment * enzyme electrodes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.992, year: 2001

  13. Antibacterial effect of silver nanofilm modified stainless steel surface

    Science.gov (United States)

    Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.

    2015-03-01

    Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.

  14. EDTA modified glassy carbon electrode: Preparation and characterization

    International Nuclear Information System (INIS)

    Ustuendag, Zafer; Solak, Ali Osman

    2009-01-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){2-[bis(carboxymethyl)amino]-ethyl}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb 2+ ions was investigated if this electrode could be used as a metal sensor.

  15. Micro-Bulges Investigation on Laser Modified Tool Steel Surface

    Directory of Open Access Journals (Sweden)

    Fauzun Fazliana

    2017-01-01

    Full Text Available This paper presents micro-bulges investigation on laser modified tool steel. The aim of this study is to understand the effect of laser irradiance and interaction time on surface morphology configuration. An Nd:YAG laser system with TEM00 pulse processing mode was used to modify the samples. Metallographic study shows samples were analyzed for focal position effect on melted pool size, angle of peaks geometry and laser modified layer depth. Surface morphology were analyzed for surface roughness. Laser modified layer shows depth ranged between 42.22 and 420.12 μm. Angle of peak bulge was found to be increase with increasing peak power. The maximum roughness, Ra, achieved in modified H13 was 21.10 μm. These findings are significant to enhance surface properties of laser modified steel and cast iron for dies and high wear resistance applications.

  16. Effects of modified TiO{sub 2} photoanode on the photoelectrochemical properties of dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shengli, E-mail: luvictory@hotmail.com [School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023 (China); Sun, Sam-Shajing [Ph.D. Program in Materials Science and Engineering and Center for Materials Research, Norfolk State University, Norfolk, VA 23504 (United States); Geng, Rui [School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023 (China); College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310000 (China); Gao, Jianrong [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310000 (China)

    2015-08-31

    The study of nanoporous TiO{sub 2} electrodes modified by magnesium and manganese acetates in dye sensitized solar cells was reported. The formation and composition of modified electrodes were characterized by X-ray photoelectron spectroscopy and X-ray diffraction, revealing that MgO and Mn(OH)O were formed after magnesium acetate and manganese acetate treatments. Sunlight absorbance was also enhanced after such modification as supported by UV–vis spectra. The effects of modification include the increase of the dye adsorption, open-circuit voltage, short-circuit current density, and photoelectric conversion efficiency of the fabricated devices. The mechanisms of electron transfer, charge recombination, and electron lifetime were investigated by dark current and electrochemical impedance spectroscopy. - Highlights: • A simple dip coating process was used to modify the TiO{sub 2} electrode surface. • The loaded dye was increased and the lifetime of electrons in TiO{sub 2} was extended. • DSSC efficiency of 5.3% based on magnesium acetate modified TiO{sub 2} was obtained.

  17. Development of Chitosan Acetate Films for Transdermal Delivery of ...

    African Journals Online (AJOL)

    Methods: Chitosan acetate was chemically modified with acetaldehyde and the solution was prepared with 1 % acetic acid, in which was dissolved propranolol hydrochloride, was cast as films in Petri dish and characterised by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and ...

  18. Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film.

    Science.gov (United States)

    Seo, Ha Na; Lee, Woo Jin; Hwang, Tae Sik; Park, Doo Hyun

    2009-09-01

    A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99 degrees of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99 degrees similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

  19. Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    Energy Technology Data Exchange (ETDEWEB)

    Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Rathi, Muhammad Fareez Mohamad, E-mail: cd110238@siswa.uthm.edu.my; Abidin, Muhamad Yusuf Zainal, E-mail: cd110221@siswa.uthm.edu.my; Abdullah, Hasan Zuhudi, E-mail: hasan@uthm.edu.my; Idris, Maizlinda Izwana, E-mail: izwana@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm{sup −2}) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.

  20. Pool boiling of nanoparticle-modified surface with interlaced wettability

    KAUST Repository

    Hsu, Chin-Chi; Su, Tsung-Wen; Chen, Ping-Hei

    2012-01-01

    This study investigated the pool boiling heat transfer under heating surfaces with various interlaced wettability. Nano-silica particles were used as the coating element to vary the interlaced wettability of the surface. The experimental results revealed that when the wettability of a surface is uniform, the critical heat flux increases with the more wettable surface; however, when the wettability of a surface is modified interlacedly, regardless of whether the modified region becomes more hydrophilic or hydrophobic, the critical heat flux is consistently higher than that of the isotropic surface. In addition, this study observed that critical heat flux was higher when the contact angle difference between the plain surface and the modified region was smaller. © 2012 Hsu et al.

  1. EDTA modified glassy carbon electrode: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ustuendag, Zafer [Dumlupinar University, Faculty of Arts and Sciences, Department of Chemistry, Kuetahya (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, Degol Street, Tandogan, 06100 Ankara (Turkey)], E-mail: osolak@science.ankara.edu.tr

    2009-11-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){l_brace}2-[bis(carboxymethyl)amino]-ethyl{r_brace}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb{sup 2+} ions was investigated if this electrode could be used as a metal sensor.

  2. DNA immobilization on polymer-modified Si surface by controlling pH

    International Nuclear Information System (INIS)

    Demirel, Goekcen Birlik; Caykara, Tuncer

    2009-01-01

    A novel approach based on polymer-modified Si surface as DNA sensor platforms is presented. The polymer-modified Si surface was prepared by using 3-(methacryloxypropyl)trimethoxysilane [γ-MPS] and poly(acrylamide) [PAAm]. Firstly, a layer of γ-MPS was formed on the hydroxylated silicon surface as a monolayer and then modified with different molecular weight of PAAm to form polymer-modified surface. The polymer-modified Si surface was used for dsDNA immobilization. All steps about formation of layer structure were characterized by ellipsometry, atomic force microscopy (AFM), attenuated total reflectance Fourier transformed infrared (ATR-FTIR), and contact angle (CA) measurements. We found that in this case the amount of dsDNA immobilized onto the surface was dictated by the electrostatic interaction between the substrate surface and the DNA. Our results thus demonstrated that DNA molecules could be immobilized differently onto the polymer-modified support surface via electrostatic interactions.

  3. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.

  4. Influences of modified bacterial cellulose nanofibers (BCNs) on structural, thermophysical, optical, and barrier properties of poly ethylene-co-vinyl acetate (EVA) nanocomposite.

    Science.gov (United States)

    Ghadikolaei, Shila Shirdel; Omrani, Abdollah; Ehsani, Morteza

    2018-04-14

    The BCNs were chemically modified using acetic anhydride with the aim of improving its dispersion and interfacial adhesion. Acetylation of BCNs was confirmed by FT-IR spectroscopy. Morphology studies using TEM and SEM revealed that a reasonable dispersion of the modified BCNs in the EVA matrix was accomplished. The DSC data displayed a little shift in the T g to higher temperatures with the incorporation of both modified and unmodified BCNs. Increased thermal stability of the nanocomposites consisting acetylated BCNs was confirmed by TGA technique. DMA measurements highlighted that the storage modulus increased and the damping properties decreased for the nanocomposites with regard to the neat EVA. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Modified Method for Detection of Benzoylecgonine in Human Urine by GC-MS: Derivatization Using Pentafluoropropanol/Acetic Anhydride.

    Science.gov (United States)

    Serafin, Michelle C; Paulemon, Kasandra M; Fuller, Zachary J; Bronner, William E

    2017-05-01

    An existing GC-MS method for detecting benzoylecgonine (BZE) in urine was modified by changing derivatizing reagents. This method modification presents a cost-effective alternative derivatization procedure for the detection of BZE in urine by GC-MS. The combination of pentafluoropropanol and acetic anhydride was found to produce the same reaction product for BZE as pentafluoropropanol with pentafluoropropionic anhydride, while reducing reagent cost. With no anhydride present, derivatization of BZE by pentafluoropropanol did not occur. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Surface-modified bacterial nanofibrillar PHB scaffolds for bladder tissue repair.

    Science.gov (United States)

    Karahaliloğlu, Zeynep; Demirbilek, Murat; Şam, Mesut; Sağlam, Necdet; Mızrak, Alpay Koray; Denkbaş, Emir Baki

    2016-01-01

    The aim of the study is in vitro investigation of the feasibility of surface-modified bacterial nanofibrous poly [(R)-3-hydroxybutyrate] (PHB) graft for bladder reconstruction. In this study, the surface of electrospun bacterial PHB was modified with PEG- or EDA via radio frequency glow discharge method. After plasma modification, contact angle of EDA-modified PHB scaffolds decreased from 110 ± 1.50 to 23 ± 0.5 degree. Interestingly, less calcium oxalate stone deposition was observed on modified PHB scaffolds compared to that of non-modified group. Results of this study show that surface-modified scaffolds not only inhibited calcium oxalate growth but also enhanced the uroepithelial cell viability and proliferation.

  7. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    International Nuclear Information System (INIS)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-01-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  8. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, Abed; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu [Sharif University of Technology, Department of Chemical and Petroleum Engineering (Iran, Islamic Republic of)

    2016-09-15

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  9. Atomic diffusion in laser surface modified AISI H13 steel

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-07-01

    This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.

  10. Ammonia synthesis on Au modified Fe(111) and Ag and Cu modified Fe(100) surfaces

    DEFF Research Database (Denmark)

    Lytken, Ole; Waltenburg, Hanne Neergaard; Chorkendorff, Ib

    2003-01-01

    In order to investigate any influence of steps and possible positive effects of making surface alloys the ammonia synthesis has been investigated over Au modified Fe(111) and Ag and Cu modified Fe(100) single crystals in the temperature range 603-773 K, using a system combining ultra-high vacuum...... and a high-pressure cell. Ammonia was synthesized from a stoichiometric (N-2:3H(2)) gas mixture at a pressure of 2 bar. By deposition of small amounts of An, the ammonia production activity of the Fe(1 1 1) surface can be enhanced. More important, for the gold modified surface, the reaction order in ammonia...

  11. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...

  12. Impact of Industrial Grade Modified PVA to Vinyl Acetate Semi-continuous Emulsion Polymerization and Properties of Final Product

    Directory of Open Access Journals (Sweden)

    Mindaugas DUBININKAS

    2013-03-01

    Full Text Available Successful vinyl acetate radical emulsion polymerization in water with different type of industrial grade poly(vinyl alcohol were produced by semi continuous way. The poly(vinyl alcohol type has crucial impact on dispersion rheological as well on films and bonding strength properties. It should be stated that the films containing modified poly (vinyl alcohol has better water resistance and mechanical properties. Poly(vinyl alcohol with higher ethylene moieties content and high hydrolization degree determines extremely low viscosity of final dispersion.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3823

  13. Hydrophobicity of electron beam modified surface of hydroxyapatite films

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, M., E-mail: gregor@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Plecenik, T. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Tofail, S.A.M. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Zahoran, M.; Truchly, M. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Vargova, M. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Laffir, F. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Plesch, G. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Kus, P.; Plecenik, A. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia)

    2015-05-15

    Highlights: • Surface potential of hydroxyapatite films were modified by focused electron beam. • Micron-sized domains of modified surface potential were created. • Wettability and surface free energy of the irradiated areas was studied. • Possible mechanisms of increased surface hydrophobicity are discussed. - Abstract: Arrays of micron-sized domains of modified surface potential were created on hydroxyapatite films by mid-energy (20 keV) electron beam irradiation available in a laboratory scanning electron microscope. The dosage of electron beam was varied between 10{sup −3} and 10{sup 3} μC/cm{sup 2} to inject charge into the film surface. Contrary to the conventional electrowetting theory, the dosage of injected charge used in creating such microdomains caused a gradual increase of the water contact angle from 57° to 93° due to the elimination of the polar component of the surface free energy. Surface contamination by carbonaceous species can be held only partially responsible for such behavior at lower dosage of electron beam. A transfer of free surface charge to water and an electron beam induced disruption of polar orientation of OH ions have been attributed to be influencial factors in the overall dewetting behavior.

  14. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jeong Sun [Division of Undeclared Majors, Chosun University, Gwangju 501-759 (Korea, Republic of); Yoon, Doo-Soo; Sohn, Jun Youn [Department of Bioenvironmental & Chemical Engineering, Chosun College of Science & Technology, Gwangju 501-744 (Korea, Republic of); Park, Jeong-Sook, E-mail: eicosa@cnu.ac.kr [College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Choi, Jin-Seok, E-mail: c34281@gmail.com [College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of)

    2017-03-01

    To overcome the toxicity of excipient or blank nanoparticles for drug delivery nano-system, the surface modified paclitaxel nanocrystals (PTX-NC) have been developed. PTX-NCs were prepared by nano-precipitation method. The surface of PTX-NCs were modified by grafting with apo-transferrin (Tf) or hyaluronic acid (HA). The physical properties of PTX-NCs were evaluated by field emission scanning electron microscope (FE-SEM), zeta-sizer, zeta-potential, differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectrometry. In vitro drug release study was performed in phosphate buffered saline (PBS) with or without 0.5% (w/v) Tween 80 for 24 h. Cellular uptake was studied at time intervals of 0.5, 1, and 2 h in MCF-7 cells, and cell growth inhibition study was performed for 24 h using MCF-7 cells (cancer cells), and HaCaT cells (normal cells). Three different types of PTX-NCs with a mean size of 236.0 ± 100.6 nm (PTX-NC), 302.0 ± 152.0 nm (Tf-PTX-NC) and 339 ± 180.6 nm (HA-PTX-NC) were successfully prepared. The drug release profiles showed 29.1%/6.9% (PTX (pure)), 40.7%/23.9% (PTX-NC), 50.5%/25.1% (Tf-PTX-NC) and 46.8/24.8% (HA-PTX-NC) in PBS with/without 0.5% (w/v) Tween 80 for 24 h, respectively. As per the results, the drug release of PTX-NCs showed the faster release as compared to that of PTX (pure). Surface modified PTX-NCs exhibited higher values for cell permeability than unmodified PTX-NC in the cellular uptake study. Surface modified PTX-NCs inhibited the cell growth approximately to 60% in MCF-7 cells, however effect of surface modified PTX-NCs on normal cell line was lower than the PTX-NC and PTX (pure). In conclusion, biological macromolecules (Tf or HA) surface modified PTX-NC enhanced the cellular uptake and the cell growth inhibition. - Highlights: • Surface modified PTX-NCs with HA and Tf are successfully prepared by adsorption method. • Enhanced cellular uptake of modified PTX-NCs compared to unmodified PTX-NC • Improved

  15. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  16. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    Science.gov (United States)

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  17. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  18. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Leonard C. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Ishida, Takanobu [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between -0.24 and +1.25 VSCE while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-ρ-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  19. Local anesthetics inhibit induction of ornithine decarboxylase by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate.

    OpenAIRE

    Yuspa, S H; Lichti, U; Ben, T

    1980-01-01

    The induction of ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity in mouse epidermal cells in vivo and in vitro occurs rapidly after exposure to the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA). This induction has characteristics of a cell surface receptor-mediated process. Local anesthetics modify a variety of cellular responses mediated by membrane receptors. When cultured mouse epidermal cells were exposed to the local anesthetics lidocaine, tetracaine...

  20. Ulipristal acetate versus leuprolide acetate for uterine fibroids.

    Science.gov (United States)

    Donnez, Jacques; Tomaszewski, Janusz; Vázquez, Francisco; Bouchard, Philippe; Lemieszczuk, Boguslav; Baró, Francesco; Nouri, Kazem; Selvaggi, Luigi; Sodowski, Krzysztof; Bestel, Elke; Terrill, Paul; Osterloh, Ian; Loumaye, Ernest

    2012-02-02

    The efficacy and side-effect profile of ulipristal acetate as compared with those of leuprolide acetate for the treatment of symptomatic uterine fibroids before surgery are unclear. In this double-blind noninferiority trial, we randomly assigned 307 patients with symptomatic fibroids and excessive uterine bleeding to receive 3 months of daily therapy with oral ulipristal acetate (at a dose of either 5 mg or 10 mg) or once-monthly intramuscular injections of leuprolide acetate (at a dose of 3.75 mg). The primary outcome was the proportion of patients with controlled bleeding at week 13, with a prespecified noninferiority margin of -20%. Uterine bleeding was controlled in 90% of patients receiving 5 mg of ulipristal acetate, in 98% of those receiving 10 mg of ulipristal acetate, and in 89% of those receiving leuprolide acetate, for differences (as compared with leuprolide acetate) of 1.2 percentage points (95% confidence interval [CI], -9.3 to 11.8) for 5 mg of ulipristal acetate and 8.8 percentage points (95% CI, 0.4 to 18.3) for 10 mg of ulipristal acetate. Median times to amenorrhea were 7 days for patients receiving 5 mg of ulipristal acetate, 5 days for those receiving 10 mg of ulipristal acetate, and 21 days for those receiving leuprolide acetate. Moderate-to-severe hot flashes were reported for 11% of patients receiving 5 mg of ulipristal acetate, for 10% of those receiving 10 mg of ulipristal acetate, and for 40% of those receiving leuprolide acetate (P<0.001 for each dose of ulipristal acetate vs. leuprolide acetate). Both the 5-mg and 10-mg daily doses of ulipristal acetate were noninferior to once-monthly leuprolide acetate in controlling uterine bleeding and were significantly less likely to cause hot flashes. (Funded by PregLem; ClinicalTrials.gov number, NCT00740831.).

  1. Sorption of nonpolar aromatic contaminants by chlorosilane surface modified natural minerals.

    Science.gov (United States)

    Huttenloch, P; Roehl, K E; Czurda, K

    2001-11-01

    The efficacy of the surface modification of natural diatomite and zeolite material by chlorosilanes is demonstrated. Chlorosilanes used were trimethylchlorosilane (TMSCI), tert-butyldimethylchlorosilane (TBDMSCI), dimethyloctadecylchlorosilane (DMODSCI), and diphenyldichlorosilane (DPDSCI) possessing different headgroups and chemical properties. Silanol groups of the diatomite and zeolite were modified by chemical reaction with the chlorosilanes resulting in a stable covalent attachment of the organosilanes to the mineral surface. The alteration of surface properties of the modified material was proved by measurements of water adsorption capacity, total organic carbon (TOC) content, and thermoanalytical data. The surface modified material showed great stability even when exposed to extremes in ionic strength, pH, and to pure organic solvents. Sorption of toluene, o-xylene, and naphthalene from water was greatly enhanced by the surface modification compared to the untreated materials which showed no measurable sorption of these compounds. The enhanced sorption was dependent on the organic carbon content as well as on chemical characteristics of the chlorosilanes used. Batch sorption experiments showed that the phenyl headgroups of DPDSCI have the best affinity for aromatic compounds. Removal from an aqueous solution of 10 mg/L of naphthalene, o-xylene, and toluene was 71%, 60%, and 30% for surface modified diatomite and 51%, 30%, and 16% for modified clinoptilolite, respectively. Sorption data were well described by the Freundlich isotherm equation, which indicated physical adsorption onto the lipophilic surface rather than partitioning into the surface organic phase. The chlorosilane modified materials have an apparent potential for application in environmental technologies such as permeable reactive barriers (PRB) or wastewater treatment.

  2. Fully automated synthesis of 11C-acetate as tumor PET tracer by simple modified solid-phase extraction purification

    International Nuclear Information System (INIS)

    Tang, Xiaolan; Tang, Ganghua; Nie, Dahong

    2013-01-01

    Introduction: Automated synthesis of 11 C-acetate ( 11 C-AC) as the most commonly used radioactive fatty acid tracer is performed by a simple, rapid, and modified solid-phase extraction (SPE) purification. Methods: Automated synthesis of 11 C-AC was implemented by carboxylation reaction of MeMgBr on a polyethylene Teflon loop ring with 11 C-CO 2 , followed by acidic hydrolysis with acid and SCX cartridge, and purification on SCX, AG11A8 and C18 SPE cartridges using a commercially available 11 C-tracer synthesizer. Quality control test and animals positron emission tomography (PET) imaging were also carried out. Results: A high and reproducible decay-uncorrected radiochemical yield of (41.0±4.6)% (n=10) was obtained from 11 C-CO 2 within the whole synthesis time about 8 min. The radiochemical purity of 11 C-AC was over 95% by high-performance liquid chromatography (HPLC) analysis. Quality control test and PET imaging showed that 11 C-AC injection produced by the simple SPE procedure was safe and efficient, and was in agreement with the current Chinese radiopharmaceutical quality control guidelines. Conclusion: The novel, simple, and rapid method is readily adapted to the fully automated synthesis of 11 C-AC on several existing commercial synthesis module. The method can be used routinely to produce 11 C-AC for preclinical and clinical studies with PET imaging. - Highlights: • A fully automated synthesis of 11 C-acetate by simple modified solid-phase extraction purification has been developed. • Typical non-decay-corrected yields were (41.0±4.6)% (n=10) • Radiochemical purity was determined by radio-HPLC analysis on a C18 column using the gradient program, instead of expensive organic acid column or anion column. • QC testing (RCP>99%)

  3. Corrosion resistance of siloxane–poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    Energy Technology Data Exchange (ETDEWEB)

    Kunst, S.R.; Cardoso, H.R.P. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Oliveira, C.T. [ICET, University Feevale, RS-239, 2755 Novo Hamburgo, RS (Brazil); Santana, J.A.; Sarmento, V.H.V. [Department of Chemistry, Federal University of Sergipe – UFS, Av. Vereador Olímpio Grande s/n, Centro, Itabaiana, SE (Brazil); Muller, I.L. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Malfatti, C.F., E-mail: celia.malfatti@ufrgs.br [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil)

    2014-04-01

    Highlights: • Siloxane–PMMA film was produced by dip-coating on tin plate substrate. • It was evaluated the influence of (TEOS) addition on siloxane–PMMA hybrid films. • Siloxane–PMMA films without TEOS presented a regular coverage and lowest roughness. • The TEOS addition decrease the corrosion resistance of siloxane–PMMA films. • Siloxane–PMMA without TEOS presented is higher durability in the film wear test. - Abstract: The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane–poly (methyl methacrylate) (PMMA) hybrid film prepared by sol–gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane–PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase

  4. Lewis basicity, adhesion thermodynamic work and coordinating ability on aminated silicon surfaces

    International Nuclear Information System (INIS)

    Sánchez, M. Alejandra; Paniagua, Sergio A.; Borge, Ignacio; Viales, Christian; Montero, Mavis L.

    2014-01-01

    Highlights: • Silicon(1 0 0) surfaces with diamines followed by anchoring of copper complexes over the diamine layer, an approach that could be used for advanced functionalization of semiconducting surfaces. • Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. • Higher basicity and thermodynamic work correlate with selective copper acetate monolayer grow. The cyclic voltammetry studies confirm the confined copper redox activity. - Abstract: Silicon(1 0 0) surfaces have been modified with three different amines (aniline, benzylamine and dodecylamine) and diamines (4-aminopyridine, 4-aminomethylpyridine, 1,12-dodecyldiamine). The surface energy was measured by contact angle technique. For Si-diamine surfaces, Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. We related these data, the amine/diamine nature and their geometry on the surface (via DFT calculations) with the consequent ability to coordinate copper(II) acetate. Finally, copper(II) acetate monolayers behavior was studied by cyclic voltammetry

  5. Square wave voltammetry at carbon paste electrode modified with surfactant for alpha tocopheryl acetate determination in cosmetics

    Directory of Open Access Journals (Sweden)

    Simona Žabčíková

    2018-03-01

    Full Text Available Normal 0 false false false CS X-NONE X-NONE The aim of this study was describe electrochemical properties of a carbon paste electrode (CPE bulk modified with 30% (w/w surfactant sodium dodecyl sulphate (CPE/SDS and demonstrates its application in the determination of α‑tocopheryl acetate (α‑TAc, known as vitamin E acetate, in selected cosmetic products, especially body creams. In addition to anionic SDS, cationic hexadecylpyridinium chloride monohydrate (CPC was also tested as possible modifier. It was found that selection of surfactant type and its content significantly affect an electrical conductivity and mechanical stability of these heterogeneous electroanalytical sensors in pure organic solvents. Under this study, it was found that CPC is a totally inappropriate mediator due to very high backgroundcurrent. Together with other lipophilic vitamins characterized by antioxidant activity (dominantly retionoids, this completely synthetic substance is widely used as significant cosmetic additive due its preservative properties. Monitoring of its content in cosmetic products is usually performed by high‑performance liquid chromatography (HPLC with UV detection. This standard analytical protocol is always burdened with the complex and time‑consuming preparation of the sample before analysis. For that reason, robust and simple electroanalytical method based on anodic oxidation of the α‑TAc at CPE/SDS by square wave voltammetry (SWV performed in pure organic electrolyte (99.8% acetonitrile containing 0.1 mol·L‑1 LiClO4 was developed. Moreover, simple dissolution of sample in supporting electrolyte using ultrasonic bath and subsequent filtering through a stacked filter included all the necessary procedures for sample preparation. The linear range from 0.1 to 1.2 mmol·L‑1and limit of detection 37 µmol·L‑1 were found at pulse amplitude 10 mV and frequency 10 Hz as optimum. In analysis of selected cosmetics, the developed

  6. Removal of chromium (VI) ions from aqueous solutions using amine-impregnated TiO2 nanoparticles modified cellulose acetate membranes.

    Science.gov (United States)

    Gebru, Kibrom Alebel; Das, Chandan

    2018-01-01

    In this work, TiO 2 nanoparticles (NPs) were modified using tetraethylenepentamine (TEPA), ethylenediamine (EDA), and hexamethylenetetramine (HMTA) amines using impregnation process. The prepared amine modified TiO 2 samples were explored as an additive to fabricate ultrafiltration membranes with enhanced capacity towards the removal of chromium ions from aqueous solution. Modified membranes were prepared from cellulose acetate (CA) polymer blended with polyethylene glycol (PEG) additive, and amine modified TiO 2 by using phase inversion technique. Fourier transform infrared spectroscopy (FTIR), zeta potential (ζ), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), water contact angle (WCA), and atomic absorption spectrophotometer (AAS) studies were done to characterize the membranes in terms of chemical structure, electric charge, thermal stability, morphology, hydrophilicity, and removal performance. The pure water permeability and Cr (VI) ion removal efficiency of the unmodified (i.e. CA/U-Ti) and the amine modified (CA/Ti-HMTA, CA/Ti-EDA, and CA/Ti-TEPA) membranes were dependent on pH and metal ion concentration. Incorporation of amine modified TiO 2 composite to the CA polymer was found to improve the fouling and removal characteristics of the membranes during the chromium ultrafiltration process. The maximum removal efficiency result of Cr (VI) ions at pH of 3.5 using CA/Ti-TEPA membrane was 99.8%. The washing/regeneration cycle results in this study described as an essential part for prospect industrial applications of the prepared membranes. The maximum Cr (VI) removal results by using CA/Ti-TEPA membrane for four washing/regeneration cycles are 99.6%, 99.5%, 98.6% and, 96.6%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2...

  8. Surface-modified magnetic nanoparticles for cell labeling

    Czech Academy of Sciences Publication Activity Database

    Zasońska, Beata Anna; Patsula, Vitalii; Stoika, R.; Horák, Daniel

    2014-01-01

    Roč. 13, č. 4 (2014), s. 63-73 ISSN 2305-7815 R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic nanoparticles * surface-modified * cell labeling Subject RIV: CD - Macromolecular Chemistry

  9. Effect of surface acidic oxides of activated carbon on adsorption of ammonia.

    Science.gov (United States)

    Huang, Chen-Chia; Li, Hong-Song; Chen, Chien-Hung

    2008-11-30

    The influence of surface acidity of activated carbon (AC) was experimentally studied on adsorption of ammonia (NH(3)). Coconut shell-based AC was modified by various acids at different concentrations. There were five different acids employed to modified AC, which included nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, and acetic acid. Acidic functional groups on the surface of ACs were determined by a Fourier transform infrared spectrograph (FTIR) and by the Boehm titration method. Specific surface area and pore volume of the ACs were measured by a nitrogen adsorption apparatus. Adsorption amounts of NH(3) onto the ACs were measured by a dynamic adsorption system at room temperature according to the principle of the ASTM standard test method. The concentration of NH(3) in the effluent stream was monitored by a gas-detecting tube technique. Experimental results showed that adsorption amounts of NH(3) on the modified ACs were all enhanced. The ammonia adsorption amounts on various activated carbons modified by different acids are in the following order: nitric acid>sulfuric acid>acetic acid approximately phosphoric acid>hydrochloric acid. It is worth to note that the breakthrough capacity of NH(3) is linearly proportional to the amount of acidic functional groups of the ACs.

  10. Photocatalysis of Modified Transition Metal Oxide Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Batzill, Matthias [Univ. of South Florida, Tampa, FL (United States). Dept. of Physics

    2018-02-28

    The goal of this project has been to establish a cause-effect relationship for photocatalytic activity variations of different structures of the same material; and furthermore gain fundamental understanding on modification of photocatalysts by compositional or surface modifications. The reasoning is that gaining atomic scale understanding of how surface and bulk modifications alter the photo reactivity will lead to design principles for next generation photocatalysts. As a prototypical photocatalyst the research focused on TiO2 synthesized in well-defined single crystalline form to enable fundamental characterizations.We have obtained results in the following areas: (a) Preparation of epitaxial anatase TiO2 samples by pulsed laser deposition. (b) Comparison of hydrogen diffusion on different crystallographic surface. (c) Determining the stability of the TiO2(011)-2x1 reconstruction upon interactions with adsorbates. (d) Characterization of adsorption and (thermal and photo) reaction of molecules with nitro-endgroups, (e) Exploring the possibility of modifying planar model photocatalyst surfaces with graphene to enable fundamental studies on reported enhanced photocatalytic activities of graphene modified transition metal oxides, (f) gained fundamental understanding on the role of crystallographic polymorphs of the same material for their photocatalytic activities.

  11. Synthesis of α-MoC1-x Nanoparticles with a Surface-Modified SBA-15 Hard Template: Determination of Structure-Function Relationships in Acetic Acid Deoxygenation.

    Science.gov (United States)

    Baddour, Frederick G; Nash, Connor P; Schaidle, Joshua A; Ruddy, Daniel A

    2016-07-25

    Surface modification of mesoporous SBA-15 silica generated a hydrophobic environment for a molybdenum diamine (Mo-diamine) precursor solution, enabling direct growth of isolated 1.9±0.4 nm α-MoC1-x nanoparticles (NPs) inside the pores of the support. The resulting NP catalysts are bifunctional, and compared to bulk α-MoC1-x and β-Mo2 C, the NPs exhibit a greater acid-site:H-site ratio and a fraction of stronger acid sites. The greater acid-site:H-site ratio results in higher decarbonylation (DCO) selectivity during acetic acid hydrodeoxygenation (HDO) reactions, and the stronger acid sites lead to higher activity and ketonization (KET) selectivity at high temperatures. The hard-templating synthetic method could be a versatile route toward carbide NPs of varying size, composition, and phase, on a range of mesoporous oxide supports. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qiuxia [Institute for Integrated Catalysis, Pacific Northwest; College; Lopez-Ruiz, Juan A. [Institute for Integrated Catalysis, Pacific Northwest; Cooper, Alan R. [Institute for Integrated Catalysis, Pacific Northwest; Wang, Jian-guo [College; Albrecht, Karl O. [Institute for Integrated Catalysis, Pacific Northwest; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest

    2017-12-13

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxyl groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  13. Chemistry and electrochemistry in trifluoroacetic acid. Comparison with acetic acid

    International Nuclear Information System (INIS)

    Petit, Gerard

    1972-01-01

    As the trifluoroacetic acid is, with the acetic acid, one of most often used carboxylic acids as solvent, notably in organic chemistry, this research thesis addresses some relatively simple complexing and redox reactions to highlight the peculiar feature of this acid, and to explain its very much different behaviour with respect to acetic acid. The author develops the notion of acidity level in solvents of low dielectric constant. The second part addresses a specific solvent: BF 3 (CH 3 COOH) 2 . The boron trifluoride strengthens the acidity of acetic acid and modifies its chemical and physical-chemical properties. In the third part, the author compares solvent properties of CF 3 COOH and CH 3 COOH. Noticed differences explain why the trifluoroacetic acid is a more interesting reaction environment than acetic acid for reactions such as electrophilic substitutions or protein solubilisation [fr

  14. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P; Venugopal, J; Chan, Casey K; Ramakrishna, S

    2008-01-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ε-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  15. New kaolinite phases expanded through intercalation with potassium acetate

    International Nuclear Information System (INIS)

    Frost, R.L.; Kristof, J.; Kloprogge, J.T.

    1998-01-01

    Full text: Changes in the hydroxyl surfaces of potassium acetate-intercalated kaolinite have been studied over the ambient to predehydroxylation temperature range using a combination of X-ray diffraction and Raman spectroscopy. Upon intercalation, the kaolinite expanded along the c-axis direction to 13.88 Angstroms. Upon heating the intercalation complex over the 50 to 300 deg C range, X-ray diffraction shows the existence of three additional intercalation phases with d-spacings of 9.09, 9.60, and 11.47 Angstroms. The amount of each phase is temperature dependent. These expansions are reversible and upon cooling the intercalation complex returned to its original spacing. The 13.88 Angstroms phase only existed in the presence of water. It is proposed that the expanded kaolinite intercalation phases result from the orientation of the acetate within the intercalation complex. The Raman spectra of the hydroxyl-stretching region (Frost and van der Gaast, 1997) of potassium acetate-intercalated kaolinite has been obtained under an atmosphere of both air and nitrogen using a thermal stage over the 25 to 300 deg C temperature range (Johansson et al., 1998). Raman spectra of the C-C, C=O stretching and O-C-O bending modes show that at least two types of acetate are present in the intercalation complex. These are assigned to two different orientations of the acetate. At 25 deg C, a new band at 3606 cm -1 attributed to the inner surface hydroxyl hydrogen bonded to the acetate ion is observed with a concomitant loss of intensity in the bands attributed to the inner surface hydroxyls (Frost and Kristof, 1997, Frost et al.,1997). Heating the intercalation complex to 50 deg C results in two hydroxyl-stretching frequencies at 3594 and 3604 cm -1 . This change in frequencies is ascribed to phase changes of the potassium acetate-intercalated kaolinite. At 100 deg C, the bands shift to 3600 and 3613 cm -1 . These shifts in frequencies are assigned to new kaolinite expanded phases. At

  16. Preparation and characterization of magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) nanocomposite for vortex assisted magnetic solid phase extraction of some metal ions.

    Science.gov (United States)

    Khan, Mansoor; Yilmaz, Erkan; Sevinc, Basak; Sahmetlioglu, Ertugrul; Shah, Jasmin; Jan, Muhammad Rasul; Soylak, Mustafa

    2016-01-01

    Magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) (MGO-DVB-VA) was synthesized and used for magnetic solid phase extraction of Pb(II), Cd(II), Cu(II), Ni(II) and Co(II) prior to their determination by flame atomic absorption spectroscopy. The adsorbent surface functional group was characterized by using FT-IR and Raman spectroscopy. XRD pattern was used to determine the layers of GO. Surface morphology and elemental composition of the adsorbent were evaluated by using SEM and EDX analysis. Various parameters, effecting adsorption efficiency like initial solution pH, adsorbent dose, type and volume of eluent, volume of sample and diverse ions effects were optimized. The preconcentration factor (PF) is 40 for all the metals and the limits of detection for Pb, Cd, Cu, Ni and Co are in the range of 0.37-2.39 µg L(-1) and relative standard deviation below 3.1%. The method was validated by using the method for certified reference materials (Tobacco Leaves (INCT-OBTL-5), Tomato Leaves (1573a), Certified Water (SPS-ww2) and Certified Water (TMDA 64-2)). The method was successfully applied for natural water and food samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Adhesive and morphological characteristics of surface chemically modified polytetrafluoroethylene films

    International Nuclear Information System (INIS)

    Hopp, B.; Kresz, N.; Kokavecz, J.; Smausz, T.; Schieferdecker, H.; Doering, A.; Marti, O.; Bor, Z.

    2004-01-01

    In the present paper, we report an experimental determination of adhesive and topographic characteristics of chemically modified surface of polytetrafluoroethylene (PTFE) films. The surface chemistry was modified by ArF excimer laser irradiation in presence of triethylene-tetramine photoreagent. The applied laser fluence was varied in the range of 0.4-9 mJ/cm 2 , and the number of laser pulses incident on the same area was 1500. To detect the changes in the adhesive features of the treated Teflon samples, we measured receding contact angle for distilled water and adhesion strength, respectively. It was found that the receding contact angle decreased from 96 deg. to 30-37 deg. and the adhesion strength of two-component epoxy glue to the treated sample surface increased from 0.03 to 9 MPa in the applied laser fluence range. Additionally, it was demonstrated that the adhesion of human cells to the modified Teflon samples is far better than to the untreated ones. The contact mode and pulsed force mode atomic force microscopic investigations of the treated samples demonstrated that the measured effective contact area of the irradiated films does not differ significantly from that of the original films, but the derived adhesion force is stronger on the modified samples than on the untreated ones. Hence, the increased adhesion of the treated Teflon films is caused by the higher surface energy

  18. A modified stanton number for heat transfer through fabric surface

    Directory of Open Access Journals (Sweden)

    Zhang Shen-Zhong

    2015-01-01

    Full Text Available The Stanton number was originally proposed for describing heat transfer through a smooth surface. A modified one is suggested in this paper to take into account non-smooth surface or fractal surface. The emphasis is put on the heat transfer through fabrics.

  19. Acetate Kinase Isozymes Confer Robustness in Acetate Metabolism

    DEFF Research Database (Denmark)

    Chan, Siu Hung Joshua; Nørregaard, Lasse; Solem, Christian

    2014-01-01

    transcription structure, determining enzyme characteristics and effect on growth physiology. The results show that the two ACKs are most likely individually transcribed. AckA1 has a much higher turnover number and AckA2 has a much higher affinity for acetate in vitro. Consistently, growth experiments of mutant...... physiological roles in L. lactis to maintain a robust acetate metabolism for fast growth at different extracellular acetate concentrations. The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria in an environment with varying concentrations of acetate.......Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300...

  20. Experimental and theoretical study of surface tension of binary mixtures of (n-alkyl acetates + heptane, benzene, and toluene)

    International Nuclear Information System (INIS)

    Rafati, Amir Abbas; Ghasemian, Ensieh

    2009-01-01

    Surface properties of binary mixtures of (n-alkyl acetates + heptane, benzene, and toluene) have been measured by surface tension method at T = 298.15 K and atmospheric pressure. Also, the surface tension has been predicted based on the Suarez method. This method combines a model for the description of surface tension of liquid mixtures with a group contribution method for the calculation of activity coefficient. The mean relative standard deviations obtained from the comparison of experimental (measured) and calculated surface tension values for the eight binary systems are less than 1.5%, which leads to concluding that the model shows a good accuracy in different situations in comparison with other predicted equations. In addition, the relative Gibbs adsorption and the surface mole fraction have been evaluated using this model. The surface tension deviations were calculated from experimental results and have been fitted to the Redlich-Kister type polynomial relation

  1. Characterization of Modified and Polymer Coated Alumina Surfaces by Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available The prepared, modified, and coated alumina surfaces were characterized by infrared spectroscopy (FTIR to investigate the surface properties of the individual and double modified samples. FTIR helps in reporting the changes occurred in hydroxyl groups as well as the structure changes as a result of thermal treating, hydrothermal treating, silylation treating, alkali metal treating, coating, and bonding with polymer. FTIR spectroscopy represents the strength and abundance of surface acidic OH which determine the adsorption properties of polar and nonpolar sorbents. Generally, all treated samples exhibit decrease of OH groups compared with those of parent ones producing alumina surfaces of different adsorptive powers.

  2. Uniform surface-to-line integral reduction of physical optics for curved surfaces by modified edge representation with higher-order correction

    Science.gov (United States)

    Lyu, Pengfei; Ando, Makoto

    2017-09-01

    The modified edge representation is one of the equivalent edge currents approximation methods for calculating the physical optics surface radiation integrals in diffraction analysis. The Stokes' theorem is used in the derivation of the modified edge representation from the physical optics for the planar scatterer case, which implies that the surface integral is rigorously reduced into the line integral of the modified edge representation equivalent edge currents, defined in terms of the local shape of the edge. On the contrary, for curved surfaces, the results of radiation integrals depend upon the global shape of the scatterer. The physical optics surface integral consists of two components, from the inner stationary phase point and the edge. The modified edge representation is defined independently from the orientation of the actual edge, and therefore, it could be available not only at the edge but also at the arbitrary points on the scatterer except the stationary phase point where the modified edge representation equivalent edge currents becomes infinite. If stationary phase point exists inside the illuminated region, the physical optics surface integration is reduced into two kinds of the modified edge representation line integrations, along the edge and infinitesimally small integration around the inner stationary phase point, the former and the latter give the diffraction and reflection components, respectively. The accuracy of the latter has been discussed for the curved surfaces and published. This paper focuses on the errors of the former and discusses its correction. It has been numerically observed that the modified edge representation works well for the physical optics diffraction in flat and concave surfaces; errors appear especially for the observer near the reflection shadow boundary if the frequency is low for the convex scatterer. This paper gives the explicit expression of the higher-order correction for the modified edge representation.

  3. Wettability Control of Gold Surfaces Modified with Benzenethiol Derivatives: Water Contact Angle and Thermal Stability.

    Science.gov (United States)

    Tatara, Shingo; Kuzumoto, Yasutaka; Kitamura, Masatoshi

    2016-04-01

    The water wettability of Au surfaces has been controlled using various benzenethiol derivatives including 4-methylbenzenethiol, pentafluorobenzenethiol, 4-flubrobenzenethiol, 4-methoxy-benzenethiol, 4-nitrobenzenethiol, and 4-hydroxybenzenethiol. The water contact angle of the Au surface modified with the benzenethiol derivative was found to vary in the wide range of 30.9° to 88.3°. The contact angle of the modified Au films annealed was also measured in order to investigate their thermal stability. The change in the contact angle indicated that the modified surface is stable at temperatures below about 400 K. Meanwhile, the activation energy of desorption from the modified surface was estimated from the change in the contact angle. The modified Au surface was also examined using X-ray photoelectron spectroscopy.

  4. The behaviour of tungsten electrodes in a mixture of acetic acid and acetic anhydride

    International Nuclear Information System (INIS)

    Pastor, T.J.; Vajgand, V.H.

    1976-01-01

    Tungsten electrodes have advantageously been used for potentiometric end-point detection in perchloric acid titration of bases in a mixture of acetic acid and acetic anhydride. They have also given good results in biamperometric detection of the equivalence point in continuous coulometric titration of small quantities of bases and acids in the same solvent. Tungsten electrodes in the presence of quinhydrone behave like platinum electrodes, but in biamperometric end-point determination in the absence of quinhydrone it is better to remove the oxide layer from their surface. Some other factors affecting their behaviour have also been studied. Errors in determination do not exceed +-2% even in titration of very small quantities of substances. (author)

  5. Development of Chitosan Acetate Films for Transdermal Delivery of ...

    African Journals Online (AJOL)

    Erah

    Methods: Chitosan acetate was chemically modified with acetaldehyde and the solution was prepared ... from solution [3]. In this regard possibilities for the potential use of chitosan as an absorption enhancer in the more basic environment of the large intestine, colon and ..... impregnation of ophthalmic drugs on chitosan.

  6. A study of 11C-acetate production using 11C-choline commercial module

    International Nuclear Information System (INIS)

    Zhang Jinming; Tian Jiahe; Yao Shulin; Chen Yan

    2008-01-01

    Objective: 11 C-acetate is a useful PET tracer in evaluating myocardial metabolism but more interest has been focused on its application in tumor detection in recent years, especially hepatocellular carcinoma (HCC). This study was designed to evaluate the laboratory, preparation of 11 C-acetate with a modified 11 C-choline commercial module and to investigate its biodistribution in tumor (lung adenocarcinoma)-bearing mice as well as its potential as a tumor imaging agent. Methods: 11 C-acetate was synthesized with a modified 11 C choline module: Methyl magnesium bromide Grignard (0.1 ml of 1.5 mol/L) was load- ed to a Teflon loop before 11 CO 2 was recovered from the target. Cartier acetate solution (2 ml of 1 mmol/L) was pushed through the loop, SPE cartridges (mixed AG50 and IC-Ag) and then the QMA. The loop and cartridges were then rinsed with water. The product 11 C-acetate was then washed out from QMA with 0.9% NaCl solution into a collection vial containing diluted HCl. 11 C-carbonate was removed by nitrogen bubbling for 2 min. After neutralization with trisodium citrate, the injectable 11 C-acetate solution was obtained. The tumor-bearing mice were sacrificed. The percentage activity of injected dose per gram of tissue (% ID/g) for tumor and other tissues were calculated. One patient with known diagnosis of moderately differentiated HCC was injected with 11 C-acetate and imaged by PET/CT, followed by 18 F-fluorodeoxyglucose (FDG). Results: The synthesis yield of 11 C-acetate was (60.5 ± 8.7)% (decay conected, n=10); the radio-chemistry purity was > 98% and the synthesis time was 10 min from 11 CO 2 to 11 C-acetate. The radioactivity ratio for tumor/muscle was 1.76 at 30 min. A patient with known HCC showed positive 11 C-acetate accumulation in the tumor but was negative in 18 F-FDG. Conclusion: The synthesis of 11 C-acetate by modification of an 11 C-choline commercial module was feasible and it could be achieved with high yield, high radiochemical purity

  7. Acrylic acid surface-modified contact lens for the culture of limbal stem cells.

    Science.gov (United States)

    Zhang, Hong; Brown, Karl David; Lowe, Sue Peng; Liu, Guei-Sheung; Steele, David; Abberton, Keren; Daniell, Mark

    2014-06-01

    Surface treatment to a biomaterial surface has been shown to modify and help cell growth. Our aim was to determine the best surface-modified system for the treatment of limbal stem cell deficiency (LSCD), which would facilitate expansion of autologous limbal epithelial cells, while maintaining cultivated epithelial cells in a less differentiated state. Commercially available contact lenses (CLs) were variously surface modified by plasma polymerization with ratios of acrylic acid to octadiene tested at 100% acrylic acid, 50:50% acrylic acid:octadiene, and 100% octadiene to produce high-, mid-, and no-acid. X-ray photoelectron spectroscopy was used to analyze the chemical composition of the plasma polymer deposited layer. Limbal explants cultured on high acid-modified CLs outgrew more cells. Immunofluorescence and RT2-PCR array results indicated that a higher acrylic acid content can also help maintain progenitor cells during ex vivo expansion of epithelial cells. This study provides the first evidence for the ability of high acid-modified CLs to preserve the stemness and to be used as substrates for the culture of limbal cells in the treatment of LSCD.

  8. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    Science.gov (United States)

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.

  9. Evaluation of Antibacterial Activity of Titanium Surface Modified by PVD/PACVD Process.

    Science.gov (United States)

    Ji, Min-Kyung; Lee, Min-Joo; Park, Sang-Won; Lee, Kwangmin; Yun, Kwi-Dug; Kim, Hyun-Seung; Oh, Gye-Jeong; Kim, Ji-Hyun; Lim, Hyun-Pil

    2016-02-01

    The aim of this study was to evaluate the response of Streptococcus mutans (S. mutans) via crystal violet staining assay on titanium surface modified by physical vapor deposition/plasma assisted chemical vapor deposition process. Specimens were divided into the following three groups: polished titanium (control group), titanium modified by DC magnetron sputtering (group TiN-Ti), and titanium modified by plasma nitriding (group N-Ti). Surface characteristics of specimens were observed by using nanosurface 3D optical profiler and field emission scanning electron microscope. Group TiN-Ti showed TiN layer of 1.2 microm in thickness. Group N-Ti was identified as plasma nitriding with X-ray photoelectron spectroscopy. Roughness average (Ra) of all specimens had values 0.05). Within the process condition of this study, modified titanium surfaces by DC magnetron sputtering and plasma nitriding did not influence the adhesion of S. mutans.

  10. Surface characterization and free thyroid hormones response of chemically modified poly(ethylene terephthalate) blood collection tubes

    Science.gov (United States)

    Jalali Dil, Ebrahim; Kim, Samuel C.; Saffar, Amir; Ajji, Abdellah; Zare, Richard N.; Sattayapiwat, Annie; Esguerra, Vanessa; Bowen, Raffick A. R.

    2018-06-01

    The surface chemistry and surface energy of chemically modified polyethylene terephthalate (PET) blood collection tubes (BCTs) were studied and the results showed a significant increase in hydrophilicity and polarity of modified PET surface. The surface modification created nanometer-sized, needle-like asperities through molecular segregation at the surface. The surface dynamics of the modified PET was examined by tracking its surface properties over a 280-day period. The results showed surface rearrangement toward a surface with lower surface energy and fewer nanometer-sized asperities. Thromboelastography (TEG) was used to evaluate and compare the thrombogenicity of the inner walls of various types of BCTs. The TEG tracings and data from various types of BCTs demonstrated differences in the reactionand coagulation times but not in clot strength. The performance of the modified tubes in free triiodothyronine (FT3) and free thyroxine (FT4) hormone tests was examined, and it was found that the interference of modified PET tubes was negligible compared to that of commercially available PET BCTs.

  11. Acetate metabolism of Saccharomyces cerevisiae at different temperatures during lychee wine fermentation

    Directory of Open Access Journals (Sweden)

    Yu-hui Shang

    2016-05-01

    Full Text Available The yeast (Saccharomyces cerevisiae strain 2137 involved in lychee wine production was used to investigate acetate metabolism at different temperatures during lychee wine fermentation. Fermentation tests were conducted using lychee juice supplemented with acetic acid. The ability of yeast cells to metabolize acetic acid was stronger at 20 °C than at 25 °C or 30 °C. The addition of acetic acid suppressed the yeast cell growth at the tested temperatures. The viability was higher and the reactive oxygen species concentration was lower at 20 °C than at 30 °C; this result indicated that acid stress adaptation protects S. cerevisiae from acetic-acid-mediated programmed cell death. The acetic acid enhanced the thermal death of yeast at high temperatures. The fermentation temperature modified the metabolism of the yeasts and the activity of related enzymes during deacidification, because less acetaldehyde, less glycerol, more ethanol, more succinic acid and more malic acid were produced, with higher level of acetyl–CoA synthetase and isocitrate lyase activity, at 20 °C.

  12. Studies on the effect of nano-TiO{sub 2} on vinyl acetate-butyl acrylate latex-based surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Suma, K.K. [Dept. of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi 22, Kerala (India); Dept. of Chemistry, Maharaja' s College, Ernakulam, Kerala (India); Jacob, Sinto [Dept. of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi 22, Kerala (India); Joseph, Rani, E-mail: rani@cusat.ac.i [Dept. of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi 22, Kerala (India)

    2010-04-15

    Vinyl acetate-butyl acrylate (VAc-BuA) copolymer latex was prepared by emulsion polymerization. The polymerization conditions and the composition were optimized. The 85/15 wt.% (vinyl acetate/butyl acrylate) gave good tensile strength of the order of 15.6 MPa and a glass transition temperature (T{sub g}) value of -6.49 deg. C. This copolymer was used as a binder in the paint formulation. In this formulation nanosized TiO{sub 2} sol was used as a pigment instead of conventional rutile TiO{sub 2}. Nanosized TiO{sub 2} is prepared by wet process. These nanosized TiO{sub 2} rutile colloidal sol has improved properties such as photostability, UV shielding, dispersion stability, etc. The surface properties of paint were found to be superior compared to commercially used paint.

  13. Surface modification of bone char for removal of formaldehyde from air

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Abbas, E-mail: rezaee@modares.ac.ir [Environmental Health Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Rangkooy, Hosseinali [Environmental Health Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Occupational Health Department, Faculty of Health, Jondishapor Medical Sciences University, Ahvaz (Iran, Islamic Republic of); Jonidi-Jafari, Ahmad; Khavanin, Ali [Environmental Health Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2013-12-01

    The aim of this study was to evaluate the adsorption performance of bone char (BC) modified with acetic acid for formaldehyde removal from polluted air. The porous structure, surface characteristics and functional groups involved in formaldehyde adsorption were determined using the Brunauer–Emmett–Teller (BET) method, scanning electron microscope (SEM) equipped with energy dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR), respectively. It was found that the modified BC has a higher specific surface area than the original BC. The maximum surface area of the modified BC was 118.58 m{sup 2}/g. The FTIR spectrum of modified BC indicated that the hydroxyl and carboxyl groups on the BC surface played a significant role in the adsorption of formaldehyde by modified BC. The breakthrough, equilibrium time and adsorption capacity of modified BC were greater than the original BC. Moreover, the results showed that at initial concentrations of 20, 50, 100 and 200 mg/L, the equilibrium times for BC and modified BC were 85, 75, 65 and 45 min and 95, 85, 70 and 50 min, respectively. It seems that the formaldehyde adsorption capacity of modified BC depends on both physical and chemical properties. These results showed that modified BC can be used as an efficient adsorbent for formaldehyde removal.

  14. Reconfigurable modified surface layers using plasma capillaries around the neutral inclusion regime

    Energy Technology Data Exchange (ETDEWEB)

    Varault, S. [ONERA—The French Aerospace Lab 2, Avenue Edouard Belin, BP4025, 31055 Toulouse Cedex (France); Universite Paul Sabatier—CNRS-Laplace 118, Route de Narbonne, F-31062 Toulouse Cedex 9 (France); Gabard, B. [ONERA—The French Aerospace Lab 2, Avenue Edouard Belin, BP4025, 31055 Toulouse Cedex (France); STAE—4, Rue Emile Monso, BP84234, 31030 Toulouse Cedex 4 (France); Crépin, T.; Bolioli, S. [ONERA—The French Aerospace Lab 2, Avenue Edouard Belin, BP4025, 31055 Toulouse Cedex (France); Sokoloff, J. [Universite Paul Sabatier—CNRS-Laplace 118, Route de Narbonne, F-31062 Toulouse Cedex 9 (France)

    2014-02-28

    We show both theoretically and experimentally reconfigurable properties achieved by plasma inclusions placed in modified surface layers generally used to tailor the transmission and beaming properties of electromagnetic bandgap based waveguiding structures. A proper parametrization of the plasma capillaries allows to reach the neutral inclusion regime, where the inclusions appear to be electromagnetically transparent, letting the surface mode characteristics unaltered. Varying the electron density of the plasma inclusions provoques small perturbations around this peculiar regime, and we observe significant modifications of the transmission/beaming properties. This offers a way to dynamically select the enhanced transmission frequency or to modify the radiation pattern of the structure, depending on whether the modified surface layer is placed at the entrance/exit of the waveguide.

  15. Reconfigurable modified surface layers using plasma capillaries around the neutral inclusion regime

    International Nuclear Information System (INIS)

    Varault, S.; Gabard, B.; Crépin, T.; Bolioli, S.; Sokoloff, J.

    2014-01-01

    We show both theoretically and experimentally reconfigurable properties achieved by plasma inclusions placed in modified surface layers generally used to tailor the transmission and beaming properties of electromagnetic bandgap based waveguiding structures. A proper parametrization of the plasma capillaries allows to reach the neutral inclusion regime, where the inclusions appear to be electromagnetically transparent, letting the surface mode characteristics unaltered. Varying the electron density of the plasma inclusions provoques small perturbations around this peculiar regime, and we observe significant modifications of the transmission/beaming properties. This offers a way to dynamically select the enhanced transmission frequency or to modify the radiation pattern of the structure, depending on whether the modified surface layer is placed at the entrance/exit of the waveguide

  16. Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces.

    Science.gov (United States)

    Echeverry-Rendón, Mónica; Galvis, Oscar; Quintero Giraldo, David; Pavón, Juan; López-Lacomba, José Luis; Jiménez-Piqué, Emilio; Anglada, Marc; Robledo, Sara M; Castaño, Juan G; Echeverría, Félix

    2015-02-01

    Titanium (Ti) is a material frequently used in orthopedic applications, due to its good mechanical properties and high corrosion resistance. However, formation of a non-adherent fibrous tissue between material and bone drastically could affect the osseointegration process and, therefore, the mechanical stability of the implant. Modifications of topography and configuration of the tissue/material interface is one of the mechanisms to improve that process by manipulating parameters such as morphology and roughness. There are different techniques that can be used to modify the titanium surface; plasma electrolytic oxidation (PEO) is one of those alternatives, which consists of obtaining porous anodic coatings by controlling parameters such as voltage, current, anodizing solution and time of the reaction. From all of the above factors, and based on previous studies that demonstrated that bone cells sense substrates features to grow new tissue, in this work commercially pure Ti (c.p Ti) and Ti6Al4V alloy samples were modified at their surface by PEO in different anodizing solutions composed of H2SO4 and H3PO4 mixtures. Treated surfaces were characterized and used as platforms to grow osteoblasts; subsequently, cell behavior parameters like adhesion, proliferation and differentiation were also studied. Although the results showed no significant differences in proliferation, differentiation and cell biological activity, overall results showed an important influence of topography of the modified surfaces compared with polished untreated surfaces. Finally, this study offers an alternative protocol to modify surfaces of Ti and their alloys in a controlled and reproducible way in which biocompatibility of the material is not compromised and osseointegration would be improved.

  17. High Stability Pentacene Transistors Using Polymeric Dielectric Surface Modifier.

    Science.gov (United States)

    Wang, Xiaohong; Lin, Guangqing; Li, Peng; Lv, Guoqiang; Qiu, Longzhen; Ding, Yunsheng

    2015-08-01

    1,6-bis(trichlorosilyl)hexane (C6Cl), polystyrene (PS), and cross-linked polystyrene (CPS) were investigated as gate dielectric modified layers for high performance organic transistors. The influence of the surface energy, roughness and morphology on the charge transport of the organic thin-film transistors (OTFTs) was investigated. The surface energy and roughness both affect the grain size of the pentacene films which will control the charge carrier mobility of the devices. Pentacene thin-film transistors fabricated on the CPS modified dielectric layers exhibited charge carrier mobility as high as 1.11 cm2 V-1 s-1. The bias stress stability for the CPS devices shows that the drain current only decays 1% after 1530 s and the mobility never decreases until 13530 s.

  18. Novel Hierarchical Micro/Nano Modified Surfaces for Dental Implants

    Directory of Open Access Journals (Sweden)

    Gabriela STRNAD

    2018-06-01

    Full Text Available Present paper presents the modification at nano scale level of the surfaces of Ti6Al4V alloy that were previously modified at micro scale level by acid etching (AE or by sand blasting with large grit and acid etching (SLA. Continuous, self-ordered nanostructured (nanoporous/nanotubular oxide layers superimposed onto micro rough topographies were developed by using electrochemical anodization in fluoride based solutions, and optimized process parameters. Novel hierarchical micro/nano modified surfaces, with well developed oxide nanotubes of 40-110 nm in diameter, were synthesis by anodization in 1M H3PO4 + 0.4 wt% HF electrolyte, at anodization potential of 24 V, applied with a potential ramp of 0.08 V/s.

  19. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    Science.gov (United States)

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  20. Listeria monocytogenes repellence by enzymatically modified PES surfaces

    NARCIS (Netherlands)

    Veen, van der S.; Nady, N.; Franssen, M.C.R.; Zuilhof, H.; Boom, R.M.; Abee, T.; Schroën, C.G.P.H.

    2015-01-01

    : The effect of enzyme-catalyzed modification of poly(ethersulfone) (PES) on the adhesion and biofilm formation of two Listeria monocytogenes strains is evaluated under static and dynamic flow conditions. PES has been modified with gallic acid, ferulic acid and 4-hydroxybenzoic acid. The surfaces

  1. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  2. Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes

    International Nuclear Information System (INIS)

    Berna, Antonio; Delgado, Jose Manuel; Orts, Jose Manuel; Rodes, Antonio; Feliu, Juan Miguel

    2008-01-01

    Acetate adsorption at gold electrodes is studied in perchloric acid solutions by cyclic voltammetry and in-situ infrared spectroscopy. External reflection measurements, performed with gold single crystal electrodes, are combined with Surface Enhanced Infrared Reflection Absorption Spectroscopy experiments under attenuated total reflection conditions (ATR-SEIRAS) carried out with sputtered gold thin-film electrodes. Theoretical harmonic IR frequencies of acetate species adsorbed with different geometries on Au clusters with (1 1 1), (1 0 0) and (1 1 0) orientations have been obtained from B3LYP/LANL2DZ, 6-31 + G* calculations. The theoretical and experimental results confirm that, irrespective of the surface crystallographic orientation, bonding of acetate to the surface involves the two oxygen atoms of the carboxylate group, with the OCO plane perpendicular to the metal surface. DFT calculations reveal also that the total charge of the metal cluster-acetate supermolecule has small effect on the vibrational frequencies of adsorbed acetate species. Both the external and the internal reflection measurements show the co-adsorption of acetate and perchlorate anions. Step-scan measurements carried out with the gold thin-film electrodes have allowed the monitoring of the time-dependent behaviour of perchlorate, acetate and water bands in potential step experiments. Acetate adsorption under those conditions is shown to involve perchlorate desorption and to follow a Langmuir-type kinetics. The step-scan spectra also show the rise and decay of transient water structures with parallel time-dependent shifts of the background intensity in the infrared spectra

  3. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    International Nuclear Information System (INIS)

    Rozing, Goran; Marusic, Vlatko; Alar, Vesna

    2017-01-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  4. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rozing, Goran [Osijek Univ. (Croatia). Chair of Mechanical Engineering; Marusic, Vlatko [Osijek Univ. (Croatia). Dept. of Engineering Materials; Alar, Vesna [Zagreb Univ. (Croatia). Dept. Materials

    2017-04-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  5. Preparation of Thermoplastic Poly (vinyl Alcohol), Ethylene Vinyl Acetate and Vinyl Acetate Versatic Ester Blends for Exterior Masonry Coating

    International Nuclear Information System (INIS)

    EL-Nahas, H.H.; Gad, Y.H.; Magida, M.M.

    2013-01-01

    Blend systems including ethylene vinyl acetate (EVA), poly (vinyl alcohol) (PVA) and vinyl acetate versatic copolymer latex (VAcVe) were prepared and used as exterior coatings. Mechanical and thermal properties of the blends were investigated using a testo meter, shore hardness tester, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The water resistance of the samples was measured. Effect of ionizing irradiation on gel content, tensile strength and surface hardness were also followed. The blend offers binder base for exterior masonry coating systems having superior water resistant and mechanical properties

  6. Cyclic Acetalization of Furfural on Porous Aluminosilicate Acid Catalysts

    Directory of Open Access Journals (Sweden)

    Hartati Hartati

    2016-12-01

    Full Text Available Porous aluminosilicate materials included microporous and mesoporous ZSM-5, hierarchical aluminosilicates, and mesoporous aluminosilicate were tested for acetalization of furfural (furan-2-carbaldehyde with propylene glycol. The existing synthesis methods for aluminosilicate and ZSM-5 were modified to produce aluminosilicate material with hierarchical porous structure. Catalytic activity in acetalization of furfural by propylene glycol were conducted by refluxed of the mixture of furfural, propylene glycol and catalyst, using toluene as solvent and nitrobenzene as internal standard, at 106 °C for 4 h. The result showed that a combination of two structure directing agents, tetrapropylammonium hydroxide (TPAOH and cetyltrimethylammonium bromide (CTAB and modification of catalytic crystallization produced an active aluminosilicate framework that provides a wide access for a bulky reactants and strong acid sites to catalyze the reaction. The pore structure and the strength of the Brønsted acid sites were crucial for the high conversion of furfural to produce a cyclic acetal.

  7. Theoretical aspects of methyl acetate and methanol activation on MgO(100) and (501) catalyst surfaces with application in FAME production

    Energy Technology Data Exchange (ETDEWEB)

    Man, Isabela-Costinela, E-mail: isabela.man@g.unibuc.ro [University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, 4-12 Regina Elisabeta Av., S3, 030018 Bucharest (Romania); Romanian Academy, ‘C.D. Nenitzescu’ Center of Organic Chemistry, 202B Spl. Independentei, 060023 Bucharest (Romania); Soriga, Stefan Gabriel [University Politehnica of Bucharest, Centre for Technology Transfer in the Process Industries, 1, Gh. Polizu Street, Building A, Room A056, RO-011061 Bucharest (Romania); Parvulescu, Vasile [University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, 4-12 Regina Elisabeta Av., S3, 030018 Bucharest (Romania)

    2017-01-15

    Highlights: • Energetics of C−O and C−H bond dissociation and formation of MeOAc on MgO(100) indicate that the bond formations are favorable. • Energetics of C−O and C−H bond dissociation and formation of MeOAc on MgO(501) indicate that the C−O bond dissociation and C−H bond formations are favorable. • The coadsorbed MeOH facilitate O−H bond dissociation of MeOH compared to isolated molecule. • Provide further understanding of reactivity of MgO surfaces with application in transesterification and interesterification reactions. - Abstract: Density functional theory (DFT) calculations were carried out to study the activation of methyl acetate and methanol on MgO(100) and MgO(501) surfaces and integrated in the context of transesterification, interesterification and glycerolysis reactions used in biodiesel industry. First results indicate the importance of including of dispersion forces in the calculations. On MgO(100) the reverse reactions steps of C−O and C−H dissociations and on MgO(501) the same reverse reaction step of C−H dissociations of methyl acetate are energetically favorable, while the dissociation of C−O bond into methoxide and acetate fragments on the edge of MgO(501) was found to be exothermic with a low activation energy. For methanol, the dissociation of O−H bond on MgO(100) surface in the presence of the second coadsorbed methanol molecule becomes more energetically favoured compared to the isolated molecule, due to the fact that the methoxide fragment is stabilized by intermolecular hydrogen bonding. This is reflected by the decrease of the activation energy of the forward reaction step and the increase of the activation energy of the backward reaction step, increasing the probability to have dissociated molecules among the undissociated ones. These results represent a step forward for better understanding from atomistic point of view the paths of these reactions on these surfaces for the corresponding catalytic

  8. Influence of the surface structure on the filtration performance of UV-modified PES membranes

    DEFF Research Database (Denmark)

    Kæselev, Bozena Alicja; Kingshott, P.; Jonsson, Gunnar Eigil

    2002-01-01

    chemically characterised using X-ray photoelectron spectroscopy (XPS) and time of flight-static secondary ion mass spectrometry (TOF-static SIMS). The filtration performance of irradiated/non-modified and irradiated/modified membranes was examined in a crossflow cell, using a dextran solution. The filtration...... in relation to dextran when compared to membranes modified by AAG and AAP. This work suggests that the structure of the presence of grafted chains seems to be responsible for the observed changes to filtration performance of the modified membrane. Surface analysis supports the claim that the specific surface...

  9. Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Gao, Xueli, E-mail: gxl_ouc@126.com [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Wang, Qun; Sun, Haijing; Wang, Xiaojuan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Gao, Congjie, E-mail: gaocjie@ouc.edu.cn [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China)

    2015-11-30

    Graphical abstract: - Highlights: • PES membrane was modified with a capsaicin derivative. • UV-assisted graft polymerization was carried out on membrane surface. • The capsaicin derivative modified membrane shows better antibiofouling property. - Abstract: The culprit of biofouling is the reproduction of viable microorganisms on the membrane surface. Recently, functionalization of membrane surface with natural antibacterial agents has drawn great attention. This work presents the fabrication of antibiofouling polyethersulfone (PES) ultrafiltration (UF) membranes by UV-assisted photo grafting of capsaicin derivative (N-(4-hydroxy-3-methoxy-benzyl)-acrylamide, HMBA) and itaconic acid (IA) on the surface of PES membrane. Results of FTIR-ATR, water static contact angle (WSCA) and atomic force microscopy (AFM) analysis confirmed the successful grafting of HMBA and IA on the membrane surface. We investigated the antifouling and antibacterial properties of these membranes using BSA and Escherichia coli as the test model, respectively. During a 150-min test, the modified membranes show much lower flux decline (42.7% for PES-g-1H0I, 22.2% for PES-g-1H1I and 7.7% for PES-g-1H5I) when compared with the pristine membrane (flux declined by 77%). The modified membranes exhibit excellent antibacterial activity (nearly 100%) when UV irradiation time was 6 min. The morphological study suggested that the E. coli on the pristine membrane showed a regular and smooth surface while that on the modified membrane was disrupted, which validated the antibacterial activity of the modified membranes.

  10. Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid

    International Nuclear Information System (INIS)

    Wang, Jian; Gao, Xueli; Wang, Qun; Sun, Haijing; Wang, Xiaojuan; Gao, Congjie

    2015-01-01

    Graphical abstract: - Highlights: • PES membrane was modified with a capsaicin derivative. • UV-assisted graft polymerization was carried out on membrane surface. • The capsaicin derivative modified membrane shows better antibiofouling property. - Abstract: The culprit of biofouling is the reproduction of viable microorganisms on the membrane surface. Recently, functionalization of membrane surface with natural antibacterial agents has drawn great attention. This work presents the fabrication of antibiofouling polyethersulfone (PES) ultrafiltration (UF) membranes by UV-assisted photo grafting of capsaicin derivative (N-(4-hydroxy-3-methoxy-benzyl)-acrylamide, HMBA) and itaconic acid (IA) on the surface of PES membrane. Results of FTIR-ATR, water static contact angle (WSCA) and atomic force microscopy (AFM) analysis confirmed the successful grafting of HMBA and IA on the membrane surface. We investigated the antifouling and antibacterial properties of these membranes using BSA and Escherichia coli as the test model, respectively. During a 150-min test, the modified membranes show much lower flux decline (42.7% for PES-g-1H0I, 22.2% for PES-g-1H1I and 7.7% for PES-g-1H5I) when compared with the pristine membrane (flux declined by 77%). The modified membranes exhibit excellent antibacterial activity (nearly 100%) when UV irradiation time was 6 min. The morphological study suggested that the E. coli on the pristine membrane showed a regular and smooth surface while that on the modified membrane was disrupted, which validated the antibacterial activity of the modified membranes.

  11. Electrodes Modification Based on Metal-Free Phthalocyanine: Example of Electrochemical Sensors for the Detection of Acetic Acid

    Directory of Open Access Journals (Sweden)

    Amadou L. Ndiaye

    2015-01-01

    Full Text Available Electroanalytical properties of tetra-tert-butyl phthalocyanine (PcH2-tBu modified electrodes are studied by cyclic voltammetry (CV. The modified electrodes are obtained by CV deposition techniques on gold (Au and glassy carbon (C screen-printed electrodes (SPEs and used for the electrochemical detection of acetic acid (AA. Based on the CV experiments, the electrodeposition mechanism is detailed. The modified PcH2-tBu electrodes reveal one oxidation and one reduction peak within the potential window of the working electrodes. In the presence of the analyte (acetic acid, the modified electrodes show sensitivity in the range of 10 mM to 400 mM. For the PcH2-tBu modified Au electrode, a limit of detection (LOD of 5.89 mM (based on the +0.06 V peak was obtained while for the PcH2-tBu modified C electrode a LOD of 17.76 mM (based on the +0.07 V peak was achieved. A signal decay of 17%, based on 20 experiments, is obtained when gold is used as working electrode. If carbon is used as working electrode a value of 7% is attained. A signal decay is observed after more than 50 cycles of experiments and is more pronounced when higher concentrations of acetic acid are used. A mechanism of sensing is proposed at the end.

  12. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  13. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    International Nuclear Information System (INIS)

    Salinas-Torres, David; Huerta, Francisco; Montilla, Francisco; Morallon, Emilia

    2011-01-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong π-π interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  14. Convergent evolution of a modified, acetate-driven TCA cycle in bacteria.

    Science.gov (United States)

    Kwong, Waldan K; Zheng, Hao; Moran, Nancy A

    2017-04-28

    The tricarboxylic acid (TCA) cycle is central to energy production and biosynthetic precursor synthesis in aerobic organisms. There are few known variations of a complete TCA cycle, with the common notion being that the enzymes involved have already evolved towards optimal performance. Here, we present evidence that an alternative TCA cycle, in which acetate:succinate CoA-transferase (ASCT) replaces the enzymatic step typically performed by succinyl-CoA synthetase (SCS), has arisen in diverse bacterial groups, including microbial symbionts of animals such as humans and insects.

  15. Peanut Shell-Derived Carbon Solid Acid with Large Surface Area and Its Application for the Catalytic Hydrolysis of Cyclohexyl Acetate

    Directory of Open Access Journals (Sweden)

    Wei Xue

    2016-10-01

    Full Text Available A carbon solid acid with large surface area (CSALA was prepared by partial carbonization of H3PO4 pre-treated peanut shells followed by sulfonation with concentrated H2SO4. The structure and acidity of CSALA were characterized by N2 adsorption–desorption, scanning electron microscopy (SEM, X-ray powder diffraction (XRD, 13C cross polarization (CP/magic angle spinning (MAS nuclear magnetic resonance (NMR, X-ray photoelectron spectroscopy (XPS, Fourier transform-infrared spectroscopy (FT-IR, titration, and elemental analysis. The results demonstrated that the CSALA was an amorphous carbon material with a surface area of 387.4 m2/g. SO3H groups formed on the surface with a density of 0.46 mmol/g, with 1.11 mmol/g of COOH and 0.39 mmol/g of phenolic OH. Densities of the latter two groups were notably greater than those observed on a carbon solid acid (CSA with a surface area of 10.1 m2/g. The CSALA catalyst showed better performance than the CSA for the hydrolysis of cyclohexyl acetate to cyclohexanol. Under optimal reaction conditions, cyclohexyl acetate conversion was 86.6% with 97.3% selectivity for cyclohexanol, while the results were 25.0% and 99.4%, respectively, catalyzed by CSA. The high activity of the CSALA could be attributed to its high density of COOH and large surface area. Moreover, the CSALA showed good reusability. Its catalytic activity decreased slightly during the first two cycles due to the leaching of polycyclic aromatic hydrocarbon-containing SO3H groups, and then remained constant during following uses.

  16. Corn stover lignin is modified differently by acetic acid compared to sulfuric acid

    NARCIS (Netherlands)

    Mouthier, Thibaut; Appeldoorn, Maaike M.; Pel, Herman; Schols, Henk A.; Gruppen, Harry; Kabel, Mirjam A.

    2018-01-01

    In this study, two acid catalysts, acetic acid (HAc) and sulfuric acid (H2SO4), were compared in thermal pretreatments of corn stover, in particular to assess the less understood fate of lignin. HAc-insoluble lignin, analyzed by pyrolysis GC–MS, showed decreasing levels (%) of Cα-oxidized (from 3.7

  17. Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection

    Science.gov (United States)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.

  18. Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Bing; Liang, Yong; Wang, Ting-Jie, E-mail: wangtj@tsinghua.edu.cn; Jiang, Yanping

    2016-02-28

    Graphical abstract: Nano silica particle was modified to produce hydrophobic surface with contact angle of 107° using the water soluble SDS as a modifier through a new route. The grafted density reached 1.82–2 nm. Brønsted acid sites supply proton to react with SDS via generating carbocation, forming a Si–O–C structure. - Highlights: • Silica was modified to produce hydrophobic surface using SDS as modifier. • The route is free of organic solvent and gets perfect contact of SDS and silica. • Contact angle of modified silica particles reached 107°. • Grafted density on the silica surface reached 1.82 SDS nm{sup −2}. • Brønsted acid sites supply proton to react with SDS via generating carbocation. - Abstract: Hydrophobic silica particles were prepared using the surfactant sodium dodecyl sulfate (SDS) as a modifier by a new route comprising three processes, namely, aqueous mixing, spray drying and thermal treatment. Since SDS dissolves in water, this route is free of an organic solvent and gave a perfect dispersion of SDS, that is, there was excellent contact between SDS and silica particles in the modification reaction. The hydrophobicity of the modified surface was verified by the contact angle of the nano-sized silica particles, which was 107°. The SDS grafting density reached 1.82 nm{sup −2}, which is near the highest value in the literature. The optimal parameters of the SDS/SiO{sub 2} ratio in the aqueous phase, process temperature and time of thermal treatment were determined to be 20%, 200 °C and 30 min, respectively. The grafting mechanism was studied by comparing the modification with that on same sized TiO{sub 2} particles, which indicated that the protons of the Brønsted acid sites on the surface of SiO{sub 2} reacted with SDS to give a carbocation which then formed a Si–O–C structure. This work showed that the hydrophilic surface of silica can be modified to be a hydrophobic surface by using a water soluble modifier SDS in a

  19. Synthesis Magnesium Hydroxide Nanoparticles and Cellulose Acetate- Mg(OH2-MWCNT Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Ghorbanali

    2015-04-01

    Full Text Available Mg(OH2 nanoparticles were synthesized by a rapid microwave reaction. The effect of sodium dodecyl sulfonate (SDS as anionic surfactant and cetyl tri-methyl ammonium bromide (CTAB as cationic surfactant on the morphology of magnesium hydroxide nanostructures was investigated. Multi wall carbon nano tubes was organo-modified for better dispersion in cellulose acetate matrix. The influence of Mg(OH2 nanoparticles and modified multi wall carbon nano tubes (MWCNT on the thermal stability of the cellulose acetate (CA matrix was studied using thermo-gravimetric analysis (TGA. Nanostructures were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and Fourier transform infrared (FT-IR spectroscopy. Thermal decomposition of the nanocomposites shift towards higher temperature in the presence of Mg(OH2 nanostructures. The enhancement of thermal stability of nanocomposites is due to the endothermic decomposition of Mg(OH2 and release of water which dilutes combustible gases.

  20. Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers

    Science.gov (United States)

    Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.

    2017-12-01

    Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.

  1. Graft polymerization of vinyl acetate onto starch. Saponification to starch-g-poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1979-01-01

    Graft polymerizations of vinyl acetate onto granular cornstarch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinyl acetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. Over half of the polymer was present as ungrafted poly(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficency. Grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate--methyl methacrylate was carried out near 0 0 C; although conversion of monomers to polymer was low and grafted polymer contained 40 to 50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch-g-poly(vinyl alcohol) in hot water was less than 50; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch-g-poly

  2. Conjugation chemistry through acetals toward a dextran-based delivery system for controlled release of siRNA

    KAUST Repository

    Cui, Lina

    2012-09-26

    New conjugation chemistry for polysaccharides, exemplified by dextran, was developed to enable the attachment of therapeutic or other functional moieties to the polysaccharide through cleavable acetal linkages. The acid-lability of the acetal groups allows the release of therapeutics under acidic conditions, such as that of the endocytic compartments of cells, regenerating the original free polysaccharide in the end. The physical and chemical behavior of these acetal groups can be adjusted by modifying their stereoelectronic and steric properties, thereby providing materials with tunable degradation and release rates. We have applied this conjugation chemistry in the development of water-soluble siRNA carriers, namely acetal-linked amino-dextrans, with various amine structures attached through either slow- or fast-degrading acetal linker. The carriers with the best combination of amine moieties and structural composition of acetals showed high in vitro transfection efficiency and low cytotoxicity in the delivery of siRNA. © 2012 American Chemical Society.

  3. Glassy carbon electrode modified by conductive polyaniline coating for determination of trace lead and cadmium ions in acetate buffer solution

    International Nuclear Information System (INIS)

    Wang Zhaomeng; Liu Erjia; Zhao Xing

    2011-01-01

    Polyaniline (PANI) coatings were electrodeposited on the surfaces of glassy carbon electrodes (GCEs) to form new electrodes, i.e. PANI/GCEs. It was found that with increased deposition time, the PANI coatings became more compact while the charge transfer resistance of the coatings became higher. The PANI/GCEs were used to detect Cd 2+ and Pb 2+ ions contained in 0.1 M acetate buffer solutions using square wave anodic stripping voltammetry (SWASV). It was found that the PANI/GCE had a highest anodic stripping peak current in a solution of pH 5.3. The study of the cleaning performance of the PANI/GCEs indicated that there were less remaining metals on the surfaces of the PANI/GCEs compared to the bare GCEs after cleaning at a potential of 0.4 V, which was probably due to that the PANI coatings could effectively prevent the deposition of the metals into the surface defects of the GCEs. The PANI coatings could also reduce the passivation effect of the GCEs, thus improving the repeatability of the electrodes.

  4. Synthesis and Evaluation of Zeolite Surface-Modified Perlite

    Directory of Open Access Journals (Sweden)

    Kasai Makoto

    2017-01-01

    Full Text Available Perlite is volcanic glass mainly composed of amorphous aluminum silicate, mainly composed SiO2 and Al2O3 with less impurities such as heavy metals. Amorphous (glassy perlite is used in lightweight aggregate and insulation. In addition, it has also been used as a filter aid by grinding the expanded perlite. However, it has not been used as environmental cleanup materials, because the ion exchange capacity of the perlite is very low. In this study, we tried to synthesize the hybrid filter aid with chemical adsorption capacity by synthesizing the zeolite on the surface of the perlite. As a result, by using the hydrothermal synthesis method, zeolite surface modified perlite was synthesized in which the LTA type zeolites were generated on the surface of the perlite.

  5. Modified-surface-energy methods for deriving heavy-ion potentials

    International Nuclear Information System (INIS)

    Sierk, A.J.

    1977-01-01

    The use of a modified-surface-energy approach for the calculation of heavy-ion interaction potentials is discussed. It is not possible to simultaneously fit elastic scattering, ion interaction barriers, and fission barriers with the same set of constants in this model. Possible explanations of this deficiency are discussed

  6. Optimization of Phospholipase A1 Immobilization on Plasma Surface Modified Chitosan Nanofibrous Mat

    Directory of Open Access Journals (Sweden)

    Zahra Beig Mohammadi

    2016-01-01

    Full Text Available Phospholipase A1 is known as an effective catalyst for hydrolysis of various phospholipids in enzymatic vegetable oil degumming. Immobilization is one of the most efficient strategies to improve its activity, recovery and functional properties. In this study, chitosan-co-polyethylene oxide (90:10 nanofibrous mat was successfully fabricated and modified with atmospheric plasma at different times (2, 6 and 10 min to interact with enzyme molecules. Scanning electron microscopy images revealed that the membranes retained uniform nanofibrous and open porous structures before and after the treatment. PLA1 was successfully immobilized onto the membrane surfaces via covalent bonds with the functional groups of chitosan nanofibrous mat. Response surface methodology was used to optimize the immobilization conditions for reaching the maximum immobilization efficiency. Enzyme concentration, pH, and immobilization time were found to be significant key factors. Under optimum conditions (5.03 h, pH 5.63, and enzyme dosage 654.36 UI, the atmospheric plasma surface modified chitosan nanofibers reached the highest immobilization efficiency (78.50%. Fourier transform infrared spectroscopy of the control and plasma surface-modified chitosan nanofibers revealed the functional groups of nanofibers and their reaction with the enzyme. The results indicated that surface modification by atmospheric plasma induced an increase in PLA1 loading on the membrane surfaces.

  7. Surface-modified silk hydrogel containing hydroxyapatite nanoparticle with hyaluronic acid-dopamine conjugate.

    Science.gov (United States)

    Kim, Hyung Hwan; Park, Jong Bo; Kang, Min Ji; Park, Young Hwan

    2014-09-01

    Silk fibroin/hydroxyapatite (SF/HAp) composite hydrogels were fabricated in this study, having different HAp contents (0-33 wt%) in SF matrix hydrogel. Surface modification of HAp nanoparticle with hyaluronic acid (HA)-dopamine (DA) conjugate improved a dispersibility of HAp in aqueous SF solution due to its negatively charged surface and therefore, fabrication of the SF composite hydrogel having HAp nanoparticles inside could be possible. Zeta potential of surface-modified HAP was examined by ELS. It demonstrates that surface of HAp was well modified to a negative charge with HA-DA. Morphological structure of SF hydrogel containing surface-modified HAp was examined by FE-SEM for analyzing pore structure of hydrogel and deposition of HAp nanoparticle in SF hydrogel. It was found that HAp nanoparticles were uniformly deposited on the pore wall of SF hydrogel. Structural characteristics of SF/HAp composite hydrogel was performed using X-ray diffraction and FT-IR analysis. It was found that β-sheet crystal conformation of SF was significantly influenced by the HAp content during gelation of a mixture of SF and HAp. As a result of MTT assay, the SF/HAp composite hydrogel showed excellent cell proliferation ability. Therefore, it is expected that SF hydrogel containing HAp nanoparticles has a high potential as bone regeneration scaffold. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Ultrasound-assisted dyeing of cellulose acetate.

    Science.gov (United States)

    Udrescu, C; Ferrero, F; Periolatto, M

    2014-07-01

    The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C. The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively. Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: a novel approach.

    Science.gov (United States)

    Xu, Zhi-Kang; Dai, Qing-Wen; Wu, Jian; Huang, Xiao-Jun; Yang, Qian

    2004-02-17

    A novel method for the surface modification of a microporous polypropylene membrane by tethering phospholipid analogous polymers (PAPs) is given, which includes the photoinduced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of grafted poly-(DMAEMA) with 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes. Five 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes, containing octyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy, and octadecyloxy groups in the molecular structure, were used to fabricate the PAP-modified polypropylene membranes. The attenuated total reflectance FT-IR spectra of the original, poly(DMAEMA)-grafted, and PAP-modified membranes confirmed the chemical changes on the membrane surface. Scanning electron microscope pictures showed that, compared with the original membrane, the surface porosities ofpoly(DMAEMA)-grafted and PAP-modified membranes were somewhat reduced. Water contact angles measured by the sessile drop method on PAP-modified membranes were slightly lower than that on the original polypropylene membrane, but higher than those on poly(DMAEMA)-grafted membranes with the exception of octyloxy-containing PAP-modified membranes. However, BSA adsorption experiments indicated that the five PAP-modified membranes had a much better protein-resistant property than the original polypropylene membrane and the poly(DMAEMA)-grafted membranes. For hexadecyloxy- and octadecyloxy-containing PAP-modified membranes, almost no protein adsorption was observed when the grafting degree was above 6 wt %. It was also found that the platelet adhesion was remarkably suppressed on the PAP-modified membranes. All these results demonstrate that the described approach is an effective way to improve the surface biocompatibility for polymeric membranes.

  10. Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations

    International Nuclear Information System (INIS)

    Wu, Sui-Dan; Zhang, Hui; Dong, Xu-Dong; Ning, Cheng-Yun; Fok, Alex S.L.; Wang, Yan

    2015-01-01

    Highlights: • MAO coating improves the surface characteristics and cytocompatibility of titanium. • Composition of MAO coating varies with the electrolyte concentration. • MAO coating properties can be optimized by adjusting the electrolyte concentration. • Higher CA concentration contributes to more favorable MAO coating cytocompatibility. - Abstract: Objective: To explore the effect of calcium concentration in the electrolyte solution on the physicochemical properties and biocompatibility of coatings formed by micro-arc oxidation (MAO) on titanium surfaces. Methods: The surfaces of pure titanium plates were modified by MAO in an electrolytic solution containing calcium acetate (CA; C 4 H 6 CaO 4 ) at concentrations of 0.05, 0.1, 0.2, or 0.3 M and β-glycerophosphate disodium salt pentahydrate (β-GP; C 3 H 7 Na 2 O 6 P·5H 2 O) at a fixed concentration of 0.02 M. Surface topography, elemental characteristics, phase composition, and roughness were investigated by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and a surface roughness tester, respectively. To assess the cytocompatibility and osteoinductivity of the surfaces, MC3T3-E1 preosteoblasts were cultured on the surfaces in vitro, and cell morphology, adhesion, proliferation, and differentiation were observed. Results: The porous MAO coating was composed primarily of TiO 2 rutile and anatase. The amount of TiO 2 rutile, the Ca/P ratio, and the surface roughness of the MAO coating increased with increasing CA concentration in the electrolyte solution. Ca 3 (PO 4 ) 2 , CaCO 3 , and CaTiO 3 were formed on MAO-treated surfaces prepared with CA concentrations of 0.2 and 0.3 M. Cell proliferation and differentiation increased with increasing CA concentration, with MC3T3-E1 cells exhibiting favorable morphologies for bone–implant integration. Conclusions: MAO coating improves the surface characteristics and cytocompatibility of titanium for osseointegration. Higher CA

  11. Iron modified titanium–hafnium binary oxides as catalysts in total oxidation of ethyl acetate

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Ivanova, R.; Henych, Jiří; Velinov, N.; Kormunda, M.; Dimitrov, M.; Paneva, D.; Slušná, Michaela; Mitov, I.; Štengl, Václav

    2016-01-01

    Roč. 81, JUN (2016), s. 14-19 ISSN 1566-7367 R&D Projects: GA MŠk LM2015073 Institutional support: RVO:61388980 Keywords : Titania–hafnia binary oxide s * Iron modifications * Support effect * Ethyl acetate oxydation Subject RIV: CA - Inorganic Chemistry Impact factor: 3.330, year: 2016

  12. Chemical functionalization of crystalline silicon surface with complexes of type (M3 (Dpa) 4X2) for the development of electronic devices

    International Nuclear Information System (INIS)

    Sanchez Zamora, Maria Alejandra

    2012-01-01

    New surfaces on crystalline silicon (100) diamines have been developed. The diamines 4-aminopyridine, 4-aminomethylpyridine and 1,12-dodecildiame, and self-assembled surfaces Si-diamine-metallic complexes, with cooper (II) acetate and trimetal Cu 3 (dpa) 4 CI 2 were studied. These surfaces are characterized with X-ray photoelectron spectroscopy (XPS), chemical force microscopy (CFM), by contact angle and cyclic voltammetry (CV). The XPS has suggested the formation of diamines monolayers with covalent binding to crystalline silicon, and modification of these surfaces, with metal complexes by coordination chemistry. The CFM has confirmed that surfaces are modified with diamines and cooper (II) acetate, and that were determined different chemical forces according to the change. The contact angle has been suggested that the functionalized surface with 4-aminomethylpyridine has had similar basicity to 1,12-dodecildiame, and more than 4-aminopyridine. This implies that the coordination with metallics complexes is benefited with 4-aminopyridine, which in turn is reflected with electrochemical data. Cyclic voltammetry analysis have showed that silicon surfaces with 4-aminomethylpyridine and 4-aminopyridine with cooper (II) acetate and trimetal have been electrochemically active. Thus, the surfaces could to have interesting applications in molecular electronics. (author) [es

  13. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  14. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kanjanakawinkul, Watchara [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Rades, Thomas [School of Pharmacy, University of Otago, Dunedin 9054 (New Zealand); Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen (Denmark); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand); Pongjanyakul, Thaned, E-mail: thaned@kku.ac.th [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2013-04-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties.

  15. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    International Nuclear Information System (INIS)

    Kanjanakawinkul, Watchara; Rades, Thomas; Puttipipatkhachorn, Satit; Pongjanyakul, Thaned

    2013-01-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties

  16. Analysis of acetal toilet fill valve supply line nut failure

    Directory of Open Access Journals (Sweden)

    Anthony Timpanaro

    2017-10-01

    Full Text Available In recent years, there has been a rise in the number of product liability cases involving the failure of toilet water supply line acetal plastic nuts. These nuts can fail in service, causing water leaks that result in significant property and financial losses. This study examines three possible failure modes of acetal plastic toilet water supply nuts. The three failure modes tested were all due to over load failure of the acetal nut and are as follows: (1 Overtightening of the supply line acetal nut, (2 Supply line lateral pull and, (3 Embrittled supply line lateral pull. Additionally, a “hand-tight” torque survey was conducted. The fracture surfaces and characteristics of these failure tests were examined with Stereo Microscopy and Scanning Electron Microscopy (SEM. The failure modes were compared and contrasted to provide guidance in determination of cause in these investigations.

  17. An investigation of phase transformation and crystallinity in laser surface modified H13 steel

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-03-01

    This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.

  18. Eutrophication management in surface waters using lanthanum modified bentonite

    DEFF Research Database (Denmark)

    Copetti, Diego; Finsterle, Karin; Marziali, Laura

    2016-01-01

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The availa......This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales....... The available data underline a high efficiency for phosphorus binding. This efficiency can be limited by the presence of humic substances and competing oxyanions. Lanthanum concentrations detected during a LMB application are generally below acute toxicological threshold of different organisms, except in low...... alkalinity waters. To date there are no indications for long-term negative effects on LMB treated ecosystems, but issues related to La accumulation, increase of suspended solids and drastic resources depletion still need to be explored, in particular for sediment dwelling organisms. Application of LMB...

  19. Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chen

    2014-01-01

    Full Text Available The objectives of this study are to characterize the properties of light-cured composite resins that are reinforced with whisker surface-modified particles of tetracalcium phosphate (TTCP and to investigate the influence of thermal cycling on the reinforced composites properties. The characteristics of ultimate diametral tensile strength (DTS, moduli, pH values, and fracture surfaces of the samples with different amounts of surface-modified TTCP (30%–60% were determined before and after thermal cycling between 5°C and 55°C in deionized water for 600 cycles. The trends of all groups were ductile prior to thermal cycling and the moduli of all groups increased after thermal cycling. The ductile property of the control group without filler was not significantly affected. Larger amounts of fillers caused the particles to aggregate, subsequently decreasing the resin’s ability to disperse external forces and leading to brittleness after thermal cycling. Therefore, the trend of composite resins with larger amounts of filler would become more brittle and exhibited higher moduli after thermal cycling. This developed composite resin with surface modified-TTCP fillers has the potential to be successful dental restorative materials.

  20. Improvement of epoxy resin properties by incorporation of TiO2 nanoparticles surface modified with gallic acid esters

    International Nuclear Information System (INIS)

    Radoman, Tijana S.; Džunuzović, Jasna V.; Jeremić, Katarina B.; Grgur, Branimir N.; Miličević, Dejan S.; Popović, Ivanka G.; Džunuzović, Enis S.

    2014-01-01

    Highlights: • Nanocomposites of epoxy resin and TiO 2 nanoparticles surface modified with gallates. • The T g of epoxy resin was increased by incorporation of surface modified TiO 2 . • WVTR of epoxy resin decreased in the presence of surface modified TiO 2 nanoparticles. • WVTR of nanocomposites was reduced with increasing gallates hydrophobic chain length. • Modified TiO 2 nanoparticles react as oxygen scavengers, inhibiting steel corrosion. - Abstract: Epoxy resin/titanium dioxide (epoxy/TiO 2 ) nanocomposites were obtained by incorporation of TiO 2 nanoparticles surface modified with gallic acid esters in epoxy resin. TiO 2 nanoparticles were obtained by acid catalyzed hydrolysis of titanium isopropoxide and their structural characterization was performed by X-ray diffraction and transmission electron microscopy. Three gallic acid esters, having different hydrophobic part, were used for surface modification of the synthesized TiO 2 nanoparticles: propyl, hexyl and lauryl gallate. The gallate chemisorption onto surface of TiO 2 nanoparticles was confirmed by Fourier transform infrared and ultraviolet–visible spectroscopy, while the amount of surface-bonded gallates was determined using thermogravimetric analysis. The influence of the surface modified TiO 2 nanoparticles, as well as the length of hydrophobic part of the gallate used for surface modification of TiO 2 nanoparticles, on glass transition temperature, barrier, dielectric and anticorrosive properties of epoxy resin was investigated by differential scanning calorimetry, water vapor transmission test, dielectric spectroscopy, electrochemical impedance spectroscopy and polarization measurements. Incorporation of surface modified TiO 2 nanoparticles in epoxy resin caused increase of glass transition temperature and decrease of the water vapor permeability of epoxy resin. The water vapor transmission rate of epoxy/TiO 2 nanocomposites was reduced with increasing hydrophobic part chain length of

  1. Drug-loaded Cellulose Acetate and Cellulose Acetate Butyrate Films ...

    African Journals Online (AJOL)

    The purpose of this research work was to evaluate the contribution of formulation variables on release properties of matrix type ocular films containing chloramphenicol as a model drug. This study investigated the use of cellulose acetate and cellulose acetate butyrate as film-forming agents in development of ocular films.

  2. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces.

    Science.gov (United States)

    Jogikalmath, G; Stuart, J K; Pungor, A; Hlady, V

    1999-08-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface more uniform. The subsequent hydrolysis of the terminal epoxide groups resulted in a larger surface heterogeneity which was modeled by two populations of the terminal hydroxyl groups, each with its own distribution of adhesion forces and force variance. The activation of the hydroxyls with carbonyldiimmidazole (CDI) healed the surface and lowered its adhesion, however, the force variance remained rather large. Finally, the grafting of the α,ω-diamino poly(ethyleneoxide) chains to the CDI-activated glass largely eliminated adhesion except at a few discrete regions. The adhesion on the PEO grafted layer followed the Poisson distribution of the pull-off forces. With the exception of the glass surface, a correlation between the water contact angles and the mean pull-off forces measured with the Si(3)N(4) tip surfaces was found for all modified glass surfaces.

  3. Phonon dispersion on Ag (100) surface: A modified analytic embedded atom method study

    International Nuclear Information System (INIS)

    Zhang Xiao-Jun; Chen Chang-Le

    2016-01-01

    Within the harmonic approximation, the analytic expression of the dynamical matrix is derived based on the modified analytic embedded atom method (MAEAM) and the dynamics theory of surface lattice. The surface phonon dispersions along three major symmetry directions, and XM-bar are calculated for the clean Ag (100) surface by using our derived formulas. We then discuss the polarization and localization of surface modes at points X-bar and M-bar by plotting the squared polarization vectors as a function of the layer index. The phonon frequencies of the surface modes calculated by MAEAM are compared with the available experimental and other theoretical data. It is found that the present results are generally in agreement with the referenced experimental or theoretical results, with a maximum deviation of 10.4%. The agreement shows that the modified analytic embedded atom method is a reasonable many-body potential model to quickly describe the surface lattice vibration. It also lays a significant foundation for studying the surface lattice vibration in other metals. (paper)

  4. Competitive Protein Adsorption on Polysaccharide and Hyaluronate Modified Surfaces

    Science.gov (United States)

    Ombelli, Michela; Costello, Lauren; Postle, Corinne; Anantharaman, Vinod; Meng, Qing Cheng; Composto, Russell J.; Eckmann, David M.

    2011-01-01

    We measured adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) onto six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and streptococcus zooepidemicus. Film thickness and surface morphology depended on HA molecular weight and concentration. BSA coverage was enhanced on surfaces upon competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of hyaluronic acid utilized. With changing bulk protein concentration from 20 to 40 µg ml−1 for each species, Fg coverage on silicon increased by 4×, whereas both BSA and Fg adsorption on dextran and HA were far less dependent of protein bulk concentration. PMID:21623481

  5. Understanding long-term silver release from surface modified porous titanium implants.

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2017-08-01

    Prevention of orthopedic device related infection (ODRI) using antibiotics has met with limited amount of success and is still a big concern during post-surgery. As an alternative, use of silver as an antibiotic treatment to prevent surgical infections is being used due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer term solution to infection in vivo. Keeping that in mind, the focus of this study was to understand the long term release study of silver ions for a period of minimum 6months from silver coated surface modified porous titanium implants. Implants were fabricated using a LENS™ system, a powder based additive manufacturing technique, with at least 25% volume porosity, with and without TiO 2 nanotubes in phosphate buffer saline (pH 7.4) to see if the total release of silver ions is within the toxic limit for human cells. Considering the fact that infection sites may reduce the local pH, silver release was also studied in acetate buffer (pH 5.0) for a period of 4weeks. Along with that, the osseointegrative properties as well as cytotoxicity of porous titanium implants were assessed in vivo for a period of 12weeks using a rat distal femur model. In vivo results indicate that porous titanium implants with silver coating show comparable, if not better, biocompatibility and bonding at the bone-implant interface negating any concerns related to toxicity related to silver to normal cells. The current research is based on our recently patented technology, however focused on understanding longer-term silver release to mitigate infection related problems in load-bearing implants that can even arise several months after the surgery. Prevention of orthopedic device related infection using antibiotics has met

  6. Surface-modified polymeric pads for enhanced performance during chemical mechanical planarization

    International Nuclear Information System (INIS)

    Deshpande, S.; Dakshinamurthy, S.; Kuiry, S.C.; Vaidyanathan, R.; Obeng, Y.S.; Seal, S.

    2005-01-01

    The chemical mechanical planarization (CMP) process occurs at an atomic level at the slurry/wafer interface and hence slurries and polishing pads play a critical role in their successful implementation. Polyurethane is a commonly used polymer in the manufacturing of CMP pads. These pads are incompatible with some chemicals present in the CMP slurries, such as hydrogen peroxide. To overcome these problems, Psiloquest has developed new Application Specific Pads (ASP). Surface of such pads has been modified by depositing a thin film of tetraethyl orthosilicate using plasma-enhanced chemical vapor deposition (PECVD) process. In the present study, mechanical properties of such coated pads have been investigated using nanoindentation. The surface morphology and the chemistry of the ASP were studied using scanning electron microcopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy techniques. It was observed that mechanical and chemical properties of the pad top surface are a function of the PECVD coating time. Such PECVD-treated pads are found to be hydrophilic and do not require storage in aqueous media during the not-in-use period. The metal removal rate using such surface-modified polishing pads was found to increase linearly with the PECVD coating time

  7. Application of a modified electrochemical system for surface decontamination of radioactive metal waste

    International Nuclear Information System (INIS)

    Lee, J.H.; Lim, Y.K.; Yang, H.Y.; Shin, S.W.; Song, M.J.

    2003-01-01

    Conventional and modified electrolytic decontamination experiments were performed in a solution of sodium sulfate for the decontamination of carbon steel as the simulated metal wastes which are generated in large amounts from nuclear power plants. The effect of reaction time, current density and concentration of electrolytes in the modified electrolytic decontamination system were examined to remove the surface contamination of the simulated radioactive metal wastes. As for the results of this research, the modified electrochemical decontamination process can decontaminate more effectively than the conventional decontamination process by applying different anode material which causes higher induced electro-motive forces. When 0.5 M sodium sulfate, 0.4 A/cm 2 current density and 30 minutes reaction time were applied in the modified process, a 16 μm thickness change that is expected to remove most surface contamination in radioactive metal wastes was achieved on carbon steel which is the main material of radioactive metal waste in nuclear power plants. The decontamination efficiency of metal waste showed similar results with the small and large lab-scale modified electrochemical system. The application of this modified electrolytic decontamination system is expected to play a considerable role for decontamination of radioactive metal waste in nuclear power plants in the near future. (author)

  8. Copper hexacyanoferrate formation on the modified silica surface with DAB-Am-16 dendrimer

    International Nuclear Information System (INIS)

    Carmo, Devaney R. do; Gabriel Junior, Suelino; Bicalho, Urquisa O.; Paim, Leonardo L.

    2009-01-01

    The dendrimer hexadecamine poly(propylene)imine (DAB-Am-16) of third generation (G-3) was anchored on the silica gel surface. The modified silica interact easily with Cu 2+ and then with hexacyanoferrate to form copper hexacyanoferrate. The modified silica was characterized by following techniques: nuclear magnetic resonance (NMR), infrared (FTIR), energy dispersive X-ray (EDX) and cyclic voltammetry. As application of the composite obtained, the modified silica containing copper hexacyanoferrate (CuHCFSD) was tested for a voltammetric determination of nitrite using a graphite paste modified electrode. The modified graphite paste electrode can be applied also to the determination of others biological substances with success. (author)

  9. Electrochemical immobilization of biomolecules on gold surface modified with monolayered L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Mitsunori, E-mail: honda.mitsunori@jaea.go.jp; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie

    2014-04-01

    Immobilization of organic molecules on the top of a metal surface is not easy because of lattice mismatch between organic and metal crystals. Gold atoms bind to thiol groups through strong chemical bonds, and a self-assembled monolayer of sulfur-terminated organic molecules is formed on the gold surface. Herein, we suggested that a monolayer of L-cysteine deposited on a gold surface can act as a buffer layer to immobilize biomolecules on the metal surface. We selected lactic acid as the immobilized biomolecule because it is one of the simplest carboxyl-containing biomolecules. The immobilization of lactic acid on the metal surface was carried out by an electrochemical method in an aqueous environment under the potential range varying from − 0.6 to + 0.8 V. The surface chemical states before and after the electrochemical reaction were characterized using X-ray photoelectron spectroscopy (XPS). The N 1s and C 1s XPS spectra showed that the L-cysteine-modified gold surface can immobilize lactic acid via peptide bonds. This technique might enable the immobilization of large organic molecules and biomolecules. - Highlights: • Monolayer l-cysteine deposited on Au surface as a buffer layer to immobilize biomolecules. • Lactic acid as the immobilized biomolecule as it is simple carboxyl-containing biomolecule. • X-ray photoelectron spectroscopy (XPS) of surface chemical states, before and after. • L-cysteine-modified Au surface can immobilize lactic acid via peptide bonds.

  10. Electrochemical immobilization of biomolecules on gold surface modified with monolayered L-cysteine

    International Nuclear Information System (INIS)

    Honda, Mitsunori; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie

    2014-01-01

    Immobilization of organic molecules on the top of a metal surface is not easy because of lattice mismatch between organic and metal crystals. Gold atoms bind to thiol groups through strong chemical bonds, and a self-assembled monolayer of sulfur-terminated organic molecules is formed on the gold surface. Herein, we suggested that a monolayer of L-cysteine deposited on a gold surface can act as a buffer layer to immobilize biomolecules on the metal surface. We selected lactic acid as the immobilized biomolecule because it is one of the simplest carboxyl-containing biomolecules. The immobilization of lactic acid on the metal surface was carried out by an electrochemical method in an aqueous environment under the potential range varying from − 0.6 to + 0.8 V. The surface chemical states before and after the electrochemical reaction were characterized using X-ray photoelectron spectroscopy (XPS). The N 1s and C 1s XPS spectra showed that the L-cysteine-modified gold surface can immobilize lactic acid via peptide bonds. This technique might enable the immobilization of large organic molecules and biomolecules. - Highlights: • Monolayer l-cysteine deposited on Au surface as a buffer layer to immobilize biomolecules. • Lactic acid as the immobilized biomolecule as it is simple carboxyl-containing biomolecule. • X-ray photoelectron spectroscopy (XPS) of surface chemical states, before and after. • L-cysteine-modified Au surface can immobilize lactic acid via peptide bonds

  11. Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite

    DEFF Research Database (Denmark)

    Dannemand, Mark; Johansen, Jakob Berg; Furbo, Simon

    2016-01-01

    Sodium acetate trihydrate is a promising phase change material for long term storage of solar thermal energy if supercooling is actively utilized. Well performing thermal energy storages need to be able to charge and discharge energy at a high rate. The relatively low thermal conductivity....... Investigations of the solidification behavior, the formation of cavities and thermal conductivity of composites based on sodium acetate trihydrate crystalizing with or without supercooling are presented in this paper. The thermal conductivity was measured with an ISOMET hot disc surface measurement probe....... Samples that crystalized without supercooling tended to form solid crystals near the heat transfer surface and cavities away from the heat transfer surface. The measured thermal conductivity was up to 0.7 W/m K in solid sodium acetate trihydrate. Samples that crystalized from supercooled state formed...

  12. Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers.

    Science.gov (United States)

    Jindal, Shivali; Anand, Sanjeev; Huang, Kang; Goddard, Julie; Metzger, Lloyd; Amamcharla, Jayendra

    2016-12-01

    The development of bacterial biofilms on stainless steel (SS) surfaces poses a great threat to the quality of milk and other dairy products as the biofilm-embedded bacteria can survive thermal processing. Established biofilms offer cleaning challenges because they are resistant to most of the regular cleaning protocols. Sporeforming thermoduric organisms entrapped within biofilm matrix can also form heat-resistant spores, and may result in a long-term persistent contamination. The main objective of this study was to evaluate the efficacy of different nonfouling coatings [AMC 18 (Advanced Materials Components Express, Lemont, PA), Dursan (SilcoTek Corporation, Bellefonte, PA), Ni-P-polytetrafluoroethylene (PTFE, Avtec Finishing Systems, New Hope, MN), and Lectrofluor 641 (General Magnaplate Corporation, Linden, NJ)] on SS plate heat exchanger surfaces, to resist the formation of bacterial biofilms. It was hypothesized that modified SS surfaces would promote a lesser amount of deposit buildup and bacterial adhesion as compared with the native SS surface. Vegetative cells of aerobic sporeformers, Geobacillus stearothermophilus (ATCC 15952), Bacillus licheniformis (ATCC 6634), and Bacillus sporothermodurans (DSM 10599), were used to study biofilm development on the modified and native SS surfaces. The adherence of these organisms, though influenced by surface energy and hydrophobicity, exhibited no apparent relation with surface roughness. The Ni-P-PTFE coating exhibited the least bacterial attachment and milk solid deposition, and hence, was the most resistant to biofilm formation. Scanning electron microscopy, which was used to visualize the extent of biofilm formation on modified and native SS surfaces, also revealed lower bacterial attachment on the Ni-P-PTFE as compared with the native SS surface. This study thus provides evidence of reduced biofilm formation on the modified SS surfaces. Copyright © 2016 American Dairy Science Association. Published by Elsevier

  13. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces

    OpenAIRE

    Jogikalmath, G.; Stuart, J.K.; Pungor, A.; Hlady, V.

    1999-01-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface mo...

  14. A case of anaphylactoid reaction to acetate in acetate-containing bicarbonate dialysate.

    Science.gov (United States)

    Misaki, Taro; Suzuki, Yumiko; Naito, Yoshitaka; Shiooka, Tempei; Isozaki, Taisuke

    2015-05-01

    A 35-year-old man with end-stage kidney disease due to chronic glomerulonephritis was admitted to our hospital to start maintenance hemodialysis (HD). One hour after starting the first session of HD, he experienced general pruritus, urticaria, and dyspnea. Signs and symptoms were resolved by discontinuing HD and administrating an antihistamine drug; HD-associated anaphylactoid reactions were therefore suspected. Over the next few HD sessions, we changed the dialysis membrane, anticoagulant, HD circuit and needle, in that order, but general pruritus and urticaria again appeared within 3 h after starting each session of HD. Finally, when we changed the dialysate from acetate-containing bicarbonate dialysate to acetate-free bicarbonate dialysate, urticaria was clearly less than that seen in previous HD sessions, and subsided after discontinuation of HD. Subsequently, 20 mg of oral prednisolone (PSL) was administered 1 h before starting HD, and the patient did not experience general pruritus, urticaria, or dyspnea after starting the session. When administered acetate-containing bicarbonate dialysate after oral PSL pretreatment, the patient again experienced general pruritus, urticaria and dyspnea. Few reports have been published on the occurrence of anaphylactoid reactions during HD using acetate dialysate. We report a rare case of anaphylactoid reactions with acetate in acetate-containing bicarbonate dialysate that were reduced with the use of acetate-free bicarbonate dialysate and oral PSL pretreatment.

  15. ELECTROCATALYSIS ON SURFACES MODIFIED BY METAL MONOLAYERS DEPOSITED AT UNDERPOTENTIALS.

    Energy Technology Data Exchange (ETDEWEB)

    ADZIC,R.

    2000-12-01

    The remarkable catalytic properties of electrode surfaces modified by monolayer amounts of metal adatoms obtained by underpotential deposition (UPD) have been the subject of a large number of studies during the last couple of decades. This interest stems from the possibility of implementing strictly surface modifications of electrocatalysts in an elegant, well-controlled way, and these bi-metallic surfaces can serve as models for the design of new catalysts. In addition, some of these systems may have potential for practical applications. The UPD of metals, which in general involves the deposition of up to a monolayer of metal on a foreign substrate at potentials positive to the reversible thermodynamic potential, facilitates this type of surface modification, which can be performed repeatedly by potential control. Recent studies of these surfaces and their catalytic properties by new in situ surface structure sensitive techniques have greatly improved the understanding of these systems.

  16. Effect of Amelogenin Coating of a Nano-Modified Titanium Surface on Bioactivity

    Directory of Open Access Journals (Sweden)

    Chisato Terada

    2018-04-01

    Full Text Available The interactions between implants and host tissues depend on several factors. In particular, a growing body of evidence has demonstrated that the surface texture of an implant influences the response of the surrounding cells. The purpose of this study is to develop new implant materials aiming at the regeneration of periodontal tissues as well as hard tissues by coating nano-modified titanium with amelogenin, which is one of the main proteins contained in Emdogain®. We confirmed by quartz crystal microbalance evaluation that amelogenin is easy to adsorb onto the nano-modified titanium surface as a coating. Scanning electron microscopy, scanning probe microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy analyses confirmed that amelogenin coated the nano-modified titanium surface following alkali-treatment. In vitro evaluation using rat bone marrow and periodontal ligament cells revealed that the initial adhesion of both cell types and the induction of hard tissue differentiation such as cementum were improved by amelogenin coating. Additionally, the formation of new bone in implanted surrounding tissues was observed in in vivo evaluation using rat femurs. Together, these results suggest that this material may serve as a new implant material with the potential to play a major role in the advancement of clinical dentistry.

  17. Corrosion Behavior of PEO Coatings Formed on AZ31 Alloy in Phosphate-Based Electrolytes with Calcium Acetate Additive

    Science.gov (United States)

    Ziyaei, E.; Atapour, M.; Edris, H.; Hakimizad, A.

    2017-07-01

    The PEO coating started on magnesium AZ31 using a unipolar DC power source. The coating was generated in the electrolyte based on Na3PO4·12H2O and KOH with calcium acetate as additive. The x-ray diffraction method showed some phases containing calcium and phosphate, which was created in the presence of additive. Also, the EDS tests of the sample's surfaces proved the existence of calcium on the surface. Based on the electrochemical tests results, the most corrosion resistance belongs to the sample with calcium acetate additive. In fact, the results of the EIS tests showed the coating with calcium acetate has the highest resistance but the lowest capacitance. However, this state belongs to the surface morphology, the lower porosity, and surface chemical composition.

  18. Polydopamine/Cysteine surface modified isoporous membranes with self-cleaning properties

    KAUST Repository

    Shevate, Rahul

    2017-02-03

    The major challenge in membrane filtration is fouling which reduces the membrane performance. Fouling is mainly due to the adhesion of foulants on the membrane surfaces. In this work, we studied the fouling behaviour of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) isoporous membrane and the mussel inspired polydopamine/L-cysteine isoporous zwitterionic membrane. Polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) isoporous membranes were fabricated via self-assembly and non-solvent induced phase separation method. Subsequently, the isoporous membrane was modified by a mild mussel-inspired polydopamine (PDA) coating; the isoporous surface structure and the water flux was retained. Zwitterionic L-cysteine was further anchored on the PDA coated membranes via Michael addition reaction at pH 7 and 50 °C to alleviate their antifouling ability with foulants solution. The membranes were thoroughly characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and zeta potential measurements. Contact angle and dynamic scanning calorimetry (DSC) measurements were carried out to examine the hydrophilicity. The pH-responsive behaviour of the modified membrane remains unchanged and antifouling ability after PDA/L-cysteine functionalization was improved. The modified and unmodified isoporous membranes were tested using humic acid and natural organic matter model solutions at 0.5 bar feed pressure.

  19. Catalytic oxidation of butyl acetate over silver-loaded zeolites

    International Nuclear Information System (INIS)

    Wong, Cheng Teng; Abdullah, Ahmad Zuhairi; Bhatia, Subhash

    2008-01-01

    The performance of silver-loaded zeolite (HY and HZSM-5) catalysts in the oxidation of butyl acetate as a model volatile organic compound (VOC) was studied. The objective was to find a catalyst with superior activity, selectivity towards deep oxidation product and stability. The catalyst activity was measured under excess oxygen condition in a packed bed reactor operated at gas hourly space velocity (GHSV) = 15,000-32,000 h -1 , reaction temperature between 150 and 500 deg. C and butyl acetate inlet concentration of 1000-4000 ppm. Both AgY and AgZSM-5 catalysts exhibited high activity in the oxidation of butyl acetate. Despite lower silver content, AgY showed better activity, attributed to better metal dispersion, surface characteristics and acidity, and its pore system. Total conversion of butyl acetate was achieved at above 400 deg. C. The oxidation of butyl acetate followed a simple power law model. The reaction orders, n and m were evaluated under differential mode by varying the VOC partial pressure between 0.004 and 0.018 atm and partial pressure of oxygen between 0.05 and 0.20 atm. The reaction rate was independent of oxygen concentration and single order with respect to VOC concentration. The activation energies were 19.78 kJ/mol for AgY and 32.26 kJ/mol for AgZSM-5, respectively

  20. Photoluminescence investigation of ZnO quantum dots surface modified with silane coupling agent as a capping agent

    Energy Technology Data Exchange (ETDEWEB)

    Moghaddam, E., E-mail: e.moghaddam@merc.ac.ir; Youzbashi, A.A; Kazemzadeh, A.; Eshraghi, M.J.

    2015-12-15

    This report presents the luminescence measurement results of surface modified zinc oxide quantum dots (ZnO QDs) performed with different concentrations of 3-aminopropyltriethoxysilane (APTES) as a capping agent. Surface modification was performed by an in situ procedure on the surface of ZnO QDs in a sol gel solution route. The modified samples were characterized by various analytical techniques such as XRD, TEM, FT-IR, and UV–vis spectroscopy. Surface modification efficiency was experimentally investigated by variation of the photoluminescence) PL (emission intensities observed by changing the capping agent concentration. In order to investigate the effectiveness of the capping agent on the stability of the QDs, The PL spectra of the surface modified ZnO QDs were compared with that of unmodified ZnO QDs. Molecular layer of this type and similar silane based molecules with a variety of surface terminations that have the same molecular attachment schemes should enable interface engineering in optimizing the chemical selectivity of ZnO biosensors or electrical and optical properties of ZnO-polymer hybrid films. - Highlights: • Surface modification of ZnO QDs resulted in the small- size QDs (around 2 nm). • Surface modification resulted in the enhancement of the UV emission upon quenching the visible emission. • Surface modification efficiency was decreased with reduction of the QD size • Intensified stability of the surface modified ZnO QDs was obtained from surface modification.

  1. Effects of modified surfaces produced at plasma-facing surface on hydrogen release behavior in the LHD

    Directory of Open Access Journals (Sweden)

    Y. Nobuta

    2017-08-01

    Full Text Available In the present study, an additional deuterium (D ion irradiation was performed against long-term samples mounted on the helical coil can and in the outer private region in the LHD during the 17th experimental campaign. Based on the release behavior of the D and hydrogen (H retained during the experimental campaign, the difference of release behavior at the top surface and in bulk of modified surfaces is discussed. Almost all samples on the helical coil can were erosion-dominant and some samples were covered with boron or carbon, while a very thick carbon films were formed in the outer private region. In the erosion-dominant area, the D desorbed at much lower temperatures compared to that of H retained during the LHD plasma operation. For the samples covered with boron, the D tended to desorb at lower temperatures compared to H. For the carbon deposition samples, the D desorbed at much higher temperatures compared to no deposition and boron-covered samples, which was very similar to that of H. The D retention capabilities at the top surface of carbon and boron films were 2–3 times higher than no deposition area. The results indicate that the retention and release behavior at the top surface of the modified layer can be different from that of bulk substrate material.

  2. Improvement of surface acidity and structural regularity of Zr-modified mesoporous MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.F. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico)]. E-mail: chenlf2001@yahoo.com; Norena, L.E. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico); Navarrete, J. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico); Wang, J.A. [Laboratorio de Catalisis y Materiales, SEPI-ESIQIE, Instituto Politecnico Nacional, Av. Politecnico S/N, Col. Zacatenco, 07738 Mexico D.F. (Mexico)

    2006-06-10

    This work reports the synthesis and surface characterization of a Zr-modified mesoporous MCM-41 solid with an ordered hexagonal arrangement, prepared through a templated synthesis route, using cetyltrimethylammonium chloride as the template. The surface features, crystalline structure, textural properties and surface acidity of the materials were characterized by in situ Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), N{sub 2} physisorption isotherms, {sup 29}Si MAS-NMR and in situ FT-IR of pyridine adsorption. It is evident that the surfactant cations inserted into the network of the solids during the preparation could be removed by calcination of the sample above 500 deg. C. The resultant material showed a large surface area of 680.6 m{sup 2} g{sup -1} with a uniform pore diameter distribution in a very narrow range centered at approximately 2.5 nm. Zirconium incorporation into the Si-MCM-41 framework, confirmed by {sup 29}Si MAS-NMR analysis, increased not only the wall thickness of the mesopores but also the long-range order of the periodically hexagonal structure. Both, Lewis and Broensted acid sites, were formed on the surface of the Zr-modified MCM-41 solid. Compared to Si-MCM-41 on which only very weak Lewis acid sites were formed, the densities of both Lewis and Broensted acid sites and the strength of the acidity on the Zr-modified sample were significantly increased, indicating that the incorporation of zirconium greatly enhances the acidity of the material.

  3. Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sui-Dan; Zhang, Hui [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Dong, Xu-Dong [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3 (Canada); Ning, Cheng-Yun [College of Material Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Fok, Alex S.L. [Minnesota Dental Research Center of Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55414 (United States); Wang, Yan, E-mail: wyan65@163.com [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2015-02-28

    Highlights: • MAO coating improves the surface characteristics and cytocompatibility of titanium. • Composition of MAO coating varies with the electrolyte concentration. • MAO coating properties can be optimized by adjusting the electrolyte concentration. • Higher CA concentration contributes to more favorable MAO coating cytocompatibility. - Abstract: Objective: To explore the effect of calcium concentration in the electrolyte solution on the physicochemical properties and biocompatibility of coatings formed by micro-arc oxidation (MAO) on titanium surfaces. Methods: The surfaces of pure titanium plates were modified by MAO in an electrolytic solution containing calcium acetate (CA; C{sub 4}H{sub 6}CaO{sub 4}) at concentrations of 0.05, 0.1, 0.2, or 0.3 M and β-glycerophosphate disodium salt pentahydrate (β-GP; C{sub 3}H{sub 7}Na{sub 2}O{sub 6}P·5H{sub 2}O) at a fixed concentration of 0.02 M. Surface topography, elemental characteristics, phase composition, and roughness were investigated by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and a surface roughness tester, respectively. To assess the cytocompatibility and osteoinductivity of the surfaces, MC3T3-E1 preosteoblasts were cultured on the surfaces in vitro, and cell morphology, adhesion, proliferation, and differentiation were observed. Results: The porous MAO coating was composed primarily of TiO{sub 2} rutile and anatase. The amount of TiO{sub 2} rutile, the Ca/P ratio, and the surface roughness of the MAO coating increased with increasing CA concentration in the electrolyte solution. Ca{sub 3}(PO{sub 4}){sub 2}, CaCO{sub 3}, and CaTiO{sub 3} were formed on MAO-treated surfaces prepared with CA concentrations of 0.2 and 0.3 M. Cell proliferation and differentiation increased with increasing CA concentration, with MC3T3-E1 cells exhibiting favorable morphologies for bone–implant integration. Conclusions: MAO coating improves the surface characteristics and

  4. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    International Nuclear Information System (INIS)

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A.

    1991-01-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of 51 Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in 51 Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal 51 Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol

  5. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A. (Department of Pediatrics, Louisiana State University School of Medicine, New Orleans (USA))

    1991-07-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of {sup 51}Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in {sup 51}Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal {sup 51}Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol.

  6. Existence of a tribo-modified surface layer of BR/S-SBR elastomers reinforced with silica or carbon black

    NARCIS (Netherlands)

    Mokhtari, Milad; Schipper, Dirk J.

    2016-01-01

    The existence of a modified surface layer on top of a rubber disk, in contact with a rigid counter-surface, is still a point of discussion. In this study, we show that a modified surface layer with different mechanical properties exists. Modification of the reinforced elastomers is discussed and the

  7. Electrochemical Determination of Chlorpyrifos on a Nano-TiO₂Cellulose Acetate Composite Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Kumaravel, Ammasai; Chandrasekaran, Maruthai

    2015-07-15

    A rapid and simple method of determination of chlorpyrifos is important in environmental monitoring and quality control. Electrochemical methods for the determination of pesticides are fast, sensitive, reproducible, and cost-effective. The key factor in electrochemical methods is the choice of suitable electrode materials. The electrode materials should have good stability, reproducibility, more sensitivity, and easy method of preparation. Mercury-based electrodes have been widely used for the determination of chlorpyrifos. From an environmental point of view mercury cannot be used. In this study a biocompatible nano-TiO2/cellulose acetate modified glassy carbon electrode was prepared by a simple method and used for the electrochemical sensing of chlorpyrifos in aqueous methanolic solution. Electroanalytical techniques such as cyclic voltammetry, differential pulse voltammetry, and amperometry were used in this work. This electrode showed very good stability, reproducibility, and sensitivity. A well-defined peak was obtained for the reduction of chlorpyrifos in cyclic voltammetry and differential pulse voltammetry. A smooth noise-free current response was obtained in amperometric analysis. The peak current obtained was proportional to the concentration of chlorpyrifos and was used to determine the unknown concentration of chlorpyrifos in the samples. Analytical parameters such as LOD, LOQ, and linear range were estimated. Analysis of real samples was also carried out. The results were validated through HPLC. This composite electrode can be used as an alternative to mercury electrodes reported in the literature.

  8. Eggshell membrane: A natural substrate for immobilization and detection of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Preetam Guha; Roy, Somenath, E-mail: sroy@cgcri.res.in

    2016-02-01

    Chemically modified eggshell membranes (ESM) have been explored as potentially novel platforms for immobilization of oligonucleotides and subsequent detection of target DNA. The fibrous network of the native ESM as well those functionalized with acetic acid or n-butyl acetate has been examined by field-emission scanning electron microscopy (FESEM). The formation of surface functional moieties has been confirmed by Fourier-transform infrared spectroscopy (FTIR). DNA molecules, with an end terminal − NH{sub 2} group (at 5′ end) have been immobilized on the chemically modified ESM surface. The effect of surface modification on the DNA immobilization efficiency has been investigated using fluorescence microscopy and atomic force microscopy (AFM). The above studies concurrently suggest that functionalization of ESM with n-butyl acetate causes a better homogeneity of the DNA probes on the membrane surface. On-chip hybridization of the target DNA with the surface bound capture probes has been performed on the functionalized membranes. It is observed that n-butyl acetate modification of ESM pushes the limit of detection (LOD) of the DNA sensors by at least an order of magnitude compared to the other modification method. - Graphical abstract: Eggshell membranes (ESM) have been chemically modified with acetic acid or n-butyl acetate for immobilization of aminated capture probes and subsequent detection of fluorophore-tagged target DNA molecules. n-Butyl acetate modified ESM exhibits superior homogeneity of capture probe immobilization and lower limit of detection for the target DNA molecules. - Highlights: • Eggshell membranes (ESM) have been explored as potentially novel platforms for immobilization of oligonucleotides. • Compared to native ESM, those modified with acetic acid or n-butyl acetate have shown more efficient loading of DNA probes. • ESM modified with n-butyl acetate pushed the lower limit of detection (LOD) of the sensor down to 10 nM of target DNA

  9. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong, Dai [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia); Zou, Linda [SA Water Centre for Water Management and Reuse, University of South Australia, Adelaide, SA5095 (Australia); Zifeng, Yan [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Millikan, Mary [Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia)

    2009-08-30

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N{sub 2} adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO{sub 2} particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  10. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    International Nuclear Information System (INIS)

    Dai Xiaodong; Zou, Linda; Yan Zifeng; Millikan, Mary

    2009-01-01

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N 2 adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO 2 particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  11. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  12. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid

    Directory of Open Access Journals (Sweden)

    Andri Cahyo Kumoro

    2015-03-01

    Full Text Available Acetylation is one of the common methods of modifying starch properties by introducing acetil (CH3CO groups to starch molecules at low temperatures. While most acetylation is conducted using starch as anhidroglucose source and acetic anhydride or vinyl acetate as nucleophilic agents, this work employ reactants, namely flour and glacial acetic acid. The purpose of this work are to study the effect of pH reaction and GAA/GF mass ratio on the rate of acetylation reaction and to determine its rate constants. The acetylation of gadung flour with glacial acetic acid in the presence of sodium hydroxide as a homogenous catalyst was studied at ambient temperature with pH ranging from 8-10 and different mass ratio of acetic acid : gadung flour (1:3; 1:4; and 1:5. It was found that increasing pH, lead to increase the degree of substitution, while increasing GAA/GF mass ratio caused such decreases in the degree of substitution, due to the hydrolysis of the acetylated starch. The desired starch acetylation reaction is accompanied by undesirable hydrolysis reaction of the acetylated starch after 40-50 minutes reaction time. Investigation of kinetics of the reaction observed that the value of mass transfer rate constant (Kcs is smaller than the surface reaction rate constant (k. Thus, it can be concluded that rate controlling step is mass transfer.  © 2015 BCREC UNDIP. All rights reservedReceived: 7th August 2014; Revised: 8th September 2014; Accepted: 14th September 2014How to Cite: Kumoro, A.C., Amelia, R. (2015. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 30-37. (doi:10.9767/bcrec.10.1.7181.30-37Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7181.30-37

  13. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation.

    Science.gov (United States)

    Wang, Heying; Lu, Tao; Meng, Fanhao; Zhu, Hongqin; Liu, Xuanyong

    2014-05-01

    Poly ether ether ketone (PEEK) offers a set of characteristics superior for human implants; however, its application is limited by the bio-inert surface property. In this work, PEEK surface was modified using single step plasma immersion ion implantation (PIII) treatment with a gas mixture of water vapor as a plasma resource and argon as an ionization assistant. Field emission scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy were used to investigate the microstructure and composition of the modified PEEK surface. The water contact angle and zeta-potential of the surfaces were also measured. Osteoblast precursor cells MC3T3-E1 and rat bone mesenchymal stem cells were cultured on the PEEK samples to evaluate their cytocompatibility. The obtained results show that the hydroxyl groups as well as a "ravined structure" are constructed on water PIII modified PEEK. Compared with pristine PEEK, the water PIII treated PEEK is more favorable for osteoblast adhesion, spreading and proliferation, besides, early osteogenic differentiation indicated by the alkaline phosphatase activity is also up-regulated. Our study illustrates enhanced osteoblast responses to the PEEK surface modified by water PIII, which gives positive information in terms of future biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Catalytic Micromotors Moving Near Polyelectrolyte-Modified Substrates: The Roles of Surface Charges, Morphology, and Released Ions.

    Science.gov (United States)

    Wei, Mengshi; Zhou, Chao; Tang, Jinyao; Wang, Wei

    2018-01-24

    Synthetic microswimmers, or micromotors, are finding potential uses in a wide range of applications, most of which involve boundaries. However, subtle yet important effects beyond physical confinement on the motor dynamics remain less understood. In this letter, glass substrates were functionalized with positively and negatively charged polyelectrolytes, and the dynamics of micromotors moving close to the modified surfaces was examined. Using acoustic levitation and numerical simulation, we reveal how the speed of a chemically propelled micromotor slows down significantly near a polyelectrolyte-modified surface by the combined effects of surface charges, surface morphology, and ions released from the films.

  15. Surface characterization and stability of an epoxy resin surface modified with polyamines grafted on polydopamine

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Vercammen, Yannick; Van Vaeck, Luc [Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Vanderleyden, Els; Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2014-06-01

    This paper reports on polydopamine and polyamine surface modifications of an etched epoxy cresol novolac (ECN) resin using the ‘grafting to’ method. Three different polyamines are used for the grafting reactions: branched polyethyleneimine (B-PEI), linear polyethyleneimine (L-PEI) and diethylenetriamine (DETA). These modifications are compared to control materials prepared via direct deposition of polyamines. The stability of the modifications toward a concentrated hydrochloric acid (HCl) environment is evaluated. The modified surfaces are characterized with scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectroscopy (TOF-S-SIMS).

  16. Development of the removal technology for toxic heavy metal ions by surface-modified activated carbon

    International Nuclear Information System (INIS)

    Park, Geun Il; Song, Kee Chan; Kim, Kwang Wook; Kim, In Tae; Cho, Il Hoon; Kim, Joon Hyung

    2001-01-01

    Adsorption capacities of both radionuclides(uranium, cobalt) and toxic heavy metals (lead, cadmium and chromium) using double surface-modified activated carbon in wide pH ranges are extensively evaluated. Surface-modified activated carbons are classified as AC(as-received carbon), OAC(single surface-modified carbon with nitric acid solution) and OAC-Na(double surface-modified carbon with various alkali solutions). It is established that optimal condition for the second surface modification of OAC is to use the mixed solution of both NaOH and NaCl with total concentration of 0.1 N based on adsorption efficiencies of uranium and cobalt. Variations of adsorption efficiencies in pH ranges of 2∼10 and the adsorption capacities in batch adsorber and fixed bed for removal of both radionuclides and toxic heavy metals using OAC-Na were shown to be superior to that of the AC and OAC even in a low pH range. Capacity factors of OAC-Na for the removal of various metal ions are also excellent to that of AC or OAC. Quantitative analysis of capacity factors for each ions showed that adsorption capacity of OAC-Na increased by 30 times for uranium, 60 times for cobalt, 9 times for lead, 30 times for cadmium, 3 times for chromium compared to that of AC at pH 5, respectively. Adsorption capacity of OAC-Na is comparable to that of XAD-16-TAR used as commercial ion exchange resin

  17. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth.The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests.The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect.Our findings suggested a new bioactive

  18. On the PEEK composites reinforced by surface-modified nano-silica

    International Nuclear Information System (INIS)

    Lai, Y.H.; Kuo, M.C.; Huang, J.C.; Chen, M.

    2007-01-01

    The nano-sized silica fillers reinforced poly(ether ether ketone) (PEEK) composites were fabricated by means of compression molding technique. The nano-sized silica, measuring 30 nm in size, was firstly modified by surface pretreatment with stearic acid. The performances and properties of the resulting PEEK/SiO 2 nanocomposites were examined in terms of tensile loading, hardness, dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The modified nano-silica was seen to disperse more uniformly than the unmodified counterpart. The XRD patterns of the modified silica reinforced PEEK composites reveal a systematic shift toward higher angles, suggesting the smaller d-spacing of the PEEK crystallites. The coefficient of thermal expansion (CTE) becomes lowered when the content of the nano-silica increases. Furthermore, the CTE of the modified silica filled PEEK nanocomposites shows the higher CTE values. A logic model is proposed. The increment of the dynamic modulus for the PEEK nanocomposites is up to 40% at elevated temperatures from 100 to 250 deg. C, indicating the apparent improvement of elevated temperature mechanical properties

  19. Investigation of surface properties of physico-chemically modified natural fibres using inverse gas chromatography

    CSIR Research Space (South Africa)

    Cordeiro, N

    2011-01-01

    Full Text Available Inverse gas chromatography (IGC) is a suitable method to determine surface energy of natural fibres when compared to wetting techniques. In the present study, the surface properties of raw and modified lignocellulosic fibres have been investigated...

  20. Fabrication of transparent cellulose acetate/graphene oxide nanocomposite film for UV shielding

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, Nusrat; Khan, Wasi, E-mail: wasiamu@gmail.com; Azam, Ameer; Naqvi, A. H. [Department of Applied Physics, Z.H. College of Engineering & Technology, Aligarh Muslim University, Aligarh - 202002 (India)

    2016-05-23

    In this work, we have fabricated transparent cellulose acetate/graphene oxide nanocomposite (CAGONC) films for ultraviolet radiations (UVR) shielding. Graphene oxide (GO) was synthesized by modified Hummer’s method and CAGONC films were fabricated by solvent casting method. The films were analyzed using characterization techniques like x-ray diffraction (XRD), energy dispersive x-ray (EDX) equipped scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and ultra-violet visible (UV-VIS) spectroscopy. Four films were prepared by varying the wt% of GO (0.1wt%, 0.2wt% and 0.3wt%) with respect to cellulose acetate (CA). UV-vis measurements exhibit optical transparency in the range of 76-99% for visible light while ultra-violet radiation was substantially shielded.

  1. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Yuan Yu

    2012-01-01

    Full Text Available Boron-doped diamond (BDD thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC, carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitivity, and fast response. Electrochemical reactions perform at the interface between electrolyte solutions and the electrodes surfaces, so the surface structures and properties of the BDD electrodes are important for electrochemical detection. In this paper, the recent advances of BDD electrodes with different surfaces including nanostructured surface and chemically modified surface, for the construction of various electrochemical biosensors, were described.

  2. Density functional theory study of acetic acid steam reforming on Ni(111)

    Science.gov (United States)

    Ran, Yan-Xiong; Du, Zhen-Yi; Guo, Yun-Peng; Feng, Jie; Li, Wen-Ying

    2017-04-01

    Catalytic steam reforming of bio-oil is a promising process to convert biomass into hydrogen. To shed light on this process, acetic acid is selected as the model compound of the oxygenates in bio-oil, and density functional theory is applied to investigate the mechanism of acetic acid steam reforming on the Ni(111) surface. The most favorable pathway of this process on the Ni(111) surface is suggested as CH3COOH* → CH3COO* → CH3CO* → CH2CO* → CH2* + CO* → CH* → CHOH* → CHO* → CO*, followed by the water gas shift reaction to produce CO2 and H2. CH* species are identified as the major carbon deposition precursor, and the water gas shift reaction is the rate-determining step during the whole acetic acid steam reforming process, as CO* + OH* → cis-COOH* is kinetically restricted with the highest barrier of 1.85 eV. Furthermore, the formation pathways and initial dissociation of important intermediates acetone and acetaldehyde are also investigated.

  3. 21 CFR 184.1185 - Calcium acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium acetate. 184.1185 Section 184.1185 Food and... Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be...

  4. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection

    International Nuclear Information System (INIS)

    Le, Thi Thanh Tuyen; Tran, Phu Duy; Pham, Xuan Tung; Tong, Duy Hien; Dang, Mau Chien

    2010-01-01

    In this work, the surface of platinum (Pt) nanowires was modified by using several chemicals, including a compound of gelatin gel with SiO 2 , polyvinyl alcohol (PVA) with Prussian blue (PB) mediator and cysteamine self-assembled monolayers (SAM). Then, glucose oxidase (GOD) enzyme was immobilized on the modified surfaces of Pt nanowire electrodes by using techniques of electrochemical adsorption and chemical binding. The GOD immobilized Pt nanowires were used for application in glucose detection by performing a cyclic voltammetry measurement. The detection results showed that GOD was immobilized on all of the tested surfaces and the highest glucose detection sensitivity of 60 μM was obtained when the Pt nanowires were modified by PVA with PB mediator. Moreover, the sensors showed very high current response when the Pt nanowires were modified with the cysteamine SAM. The stability and catalyst activity of GOD are also reported here. For instance, the catalyst activity of GOD retained about 60% of its initial value after it was stored at 4 °C in a 100 mM PBS buffer solution with a pH of 7.2 for a period of 30 days

  5. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection

    Science.gov (United States)

    Thanh Tuyen Le, Thi; Duy Tran, Phu; Pham, Xuan Tung; Hien Tong, Duy; Chien Dang, Mau

    2010-09-01

    In this work, the surface of platinum (Pt) nanowires was modified by using several chemicals, including a compound of gelatin gel with SiO2, polyvinyl alcohol (PVA) with Prussian blue (PB) mediator and cysteamine self-assembled monolayers (SAM). Then, glucose oxidase (GOD) enzyme was immobilized on the modified surfaces of Pt nanowire electrodes by using techniques of electrochemical adsorption and chemical binding. The GOD immobilized Pt nanowires were used for application in glucose detection by performing a cyclic voltammetry measurement. The detection results showed that GOD was immobilized on all of the tested surfaces and the highest glucose detection sensitivity of 60 μM was obtained when the Pt nanowires were modified by PVA with PB mediator. Moreover, the sensors showed very high current response when the Pt nanowires were modified with the cysteamine SAM. The stability and catalyst activity of GOD are also reported here. For instance, the catalyst activity of GOD retained about 60% of its initial value after it was stored at 4 °C in a 100 mM PBS buffer solution with a pH of 7.2 for a period of 30 days.

  6. A directional entrapment modification on the polyethylene surface by the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether

    Science.gov (United States)

    Lu, Qiang; Chen, Yi; Huang, Juexin; Huang, Jian; Wang, Xiaolin; Yao, Jiaying

    2018-05-01

    A novel entrapment modification method involving directional implantation of the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether (AEO) into the high-density polyethylene (HDPE) surface is proposed. This modification technique allows the AEO modifier to be able to spontaneously attain and subsequently penetrate into the swollen HDPE surface with its hydrophobic stearyl segment, while its hydrophilic poly(ethylene oxide) (PEO) segment spontaneously points to water. The AEO modifier with a HLB number below 8.7 was proved appropriate for the directional entrapment, Nevertheless, AEOs with larger HLB numbers were also effective modifiers in the presence of salt additives. In addition, a larger and hydrophobic micelle, induced respectively by the AEO concentration above 1.3 × 10-2 mol/L and the entrapping temperature above the cloud point of AEO, could lead to a sharp contact angle decline of the modified surface. Finally, a hydrophilic HDPE surface with the modifier coverage of 38.9% was reached by the directional entrapment method, which is far larger than that of 19.2% by the traditional entrapment method.

  7. Hybrids of ethylene vinyl acetate with Na-montmorillonite and titania: preparation and characterization

    International Nuclear Information System (INIS)

    Ashfaq, M.

    2010-01-01

    Hybrids of Ethylene vinyl acetate (EVA) with Na-montmorillonite and titania were formed. Montmorillonite was organically modified by two different modifiers: Pyridinium ions and 4. 4-oxydianilinium ions. X-ray diffraction results revealed that Pyridinium ions increased the .interlayer spacing by 0.33 nm and 4, 4-oxydianilinium by 0.55 nm approximately. These modified organo-clays were successfully exfoliated in EVA using melt blending. These hybrids showed improvement in mechanical and thermal properties. 4, 4-oxydianilinium ions were degraded at higher temperature due to which thermal degradation was enhanced in EVA. In addition to this, EVA/titania hybrids were also prepared using sot-gel technique and modified by triethoxy vinyl silane and (3-aminopropyI)- triethoxy silane to increase their compatibility with EVA. Some portion of unmodified titania was heat treated to 600 degree C to obtain particulate titania. The hybrid of particulate titania and modified titania improved the mechanical properties and thermal properties. Especially in case of modified titania toughness was almost doubled. (author)

  8. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    Energy Technology Data Exchange (ETDEWEB)

    Oosterbeek, Reece N., E-mail: reece.oosterbeek@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand); Seal, Christopher K. [Light Metals Research Centre, The University of Auckland, Private Bag 92019 (New Zealand); Hyland, Margaret M. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand)

    2014-12-01

    Highlights: • DLC coatings were modified by Ar{sup +} ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp{sup 2} content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar{sup +} ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ{sub S}{sup p})

  9. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    International Nuclear Information System (INIS)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-01-01

    Highlights: • DLC coatings were modified by Ar + ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp 2 content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar + ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ S p )

  10. Cytokine Adsorption onto the Modified Carbon Sorbent Surface in vitro in Peritonitis

    Directory of Open Access Journals (Sweden)

    T. I. Dolgikh

    2009-01-01

    Full Text Available Objective: to evaluate the efficiency of cytokine sorption with carbon with a locally aminocaproic acid-modified surface from the plasma of patients with general purulent peritonitis. Materials and methods. The material of the investigation was the plasma obtained during plasmapheresis in 10 patients with acute pancreatitis complicated by pancreonecrosis and general purulent peritonitis, which was used to estimate before and after sorption the content of the cytokines: interleukin (IL-1/8, IL-4, and IL-8 by enzyme immunoassay. The sorption properties of carbon hemosor-bent and aminocaproic acid-modified sorbent were comparatively evaluated. Results. Aminocaproic acid-induced modification of the carbon adsorbent surface with its further polycondensation results in the higher content of superficial functional groups (oxygen- and nitrogen-containing that enhance the hydrophility of the surface and the specific pattern of sorption, thus acting as a means for controlling and regulating the plasma concentration of regulatory proteins, primarily the proinflammatory cytokine IL-1^3, the chemokine IL-8 and the T-helper cell clone cytokine IL-4.

  11. Characterization of the formyl peptide chemotactic receptor appearing at the phagocytic cell surface after exposure to phorbol myristate acetate

    International Nuclear Information System (INIS)

    Gardner, J.P.; Melnick, D.A.; Malech, H.L.

    1986-01-01

    The biochemistry and subcellular source of new formyl peptide chemotactic receptor appearing at the human neutrophil and differentiated HL-60 (d-HL-60) cell surface after stimulation with phorbol myristate acetate (PMA) were examined. Formyl peptide receptor was analyzed by affinity labeling with formyl-norleu-leu-phe-norleu- [ 125 I]iodotyr-lys and ethylene glycol bis(succinimidyl succinate) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometric analysis of autoradiographs. PMA, a specific granule secretagogue, increases affinity labeling of formyl peptide receptors on the neutrophil surface by 100%, and on d-HL-60, which lack specific granule markers, by 20%. Papain treatment markedly reduces surface labeling of formyl peptide receptor in both neutrophils and d-HL-60, and results in the appearance of a lower m.w. membrane-bound receptor fragment. PMA stimulation of papain-treated cells increases uncleaved surface receptor on neutrophils by 400%, and on D-HL-60 by only 45%. This newly appearing receptor is the same apparent m.w. (55,000 to 75,000 for neutrophils; 62,000 to 80,000 for d-HL-60) and yields the same papain cleavage product as receptor on the surface of unstimulated cells. These observations suggest that specific granule membranes contain large amounts of formyl peptide receptor, which is biochemically identical to that found on the cell surface and can be mobilized to the cell surface with appropriate stimulation

  12. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Stephen D. [Energy and Environmental; Spies, Kurt A. [Energy and Environmental; Mei, Donghai [Energy and Environmental; Kovarik, Libor [Energy and Environmental; Kutnyakov, Igor [Energy and Environmental; Li, Xiaohong S. [Energy and Environmental; Lebarbier Dagle, Vanessa [Energy and Environmental; Albrecht, Karl O. [Energy and Environmental; Dagle, Robert A. [Energy and Environmental

    2017-09-11

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, and activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.

  13. A Density Functional Tight Binding Study of Acetic Acid Adsorption on Crystalline and Amorphous Surfaces of Titania

    Directory of Open Access Journals (Sweden)

    Sergei Manzhos

    2015-02-01

    Full Text Available We present a comparative density functional tight binding study of an organic molecule attachment to TiO2 via a carboxylic group, with the example of acetic acid. For the first time, binding to low-energy surfaces of crystalline anatase (101, rutile (110 and (B-TiO2 (001, as well as to the surface of amorphous (a- TiO2 is compared with the same computational setup. On all surfaces, bidentate configurations are identified as providing the strongest adsorption energy, Eads = −1.93, −2.49 and −1.09 eV for anatase, rutile and (B-TiO2, respectively. For monodentate configurations, the strongest Eads = −1.06, −1.11 and −0.86 eV for anatase, rutile and (B-TiO2, respectively. Multiple monodentate and bidentate configurations are identified on a-TiO2 with a distribution of adsorption energies and with the lowest energy configuration having stronger bonding than that of the crystalline counterparts, with Eads up to −4.92 eV for bidentate and −1.83 eV for monodentate adsorption. Amorphous TiO2 can therefore be used to achieve strong anchoring of organic molecules, such as dyes, that bind via a -COOH group. While the presence of the surface leads to a contraction of the band gap vs. the bulk, molecular adsorption caused no appreciable effect on the band structure around the gap in any of the systems.

  14. Surface nucleation and independent growth of Ce(OH)4 within confinement space on modified carbon black surface to prepare nano-CeO2 without agglomeration

    Science.gov (United States)

    Zhang, Xinyue; Xia, Chunhui; Li, Kaitao; Lin, Yanjun

    2018-04-01

    Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce3+ can react with OH- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.

  15. Obtaining of inulin acetate

    OpenAIRE

    Khusenov, Arslonnazar; Rakhmanberdiev, Gappar; Rakhimov, Dilshod; Khalikov, Muzaffar

    2014-01-01

    In the article first obtained inulin ester inulin acetate, by etherification of inulin with acetic anhydride has been exposed. Obtained product has been studied using elementary analysis and IR spectroscopy.

  16. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-03-15

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Q{sub max}) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Q{sub max} of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation.

  17. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    International Nuclear Information System (INIS)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2015-01-01

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Q max ) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Q max of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation

  18. Numerical simulation of binary collisions using a modified surface tension model with particle method

    International Nuclear Information System (INIS)

    Sun Zhongguo; Xi Guang; Chen Xi

    2009-01-01

    The binary collision of liquid droplets is of both practical importance and fundamental value in computational fluid mechanics. We present a modified surface tension model within the moving particle semi-implicit (MPS) method, and carry out two-dimensional simulations to investigate the mechanisms of coalescence and separation of the droplets during binary collision. The modified surface tension model improves accuracy and convergence. A mechanism map is established for various possible deformation pathways encountered during binary collision, as the impact speed is varied; a new pathway is reported when the collision speed is critical. In addition, eccentric collisions are simulated and the effect of the rotation of coalesced particle is explored. The results qualitatively agree with experiments and the numerical protocol may find applications in studying free surface flows and interface deformation

  19. Investigation of Electrochemical Behaviour of Quercetin on the Modified Electrode Surfaces with Procaine and Aminophenyl in Non-Aquous Medium

    Directory of Open Access Journals (Sweden)

    Ibrahim Ender Mulazimoglu

    2008-01-01

    Full Text Available In this study, cyclic voltammetry and electrochemical ımpedance spectroscopy have been used to investigate the electrochemical behaviour of quercetin (3,3′,4′,5,7-pentahydroxyflavone on the procaine and aminophenyl modified electrode. The modification of procaine and aminophenyl binded electrode surface with quercetin was performed in +0,3/+2,8 V (for procaine and +0,4/+1,5 V (for aminophenyl potential range using 100 mV s-1 scanning rate having 10 cycle. A solution of 0.1 M tetrabutylammonium tetrafluoroborate in acetonitrile was used as a non-aquous solvent. For the modification process a solution of 1 mM quercetin in 0.1 M tetrabutylammonium tetrafluoroborate was used. In order to obtain these two surface, a solution of 1 mM procaine and 1 mM nitrophenyl diazonium salt in 0.1 M tetrabutylammonium tetrafluoroborate was used. By using these solutions bare glassy carbon electrode surface was modified. Nitrophenyl was reduced to amine group in 0.1 M HCl medium on the nitrophenyl modified glassy carbon elelctrode surface. Procaine modified glassy carbon electrode surface was quite electroactive. Although nitrophenyl modified glassy carbon elelctrode surface was electroinactive, it was activated by reducing nitro group into amine group. For the characterization of the modified surface 1 mM ferrocene in 0.1 M tetrabutylammonium tetrafluoroborate for cyclic voltammetry and 1 mM ferricyanide/ferrocyanide (1:1 mixture in 0,1 M KCl for electrochemical impedance spectroscopy were used.

  20. Surface modified superparamagnetic nanoparticles: Interaction with fibroblasts in primary cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Chapa Gonzalez, Christian; Roacho Pérez, Jorge A.; Martínez Pérez, Carlos A.; Olivas Armendáriz, Imelda [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Jimenez Vega, Florinda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Castrejon Parga, Karen Y. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Garcia Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico)

    2014-12-05

    Highlights: • An inorganic layer before an organic material shell onto MNPs improves cell viability. • The coating type and the concentration of nanoparticles directly affect cell viability. • Modified magnetite nanoparticles with organic and inorganic materials was developed. - Abstract: The development of a variety of medical applications such as drug delivery, cell labeling, and medical imaging have been possible owing to the unique features exhibited by magnetic nanoparticles. Nanoparticle–cell interaction is related to the surface aspects of nanoparticle, which may be described based on their chemistry or inorganic/organic characteristics. The coating on particle surface reduces the inter-particle interactions and provides properties such as biocompatibility. Among the coating materials used for nanoparticles employed in biomedical applications, oleic acid is one of the most utilized due to its biocompatibility. However, a major drawback with this naturally occurring fatty acid is that it is easily oxidized by cells and this reduces their performance in biomedical applications. In order to avoid the direct contact of the cell with the magnetite particle, coating with an inorganic material prior to the oleic acid shell would be effective. This would retard the magnetite dissociation thereby improve the cell viability. Here we report our investigation on the effect of surface modified magnetite nanoparticles (MNPs) on the cell viability using primary cultures incubated with those particles. We prepared magnetite nanoparticles by chemical co-precipitation method; nanoparticle surface was first modified by silanol condensation followed by chemisorption of oleic acid. All nanostructures have a particle size less than 100 nm, depending on the material coating and superparamagnetic behavior. The saturated magnetizations (M{sub s}) of the magnetite samples coated with oleic acid (MAO; 49.15 emu/g) and double shell silica-oleic acid (MSAO; 46.16 emu/g) are

  1. Fabrication of TiO2/Carbon Photocatalyst using Submerged DC Arc Discharged in Ethanol/Acetic Acid Medium

    Science.gov (United States)

    Saraswati, T. E.; Nandika, A. O.; Andhika, I. F.; Patiha; Purnawan, C.; Wahyuningsih, S.; Rahardjo, S. B.

    2017-05-01

    This study aimed to fabricate a modified photocatalyst of TiO2/C to enhance its performance. The fabrication was achieved using the submerged direct current (DC) arc-discharge method employing two graphite electrodes, one of which was filled with a mixture of carbon powder, TiO2, and binder, in ethanol with acetic acid added in various concentrations. The arc-discharge method was conducted by flowing a current of 10-20 A (~20 V). X-ray diffraction (XRD) patterns showed significant placements of the main peak characteristics of TiO2, C graphite, and titanium carbide. The surface analysis using Fourier transform infrared spectroscopy (FTIR) revealed that fabricated TiO2/C nanoparticles had stretching vibrations of Ti-O, C-H, C═O, C-O, O-H and C═C in the regions of 450-550 cm-1, 2900-2880 cm-1, 1690-1760 cm-1, 1050-1300 cm-1, 3400-3700 cm-1 and ~1600 cm-1, respectively. In addition, the study investigated the photocatalysts of unmodified and modified TiO2/C for photodegradation of methylene blue (MB) dye solution under mercury lamp irradiation. The effectiveness of the degradation was defined by the decrease in 60-minute absorbance under a UV-Vis spectrophotometer. Modified TiO2/C proved to be significantly more efficient in reducing dye concentrations, reaching ~70%. It indicated that the oxygen-containing functional groups have been successfully attached to the surface of the nanoparticles and played a role in enhancing photocatalytic activity.

  2. Performance of cellulose acetate membrane with different additives for palm oil mill effluent (POME) liquid waste treatment

    Science.gov (United States)

    Aprilia, N. A. S.; Fauzi; Azmi, N.; Najwan, N.; Amin, A.

    2018-03-01

    Performance of cellulose acetate membrane for treatment of POME liquid has studied with different additives. Cellulose acetate membranes were prepared with different additive ie formamide and polyethylene glycol and used acetone as solvent. The function of formamide and polyethylene glycol (PEG) is to increase the porosity of the membrane surface. Performance of the membrane were included SEM, FT-IR and coefficient permeability. Membrane performance has been performed for percent rejection of total suspended solid (TSS) and turbidity of POME liquid waste. Cellulose acetate with formamide shows an increased percentage of rejection in removing TSS and turbidity than cellulose acetate with PEG.

  3. Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets

    International Nuclear Information System (INIS)

    Juuti, M; Tuononen, H; Kontturi, V; Peiponen, K-E; Prykäri, T; Alarousu, E; Myllylä, R; Kuosmanen, M; Ketolainen, J

    2009-01-01

    Surface and bulk properties of flat-faced starch acetate tablets were studied. For surface quality inspection optical coherence tomography and recently developed diffractive glossmeter were utilized. Both these optical devices together provide local information on surface roughness and gloss of a tablet over a measured area. The concepts of mean topography and mean gloss profile for surface quality of a tablet are introduced. It was observed that the surface quality of the tablet varies, and compression at high pressure may not guarantee a good surface quality of the tablet. Using novel statistical parameters for gloss and relevant surface roughness parameter, it is possible to get more comprehensive quantitative data on the surface condition of a tablet. THz spectrometer was utilized for detection of THz pulse delay in transmission measurement mode from the tablets. The delay time and thickness ratio of the tablet are consistent with the porosity of the tablet as a function of compression pressure. We suggest that the multimeasurement scheme using three different devices helps tablet makers to better assess bulk and surface quality of their products

  4. Characterization of acetate-utilizing methanogenic bacteria, depending on varying acetate concentrations, in a biogas plant. Phase 1

    International Nuclear Information System (INIS)

    Ahring, B.K.

    1994-12-01

    The present report contains the results of a project concerning behaviour of acetate-utilizing methanogenic bacteria in mesophilic and thermophilic biogas plants, collected in 1992 - 1994 period. Labelled acetates (2-C 14 -CH 3 COOH) have been used to characterize the types of methane bacteria populations in the Danish biogas plants, the optimum acetate concentration for these bacteria and acetate metabolism in mesophilic and thermophilic biogas reactors with low acetate concentrations. 2 publications are included. (EG)

  5. ACETIC ACID AND A BUFFER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  6. Surface science and model catalysis with ionic liquid-modified materials.

    Science.gov (United States)

    Steinrück, H-P; Libuda, J; Wasserscheid, P; Cremer, T; Kolbeck, C; Laurin, M; Maier, F; Sobota, M; Schulz, P S; Stark, M

    2011-06-17

    Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported ionic liquid phase (SILP)" and "solid catalysts with ionic liquid layer (SCILL)" materials at the microscopic level, using a surface science and model catalysis type of approach. Thin film IL systems can be prepared not only ex-situ, but also in-situ under ultrahigh vacuum (UHV) conditions using atomically well-defined surfaces as substrates, for example by physical vapor deposition (PVD). Due to their low vapor pressure, these systems can be studied in UHV using the full spectrum of surface science techniques. We discuss general strategies and considerations of this approach and exemplify the information available from complementary methods, specifically photoelectron spectroscopy and surface vibrational spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The role of glatiramer acetate in the early treatment of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    David W Brandes

    2010-06-01

    Full Text Available David W BrandesHope MS Center, Knoxville, TN, USA; ULCA, Los Angeles, CA, USAAbstract: The treatment of the underlying disease process causing multiple sclerosis has continued to evolve since the initial approval of interferon-beta-1b in 1993. Current emphasis is on early treatment, including treatment after a single clinical attack (clinically isolated syndrome. The assessment of which disease modifying medication to use as initial therapy has continued to remain a combination of science and the art of medicine. Equally important are the assessment of treatment failure and the subsequent choice of medication change. This article will present scientific information, as well as information about clinical decision making, about these choices, with emphasis on the changing role of glatiramer acetate in this process.Keywords: glatiramer acetate, early treatment, multiple sclerosis

  8. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-01

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.

  9. Effect of laser parameters on surface roughness of laser modified tool steel after thermal cyclic loading

    Science.gov (United States)

    Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah

    2018-03-01

    This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.

  10. a comparison of modified and standard papanicolaou staining ...

    African Journals Online (AJOL)

    2011-07-07

    Jul 7, 2011 ... modified pap method and standard Papanicolaou method respectively. The staining characteristics in .... alcohol was replaced by 0.5 % acetic acid and also, .... was 37.1, standard deviation of 8.0 and a median of. 36.5 years.

  11. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.

    2012-05-03

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics are correlated with the suitability of such materials in the fabrication of LTA/Matrimid mixed-matrix membranes (MMMs) for CO 2/CH 4 separations. The four functionalization methods studied in this work produce surface nanostructures that may appear superficially similar under SEM observation but in fact differ considerably in shape, size, surface coverage, surface area/roughness, degree of attachment to the zeolite surface, and degree of zeolite pore blocking. The evaluation of these characteristics by a combination of TEM, HRTEM, N 2 physisorption, multiscale compositional analysis (XPS, EDX, and ICP-AES elemental analysis), and diffraction (ED and XRD) allows improved understanding of the origin of disparate gas permeation properties observed in MMMs made with four types of surface-modified zeolite LTA materials, as well as a rational selection of the method expected to result in the best enhancement of the desired properties (in the present case, CO 2/CH 4 selectivity increase without sacrificing permeability). A method based on ion exchange of the LTA with Mg 2+, followed by base-induced precipitation and growth of MgO xH y nanostructures, deemed "ion exchange functionalization" here, offers modified particles with the best overall characteristics resulting in the most effective MMMs. LTA/Matrimid MMMs containing ion exchange functionalized particles had a considerably higher CO 2/CH 4 selectivity (∼40) than could be obtained with the other functionalization techniques (∼30), while maintaining a CO 2 permeability of ∼10 barrers. A parallel study on pure silica MFI surface nanostructures is also presented to compare and contrast with the zeolite LTA case. © 2012 American Chemical Society.

  12. Titanium dioxide nanoparticles modified by salicylic acid and arginine: Structure, surface properties and photocatalytic decomposition of p-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lei [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan 030051 (China); Feng, Yujie, E-mail: yujief@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Liu, Youzhi; Wei, Bing; Guo, Jiaxin; Jiao, Weizhou [Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan 030051 (China); Zhang, Zhaohan [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Zhang, Qiaoling, E-mail: zhangqiaoling@nuc.edu.cn [Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan 030051 (China)

    2016-02-15

    Graphical abstract: A simple and versatile synthetic method to produce TiO{sub 2} nanoparticles surface-modified with various organic capping agents can be used for novel multifunctional photocatalysts as required for various applications in energy saving and environmental protection. - Highlights: • SA and Arg was modified through the method of dipping treatment-based on chemical adsorption in saturated solution. • Surface modified TiO{sub 2} applied in photodecomposition of nitroaromatic. • The photoreduction of nitroaromatic and photocatalytic activity under visible light irradiation were enhanced by TiO{sub 2}–SA–Arg. • TiO{sub 2}–SA–Arg showed better lipophilic, dispersion and adsorption properties. - Abstract: In this study, titanium dioxide (TiO{sub 2}) nanoparticles were surface-modified with salicylic acid (SA) and arginine (Arg) using an environmentally friendly and convenient method, and the bonding structure, surface properties and degradation efficiency of p-nitrophenol (PNP) were investigated. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), water contact angle (WCA) measurements, ζ-potentiometric analysis, UV/visible diffuse reflectance spectroscopy (UV–vis DRS), and thermogravimetric analysis (TGA) were performed to evaluate the modification effect. The degradation rates were determined by high-performance liquid chromatography (HPLC). The results show that bidentate or bridging bonds are most likely formed between SA/Arg and TiO{sub 2} surface. Surface modification with SA, Arg, or both can improve the lipophilic properties and decrease the zeta potential, and also result in a red shift of the absorption wavelength. TiO{sub 2} nanoparticles modified by Arg or both SA and Arg show a large specific surface area and pore volume. Further, degradation

  13. Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Rajendra K. Aithal

    2016-02-01

    Full Text Available Bioengineering of dermal and epidermal cells on surface modified substrates is an active area of research. The cytotoxicity, maintenance of cell phenotype and long-term functionality of human dermal fibroblast (HDF cells on conducting indium tin oxide (ITO and semi-conducting, silicon (Si and gallium arsenide (GaAs, surfaces modified with self-assembled monolayers (SAMs containing amino (–NH2 and methyl (–CH3 end groups have been investigated. Contact angle measurements and infrared spectroscopic studies show that the monolayers are conformal and preserve their functional end groups. Morphological analyses indicate that HDFs grow well on all substrates except GaAs, exhibiting their normal spindle-shaped morphology and exhibit no visible signs of stress or cytoplasmic vacuolation. Cell viability analyses indicate little cell death after one week in culture on all substrates except GaAs, where cells died within 6 h. Cells on all surfaces proliferate except on GaAs and GaAs-ODT. Cell growth is observed to be greater on SAM modified ITO and Si-substrates. Preservation of cellular phenotype assessed through type I collagen immunostaining and positive staining of HDF cells were observed on all modified surfaces except that on GaAs. These results suggest that conducting and semi-conducting SAM-modified surfaces support HDF growth and functionality and represent a promising area of bioengineering research.

  14. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Jalili, M. [Nanomaterials and Nanocoatings Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Surface Coatings and Corrosion Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Nanomaterials and Nanocoatings Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Surface Coatings and Corrosion Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Highlights: • Aluminum nanoparticle was modified with amino trimethylene phosphonic acid. • 2 wt% of zinc dust in zinc-rich paint was substituted by aluminum nanoparticles. • Surface modified aluminum nanoparticle improved the cathodic period of protection. • Aluminum nanoparticles enhanced the corrosion protection of the zinc-rich coating. - Abstract: Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  15. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    International Nuclear Information System (INIS)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-01-01

    Highlights: • Aluminum nanoparticle was modified with amino trimethylene phosphonic acid. • 2 wt% of zinc dust in zinc-rich paint was substituted by aluminum nanoparticles. • Surface modified aluminum nanoparticle improved the cathodic period of protection. • Aluminum nanoparticles enhanced the corrosion protection of the zinc-rich coating. - Abstract: Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties

  16. Surface Properties of a Novel Poly(vinyl alcohol Film Prepared by Heterogeneous Saponification of Poly(vinyl acetate Film

    Directory of Open Access Journals (Sweden)

    Seong Baek Yang

    2017-10-01

    Full Text Available Almost general poly(vinyl alcohol (PVA films were prepared by the processing of a PVA solution. For the first time, a novel poly(vinyl alcohol (PVA film was prepared by the saponification of a poly(vinyl acetate (PVAc film in a heterogenous medium. Under the same saponification conditions, the influence of saponification time on the degree of saponification (DS was studied for the preparation of the saponified PVA film, and it was found that the DS varied with time. Optical microscopy was used to confirm the characteristics and surface morphology of the saponified PVA film, revealing unusual black globules in the film structure. The contact angle of the films was measured to study the surface properties, and the results showed that the saponified PVA film had a higher contact angle than the general PVA film. To confirm the transformation of the PVAc film to the PVA film, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction measurements, differential scanning calorimetry, and Fourier-transform infrared spectroscopy were employed.

  17. Glass and cellulose acetate fibers-supported boehmite nanosheets for bacteria adsorption

    Directory of Open Access Journals (Sweden)

    N.V. Svarovskaya

    2017-04-01

    Full Text Available In this work, in situ method of producing hybrid fibrous adsorbents in which boehmite nanosheets with high sorption properties formed on the surface of hydrophilic microfibres, such as cellulose acetate and glass fibre, was described. The boehmite nanosheets were fabricated by the reaction of composite AlN/Al nanoparticles with water at 60 °C. The synthesized samples were characterized by X-ray diffractometer, scanning, transmission electron microscopy, Fourier transform infrared spectrometer (FT-IR, zeta-potential and specific surface area analyzers. The introduction of microfibres into a diluted aqueous suspension of nanopowders causes heteroadagulation of the nanoparticles and accelerates their further transformation. This effect is most substantial with the glass microfibre, which is thought to have a higher concentration of surface groups capable of generating hydrogen bonds that act as heteroadagulation and nucleation centres. The experimental results showed that the morphology of the resultant hybrid fibrous adsorbents differed accordingly: the nanosheets were attached on-edge to the glass microfibre surface, while on the surface of the cellulose acetate microfibre, they were secured in the form of spherical “nanoflowers” of agglomerated nanosheets. The effect of the morphology of hybrid fibrous adsorbents on adsorption bacteria Escherichia coli was also investigated.

  18. X-ray photoelectron spectroscopy of rice husk surface modified with maleated polypropylene and silane

    International Nuclear Information System (INIS)

    Park, B.-D.; Wi, Seung Gon; Lee, Kwang Ho; Singh, A.P.; Yoon, Tae-Ho; Kim, Y.S.

    2004-01-01

    Rice husks were subjected to dry-grinding and steam-explosion to reduce their sizes. Subsequently, the surface of rice husk particles was modified using two different coupling agents, maleated polypropylene (MAPP) and γ-aminopropyltriethoxysilane (γ-APS, A-1100) to induce chemical reactions between the husk surface and the coupling agents used. The modified surface properties of rice husk were examined using X-ray photoelectron spectroscopy and FT-IR spectroscopy. Dry grinding, a simple method of fracturing husk, provided particulate segments, while steam explosion separated husk into fibrous components. When treated with MAPP, the O/C ratio of the husk surface decreased for both dry ground and steam-exploded husk. The γ-APS treatment resulted in an increase in the Si/O ratio for dry ground husk surface while this ratio decreased for steam-exploded husk particles. These results indicated that both coupling agents might be linked to the husk surface through chemical reactions. FT-IR results also supported the occurrence of ester and ether bonds after treatment of husks with MAPP and γ-APS. The present work suggested that the method of preparing rice husk particles had a great impact on their surface properties, and would therefore affect the interfacial adhesion in rice husk-thermoplastic composites

  19. Investigation of morphology and bioactive properties of composite coating of HA/vinyl acetate on pure titanium

    International Nuclear Information System (INIS)

    Afshar, Abdollahe; Yousefpour, Mardali; Xiudong, Yang; Li Xudong; Yang Bangcheng; Wu Yao; Chen Jiyong; Zhang Xingdong

    2006-01-01

    Electrochemical co-deposition approach was expanded to prepare composite bio-ceramic coating of hydroxyapatite (HA)/polyvinyl acetate on the surface of titanium. The role is to improve the bioactive and crystallization properties. The results of XRD, XPS, SEM and TEM characterization showed that by increasing amount of vinyl acetate in the composite bio-ceramic coating before and after immersing in the simulated body fluid (SBF), an oriented growth of HA planes on the (0 0 2) direction had been observed on titanium substrate. Also significant surface morphology changes were obtained

  20. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    Science.gov (United States)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  1. Surface grafting of a dense and rigid coordination polymer based on tri-para-carboxy-polychlorotriphenylmethyl radical and copper acetate

    KAUST Repository

    Mugnaini, Veró nica; Paradinas, Markos; Shekhah, Osama; Roques, Nans; Ocal, Carmen; Wö ll, Christof H.; Veciana, Jaume

    2013-01-01

    The step-by-step method is here presented as suitable to anchor on appropriately functionalized gold surfaces a metal-organic coordination polymer based on a non-planar trigonal tri-para-carboxy-polychlorotriphenylmethyl radical derivative and copper acetate. The structural characteristics of the grafted coordination polymer are derived during the step-wise growth from the real time changes in refractive index and oscillation frequency. The film thickness, as measured by scanning force microscopy, combined with the mass uptake value from the quartz crystal microbalance, are used to estimate an average density of the grafted metal-organic coordination polymer that suggests the formation of a dense and rather rigid thin film. This journal is © 2013 The Royal Society of Chemistry.

  2. Cataluminescence sensor for gaseous acetic acid using a thin film of In2O3

    International Nuclear Information System (INIS)

    Tao, Y.; Cao, X.; Peng, Y.; Liu, Y.; Zhang, R.

    2012-01-01

    We report on a cataluminescence sensor for the determination of gaseous acetic acid. It is based on a 60-nm thick sol-gel film of In 2 O 3 on a ceramic support. SEM, XPS and surface profiling were applied for its characterization. It is found that aluminum ions of the ceramic substrate penetrate into the film and produce a synergetic catalytic effect. The sensor displays high sensitivity and specificity for acetic acid, a low detection limit, a wide linear range and a fast response. No (or only very low) interference was observed by formic acid, ammonia, acrolein, benzene, formaldehyde, ethanol, and acetaldehyde. The sensor was successfully applied to the determination of acetic acid in spiked air samples. We also discuss a conceivable mechanism (based on the reaction products) for the cataluminescence resulting from the oxidation reaction on the surface of the sensor film. (author)

  3. Modified SIMPLE algorithm for the numerical analysis of incompressible flows with free surface

    International Nuclear Information System (INIS)

    Mok, Jin Ho; Hong, Chun Pyo; Lee, Jin Ho

    2005-01-01

    While the SIMPLE algorithm is most widely used for the simulations of flow phenomena that take place in the industrial equipment or the manufacturing processes, it is less adopted for the simulations of the free surface flow. Though the SIMPLE algorithm is free from the limitation of time step, the free surface behavior imposes the restriction on the time step. As a result, the explicit schemes are faster than the implicit scheme in terms of computation time when the same time step is applied to, since the implicit scheme includes the numerical method to solve the simultaneous equations in its procedure. If the computation time of SIMPLE algorithm can be reduced when it is applied to the unsteady free surface flow problems, the calculation can be carried out in the more stable way and, in the design process, the process variables can be controlled based on the more accurate data base. In this study, a modified SIMPLE algorithm is presented for the free surface flow. The broken water column problem is adopted for the validation of the modified algorithm (MoSIMPLE) and for comparison to the conventional SIMPLE algorithm

  4. Coke degradation by surface breakage in a modified tumble drum

    Energy Technology Data Exchange (ETDEWEB)

    Litster, J D

    1987-01-01

    The surface breakage rate constant for three Australian battery cokes was measured in a specially modified tumble drum using a previously developed technique. The effect of experimental test parameters - coke size, sample mass, drum speed, lifter height and lifter number - on the surface breakage rate constant was examined. The motion of coke particles within a tumble drum was filmed in a simulation experiment with a 0.31 m diameter drum. Particles were raised on the lifters, fell and collided with the bottom of the drum. These collisions were the main source of fines (minus 1 mm) production rather than true abrasion as depicted by a rubbing, rolling action. Hence the term 'surface breakage' is more appropriate than 'abrasion' to describe the breakage process. By measuring the volume of coke carried by each lifter and the height of fall of the coke, the effect of drum speed, sample mass, lifter height and number on the rate of surface breakage was successfully explained. The surface breakage rate constant was found to be proportional to particle size to the power 0.33 for the three cokes studied. A normalized surface breakage rate constant was derived which allowed comparison of cokes with different size distributions. This parameter characterises the coke surface breakage resistance.

  5. Microgel-based surface modifying system for stimuli-responsive functional finishing of cotton

    NARCIS (Netherlands)

    Kulkarni, A.N.; Tourrette, A.; Warmoeskerken, Marinus; Jocic, D.

    2010-01-01

    An innovative strategy for functional finishing of textile materials is based on the incorporation of a thin layer of surface modifying systems (SMS) in the form of stimuli-sensitive microgels or hydrogels. Since the copolymerization of poly(N-isopropylacrylamide) with an ionizable polymer, such as

  6. Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development

    Energy Technology Data Exchange (ETDEWEB)

    Jo, HangJin; Kim, Jin Man [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Yeom, Hwasung [Department of Nuclear Engineering and Engineering physics, UW-Madison, Madison, WI 53706, Unities States (United States); Lee, Gi Cheol [Department of Mechanical Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Kiyofumi, Moriyama; Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Sridharan, Kumar; Corradini, Michael [Department of Nuclear Engineering and Engineering physics, UW-Madison, Madison, WI 53706, Unities States (United States)

    2015-09-15

    Highlights: • We improved boiling performance and material robustness using surface modification. • We combined micro/millimeter post structures and nanoparticles with heat treatments. • Compactly-arranged micrometer posts had improved boiling performance. • CHF increased significantly due to capillary pumping by the deposited NP layers. • Sintering procedure increased mechanical strength of the NP coating surface. - Abstract: By regulating the geometrical characteristics of multi-scale structures and by adopting heat treatment for protective layer of nanoparticles (NPs), we improved critical heat flux (CHF), boiling heat transfer (BHT), and mechanical robustness of the modified surface. We fabricated 1-mm and 100-μm post structures and deposited NPs on the structured surface as a nano-scale structured layer and protective layer at the same time, then evaluated the CHF and BHT and material robustness of the modified surfaces. On the structured surfaces without NPs, the surface with compactly-arranged micrometer posts had improved CHF (118%) and BHT (41%). On the surface with structures on which NPs had been deposited, CHF increased significantly (172%) due to capillary pumping by the deposited NP layers. The heat treatment improved robustness of coating layer in comparison to the one of before heat treatment. In particular, low-temperature sintering increased the hardness of the modified surface by 140%. The increased mechanical strength of the NP coating is attributed to reduction in coating porosity during sintering. The combination of micrometer posts structures and sintered NP coating can increase the safety, efficiency and reliability of advanced nuclear fuel cladding.

  7. Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development

    International Nuclear Information System (INIS)

    Jo, HangJin; Kim, Jin Man; Yeom, Hwasung; Lee, Gi Cheol; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan; Sridharan, Kumar; Corradini, Michael

    2015-01-01

    Highlights: • We improved boiling performance and material robustness using surface modification. • We combined micro/millimeter post structures and nanoparticles with heat treatments. • Compactly-arranged micrometer posts had improved boiling performance. • CHF increased significantly due to capillary pumping by the deposited NP layers. • Sintering procedure increased mechanical strength of the NP coating surface. - Abstract: By regulating the geometrical characteristics of multi-scale structures and by adopting heat treatment for protective layer of nanoparticles (NPs), we improved critical heat flux (CHF), boiling heat transfer (BHT), and mechanical robustness of the modified surface. We fabricated 1-mm and 100-μm post structures and deposited NPs on the structured surface as a nano-scale structured layer and protective layer at the same time, then evaluated the CHF and BHT and material robustness of the modified surfaces. On the structured surfaces without NPs, the surface with compactly-arranged micrometer posts had improved CHF (118%) and BHT (41%). On the surface with structures on which NPs had been deposited, CHF increased significantly (172%) due to capillary pumping by the deposited NP layers. The heat treatment improved robustness of coating layer in comparison to the one of before heat treatment. In particular, low-temperature sintering increased the hardness of the modified surface by 140%. The increased mechanical strength of the NP coating is attributed to reduction in coating porosity during sintering. The combination of micrometer posts structures and sintered NP coating can increase the safety, efficiency and reliability of advanced nuclear fuel cladding

  8. Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodii.

    Science.gov (United States)

    Steger, Franziska; Rachbauer, Lydia; Windhagauer, Matthias; Montgomery, Lucy F R; Bochmann, Günther

    2017-08-01

    Hydrogen from water electrolysis is often suggested as a way of storing the excess energy from wind and solar power plants. However, unlike natural gas, hydrogen is difficult to store and distribute. One solution is to convert the hydrogen into other fuels or bulk chemicals. In this study we investigated fermentation in which homoacetogenic clostridia apply the Wood-Ljungdahl pathway to generate acetate from H 2 and CO 2 . Acetate can be used as a bulk chemical or further transformed into biofuels. Autotrophic growth with CO 2 as the sole carbon source is slow compared to heterotrophic growth, so the aim of this work was to improve continuous gas fermentation by immobilising the acetate-producing clostridia, thus preventing their wash out from the bioreactor. Two homoacetogenic bacterial strains (Acetobacterium woodii and Moorella thermoacetica) were tested for their acetate production potential, with A. woodii proving to be the better strain with maximum acetate concentration of 29.57 g l -1 . Due to its stability during fermentation and good bacterial immobilisation, linen was chosen as immobilisation material for continuous fermentation. This study demonstrates the successful continuous fermentation of acetate from H 2 and CO 2 using A. woodii immobilised on a low-cost surface at high volumetric productivity of 1.21 ± 0.05 g acetate l -1 d -1 . This has great industrial potential and future studies should focus on the scale-up of this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Electrochemical characteristics of Shewanella loihica on carbon nanotubes-modified graphite surfaces

    International Nuclear Information System (INIS)

    Zhang, Xiaoming; Epifanio, Monica; Marsili, Enrico

    2013-01-01

    Highlights: • We deposited CNT coatings on graphite electrode by electrophoretic deposition. • CNT coating increased extracellular electron transfer in Shewanella loihica biofilms. • Thick electroactive biofilms hinder the electroactivity of CNT coatings. -- Abstract: High specific surface and electrocatalytic activity of the electrode surface favour extracellular electron transfer from electrochemically active biofilms to polarized electrodes. We coated layer-by-layer carbon nanotubes (CNTs) on graphite electrodes through electrophoretic deposition, thus increasing the electrocatalytic activity. After determining the optimal number of CNT layers through electrochemical methods, we grew Shewanella loihica PV-4 biofilms on the CNT-coated electrodes to quantify the increase in extracellular electron transfer rate compared with unmodified electrodes. Current density on CNT-modified electrodes was 1.7 times higher than that observed on unmodified electrodes after 48 h from inoculation. Rapid microbial cells attachment on CNT-coated electrodes, as determined from scanning electronic microscopy, explained the rapid increase of the current. Also, the CNT reduced the charge transfer resistance of the graphite electrodes, as measured by Electrochemical Impedance Spectroscopy. However, the electrocatalytic activity of the CNT-coated electrode decreased as the biofilm grew thicker and covered the CNT-coating. These result confirmed that surface-modified electrodes improve the electron transfer rate in thin biofilms (<5 μm), but are not feasible for power production in microbial fuel cells, where the biofilm thickness is much higher

  10. Viscometric investigation of compatibilization of the poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) blends by terpolymer of maleic anhydride styrene vinyl acetate

    Science.gov (United States)

    İmren, Dilek; Boztuğ, Ali; Yılmaz, Ersen; Zengin, H. Bayram

    2008-11-01

    In this study, a blend of poly(vinyl chloride) (PVC)/ethylene-co-vinyl acetate (EVA) was compatibilized by terpolymer of maleic anhydride-styrene-vinyl acetate (MAStVA) used as a compatibilizer. It was prepared the blends of 50/50 PVC/EVA containing 2-10% of the terpolymer. The compatibility experiences of these blends were investigated by using viscometric method in the range of concentrations (0.5-2.0 g dL -1) where tetrahydrofuran (THF) is the solvent. The interaction parameter (Δ b) was used to study the miscibility and compatibility of polymer blend in solution, obtained from the modified Krigbaum and Wall theory. Turbidity and FTIR measurements were also used to investigate the miscibility of this pair of polymers. The values of the relative viscosities of the each polymer solution and their blends were measured by a Cannon-Fenske type viscometer. In consequence of the study, it was observed that a considerable improvement was achieved in the miscibility of PVC/EVA blends by adding among 5 and 10 wt% of compatibilizer.

  11. Characterization of surface-modified LiMn2O4 cathode materials with indium tin oxide (ITO) coatings and their electrochemical performance

    International Nuclear Information System (INIS)

    Kim, Chang-Sam; Kwon, Soon-Ho; Yoon, Jong-Won

    2014-01-01

    Graphical abstract: -- Highlights: • Indium tin oxide (ITO) is used to modify the surface of LiMn 2 O 4 by a sol–gel method. • The surface-modified layer was observed at a scale of several nanometers on LiMn 2 O 4 . • The ITO-coated LiMn 2 O 4 shows better capacity retention at 30 and 55 °C than pristine LiMn 2 O 4 . -- Abstract: Indium tin oxide (ITO) is used to modify the surface of LiMn 2 O 4 by a sol–gel method in an attempt to improve its electrochemical performance at elevated temperatures. The surface-modified LiMn 2 O 4 is characterized via XRD, FE-SEM, TEM, Auger electron spectroscopy (AES) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The surface layer modified by substitution with indium was observed at a scale of several nanometers near the surface on LiMn 2 O 4 . The concentration of ITO for electrochemical performance was varied from 0.3 wt% to 0.8 wt%. The 0.5 wt% ITO coated LiMn 2 O 4 showed the best electrochemical performance. This enhancement in electrochemical performance is mainly attributed to the effect of the surface layer modified through ITO, which could suppress Mn dissolution and reduce the charge transfer resistance at the solid electrolyte interface

  12. Immobilization of Ag nanoparticles/FGF-2 on a modified titanium implant surface and improved human gingival fibroblasts behavior.

    Science.gov (United States)

    Ma, Qianli; Mei, Shenglin; Ji, Kun; Zhang, Yumei; Chu, Paul K

    2011-08-01

    The objective of this study was to form a rapid and firm soft tissue sealing around dental implants that resists bacterial invasion. We present a novel approach to modify Ti surface by immobilizing Ag nanoparticles/FGF-2 compound bioactive factors onto a titania nanotubular surface. The titanium samples were anodized to form vertically organized TiO(2) nanotube arrays and Ag nanoparticles were electrodeposited onto the nanotubular surface, on which FGF-2 was immobilized with repeated lyophilization. A uniform distribution of Ag nanoparticles/FGF-2 was observed on the TiO(2) nanotubular surface. The L929 cell line was used for cytotoxicity assessment. Human gingival fibroblasts (HGFs) were cultured on the modified surface for cytocompatibility determination. The Ag/FGF-2 immobilized samples displayed excellent cytocompatibility, negligible cytotoxicity, and enhanced HGF functions such as cell attachment, proliferation, and ECM-related gene expression. The Ag nanoparticles also exhibit some bioactivity. In conclusion, this modified TiO(2) nanotubular surface has a large potential for use in dental implant abutment. Copyright © 2011 Wiley Periodicals, Inc.

  13. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    Directory of Open Access Journals (Sweden)

    Valentina eSpampinato

    2016-02-01

    Full Text Available In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS, Principal Component Analysis (PCA and X-ray Photoelectron Spectroscopy (XPS have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP.The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules.Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  14. Acid-degradable and bioerodible modified polyhydroxylated materials

    Energy Technology Data Exchange (ETDEWEB)

    Frechet, Jean M. J.; Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.

    2017-05-09

    Compositions and methods of making a modified polyhydroxylated polymer comprising a polyhydroxylated polymer having reversibly modified hydroxyl groups, whereby the hydroxyl groups are modified by an acid-catalyzed reaction between a polydroxylated polymer and a reagent such as acetals, aldehydes, vinyl ethers and ketones such that the modified polyhydroxylated polymers become insoluble in water but freely soluble in common organic solvents allowing for the facile preparation of acid-sensitive materials. Materials made from these polymers can be made to degrade in a pH-dependent manner. Both hydrophobic and hydrophilic cargoes were successfully loaded into particles made from the present polymers using single and double emulsion techniques, respectively. Due to its ease of preparation, processability, pH-sensitivity, and biocompatibility, of the present modified polyhydroxylated polymers should find use in numerous drug delivery applications.

  15. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    Science.gov (United States)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  16. Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives

    Science.gov (United States)

    Jaynes, William F.; Zartman, Richard E.

    2011-01-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725

  17. [Study on preparation and physicochemical properties of surface modified sintered bone].

    Science.gov (United States)

    Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong

    2012-06-01

    The aim of this study is to investigate a new method for preparing a biomimetic bone material-surface modified sintered bovine cancellous bone, and to improve its bioactivity as a tissue engineering bone. The prepared sintered bovine cancellous bones with the same size were randomly divided into two groups, immersing in 1 and 1. 5 times simulated body fluid (SBF), respectively. The three time periods of soak time were 7, 14, and 21 days. After sintered bone was dried, the surface morphology of sintered bone and surface mineralization composition were observed under scanning electron microscopy (SEM). By comparing the effect of surface modification of sintered bone materials, we chose the most ideal material and studied its pore size, the rate of the porosity, the compress and bend intensity. And then the material and the sintered bone material without surface modification were compared. The study indicated that sintered bone material immersed in SBF (1.5 times) for 14 days showed the best effect of surface modification, retaining the original physico-chemical properties of sintered bone.

  18. Preparation and tribological properties of surface-modified nano-Y{sub 2}O{sub 3} as additive in liquid paraffin

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lin, E-mail: gych@gdut.edu.cn [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Zhang Lin; Ye Fei; Sun Ming; Cheng Xiaoling; Diao Guiqiang [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Nano-Y{sub 2}O{sub 3} was for the first time used as lubricant additive in liquid paraffin. Black-Right-Pointing-Pointer The nano-Y{sub 2}O{sub 3} modified by a coupling-grafting method shows good dispersibility in liquid paraffin. Black-Right-Pointing-Pointer The surface-modified nano-Y{sub 2}O{sub 3} considerably improves the tribological performances of liquid paraffin. - Abstract: Surface-modified nano-Y{sub 2}O{sub 3} was prepared by a coupling-grafting method with vinyl methylerichlorosilane and methyl methacrylate as the coupling agent and grafting agent, respectively. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron micrograph (TEM) and thermal gravimetric analysis (TGA). The tribological properties of the surface-modified nano-Y{sub 2}O{sub 3} as additive in liquid paraffin were evaluated with a four-ball tester. The results show that the nano-Y{sub 2}O{sub 3} keeps its original crystalline structure after surface modification, and the modified nano-Y{sub 2}O{sub 3} forms a core-shell structure with an average particle size of 24.5 nm. The maximum non-seizure load (P{sub B} value) and sintered load (P{sub D} value) increase by 25% and 26.9%, respectively, when compared with those of liquid paraffin, and the wear scar diameter (WSD) also decrease by 21% when 0.10% surface-modified nano-Y{sub 2}O{sub 3} was added. The protective inorganic-organic film formed by nano-Y{sub 2}O{sub 3} and organic modifiers plays an important role in the improved tribological properties of liquid paraffin.

  19. Identification of novel potential acetate-oxidizing bacteria in an acetate-fed methanogenic chemostat based on DNA stable isotope probing.

    Science.gov (United States)

    Wang, Hui-Zhong; Gou, Min; Yi, Yue; Xia, Zi-Yuan; Tang, Yue-Qin

    2018-05-11

    Acetate is a significant intermediate of anaerobic fermentation. There are two pathways for converting acetate to CH 4 and CO 2 : acetoclastic methanogenesis by acetoclastic methanogens, and syntrophic acetate oxidation by acetate-oxidizing bacteria (AOB) and hydrogenotrophic methanogens. Detailed investigations of syntrophic acetate-oxidizing bacteria (SAOB) should contribute to the elucidation of the microbial mechanisms of methanogenesis. In this study, we investigated the major phylogenetic groups of acetate-utilizing bacteria (AUB) in a mesophilic methanogenic chemostat fed with acetate as the sole carbon source by using DNA stable isotope probing (SIP) technology. The results indicated that acetoclastic methanogenesis and acetate oxidization/hydrogenotrophic methanogenesis coexisted in the mesophilic chemostat fed with acetate, operated at a dilution rate of 0.1 d -1 . OTU Ace13(9-17) (KU869530), Ace13(9-4) (KU667241), and Ace13(9-23) (KU667236), assigned to the phyla Firmicutes and Bacteroidetes, were probably potential SAOB in the chemostat, which needs further investigation. Species in the phyla Proteobacteria, Deferribacteres, Acidobacteria, Spirochaetes and Actinobacteria were probably capable of utilizing acetate for their growth. Methanoculleus was likely to be the preferred hydrogenotrophic methanogen for syntrophy with AOB in the chemostat.

  20. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Directory of Open Access Journals (Sweden)

    Jiqian Wang

    Full Text Available BACKGROUND: Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. METHODOLOGY/PRINCIPAL FINDINGS: Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18 modified Fe(3O(4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. CONCLUSIONS/SIGNIFICANCE: The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for

  1. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Science.gov (United States)

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R

    2012-01-01

    Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe(3)O(4) were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.

  2. Surface characterization of weathered wood-plastic composites produced from modified wood flour

    Science.gov (United States)

    James S. Fabiyi; Armando G. McDonald; Nicole M. Stark

    2007-01-01

    The effects of weathering on the surface properties of wood-plastic composites (WPC) were examined. High-density polyethylene (HDPE) based WPCs made from modified wood flour (untreated, extractives free, and holocellulose (delignified) fibers) were subjected to accelerated (xenon-arc) weathering. Colorimetry and Fourier-transform infrared spectroscopy were employed to...

  3. Ligation-based mutation detection and RCA in surface un-modified OSTE+ polymer microfluidic chambers

    DEFF Research Database (Denmark)

    Saharil, Farizah; Ahlford, Annika; Kuhnemund, Malte

    2013-01-01

    For the first time, we demonstrate DNA mutation detection in surface un-modified polymeric microfluidic chambers without suffering from bubble trapping or bubble formation. Microfluidic devices were manufactured in off-stoichiometry thiol-ene epoxy (OSTE+) polymer using an uncomplicated and rapid...... during bio-operation at elevated temperatures. In contrast, PMMA, PDMS and COP microfluidic devices required specific surface treatment....

  4. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    Science.gov (United States)

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  5. Cellulose acetate propionate coated titanium: characterization and biotechnological application

    Directory of Open Access Journals (Sweden)

    Guilherme da Silva Gomes

    2007-12-01

    Full Text Available Surfaces of pure titanium and Ti coated with cellulose acetate propionate (CAP have been characterized by means of scanning electron microscopy X ray coupled with elemental microanalysis (SEM-EDS, ellipsometry, atomic force microscopy (AFM and contact angle measurements. Coating Ti surfaces with CAP ultrathin films reduced original surface roughness. Surface energy and wettability of CAP covered Ti surfaces pure Ti surfaces were similar. The adsorption of lysozyme (LYZ, an antibacterial protein, onto Ti and CAP-coated Ti surfaces has been studied by means of ellipsometry and atomic force microscopy (AFM. The adsorption of LYZ was mainly driven by hydrophobic interaction between protein hydrophobic residues and CAP propyl groups. Pure Ti and CAP coated Ti surfaces presented no cytotoxicity effect and proved to be adequate substrates for cell adhesion. The biocompatibility of CAP coated Ti surfaces was attributed to the surface enrichment in glucopyranosyl residues and short alkyl side groups.

  6. Modified alignment CGHs for aspheric surface test

    Science.gov (United States)

    Song, Jae-Bong; Yang, Ho-Soon; Rhee, Hyug-Gyo; Lee, Yun-Woo

    2009-08-01

    Computer Generated Holograms (CGH) for optical test are commonly consisted of one main pattern for testing aspheric surface and some alignment patterns for aligning the interferometer, CGH, and the test optics. To align the CGH plate and the test optics, we designed the alignment CGHs modified from the cat's eye alignment method, which are consisted of a couple of CGH patterns. The incident beam passed through the one part of the alignment CGH pattern is focused onto the one radius position of the test aspheric surface, and is reflected to the other part, and vice versa. This method has several merits compared to the conventional cat's eye alignment method. First, this method can be used in testing optics with a center hole, and the center part of CGH plate can be assigned to the alignment pattern. Second, the alignment pattern becomes a concentric circular arc pattern. The whole CGH patterns including the main pattern and alignment patterns are consisted of only concentric circular fringes. This concentric circular pattern can be easily made by the polar coordinated writer with circular scanning. The required diffraction angle becomes relatively small, so the 1st order diffraction beams instead of the 3rd order diffraction beam can be used as alignment beams, and the visibility can be improved. This alignment method also is more sensitive to the tilt and the lateral shift of the test aspheric surface. Using this alignment pattern, a 200 mm diameter F/0.5 aspheric mirror and a 600 mm diameter F/0.9 mirror were tested.

  7. Surface Properties of PAN-based Carbon Fibers Modified by Electrochemical Oxidization in Organic Electrolyte Systems

    Directory of Open Access Journals (Sweden)

    WU Bo

    2016-09-01

    Full Text Available PAN-based carbon fibers were modified by electrochemical oxidization using fatty alcohol polyoxyethylene ether phosphate (O3P, triethanolamine (TEOA and fatty alcohol polyoxyethylene ether ammonium phosphate (O3PNH4 as organic electrolyte respectively. Titration analysis, single fiber fracture strength measurement and field emission scanning electron microscopy (FE-SEM were used to evaluate the content of acidic functional group on the surface, mechanical properties and surface morphology of carbon fiber. The optimum process of electrochemical treatment obtained is at 50℃ for 2min and O3PNH4 (5%, mass fraction as the electrolyte with current density of 2A/g. In addition, the surface properties of modified carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS and single fiber contact angle test. The results show that the hydrophilic acidic functional groups on the surface of carbon fiber which can enhance the surface energy are increased by the electrochemical oxidation using O3PNH4 as electrolyte, almost without any weakening to the mechanical properties of carbon fiber.

  8. Mirror-finished superhydrophobic aluminum surfaces modified by anodic alumina nanofibers and self-assembled monolayers

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2018-05-01

    We demonstrate mirror-finished superhydrophobic aluminum surfaces fabricated via the formation of anodic alumina nanofibers and subsequent modification with self-assembled monolayers (SAMs). High-density anodic alumina nanofibers were formed on the aluminum surface via anodizing in a pyrophosphoric acid solution. The alumina nanofibers became tangled and bundled by further anodizing at low temperature because of their own weight, and the aluminum surface was completely covered by the long falling nanofibers. The nanofiber-covered aluminum surface exhibited superhydrophilic behavior, with a contact angle measuring less than 10°. As the nanofiber-covered aluminum surface was modified with n-alkylphosphonic acid SAMs, the water contact angle drastically shifted to superhydrophobicity, measuring more than 150°. The contact angle increased with the applied voltage during pyrophosphoric acid anodizing, the anodizing time, and the number of carbon atoms contained in the SAM molecules modified on the alumina nanofibers. By optimizing the anodizing and SAM-modification conditions, superhydrophobic behavior could be achieved with only a brief pyrophosphoric acid anodizing period of 3 min and subsequent simple immersion in SAM solutions. The superhydrophobic aluminum surface exhibited a high reflectance, measuring approximately 99% across most of the visible spectrum, similar to that of an electropolished aluminum surface. Therefore, our mirror-finished superhydrophobic aluminum surface based on anodic alumina nanofibers and SAMs can be used as a reflective mirror in various optical applications such as concentrated solar power systems.

  9. Heterogeneous nucleation of polymorphs on polymer surfaces: polymer-molecule interactions using a Coulomb and van der Waals model.

    Science.gov (United States)

    Wahlberg, Nanna; Madsen, Anders Ø; Mikkelsen, Kurt V

    2018-06-09

    The nucleation processes of acetaminophen on poly(methyl methacrylate) and poly(vinyl acetate) have been investigated and the mechanisms of the processes are studied. This is achieved by a combination of theoretical models and computational investigations within the framework of a modified QM/MM method; a Coulomb-van der Waals model. We have combined quantum mechanical computations and electrostatic models at the atomistic level for investigating the stability of different orientations of acetaminophen on the polymer surfaces. Based on the Coulomb-van der Waals model, we have determined the most stable orientation to be a flat orientation, and the strongest interaction is seen between poly(vinyl acetate) and the molecule in a flat orientation in vacuum.

  10. SEM examination and analysis of the interface character in surface modified aramid-epoxy composite

    International Nuclear Information System (INIS)

    Hussain, S.; Khan, M.B.; Hussain, R.

    2011-01-01

    The surface of Kevlar fibers is chemically modified by treatment with Phthalic anhydride (PA) and the effect is examined by SEM for the laser cut, three point bending and interlaminar shear delaminated surfaces. The surface modification improved the adhesion to epoxy resin that clearly leads to cohesive fracture as opposed to interfacial failure in the untreated specimen. SEM reveals marginal surface roughening of fibers without compromising their strength. The interface modification technique described in this paper is attractive thermodynamically as it does not compromise surface free energy of the polymer matrix or that of the fiber itself to enhance wet ability. (author)

  11. Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility

    International Nuclear Information System (INIS)

    Diao Huaxin; Si Yunfeng; Zhu Aiping; Ji Lijun; Shi Hongchan

    2012-01-01

    In this study, melt blending was used to fabricate poly(lactic acid) (PLA)/ hydroxyapatite (HA) nanocomposites. Surface modifying HA nanoparticles (mHA) with dodecyl alcohol through esterification reaction could effectively improve the dispersibility of HA nanoparticles in PLA matrix and the interfacial interactions between PLA and HA nanoparticles, as revealed by field emission scanning electron microscopy (FESEM), rheology analysis, and dynamic mechanical thermal analysis (DMTA). mHA/PLA nanocomposite film demonstrated better cartilage cell attachment, spreading and proliferation than that of PLA and HA/PLA film. The good cytocompatibility could be due to the good dispersibility of the osteoinductive HA nanoparticles, good interfacial interactions between PLA and HA nanoparticles, and balanced hydrophobic/hydrophilic property. This newly developed mHA/PLA nanocomposites may be considered for bone tissue engineering applications. - Highlights: ► Dodecyl alcohol modifies HA nanoparticles via esterification reaction. ► The modified HA results in good dispersibility in PLA matrix. ► The interfacial interactions are improved because of the modified HA. ► The addition of HA and mHA results in good cell affinity and biocompatibility.

  12. Surface and protein analyses of normal human cell attachment on PIII-modified chitosan membranes

    International Nuclear Information System (INIS)

    Saranwong, N.; Inthanon, K.; Wongkham, W.; Wanichapichart, P.; Suwannakachorn, D.; Yu, L.D.

    2012-01-01

    Surface of chitosan membrane was modified with argon (Ar) and nitrogen (N) plasma immersion ion implantation (PIII) for human skin fibroblasts F1544 cell attachment. The modified surfaces were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Cell attachment patterns were evaluated by scanning electron microscopy (SEM). The enzyme-linked immunosorbent assay (ELISA) was used to quantify levels of focal adhesion kinase (FAK). The results showed that Ar PIII had an enhancement effect on the cell attachment while N-PIII had an inhibition effect. Filopodial analysis revealed more microfilament cytoplasmic spreading on the edge of cells attached on the Ar-treated membranes than N-treated membranes. Higher level FAK was found in Ar-treated membranes than that in N-treated membranes.

  13. Osteogenic potential of laser modified and conditioned titanium zirconium surfaces

    Directory of Open Access Journals (Sweden)

    P David Charles

    2016-01-01

    Full Text Available Statement of Problem: The osseointegration of dental implant is related to their composition and surface treatment. Titanium zirconium (TiZr has been introduced as an alternative to the commercially pure titanium and its alloys as dental implant material, which is attributed to its superior mechanical and biological properties. Surface treatments of TiZr have been introduced to enhance their osseointegration ability; however, reliable, easy to use surface modification technique has not been established. Purpose: The purpose of this study was to evaluate and compare the effect of neodymium-doped yttrium aluminum garnet (Nd-YAG laser surface treatment of TiZr implant alloy on their osteogenic potential. Materials and Methods: Twenty disc-shaped samples of 5 mm diameter and 2 mm height were milled from the TiZr alloy ingot. The polished discs were ultrasonically cleaned in distilled water. Ten samples each were randomly selected as Group A control samples and Group B consisted of Nd-YAG laser surface etched and conditioned test samples. These were evaluated for cellular response. Cellular adhesion and proliferation were quantified, and the results were statistically analyzed using nonparametric analysis. Cellular morphology was observed using electron and epiflurosence microscopy. Results: Nd-YAG laser surface modified and conditioned TiZr samples increased the osteogenic potential. Conclusion: Nd-YAG laser surface modification of TiZr, improves the cellular activity, surface roughness, and wettability, thereby increasing the osteogenic potential.

  14. Synthesis and application of silica gel modified with alkoxyalcohols. Alkoxyalcohol shushoku silica gel no gosei to riyo

    Energy Technology Data Exchange (ETDEWEB)

    Moriguchi, T.; Ishiguro, H.; Matsubara, Y.; Yoshihara, M.; Maeshima, T.; Ito, S. (Kinki University, Osaka (Japan). Faculty of Science and Engineering)

    1991-08-20

    Several kinds of silica gel modified by alkoxyalcohols were synthesized by refluxing and dehyration and the organic reactions were studied when these silica gels were used as the catalyst. It could be confirmed by FT-IR spectra, DTA and elementary analysis that alkoxylalcohols adhere to the surface of silica gels without any decomposition. The acetate was produced by using alkyl halides. It was found that the modified silica gels had clearly the catalytic action for the reaction with n-hexyl bromide and dibromoethane although unmodified silica gels did not show the catalytic action. The reducing reaction of carbonyl compounds was carried out. The reaction proceeded at 25 centigrade for acetophenone, cyclohexanone, 1-indanone and 2-octanone to produce the corresponding reduction products. 11 refs., 5 figs., 4 tabs.

  15. Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems

    Science.gov (United States)

    Omar, Omar; Simonsson, Hanna; Palmquist, Anders; Thomsen, Peter

    2016-01-01

    Osseointegrated implants inserted in the temporal bone are a vital component of bone-anchored hearing systems (BAHS). Despite low implant failure levels, early loading protocols and simplified procedures necessitate the application of implants which promote bone formation, bone bonding and biomechanical stability. Here, screw-shaped, commercially pure titanium implants were selectively laser ablated within the thread valley using an Nd:YAG laser to produce a microtopography with a superimposed nanotexture and a thickened surface oxide layer. State-of-the-art machined implants served as controls. After eight weeks’ implantation in rabbit tibiae, resonance frequency analysis (RFA) values increased from insertion to retrieval for both implant types, while removal torque (RTQ) measurements showed 153% higher biomechanical anchorage of the laser-modified implants. Comparably high bone area (BA) and bone-implant contact (BIC) were recorded for both implant types but with distinctly different failure patterns following biomechanical testing. Fracture lines appeared within the bone ~30–50 μm from the laser-modified surface, while separation occurred at the bone-implant interface for the machined surface. Strong correlations were found between RTQ and BIC and between RFA at retrieval and BA. In the endosteal threads, where all the bone had formed de novo, the extracellular matrix composition, the mineralised bone area and osteocyte densities were comparable for the two types of implant. Using resin cast etching, osteocyte canaliculi were observed directly approaching the laser-modified implant surface. Transmission electron microscopy showed canaliculi in close proximity to the laser-modified surface, in addition to a highly ordered arrangement of collagen fibrils aligned parallel to the implant surface contour. It is concluded that the physico-chemical surface properties of laser-modified surfaces (thicker oxide, micro- and nanoscale texture) promote bone bonding

  16. Apparent interfacial shear strength of short-flax-fiber/starch acetate composites

    DEFF Research Database (Denmark)

    Andersons, J.; Modniks, J.; Joffe, R.

    2016-01-01

    The paper deals with an indirect industry-friendly method for identification of the interfacial shear strength (IFSS) in a fully bio-based composite. The IFSS of flax fiber/starch acetate is evaluated by a modified Bowyer and Bader method based on an analysis of the stress-strain curve of a short......-fiber-reinforced composite in tension. A shear lag model is developed for the tensile stress-strain response of short-fiber-reinforced composites allowing for an elastic-perfectly plastic stress transfer. Composites with different fiber volume fractions and a variable content of plasticizer have been analyzed. The apparent...... IFSS of flax/starch acetate is within the range of 5.5-20.5 MPa, depending on composition of the material. The IFSS is found to be greater for composites with a higher fiber loading and to decrease with increasing content of plasticizer. The IFSS is equal or greater than the yield strength of the neat...

  17. 21 CFR 582.6185 - Calcium acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  18. Small-Angle Neutron Scattering Investigation of Growth Modifiers on Hydrate Crystal Surfaces

    Science.gov (United States)

    Sun, Thomas; Hutter, Jeffrey L.; Lin, M.; King, H. E., Jr.

    1998-03-01

    Hydrates are crystals consisting of small molecules enclathrated within an ice-like water cage. Suppression of their growth is important in the oil industry. The presence of small quantities of specific polymers during hydrate crystallization can induce a transition from an octahedral to planar growth habit. This symmetry breaking is surprising because of the suppression of two 111 planes relative to the other six crystallographically equivalent faces. To better understand the surface effects leading to this behavior, we have studied the surface adsorption of these growth-modifing polymers onto the hydrate crytals using SANS. The total hydrate surface area, as measured by Porod scattering, increases in the presence of the growth modifier, but, no significant increase in polymer concentration on the crystal surfaces is found. Implications for possible growth mechanisms will be discussed.

  19. An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC.

    Science.gov (United States)

    Asadinezhad, Ahmad; Novák, Igor; Lehocký, Marián; Sedlarík, Vladimir; Vesel, Alenka; Junkar, Ita; Sáha, Petr; Chodák, Ivan

    2010-06-01

    Medical-grade polyvinyl chloride was surface modified by a multistep physicochemical approach to improve bacterial adhesion prevention properties. This was fulfilled via surface activation by diffuse coplanar surface barrier discharge plasma followed by radical graft copolymerization of acrylic acid through surface-initiated pathway to render a structured high density brush. Three known antibacterial agents, bronopol, benzalkonium chloride, and chlorhexidine, were then individually coated onto functionalized surface to induce biological properties. Various modern surface probe techniques were employed to explore the effects of the modification steps. In vitro bacterial adhesion and biofilm formation assay was performed. Escherichia coli strain was found to be more susceptible to modifications rather than Staphylococcus aureus as up to 85% reduction in adherence degree of the former was observed upon treating with above antibacterial agents, while only chlorhexidine could retard the adhesion of the latter by 50%. Also, plasma treated and graft copolymerized samples were remarkably effective to diminish the adherence of E. coli. Copyright 2010 Elsevier B.V. All rights reserved.

  20. 21 CFR 582.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is generally...

  1. Determination of Mercury (II Ion on Aryl Amide-Type Podand-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Sevgi Güney

    2011-01-01

    Full Text Available A new voltammetric sensor based on an aryl amide type podand, 1,8-bis(o-amidophenoxy-3,6-dioxaoctane, (AAP modified glassy carbon electrode, was described for the determination of trace level of mercury (II ion by cyclic voltammetry (CV and differential pulse voltammetry (DPV. A well-defined anodic peak corresponding to the oxidation of mercury on proposed electrode was obtained at 0.2 V versus Ag/AgCl reference electrode. The effect of experimental parameters on differential voltammetric peak currents was investigated in acetate buffer solution of pH 7.0 containing 1 × 10−1 mol L−1 NaCl. Mercury (II ion was preconcentrated at the modified electrode by forming complex with AAP under proper conditions and then reduced on the surface of the electrode. Interferences of Cu2+, Pb2+, Fe3+, Cd2+, and Zn2+ ions were also studied at two different concentration ratios with respect to mercury (II ions. The modified electrode was applied to the determination of mercury (II ions in seawater sample.

  2. Preparation and characterization of Ti-doped MgO nanopowders by a modified coprecipitation method

    International Nuclear Information System (INIS)

    Wang Wei; Qiao Xueliang; Chen Jianguo; Tan Fatang

    2008-01-01

    Ti-doped MgO nanopowders were prepared via a chemical coprecipitation method using acetic acid as a modifier in the presence of the surfactant polyethylene glycol (PEG 400). The as-obtained products were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The results show that titanium atoms have been successfully incorporated into the crystal lattice of MgO with periclase structure. The modifier, acetic acid, can significantly reduce the particle size, and improve size distribution and dispersion of nanoparticles. In addition, the effect of doped titanium on the structure and morphology of magnesium oxide was also investigated

  3. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.; Unocic, Kinga A.; Bae, Tae-Hyun; Jones, Christopher W.; Nair, Sankar

    2012-01-01

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics

  4. Biological resistance of polyethylene composites made with chemically modified fiber or flour

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons

    2002-01-01

    The role of moisture in the biological decay of wood-plastic composites was investigated. Southern pine wood fiber and ponderosa pine wood flour were chemically modified using either acetic anhydride (AA), butylene oxide (BO), or propylene oxide (PO). A 50:50 mixture of high density polyethylene and either chemically modified fiber or flour, or untreated fiber or flour...

  5. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics.

    Science.gov (United States)

    Güleç, Hacı Ali

    2013-04-01

    The aim of this study was to investigate the effects of surface characteristics of plain and plasma modified cellulose acetate (CA) membranes on the immobilization yield of β-galactosidases from Kluyveromyces lactis (KLG) and its galacto-oligosaccharide (GOS) yield, respectively. Low pressure plasma treatments involving oxygen plasma activation, plasma polymerization (PlsP) of ethylenediamine (EDA) and PlsP of 2-mercaptoethanol were used to modify plain CA membrane surfaces. KLG enzyme was immobilized onto plain and oxygen plasma treated membrane surfaces by simple adsorption. Oxygen plasma activation increased the hydrophylicity of CA membrane surfaces and it improved the immobilization yield of the enzyme by 42%. KLG enzyme was also immobilized onto CA membrane surfaces through amino groups created by PlsP of EDA via covalent binding. Plasma action at 60W plasma power and 15 min. exposure time improved the amount of membrane bounded enzyme by 3.5-fold. The enrichment of the amount of amino groups via polyethyleneimine (PEI) addition enhanced this increase from 3.5-fold to 4.5-fold. Although high enzyme loading was achived (65-83%), both of the methods dramatically decreased the enzyme activity (11-12%) and GOS yield due to probably negative effects of active amino groups. KLG enzyme was more effectively immobilized onto thiolated CA membrane surface created by PlsP of 2-mercaptoethanol with high immobilization yield (70%) and especially high enzyme activity (46%). Immobilized enzymes on the CA membranes treated by PlsP were successively reutilized for 5-8 cycles at 25°C and enzymatic derivatives retained approximately 75-80% of their initial activites at the end of the reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Protein arrangement on modified diamond-like carbon surfaces - An ARXPS study

    Science.gov (United States)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-12-01

    Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar+ ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC-protein interface; at increasing takeoff angle (further from to DLC-protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC-protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γSp).

  7. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    Science.gov (United States)

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization

    DEFF Research Database (Denmark)

    Pan, Xiaofang; Angelidaki, Irini; Alvarado-Morales, Merlin

    2016-01-01

    For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H-2/CO2), CH4 production kinetics were investigated at 37 +/- 1 degrees C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate from...... formate, acetate and H-2/CO2 were 19.58 +/- 0.49, 42.65 +/- 1.17 and 314.64 +/- 3.58 N mL/gVS/d in digested manure system and 6.53 +/- 0.31, 132.04 +/- 3.96 and 640.16 +/- 19.92 N mL/gVS/d in sewage sludge system during second generation incubation. Meanwhile the model could not fit well in granular...... sludge system, while the rate of formate methanation was faster than from H-2/CO2 and acetate. Considering both the kinetic results and microbial assay we could conclude that H-2/CO2 methanation was the fastest methanogenic step in digested manure and sewage sludge system with Methanomicrobiales...

  9. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines

    DEFF Research Database (Denmark)

    Janaszewska, Anna; Ciolkowski, Michal; Wróbel, Dominika

    2013-01-01

    Modification of the surface groups of dendrimers is one of the methods to improve their biocompatibility. This article presents results of experiments related to the toxicity of a modified polyamidoamine (PAMAM) dendrimer of the fourth generation with 4-carbomethoxypyrrolidone surface groups (PAM...

  10. Air-oxidized linalyl acetate - an emerging fragrance allergen?

    Science.gov (United States)

    Hagvall, Lina; Berglund, Victoria; Bråred Christensson, Johanna

    2015-04-01

    Linalyl acetate is a fragrance chemical that is prone to autoxidation. Exposure to linalyl acetate occurs through cosmetic products and essential oils, but is difficult to assess, as linalyl acetate is not labelled in the EU. To investigate the frequencies of contact allergy to oxidized linalyl acetate among dermatitis patients, and to investigate the autoxidation of linalyl acetate in terms of hydroperoxide formation and sensitization potency. Hydroperoxide formation in air-exposed linalyl acetate was determined with high-performance liquid chromatography. The sensitization potencies of hydroperoxides were determined with the local lymph node assay. One thousand seven hundred and seventeen patients were patch tested with oxidized linalyl acetate at 6.0% in petrolatum. Of the patients, 2.2% showed positive reactions to oxidized linalyl acetate. Forty-three per cent of the positive patients also had positive patch test reactions to other fragrance markers. Linalyl acetate hydroperoxides were detected early in the autoxidation process, and accumulated to a concentration of 37% after 42 weeks of air exposure. The linalyl acetate hydroperoxides were classified as moderate sensitizers. The frequency of positive reactions to oxidized linalyl acetate is comparable to that of previously studied oxidized fragrance terpenes. Oxidized linalyl acetate could thus be a common fragrance contact allergen. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Experimental studies of surface modified oscillating heat pipes

    Science.gov (United States)

    Leu, Tzong-Shyng; Wu, Cheng-Han

    2017-11-01

    Oscillating heat pipe (OHP) is a two-phase heat transfer device which has the characteristics of simple construction, high heat flux capability and no need of wicking structures for liquid transport. There are many studies in finding the ways how to improve the system performance OHP. In this paper, studies of the effects of contact angle ( θ c ) on the inner wall of OHP system have been conducted first. Glass OHP systems with unmodified ( θ c = 26.74°), superhydrophobic ( θ c = 156.2°), superhydrophilic ( θ c evaporator region and superhydrophobic within condensation region) surfaces, are studied. The research results indicated that thermal resistance of these four OHP systems can be significantly affected by different surface modification approaches. Although superhydrophobic OHP system can still work, the thermal resistance ( R th ) is the highest one of the four OHP systems, R th = 0.36 °C/W at 200 W. Unmodified pure glass and superhydrophilic OHP systems have similar performance. Thermal resistances are 0.28 and 0.27 °C/W at 200 W respectively. The hybrid OHP achieves the lowest thermal resistance, R th = 0.23 °C/W at 200 W in this study. The exact mechanism and effects of contact angle on OHP systems are investigated with the help of flow visualization. By comparing the flow visualization results of OHP systems before and after surface modification, one tries to find the mechanism how the surface modified inner wall surface affects the OHP system performance. In additional to the reason that the superhydrophobic dropwise condensation surface inside the hybrid OHP system, hybrid OHP system shows more stable and energetic circulation flow. It is found that instead of stratified flow, vapor slug flows are identified within the evaporator section of the hybrid OHP system that can effectively generate higher pressure force for two phase interfacial flow. This effect is attributed to be the main mechanism for better performance of the hybrid OHP system.

  12. Air-spun PLA nanofibers modified with reductively sheddable hydrophilic surfaces for vascular tissue engineering: synthesis and surface modification.

    Science.gov (United States)

    Ko, Na Re; Sabbatier, Gad; Cunningham, Alexander; Laroche, Gaétan; Oh, Jung Kwon

    2014-02-01

    Polylactide (PLA) is a class of promising biomaterials that hold great promise for various biological and biomedical applications, particularly in the field of vascular tissue engineering where it can be used as a fibrous mesh to coat the inside of vascular prostheses. However, its hydrophobic surface providing nonspecific interactions and its limited ability to further modifications are challenges that need to be overcome. Here, the development of new air-spun PLA nanofibers modified with hydrophilic surfaces exhibiting reduction response is reported. Surface-initiated atom transfer radical polymerization allows for grafting pendant oligo(ethylene oxide)-containing polymethacrylate (POEOMA) from PLA air-spun fibers labeled with disulfide linkages. The resulting PLA-ss-POEOMA fibers exhibit enhanced thermal stability and improved surface properties, as well as thiol-responsive shedding of hydrophilic POEOMA by the cleavage of its disulfide linkages in response to reductive reactions, thus tuning the surface properties. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Surface Photochemistry: Benzophenone as a Probe for the Study of Modified Cellulose Fibres

    Directory of Open Access Journals (Sweden)

    L. F. Vieira Ferreira

    2007-01-01

    Full Text Available This work reports the use of benzophenone, a very well characterized probe, to study new hosts (i.e., modified celluloses grafted with alkyl chains bearing 12 carbon atoms by surface esterification. Laser-induced room temperature luminescence of air-equilibrated or argon-purged solid powdered samples of benzophenone adsorbed onto the two modified celluloses, which will be named C12-1500 and C12-1700, revealed the existence of a vibrationally structured phosphorescence emission of benzophenone in the case where ethanol was used for sample preparation, while a nonstructured emission of benzophenone exists when water was used instead of ethanol. The decay times of the benzophenone emission vary greatly with the solvent used for sample preparation and do not change with the alkylation degree in the range of 1500–1700 micromoles of alkyl chains per gram of cellulose. When water was used as a solvent for sample preparation, the shortest lifetime for the benzophenone emission was observed; this result is similar to the case of benzophenone adsorbed onto the “normal” microcrystalline cellulose surface, with this latter case previously reported by Vieira Ferreira et al. in 1995. This is due to the more efficient hydrogen abstraction reaction from the glycoside rings of cellulose when compared with hydrogen abstraction from the alkyl chains of the modified celluloses. Triplet-triplet transient absorption of benzophenone was obtained in both cases and is the predominant absorption immediately after laser pulse, while benzophenone ketyl radical formation occurs in a microsecond time scale both for normal and modified celluloses.

  14. Solid–liquid equilibrium and thermodynamic research of 3-Thiophenecarboxylic acid in (water + acetic acid) binary solvent mixtures

    International Nuclear Information System (INIS)

    Liu, Xiang; Liang, Mengmeng; Hu, Yonghong; Yang, Wenge; Shi, Ying; Yin, Jingjing; Liu, Yan

    2014-01-01

    Highlights: • The solubility was measured in (water + acetic acid) from 283.15 to 338.15 K. • The solubility increased with increasing temperature and water contents. • The modified Apelblat equation was more accurate than the λh equation. - Abstract: In this study, the solubility of 3-thiophenecarboxylic acid was measured in (water + acetic acid) binary solvent mixtures in the temperature ranging from 283.15 to 338.15 K by the analytical stirred-flask method under atmospheric pressure. The experimental data were well-correlated with the modified Apelblat equation and the λh equation. In addition, the calculated solubilities showed good agreement with the experimental results. It was found that the modified Apelblat equation could obtain the better correlation results than the λh equation. The experiment results indicated that the solubility of 3-thiophenecarboxylic acid in the binary solvents increased with increasing temperature, increases with increasing water contents, but the increments with temperature differed from different water contents. In addition, the thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated by the van’t Hoff analysis. The experimental data and model parameters would be useful for optimizing the process of purification of 3-thiophenecarboxylic acid in industry

  15. Simultaneous determination of triacetin, acetic ether, butyl acetate and amorolfine hydrochloride in amorolfine liniment by HPLC.

    Science.gov (United States)

    Gao, Yuan; Li, Li; Zhang, Jianjun; Shu, Wenjuan; Gao, Liqiong

    2012-04-01

    A simple, rapid, specific and precise reversed-phase high-performance liquid chromatographic method was developed for simultaneous estimation of triacetin, acetic ether, butyl acetate and amorolfine in marketed pharmaceutical liniment. Chromatographic separation was performed on a Shimadzu VP-ODS C(18) column using the mixture of citric acid-hydrochloric acid-sodium hydrate buffer (pH 3.0), acetonitrile and methanol (32:30:38) as the mobile phase at a flow rate of 1.0 mL/min with UV-detection at 215 nm. The method separated the four components simultaneously in less than 10 min. The validation of the method was performed with respect to specificity, linearity, accuracy, and precision. The calibration curves were linear in the range of 35.1-81.9 μ/mL for triacetin, 431.1-1005.9 μ/mL for acetic ether, 167.0-389.7 μ/mL for butyl acetate and 151.0-352.3 μ/mL for amorolfine. The mean 100% spiked recovery for triacetin, acetic ether, butyl acetate and amorolfine is 99.43 ± 0.42, 101.5 ± 1.09, 101.4 ± 1.02 and 100.8 ± 0.69, respectively. The intra-day and inter-day relative standard deviation values were liniment.

  16. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dorraji, Parisa S.; Jalali, Fahimeh, E-mail: fjalali@razi.ac.ir

    2016-04-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.

  17. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dorraji, Parisa S.; Jalali, Fahimeh

    2016-01-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.

  18. The Ice Nucleation Activity of Surface Modified Soot

    Science.gov (United States)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    The ice nucleation efficiency of many important atmospheric particles remains poorly understood. Since soot is ubiquitous in the Earth's troposphere, they might have the potential to significantly impact the Earth's climate (Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 1998). Here we present the ice nucleation activity (INA) in immersion freezing mode of different types of soot. Therefor a CAST (combustion aerosol standard) generator was used to produce different kinds of soot samples. The CAST generator combusts a propane-air-mixture and deposits thereby produced soot on a polyvinyl fluoride filter. By varying the propane to air ratio, the amount of organic portion of the soot can be varied from black carbon (BC) with no organic content to brown carbon (BrC) with high organic content. To investigate the impact of functional sites of ice nuclei (IN), the soot samples were exposed to NO2 gas for a certain amount of time (30 to 360 minutes) to chemically modify the surface. Immersion freezing experiments were carried out in a unique reaction gadget. In this device a water-in-oil suspension (with the soot suspended in the aqueous phase) was cooled till the freezing point and was observed through a microscope (Pummer et al., 2012; Zolles et al., 2015) It was found that neither modified nor unmodified BC shows INA. On the contrary, unmodified BrC shows an INA at -32˚ C, which can be increased up to -20˚ C. The INA of BrC depends on the duration of NO2- exposure. To clarify the characteristics of the surface modifications, surface sensitive analysis like infrared spectroscopy and X-ray photoelectron spectroscopy were carried out. Finlayson-Pitts, B. J. and Pitts, J. N. J.: Chemistry of the Upper and Lower Atmosphere, Elsevier, New York, 2000. Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos Chem Phys, 12, 2541-2550, 2012. Seinfeld, J

  19. Comparison of microfacet BRDF model to modified Beckmann-Kirchhoff BRDF model for rough and smooth surfaces.

    Science.gov (United States)

    Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A

    2015-11-02

    A popular class of BRDF models is the microfacet models, where geometric optics is assumed. In contrast, more complex physical optics models may more accurately predict the BRDF, but the calculation is more resource intensive. These seemingly disparate approaches are compared in detail for the rough and smooth surface approximations of the modified Beckmann-Kirchhoff BRDF model, assuming Gaussian surface statistics. An approximation relating standard Fresnel reflection with the semi-rough surface polarization term, Q, is presented for unpolarized light. For rough surfaces, the angular dependence of direction cosine space is shown to be identical to the angular dependence in the microfacet distribution function. For polished surfaces, the same comparison shows a breakdown in the microfacet models. Similarities and differences between microfacet BRDF models and the modified Beckmann-Kirchhoff model are identified. The rationale for the original Beckmann-Kirchhoff F(bk)(2) geometric term relative to both microfacet models and generalized Harvey-Shack model is presented. A modification to the geometric F(bk)(2) term in original Beckmann-Kirchhoff BRDF theory is proposed.

  20. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    Science.gov (United States)

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  1. Methyl internal rotation in the microwave spectrum of vinyl acetate.

    Science.gov (United States)

    Nguyen, Ha Vinh Lam; Jabri, Atef; Van, Vinh; Stahl, Wolfgang

    2014-12-26

    The rotational spectrum of vinyl acetate, CH3(CO)OCH═CH2, was measured using two molecular beam Fourier transform microwave spectrometers operating in the frequency range from 2 to 40 GHz. Large splittings up to 2 GHz occurred due to the internal rotation of the acetyl methyl group CH3CO with a V3 potential of 151.492(34) cm(-1), much larger than the barrier of approximately 100 cm(-1) often found in acetates. The torsional transitions were fitted using three different programs XIAM, ERHAM, and BELGI-Cs, whereby the rotational constants, centrifugal distortion constants, and the internal rotation parameters could be determined with very high accuracy. The experimental results were supported by quantum chemical calculations. For a conformational analysis, potential energy surfaces were calculated.

  2. Acetate metabolism in Methanothrix soehngenii

    NARCIS (Netherlands)

    Jetten, M.S.M.

    1991-01-01

    Acetate is quantitatively the most important intermediate in the anaerobic degradation of soluble organic matter. The conversion rate of acetate by methanogenic bacteria is proposed to be the rate limiting step in this degradation The study of acetoclastic methanogens, therefore is of

  3. Complexation of carboxylate on smectite surfaces.

    Science.gov (United States)

    Liu, Xiandong; Lu, Xiancai; Zhang, Yingchun; Zhang, Chi; Wang, Rucheng

    2017-07-19

    We report a first principles molecular dynamics (FPMD) study of carboxylate complexation on clay surfaces. By taking acetate as a model carboxylate, we investigate its inner-sphere complexes adsorbed on clay edges (including (010) and (110) surfaces) and in interlayer space. Simulations show that acetate forms stable monodentate complexes on edge surfaces and a bidentate complex with Ca 2+ in the interlayer region. The free energy calculations indicate that the complexation on edge surfaces is slightly more stable than in interlayer space. By integrating pK a s and desorption free energies of Al coordinated water calculated previously (X. Liu, X. Lu, E. J. Meijer, R. Wang and H. Zhou, Geochim. Cosmochim. Acta, 2012, 81, 56-68; X. Liu, J. Cheng, M. Sprik, X. Lu and R. Wang, Geochim. Cosmochim. Acta, 2014, 140, 410-417), the pH dependence of acetate complexation has been revealed. It shows that acetate forms inner-sphere complexes on (110) in a very limited mildly acidic pH range while it can complex on (010) in the whole common pH range. The results presented in this study form a physical basis for understanding the geochemical processes involving clay-organics interactions.

  4. 21 CFR 184.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation of...

  5. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Science.gov (United States)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  6. Titania nanotube arrays surface-modified with ZnO for enhanced photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Nageri, Manoj; Kalarivalappil, Vijila; Vijayan, Baiju K.; Kumar, Viswanathan, E-mail: vkumar10@yahoo.co.in

    2016-05-15

    Highlights: • Heterostructures of TNA/ZnO synthesised through potentiostatic anodisation followed by hydrothermal method. • Evaluation of morphological features of the heterostructure with hydrothermal processing time. • Correlation of photocatalytic activity of the hetrostructure with its morphology and surface texture. - Abstract: Well ordered titanium dioxide nanotube arrays (TNA) of average diameter 129 nm and wall thickness of 25 nm were fabricated through potentiostatic anodisation of titanium (Ti) metal substrates. Such TNA were subsequently surface-modified with various amounts of zinc oxide (ZnO) nanopowders using hydrothermal technique to obtain heterogeneous TNA/ZnO nanostructures. The crystalline phase and surface microstructure of the heterostructures were determined by X-ray diffraction, Raman spectroscopy and scanning electron microscopy respectively. The morphology of the heterostructures strongly depended on the hydrothermal conditions employed. The photocatalytic activity of the heterostructures have also been investigated and correlated with their surface morphology and texture.

  7. Hydrolyses of alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D

    1983-01-01

    Using simultaneous coupling azo dye techniques kidney enzymes active against alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester are characterized. The enzymes show identical distribution in the section. The banding patterns in zymograms are the same after...

  8. Fully automated synthesis of ¹¹C-acetate as tumor PET tracer by simple modified solid-phase extraction purification.

    Science.gov (United States)

    Tang, Xiaolan; Tang, Ganghua; Nie, Dahong

    2013-12-01

    Automated synthesis of (11)C-acetate ((11)C-AC) as the most commonly used radioactive fatty acid tracer is performed by a simple, rapid, and modified solid-phase extraction (SPE) purification. Automated synthesis of (11)C-AC was implemented by carboxylation reaction of MeMgBr on a polyethylene Teflon loop ring with (11)C-CO2, followed by acidic hydrolysis with acid and SCX cartridge, and purification on SCX, AG11A8 and C18 SPE cartridges using a commercially available (11)C-tracer synthesizer. Quality control test and animals positron emission tomography (PET) imaging were also carried out. A high and reproducible decay-uncorrected radiochemical yield of (41.0 ± 4.6)% (n=10) was obtained from (11)C-CO2 within the whole synthesis time about 8 min. The radiochemical purity of (11)C-AC was over 95% by high-performance liquid chromatography (HPLC) analysis. Quality control test and PET imaging showed that (11)C-AC injection produced by the simple SPE procedure was safe and efficient, and was in agreement with the current Chinese radiopharmaceutical quality control guidelines. The novel, simple, and rapid method is readily adapted to the fully automated synthesis of (11)C-AC on several existing commercial synthesis module. The method can be used routinely to produce (11)C-AC for preclinical and clinical studies with PET imaging. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides

    Science.gov (United States)

    Lopez, Gabriel P.; Niemczyk, Thomas

    1999-01-01

    Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone

  10. Immobilization of glucoamylase on ceramic membrane surfaces modified with a new method of treatment utilizing SPCP-CVD.

    Science.gov (United States)

    Ida; Matsuyama; Yamamoto

    2000-07-01

    Glucoamylase, as a model enzyme, was immobilized on a ceramic membrane modified by surface corona discharge induced plasma chemical process-chemical vapor deposition (SPCP-CVD). Characterizations of the immobilized enzyme were then discussed. Three kinds of ceramic membranes with different amounts of amino groups on the surface were prepared utilizing the SPCP-CVD method. Each with 1-time, 3-times and 5-times surface modification treatments and used for supports in glucoamylase immobilization. The amount of immobilized glucoamylase increased with the increase in the number of surface modification treatments and saturated to a certain maximum value estimated by a two-dimensional random packing. The operational stability of the immobilized glucoamylase also increased with the increase in the number of the surface treatment. It was almost the same as the conventional method, while the activity of immobilized enzyme was higher. The results indicated the possibility of designing the performance of the immobilized enzyme by controlling the amount of amino groups. The above results showed that the completely new surface modification method using SPCP was effective in modifying ceramic membranes for enzyme immobilization.

  11. Surface Modification, Characterization and Photocatalytic Performance of Nano-Sized Titania Modified with Silver and Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Neetu Divya

    2009-12-01

    Full Text Available In many textile industries dyes are used as coloring agents. Advanced oxidation processes are used for degrading or removing color from dye baths. Catalysts play a key role in these industries for the treatment of water. Solid catalysts are usually composed of metals that form supports onto the surface and create metal particles with high surface areas. TiO2 composites containing transition metal ions (silver and/or bentonite clay were prepared. Photocatalytic efficiencies have been investigated for the degradation of Orange G an azo dye. Various analytical techniques were used to characterize the surface properties of nano-sized titania modified using silver and/or bentonite clay. Scanning electron microscopy (SEM, Transmission electron microscopy (TEM, X-ray diffraction (XRD and FTIR analyses showed that TiO2 (10 ± 2 nm and Ag (2 to 3 nm particles were supported on the surface of the bentonite clay and the size was in the range of 100 ± 2 nm. The modified catalysts P-25 TiO2/Bentonite/Ag and P-25 TiO2/Ag were found to be very active for the photocatalytic decomposition of Orange G. The percent decolorization in 60 min was 98% with both P-25 TiO2/Ag and P-25 TiO2/Bentonite/Ag modified catalysts. Whereas mineralization achieved in 9 hr were 68% and 71% with P-25 TiO2/Bentonite/Ag and P-25 TiO2/Ag catalyst respectively. © 2009 BCREC UNDIP. All rights reserved[Received: 30 October 2009, Revised: 20 November 2009, Accepted: 21 November 2009][How to Cite: N. Divya, A. Bansal, A. K. Jana. (2009. Surface Modification, Characterization and Photocatalytic Performance of Nano-Sized Titania Modified with Silver and Bentonite Clay. Bulletin of Chemical Reaction Engineering and Catalysis, 4(2: 43-53.  doi:10.9767/bcrec.4.2.1249.43-53][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.2.1249.43-53 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/1249

  12. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  13. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  14. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    Science.gov (United States)

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  15. 21 CFR 182.8892 - α-Tocopherol acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true α-Tocopherol acetate. 182.8892 Section 182.8892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...-Tocopherol acetate. (a) Product. α-Tocopherol acetate. (b) Conditions of use. This substance is generally...

  16. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    Science.gov (United States)

    Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang

    2015-11-01

    The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  17. Glatiramer Acetate-associated Refractory Immune Thrombocytopenic Purpura

    Directory of Open Access Journals (Sweden)

    Iftach Sagy

    2016-04-01

    Full Text Available We present a case of glatiramer acetate-associated refractory immune thrombocytopenic purpura (ITP in a female patient with multiple sclerosis. A search of MEDLINE/PubMed did not find any connection between glatiramer acetate and thrombocytopenia, specifically ITP. The autoimmune reaction was resistant to conservative ITP treatment, and was eventually managed only by splenectomy. To the best of our knowledge, this is the first report of glatiramer acetate-associated ITP. Physicians should be aware of this condition, and consider performing routine blood counts at the beginning of glatiramer acetate treatment.

  18. Surface treatment of NiTi shape memory alloy by modified advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    CHU Cheng-lin; WANG Ru-meng; YIN Li-hong; PU Yue-pu; DONG Yin-sheng; GUO Chao; SHENG Xiao-bo; LIN Ping-hua; CHU Paul-K

    2009-01-01

    A modified advanced oxidation process(AOP) utilizing a UV/electrochemically-generated peroxide system was used to fabricate titania films on chemically polished NiTi shape memory alloy(SMA). The microstructure and biomedical properties of the film were characterized by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), inductively-coupled plasma mass spectrometry(ICPMS), hemolysis analysis, and blood platelet adhesion test. It is found that the modified AOP has a high processing effectiveness and can result in the formation of a dense titania film with a Ni-free zone near its top surface. In comparison, Ni can still be detected on the outer NiTi surface by the conventional AOP using the UV/H2O2 system. The depth profiles of O, Ni, Ti show that the film possesses a smooth graded interface structure next to the NiTi substrate and this structure enhances the mechanical stability of titania film. The titania film can dramatically reduce toxic Ni ion release and also improve the hemolysis resistance and thromboresistance of biomedical NiTi SMA.

  19. Vapour pressures and vapour-liquid equilibria of propyl acetate and isobutyl acetate with ethanol or 2-propanol at 0.15 MPa. Binary systems

    Directory of Open Access Journals (Sweden)

    Susial Pedro

    2012-01-01

    Full Text Available Vapour pressures of propyl acetate, isobutyl acetate and 2-propanol from 0.004 to 1.6 MPa absolute pressure and VLE data for the binary systems propyl acetate+ethanol, propyl acetate+2-propanol, isobutyl acetate+ethanol and isobutyl acetate+2-propanol at 0.15 MPa have been determined. The experimental VLE data were verified with the test of van Ness and the Fredenslund criterion. The propyl acetate+ethanol or +2-propanol binary systems have an azeotropic point at 0.15 MPa. The different versions of the UNIFAC and ASOG group contribution models were applied.

  20. 21 CFR 582.5892 - a-Tocopherol acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false a-Tocopherol acetate. 582.5892 Section 582.5892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5892 a-Tocopherol acetate. (a) Product. a-Tocopherol acetate. (b) Conditions of use. This...

  1. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    International Nuclear Information System (INIS)

    Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang

    2015-01-01

    Graphical abstract: - Highlights: • The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated. • The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid. • The relative content of carboxylic groups on carbon fiber surfaces was increased. • The surfaces of carbon fibers neither etched nor generated coating. • Tensile strength of carbon fibers was preserved after grafting reaction. - Abstract: The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  2. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    Energy Technology Data Exchange (ETDEWEB)

    Cuiqin, Fang; Jinxian, Wu [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Julin, Wang, E-mail: wjl@mail.buct.edu.cn [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Tao, Zhang [Beijing Institute of Ancient Architecture, Beijing 100050 (China)

    2015-11-30

    Graphical abstract: - Highlights: • The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated. • The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid. • The relative content of carboxylic groups on carbon fiber surfaces was increased. • The surfaces of carbon fibers neither etched nor generated coating. • Tensile strength of carbon fibers was preserved after grafting reaction. - Abstract: The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  3. Wear characterization of a tool steel surface modified by melting and gaseous alloying

    International Nuclear Information System (INIS)

    Rizvi, S.A.

    1999-01-01

    Hot forging dies are subjected to laborious service conditions and so there is a need to explore means of improving die life to increase productivity and quality of forgings. Surface modification in order to produce wear resistant surface is an attractive method as it precludes the need to use expensive and highly alloyed steels. In this study, a novel, inexpensive surface modification technique is used to improve the tri biological properties of an H13 tool steel. Surface melting was achieved using a tungsten heat source and gaseous alloying produced under a shield of argon, carbon dioxide, carbon dioxide-argon mixture and nitrogen gases. The change in wear behaviour was compared through micro-hardness indentation measurements and using a dry sliding pin-on-plate wear testing machine. This study shows superior wear behaviour of the modified surfaces when compared to the untreated surfaces. The increase in wear resistance is attributed to the formation of carbides when surfaces are melted under a carbon dioxide shield. However, in the case of nitrogen and argon gaseous alloying, an increase in wear resistance can be attributed to an increase in surface hardness which in turn effects surface deformation behaviour. (author)

  4. Preparation and antifouling properties of 2-(meth-acryloyloxy)ethyl cholinephosphate based polymers modified surface with different molecular architectures by ATRP.

    Science.gov (United States)

    Jiang, Yuchen; Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Ding, Chunmei; Luo, Jianbin; Li, Jianshu

    2017-08-01

    Choline phosphate (CP) containing polymers modified surfaces have been shown good resist to the adhesion of proteins while prompt the attaching of mammalian cells due to the dipole pairing between the CP groups of the polymer and the phosphorylcholine (PC) groups on the cell membrane. However, the antifouling activities of CP modified surface against microbes have not been investigated at present. In addition, CP containing polymers modified surface with different molecular architectures has not been prepared and studied. To this end, glass slides surface modified with two different 2-(meth-acryloyloxy)ethyl cholinephosphate (MCP) containing polymer (PMCP) structures, i.e. brush-like (Glass-PMCP) and bottle brush-like (Glass-PHEMA-g-PMCP) architectures, were prepared in this work by surface-initiated atom transfer radical polymerization (SI-ATRP). The surface physichemical and antifouling properties of the prepared surfaces were characterized and studied. The Glass-PMCP shows improved antifouling properties against proteins and bacteria as compared to pristine glass slides (Glass-OH) and glass slides grafted with poly(2-hydroxyethyl methacrylate) (Glass-PHEMA). Notably, a synergetic fouling resistant properties of PHEMA and PMCP is presented for Glass-PHEMA-g-PMCP, which shows superior antifouling activities over Glass-PHEMA and Glass-PMCP. Furthermore, glass slides containing PMCP, i.e. Glass-PMCP and Glas-PHEMA-g-PMCP, decrease platelet adhesion and prevent their activation significantly. Therefore, the combination of antifouling PHEMA and PMCP into one system holds potential for prevention of bacterial fouling and biomaterial-centered infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The role of mineral surface chemistry in modified dextrin adsorption.

    Science.gov (United States)

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka M; Harmer, Sarah L; Beattie, David A

    2011-05-15

    The adsorption of two modified dextrins (phenyl succinate dextrin--PS Dextrin; styrene oxide dextrin--SO Dextrin) on four different mineral surfaces has been studied using X-ray photoelectron spectroscopy (XPS), in situ atomic force microscopy (AFM) imaging, and captive bubble contact angle measurements. The four surfaces include highly orientated pyrolytic graphite (HOPG), freshly cleaved synthetic sphalerite (ZnS), and two surfaces produced through surface reactions of sphalerite: one oxidized in alkaline solution (pH 9, 1 h immersion); and one subjected to metal ion exchange between copper and zinc (i.e. copper activation: exposed to 1×10(-3) M CuSO(4) solution for 1 h). XPS measurements indicate that the different sphalerite surfaces contain varying amounts of sulfur, zinc, oxygen, and copper, producing substrates for polymer adsorption with a range of possible binding sites. AFM imaging has shown that the two polymers adsorb to a similar extent on HOPG, and that the two polymers display very different propensities for adsorption on the three sphalerite surface types, with freshly cleaved sphalerite encouraging the least adsorption, and copper activated and oxidized sphalerite encouraging significantly more adsorption. Contact angle measurements of the four surfaces indicate that synthetic sphalerite has a low contact angle upon fracture, and that oxidation on the timescale of one hour substantially alters the hydrophobicity. HOPG and copper-activated sphalerite were the most hydrophobic, as expected due to the carbon and di/poly-sulfide rich surfaces of the two samples, respectively. SO Dextrin is seen to have a significant impact on the wettability of HOPG and the surface reacted sphalerite samples, highlighting the difficulty in selectively separating sphalerite from carbonaceous unwanted minerals in flotation. PS Dextrin has the least effect on the hydrophobicity of the reacted sphalerite surfaces, whilst still significantly increasing the wettability of

  6. Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems.

    Science.gov (United States)

    Guo, Kun; Chen, Xin; Freguia, Stefano; Donose, Bogdan C

    2013-09-15

    This study introduces a novel and simple method to covalently graft neutral red (NR) onto carbon surfaces based on spontaneous reduction of in situ generated NR diazonium salts. Immobilization of neutral red on carbon surface was achieved by immersing carbon electrodes in NR-NaNO2-HCl solution. The functionalized electrodes were characterized by cyclic voltammetry (CV), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Results demonstrated that NR attached in this way retains high electrochemical activity and proved that NR was covalently bound to the carbon surface via the pathway of reduction of aryl diazonium salts. The NR-modified electrodes showed a good stability when stored in PBS solution in the dark. The current output of an acetate-oxidising microbial bioanode made of NR-modified graphite felts were 3.63±0.36 times higher than the unmodified electrodes, which indicates that covalently bound NR can act as electron transfer mediator to facilitate electron transfer from bacteria to electrodes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    Energy Technology Data Exchange (ETDEWEB)

    Pragadish, N.; Kumar, M. Pradeep [Anna University, Chennai (China)

    2015-04-15

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T{sub ON}), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  8. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    International Nuclear Information System (INIS)

    Pragadish, N.; Kumar, M. Pradeep

    2015-01-01

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T ON ), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  9. Antibiofilm Properties of Acetic Acid

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup

    2014-01-01

    Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal of the inf......Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal...... of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram......-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms....

  10. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-08-01

    Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM) simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i) modify a DGVM for simulating land surface water balances; (ii) evaluate the modified model in simulating actual evapotranspiration (ET), soil moisture, and surface runoff at regional or watershed scales; and (iii) gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH) model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ) DGVM. To evaluate the model we ran LH using historical (1981-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981-2006 (R2 > 0.46, p 0.52). The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences day method for snowmelt computation, the addition of the solar radiation effect on snowmelt enabled LH to better simulate monthly stream flow in winter and early spring for rivers located at mid-to-high latitudes. In addition, LH

  11. Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents

    Science.gov (United States)

    Li, Ming; Brant, Jonathan A.

    2018-02-01

    Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.

  12. The electrochemical behavior and surface structure of titanium electrodes modified by ion beams

    International Nuclear Information System (INIS)

    Huang, G.F.; Xie, Z.; Huang, W.Q.; Yang, S.B.; Zhao, L.H.

    2004-01-01

    Industrial grade titanium modified by ion implantation and sputtering was used as electrodes. The effect of ion beam modification on the electrochemical behavior and surface structure of electrodes was investigated. Also discussed is the hydrogen evolution process of the electrode in acidic solution. Several ions such as Fe + , C + , W + , Ni + and others, were implanted into the electrode. The electrochemical tests were carried out in 1N H 2 SO 4 solution at 30±1 deg. C. The electrode potential was measured versus a saturate calomel electrode as a function of immersion time. The cathodic polarization curves were measured by the stable potential static method. The surface layer composition and the chemical state of the electrodes were also investigated by Auger electron spectrometer (AES) and X-ray photoelectron spectroscopy (XPS) technique. The results show that: (1) the stability of modified electrodes depends on the active elements introduced by ion implantation and sputtering deposition. (2) The hydrogen evolution activity of industrial grade titanium may be improved greatly by ion beam modification. (3) Ion beam modification changed the composition and the surface state of electrodes over a certain depth range and forms an activity layer having catalytic hydrogen evolution, which inhibited the absorption of hydrogen and formation of titanium hydride. Thus promoted hydrogen evolution and improved the hydrogen evolution catalytic activity in industrial grade titanium

  13. Influence of surface modified basalt fiber on strength of cinder lightweight aggregate concrete

    Science.gov (United States)

    Xiao, Liguang; Li, Jiheng; Liu, Qingshun

    2017-12-01

    In order to improve the bonding and bridging effect between volcanic slag lightweight aggregate concrete cement and basalt fiber, The basalt fiber was subjected to etching and roughening treatment by NaOH solution, and the surface of the basalt fiber was treated with a mixture of sodium silicate and micro-silica powder. The influence of modified basalt fiber on the strength of volcanic slag lightweight aggregate concrete was systematically studied. The experimental results show that the modified basalt fiber volcanic slag lightweight aggregate concrete has a flexural strength increased by 47%, the compressive strength is improved by 16% and the toughness is increased by 27% compared with that of the non-fiber.

  14. Enhanced NO2 abatement by alkaline-earth modified g-C3N4 nanocomposites for efficient air purification

    Science.gov (United States)

    Papailias, Ilias; Todorova, Nadia; Giannakopoulou, Tatiana; Karapati, Sofia; Boukos, Nikos; Dimotikali, Dimitra; Trapalis, Christos

    2018-02-01

    The emission of nitrogen dioxide (NO2) is a major problem encountered in photocatalytic NOx removal for air purification. Although the oxidation of nitric oxide (NO) has been extensively studied, the elimination of NO2 byproduct is still in preliminary stage. In this work, alkaline-earth modified graphitic carbon nitride (g-C3N4) is proposed for efficient NOx removal by minimizing the emission of NO2 during the NO oxidation process. The novel photocatalysts were synthesized by annealing mixtures of melamine and various alkaline-earth acetates (magnesium, calcium and barium acetate) at 550 °C for 3 h. The specific surface area of the photocatalysts varied between 4.65 and 11.81 m2/g. The formation of MgO, CaCO3 and BaCO3 was demonstrated by XPS and FT-IR analyses. The initial concentration of each alkaline-earth precursor was 5 and 10 wt%, while the final metal concentration in the nanocomposites was in the range of 7.19-22.39 wt%. The modified photocatalysts showed slightly reduced NO oxidation ability. However, the overall air quality was significantly improved by restraining the NO2 emission. The results were related to the basic character of the nanocomposites due to the presence of alkaline-earths and their enhanced NO2 adsorption capability.

  15. Optical, Physical, and Chemical Properties of Surface Modified Titanium Dioxide Powders

    Science.gov (United States)

    2011-02-01

    PROPERTIES OF SURFACE MODIFIED TITANIUM DIOXIDE POWDERS fwn Scivrxc fa SciWcrrs Brendan G. DeLacy RESEARCH AND TECHNOLOGY DIRECTORATE David R. Redding ...NUMBER 5c PROGRAM ELEMENT NUMBER 6. AUTHOR(S) DeLacy, Brendan G. (SAIC) Redding , David R. (ECBC); and Matthews. Joshua 5d. PROJECT NUMBER...X3,300?t>5flm* ** aJI ^-15 SEf Figure 7 - SEM Image #1 of CR-470 •i i .#1. • ^ iW i > hp ^•R^^^Ay *£ $ ^< W^# K HB8 %^ vj\\ X

  16. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    Science.gov (United States)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has

  17. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    Directory of Open Access Journals (Sweden)

    Cesar GAITAN-FONSECA

    2013-01-01

    Full Text Available Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS. Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA. The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT. Results and Conclusions Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system.

  18. Effect of acetic acid on wet patterning of copper/molybdenum thin films in phosphoric acid solution

    International Nuclear Information System (INIS)

    Seo, Bo.-Hyun; Lee, Sang-Hyuk; Park, In-Sun; Seo, Jong Hyun; Choe, HeeHwan; Jeon, Jae-Hong; Hong, Munpyo; Lee, Yong Uk; Winkler, Joerg

    2011-01-01

    Copper metallization is a key issue for high performance thin film transistor (TFT) technology. A phosphoric acid based copper etchant is a potentially attractive alternative to the conventional hydrogen peroxide based etchant due to its longer-life expectancy time and higher stability in use. In this paper, it is shown that amount of the acetic acid in the phosphoric based copper etchant plays an important role in controlling the galvanic reaction between the copper and the molybdenum. As the concentration of acetic acid in the phosphoric mixture solution increased from 0 M to 0.4 M, the measured galvanic current density dropped from 32 mA/cm 2 to 26 mA/cm 2 , indicating that the acetic acid induces the lower galvanic reaction between the copper and the molybdenum in the solution. From the XPS analysis, with the addition of the acetic acid, the thickness of the protective MoO 2 passive film covering the molybdenum surface grew and the dissolution rate of the molybdenum thin film decreased. However, the dissolution rate of the copper thin film increased as the concentration of acetic acid in the mixture solution increased.

  19. Effect of acetic acid on wet patterning of copper/molybdenum thin films in phosphoric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Bo.-Hyun; Lee, Sang-Hyuk; Park, In-Sun [Department of Materials Engineering, Korea Aerospace University, Hwajeon, Goyang, Gyonggi-do 412-791 (Korea, Republic of); Seo, Jong Hyun, E-mail: jhseo@kau.ac.kr [Department of Materials Engineering, Korea Aerospace University, Hwajeon, Goyang, Gyonggi-do 412-791 (Korea, Republic of); Choe, HeeHwan; Jeon, Jae-Hong [School of Electronics, Telecommunications and Computer Engineering, Korea Aerospace University, Hwajeon, Goyang, Gyonggi-do 412-791 (Korea, Republic of); Hong, Munpyo [Display and Semiconductor Physics, Korea University (Korea, Republic of); Lee, Yong Uk [PETEC (The Printable Electronics Technology Centre) (United Kingdom); Winkler, Joerg [PLANSEE Metal GmbH, Metallwerk-Plansee-Str. 71A-6600, Reutte (Austria)

    2011-08-01

    Copper metallization is a key issue for high performance thin film transistor (TFT) technology. A phosphoric acid based copper etchant is a potentially attractive alternative to the conventional hydrogen peroxide based etchant due to its longer-life expectancy time and higher stability in use. In this paper, it is shown that amount of the acetic acid in the phosphoric based copper etchant plays an important role in controlling the galvanic reaction between the copper and the molybdenum. As the concentration of acetic acid in the phosphoric mixture solution increased from 0 M to 0.4 M, the measured galvanic current density dropped from 32 mA/cm{sup 2} to 26 mA/cm{sup 2}, indicating that the acetic acid induces the lower galvanic reaction between the copper and the molybdenum in the solution. From the XPS analysis, with the addition of the acetic acid, the thickness of the protective MoO{sub 2} passive film covering the molybdenum surface grew and the dissolution rate of the molybdenum thin film decreased. However, the dissolution rate of the copper thin film increased as the concentration of acetic acid in the mixture solution increased.

  20. Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA

    International Nuclear Information System (INIS)

    Xu Xinhua; Lu Ping; Zhou Yumei; Zhao Zhenzhen; Guo Meiqing

    2009-01-01

    The mesoporous silica sieve MCM-41 containing methylene blue (MB) provides a suitable immobilization of biomolecule matrix due to its uniform pore structure, high surface areas, good biocompatibility and nice conductivity. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the MB modified MCM-41/PVA composite film has been developed. Laccase from Trametes versicolor is assembled on a composite film of MCM-41 containing MB/PVA modified Au electrode and the electrode is characterized with respect to transmission electron microscopy (TEM) and scanning electron microscopic (SEM), Cyclic voltammetry (CV), response time, detection limit, linear range and activity of laccase. The laccase modified electrode remains good redox behavior in pH 4.95 acetate buffer solution, at room temperature in present of 0.1 mM catechol. The response time (t 90% ) of the modified electrode is less than 4 s for catechol. The detection limit is 0.331 μM and the linear detect range is about from 4.0 μM to 87.98 μM for catechol with a correlation coefficient of 0.99913(S/N = 3). The apparent Michaelis-Menten (K M app ) is estimated using the Lineweaver-Burk equation and the K M app value is about 0.256 mM. This work demonstrated that the mesoporous silica MCM-41 containing MB provides a novel support for laccase immobilization and the construction of biosensors with a faster response and better bioactivity.

  1. Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels

    International Nuclear Information System (INIS)

    Ichiyanagi, Mitsuhisa; Sasaki, Seiichi; Sato, Yohei; Hishida, Koichi

    2009-01-01

    Effects of surface modification patterning on flow characteristics were investigated experimentally by measuring electroosmotic flow velocities, which were obtained by micron-resolution particle image velocimetry using a confocal microscope. The depth-wise velocity was evaluated by using the continuity equation and the velocity data. The microchannel was composed of a poly(dimethylsiloxane) chip and a borosilicate cover-glass plate. Surface modification patterns were fabricated by modifying octadecyltrichlorosilane (OTS) on the glass surface. OTS can decrease the electroosmotic flow velocity compared to the velocity in the glass microchannel. For the surface charge varying parallel to the electric field, the depth-wise velocity was generated at the boundary area between OTS and the glass surfaces. For the surface charge varying perpendicular to the electric field, the depth-wise velocity did not form because the surface charge did not vary in the stream-wise direction. The surface charge pattern with the oblique stripes yielded a three-dimensional flow in a microchannel. Furthermore, the oblique patterning was applied to a mixing flow field in a T-shaped microchannel, and mixing efficiencies were evaluated from heterogeneity degree of fluorescent dye intensity, which was obtained by laser-induced fluorescence. It was found that the angle of the oblique stripes is an important factor to promote the span-wise and depth-wise momentum transport and contributes to the mixing flow in a microchannel

  2. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures

    Science.gov (United States)

    Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.

    2018-04-01

    The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.

  3. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    Science.gov (United States)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-02-01

    Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  4. Effect of n-HA with different surface-modified on the properties of n-HA/PLGA composite

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Liuyun, E-mail: jlytxg@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Xiong Chengdong; Chen Dongliang [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Jiang Lixin [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Graduated School of Chinese Academy of Sciences, Beijing 100039 (China); Pang Xiubing [Zhejiang Apeloa Medical Technology Co. Ltd, Jinhua 322118 (China)

    2012-10-15

    Graphical abstract: The bend strength of n-HA/PLGA composite with the unmodified n-HA becomes lower than that of PLGA. However, when n-HA was modified by different methods, the bend strength of g-n-HA/PLGA composites gets a little increase than PLGA, and the g3-n-HA/PLGA shows the highest bend strength at 3% g3-n-HA loading amount in weight, reached 162 MPa, which was 24.4% higher than that of pure PLGA. Highlights: Black-Right-Pointing-Pointer A new surface modification method for n-HA of combining stearic acid with surface-grafting L-lactic was adopted. Black-Right-Pointing-Pointer Three different surface modification methods for n-HA were compared in detail. Black-Right-Pointing-Pointer The new surface modification method was the most ideal method in this study. Black-Right-Pointing-Pointer The g3-n-HA/PLGA composite had the highest bending strength, which would be potential to be used as bone fracture internal fixation materials. - Abstract: Three different surface modification methods for nano-hydroxyapatite (n-HA) of stearic acid, grafted with L-lactide, combining stearic acid and surface-grafting L-lactic were adopted, respectively. The surface modification reaction and the effect of different methods were evaluated by Fourier transformation infrared (FTIR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM). The results showed that n-HA surfaces were all successful modified, and the modification method of combining stearic acid and surface-grafting L-lactic had the greatest grafting amount and the best dispersion among the three modification methods. Then, the n-HA with three different surface modification and unmodified n-HA were introduced into PLGA, respectively, and a serials of n-HA/PLGA composites with 3% n-HA amount in weight were prepared by solution mixing, and the properties of n-HA/PLGA composites were also investigated by electromechanical universal tester and scanning electron

  5. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shanshan; Liu, Ming [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Wu, Yiqiang, E-mail: wuyq0506@126.com [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004 (China); Luo, Sha [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Qing, Yan, E-mail: qingyan0429@163.com [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004 (China); Chen, Haibo [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China)

    2016-11-15

    Graphical abstract: Highly wear-resistance superhydrophobic surface on wood substrates was fabricated using silica nanoparticles modified by VTES. Display Omitted - Highlights: • Superhydrophobic surface on wood substrates was efficiently fabricated using nanoparticles modified by VTES. • The superhydrophobic surface exhibited a CA of 154° and a SAclose to 0°. • The superhydrophobic surface showed a durable and robust wear-resistance performance. - Abstract: In this study, an efficient, facile method has been developed for fabricating superhydrophobic surfaces on wood substrates using silica nanoparticles modified by VTES. The as-prepared superhydrophobic wood surface had a water contact angle of 154° and water slide angle close to 0°. Simultaneously, this superhydrophobic wood showed highly durable and robust wear resistance when having undergone a long period of sandpaper abrasion or being scratched by a knife. Even under extreme conditions of boiling water, the superhydrophobicity of the as-prepared wood composite was preserved. Characterizations by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy showed that a typical and tough hierarchical micro/nanostructure was created on the wood substrate and vinyltriethoxysilane contributed to preventing the agglomeration of silica nanoparticles and serving as low-surface-free-energy substances. This superhydrophobic wood was easy to fabricate, mechanically resistant and exhibited long-term stability. Therefore, it is considered to be of significant importance in the industrial production of functional wood, especially for outdoor applications.

  6. Comparative of fibroblast and osteoblast cells adhesion on surface modified nanofibrous substrates based on polycaprolactone

    OpenAIRE

    Sharifi, Fereshteh; Irani, Shiva; Zandi, Mojgan; Soleimani, Masoud; Atyabi, Seyed Mohammad

    2016-01-01

    One of the determinant factors for successful bioengineering is to achieve appropriate nano-topography and three-dimensional substrate. In this research, polycaprolactone (PCL) nano-fibrous mat with different roughness modified with O2 plasma was fabricated via electrospinning. The purpose of this study was to evaluate the effect of plasma modification along with surface nano-topography of mats on the quality of human fibroblast (HDFs) and osteoblast cells (OSTs)-substrate interaction. Surfac...

  7. Surface modification of halloysite nanotubes by vulcanization accelerator and properties of styrene-butadiene rubber nanocomposites with modified halloysite nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Bangchao; Jia, Zhixin, E-mail: zxjia@scut.edu.cn; Hu, Dechao; Luo, Yuanfang; Guo, Baochun; Jia, Demin

    2016-03-15

    Graphical abstract: - Highlights: • Vulcanization accelerant was used to modify halloysite nanotubes (HNTs). • The modified HNTs reduced the activation energy of vulcanization. • Strong filler–rubber interaction was achieved in rubber/modified HNTs composites. • The modified HNTs exhibited excellent reinforcement effect on rubber. - Abstract: Vulcanization accelerant N-cyclohexyl-2-benzothiazole sulfenamide (CZ) was used as a surface modifier and chemically grafted on the surface of halloysite nanotubes (HNTs) to obtain CZ-functionalized HNTs (HNTs-s-CZ). It was found that HNTs-s-CZ could be homogeneously dispersed into styrene-butadiene rubber (SBR). The grafted CZ molecules, exactly located at the filler-rubber interface, reduced the activation energy of vulcanization of SBR/HNTs-s-CZ compounds. Besides, the density of chain segments introduced by the interfacial phase of SBR/HNTs-s-CZ nanocomposites was higher than the other nanocomposites with silane-modified HNTs (m-HNTs) or pristine HNTs, manifesting an indication of enhanced filler-rubber interfacial interaction in SBR/HNTs-s-CZ nanocomposites. Consequently, SBR/HNTs-s-CZ nanocomposites showed excellent mechanical properties. The tensile strength could be enhanced by as much as 38.6% and 102.5% compared to those of SBR/m-HNTs and SBR/HNTs nanocomposites, respectively, though containing equivalent accelerant component. The value of this work lies in the fact that apparent properties improvement of elastomer composites has been achieved by the incorporation of vulcanization accelerant-functionalized HNTs, which may be fruitful for the rational design of filler surface treatment and offer new scientific and technological opportunities for the preparation of high performance elastomer composites.

  8. Surface modification of halloysite nanotubes by vulcanization accelerator and properties of styrene-butadiene rubber nanocomposites with modified halloysite nanotubes

    International Nuclear Information System (INIS)

    Zhong, Bangchao; Jia, Zhixin; Hu, Dechao; Luo, Yuanfang; Guo, Baochun; Jia, Demin

    2016-01-01

    Graphical abstract: - Highlights: • Vulcanization accelerant was used to modify halloysite nanotubes (HNTs). • The modified HNTs reduced the activation energy of vulcanization. • Strong filler–rubber interaction was achieved in rubber/modified HNTs composites. • The modified HNTs exhibited excellent reinforcement effect on rubber. - Abstract: Vulcanization accelerant N-cyclohexyl-2-benzothiazole sulfenamide (CZ) was used as a surface modifier and chemically grafted on the surface of halloysite nanotubes (HNTs) to obtain CZ-functionalized HNTs (HNTs-s-CZ). It was found that HNTs-s-CZ could be homogeneously dispersed into styrene-butadiene rubber (SBR). The grafted CZ molecules, exactly located at the filler-rubber interface, reduced the activation energy of vulcanization of SBR/HNTs-s-CZ compounds. Besides, the density of chain segments introduced by the interfacial phase of SBR/HNTs-s-CZ nanocomposites was higher than the other nanocomposites with silane-modified HNTs (m-HNTs) or pristine HNTs, manifesting an indication of enhanced filler-rubber interfacial interaction in SBR/HNTs-s-CZ nanocomposites. Consequently, SBR/HNTs-s-CZ nanocomposites showed excellent mechanical properties. The tensile strength could be enhanced by as much as 38.6% and 102.5% compared to those of SBR/m-HNTs and SBR/HNTs nanocomposites, respectively, though containing equivalent accelerant component. The value of this work lies in the fact that apparent properties improvement of elastomer composites has been achieved by the incorporation of vulcanization accelerant-functionalized HNTs, which may be fruitful for the rational design of filler surface treatment and offer new scientific and technological opportunities for the preparation of high performance elastomer composites.

  9. A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces

    International Nuclear Information System (INIS)

    Gholivand, Kh.; Khosravi, M.; Hosseini, S.G.; Fathollahi, M.

    2010-01-01

    Most products especially metallic surfaces require cleaning treatment to remove surface contaminations that remain after processing or usage. Lead fouling is a general problem which arises from lead fouling on the chromium surfaces of bores and other interior parts of systems which have interaction with metallic lead in high temperatures and pressures. In this study, a novel chemical solution was introduced as a cleaner reagent for removing metallic lead pollution, as a fouling metal, from chromium surfaces. The cleaner aqueous solution contains hydrogen peroxide (H 2 O 2 ) as oxidizing agent of lead layer on the chromium surface and acetic acid (CH 3 COOH) as chelating agent of lead ions. The effect of some experimental parameters such as acetic acid concentration, hydrogen peroxide concentration and temperature of the cleaner solution during the operation on the efficiency of lead cleaning procedure was investigated. The results of scanning electron microscopy (SEM) showed that using this procedure, the lead pollution layer could be completely removed from real chromium surfaces without corrosion of the original surface. Finally, the optimum conditions for the complete and fast removing of lead pollution layer from chromium surfaces were proposed. The experimental results showed that at the optimum condition (acetic acid concentration 28% (V/V), hydrogen peroxide 8% (V/V) and temperature 35 deg. C), only 15-min time is needed for complete removal of 3 g fouling lead from a chromium surface.

  10. Development of functional extruded snacks by utilizing paste shrimp (Acetes spp.): process optimization and quality evaluation.

    Science.gov (United States)

    Kumar, Raushan; Xavier, Ka Martin; Lekshmi, Manjusha; Dhanabalan, Vignaesh; Thachil, Madonna T; Balange, Amjad K; Gudipati, Venkateshwarlu

    2018-04-01

    Functional extruded snacks were prepared using paste shrimp powder (Acetes spp.), which is rich in protein. The process variables required for the preparation of extruded snacks was optimized using response surface methodology. Extrusion temperature (130-144 °C), level of Acetes powder (100-200 g kg -1 ) and feed moisture (140-200 g kg -1 ) were selected as design variables, and expansion ratio, porosity, hardness, crispness and thiobarbituric acid reactive substance value were taken as the response variables. Extrusion temperature significantly influenced all the response variables, while Acetes inclusion influenced all variables except porosity. Feed moisture content showed a significant quadratic effect on all responses and an interactive effect on expansion ratio and hardness. Shrimp powder incorporation increased the protein and mineral content of the final product. The extruded snack made with the combination of extrusion temperature 144.59 °C, feed moisture 178.5 g kg -1 and Acetes inclusion level 146.7 g kg -1 was found to be the best one based on sensory evaluation. The study suggests that use of Acetes species for the development of extruded snacks will serve as a means of utilization of Acetes as well as being a rich source of proteins for human consumption, which would otherwise remain unexploited as a by-catch. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Surface-modified CMOS IC electrochemical sensor array targeting single chromaffin cells for highly parallel amperometry measurements.

    Science.gov (United States)

    Huang, Meng; Delacruz, Joannalyn B; Ruelas, John C; Rathore, Shailendra S; Lindau, Manfred

    2018-01-01

    Amperometry is a powerful method to record quantal release events from chromaffin cells and is widely used to assess how specific drugs modify quantal size, kinetics of release, and early fusion pore properties. Surface-modified CMOS-based electrochemical sensor arrays allow simultaneous recordings from multiple cells. A reliable, low-cost technique is presented here for efficient targeting of single cells specifically to the electrode sites. An SU-8 microwell structure is patterned on the chip surface to provide insulation for the circuitry as well as cell trapping at the electrode sites. A shifted electrode design is also incorporated to increase the flexibility of the dimension and shape of the microwells. The sensitivity of the electrodes is validated by a dopamine injection experiment. Microwells with dimensions slightly larger than the cells to be trapped ensure excellent single-cell targeting efficiency, increasing the reliability and efficiency for on-chip single-cell amperometry measurements. The surface-modified device was validated with parallel recordings of live chromaffin cells trapped in the microwells. Rapid amperometric spikes with no diffusional broadening were observed, indicating that the trapped and recorded cells were in very close contact with the electrodes. The live cell recording confirms in a single experiment that spike parameters vary significantly from cell to cell but the large number of cells recorded simultaneously provides the statistical significance.

  12. Proton conductivity and relaxation properties of chitosan-acetate films

    International Nuclear Information System (INIS)

    Prokhorov, E.; Luna-Bárcenas, G.; González-Campos, J.B.; Kovalenko, Yu.; García-Carvajal, Z.Y.; Mota-Morales, J.

    2016-01-01

    Graphical abstract: Temperature dependence of conductivity, the number of density and proton mobility in chitosan-acetate film. - Highlights: • DD, conductivity, Vogel temperature dependent on the concentration of acetic acid. • Proton conductivity of CS-acetate films interpreted using two Grotthuss mechanisms. • Transformation between two mechanisms observed at the glass transition temperature. - Abstract: The effect of aqueous acetic acid solution concentration during the preparation of chitosan-acetate (CS-acetate) films on the conductivity and relaxation properties were studied by dielectric and FTIR spectroscopies, TGA measurements and X-Ray diffraction. Analyses of the experimental results on the degree of deacetylation, water absorption, conductivity, Vogel temperature and activation energy demonstrate a strong dependence of these parameters on the concentration of the acid acetic solutions from which the films have been obtained. The proton conductivity and relaxation properties of CS-acetate films have been interpreted using two Grotthuss “structural diffusion” and “pack-acid” mechanisms. The transformation between these two mechanisms observed at temperature higher than CS-acetate glass transition temperature is due to an increase in the thermal motion of CS chains, water evaporation, hydrogen bond between water molecules and side groups of CS breaking and formation of new bonds between NH 3 + and acetate ions. Additionally, application of the Rice and Roth model allowed estimating the temperature dependence of proton number and their mobility in CS-acetate films. A systematic interpretation on the appropriate conductivity mechanism will help trigger the design of smart materials used in flexible electronic, solid polymer electrolytes for fuel cells and solid polymer batteries based on CS-acetate films.

  13. Photogeneration of singlet oxygen by the phenothiazine derivatives covalently bound to the surface-modified glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Blacha-Grzechnik, Agata, E-mail: agata.blacha@polsl.pl [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Piwowar, Katarzyna; Krukiewicz, Katarzyna [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Koscielniak, Piotr; Szuber, Jacek [Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice (Poland); Zak, Jerzy K. [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland)

    2016-05-15

    Highlights: • The selected group of four NH{sub 2}-derivatives of phenothiazine was grafted to Glassy Carbon (GC) surface. • The grafted phenothiazines are able to generate {sup 1}O{sub 2} when activated by the radiation. • Such modified solid surfaces may find their application in the wastewater treatment. - Abstract: The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate {sup 1}O{sub 2} when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals’ synthesis or in the wastewater treatment.

  14. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Can, Mustafa [Izmir Katip Celebi University, Faculty of Engineering, Department of Engineering Sciences, Çiğli, Izmir (Turkey); Havare, Ali Kemal [Toros University, Faculty of Engineering, Electric and Electronic Department, Mersin (Turkey); Aydın, Hasan; Yagmurcukardes, Nesli [Izmir Institute of Technology, Material Science and Engineering, Izmir (Turkey); Demic, Serafettin [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey); Icli, Sıddık [Ege University, Solar Energy Institute, Izmir (Turkey); Okur, Salih, E-mail: salih.okur@ikc.edu.tr [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey)

    2014-09-30

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  15. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    International Nuclear Information System (INIS)

    Can, Mustafa; Havare, Ali Kemal; Aydın, Hasan; Yagmurcukardes, Nesli; Demic, Serafettin; Icli, Sıddık; Okur, Salih

    2014-01-01

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  16. Evaluation of different polyolefins as rheology modifier additives in lubricating grease formulations

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Alfonso, J.E.; Valencia, C.; Sanchez, M.C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Franco, J.M., E-mail: franco@uhu.es [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Gallegos, C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain)

    2011-08-15

    Highlights: {yields} Evaluation of different polyolefins as modifiers of the rheological properties and mechanical stability of lithium lubricating greases. {yields} The type of polymer, molecular weight, cristallinity degree and vinyl acetate content influences the rheological and thermal response of lubricating greases. {yields} The crystallinity degree, mainly dependent on the nature of the polymer, is the most highly influencing parameter on the rheology of lubricating greases. {yields} The rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. - Abstract: The purpose of the present work is to evaluate the effect that different polyolefins, used as additives in small proportions, exert on the rheological properties of standard lithium lubricating greases. Grease formulations containing several polyolefins, differing in nature and molecular weight, were manufactured and rheologically characterized. The influence of the type of polymer, molecular weight, crystallinity degree and vinyl acetate content has been analyzed. Small-amplitude oscillatory shear (SAOS) and viscous flow measurements, as well as calorimetric (DSC) and thermogravimetric (TGA) analysis, were carried out. In general, the addition of polymers such as HDPE, LDPE, LLDPE and PP to lithium lubricating greases significantly increases the values of the rheological parameters analyzed, consistency and mechanical stability. However, the use of polyolefins as rheology modifiers does not significantly affect the friction coefficient determined in a tribological contact. The crystallinity degree, mainly dependent on the nature of the polymer, has been found the most highly influencing parameter on the rheology of the lubricating greases studied. However, the rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. Thus, a negative effect in both apparent viscosity and linear viscoelastic functions of greases was obtained when

  17. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    International Nuclear Information System (INIS)

    Yesildag, Ali; Ekinci, Duygu

    2010-01-01

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN) 6 3- and Ru(NH 3 ) 6 3+ by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  18. Investigation of Streptococcus mutans biofilm growth on modified Au(111)-surfaces using AFM and electrochemistry

    DEFF Research Database (Denmark)

    Hu, Yifan; Zhang, Jingdong; Ulstrup, Jens

    2011-01-01

    Biofilms of the bacterium Streptococcus mutans constitute perhaps the most important direct cause of human dental caries formation. We have studied S. mutans biofilm formation and properties on Au(111)-surfaces modified by self-assembled molecular monolayers (SAMs) of different thiol-based molecu...

  19. Removal of selenium species from waters using various surface-modified natural particles and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Nevzat O.; Tozum, Seda [Department of Environmental Engineering, Suleyman Demirel University, Isparta (Turkey)

    2012-07-15

    Waste red mud and natural pumice/volcanic slag particles were surface modified and their selenium adsorption from waters was investigated. Acid activation/heat treatment of original red mud (ORM) particles significantly increased their micropore and external surface area and cumulative volume of pores. Iron oxide coating of pumice/slags and acid activation of ORM decreased their pH{sub pzc} values and increased surface acidity. Selenite/selenate adsorption on iron oxide surfaces and acid activated red mud (AARM) was very fast with approximately first-order adsorption kinetics. Iron oxide coating of pumice/slag and acid activation of ORM particles significantly enhanced their selenite and selenate uptakes. Maximum Se adsorption capacities as high as 6.3 (mg Se/g adsorbent) were obtained by AARM. The extent of selenate uptakes by the surface modified particles was generally lower than those of selenite. Due to competition among Se species and other background water matrix for iron oxide adsorption sites, reduced selenite/selenate uptakes were found in natural water compared to single solute tests. Higher Se uptakes by iron oxide surfaces were found at pH 7.5 compared to pH 8.9, due to increased electrostatic repulsion among iron oxides and Se species at higher pH. The most effective adsorbents among the tested 17 different particles for Se uptake were AARM and iron oxide coated pumice. Se concentrations less than drinking water standards (5-10 {mu}g/L) can be achieved by these particles. These low-cost, natural, or recyclable waste particles appear to be promising adsorbents for Se removal after their surface modification. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Fixing of metallic acetates on an anion-exchange resin; Fixation d'acetates metalliques dans une resine echangeuse d'anions

    Energy Technology Data Exchange (ETDEWEB)

    Brigaudeau-Vaissiere, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etude Nucleaires

    1966-06-01

    After giving a brief review of the theoretical principles governing the fixation of anionic complexes of metallic elements on an anion exchange resin, we consider the particular case of uranyl acetate. By plotting the partition curves we have been able to calculate the exchange constants in the resin. By studying the changes in the logarithm of the limiting partition coefficient as a function of the logarithm of the free acetate ion concentration, it has been possible to calculate the dissociation constants for the complexes in solution. The fixation of a large number of metallic acetates has been studied. All the tests have been negative except in the case of mercury. For this reason we have been able to consider the possibility of separating uranium from a certain number of elements. Some of these separations are possible even in the presence of interfering anions such as chlorides which have a greater affinity for the resin than have the acetate ions. In the case of water-ethanol and water-isopropanol mixtures, we have improved the conditions under which copper acetate and mercury acetate may be fixed. This study has enabled us to calculate the dissociation constant for the CuAc{sub 3}{sup -} complex in the mixtures water +40% (by weight) isopropanol and water +50% (by weight) isopropanol. It should also make it possible to use separation conditions which could not hitherto be applied in aqueous media. (author) [French] Apres avoir rappele les principes theoriques de la fixation des complexes anioniques des elements metalliques dans une resine echangeuse d'anions, nous avons etudie tout particulierement le cas de l'acetate d'uranyle. Le trace des courbes de partage nous a permis de calculer les constantes d'echange dans la resine. L'etude des variations du logarithme du coefficient limite de partage avec le logarithme de la concentration des ions acetate libres nous a conduits aux calculs des constantes de dissociation des complexes en solution. La fixation d

  1. Glycerol transesterification with ethyl acetate to synthesize acetins using ethyl acetate as reactant and entrainer

    Directory of Open Access Journals (Sweden)

    Amin Shafiei

    2017-03-01

    Full Text Available Transesterification of glycerol with ethyl acetate was performed over acidic catalysts in the batch and semi-batch systems. Ethyl acetate was used as reactant and entrainer to remove the produced ethanol during the reaction, through azeotrope formation. Since the azeotrope of ethyl acetate and ethanol forms at 70 oC, all the experiments were performed at this temperature. Para-toluene sulfonic acid, sulfuric acid, and Amberlyst 36 were used as catalyst. The effect of process parameters including ethyl acetate to glycerol molar ratio (6-12, reaction time (3-9 h, and the catalyst to glycerol weight (2.5-9.0%, on the conversion and products selectivities were investigated. Under reflux conditions, 100% glycerol conversion was obtained with 45%, 44%, and 11% selectivity to monoacetin, diacetin, and triacetin, respectively. Azeotropic reactive distillation led to 100% conversion of glycerol with selectivities of 3%, 48% and 49% for monoacetin, diacetin, and triacetin. During the azeotropic reactive distillation, it was possible to remove ethanol to shift the equilibrium towards diacetin and triacetin. Therefore, the total selectivity to diacetin and triacetin was increased from 55% to 97% through azeotropic distillation.

  2. Fermentation characteristics of Fusarium oxysporum grown on acetate

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Pachidou, Fotini; Petroutsos, Dimitris

    2008-01-01

    In this study, the growth characteristics of Fusarium oxysporum were evaluated in minimal medium using acetate or different mixtures of acetate and glucose as carbon source. The minimum inhibitory concentration (MIC) of acetic acid that F oxysporum cells could tolerate was 0.8% w/v while glucose ...

  3. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee (Inventor); Luebben, Silvia DeVito (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  4. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  5. Influence of calcium acetate on rye bread volume

    Directory of Open Access Journals (Sweden)

    Katharina FUCKERER

    2016-01-01

    Full Text Available Abstract The positive accepted savoury taste of rye bread is dependent on acetate concentration in the dough of such breads. In order to study how calcium acetate influences rye bread properties, the pH of rye doughs fortified with calcium acetate and the resulting volume of the breads were measured. Furthermore, CO2 formation of yeast with added calcium acetate and yeast with different pH levels (4, 7, 9 were measured. Thereby, it was determined that the addition of calcium acetate increased the pH of dough from 4.42 to 5.29 and significantly reduced the volume of the breads from 1235.19 mL to 885.52 mL. It could be proven that bread volume was affected by a 30.9% lower CO2 amount production of yeast, although bread volume was not affected by changing pH levels. Due to reduced bread volume, high concentrations of calcium acetate additions are not recommended for improving rye bread taste.

  6. Influence of surfaces modified with biomimetic extracellular matrices on adhesion and proliferation of mesenchymal stem cells and osteosarcoma cells.

    Science.gov (United States)

    Cai, Rong; Kawazoe, Naoki; Chen, Guoping

    2015-02-01

    Preparation of surfaces modified with biomimetic extracellular matrices (ECMs) is important for investigation of the interaction between ECMs and cells. In the present study, surfaces modified with ECMs from normal somatic cells, stem cells and tumor cells were prepared by cell culture method. The ECMs derived from bone marrow-derived mesenchymal stem cells (MSCs), dermal fibroblasts (FBs), osteoblasts (OBs) and MG63 osteosarcoma cells were deposited on the surfaces of cell-culture polystyrene plates (TCPS). The ECMs from different cell types had different compositions. The effects of the ECM-deposited surfaces on the adhesion, spreading and proliferation of MSCs and MG63 human osteosarcoma cells were dependent on the type of both ECMs and cells. The surfaces deposited with ECMs from MSCs, FBs and OBs promoted cell adhesion more strongly than surfaces deposited with ECMs from MG63 cells and TCPS. Compared to TCPS, the ECM-deposited surfaces promoted proliferation of MSCs while they inhibited the proliferation of MG63 cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Directory of Open Access Journals (Sweden)

    G. Tang

    2012-08-01

    Full Text Available Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i modify a DGVM for simulating land surface water balances; (ii evaluate the modified model in simulating actual evapotranspiration (ET, soil moisture, and surface runoff at regional or watershed scales; and (iii gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ DGVM. To evaluate the model we ran LH using historical (1981–2006 climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981–2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52. The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15% with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt

  8. Study of alkaline-earth element complexes in anhydrous acetic acid

    International Nuclear Information System (INIS)

    Petit, N.

    1968-10-01

    We have studied the complexes of alkaline-earth elements in anhydrous acetic acid. Using glass-electrode potentiometry we have studied the titration of alkaline earth acetates with perchloric acid which is the strongest acid in anhydrous acetic acid. These titrations have shown that the basic strength of these acetates increases as follows: Mg 4 ); the mixed acetate-acid sulfate complex of barium: Ba (OAc)(HSO 4 ); the mixed acetate-chloride of barium: Ba (OAc)(Cl). (author) [fr

  9. Molecular Active Sites in Heterogeneous Ir-La/C-Catalyzed Carbonylation of Methanol to Acetates.

    Science.gov (United States)

    Kwak, Ja Hun; Dagle, Robert; Tustin, Gerald C; Zoeller, Joseph R; Allard, Lawrence F; Wang, Yong

    2014-02-06

    We report that when Ir and La halides are deposited on carbon, exposure to CO spontaneously generates a discrete molecular heterobimetallic structure, containing an Ir-La covalent bond that acts as a highly active, selective, and stable heterogeneous catalyst for the carbonylation of methanol to produce acetic acid. This catalyst exhibits a very high productivity of ∼1.5 mol acetyl/mol Ir·s with >99% selectivity to acetyl (acetic acid and methyl acetate) without detectable loss in activity or selectivity for more than 1 month of continuous operation. The enhanced activity can be mechanistically rationalized by the presence of La within the ligand sphere of the discrete molecular Ir-La heterobimetallic structure, which acts as a Lewis acid to accelerate the normally rate-limiting CO insertion in Ir-catalyzed carbonylation. Similar approaches may provide opportunities for attaining molecular (single site) behavior similar to homogeneous catalysis on heterogeneous surfaces for other industrial applications.

  10. Induced superhydrophobic and antimicrobial character of zinc metal modified ceramic wall tile surfaces

    Science.gov (United States)

    Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan

    2018-04-01

    Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.

  11. Influence of carboxyl group formation on ammonia adsorption of NiO-templated nanoporous carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Long-Yue [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2012-11-15

    The scope of this work was to control the surface functional groups of nanoporous carbons (NPs) by oxidizing agents (nitric acid and hydrogen peroxide) treatments and to investigate the relation between carboxyl group and ammonia removal efficiency. The NPs were directly prepared from a cation exchange resin by the carbonization of a mixture with Ni acetate at 900 Degree-Sign C. N{sub 2}/-196 Degree-Sign C adsorption, Boehm's titrations, and X-ray photoelectron spectroscopy (XPS) analyzes were employed to confirm the physicochemical properties of NPs. The ammonia removal efficiency was confirmed by temperature programmed desorption (TPD) technique. In the result, the oxygen content of NPs increased after various treatments and the highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. It was also found that the oxidation treatment led to an increase in ammonia removal efficiency of NPs, mainly due to an increase of acid oxygen functional groups (such as carboxyl) on NPs surfaces. -- Graphical abstract: The nanoporous carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate for ammonia adsorption. Highlights: Black-Right-Pointing-Pointer The carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate. Black-Right-Pointing-Pointer The carbon surfaces were modified with HNO{sub 3}/H{sub 2}O{sub 2} solution at different volume radio. Black-Right-Pointing-Pointer The highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer The acid oxygen functional groups (such as carboxyl) on carbon surfaces led to an increase in ammonia adsorption.

  12. Antireflectance coating on shielding window glasses using glacial acetic acid at ambient temperature

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2006-01-01

    High density lead glasses having thickness of several centimeters and large dimensions are used as shielding windows in hot cells. To improve visibility, the reflection of light from its optically polished surfaces needs to be minimized to improve transmission as absorption of light in the thick glasses can not be avoided. Antireflectance coating of a material having low refractive index is required for this purpose. Selective leaching of lead at ambient temperature in glacial acetic acid develops a silica rich leached layer on glass surface. Since silica has low refractive index, the leached layer serves as antireflectance coating. Two optically polished discs of shielding window glasses were leached in glacial acetic acid at ambient temperature for 2, 5 and 10 days and their reflectance and transmittance spectra were taken to find effect of leaching. For transparent glass transmittance could be improved from 78.76% to 85.31% after 10 days leaching. Reflectance from the glass could be decreased from 12.48 to 11.67%. For coloured glass transmittance improved from 87.77% to 88.24% after 5 days leaching while reflectance decreased from 12.28% to 5.6% during same period. Based on data generated, 10 days leaching time is recommended for developing anti reflectance coating on transparent shielding window glass and 5 days for coloured shielding window glass. The procedure can be used for shielding windows of any dimensions by fabrication a PVC tank of slightly high dimensions and filling with acetic acid (author)

  13. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive.

    Science.gov (United States)

    Zhao, Yi-Fan; Zhang, Pei-Bin; Sun, Jian; Liu, Cui-Jing; Yi, Zhuan; Zhu, Li-Ping; Xu, You-Yi

    2015-06-15

    Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES membranes prepared by phase inversion technique. The surface enriched PHEMA blocks on membrane surface acted as an anchor to immobilize the initiating site. Poly(sulfobetaine methacrylate) (PSBMA) were subsequently grafted onto the PES blend membranes by surface-initiated atom transfer radical polymerization (SI-ATRP). The analysis of surface chemistry confirmed the successful grafting of zwitterionic PSBMA brushes on PES membrane surface. The resulted PES-g-PSBMA membranes were capable of separating proteins from protein solution and oil from oil/water emulsion efficiently. Furthermore, the modified membranes showed high hydrophilicity and strongly antifouling properties due to the incorporation of well-defined PSBMA layer. In addition, the PES-g-PSBMA membranes exhibited excellent blood compatibility and durability during the washing process. The developed antifouling PES membranes are versatile and can find their applications in protein filtration, blood purification and oil/water separation, etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Desmopressin Acetate in Intracranial Haemorrhage

    Directory of Open Access Journals (Sweden)

    Thomas Kapapa

    2014-01-01

    Full Text Available Introduction. The secondary increase in the size of intracranial haematomas as a result of spontaneous haemorrhage or trauma is of particular relevance in the event of prior intake of platelet aggregation inhibitors. We describe the effect of desmopressin acetate as a means of temporarily stabilising the platelet function. Patients and Methods. The platelet function was analysed in 10 patients who had received single (N=4 or multiple (N=6 doses of acetylsalicylic acid and 3 patients (control group who had not taken acetylsalicylic acid. All subjects had suffered intracranial haemorrhage. Analysis was performed before, half an hour and three hours after administration of desmopressin acetate. Statistical analysis was performed by applying a level of significance of P≤0.05. Results. (1 Platelet function returned to normal 30 minutes after administration of desmopressin acetate. (2 The platelet function worsened again after three hours. (3 There were no complications related to electrolytes or fluid balance. Conclusion. Desmopressin acetate can stabilise the platelet function in neurosurgical patients who have received acetylsalicylic acid prior to surgery without causing transfusion-related side effects or a loss of time. The effect is, however, limited and influenced by the frequency of drug intake. Further controls are needed in neurosurgical patients.

  15. Elaboration of modified poly(NiII-DHS films as electrodes by the electropolymerization of Ni(II-[5,5′-dihydroxysalen] onto indium tin oxide surface and study of their electrocatalytic behavior toward aliphatic alcohols

    Directory of Open Access Journals (Sweden)

    Ali Ourari

    2017-11-01

    Full Text Available Nickel(II-DHS complex was obtained from N,N′-bis(2,5-dihydroxybenzylidene-1,2-diaminoethane (H2DHS ligand and nickel acetate tetrahydrated in ethanolic solution with stirring under reflux. This complex, dissolved in an alkaline solution, was oxidized to form electroactive films strongly adhered on the ITO (indium tin oxide electrode surface. In this alkaline solution, the poly-[NiII-DHS]/ITO films showed the typical voltammetric response of (Ni2+/Ni3+ redox couple centers which are immobilized in the polymer-film. The modified electrodes (MEs obtained were also characterized by several techniques such as scanning electronic microscopy, atomic force microscopy and electrochemical methods. The electrocatalytic behavior of these MEs toward the oxidation reaction of some aliphatic alcohols such as methanol, ethanol, 2-Methyl-1-propanol and isopropanol was investigated. The voltammograms recorded with these alcohols showed good electrocatalytic efficiency. The electrocatalytic currents were at least 80 times higher than those obtained for the oxidation of methanol on electrodes modified with nickel hydroxide films in alkaline solutions. We noticed that these electrocatalytic currents are proportional to the concentration of methanol (0.050–0.30 μM. In contrast, those recorded for the oxidation of other aliphatic short chain alcohols such as ethanol, 2-methyl-1-propanol and isopropanol are rather moderately weaker. In all cases the electrocatalytic currents presented a linear dependence with the concentration of alcohol. These modified electrodes could be applied as alcohol sensors.

  16. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  17. Behaviour of human endothelial cells on surface modified NiTi alloy.

    Science.gov (United States)

    Plant, Stuart D; Grant, David M; Leach, Lopa

    2005-09-01

    Intravascular stents are being designed which utilise the shape memory properties of NiTi alloy. Despite the clinical advantages afforded by these stents their application has been limited by concerns about the large nickel ion content of the alloy. In this study, the surface chemistry of NiTi alloy was modified by mechanical polishing and oxidising heat treatments and subsequently characterised using X-ray photon spectroscopy (XPS). The effect of these surfaces on monolayer formation and barrier integrity of human umbilical vein endothelial cells (HUVEC) was then assessed by confocal imaging of the adherens junctional molecule VE-cadherin, perijunctional actin and permeability to 42kDa dextrans. Dichlorofluoroscein assays were used to measure oxidative stress in the cells. XPS analysis of NiTi revealed its surface to be dominated by TiO(2). However, where oxidation had occurred after mechanical polishing or post polishing heat treatments at 300 and 400 degrees C in air, a significant amount of metallic nickel or nickel oxide species (10.5 and 18.5 at%) remained on the surface. Exposure of HUVECs to these surfaces resulted in increased oxidative stress within the cells, loss of VE-cadherin and F-actin and significantly increased paracellular permeability. These pathological phenomena were not found in cells grown on NiTi which had undergone heat treatment at 600 degrees C. At this temperature thickening of the TiO(2) layer had occurred due to diffusion of titanium ions from the bulk of the alloy, displacing nickel ions to sub-surface areas. This resulted in a significant reduction in nickel ions detectable on the sample surface (4.8 at%). This study proposes that the integrity of human endothelial monolayers on NiTi is dependent upon the surface chemistry of the alloy and that this can be manipulated, using simple oxidising heat treatments.

  18. Improving the Yule-Nielsen modified Neugebauer model by dot surface coverages depending on the ink superposition conditions

    Science.gov (United States)

    Hersch, Roger David; Crete, Frederique

    2005-01-01

    Dot gain is different when dots are printed alone, printed in superposition with one ink or printed in superposition with two inks. In addition, the dot gain may also differ depending on which solid ink the considered halftone layer is superposed. In a previous research project, we developed a model for computing the effective surface coverage of a dot according to its superposition conditions. In the present contribution, we improve the Yule-Nielsen modified Neugebauer model by integrating into it our effective dot surface coverage computation model. Calibration of the reproduction curves mapping nominal to effective surface coverages in every superposition condition is carried out by fitting effective dot surfaces which minimize the sum of square differences between the measured reflection density spectra and reflection density spectra predicted according to the Yule-Nielsen modified Neugebauer model. In order to predict the reflection spectrum of a patch, its known nominal surface coverage values are converted into effective coverage values by weighting the contributions from different reproduction curves according to the weights of the contributing superposition conditions. We analyze the colorimetric prediction improvement brought by our extended dot surface coverage model for clustered-dot offset prints, thermal transfer prints and ink-jet prints. The color differences induced by the differences between measured reflection spectra and reflection spectra predicted according to the new dot surface estimation model are quantified on 729 different cyan, magenta, yellow patches covering the full color gamut. As a reference, these differences are also computed for the classical Yule-Nielsen modified spectral Neugebauer model incorporating a single halftone reproduction curve for each ink. Taking into account dot surface coverages according to different superposition conditions considerably improves the predictions of the Yule-Nielsen modified Neugebauer model. In

  19. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    Science.gov (United States)

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  20. Cellulose acetate membranes functionalized with resveratrol by covalent immobilization for improved osseointegration

    Science.gov (United States)

    Pandele, A. M.; Neacsu, P.; Cimpean, A.; Staras, A. I.; Miculescu, F.; Iordache, A.; Voicu, S. I.; Thakur, V. K.; Toader, O. D.

    2018-04-01

    Covalent immobilization of resveratrol onto cellulose acetate polymeric membranes used as coating on a Mg-1Ca-0.2Mn-0.6Zr alloy is presented for potential application in the improvement of osseointegration processes. For this purpose, cellulose acetate membrane is hydrolysed in the presence of potassium hydroxide, followed by covalent immobilization of aminopropyl triethoxy silane. Resveratrol was immobilized onto membranes using glutaraldehyde as linker. The newly synthesised functional membranes were thoroughly characterized for their structural characteristics determination employing X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FT-IR), Raman spectroscopy, thermogravimetric analysis (TGA/DTG) and scanning electron microscopy (SEM) techniques. Subsequently, in vitro cellular tests were performed for evaluating the cytotoxicity biocompatibility of synthesized materials and also the osseointegration potential of obtained derivatised membrane material. It was demonstrated that both polymeric membranes support viability and proliferation of the pre-osteoblastic MC3T3-E1 cells, thus providing a good protection against the potential harmful effects of the compounds released from coated alloys. Furthermore, cellulose acetate membrane functionalized with resveratrol exhibits a significant increase in alkaline phosphatase activity and extracellular matrix mineralization, suggesting its suitability to function as an implant surface coating for guided bone regeneration.

  1. Silane Modification of Cellulose Acetate Dense Films as Materials for Acid Gas Removal

    KAUST Repository

    Achoundong, Carine S. K.; Bhuwania, Nitesh; Burgess, Steven K.; Karvan, Oguz; Johnson, Justin R.; Koros, William J.

    2013-01-01

    The modification of cellulose acetate (CA) films via grafting of vinyltrimethoxysilane (VTMS) to -OH groups, with subsequent condensation of hydrolyzed methoxy groups on the silane to form a polymer network is presented. The technique is referred to as GCV-modification. The modified material maintains similar H2S/CH4 and CO2/CH 4 selectivities compared to the unmodified material; however the pure CO2 and H2S permeabilities are 139 and 165 barrers, respectively, which are more than an order of magnitude higher than the neat polymer. The membranes were tested at feed pressures of up to 700 psia in a ternary 20 vol. %H2S/20 vol. % CO2/60 vol. % CH 4 mixture. Even under aggressive feed conditions, GCV-modified CA showed comparable selectivities and significantly higher permeabilities. Furthermore, GCV-modified membrane had a lower Tg, lower crystallinity, and higher flexibility than neat CA. The higher flexibility is due to the vinyl substituent provided by VTMS, thereby reducing brittleness, which could be helpful in an asymmetric membrane structure. © 2013 American Chemical Society.

  2. Silane Modification of Cellulose Acetate Dense Films as Materials for Acid Gas Removal

    KAUST Repository

    Achoundong, Carine S. K.

    2013-07-23

    The modification of cellulose acetate (CA) films via grafting of vinyltrimethoxysilane (VTMS) to -OH groups, with subsequent condensation of hydrolyzed methoxy groups on the silane to form a polymer network is presented. The technique is referred to as GCV-modification. The modified material maintains similar H2S/CH4 and CO2/CH 4 selectivities compared to the unmodified material; however the pure CO2 and H2S permeabilities are 139 and 165 barrers, respectively, which are more than an order of magnitude higher than the neat polymer. The membranes were tested at feed pressures of up to 700 psia in a ternary 20 vol. %H2S/20 vol. % CO2/60 vol. % CH 4 mixture. Even under aggressive feed conditions, GCV-modified CA showed comparable selectivities and significantly higher permeabilities. Furthermore, GCV-modified membrane had a lower Tg, lower crystallinity, and higher flexibility than neat CA. The higher flexibility is due to the vinyl substituent provided by VTMS, thereby reducing brittleness, which could be helpful in an asymmetric membrane structure. © 2013 American Chemical Society.

  3. Studies on Gas Sensing Performance of Pure and Surface Modified SrTiO3 Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    V. B. Gaikwad

    2009-08-01

    Full Text Available Strontium Titanate (SrTiO3 (ST was prepared mechanochemically from Sr(OH2 and TiO2. XRD confirms the Perovskite phase of material. Thick films of ST were prepared by screen-printing technique. The gas sensing performances of thick films were tested for various gases. It showed maximum sensitivity to CO gas at 350 oC for 100 ppm gas concentration. To improve the sensitivity and selectivity of the film towards a particular gas, ST thick films were surface modified by dipping them in a solution of nano copper for different intervals of time. These surface modified ST films showed larger sensitivity to H2S gas (100 ppm at 300 oC than pure ST film. A systematic study, of sensing performance of the sensor, indicates the key role-played by the nano copper species on the surface .The sensitivity, selectivity, response and recovery time of the sensor were measured and presented.

  4. Directed self-assembly of nanogold using a chemically modified nanopatterned surface

    Science.gov (United States)

    Nidetz, Robert; Kim, Jinsang

    2012-02-01

    Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces.

  5. Directed self-assembly of nanogold using a chemically modified nanopatterned surface

    International Nuclear Information System (INIS)

    Nidetz, Robert; Kim, Jinsang

    2012-01-01

    Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces. (paper)

  6. Study on surface adhesion of Plasma modified Polytetrafluoroethylene hollow fiber membrane

    Science.gov (United States)

    Chen, Jiangrong; Zhang, Huifeng; Liu, Guochang; Guo, Chungang; Lv, Jinglie; Zhangb, Yushan

    2018-01-01

    Polytetrafluoroethylene (PTFE) is popular membrane material because of its excellent thermal stability, chemical stability and mechanical stability. However, the low surface energy and non-sticky property of PTFE present challenges for modification. In the present study, plasma treatment was performed to improve the surface adhesion of PTFE hollow fiber membrane. The effect of discharge voltage, treatment time on the adhesion of PTFE hollow fiber membrane was symmetrically evaluated. Results showed that the plasma treatment method contributed to improve the surface activity and roughness of PTFE hollow fiber membrane, and the adhesion strength depend significantly on discharge voltage, which was beneficial to seepage pressure of PTFE hollow fiber membrane module. The adhesion strength of PTFE membrane by plasma treated at 220V for 3min reached as high as 86.2 N, far surpassing the adhesion strength 12.7 N of pristine membrane. Furthermore, improvement of content of free radical and composition analysis changes of the plasma modified PTFE membrane were investigated. The seepage pressure of PTFE membrane by plasma treated at 220V for 3min was 0.375 MPa, which means that the plasma treatment is an effective technique to improve the adhesion strength of membrane.

  7. Effects of Different Solvents on the Surface Acidic Oxygen-containing Functional Groups on Xanthoceras sorbifolia Shell

    Directory of Open Access Journals (Sweden)

    Linan Liu

    2014-03-01

    Full Text Available This study reports the preparation of a novel biomaterial from a forestry residue - Xanthoceras sorbifolia shell (XSS - by solvent modification. The effects of acid and base (hydrochloric acerbic, acetic acid, sodium hydroxide, ammonia water and some organic solvents (ethanol, acetone, ethyl acetate, chloroform, petroleum ether, and n-hexane on the surface acidic functional groups (SAFGs on XSS were investigated. The amount of SAFGs was quantified using acid and alkali chemical titration methods, and the characteristics of virgin XSS were compared with treated ones by FT-IR spectroscopy. It was found that acid solutions can increase the concentration of SAFGs, while alkaline solutions reduce it. The XSS treated in 0.5 M HCl has the largest number of total acidic functional groups and phenolic hydroxyl groups. The shell extracted with 2 M acetic acid has the highest concentration of carboxyl. The SAFG contents were remarkably increased by treatments with ethanol and acetone, due to the outstanding enhancement of phenolic hydroxyl. These changes in the SAFGs of XSS brought about by treatments with various solutions could be a theoretical foundation for modifying this residue to create a new type of highly efficient absorbent material.

  8. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Christiansen, Sofie Egholm; Thomsen, M.L.D.

    2007-01-01

    The aerobic oxidation of aqueous ethanol to produce acetic acid and ethyl acetate was studied using heterogeneous gold catalysts. Comparing the performance of Au/MgAl2O4 and Au/TiO2 showed that these two catalysts exhibited similar performance in the reaction. By proper selection of the reaction...

  9. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yesildag, Ali [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Ekinci, Duygu, E-mail: dekin@atauni.edu.t [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2010-09-30

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN){sub 6}{sup 3-} and Ru(NH{sub 3}){sub 6}{sup 3+} by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  10. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    International Nuclear Information System (INIS)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-01-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  11. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany); Grunwald, Ingo, E-mail: ingo.grunwald@ifam.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany)

    2013-05-15

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  12. Oxidation Behavior of Surface-modified Stainless Steel 316LN in Supercritical-CO{sub 2} Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan; Heo, Jin Woo; Kim, Hyunm Yung; Jang, Chang Heui [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Compared to other working fluids such as helium or nitrogen, S-CO{sub 2} offers a higher efficiency at operating temperatures of advanced reactors above 550 .deg. C. Moreover, the S-CO{sub 2} cycle is expected to have a significantly smaller footprint compared to other power conversion cycles, resulting in a broader range of applications with lower capital costs. Currently, stainless steel 316 is considered as the candidate structural material for the SFR. In comparison, it is well known that alumina (Al{sub 2}O{sub 3}) have superior oxidation and carburization resistance specifically at higher temperatures where α-Al{sub 2}O{sub 3} may form. Thus, various surface modification techniques have been applied to mostly Ni-base alloys so that a protective and continuous Al-rich oxide layer forms on the surface, conferring superior oxidation and carburization resistance. In this study, SS 316LN was deposited with Al via physical vapor deposition (PVD) method followed by heat treatment processes to develop an Al-rich layer at the surface. The specimens are to be exposed to high temperature S-CO{sub 2} environment to evaluate the oxidation and carburization resistance. Stainless steel 316LN was surface-modified to develop an Al-rich layer for improvement of oxidation behavior in S-CO{sub 2} environment. As the test temperature of 600 .deg. C is not sufficiently high for the formation of protective α-Al{sub 2}O{sub 3} formation, pre-oxidation of surface modified SS 316LN was conducted.

  13. Immobilization of Glucose Oxidase on Modified-Carbon-Paste-Electrodes for Microfuel Cell

    Directory of Open Access Journals (Sweden)

    Laksmi Ambarsari

    2016-03-01

    Full Text Available Glucose oxidase (GOx is being developed for many applications such as an implantable fuel cell, due to its attractive property of operating under physiological conditions. This study reports the functional immobilization of glucose oxidase onto polyaniline-nanofiber-modified-carbon-paste-electrodes (GOx/MCPE as bioanodes in fuel cell applications. In particular, GOx is immobilized onto the electrode surface via a linker molecule (glutaraldehyde. Polyaniline, synthesized by the interfacial polymerization method, produces a morphological form of nanofibers (100-120 nm which have good conductivity. The performance of the polyaniline-modified-carbon-paste-electrode (MCPE was better than the carbon- paste-electrode (CPE alone. The optimal pH and temperature of the GOx/MCPE were 4.5 (in 100 mM acetate buffer and 65 °C, respectively. The GOx/MCPE exhibit high catalytic performances (activation energy 16.4 kJ mol-1, have a high affinity for glucose (Km value 37.79 µM and can have a maximum current (Imax of 3.95 mA. The sensitivity of the bioelectrode also was high at 57.79 mA mM-1 cm-2.

  14. Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md. Elias [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kuila, Tapas [Surface Engineering and Tribology, CSIR – Central Mechanical Engineering Research Institute, Durgapur 721 302 (India); Nayak, Ganesh Chandra [Department of Applied Chemistry, ISM Dhanbad, Dhanbad 826 004, Jharkhand (India); Kim, Nam Hoon [Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Ku, Bon-Cheol [Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Dunsan-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 864-9 (Korea, Republic of); Lee, Joong Hee, E-mail: jhl@chonbuk.ac.kr [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2013-06-15

    Highlights: ► Water dispersible graphene has been prepared using ionic and non-ionic surfactants. ► XPS and FTIR spectra analysis confirm surface modification and reduction of GO. ► The highest water dispersibility is observed in the graphene modified with of SDBS. ► The best properties of modified graphene is achieved with GO/surfactant ratio of two. -- Abstract: Ionic and non-ionic surfactant functionalized, water dispersible graphene were prepared to investigate the effects on the dispersion stability and electrical conductivity of graphene. In this study, sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate and 4-(1,1,3,3-tetramethylbutyl) phenyl-polyethylene glycol (Triton X-100) were used as ionic and non-ionic surfactants. The effects of surfactant concentrations on the dispersibility and electrical conductivity of the surface modified graphene were investigated. The dispersion stability of SDBS functionalized graphene (SDBS-G) was found to be best in water at 1.5 mg ml{sup −1}. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis indicate that the presence of surfactants does not prevent the reduction of graphene oxide (GO). These measurements also demonstrated that the surfactants were present on the surface of graphene, resulting in the formation of functionalized graphene. The thickness of different functionalized graphene was measured by Atomic force microscopy and varied significantly with different surfactants. The thermal properties of the functionalized graphene were also found to be dependent on the nature of the surfactants. The electrical conductivity of SDBS-G (108 S m{sup −1}) was comparatively higher than SDS and Triton X-100 functionalized graphene.

  15. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  16. Vinyl acetate polymerization by ionizing radiation

    International Nuclear Information System (INIS)

    Mesquita, Andrea Cercan

    2002-01-01

    The aim of this work is the synthesis and characterization of the poly(vinyl acetate) using the ionizing radiation. Six polymerizations of vinyl acetate were carried out using three techniques of polymerization: in bulk, emulsion and solution. In the technique of solution polymerization were used two solvents, the alcohol ethyl and the methylethylketone, in two proportions 1:0.5 and 1:1 related to the monomer. The solutions were irradiated with gamma rays from a 60 Co source, with dose rate between 5.25 kGy/h and 6.26 kGy/h. The polymers obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The glass transition temperature (Tg) was investigated by Differential Scanning Calorimeter (DSC). The molecular weight was analyzed by the technique of Gel Permeation Chromatography (GPC). Tests of density, hardness and Vicat softening temperature were carried out. The infrared spectroscopy and others results confirmed that the polymers obtained by polymerization of vinyl acetate in bulk, emulsion and solution, using ionizing radiation, really correspond at poly(vinyl acetate). (author)

  17. Polysiloxane surface modified with bipyrazolic tripodal receptor for quantitative lead adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Radi, Smaail, E-mail: radi_smaail@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Equipe de Chimie Bio-organique et Macromoleculaire, Unite Associee au CNRST URAC 25, Departement de Chimie, Faculte des Sciences, Universite Med I, BP 524, 60 000 Oujda (Morocco); Tighadouini, Said; Toubi, Yahya [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Equipe de Chimie Bio-organique et Macromoleculaire, Unite Associee au CNRST URAC 25, Departement de Chimie, Faculte des Sciences, Universite Med I, BP 524, 60 000 Oujda (Morocco); Bacquet, Maryse [Universite des Sciences et Technologies de Lille, UMET: Unite Materiaux et Transformations UMR8207, Equipe Ingenierie des Systemes Polymeres, Batiment C6 salle 119-59655 Villeneuve d' Ascq (France)

    2011-01-15

    A new silica gel compound modified N,N-bis(3,5-dimethylpyrazol-1-ylmethyl) amine (SiN{sub 2}Pz) was synthesized and characterized by elemental analysis, FT-IR, {sup 13}C NMR of the solid state, nitrogen adsorption-desorption isotherm, BET surface area and BJH pore sizes. The new surface exhibits good chemical and thermal stability determined by thermogravimetry curves (TGA). The effect of pH and stirring time on the adsorption of Pb(II) were studied. The process of metal retention was followed by batch method and the optimum pH value for the quantitative adsorption of this toxic metal ion was 7. At this pH value, the new functionalized polysiloxane presents further improvements and shows higher affinity (123 mg of Pb{sup 2+}/g of silica) for the effective adsorption of Pb(II) compared to others described sorbents. The extracted amounts of Pb(II) were determined by atomic absorption measurements.

  18. Biotechnological applications of acetic acid bacteria.

    Science.gov (United States)

    Raspor, Peter; Goranovic, Dusan

    2008-01-01

    The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other

  19. Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response

    Directory of Open Access Journals (Sweden)

    Amol Chaudhari

    2013-11-01

    Full Text Available Surface modification of titanium implants is used to enhance osseointegration. The study objective was to evaluate five modified titanium surfaces in terms of cytocompatibility and pro-osteogenic/pro-angiogenic properties for human mesenchymal stromal cells: amorphous microporous silica (AMS, bone morphogenetic protein-2 immobilized on AMS (AMS + BMP, bio-active glass (BAG and two titanium coatings with different porosity (T1; T2. Four surfaces served as controls: uncoated Ti (Ti, Ti functionalized with BMP-2 (Ti + BMP, Ti surface with a thickened titanium oxide layer (TiO2 and a tissue culture polystyrene surface (TCPS. The proliferation of eGFP-fLuc (enhanced green fluorescence protein-firefly luciferase transfected cells was tracked non-invasively by fluorescence microscopy and bio-luminescence imaging. The implant surface-mediated effects on cell differentiation potential was tracked by determination of osteogenic and angiogenic parameters [alkaline phosphatase (ALP; osteocalcin (OC; osteoprotegerin (OPG; vascular endothelial growth factor-A (VEGF-A]. Unrestrained cell proliferation was observed on (unfunctionalized Ti and AMS surfaces, whereas BAG and porous titanium coatings T1 and T2 did not support cell proliferation. An important pro-osteogenic and pro-angiogenic potential of the AMS + BMP surface was observed. In contrast, coating the Ti surface with BMP did not affect the osteogenic differentiation of the progenitor cells. A significantly slower BMP-2 release from AMS compared to Ti supports these findings. In the unfunctionalized state, Ti was found to be superior to AMS in terms of OPG and VEGF-A production. AMS is suggested to be a promising implant coating material for bioactive agents delivery.

  20. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration.

    Science.gov (United States)

    Bouarab, L; Dauta, A; Loudiki, M

    2004-06-01

    The main objective of this study was to determine the importance of secondary mechanism of organic carbon utilization (mixotrophic and heterotrophic modes) in addition to CO2 fixation (photoautotrophic mode) in the green alga, Micractinium pusillum Fresenius (chlorophyta), isolated from a waste stabilization pond. The growth was studied in the presence of acetate and glucose. The incorporation rate of 14C- acetate was measured in the light and in the dark at different concentrations. Finally, in order to underline the role of photosynthesis and respiration processes in the acetate assimilation, the effect of two specific metabolic inhibitors, a specific inhibitor of photosystem II (DCMU) and an uncoupler respiratory (DNP), has been studied. The obtained results showed that M. pusillum grows in the presence of organic substrates, i.e., glucose and acetate, in the light (mixotrophic growth) as well as in the dark (Heterotrophic growth). The growth was much more important in the light than in the dark and more in the presence of glucose than of acetate. In the light, the presence of acetate led to a variation of growth parameters mumax, iotaopt, and beta. The effect of acetate gradient on the growth of the microalga was severe as soon as its concentration in the medium was higher. The acetate uptake followed a Michaelis-Menten kinetic in the light as well as in the dark. The capacity of assimilation was slightly higher in the dark. The utilization of DNP and DCMU indicates that acetate incorporation is an active process depending on both anabolic (photosynthesis) and catabolic (respiration) metabolisms, corroborating the model of the Michaelis-Menten kinetic.

  1. Methanogenesis from acetate by Methanosarcina barkeri: Catalysis of acetate formation from methyl iodide, CO/sub 2/, and H/sub 2/ by the enzyme system involved

    Energy Technology Data Exchange (ETDEWEB)

    Laufer, K; Eikmanns, B; Frimmer, U; Thauer, R K

    1987-04-01

    Cell suspensions of Methanosarcina barkeri grown on acetate catalyze the formation of methane and CO/sub 2/ from acetate as well as an isotopic exchange between the carboxyl group of acetate and CO/sub 2/. Here we report that these cells also mediate the synthesis of acetate from methyl iodide, CO/sub 2/, and reducing equivalents (H/sub 2/ or CO), the methyl group of acetate being derived from methyl iodide and the carboxyl group from CO/sub 2/. Methyl chloride and methyltosylate but not methanol can substitute for methyl iodide in this reaction. Acetate formation from methyl iodide, CO/sub 2/, and reducing equivalents is coupled with the phosphorylation of ADP. Evidence is presented that methyl iodide is incorporated into the methyl group of acetate via a methyl corrinoid intermediate (deduced from inhibition experiments with propyl iodide) and that CO/sub 2/ is assimilated into the carboxyl group via a C/sub 1/ intermediate which does not exchange with free formate or free CO. The effects of protonophores, of the proton-translocating ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and of arsenate on acetate formation are interpreted to indicate that the reduction of CO/sub 2/ to the oxidation level of the carboxyl group of acetate requires the presence of an electrochemical proton potential and that acetyl-CoA or acetyl-phosphate rather than free acetate is the immediate product of the condensation reaction. These results are dicsussed with respect to the mechanism of methanogenesis from acetate.

  2. Ulipristal acetate versus placebo for fibroid treatment before surgery.

    Science.gov (United States)

    Donnez, Jacques; Tatarchuk, Tetyana F; Bouchard, Philippe; Puscasiu, Lucian; Zakharenko, Nataliya F; Ivanova, Tatiana; Ugocsai, Gyula; Mara, Michal; Jilla, Manju P; Bestel, Elke; Terrill, Paul; Osterloh, Ian; Loumaye, Ernest

    2012-02-02

    The efficacy and safety of oral ulipristal acetate for the treatment of symptomatic uterine fibroids before surgery are uncertain. We randomly assigned women with symptomatic fibroids, excessive uterine bleeding (a score of >100 on the pictorial blood-loss assessment chart [PBAC, an objective assessment of blood loss, in which monthly scores range from 0 to >500, with higher numbers indicating more bleeding]) and anemia (hemoglobin level of ≤10.2 g per deciliter) to receive treatment for up to 13 weeks with oral ulipristal acetate at a dose of 5 mg per day (96 women) or 10 mg per day (98 women) or to receive placebo (48 women). All patients received iron supplementation. The coprimary efficacy end points were control of uterine bleeding (PBAC score of <75) and reduction of fibroid volume at week 13, after which patients could undergo surgery. At 13 weeks, uterine bleeding was controlled in 91% of the women receiving 5 mg of ulipristal acetate, 92% of those receiving 10 mg of ulipristal acetate, and 19% of those receiving placebo (P<0.001 for the comparison of each dose of ulipristal acetate with placebo). The rates of amenorrhea were 73%, 82%, and 6%, respectively, with amenorrhea occurring within 10 days in the majority of patients receiving ulipristal acetate. The median changes in total fibroid volume were -21%, -12%, and +3% (P=0.002 for the comparison of 5 mg of ulipristal acetate with placebo, and P=0.006 for the comparison of 10 mg of ulipristal acetate with placebo). Ulipristal acetate induced benign histologic endometrial changes that had resolved by 6 months after the end of therapy. Serious adverse events occurred in one patient during treatment with 10 mg of ulipristal acetate (uterine hemorrhage) and in one patient during receipt of placebo (fibroid protruding through the cervix). Headache and breast tenderness were the most common adverse events associated with ulipristal acetate but did not occur significantly more frequently than with placebo

  3. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.

    Science.gov (United States)

    Gautam, Sneh; Chou, Chia-Fu; Dinda, Amit K; Potdar, Pravin D; Mishra, Narayan C

    2014-01-01

    In the present study, a tri-polymer polycaprolactone (PCL)/gelatin/collagen type I composite nanofibrous scaffold has been fabricated by electrospinning for skin tissue engineering and wound healing applications. Firstly, PCL/gelatin nanofibrous scaffold was fabricated by electrospinning using a low cost solvent mixture [chloroform/methanol for PCL and acetic acid (80% v/v) for gelatin], and then the nanofibrous PCL/gelatin scaffold was modified by collagen type I (0.2-1.5wt.%) grafting. Morphology of the collagen type I-modified PCL/gelatin composite scaffold that was analyzed by field emission scanning electron microscopy (FE-SEM), showed that the fiber diameter was increased and pore size was decreased by increasing the concentration of collagen type I. Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis indicated the surface modification of PCL/gelatin scaffold by collagen type I immobilization on the surface of the scaffold. MTT assay demonstrated the viability and high proliferation rate of L929 mouse fibroblast cells on the collagen type I-modified composite scaffold. FE-SEM analysis of cell-scaffold construct illustrated the cell adhesion of L929 mouse fibroblasts on the surface of scaffold. Characteristic cell morphology of L929 was also observed on the nanofiber mesh of the collagen type I-modified scaffold. Above results suggest that the collagen type I-modified PCL/gelatin scaffold was successful in maintaining characteristic shape of fibroblasts, besides good cell proliferation. Therefore, the fibroblast seeded PCL/gelatin/collagen type I composite nanofibrous scaffold might be a potential candidate for wound healing and skin tissue engineering applications. © 2013.

  4. Effect on Shear Strength of Machining Methods in Pinus nigra Arnold Bonded with Polyurethane and Polyvinyl Acetate Adhesives

    Directory of Open Access Journals (Sweden)

    Murat Kılıç

    2016-06-01

    Full Text Available Specimens taken from Pinus nigra Arnold were subject to surfacing techniques by being cut with a circular saw, planed with a thickness machine, and sanded with a calibrating sanding machine (with P80 grit sandpaper. First, their surface roughness values were measured; then, the specimens were processed in the machines in a radial and tangential process. Afterwards, the change in shear strength (adhesiveness resistance was analyzed as a result of bonding with various adhesive types (PVAc, PU and pressure applications (0.45 N/mm² or 0.9 N/mm². Approximately 600 specimens were prepared with the purpose of identifying the effect of variables on the bonding performance, and they were subjected to shear testing. The greatest shear strength achieved for both the tangential and radial surfaces in terms of cutting was observed in specimens processed in the thickness machine, on which polyvinyl acetate adhesive and 0.9 N/mm². pressure were applied. Specimens bonded with polyvinyl acetate adhesive displayed higher shear strength in general in comparison to those bonded with polyurethane for both tangential and radial surfaces.

  5. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    International Nuclear Information System (INIS)

    Lee, Young-Hee; Bhattarai, Govinda; Aryal, Santosh; Lee, Nan-Hee; Lee, Min-Ho; Kim, Tae-Gun; Jhee, Eun-Chung; Kim, Hak-Yong; Yi, Ho-Keun

    2010-01-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH 4 ). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  6. Chemisorption of SO2 at the surface of In2O3 modified by zink

    International Nuclear Information System (INIS)

    Vinokurova, M.V.; Derlyukova, L.E.; Vinokurov, A.A.

    2005-01-01

    Chemisorption of SO 2 and O 2 at the surface of In 2 O 3 involving zink addition (0.4-2.7 at.%) are investigated in the temperature range 22-200 Deg C. No less than three forms of sorbed SO 2 are available at the surface of modified In 2 O 3 . Temperature effects on the ratio of forms of SO 2 sorption and, consequently, on varying the electric conductivity. Previous sorption of O 2 is favorable to the formation of donor form of chemisorbed SO 2 [ru

  7. Potential dependent adhesion forces on bare and underpotential deposition modified electrode surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Serafin, J.M.; Hsieh, S.J.; Monahan, J.; Gewirth, A.A. [Univ. of Illinois, Urbana, IL (United States)

    1998-12-03

    Adhesion force measurements are used to determine the potential dependence of the force of adhesion between a Si{sub 3}N{sub 4} cantilever and a Au(111) surface modified by the underpotential deposition (upd) of Bi or Cu in acid solution or by oxide formation. The measured work of adhesion is near zero for most of the potential region examined in Bi upd but rises after the formation of a full Bi monolayer. The work of adhesion is high at positive potentials for Cu upd but then decreases as the Cu partial and full monolayers are formed. The work of adhesion is low in the oxide region on Au(111) but rises following the sulfate disordering transition at 1.1 V vs NHE. These results are interpreted in terms of the degree of solvent order on the electrode surface.

  8. Thermal Conductivity of Ethylene Vinyl Acetate Copolymer/Nanofiller Blends

    Science.gov (United States)

    Ghose, S.; Watson, K. A.; Working, D. C.; Connell, J. W.; Smith, J. G., Jr.; Lin, Y.; Sun, Y. P.

    2007-01-01

    To reduce weight and increase the mobility, comfort, and performance of future spacesuits, flexible, thermally conductive fabrics and plastic tubes are needed for the Liquid Cooling and Ventilation Garment. Such improvements would allow astronauts to operate more efficiently and safely for extended extravehicular activities. As an approach to raise the thermal conductivity (TC) of an ethylene vinyl acetate copolymer (Elvax 260), it was compounded with three types of carbon based nanofillers: multi-walled carbon nanotubes (MWCNTs), vapor grown carbon nanofibers (CNFs), and expanded graphite (EG). In addition, other nanofillers including metallized CNFs, nickel nanostrands, boron nitride, and powdered aluminum were also compounded with Elvax 260 in the melt at various loading levels. In an attempt to improve compatibility between Elvax 260 and the nanofillers, MWCNTs and EG were modified by surface coating and through noncovalent and covalent attachment of organic molecules containing alkyl groups. Ribbons of the nanocomposites were extruded to form samples in which the nanofillers were aligned in the direction of flow. Samples were also fabricated by compression molding to yield nanocomposites in which the nanofillers were randomly oriented. Mechanical properties of the aligned samples were determined by tensile testing while the degree of dispersion and alignment of nanoparticles were investigated using high-resolution scanning electron microscopy. TC measurements were performed using a laser flash (Nanoflash ) technique. TC of the samples was measured in the direction of, and perpendicular to, the alignment direction. Additionally, tubing was also extruded from select nanocomposite compositions and the TC and mechanical flexibility measured.

  9. Observation of modified radiative properties of cold atoms in vacuum near a dielectric surface

    International Nuclear Information System (INIS)

    Ivanov, V V; Cornelussen, R A; Heuvell, H B van Linden van den; Spreeuw, R J C

    2004-01-01

    We have observed a distance-dependent absorption linewidth of cold 87 Rb atoms close to a dielectric-vacuum interface. This is the first observation of modified radiative properties in vacuum near a dielectric surface. A cloud of cold atoms was created using a magneto-optical trap (MOT) and optical molasses cooling. Evanescent waves (EW) were used to observe the behaviour of the atoms near the surface. We observed an increase of the absorption linewidth by up to 25% with respect to the free-space value. Approximately half the broadening can be explained by cavity quantum electrodynamics (CQED) as an increase of the natural linewidth and inhomogeneous broadening. The remainder we attribute to local Stark shifts near the surface. By varying the characteristic EW length we have observed a distance dependence characteristic for CQED

  10. Deposition of phospholipid layers on SiO{sub 2} surface modified by alkyl-SAM islands

    Energy Technology Data Exchange (ETDEWEB)

    Tero, R.; Takizawa, M.; Li, Y.J.; Yamazaki, M.; Urisu, T

    2004-11-15

    Formation of the supported planar bilayer of dipalmitoylphosphatidylcholine (DPPC) on SiO{sub 2} surfaces modified with the self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) has been investigated by atomic force microscopy (AFM). DPPC was deposited by the fusion of vesicles on SiO{sub 2} surfaces with OTS-SAM islands of different sizes and densities. The DPPC bilayer membrane formed self-organizingly on the SiO{sub 2} surface with small and sparse OTS islands, while did not when the OTS islands were larger and denser. The relative size between the vesicles and the SiO{sub 2} regions is the critical factor for the formation of the DPPC bilayer membrane.

  11. Electrochemical Cathodic Polarization, a Simplified Method That Can Modified and Increase the Biological Activity of Titanium Surfaces: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Jose Carlos Bernedo Alcazar

    Full Text Available The cathodic polarization seems to be an electrochemical method capable of modifying and coat biomolecules on titanium surfaces, improving the surface activity and promoting better biological responses.The aim of the systematic review is to assess the scientific literature to evaluate the cellular response produced by treatment of titanium surfaces by applying the cathodic polarization technique.The literature search was performed in several databases including PubMed, Web of Science, Scopus, Science Direct, Scielo and EBSCO Host, until June 2016, with no limits used. Eligibility criteria were used and quality assessment was performed following slightly modified ARRIVE and SYRCLE guidelines for cellular studies and animal research.Thirteen studies accomplished the inclusion criteria and were considered in the review. The quality of reporting studies in animal models was low and for the in vitro studies it was high. The in vitro and in vivo results reported that the use of cathodic polarization promoted hydride surfaces, effective deposition, and adhesion of the coated biomolecules. In the experimental groups that used the electrochemical method, cellular viability, proliferation, adhesion, differentiation, or bone growth were better or comparable with the control groups.The use of the cathodic polarization method to modify titanium surfaces seems to be an interesting method that could produce active layers and consequently enhance cellular response, in vitro and in vivo animal model studies.

  12. Synthesis and Characterization of a Novel Polyacetal & Design and Preparation of Superhydrophobic Photocatalytic Surfaces

    Science.gov (United States)

    Zhao, Yuanyuan

    Acetal copolymers represent a family of well-established engineering thermoplastics serving a broad range of important industrial applications including replacement for metals. The first part of this thesis describes the first synthesis of an eight-member ring acetal, 6-methyl-1, 3-dioxocane (MDOC), and its cationic copolymerization with trioxane initiated by boron trifluoride dibutyl etherate. The copolymerization process was monitored in situ using proton NMR. Incorporation of MDOC led to the insertion of the "stopper" unit, "--[CH2CH2CH(CH3)CH 2CH2)O]--", thus synthesizing the new acetal copolymer. A superior copolymer thermal stability with a ~ 20oC increase in degradation onset temperature compared with end-capped polyoxmethylene was observed. Both TGA and DSC data indicated the random placement of the "stopper" in the copolymer likely due to efficient transacetalization because of the higher basicity and flexibility of the stopper unit compared with co-units comprising 2 to 4 carbons in length. DSC thermo-grams showed a melting curve of a polymer with melting point lower, as expected, than that of oxymethylene homopolymer. No homopolymer in the copolymer samples was in indicated by TGA. The new acetal copolymer, poly(6-methyl-1,3-dioxocane-co-trioxane), which has a "stopper" co-unit with five carbon atoms along the backbone, contains the longest reported stopper co-unit, potentially leading to improved elongation, and toughness and better compatibility with a range of additives compared to acetal homopolymers.. Chapter 3 presents a novel lamination fabrication method that enables pre-formed TiO2 nanoparticles to become partially embedded in the surface of a thermoplastic polymer film. In this way, the particles are strongly adhered to the surface while remaining accessible to the aqueous solution. By modifying the fabrication conditions (e.g. temperature, pressure, polymer melt viscosity, etc.), the morphology of the hierarchical TiO2-polymer surface can be

  13. Thermally controlled growth of surface nanostructures on ion-modified AIII-BV semiconductor crystals

    Science.gov (United States)

    Trynkiewicz, Elzbieta; Jany, Benedykt R.; Wrana, Dominik; Krok, Franciszek

    2018-01-01

    The primary motivation for our systematic study is to provide a comprehensive overview of the role of sample temperature on the pattern evolution of several AIII-BV semiconductor crystal (001) surfaces (i.e., InSb, InP, InAs, GaSb) in terms of their response to low-energy Ar+ ion irradiation conditions. The surface morphology and the chemical diversity of such ion-modified binary materials has been characterized by means of scanning electron microscopy (SEM). In general, all surface textures following ion irradiation exhibit transitional behavior from small islands, via vertically oriented 3D nanostructures, to smoothened surface when the sample temperature is increased. This result reinforces our conviction that the mass redistribution of adatoms along the surface plays a vital role during the formation and growth process of surface nanostructures. We would like to emphasize that this paper addresses in detail for the first time the topic of the growth kinetics of the nanostructures with regard to thermal surface diffusion, while simultaneously offering some possible approaches to supplementing previous studies and therein gaining a new insight into this complex issue. The experimental results are discussed with reference to models of the pillars growth, abutting on preferential sputtering, the self-sustained etch masking effect and the redeposition process recently proposed to elucidate the observed nanostructuring mechanism.

  14. Photodissociation spectroscopy of the Mg+-acetic acid complex

    Science.gov (United States)

    Abate, Yohannes; Kleiber, P. D.

    2006-11-01

    We have studied the structure and photodissociation of Mg+-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC2H4O2]+ complex. These isomers include the cis and trans forms of the Mg+-acetic acid association complex with Mg+ bonded to the carbonyl O atom of acetic acid, the Mg+-acetic acid association complex with Mg+ bonded to the hydroxyl O atom of acetic acid, or to a Mg+-ethenediol association complex. Photodissociation through the Mg+-based 3p←3s absorption bands in the near UV leads to direct (nonreactive) and reactive dissociation products: Mg+, MgOH+, Mg(H2O )+, CH3CO+, and MgCH3+. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H2O)+, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies.

  15. X-ray diffraction studies of chitosan acetate-based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Ibrahim, Z.A.; Abdul Kariem Arof

    2002-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. This paper presents the x-ray diffraction patterns of chitosan acetate, plasticised chitosan acetate and plasticised-salted chitosan acetate films. The results show that the chitosan acetate based polymer electrolyte films are not completely amorphous but it is partially crystalline. X-ray diffraction study also confirms the occurrence of the complexation between chitosan and the salt and the interaction between salt and plasticizer. The salt-chitosan interaction is clearly justified by infrared spectroscopy. (Author)

  16. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Therien, Jesse B; Zadvornyy, Oleg A; Posewitz, Matthew C; Bryant, Donald A; Peters, John W

    2014-01-01

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. Here we demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC 7002. Optimal growth conditions for co-cultivation of C. reinhardtii with wild-type and mutant strains of Synechococcus sp. 7002 were established. In co-culture, acetate produced by a glycogen synthase knockout mutant of Synechococcus sp. PCC 7002 was able to support the growth of a lipid-accumulating mutant strain of C. reinhardtii defective in starch production. Encapsulation of Synechococcus sp. PCC 7002 using an alginate matrix was successfully employed in co-cultures to limit growth and maintain the stability. The ability of immobilized strains of the cyanobacterium Synechococcus sp. PCC 7002 to produce acetate at a level adequate to support the growth of lipid-accumulating strains of C. reinhartdii offers a potentially practical, photosynthetic alternative to providing exogenous acetate into growth media.

  17. Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells

    Science.gov (United States)

    Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho

    2018-03-01

    Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.

  18. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  19. Surface noble metal modified PdM/C (M = Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Mao, Han; Huang, Tao; Yu, Aishui

    2016-01-01

    In this article, we studied the surface noble metal modification on Pd nanoparticles, other than the homogeneous or core-shell structure. The surface modification will lead to the uneven constitution within the nanoparticles and thus more obvious optimization effect toward the catalyst brought by the lattice deformation. The surface of the as-prepared Pd nanoparticles was modified with Ru, Pt or Au by a moderate and green approach, respectively. XPS results confirm the interactive electron effects between Pd and the modified noble metal. Electrochemical measurements show that the surface noble metal modified catalysts not only show higher catalytic activity, but also better stability and durability. The PdM/C catalysts all exhibit good dispersion and very little agglomeration after long-term potential cycles toward ethanol oxidation. With only 10% metallic atomic ratio of Au, PdAu/C catalyst shows extraordinary catalytic activity and stability, the peak current reaches 1700 mA mg"−"1 Pd, about 2.5 times that of Pd/C. Moreover, the PdAu/C maintains 40% of the catalytic activity after 4500 potential cycles. - Highlights: • Pd-based catalysts with complicated exposed facets. • Much enhanced electrocatalytic activity and stability with about 10% noble metal M (M = Ru, Pt, Au) on Pd nanoparticles. • The outstanding electrocatalytic performance of PdAu/C towards ethanol oxidation after the Au modification.

  20. Surface noble metal modified PdM/C (M = Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Han; Huang, Tao, E-mail: huangt@fudan.edu.cn; Yu, Aishui, E-mail: asyu@fudan.edu.cn

    2016-08-15

    In this article, we studied the surface noble metal modification on Pd nanoparticles, other than the homogeneous or core-shell structure. The surface modification will lead to the uneven constitution within the nanoparticles and thus more obvious optimization effect toward the catalyst brought by the lattice deformation. The surface of the as-prepared Pd nanoparticles was modified with Ru, Pt or Au by a moderate and green approach, respectively. XPS results confirm the interactive electron effects between Pd and the modified noble metal. Electrochemical measurements show that the surface noble metal modified catalysts not only show higher catalytic activity, but also better stability and durability. The PdM/C catalysts all exhibit good dispersion and very little agglomeration after long-term potential cycles toward ethanol oxidation. With only 10% metallic atomic ratio of Au, PdAu/C catalyst shows extraordinary catalytic activity and stability, the peak current reaches 1700 mA mg{sup −1} Pd, about 2.5 times that of Pd/C. Moreover, the PdAu/C maintains 40% of the catalytic activity after 4500 potential cycles. - Highlights: • Pd-based catalysts with complicated exposed facets. • Much enhanced electrocatalytic activity and stability with about 10% noble metal M (M = Ru, Pt, Au) on Pd nanoparticles. • The outstanding electrocatalytic performance of PdAu/C towards ethanol oxidation after the Au modification.

  1. Electrochemical studies of copper in N-N, dimethylformamide in the presence of water, ethanol and acetic acid as additives

    Directory of Open Access Journals (Sweden)

    Gonçalves Reinaldo S.

    2000-01-01

    Full Text Available The electrochemical behaviour of copper has been investigated in N-N, dimethylformamide in the presence of water, ethanol and/or acetic acid as contaminants, by a potentiodynamic method. The electrooxidation of the electrode started at around -0.20V(SCE. Two oxidation peaks were observed and attributed to Cu -> Cu(I and Cu -> Cu(II processes. The reduction of the oxide was observed during the cathodic potential sweep. The presence of water and ethanol increased the anodic current while in the presence of acetic acid this process was inhibited. The incidence of polychromatic light on the electrode surface decreased the anodic current. It was suggested that the light affects the interaction between the adsorbed water and the surface of the metal.

  2. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, Sascha R.A.; van der Ham, Aloysius G.J.; Schuur, Boelo

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  3. Redox properties of phenosafranine at zeolite-modified electrodes-Effect of surface modification and solution pH

    International Nuclear Information System (INIS)

    Easwaramoorthi, S.; Natarajan, P.

    2008-01-01

    Redox properties of cationic dye phenosafranine (3,7-diamino-5-phenylphenazenium chloride) (PS + ) were studied at zeolite-modified electrodes using Zeolite-Y and NaZSM-5. The peak current and peak potential of phenosafranine-adsorbed zeolite were found to be influenced by the pH of the electrolyte solution. Observation of a second redox couple is suggested to be due to formation of new species at low concentration from the reduced phenosafranine at the zeolite-modified electrodes. Titanium dioxide nanoparticles encapsulated in the cavities of the zeolite or anchored on the external surface of the zeolite do not seem to affect the redox properties of adsorbed PS + . When the cyclic voltammograms are recorded immediately after the electrode is immersed into the solution, the redox potential of PS + is found to be sensitive to the nature of the zeolite surface. The peak potential shifts towards positive region under continuous cycles as the surface hydroxyl groups get protonated in acidic electrolyte solution thereby forcing the movement of dye molecules from the zeolite surface to the zeolite electrode solution interface. The electron transfer rate constants for the adsorbed dye at the electrode are calculated to be 2.5 ± 0.2 s -1 and 3.5 ± 0.2 s -1 for the zeolite-Y electrode and the ZSM-5 electrode, respectively by the Laviron equation

  4. Carbon monoxide oxidation on a Au(111 surface modified by spontaneously deposited Ru

    Directory of Open Access Journals (Sweden)

    ROLF-JÜRGEN BEHM

    2001-04-01

    Full Text Available The spontaneous deposition of Ru on Au(111 was performed in 10-3 M RuCl3 + 0.5 M H2SO4 solution. The obtained surface was characterized by STM under potential control in 0.5 M H2SO4 solution. The coverage of the Au(111 terraces by deposited Ru was estimated by STM to be 0.02 ML. Step decoration could be noticed in the STM images, which indicates that the steps, as lined defects, are active sites for the nucleation of Ru monolayer islands, while the random distribution of Ru nuclei, observed on the terraces indicates point defects as active sites. The electrocatalytic activity of Au(111 surface modified by spontaneously deposited Ru was studied towards CO oxidation. The significant enhancement in the reaction rate compared to CO oxidation on a pure Au(111 surface, indicated that the edges of the deposited Ru islands were the active sites for the reaction.

  5. Heterotrophic utilization of acetate and glucose in Swartvlei, South Africa

    International Nuclear Information System (INIS)

    Robarts, R.D.

    1979-01-01

    The utilization of dissolved organic compounds in Swartvlei was measured by the addition of single concentrations of 14 C-labelled acetate and glucose to water samples. The results indicated acetate uptake was greatest in the aerobic zone while glucose was predominantly utilized in the anaerobic zone. With the exception of two months, integral glucose uptake was usually greater than the uptake of acetate. In August and September 1971 acetate was indicated as being utilized predominantly by flagellates and in December 1971 by dinoflagellates. During the remainder of the study, bacteria were assumed to be responsible for the uptake of acetate. The extensive weed beds which surround the upper reaches of Swartvlei may be a major source of acetate and glucose in the pelagic water column

  6. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    Science.gov (United States)

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for

  7. Vitamin A acetate: a behavioral teratology study in rats.

    Science.gov (United States)

    Kutz, S A; Troise, N J; Cimprich, R E; Yearsley, S M; Rugen, P J

    1989-01-01

    We evaluated the effects of maternal administration of vitamin A acetate on pup development and behavior. Vitamin A acetate was administered by oral gavage to pregnant rats (N = 10/treatment) on gestation days 6-19 at doses of 25,000, 50,000 or 100,000 I.U./kg/day. Male and female pups from dams that received 100,000 I.U./kg/day showed a significantly reduced live birth index but few external abnormalities. Twenty-four and 48 hour survival indices were also significantly reduced. The mean pup body weight gain at 100,000 I.U./kg/day was significantly reduced at days 1-3, 3-7 and 21-42. Pinna detachment and eye opening were significantly delayed in all male pups and in female pups from the 50,000 and 100,000 I.U./kg/day groups. Incisor eruption was significantly delayed in male and female pups from the 25,000 and 50,000 I.U./kg/day groups. The following showed no treatment effects: dam mean weight change, length of gestation, total litter size, surface righting, cliff avoidance, negative geotaxis, swimming development, open field activity and discriminatory learning.

  8. Kinetic Modelling and Experimental Study of Small Esters: Methyl Acetate and Ethyl Acetate

    KAUST Repository

    Ahmed, Ahfaz; Mehl, Marco; Lokachari, Nitin; Nilsson, Elna J.K.; Konnov, Alexander A.; Wagnon, Scott W.; Pitz, William J.; Curran, Henry J.; Roberts, William L.; Sarathy, Mani

    2017-01-01

    A detailed chemical kinetic mechanism comprising methyl acetate and ethyl acetate has been developed based on the previous work by Westbrook et al. [1]. The newly developed kinetic mechanism has been updated with new reaction rates from recent theoretical studies. To validate this model, shock tube experiments measuring ignition delay time have been conducted at 15 & 30 bar and equivalence ratio 0.5, 1.0 and 2.0. Another set of experiments measuring laminar burning velocity was also performed on a heat flux burner at atmospheric pressure over wide range of equivalence ratios [~0.7-1.4]. The new mechanism shows significant improvement in prediction of experimental data over earlier model across the range of experiments.

  9. Kinetic Modelling and Experimental Study of Small Esters: Methyl Acetate and Ethyl Acetate

    KAUST Repository

    Ahmed, Ahfaz

    2017-12-14

    A detailed chemical kinetic mechanism comprising methyl acetate and ethyl acetate has been developed based on the previous work by Westbrook et al. [1]. The newly developed kinetic mechanism has been updated with new reaction rates from recent theoretical studies. To validate this model, shock tube experiments measuring ignition delay time have been conducted at 15 & 30 bar and equivalence ratio 0.5, 1.0 and 2.0. Another set of experiments measuring laminar burning velocity was also performed on a heat flux burner at atmospheric pressure over wide range of equivalence ratios [~0.7-1.4]. The new mechanism shows significant improvement in prediction of experimental data over earlier model across the range of experiments.

  10. Engineering of poly(ethylene glycol) chain-tethered surfaces to obtain high-performance bionanoparticles

    International Nuclear Information System (INIS)

    Nagasaki, Yukio

    2010-01-01

    A poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] block copolymer possessing a reactive acetal group at the end of the poly(ethylene glycol) (PEG) chain, that is, acetal-PEG-b-PAMA, was synthesized by a proprietary polymerization technique. Gold nanoparticles (GNPs) were prepared using the thus-synthesized acetal-PEG-b-PAMA block copolymer. The PEG-b-PAMA not only acted as a reducing agent of aurate ions but also attached to the nanoparticle surface. The GNPs obtained had controlled sizes and narrow size distributions. They also showed high dispersion stability owing to the presence of PEG tethering chains on the surface. The same strategy should also be applicable to the fabrication of semiconductor quantum dots and inorganic porous nanoparticles. The preparation of nanoparticles in situ, i.e. in the presence of acetal-PEG-b-PAMA, gave the most densely packed polymer layer on the nanoparticle surface; this was not observed when coating preformed nanoparticles. PEG/polyamine block copolymer was more functional on the metal surface than PEG/polyamine graft copolymer, as confirmed by angle-dependent x-ray photoelectron spectroscopy. We successfully solubilized the C 60 fullerene into aqueous media using acetal-PEG-b-PAMA. A C 60 /acetal-PEG-b-PAMA complex with a size below 5 nm was obtained by dialysis. The preparation and characterization of these materials are described in this review. (topical review)

  11. Fabrication of Superhydrophobic Surface on Polydopamine-coated Al Plate by Using Modified SiO{sub 2} Nanoparticles/Polystyrene Nano-Composite Coating

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Songho; Lee, Woohee; Ahn, Yonghyun [Dankook University, Yongin (Korea, Republic of)

    2016-04-15

    A superhydrophobic Al surface has been fabricated by coating with polydopamine, followed by coating with a modified silica nanoparticles/PS composite solution. The role of polydopamine layer is to improve the adhesion of the modified silica nanoparticles. This platform is an ideal structure for attaching various nano/micro particles. Aluminum is an important industrial metal, and the superhydrophobic surface of Al plates has potential applications in various fields. Aluminum is a relatively lightweight, soft, and durable metal with good thermal conductivity and excellent corrosion resistance.

  12. Acetate causes alcohol hangover headache in rats.

    Directory of Open Access Journals (Sweden)

    Christina R Maxwell

    2010-12-01

    Full Text Available The mechanism of veisalgia cephalgia or hangover headache is unknown. Despite a lack of mechanistic studies, there are a number of theories positing congeners, dehydration, or the ethanol metabolite acetaldehyde as causes of hangover headache.We used a chronic headache model to examine how pure ethanol produces increased sensitivity for nociceptive behaviors in normally hydrated rats.Ethanol initially decreased sensitivity to mechanical stimuli on the face (analgesia, followed 4 to 6 hours later by inflammatory pain. Inhibiting alcohol dehydrogenase extended the analgesia whereas inhibiting aldehyde dehydrogenase decreased analgesia. Neither treatment had nociceptive effects. Direct administration of acetate increased nociceptive behaviors suggesting that acetate, not acetaldehyde, accumulation results in hangover-like hypersensitivity in our model. Since adenosine accumulation is a result of acetate formation, we administered an adenosine antagonist that blocked hypersensitivity.Our study shows that acetate contributes to hangover headache. These findings provide insight into the mechanism of hangover headache and the mechanism of headache induction.

  13. Application of a genetic algorithm in the conformational analysis of methylene-acetal-linked thymine dimers in DNA: Comparison with distance geometry calculations

    International Nuclear Information System (INIS)

    Beckers, Mischa L.M.; Buydens, Lutgarde M.C.; Pikkemaat, Jeroen A.; Altona, Cornelis

    1997-01-01

    The three-dimensional spatial structure of a methylene-acetal-linked thymine dimer present in a 10 base-pair (bp) sense-antisense DNA duplex was studied with a genetic algorithm designed to interpret NOE distance restraints. Trial solutions were represented by torsion angles. This means that bond angles for the dimer trial structures are kept fixed during the genetic algorithm optimization. Bond angle values were extracted from a 10 bp sense-antisense duplex model that was subjected to energy minimization by means of a modified AMBER force field. A set of 63 proton-proton distance restraints defining the methylene-acetal-linked thymine dimer was available. The genetic algorithm minimizes the difference between distances in the trial structures and distance restraints. A large conformational search space could be covered in the genetic algorithm optimization by allowing a wide range of torsion angles. The genetic algorithm optimization in all cases led to one family of structures. This family of the methylene-acetal-linked thymine dimer in the duplex differs from the family that was suggested from distance geometry calculations. It is demonstrated that the bond angle geometry around the methylene-acetal linkage plays an important role in the optimization

  14. Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation

    Science.gov (United States)

    Zhan, Hanyu; Voelz, David G.

    2016-12-01

    The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.

  15. Addressing Cellulose Acetate Microfilm from a British Library perspective

    Directory of Open Access Journals (Sweden)

    Helen Shenton

    2005-08-01

    Full Text Available This paper is about cellulose acetate microfilm from the British Library perspective. It traces how acetate microfilm became an issue for the British Library and describes cellulose acetate deterioration. This is followed by details of what has already been done about the situation and what action is planned for the future.

  16. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    Science.gov (United States)

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  17. Microstructure of microemulsion modified with ionic liquids in microemulsion electrokinetic chromatography and analysis of seven corticosteroids.

    Science.gov (United States)

    Ni, Xinjiong; Yu, Meijuan; Cao, Yuhua; Cao, Guangqun

    2013-09-01

    In this work, the influences of ionic liquid (IL) as a modifier on microemulsion microstructure and separation performance in MEEKC were investigated. Experimental results showed that synergetic effect between IL 1-butyl-3-methylimidazolium tetrafluoro-borate (BmimBF4 ) and surfactant SDS gave a decreased CMC. With increment of IL in microemulsion, negative ζ potential of the microdroplets reduced gradually. The influence of IL on the dimensions of microdroplet was complicated. At BmimBF4 less than 8 mM, IL made microemulsion droplet smaller in size. While at BmimBF4 more than 10 mM, the size increased and reached to a maximum value at 12 mM, where the microdroplets were larger than that without IL. After that, the micreodroplet size decreased again. Relative fluorescence intensity of the first vibration band of pyrene to the third one (I1 /I3 ) enhanced as IL was added to microemulsion, which indicated that this addition increased environmental polarity in the inner core of microdroplets. Prednisone, hydrocortisone, prednisolone, hydrocortisone acetate, cortisone acetate, prednisolone acetate, and triamcinolone acetonide were analyzed with MEEKC modified with IL to evaluate the separation performance. Cortisone acetate and prednisolone acetate could not be separated at all in typical microemulsion. The seven analytes could be separated by the addition of 10 mM BmimBF4 into the microemulsion system. The method has been used for analysis of corticosteroids in cosmetic samples with simple extraction; the recoveries for seven analytes were between 86 and 114%. This method provides accuracy, reproducibility, pretreatment simplicity, and could be applied to the quality control of cosmetics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enhancing Properties and Performance of Cellulose Acetate/Polyethylene Glycol (CA/PEG Membrane with the addition of Titanium Dioxide (TiO2 by Using Surface Coating Method

    Directory of Open Access Journals (Sweden)

    Nurkhamidah Siti

    2018-01-01

    Full Text Available In this study, cellulose acetate/polyethylene glycol (CA/PEG membrane with composition 80/20 was prepared by phase inversion method. Titanium dioxide with different number has been added by using surface coating. Hydrophilicity, morphology, flux permeate and salt rejection of membranes has been studied. The hydrophilicity is determined by Fourier-Transformed Infra-Red (FTIR spectra and contact angle analysis. Surface and fractured morphology are identified by using Scanning Electron Microscopy (SEM. The experiment results show that hydrophilicity of CA/PEG membrane increases with the addition and the increasing of TiO2 contents. However, with further increasing of TiO2, hydrophilicity of CPT membrane decreases. The optimum membrane is CA/PEG/TiO2 80/20/1,25 g/L solvent (CPT 3 with flux permeate of 111,82 L.m-2h-1 and salt rejection of 48,30%.

  19. Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding.

    Science.gov (United States)

    Bera, Anirban; Barik, Ranjan Kumar; Sattorov, Matlabjon; Kwon, Ohjoon; Min, Sun-Hong; Baek, In-Keun; Kim, Seontae; So, Jin-Kyu; Park, Gun-Sik

    2014-02-10

    Metallic metamaterials with positive dielectric responses are promising as an alternative to dielectrics for the generation of Cerenkov radiation [J.-K. So et al., Appl. Phys. Lett. 97(15), 151107 (2010)]. We propose here by theoretical analysis a mechanism to couple out Cerenkov radiation from the slab surfaces in the transverse direction. The proposed method based on Brillouin-zone folding is to periodically modify the thickness of the metamaterial slab in the axial direction. Moreover, the intensity of the surface-coupled radiation by this mechanism shows an order-of-magnitude enhancement compared to that of ordinary Smith-Purcell radiation.

  20. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    Science.gov (United States)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K. S. S.; Majali, A. B.; Tikku, V. K.

    2002-12-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer.

  1. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    International Nuclear Information System (INIS)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K.S.S.; Majali, A.B.; Tikku, V.K.

    2002-01-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer

  2. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice.

    Science.gov (United States)

    Marques, Francine Z; Nelson, Erin; Chu, Po-Yin; Horlock, Duncan; Fiedler, April; Ziemann, Mark; Tan, Jian K; Kuruppu, Sanjaya; Rajapakse, Niwanthi W; El-Osta, Assam; Mackay, Charles R; Kaye, David M

    2017-03-07

    Dietary intake of fruit and vegetables is associated with lower incidence of hypertension, but the mechanisms involved have not been elucidated. Here, we evaluated the effect of a high-fiber diet and supplementation with the short-chain fatty acid acetate on the gut microbiota and the prevention of cardiovascular disease. Gut microbiome, cardiorenal structure/function, and blood pressure were examined in sham and mineralocorticoid excess-treated mice with a control diet, high-fiber diet, or acetate supplementation. We also determined the renal and cardiac transcriptome of mice treated with the different diets. We found that high consumption of fiber modified the gut microbiota populations and increased the abundance of acetate-producing bacteria independently of mineralocorticoid excess. Both fiber and acetate decreased gut dysbiosis, measured by the ratio of Firmicutes to Bacteroidetes, and increased the prevalence of Bacteroides acidifaciens . Compared with mineralocorticoid-excess mice fed a control diet, both high-fiber diet and acetate supplementation significantly reduced systolic and diastolic blood pressures, cardiac fibrosis, and left ventricular hypertrophy. Acetate had similar effects and markedly reduced renal fibrosis. Transcriptome analyses showed that the protective effects of high fiber and acetate were accompanied by the downregulation of cardiac and renal Egr1 , a master cardiovascular regulator involved in cardiac hypertrophy, cardiorenal fibrosis, and inflammation. We also observed the upregulation of a network of genes involved in circadian rhythm in both tissues and downregulation of the renin-angiotensin system in the kidney and mitogen-activated protein kinase signaling in the heart. A diet high in fiber led to changes in the gut microbiota that played a protective role in the development of cardiovascular disease. The favorable effects of fiber may be explained by the generation and distribution of one of the main metabolites of the gut

  3. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jihai [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Wenjie, E-mail: zhaowj@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Peng, Shusen; Zeng, Zhixiang; Zhang, Xin [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wu, Xuedong, E-mail: xdwu@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2014-08-30

    Highlights: • Engineered pillars, pits and grooves spaced 3–12 μm apart were fabricated on siloxane modified acrylic resin films. • The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. • The feature size and geometry displayed a substantial correlation with the antifouling properties. • A comparatively physical fouling deterrent mechanism was analyzed. - Abstract: Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10–12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45–55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5–8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features.

  4. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    International Nuclear Information System (INIS)

    Xu, Jihai; Zhao, Wenjie; Peng, Shusen; Zeng, Zhixiang; Zhang, Xin; Wu, Xuedong; Xue, Qunji

    2014-01-01

    Highlights: • Engineered pillars, pits and grooves spaced 3–12 μm apart were fabricated on siloxane modified acrylic resin films. • The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. • The feature size and geometry displayed a substantial correlation with the antifouling properties. • A comparatively physical fouling deterrent mechanism was analyzed. - Abstract: Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10–12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45–55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5–8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features

  5. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.

    Science.gov (United States)

    Singh, Deepak J; Jain, Rajesh R; Soni, P S; Abdul, Samad; Darshana, Hegde; Gaikwad, Rajiv V; Menon, Mala D

    2015-08-01

    Dry powder inhalers (DPI) are generally formulated by mixing micronized drug particles with coarse lactose carrier particles to assist powder handling during the manufacturing and powder aerosol delivery during patient use. In the present study, surface modified lactose (SML) particles were produced using force control agents, and their in vitro performance on dry powder inhaler (DPI) formulation of Fluticasone propionate was studied. With a view to reduce surface passivation of high surface free energy sites on the most commonly used DPI carrier, α- lactose monohydrate, effects of various force control agents such as Pluronic F-68, Cremophor RH 40, glyceryl monostearate, polyethylene glycol 6000, magnesium stearate, and soya lecithin were studied. DPI formulations prepared with SML showed improved flow properties, and atomic force microscopy (AFM) studies revealed decrease in surface roughness. The DSC and X-ray diffraction patterns of SML showed no change in the crystal structure and thermal behavior under the experimental conditions. The fine particle fraction (FPF) values of lactose modified with Pluronic F-68, Cremophor RH 40, glyceryl monostearate were improved, with increase in concentration up to 0.5%. Soya lecithin and PEG 6000 modified lactose showed decrease in FPF value with increase in concentration. Increase in FPF value was observed with increasing concentration of magnesium stearate. Two different DPI devices, Rotahaler(®) and Diskhaler(®), were compared to evaluate the performance of SML formulations. FPF value of all SML formulations were higher using both devices as compared to the same formulations prepared using untreated lactose. One month stability of SML formulations at 40°C/75% RH, in permeable polystyrene tubes did not reveal any significant changes in FPF values. SML particles can help in reducing product development hindrances and improve inhalational properties of DPI.

  6. Recovery of acetic acid from waste streams by extractive distillation.

    Science.gov (United States)

    Demiral, H; Yildirim, M Ercengiz

    2003-01-01

    Wastes have been considered to be a serious worldwide environmental problem in recent years. Because of increasing pollution, these wastes should be treated. However, industrial wastes can contain a number of valuable organic components. Recovery of these components is important economically. Using conventional distillation techniques, the separation of acetic acid and water is both impractical and uneconomical, because it often requires large number of trays and a high reflux ratio. In practice special techniques are used depending on the concentration of acetic acid. Between 30 and 70% (w/w) acetic acid contents, extractive distillation was suggested. Extractive distillation is a multicomponent-rectification method similar in purpose to azeotropic distillation. In extractive distillation, to a binary mixture which is difficult or impossible to separate by ordinary means, a third component termed an entrainer is added which alters the relative volatility of the original constituents, thus permitting the separation. In our department acetic acid is used as a solvent during the obtaining of cobalt(III) acetate from cobalt(II) acetate by an electrochemical method. After the operation, the remaining waste contains acetic acid. In thiswork, acetic acid which has been found in this waste was recovered by extractive distillation. Adiponitrile and sulfolane were used as high boiling solvents and the effects of solvent feed rate/solution feed rate ratio and type were investigated. According to the experimental results, it was seem that the recovery of acetic acid from waste streams is possible by extractive distillation.

  7. Disorder effects in Mn(12)-acetate at 83 K.

    Science.gov (United States)

    Cornia, Andrea; Fabretti, Antonio Costantino; Sessoli, Roberta; Sorace, Lorenzo; Gatteschi, Dante; Barra, Anne-Laure; Daiguebonne, Carole; Roisnel, Thierry

    2002-07-01

    The structure of hexadeca-mu-acetato-tetraaquadodeca-mu(3)-oxo-dodecamanganese bis(acetic acid) tetrahydrate, [Mn(12)O(12)(CH(3)COO)(16)(H(2)O)(4)] x 2CH(3)COOH x 4H(2)O, known as Mn(12)-acetate, has been determined at 83 (2) K by X-ray diffraction methods. The fourfold (S(4)) molecular symmetry is disrupted by a strong hydrogen-bonding interaction with the disordered acetic acid molecule of solvation, which displaces one of the acetate ligands in the cluster. Up to six Mn(12) isomers are potentially present in the crystal lattice, which differ in the number and arrangement of hydrogen-bonded acetic acid molecules. These results considerably improve the structural information available on this molecular nanomagnet, which was first synthesized and characterized by Lis [Acta Cryst. (1980), B36, 2042-2046].

  8. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  9. Pre-treatments applied to oxidized aluminum surfaces to modify the interfacial bonding with bis-1,2-(triethoxysilyl)ethane (BTSE)

    Energy Technology Data Exchange (ETDEWEB)

    Teo, M. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Kim, J. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Wong, P.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Wong, K.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Mitchell, K.A.R. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada)]. E-mail: karm@chem.ubc.ca

    2005-12-15

    A remote microwave-generated H{sub 2} plasma and heating to 250 deg. C were separately used to modify high-purity oxidized aluminum surfaces and to assess whether these treatments can help enhance adhesion with bis-1,2-(triethoxysilyl)ethane (BTSE) coatings. Different initial oxide surfaces were considered, corresponding to the native oxide and to surfaces formed by the Forest Products Laboratory (FPL) treatment applied for either 15 or 60 min. BTSE is applied from solution at pH 4, and competing processes of etching, protonation (to form OH groups) and coupling (to form Al-O-Si interfacial bonds) occur at the solid-liquid interface. Scanning electron microscopy (SEM) was used to determine how the topographies of the modified Al surfaces changed with the different pre-treatments and with exposure to a buffer solution of pH 4. Secondary-ion mass spectrometry (SIMS) was used to determine the direct amount of Al-O-Si interfacial bonds by measuring the ratio of peak intensities 71-70 amu, while X-ray photoelectron spectroscopy (XPS) was used to determine the overall strength of the silane coating adhesion by measuring the Si 2p signals before and after application of an ultrasonic rinse to the coated sample. Measured Al 2p and O 1s spectra helped assess how the different pre-treatments modified the various Al oxidized surfaces prior to BTSE coating. Pre-treated samples that showed increased Al-O-Si bonding after BTSE coating corresponded to surfaces, which did not show evidence of significant etching after exposure to a pH 4 environment. This suggests that such surfaces are more receptive to the coupling reaction during exposure to the BTSE coating solution. These surfaces include all H{sub 2} plasma-treated samples, the heated native oxide and the sample that only received the 15 min FPL treatment. In contrast, other surfaces that show evidence of etching in pH 4 environments are samples that received lower amounts of Al-O-Si interfacial bonding. Overall, heating

  10. CO{sub 2} capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J.; Zhao, C.S.; Chen, H.C.; Ren, Q.Q.; Duan, L.B. [Southeast University, Nanjing (China). School of Energy & Environment

    2011-03-15

    This paper examines the average carbonation conversion, CO{sub 2} capture efficiency and energy requirement for post-combustion CO{sub 2} capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO{sub 2} capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO{sub 2} capture efficiency. Achieving 0.95 of CO{sub 2} capture efficiency without sulfation, 272 kJ/mol CO{sub 2} is required in the calciner for the natural limestone, whereas only 223 kJ/mol CO{sub 2} for the modified sorbent. The modified limestone possesses greater advantages in CO{sub 2} capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO{sub 2} from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.

  11. Density, refraction index and vapor–liquid equilibria of N-methyl-2-hydroxyethylammonium butyrate plus (methyl acetate or ethyl acetate or propyl acetate) at several temperatures

    International Nuclear Information System (INIS)

    Alvarez, V.H.; Mattedi, S.; Aznar, M.

    2013-01-01

    Highlights: ► Densities, refraction indices and VLE were measured for ester + m-2-HEAB mixtures. ► V E , apparent molar volumes and thermal expansion coefficients were calculated. ► Peng–Robinson EoS + Wong–Sandler mixing rule + COSMO-SAC predicted the data. -- Abstract: This paper reports the densities, refraction indices, and vapor liquid equilibria for binary systems ester + N-methyl-2-hydroxyethylammonium butyrate (m-2-HEAB): methyl acetate (1) + m-2-HEAB (2), ethyl acetate (1) + m-2-HEAB and propyl acetate (1) + m-2-HEAB (2). The excess molar volumes, deviations in the refraction index, apparent molar volumes, and thermal expansion coefficients for the binary systems were fitted to polynomial equations. The Peng–Robinson equation of state, coupled with the Wong–Sandler mixing rule, is used to describe the experimental data. Since the predictive activity coefficient model COSMO-SAC is used in the Wong–Sandler mixing rule, the resulting thermodynamic model is a completely predictive one. The prediction results for the density and for the vapor–liquid equilibria have a deviation lower than 1.0% and 1.1%, respectively

  12. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  13. Synthesis of methyl acetate from dimethyl ether using group VIII metal salts of phosphotungstic acid

    Energy Technology Data Exchange (ETDEWEB)

    Sardesai, A.; Lee, S.; Tartamella, T.

    2002-04-01

    Dimethyl ether (DME) can be produced much more efficiently in a single-stage, liquid-phase process from natural gas-based syngas as compared to the conventional process via dehydration of methanol. This process, based on dual catalysts slurried in inert oil, alleviates the chemical equilibrium limitation governing the methanol synthesis reaction and concurrently improves per-pass syngas conversion and reactor productivity. The potential, therefore, for production of methyl acetate via dimethyl ether carbonylation is of industrial importance. In the present study, conversion of dimethyl ether and carbon monoxide to methyl acetate is investigated over a variety of group VIII metal-substituted phosphotungstic acid salts. Experimental results of this catalytic reaction using rhodium, iridium, ruthenium, and palladium catalysts are evaluated and compared in terms of selectivity toward methyl acetate. The effects of active metal, support types, multiple metal loading, and feed conditions on carbonylation activity of DME are examined. Iridium metal substituted phosphotungstic acid supported on Davisil type 643 (pore size 150 A, surface area 279 m{sup 2}/g, mesh size 230-425) silica gel shows the highest activity for DME carbonylation. (author)

  14. A kinetics study of acetic acid on cobalt leaching of spent LIBs: Shrinking Core Model

    Directory of Open Access Journals (Sweden)

    Setiawan Hendrik

    2018-01-01

    Full Text Available Lithium-ion batteries (LIBs are secondary rechargeable power sources which increasing production also leads to large amount of waste. In order to environmentally friendly reduce the waste, this work aimed to use acetic acid as a substitute leaching agent to leach Co metals which constitutes about 72.39% wt of the battery cathode. The leaching process was done in a three-necked-flask where calcined LIB cathode powder was mixed with acetic acid solution. The variables of the leaching process under investigation were solution pH, concentration of H2O2 in the solution, S/L ratio, temperature and reaction time. Experimental results showed that only temperature significantly influenced the leaching rate of Co. Since the process was exothermic, the maximum recovery decreased as temperature increased. Conventional shrinking core model that considers diffusion and irreversible surface reaction resistances was found not sufficient to predict the kinetics of the Co leaching with acetic acid. A more representative kinetics model that considers a reversible reaction of Co complex formation needs to be further developed.

  15. Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Balamurugan, A.; Chen Shenming

    2007-01-01

    Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode was prepared by electrochemical polymerization technique. The properties of modified electrode was studied. It was found that the electrochemical properties of modified electrode was very much dependent on the experimental conditions, such as monomer oxidation potential and pH. The modified electrode surface was characterized by scanning electron microscopy (SEM). The PEDOT-PANS film modified electrode shows electrocatalytic activity toward oxidation of dopamine (DA) in acetate buffer solution (pH 5.0) and results in a marked enhancement of the current response. The linear sweep voltammetric (LSV) peak heights are linear with DA concentration from 2 x 10 -6 to 1 x 10 -5 M. The detection limit is 5 x 10 -7 M. More over, the interferences of ascorbic acid (AA) and uric acid (UA) were effectively diminished. This work provides a simple and easy approach for selective determination of dopamine in the presence of ascorbic acid and uric acid

  16. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-01-01

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm"2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  17. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Huihui; Qian, Bin; Zhang, Wei [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); Lan, Minbo, E-mail: minbolan@ecust.edu.cn [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-02-15

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm{sup 2}, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  18. Surface effects in the acetylation of granular potato starch

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Woortman, A.J.J.

    2008-01-01

    The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of

  19. Short cellulosic fiber/starch acetate composites — micromechanical modeling of Young’s modulus

    DEFF Research Database (Denmark)

    Madsen, Bo; Joffe, Roberts; Peltola, Heidi

    2011-01-01

    This study is presented to predict the Young’s modulus of injection-molded short cellulosic fiber/plasticized starch acetate composites with variable fiber and plasticizer content. A modified rule of mixtures model is applied where the effect of porosity is included, and where the fiber weight...... (density and Young’s modulus). The measured Young’s modulus of the composites varies in the range 1.1—8.3 GPa, and this is well predicted by the model calculations. A property diagram is presented to be used for the tailor-making of composites with Young’s modulus in the range 0.2—10 GPa....

  20. Chitosan Fibers Modified with HAp/β–TCP Nanoparticles

    Directory of Open Access Journals (Sweden)

    Dariusz Wawro

    2011-10-01

    Full Text Available This paper describes a method for preparing chitosan fibers modified with hydroxyapatite (HAp, tricalcium phosphate (β-TCP, and HAp/β-TCP nanoparticles. Fiber-grade chitosan derived from the northern shrimp (Pandalus borealis and nanoparticles of tricalcium phosphate (β-TCP and hydroxyapatite (HAp suspended in a diluted chitosan solution were used in the investigation. Diluted chitosan solution containing nanoparticles of Hap/β-TCP was introduced to a 5.16 wt% solution of chitosan in 3.0 wt% acetic acid. The properties of the spinning solutions were examined. Chitosan fibers modified with nanoparticles of HAp/β-TCP were characterized by a level of tenacity and calcium content one hundred times higher than that of regular chitosan fibers.

  1. Thermal Conductivity of Ethylene Vinyl Acetate Copolymer/Carbon Nanofiller Blends

    Science.gov (United States)

    Ghose, S.; Watson, K. A.; Working, D. C.; Connell, J. W.; Smith, J. G., Jr.; Lin, Y.; Sun, Y. P.

    2007-01-01

    To reduce weight and increase the mobility, comfort, and performance of future spacesuits, flexible, thermally conductive fabrics and plastic tubes are needed for the Liquid Cooling and Ventilation Garment. Such improvements would allow astronauts to operate more efficiently and safely for extended extravehicular activities. As an approach to raise the thermal conductivity (TC) of an ethylene vinyl acetate copolymer (Elvax 260), it was compounded with three types of carbon based nanofillers: multi-walled carbon nanotubes (MWCNTs), vapor grown carbon nanofibers (CNFs), and expanded graphite (EG). In addition, other nanofillers including metallized CNFs, nickel nanostrands, boron nitride, and powdered aluminum were also compounded with Elvax 260 in the melt at various loading levels. In an attempt to improve compatibility between Elvax 260 and the nanofillers, MWCNTs and EG were modified by surface coating and through noncovalent and covalent attachment of organic molecules containing alkyl groups. Ribbons of the nanocomposites were extruded to form samples in which the nanofillers were aligned in the direction of flow. Samples were also fabricated by compression molding to yield nanocomposites in which the nanofillers were randomly oriented. Mechanical properties of the aligned samples were determined by tensile testing while the degree of dispersion and alignment of nanoparticles were investigated using high-resolution scanning electron microscopy. TC measurements were performed using a laser flash (Nanoflash ) technique. TC of the samples was measured in the direction of, and perpendicular to, the alignment direction. Additionally, tubing was also extruded from select nanocomposite compositions and the TC and mechanical flexibility measured.

  2. Acetate adaptation of clostridia tyrobutyricum for improved fermentation production of butyrate.

    Science.gov (United States)

    Jaros, Adam M; Rova, Ulrika; Berglund, Kris A

    2013-12-01

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium capable of utilizing xylose for the fermentation production of butyrate. Hot water extraction of hardwood lingocellulose is an efficient method of producing xylose where autohydrolysis of xylan is catalysed by acetate originating from acetyl groups present in hemicellulose. The presence of acetic acid in the hydrolysate might have a severe impact on the subsequent fermentations. In this study the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 26.3 g/L acetate equivalents were studied. Analysis of xylose batch fermentations found that even in the presence of high levels of acetate, acetate adapted strains had similar fermentation kinetics as the parental strain cultivated without acetate. The parental strain exposed to acetate at inhibitory conditions demonstrated a pronounced lag phase (over 100 hours) in growth and butyrate production as compared to the adapted strain (25 hour lag) or non-inhibited controls (0 lag). Additional insight into the metabolic pathway of xylose consumption was gained by determining the specific activity of the acetate kinase (AK) enzyme in adapted versus control batches. AK activity was reduced by 63% in the presence of inhibitory levels of acetate, whether or not the culture had been adapted.

  3. Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties

    International Nuclear Information System (INIS)

    Kim, Jieun; Kim, Seok

    2014-01-01

    Highlights: • Reduced graphene oxide surface was modified by introduction of ionic liquids. • Microstructure and capacitance of modified electrode were dependent on the ionic liquids contents. • Modification gives electrode better charge transport and higher specific capacitance. • Modified electrode showed the better capacitive performance such as rate capability and cycle stability. - Abstract: In this work, reduced graphene oxide (rGO)/ionic liquids (IL) composites with different weight ratios of IL to rGO were synthesized by a simple method. In these composites, IL contributed to the exfoliation of rGO sheets and to the improvement of the electrochemical properties of the resulting composites by enhancing the ion diffusion and charge transport. The structure of the composites was examined by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The TEM images showed that IL was coated on the surface of rGO in a translucent manner. The electrochemical analysis of the prepared composites was carried out by performing cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS). Among the prepared composites, the one with a weight ratio of rGO to IL of 1:7 showed the highest specific capacitance of 147.5 F g −1 at a scan rate of 10 mV s −1 . In addition, the rate capability and cycle performance of the composites were enhanced compared to pristine rGO. These enhanced properties make the composites suitable as electrode materials for the better performance supercapacitors

  4. Effect of preparation method on the surface characteristics and activity of the Pd/OMS-2 catalysts for the oxidation of carbon monoxide, toluene, and ethyl acetate

    Science.gov (United States)

    Liu, Lisha; Song, Yong; Fu, Zhidan; Ye, Qing; Cheng, Shuiyuan; Kang, Tianfang; Dai, Hongxing

    2017-02-01

    The cryptomelane-type manganese oxide octahedral molecular sieve (OMS-2)-supported Pd (0.5 wt% Pd/OMS-2-DP, 0.5 wt% Pd/OMS-2-PI, and 0.5 wt% Pd/OMS-2-EX) catalysts were prepared by the deposition-precipitation, pre-incorporation, and ion-exchanging strategies, respectively. It is shown that the preparation method exerted an important effect on the physicochemical property of the sample. Among the OMS-2-supported Pd catalysts, 0.5 wt% Pd/OMS-2-DP possessed the highest surface (Mn2+ + Mn3+)/Mn4+ atomic ratio and the highest surface Pd loading and acid sites. The 0.5 wt% Pd/OMS-2 catalysts outperformed the Pd-free counterpart, among which 0.5 wt% Pd/OMS-2-DP presented the best catalytic activity (T50% and T90% were 25 and 55 °C for CO oxidation, 240 and 285 °C for toluene oxidation, and 160 and 200 °C for ethyl acetate oxidation, respectively). We believe that the high Pd surface loading, high surface atomic ratio of (Mn2+ + Mn3+)/Mn4+, and good low-temperature reducibility, good oxygen mobility, and high acidity were responsible for the excellent performance of the 0.5 wt% Pd/OMS-2-DP catalyst.

  5. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions

    Science.gov (United States)

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

    2014-01-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  6. Modified silica sol coatings for surface enhancement of leather.

    Science.gov (United States)

    Mahltig, Boris; Vossebein, Lutz; Ehrmann, Andrea; Cheval, Nicolas; Fahmi, Amir

    2012-06-01

    The presented study reports on differently modified silica sols for coating applications on leather. Silica sols are prepared by acidic hydrolysis of tetraethoxysilane and modified by silane compounds with fluorinated and non-fluorinated alkylgroups. In contrast to many earlier investigations regarding sol-gel applications on leather, no acrylic resin is used together with the silica sols when applying on leather. The modified silica particles are supposed to aggregate after application, forming thus a modified silica coating on the leather substrate. Scanning electron microscopy investigation shows that the applied silica coatings do not fill up or close the pores of the leather substrate. However, even if the pores of the leather are not sealed by this sol-gel coating, an improvement of the water repellent and oil repellent properties of the leather substrates are observed. These improved properties of leather by application of modified silica sols can provide the opportunity to develop sol-gel products for leather materials present in daily life.

  7. Effect of surface chemistries and characteristics of Ti6Al4V on the Ca and P adsorption and ion dissolution in Hank's ethylene diamine tetra-acetic acid solution.

    Science.gov (United States)

    Chang, E; Lee, T M

    2002-07-01

    This study examined the influence of chemistries and surface characteristics of Ti6Al4V on the adsorption of Ca and P species and ion dissolution behavior of the material exposed in Hank's solution with 8.0 mM ethylene diamine tetra-acetic acid at 37 degrees C. The variation of chemistries of the alloy and nano-surface characteristics (chemistries of nano-surface oxides, amphoteric OH group adsorbed on oxides, and oxide thickness) was effected by surface modification and three passivation methods (34% nitric acid passivation. 400 degrees C heated in air, and aged in 100 degrees C water). X-ray photoelectron spectroscopy and Auger electron spectroscopy were used for surface analyses. The chemistries of nano-surface oxides in a range studied should not change the capability of Ca and P adsorption. Nor is the capability affected significantly by amphoteric OH group and oxide thickness. However, passivations influence the surface oxide thickness and the early stage ion dissolution rate of the alloy. The rate-limiting step of the rate can be best explained by metal-ion transport through the oxide film, rather than hydrolysis of the film. Variation of the chemistries of titanium alloy alters the electromotive force potential of the metal, thereby affecting the corrosion and ion dissolution rate.

  8. Radiation sterilization of hydrocortisone acetate

    International Nuclear Information System (INIS)

    Charef, A.; Boussaha, A.

    1989-09-01

    The feasibility of using high energy ionizing radiation for the sterilization of hydrocortisone acetate was investigated. Hydrocortisone acetate in the form of powder was exposed to different dose levels of gamma radiation using a Cobalt-60 source. The irradiated samples were examined by various physico-chemical techniques in order to detect possible radiolysis products. It was of interest to know if one could insure sterility and retain biological properties of the drug by suitable choice of radiation dose. The results showed that a 10 KGy radiation dose causes no change in the physico-chemical properties of the drug and is sufficient to obtain contaminant-free product

  9. Enhancement of Osteoblastic-Like Cell Activity by Glow Discharge Plasma Surface Modified Hydroxyapatite/β-Tricalcium Phosphate Bone Substitute

    Directory of Open Access Journals (Sweden)

    Eisner Salamanca

    2017-11-01

    Full Text Available Glow discharge plasma (GDP treatments of biomaterials, such as hydroxyapatite/β-tricalcium phosphate (HA/β-TCP composites, produce surfaces with fewer contaminants and may facilitate cell attachment and enhance bone regeneration. Thus, in this study we used argon glow discharge plasma (Ar-GDP treatments to modify HA/β-TCP particle surfaces and investigated the physical and chemical properties of the resulting particles (HA/β-TCP + Ar-GDP. The HA/β-TCP particles were treated with GDP for 15 min in argon gas at room temperature under the following conditions: power: 80 W; frequency: 13.56 MHz; pressure: 100 mTorr. Scanning electron microscope (SEM observations showed similar rough surfaces of HA/β-TCP + Ar-GDP HA/β-TCP particles, and energy dispersive spectrometry analyses showed that HA/β-TCP surfaces had more contaminants than HA/β-TCP + Ar-GDP surfaces. Ca/P mole ratios in HA/β-TCP and HA/β-TCP + Ar-GDP were 1.34 and 1.58, respectively. Both biomaterials presented maximal intensities of X-ray diffraction patterns at 27° with 600 a.u. At 25° and 40°, HA/β-TCP + Ar-GDP and HA/β-TCP particles had peaks of 200 a.u., which are similar to XRD intensities of human bone. In subsequent comparisons, MG-63 cell viability and differentiation into osteoblast-like cells were assessed on HA/β-TCP and HA/β-TCP + Ar-GDP surfaces, and Ar-GDP treatments led to improved cell growth and alkaline phosphatase activities. The present data indicate that GDP surface treatment modified HA/β-TCP surfaces by eliminating contaminants, and the resulting graft material enhanced bone regeneration.

  10. Metal Recovery and Preconcentration by Edta and Dtpa Modified Silica Surfaces

    Directory of Open Access Journals (Sweden)

    Eveliina Repo

    2017-03-01

    Full Text Available This study focuses on the adsorption and preconcentration of various metals by silica gel surfaces modified with aminopolycarboxylic acids namely ethylenediaminetetraacetic acid or diethylenetriamine-pentaacetic acid. The adsorption performance of the studied materials was determined in mixed metal solutions and the adsorption isotherm studies were conducted for cobalt, nickel, cadmium, and lead. The results were modeled using various theoretical isotherm equations, which suggested that two different adsorption sites were involved in metal removal although lead showed clearly different adsorption behavior attributed to its lowest hydration tendency. Efficient regeneration of the adsorbents and preconcentration of metals was conducted with nitric acid. Results indicated that the metals under study could be analyzed rather accurately after preconcentration from both pure, saline and ground water samples.

  11. Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Arun Kumar Gupta

    2012-01-01

    Full Text Available The effect of surface treated sisal fiber on the mechanical, thermal, flammability, and morphological properties of sisal fiber (SF reinforced recycled polypropylene (RPP composites was investigated. The surface of sisal fiber was modified with different chemical reagent such as silane, glycidyl methacrylate (GMA, and O-hydroxybenzene diazonium chloride (OBDC to improve the compatibility with the matrix polymer. The experimental results revealed an improvement in the tensile strength to 11%, 20%, and 31.36% and impact strength to 78.72%, 77%, and 81% for silane, GMA, and OBDC treated sisal fiber reinforced recycled Polypropylene (RPP/SF composites, respectively, as compared to RPP. The thermogravimetric analysis (TGA, differential scanning calorimeter (DSC, and heat deflection temperature (HDT results revealed improved thermal stability as compared with RPP. The flammability behaviour of silane, GMA, and OBDC treated SF/RPP composites was studied by the horizontal burning rate by UL-94. The morphological analysis through scanning electron micrograph (SEM supports improves surface interaction between fiber surface and polymer matrix.

  12. Short communication: A comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run.

    Science.gov (United States)

    Jindal, Shivali; Anand, Sanjeev; Metzger, Lloyd; Amamcharla, Jayendra

    2018-04-01

    Flow of milk through the plate heat exchanger (PHE) results in denaturation of proteins, resulting in fouling. This also accelerates bacterial adhesion on the PHE surface, eventually leading to the development of biofilms. During prolonged processing, these biofilms result in shedding of bacteria and cross-contaminate the milk being processed, thereby limiting the duration of production runs. Altering the surface properties of PHE, such as surface energy and hydrophobicity, could be an effective approach to reduce biofouling. This study was conducted to compare the extent of biofouling on native stainless steel (SS) and modified-surface [Ni-P-polytetrafluoroethylene (PTFE)] PHE during the pasteurization of raw milk for an uninterrupted processing run of 17 h. For microbial studies, raw and pasteurized milk samples were aseptically collected from inlets and outlets of both PHE at various time intervals to examine shedding of bacteria in the milk. At the end of the run, 3M quick swabs (3M, St. Paul, MN) and ATP swabs (Charm Sciences Inc., Lawrence, MA) were used to sample plates from different sections of the pasteurizers (regeneration, heating, and cooling) for biofilm screening and to estimate the efficiency of cleaning in place, respectively. The data were tested for ANOVA, and means were compared. Modified PHE experienced lower mesophilic and thermophilic bacterial attachment and biofilm formation (average log 1.0 and 0.99 cfu/cm 2 , respectively) in the regenerative section of the pasteurizer compared with SS PHE (average log 1.49 and 1.47, respectively). Similarly, higher relative light units were observed for SS PHE compared with the modified PHE, illustrating the presence of more organic matter on the surface of SS PHE at the end of the run. In addition, at h 17, milk collected from the outlet of SS PHE showed plate counts of 5.44 cfu/cm 2 , which were significantly higher than those for pasteurized milk collected from modified PHE (4.12 log cfu/cm 2 ). This

  13. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Rivera, Lymaris, E-mail: luo105@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Bakaev, Victor A.; Banerjee, Joy [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Pantano, Carlo G. [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-05-01

    Highlights: • XPS revealed that these fiber surfaces contain sodium carbonate weathering products. • IGC–MS data confirms the products of acetic acid reaction with sodium carbonate. • NMR data shows two closely spaced, but distinct sodium carboxylate peaks. • Acetic acid reacts with both sodium in the glass and sodium in the sodium carbonate. - Abstract: Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a {sup 13}C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC–MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H

  14. Novel Graphene-Gold Hybrid Nanostructures Constructed via Sulfur Modified Graphene: Preparation and Characterization by Surface and Electrochemical Techniques

    International Nuclear Information System (INIS)

    Shervedani, Reza Karimi; Amini, Akbar

    2014-01-01

    Graphical abstract: Graphene nanosheet-gold nanoparticles (GNs-AuNPs) hybrid has been fabricated from sulfur-modified graphene nanosheets (S-GNs) impregnated with HAuCl4 as Au precursor. Application of the GNs-AuNPs hybrid in electrochemical biosensing was demonstrated by immobilization of glucose oxidase as a model on the surface of GCE-ATP-GNs-AuNPs, and then, using it for sensing of glucose. - Highlights: • A new hybrid of GNs-AuNPs is synthesized by using sulfur-modified graphene. • Stability of the hybrid is exceptionally improved in comparison with previous works. • Aminothiophenol mediated fabrication and stabilization of GNs-AuNPs on GCE electrode. • High electrocatalytic activity was observed for O 2 reduction by hybrid. • Activity of the hybrid was originated from synergistic effect and surface roughness. - Abstract: A novel and uniform graphene nanosheet-gold nanoparticles (GNs-AuNPs) hybrid has been fabricated from sulfur-modified graphene nanosheets (S-GNs) impregnated with HAuCl 4 as Au precursor. Physicochemical and morphological characteristics of the GNs-AuNPs hybrids were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), surface Raman spectroscopy (SRS), and high resolution transmission electron microscopy (HRTEM). The results of the XRD and HRTEM demonstrated well dispersed Au nanoparticles on GNs with an average particle size of less than 10 nm and a narrow size distribution of 6 to 8 nm. A film of GNs-AuNPs hybrid was constructed on a glassy carbon electrode (GCE) through layer-by-layer (LBL) assembly of 4-aminothiphenol (ATP) on GCE, and then, transferring the hybrid to the sulfur function of ATP to form GCE-ATP-GNs-AuNPs modified surface. Application of the GNs-AuNPs hybrid in electrochemical biosensing was demonstrated by immobilization of glucose oxidase (GOx) as a model on the surface of GCE-ATP-GNs-AuNPs, and then, using it for sensing of glucose. The biosensor exhibited a wide linear response

  15. Studies on the surface modification of diatomite with polyethyleneimine and trapping effect of the modified diatomite for phenol

    International Nuclear Information System (INIS)

    Gao Baojiao; Jiang Pengfei; An Fuqiang; Zhao Shuying; Ge Zhen

    2005-01-01

    The adsorption isotherm of polyethyleneimine (PEI) on diatomite was studied using UV spectrophotometry, the surface of diatomite was modified with polyethyleneimine by using impregnation method, and the trapping behavior of the modified diatomite for phenol was investigated by using 4-aminoantipyrine (4-AAP) spectrophotometric method. The experiment results show that negatively charged diatomite particles have very strong absorption effect for cationic macromolecule PEI, the adsorption isotherm fits in Freundlich equation. The character that there is a maximum value after intitial sharp increase of adsorption capacity on the adsorption curve indicates that there is strong affinity between diatomite particles and polyethyleneimine macromolecules, and it attributes to the strong electrostatic interaction. After modification with PEI, the electric property of diatomite particle surface changes essentially, and the isoelectric point of diatomite particles moves from pH 2.0 to 10.5. In acidic solution, phenol exists as molecular state, and the modified diatomite particles adsorb phenol through hydrogen bond interaction. However, the hydrogen bond interaction between nitrogen atoms on PEI chains and phenol is weaker because of high degree of protonation of polyethyleneimine macromolecules, so the adsorption quantity is lower. In basic solution, phenol exists as negative benzene-oxygen ion, and the modified diatomite particles adsorb phenol through electrostatic interaction. However, the electrostatic interaction between PEI and negative benzene-oxygen ion is very weak because of low degree of protonation of polyethyleneimine macromolecules, so the adsorption quantity is much lower. The modified diatomite particles produce very strong trapping effect for phenol in neutral aqueous solution via the cooperating of strong electrostatic interaction and hydrogen bond interaction, and the saturated adsorption capacity can attain to 92 mg g -1

  16. The method of quantitative determination of iodine in acetic acid

    International Nuclear Information System (INIS)

    Sukhomlinov, A.B.; Kalinchenko, N.B.

    1988-01-01

    Method for separate determination of J 2 and J - concentrations in acetic acid is suggested. Iodine concentration in acetic acid is determined by measuring potential of iodine-selective electrode first in the initial solution of acetic acid, where molecular iodine dissociation equals 0.5, and then in acetic acid, with alkali (NaOH) addition up to pH > 3, where molecular iodine dissociation equals 1. Determination is conducted in 5x10 -7 -5x10 -6 mol/l concentration range with relative standard deviation not more than 0.1. 1 fig

  17. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  18. Dissociation of water and Acetic acid on PbS from first principles

    Science.gov (United States)

    Satta, Alessandra; Ruggerone, Paolo; de Giudici, Giovanni

    2008-03-01

    The adsorption of complex molecules at mineral surfaces are crucial ingredients for understanding the mechanisms that rule the interaction between minerals and the biosphere and for predicting both the stability and the reactivity of minerals. The present work focuses mainly on the early stages of different adsorption reactions occurring at both the cleavage surface and a high-index vicinal surface of galena (PbS). We have studied the dissociation mechanism of water and acetic acid on the galena surfaces by means of ab initio calculations within the framework of the density functional theory in the generalized gradient approximation and of pseudopotential approach. The calculated adsorption energies of the molecules indicate the stepped surface as the most reactive, as expected. The free energy surface during the reaction process has been explored via metadynamics[1]. The optimized configurations of both reactants and products obtained, were then used to accurately calculate the dissociation energy via the Nudge Elastic Band method[2]. [1] A. Laio and M. Parrinello, PNAS 99, 12562 (2002). [2] G. Mills and H. Jonsson, Phys. Rev. Lett. 72, 1124 (1994).

  19. Effect of electron beam irradiation on the mechanical and thermal properties of intumescent flame retarded ethylene-vinyl acetate copolymer/organically modified montmorillonite nanocomposites

    International Nuclear Information System (INIS)

    Wang Bibo; Song Lei; Hong Ningning; Tai Qilong; Lu Hongdian; Hu Yuan

    2011-01-01

    Ethylene-vinyl acetate copolymer (EVA) flame retarded by a combination of intumescent flame retardants (IFR) and organically modified montmorillonite (OMMT) have been crosslinked by high-energy electron beam irradiation. The structure was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of electron beam irradiation on the thermal, mechanical and dynamic mechanical properties of the irradiated EVA nanocomposites were investigated. The XRD and TEM results demonstrated that the OMMT was well dispersed in the EVA nanocomposites. The LOI and UL-94 results showed that a synergistic effect on the flame retardancy of EVA nanocomposite existed between the IFR and OMMT. With the addition of 1 wt% OMMT and 24 wt% IFR, the LOI value of EVA/IFR/OMMT nanocomposite increased from 30.5 % to 33.5 %. The mechanical properties of the irradiated EVA nanocomposite were evidently improved at 160 kGy dosage with the increase in the tensile strength to 18.5 MPa. Thermal oxidative degradation of the flame-retardant EVA/IFR/OMMT nanocomposites was characterized by thermogravimetric analysis/infrared spectrometry (TG-IR) and real-time Fourier transformed infrared spectroscopy (RT-FTIR). - Highlights: → The results signify a synergistic effect between OMMT and IFR in the EVA matrix. → The XRD and TEM indicate that the OMMT is well dispersed in the EVA matrix. → The Tg of EVA nanocomposites increase with the increase in the irradiation dose. → The GS peak of EVA composites decrease with the increase in the irradiation dose.

  20. Protein adsorption resistant surface on polymer composite based on 2D- and 3D-controlled grafting of phospholipid moieties

    International Nuclear Information System (INIS)

    Hoshi, Toru; Matsuno, Ryosuke; Sawaguchi, Takashi; Konno, Tomohiro; Takai, Madoka; Ishihara, Kazuhiko

    2008-01-01

    To prepare the biocompatible surface, a phosphorylcholine (PC) group was introduced on this hydroxyl group generated by surface hydrolysis on the polymer composite composed of polyethylene (PE) and poly (vinyl acetate) (PVAc) prepared by supercritical carbon dioxide. Two different procedures such as two-dimensional (2D) modification and three-dimensional (3D) modification were applied to obtain the steady biocompatible surface. 2D modification was that PC groups were directly anchored on the surface of the polymer composite. 3D modification was that phospholipid polymer was grafted from the surface of the polymer composite by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC). The surfaces were characterized by X-ray photoelectron spectroscopy, dynamic water contact angle measurements, and atomic force microscope. The effects of the poly(MPC) chain length on the protein adsorption resistivity were investigated. The protein adsorption on the polymer composite surface with PC groups modified by 2D or 3D modification was significantly reduced as compared with that on the unmodified PE. Further, the amount of protein adsorbed on the 3D modified surface that is poly(MPC)-grafted surface decreased with an increase in the chain length of the poly(MPC). The surface with an arbitrary structure and the characteristic can be constructed by using 2D and 3D modification. We conclude that the polymer composites of PE/PVAc with PC groups on the surface are useful for fabricating biomedical devices due to their good mechanical and surface properties

  1. A fine surface roughness electroless Ni–P–PTFE composite modified stamper for light guide plate application

    International Nuclear Information System (INIS)

    Pan, K; Fu, C

    2010-01-01

    Electroless Ni–P–PTFE composite coating technology takes advantage of the beneficial properties from both Ni–P alloy and PTFE, such as good wear resistance, good anti-adhesion, dry lubrication, low coefficient of friction and good corrosion resistance. It has been applied in many mold industries. However, the Ni–P–PTFE composite coating suffers from bad surface roughness, when the PTFE particles incorporate into a Ni–P matrix. This severely hampers the technology to be applied to optical grade applications. In this paper, we propose a trick to generate a fine surface roughness (FSR) electroless Ni–P–PTFE composite to modify a nickel stamper. Using this new method, the nickel stamper can be covered by a Ni–P–PTFE functional layer and can keep the original surface property at the same time, namely the optical properties. We have chosen 4.5 inch (97 mm × 59 mm × 0.6 mm) light guide plates (LGPs) to demonstrate the effectiveness of the procedure. For the sake of comparison, the LGPs were produced by injection molding with three kinds of stampers including an original SUS430 master, an electroless Ni–P–PTFE composite coated nickel stamper and an FSR electroless Ni–P–PTFE composite modified stamper. We measured and discussed the optical performances at both the element level and system level, namely complete back light units.

  2. Surface-enhanced Raman difference between bombesin and its modified analogues on the colloidal and electrochemically roughen silver surfaces.

    Science.gov (United States)

    Podstawka, Edyta; Ozaki, Yukihiro

    2008-10-01

    In this article, surface-enhanced Raman scattering (SERS) spectra of bombesin (BN) and its six modified analogues ([D-Phe(12)]BN, [Tyr(4)]BN, [Tyr(4),D-Phe(12)]BN, [D-Phe(12),Leu(14)]BN, [Leu(13)-(R)-Leu(14)]BN, and [Lys(3)]BN) on a colloidal silver surface are reported and compared with SERS spectra of these species immobilized onto an ellectrochemically roughen silver electrode. Changes in enhancement and wavenumber of proper bands upon adsorption on different silver surfaces are consistent with BN and its analogues adsorption primarily through Trp(8). Slightly different adsorption states of these molecules are observed depending upon natural amino acids substitution. For example, the indole ring in all the peptides interacts with silver nanoparticles in a edge-on orientation. It is additionally coordinated to the silver through the N(1)--H bond for all the peptides, except [Phe(12)]BN. This is in contrary to the results obtained for the silver roughen electrode that show direct but not strong N(1)--H/Ag interaction for all peptides except [D-Phe(12),Leu(14)]BN and [Leu(13)-(R)-Leu(14)]BN. For BN only C==O is not involved in the chemical coordination with the colloidal surface. [Lys(3)]BN and BN also adsorb with the C--N bond of NH(2) group normal and horizontal, respectively, to the colloidal surface, whereas C--NH(2) in other peptides is tilted to this surface. Also, the Trp(8) --CH(2)-- moiety of only [Tyr(4)]BN, [Lys(3)]BN, and [Tyr(4),D-Phe(12)]BN coordinates to Ag, whereas the Phe(12) ring of [Phe(12)]BN, [Tyr(4),D-Phe(12)]BN, and [D-Phe(12),Leu(14)]BN assists in the peptides binding only on the colloidal silver. (c) 2008 Wiley Periodicals, Inc.

  3. Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications

    Science.gov (United States)

    Ferro, Suellen; Azevedo-Silva, João; Casal, Margarida; Côrte-Real, Manuela; Baltazar, Fatima; Preto, Ana

    2016-01-01

    Acetate, together with other short chain fatty acids has been implicated in colorectal cancer (CRC) prevention/therapy. Acetate was shown to induce apoptosis in CRC cells. The precise mechanism underlying acetate transport across CRC cells membrane, that may be implicated in its selectivity towards CRC cells, is not fully understood and was addressed here. We also assessed the effect of acetate in CRC glycolytic metabolism and explored its use in combination with the glycolytic inhibitor 3-bromopyruvate (3BP). We provide evidence that acetate enters CRC cells by the secondary active transporters MCT1 and/or MCT2 and SMCT1 as well as by facilitated diffusion via aquaporins. CRC cell exposure to acetate upregulates the expression of MCT1, MCT4 and CD147, while promoting MCT1 plasma membrane localization. We also observed that acetate increases CRC cell glycolytic phenotype and that acetate-induced apoptosis and anti-proliferative effect was potentiated by 3BP. Our data suggest that acetate selectivity towards CRC cells might be explained by the fact that aquaporins and MCTs are found overexpressed in CRC clinical cases. Our work highlights the importance that acetate transport regulation has in the use of drugs such as 3BP as a new therapeutic strategy for CRC. PMID:28874966

  4. Significant electrical control of amorphous oxide thin film transistors by an ultrathin Ti surface polarity modifier

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byungsu [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Choi, Yonghyuk; Shin, Seokyoon [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Seo, Hyungtak, E-mail: hseo@ajou.ac.kr [Department of Materials Science and Engineering and Energy Systems Research, Ajou University, Suwon 443-739 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-01-27

    We demonstrate an enhanced electrical stability through a Ti oxide (TiO{sub x}) layer on the amorphous InGaZnO (a-IGZO) back-channel; this layer acts as a surface polarity modifier. Ultrathin Ti deposited on the a-IGZO existed as a TiO{sub x} thin film, resulting in oxygen cross-binding with a-IGZO surface. The electrical properties of a-IGZO thin film transistors (TFTs) with TiO{sub x} depend on the surface polarity change and electronic band structure evolution. This result indicates that TiO{sub x} on the back-channel serves as not only a passivation layer protecting the channel from ambient molecules or process variables but also a control layer of TFT device parameters.

  5. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Jin, E-mail: jinxxwang@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-11-15

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  6. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    International Nuclear Information System (INIS)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-01-01

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  7. 11C-acetate PET imaging in patients with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Kazushiro Takata

    Full Text Available BACKGROUND: Activation of glial cells is a cardinal feature in multiple sclerosis (MS pathology, and acetate has been reported to be selectively uptaken by astrocytes in the CNS. The aim of this study was to investigate the efficacy of PET with (11C-acetate for MS diagnosis. MATERIALS AND METHODS: Six patients with relapsing-remitting MS and 6 healthy volunteers (HV were enrolled. The (11C-acetate brain uptake on PET was measured in patients with MS and HV. Volume-of-interest analysis of cerebral gray and white matter based on the segmentation technique for co-registered MRI and voxel-based statistical parametric analysis were performed. Correlation between 11C-acetate uptake and the lesion number in T1- and T2- weighted MR images were also assessed. RESULTS: The standardized uptake value (SUV of 11C-acetate was increased in both white and gray matter in MS patients compared to HV. Voxel-based statistical analysis revealed a significantly increased SUV relative to that in the bilateral thalami (SUVt in a broad area of white matter, particularly in the subcortical white matter of MS patients. The numbers of T2 lesions and T1 black holes were significantly correlated with SUV of (11C-acetate in white and gray matter. CONCLUSIONS: The 11C-acetate uptake significantly increased in MS patients and correlated to the number of MRI lesions. These preliminary data suggest that (11C-acetate PET can be a useful clinical examination for MS patients.

  8. Acetate transiently inhibits myocardial contraction by increasing mitochondrial calcium uptake.

    Science.gov (United States)

    Schooley, James F; Namboodiri, Aryan M A; Cox, Rachel T; Bünger, Rolf; Flagg, Thomas P

    2014-12-09

    There is a close relationship between cardiovascular disease and cardiac energy metabolism, and we have previously demonstrated that palmitate inhibits myocyte contraction by increasing Kv channel activity and decreasing the action potential duration. Glucose and long chain fatty acids are the major fuel sources supporting cardiac function; however, cardiac myocytes can utilize a variety of substrates for energy generation, and previous studies demonstrate the acetate is rapidly taken up and oxidized by the heart. In this study, we tested the effects of acetate on contractile function of isolated mouse ventricular myocytes. Acute exposure of myocytes to 10 mM sodium acetate caused a marked, but transient, decrease in systolic sarcomere shortening (1.49 ± 0.20% vs. 5.58 ± 0.49% in control), accompanied by a significant increase in diastolic sarcomere length (1.81 ± 0.01 μm vs. 1.77 ± 0.01 μm in control), with a near linear dose response in the 1-10 mM range. Unlike palmitate, acetate caused no change in action potential duration; however, acetate markedly increased mitochondrial Ca(2+) uptake. Moreover, pretreatment of cells with the mitochondrial Ca(2+) uptake blocker, Ru-360 (10 μM), markedly suppressed the effect of acetate on contraction. Lehninger and others have previously demonstrated that the anions of weak aliphatic acids such as acetate stimulate Ca(2+) uptake in isolated mitochondria. Here we show that this effect of acetate appears to extend to isolated cardiac myocytes where it transiently modulates cell contraction.

  9. A multi-scale modeling of surface effect via the modified boundary Cauchy-Born model

    Energy Technology Data Exchange (ETDEWEB)

    Khoei, A.R., E-mail: arkhoei@sharif.edu; Aramoon, A.

    2012-10-01

    In this paper, a new multi-scale approach is presented based on the modified boundary Cauchy-Born (MBCB) technique to model the surface effects of nano-structures. The salient point of the MBCB model is the definition of radial quadrature used in the surface elements which is an indicator of material behavior. The characteristics of quadrature are derived by interpolating data from atoms laid in a circular support around the quadrature, in a least-square scene. The total-Lagrangian formulation is derived for the equivalent continua by employing the Cauchy-Born hypothesis for calculating the strain energy density function of the continua. The numerical results of the proposed method are compared with direct atomistic and finite element simulation results to indicate that the proposed technique provides promising results for modeling surface effects of nano-structures. - Highlights: Black-Right-Pointing-Pointer A multi-scale approach is presented to model the surface effects in nano-structures. Black-Right-Pointing-Pointer The total-Lagrangian formulation is derived by employing the Cauchy-Born hypothesis. Black-Right-Pointing-Pointer The radial quadrature is used to model the material behavior in surface elements. Black-Right-Pointing-Pointer The quadrature characteristics are derived using the data at the atomistic level.

  10. Investigation of γ-(2,3-Epoxypropoxypropyltrimethoxy Silane Surface Modified Layered Double Hydroxides Improving UV Ageing Resistance of Asphalt

    Directory of Open Access Journals (Sweden)

    Canlin Zhang

    2017-01-01

    Full Text Available γ-(2,3-Epoxypropoxypropyltrimethoxy silane surface modified layered double hydroxides (KH560-LDHs were prepared and used to improve the ultraviolet ageing resistance of asphalt. The results of X-ray photoelectron spectrometry (XPS indicated that KH560 has been successfully grafted onto the surface of LDHs. The agglomeration of LDHs particles notably reduced after KH560 surface modification according to scanning electron microscopy (SEM, which implied that the KH560 surface modification was helpful to promote the dispersibility of LDHs in asphalt. Then, the influence of KH560-LDHs and LDHs on the physical and rheological properties of asphalt before and after UV ageing was thoroughly investigated. The storage stability test showed that the difference in softening point (ΔS of LDHs modified asphalt decreased from 0.6 °C to 0.2 °C at an LDHs content of 1% after KH560 surface modification, and the tendency became more pronounced with the increase of LDH content, indicating that KH560 surface modification could improve the stability of LDHs in asphalt. After UV ageing, the viscous modulus (G’’ of asphalt significantly reduced, and correspondingly, the elastic modulus (G’ and rutting factor (G*/sin δ rapidly increased. Moreover, the asphaltene increased and the amount of “bee-like” structures of the asphalt decreased. Compared with LDHs, KH560-LDHs obviously restrained performance deterioration of the asphalt, and helped to relieve the variation of the chemical compositions and morphology of asphalt, which suggested that the improvement of KH560-LDHs on UV ageing resistance of asphalt was superior to LDHs.

  11. Selective Hydrogenolysis of Furfural Derivative 2-Methyltetrahydrofuran into Pentanediol Acetate and Pentanol Acetate over Pd/C and Sc(OTf)3 Cocatalytic System.

    Science.gov (United States)

    Zhang, Kun; Li, Xing-Long; Chen, Shi-Yan; Xu, Hua-Jian; Deng, Jin; Fu, Yao

    2018-02-22

    It is of great significance to convert platform molecules and their derivatives into high value-added alcohols, which have multitudinous applications. This study concerns systematic conversion of 2-methyltetrahydrofuran (MTHF), which is obtained from furfural, into 1-pentanol acetate (PA) and 1,4-pentanediol acetate (PDA). Reaction parameters, such as the Lewis acid species, reaction temperature, and hydrogen pressure, were investigated in detail. 1 H NMR spectroscopy and reaction dynamics study were also conducted to help clarify the reaction mechanism. Results suggested that cleavage of the primary alcohol acetate was less facile than that of the secondary alcohol acetate, with the main product being PA. A PA yield of 91.8 % (150 °C, 3 MPa H 2 , 30 min) was achieved by using Pd/C and Sc(OTf) 3 as a cocatalytic system and an 82 % yield of PDA was achieved (150 °C, 30 min) by using Sc(OTf) 3 catalyst. Simultaneously, the efficient conversion of acetic esters into alcohols by simple saponification was carried out and led to a good yield. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Saad, Maged M; Chappuis, Marie-Louise; Boffa, Mauro; Perret, Xavier; Ortega Pérez, Ruben; Barja, François

    2012-03-16

    Acetic acid bacteria (AAB) are Gram-negative, strictly aerobic microorganisms that show a unique resistance to ethanol (EtOH) and acetic acid (AcH). Members of the Acetobacter and Gluconacetobacter genera are capable of transforming EtOH into AcH via the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes and are used for the industrial production of vinegar. Several mechanisms have been proposed to explain how AAB resist high concentrations of AcH, such as the assimilation of acetate through the tricarboxylic acid (TCA) cycle, the export of acetate by various transporters and modifications of the outer membrane. However, except for a few acetate-specific proteins, little is known about the global proteome responses to AcH. In this study, we used 2D-DIGE to compare the proteome of Acetobacter pasteurianus LMG 1262(T) when growing in glucose or ethanol and in the presence of acetic acid. Interesting protein spots were selected using the ANOVA p-value of 0.05 as threshold and 1.5-fold as the minimal level of differential expression, and a total of 53 proteins were successfully identified. Additionally, the size of AAB was reduced by approximately 30% in length as a consequence of the acidity. A modification in the membrane polysaccharides was also revealed by PATAg specific staining. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation

    Science.gov (United States)

    Wang, Henan; Zheng, Yang; Li, Yan; Jiang, Chengbao

    2017-05-01

    Pure Fe was surface-modified by Zn ion implantation to improve the biodegradable behavior and cytocompatibility. Surface topography, chemical composition, corrosion resistance and cytocompatibility were investigated. Atomic force microscopy, auger electron spectroscopy and X-ray photoelectron spectroscopy results showed that Zn was implanted into the surface of pure Fe in the depth of 40-60 nm and Fe2O3/ZnO oxides were formed on the outmost surface. Electrochemical measurements and immersion tests revealed an improved degradable behavior for the Zn-implanted Fe samples. An approximately 12% reduction in the corrosion potential (Ecorr) and a 10-fold increase in the corrosion current density (icorr) were obtained after Zn ion implantation with a moderate incident ion dose, which was attributed to the enhanced pitting corrosion. The surface free energy of pure Fe was decreased by Zn ion implantation. The results of direct cell culture indicated that the short-term (4 h) cytocompatibility of MC3T3-E1 cells was promoted by the implanted Zn on the surface.

  14. Development of Acetic Acid Removal Technology for the UREX+Process

    International Nuclear Information System (INIS)

    Counce, Robert M.; Watson, Jack S.

    2009-01-01

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstream steps can be avoided. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid

  15. Development of Acetic Acid Removal Technology for the UREX+Process

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  16. Microstructure and erosion characteristic of nodular cast iron surface modified by tungsten inert gas

    International Nuclear Information System (INIS)

    Abboud, Jaafar Hadi

    2012-01-01

    Highlights: ► Local surface melting. ► Significant improvement in erosion resistance. ► The ductile behaviour was found. -- Abstract: The surface of nodular cast iron has been melted and rapidly solidified by Tungsten Inert Gas (TIG) process to produce a chilled structure of high hardness and better erosion resistance. Welding currents of magnitude 100, 150, and 200 A at a constant voltage of 72 have been used to melt the surface of nodular cast iron. Microstructural characterization, hardness measurements, and erosion wear tests have been performed on these modified surfaces as well as on the untreated material. Microstructural characterization has shown that surface melting resulted in complete or partial dissolution of the graphite nodules and resolidification of primary austenite dendrites, which undergo further decomposition into ferrite and cementite, and interdendritic of acicular eutectic; their microhardness measured across the melted depth ranged between 600 and 800 Hv. The scale of the dendrites and the interdendritic eutectic became coarser when a higher current is used. The results also indicated that remelting process by TIG improved erosion resistance by three to four times. Eroded surface observations of the as-received and TIG melted samples showed a ductile behavior with a maximum erosion rate at 30°. The fine microstructures obtained by the rapid cooling and the formation of a large amount of eutectic cementite instead of the graphite have contributed greatly to the plastic flow and consequently to the better erosion resistance of the TIG surface melted samples.

  17. Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM)

    Science.gov (United States)

    Pandey, Rina; Lim, Ju Won; Kim, Jung Hyuk; Angadi, Basavaraj; Choi, Ji Won; Choi, Won Kook

    2018-06-01

    In this study, Iridium (Ir) metallic layer as an ultra-thin surface modifier (USM) was deposited on ITO coated glass substrate using radio frequency magnetron sputtering for improving the photo-conversion efficiency of organic photovoltaic cells. Ultra-thin Ir acts as a surface modifier replacing the conventional hole transport layer (HTL) PEDOT:PSS in organic photovoltaic (OPV) cells with two different active layers P3HT:PC60BM and PTB7:PC70BM. The Ir USM (1.0 nm) coated on ITO glass substrate showed transmittance of 84.1% and work function of >5.0 eV, which is higher than that of ITO (4.5-4.7 eV). The OPV cells with Ir USM (1.0 nm) exhibits increased power conversion efficiency of 3.70% (for P3HT:PC60BM active layer) and 7.28% (for PTB7:PC70BM active layer) under 100 mW/cm2 illumination (AM 1.5G) which are higher than those of 3.26% and 6.95% for the same OPV cells but with PEDOT:PSS as HTL instead of Ir USM. The results reveal that the chemically stable Ir USM layer could be used as an alternative material for PEDOT:PSS in organic photovoltaic cells.

  18. Adsorption of trace gases to ice surfaces: surface, bulk and co-adsorbate effects

    Science.gov (United States)

    Kerbrat, Michael; Bartels-Rausch, Thorsten; Huthwelker, Thomas; Schneebeli, Martin; Pinzer, Bernd; Ammann, Markus

    2010-05-01

    Atmospheric ices frequently interact with trace gases and aerosol making them an important storage, transport or reaction medium in the global ecosystem. Further, this also alters the physical properties of the ice particles with potential consequences for the global irradiation balance and for the relative humidity of surrounding air masses. We present recent results from a set of laboratory experiments of atmospheric relevance to investigate the nature of the uptake processes. The focus of this talk will be placed on the partitioning of acidic acid and nitrous acid on ice surfaces.The presented results span from very simple reversible adsorption experiments of a single trace gas onto ice surfaces to more complex, but well controlled, experimental procedures that successfully allowed us to - Disentangle surface adsorption and uptake into the ice matrix using radioactive labelled trace gases. - Show that simultaneous adsorption of acetic acid and nitrous acid to an ice surface is consistent with the Langmuir co-adsorption model. The experiments were done in a packed ice bed flow tube at atmospheric pressure and at temperatures between 213 and 253 K. The HONO gas phase mixing ratio was between 0.4 and 137 ppbv, the mixing ratio of acetic acid between 5 and 160 ppbv . The use of the radioactive labelled nitrous acid molecules for these experiments enabled in situ monitoring of the migration of trace gas in the flow tube. The measurements showed that the interactions do not only occur through adsorption but also via diffusion into polycrystalline ice. A method is suggested to disentangle the bulk and the surface processes. The co-adsorption of acetic and nitrous acids was also investigated. The measurements are well reproduced by a competitive Langmuir adsorption model.

  19. Acetic acid sclerotheraphy of renal cysts

    International Nuclear Information System (INIS)

    Hong, Hoon Pyo; Oh, Joo Hyeong; Yoon, Yup; Kong, Keun Young; Kim, Eui Jong; Goo, Jang Sung

    1998-01-01

    Sclerotherapy for renal cysts was performed, using 50% acetic acid as new sclerosing agent. We report the methods and results of this procedure. Fifteen patients underwent sclerotherapy for renal cyst, using 50% acetic acid. Because four patients were lost to follow-up, only 11 of the 15 were included in this study. The renal cysts, including one infected case, were diagnosed by ultrasonograpy (n=3D10) ormagnetic resonance imaging (n=3D1). The patient group consisted of four men and seven women(mean age, 59 years; range, 23-77). At first, the cyst was completely aspirated, and 25 volume% of aspirated volume was replaced with 50% sterile acetic acid through the drainage catheter. During the follwing 20 minutes, the patient changed position, and the acetic acid was then removed from the cyst. Finally, the drainage catheter was removed, after cleaning the cyst with saline. After treatment of infection by antibiotics and catheter drainage for 7 days, sclerotherapy in the infected case followed the same procedure. In order to observe changes in the size of renal cysts and recurrence, all patients were followed up by ultrasound between 2 and 8 months. We defined response to therapy as follows:complete regression as under 5 volume%, partial regression as 5-50 volume% and no response as more than 50 volume% of initial cyst volume. No clinically significant complication occured during the procedures or follow-up periods. All cysts regressed completely during follow-up of 8 months. Complete regression occurred as follows: two cysts at 2 months, seven cysts at 4 months, two cysts at 6 months. Two cysts showed residues at the last follow-up, at 4 and 6 months, respectively. The volume of residual cysts decreased to under 5 volume% of initial volume, however. Completely regressed cysts did not recurr during follow-up. Acetic acid sclerotherapy for renal cysts showed good results, regardless of the dilution of sclerosing agent with residual cyst fluid, and no significant

  20. Biosynthetic origin of acetic acid using SNIF-NMR

    International Nuclear Information System (INIS)

    Boffo, Elisangela Fabiana; Ferreira, Antonio Gilberto

    2006-01-01

    The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using 2 H and 1 H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acid obtained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C 3 , C 4 , and CAM biosynthetic mechanisms, blends of C 3 and C 4 (agrins) and synthetic acetic acid. (author)

  1. In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy

    Energy Technology Data Exchange (ETDEWEB)

    Verissimo, Tanira V. [School of Health Sciences, University of Brasilia, Brasilia (Brazil); Laboratory of Photochemistry and Nanobiotechnology, Faculty of Ceilandia, University of Brasilia, Brasilia (Brazil); Santos, Naiara T. [School of Health Sciences, University of Brasilia, Brasilia (Brazil); Silva, Jaqueline R.; Azevedo, Ricardo B. [Institute of Biological Sciences, University of Brasilia, Brasilia (Brazil); Gomes, Anderson J., E-mail: ajgomes@unb.br [School of Health Sciences, University of Brasilia, Brasilia (Brazil); Laboratory of Photochemistry and Nanobiotechnology, Faculty of Ceilandia, University of Brasilia, Brasilia (Brazil); Lunardi, Claure N., E-mail: clunardi@unb.br [School of Health Sciences, University of Brasilia, Brasilia (Brazil); Laboratory of Photochemistry and Nanobiotechnology, Faculty of Ceilandia, University of Brasilia, Brasilia (Brazil)

    2016-08-01

    The surface of gold nanoparticles (AuNP) was modified, improving their interaction with neutral red (NR), by using sodium thioglycolate (TGA) as a covering agent. The resulting NR-AuNPTGA system was evaluated as a potential drug delivery system for photodynamic therapy (PDT). The associations of NR with the gold nanoparticles were evaluated using UV-vis spectrometry and measurement of their zeta potential and size distribution. The toxicity and phototoxicity of NR, AuNPTGA and NR-AuNPTGA were evaluated in NIH-3T3 fibroblast and 4T1 tumor cell lines. The compounds NR and NR-AuNPTGA induced toxicity in 4T1 tumor cells and NIH-3T3 fibroblasts under visible light irradiation. Modification of the surface of AuNP with TGA prevented nanoparticle aggregation and allowed greater association with NR molecules than for naked AuNP. The photosensitizer (PS) characteristics were not affected by its association with the modified surface of the gold nanoparticles, leading to a reduction of cell viability in both cell lines assayed. This NR-AuNPTGA system is a promising drug delivery system for photodynamic cancer therapy. - Highlights: • Modified gold nanoparticle (AuNP) by sodium thioglicolate (TGA) prevents aggregation. • Neutral red (NR) adsorbed on the surface of modified gold nanoparticles (AuNPTGA). • AuNPTGA is suitable as a platform to deliver the NR under irradiation process. • Photodamage of 90% was achieved by NR added to AuNPTGA in 4T1 and NIH-3T3 cells.

  2. Depot Medroxyprogesterone Acetate (Depo-Provlera) as a Contrac ...

    African Journals Online (AJOL)

    Depot Medroxyprogesterone Acetate (Depo-Provlera) as a Contrac·eptive Preparation. Basil Bloch. Abstract. Experience with depot medroxyprogesterone acetate as a contraceptive preparation in 7 335 patients for a total of 38 714 months over a 3-year period is described. The discontinuation rate was 18.3% and the ...

  3. Surface modified zeolite-based granulates for the sustained release of diclofenac sodium.

    Science.gov (United States)

    Serri, Carla; de Gennaro, Bruno; Quagliariello, Vincenzo; Iaffaioli, Rosario Vincenzo; De Rosa, Giuseppe; Catalanotti, Lilia; Biondi, Marco; Mayol, Laura

    2017-03-01

    In this study, a granulate for the oral controlled delivery of diclofenac sodium (DS), an anionic sparingly soluble nonsteroidal anti-inflammatory drug, has been realized by wet granulation, using a surface modified natural zeolite (SMNZ) as an excipient. The surface modification of the zeolite has been achieved by means of a cationic surfactant, so as to allow the loading of DS through ionic interaction and bestow a control over the drug release mechanism. The granules possessed a satisfactory dosage uniformity, a flowability suitable for an oral dosage form manufacturing, along with a sustained drug release up to 9h, driven by both ion exchange and transport kinetics. Furthermore, the obtained granulate did not elicit a significant cytotoxicity and could also induce a prolonged anti-inflammatory effect on RAW264.7 cells. Taking also into account that natural zeolites are generally abundant and economic, SMNZ can be considered as an attracting alternative excipient for the production of granules with sustained release features. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Sensitivity to acetic acid, ability to colonize abiotic surfaces and virulence potential of Listeria monocytogenes EGD-e after incubation on parsley leaves.

    Science.gov (United States)

    Rieu, A; Guzzo, J; Piveteau, P

    2010-02-01

    To investigate how the survival of Listeria monocytogenes on parsley leaves may affect its ability to sustain process-related harsh conditions and its virulence. Parsley seedlings were spot inoculated with stationary phase cells of L. monocytogenes EGD-e and incubated for 15 days. Each day, bacterial cells were harvested and enumerated, and their ability to survive acetic acid challenge (90 min, pH 4.0), to colonize abiotic surfaces and to grow as biofilms was assessed. After a 3-log decrease over the first 48 h, the population stabilized to about 10(6) CFU g(-1) until the sixth day. After the sixth day, L. monocytogenes was no longer detected, even after specific enrichment. Incubation on parsley leaves affected the ability of L. monocytogenes to survive acetic acid challenge (90 min, pH 4.0) and to adhere to stainless steel although the ability to grow as biofilm was preserved. To further investigate these physiological alterations, the mRNA levels of six target genes (bsh, clpC, groEL, inlA, opuC, prfA) was quantified using reverse transcription qPCR after 5 h of incubation on parsley leaves. A decrease was observed in all but one (bsh) target, including groEL and clpC which are involved in resistance to salt and acid. Moreover, the decrease in the levels of inlA, prfA and opuC transcripts after incubation on parsley suggested a repression of some genes involved in pathogenicity. In vitro assessment of mammalian cell adherence and invasion using Caco-2 cells confirmed the repression of the virulence factor InlA; however, the virulence potential in vivo in the chick embryo model was not affected. Listeria monocytogenes did undergo rapid changes to adapt its physiology to the phyllosphere. This study highlights the physiological changes undergone by L. monocytogenes during/after survival on parsley leaves.

  5. Preparation, thermogravimetric study and infrared spectra of rare earth acetates

    International Nuclear Information System (INIS)

    Graehlert, X.; Starke, M.

    1992-01-01

    The anhydrous and the hydrated acetates of Ho, Er, Tm, Yb and Lu have been prepared. The compounds obtained have been investigated by thermogravimetric analysis and infrared spectroscopy. The thermal decomposition of the rare earth acetates may proceed via various steps. It depends on both the number of crystal water molecules in the acetates and the rare earth element's behaviour. (orig.)

  6. GLATIRAMER ACETATE IS A FIRST-LINE DUAL-ACTION DRUG FOR THE TREATMENT OF RELAPSING-REMITTING MULTIPLE SCLEROSIS

    Directory of Open Access Journals (Sweden)

    T. E. Shmidt

    2016-01-01

    Full Text Available Multiple sclerosis (MS is the most common and potentially disabling disease of the central nervous system in young people. Not only inflammatory, but also neurodegenerative processes are involved in the pathogenesis of MS. The use of MS-modifying drugs (MSMDs  has led to a substantial reduction in the frequency of MS exacerbations and to the slower development of irreversible neurological deficit. Glatiramer acetate is one of the MSMDs of first choice and has a dual (anti-inflammatory and neuroprotective action. The drug has proven to be effective and safe if administered long-term. Therapy with glatiramer acetate has been established to promote the production of anti-inflammatory cytokines and neurotrophic factors, which prevent the development of a degenerative process and stimulate remyelination, and to slow the progression of cerebral atrophy. Experimental findings suggest that the drug improves the processes of neurogenesis.The efficiency of treatment is known to be associated with patient medication adherence. This largely depends on the frequency and route of drug administration and on the development of adverse events (AEs. To improve treatment adherence to glatiramer acetate, its new 40-mg formulation has been designed, which allows it to be administered only thrice weekly. The use of the formulation has demonstrated its efficacy and safety and resulted in a considerable reduction in the incidence rate of AEs.

  7. Engineered Humicola insolens cutinase for efficient cellulose acetate deacetylation.

    Science.gov (United States)

    Shirke, Abhijit N; Butterfoss, Glenn L; Saikia, Rakhi; Basu, Aditya; de Maria, Leonardo; Svendsen, Allan; Gross, Richard A

    2017-08-01

    Cutinases comprise a family of esterases with broad hydrolytic activity for chain and pendant ester groups. This work aimed to identify and improve an efficient cutinase for cellulose acetate (CA) deacetylation. The development of a mild method for CA fiber surface deacetylation will result in improved surface hydrophilicity and reactivity while, when combined with cellulases, a route to the full recycling of CA to acetate and glucose. In this study, the comparative CA deacetylation activity of four homologous wild-type (wt) fungal cutinases from Aspergillus oryzae (AoC), Thiellavia terrestris (TtC), Fusarium solani (FsC), and Humicola insolens (HiC) was determined by analysis of CA deacetylation kinetics. wt-HiC had the highest catalytic efficiency (≈32 [cm 2 L -1 ] -1 h -1 ). Comparison of wt-cutinase catalytic constants revealed that differences in catalytic efficiency are primarily due to corresponding variations in corresponding substrate binding constants. Docking studies with model tetrameric substrates also revealed structural origins for differential substrate binding amongst these cutinases. Comparative docking studies of HiC point mutations led to the identification of two important rationales for engineering cutinases for CA deacetylation: (i) create a tight but not too closed binding groove, (ii) allow for hydrogen bonding in the extended region around the active site. Rationally designed HiC with amino acid substitutions I36S, predicted to hydrogen bond to CA, combined with F70A, predicted to remove steric constraints, showed a two-fold improvement in catalytic efficiency. Continued cutinase optimization guided by a detailed understanding of structure-activity relationships, as demonstrated here, will be an important tool to developing practical cutinases for commercial green chemistry technologies. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering

    International Nuclear Information System (INIS)

    Gautam, Sneh; Chou, Chia-Fu; Dinda, Amit K.; Potdar, Pravin D.; Mishra, Narayan C.

    2014-01-01

    In the present study, a tri-polymer polycaprolactone (PCL)/gelatin/collagen type I composite nanofibrous scaffold has been fabricated by electrospinning for skin tissue engineering and wound healing applications. Firstly, PCL/gelatin nanofibrous scaffold was fabricated by electrospinning using a low cost solvent mixture [chloroform/methanol for PCL and acetic acid (80% v/v) for gelatin], and then the nanofibrous PCL/gelatin scaffold was modified by collagen type I (0.2–1.5 wt.%) grafting. Morphology of the collagen type I-modified PCL/gelatin composite scaffold that was analyzed by field emission scanning electron microscopy (FE-SEM), showed that the fiber diameter was increased and pore size was decreased by increasing the concentration of collagen type I. Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis indicated the surface modification of PCL/gelatin scaffold by collagen type I immobilization on the surface of the scaffold. MTT assay demonstrated the viability and high proliferation rate of L929 mouse fibroblast cells on the collagen type I-modified composite scaffold. FE-SEM analysis of cell-scaffold construct illustrated the cell adhesion of L929 mouse fibroblasts on the surface of scaffold. Characteristic cell morphology of L929 was also observed on the nanofiber mesh of the collagen type I-modified scaffold. Above results suggest that the collagen type I-modified PCL/gelatin scaffold was successful in maintaining characteristic shape of fibroblasts, besides good cell proliferation. Therefore, the fibroblast seeded PCL/gelatin/collagen type I composite nanofibrous scaffold might be a potential candidate for wound healing and skin tissue engineering applications. - Highlights: • PCL/gelatin/collagen type I scaffold was fabricated for skin tissue engineering. • PCL/gelatin/collagen type I scaffold showed higher fibroblast growth than PCL/gelatin one. • PCL/gelatin/collagen type I might be one of the ideal scaffold for

  9. Isomerization and dissociation in competition: the two-component dissociation rates of methyl acetate ions

    Science.gov (United States)

    Mazyar, Oleg A.; Mayer, Paul M.; Baer, Tomas

    1997-11-01

    Threshold photoelectron-photoion coincidence (TPEPICO) spectroscopy has been used to investigate the unimolecular chemistry of metastable methyl acetate ions, CH3COOCH3.+. The rate of molecular ion fragmentation with the loss of CH3O. and CH2OH radicals as a function of ion internal energy was obtained from the coincidence data and used in conjunction with Rice-Ramsperger-Kassel-Markus and ab initio molecular orbital calculations to model the dissociation/isomerization mechanism of the methyl acetate ion (A). The data were found to be consistent with the mechanism involving a hydrogen-bridged complex CH3CO[middle dot][middle dot][middle dot]H[middle dot][middle dot][middle dot]OCH2.+(E) as the direct precursor of the observed fragments CH3CO+ and CH2OH.. The two-component decay rates were modeled with a three-well-two-product potential energy surface including the distonic ion CH3C(OH)OCH2.+(B) and enol isomer CH2C(OH)OCH3.+(C), which are formed from the methyl acetate ion by two consecutive [1,4]-hydrogen shifts. The 0 K heats of formation of isomers B and C as well as transition states TSAB, TSBC, and TSBE (relative to isomer A) were calculated from Rice-Ramsperger-Kassel-Markus (RRKM) theory.

  10. Improved adaptation of test with lanthanum nitrate for the colorimetric estimation of acetate

    Energy Technology Data Exchange (ETDEWEB)

    Szumilo, T [Akademia Medyczna, Lublin (Poland)

    1976-01-01

    A colorimetric method for the determination of acetate based on the production of the blue complex between iodine and lanthanum alkaline acetate has been developed. Optimum concentrations of reagents (acetate, lanthanum nitrate, iodine and ammonia) as well as the volume of acetate were selected to achieve best colour intensity. Coloured complex was stabilized by dilution of reagent mixture with water to the final volume convenient for determinaton. Absorbance of the complex can be measured immediately after dilution and any changes can be observed during at least 15 minutes. Elevation of temperature over 60/sup 0/decreases absorbance. The method fulfills the Beer's law in the range 1,5-3,5 ..mu..moles of acetate, precision of the method 2/sup +/ = 3,7%. Apart from acetate - propionate and fluoroacetate complex is 620 nm, propionate complex - at 590 nm. Propionate complex displayed any relationship between concentration and absorbance. Potassium, sodium, lithium and barium acetates give the identical results as acetic acid, whereas zinc and cupric acetates failed to react. Other derivatives tested, e.g. chloroacetate, trichloroacetate, iodoacetate, chloroporpionate and butyrate are unable to form the coloured complexes. Many compounds interfere with the formation of acetate complex, therefore, in material containing impurities acetate can be determined after purificaton by means of described in literature methods.

  11. Modified polarized geometrical attenuation model for bidirectional reflection distribution function based on random surface microfacet theory.

    Science.gov (United States)

    Liu, Hong; Zhu, Jingping; Wang, Kai

    2015-08-24

    The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.

  12. Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components.

    Science.gov (United States)

    Baumstummler, A; Lehmann, D; Janjic, N; Ochsner, U A

    2014-10-01

    Slow off-rate modified aptamer (SOMAmer) reagents were generated to several Staphylococcus aureus cell surface-associated proteins via SELEX with multiple modified DNA libraries using purified recombinant or native proteins. High-affinity binding agents with sub-nanomolar Kd 's were obtained for staphylococcal protein A (SpA), clumping factors (ClfA, ClfB), fibronectin-binding proteins (FnbA, FnbB) and iron-regulated surface determinants (Isd). Further screening revealed several SOMAmers that specifically bound to Staph. aureus cells from all strains that were tested, but not to other staphylococci or other bacteria. SpA and ClfA SOMAmers proved useful for the selective capture and enrichment of Staph. aureus cells, as shown by culture and PCR, leading to improved limits of detection and efficient removal of PCR inhibitors. Detection of Staph. aureus cells was enhanced by several orders of magnitude when the bacterial cell surface was coated with SOMAmers followed by qPCR of the SOMAmers. Furthermore, fluorescence-labelled SpA SOMAmers demonstrated their utility as direct detection agents in flow cytometry. Significance and impact of the study: Monitoring for microbial contamination of food, water, nonsterile products or the environment is typically based on culture, PCR or antibodies. Aptamers that bind with high specificity and affinity to well-conserved cell surface epitopes represent a promising novel type of reagents to detect bacterial cells without the need for culture or cell lysis, including for the capture and enrichment of bacteria present at low cell densities and for the direct detection via qPCR or fluorescent staining. © 2014 Soma Logic, Inc. published by John Wiley & Sons Ltd On behalf of the society for Applied Microbiology.

  13. STUDY OF SURFACE MODIFIED POLYMERS IN THE MODIFICATION OF NANOMATERIALS

    Directory of Open Access Journals (Sweden)

    G. V. Popov

    2014-01-01

    Full Text Available The comparative study of change of surface tension of solutions of some commercial rubbers before and after thermal ageing technique du-Nui, analyzed the features of change of surface tension of solutions of various rubbers in the presence of a mixture of fullerenes. Calculations of the Gibbs energy and the analysis of the obtained data to predict the behavior of polymer systems when changes are made to mix of fullerenes in a wide concentration range. When comparing the results of changes in Gibbs energy and the surface tension in fluids rubbers shown that mentioned above in solutions of elastomers aged, than the control. This fact confirms the initial chapeau of physic-chemical interactions of molecules fullerenes by segments of the Kuna and end groups of the polymer chains, as it is known that when thermal-oxidative degradation of rubbers, respectively the number of segments of the Kuna and branched loose ends of macromolecules that are free to react with fullerenes in solution, free from spatial constraints. A comparative analysis of the interaction of rubbers with different chemical composition with double branches has shown that it is easier to just react and has minimum energy polibutadien interaction that has to do with lack of branching and no radicals in its structure and in the backbone chain. The maximum energy of interaction with Fullerenes have SBS rubber because it has large styrene blocks in the main polymer chain that causes the spatial constraints to direct contact with fullerene molecules, you can assume that the interaction is only low-molecular fraction of Fullerenes mixture, possessing the necessary dimensions. As a result of the study shows that the application of the method of separation ring (Du-Nui allows you to predict the properties of rubber with modified nanomaterial’s with minimal labor costs.

  14. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents

    International Nuclear Information System (INIS)

    Bayram, Cem; Denkbas, Emir Baki; Mizrak, Alpay Koray; Aktuerk, Selcuk; Kursaklioglu, Hurkan; Iyisoy, Atila; Ifran, Ahmet

    2010-01-01

    316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test.

  15. Biological Behavior of Osteoblast Cell and Apatite Forming Ability of the Surface Modified Ti Alloys.

    Science.gov (United States)

    Zhao, Jingming; Hwang, K H; Choi, W S; Shin, S J; Lee, J K

    2016-02-01

    Titanium as one kind of biomaterials comes in direct contact with the body, making evaluation of biocompatibility an important aspect to biomaterials development. Surface chemistry of titanium plays an important role in osseointegration. Different surface modification alters the surface chemistry and result in different biological response. In this study, three kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coating successfully formed on the Ti surfaces in simulated body fluid. Strong mixed acid increased the roughness of the metal surface, because the porous and rough surface allows better adhesion between Ca-P coatings and substrates. After modification of titanium surface by mixed acidic solution and subsequently H2O2/HCL treatment evaluation of biocompatibility was conducted from hydroxyapatite formation by biomimetic process and cell viability on modified titanium surface. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Results from this study indicated that surface treatment methods affect the surface morphology, type of TiO2 layer formed and subsequent apatite deposition and biological responses. The thermo scientific alamarblue cell viability assay reagent is used to quantitatively measure the viability of mammalian cell lines, bacteria and fungi by incorporating a rapid, sensitive and reliable fluorometric/colorimetric growth indicator, without any toxic and side effect to cell line. In addition, mixed acid treatment uses a lower temperature and shorter time period than widely used alkali treatment.

  16. The Effect of Cellulose Acetate Concentration from Coconut Nira on Ultrafiltration Membrane Characters

    Science.gov (United States)

    Vaulina, E.; Widyaningsih, S.; Kartika, D.; Romdoni, M. P.

    2018-04-01

    Cellulose acetate is one of material in produce ultrafiltration membrane. Many efforts have been done to produce cellulose acetate from natural product to replace commercial one. In this research, ultrafiltration membrane has been produced from coconut flower water (nira). Ultrafiltration membrane is widely used in separation processes. This research aims to determine the characteristics of ultrafiltration membrane at a various concentration of cellulose acetate. The ultrafiltration membrane is conducted by phase inversion method at various concentration of cellulose acetate. The cellulose acetate concentration was 20%, 23% and 25% (w/w) with formamide as additives. The results showed that the greater the concentration of cellulose acetate, the smaller the flux value. The highest flux was a membrane with 20% cellulose acetate concentration with water flux value 55.34 L/(m2. h). But the greater the concentration of cellulose acetate the greater the rejection. The highest rejection value was on a membrane with 25% cellulose acetate concentration of 82.82%. While from the tensile strength test and the pore size analysis, the greater the cellulose acetate concentration the greater the tensile strength and the smaller the pore size

  17. High purity neodymium acetate from mixed rare earth carbonates

    International Nuclear Information System (INIS)

    Queiroz, Carlos A. da Silva; Rocha, Soraya M. Rizzo da; Vasconcellos, Mari E. de; Lobo, Raquel M.; Seneda, Jose A.; Pedreira, Walter dos R.

    2011-01-01

    A simple and economical chemical process for obtaining high purity neodymium acetate is discussed. The raw material in the form rare earth carbonate is produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography technique with a strong cationic resin, proper to water treatment, and without the use of retention ions was used for the fractionating of the rare earth elements (REE). In this way, it was possible to obtain 99.9% pure Nd 2 O 3 in yields greater than or equal 80%, with the elution of the REE using ammonium salt of ethylenediaminetetraacetic acid (EDTA) solution in pH controlled. The complex of EDTA-neodymium was transformed into neodymium oxide, which was subsequently dissolved in acetic acid to obtain the neodymium acetates. Molecular absorption spectrophotometry was used to monitor the neodymium content during the process and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the neodymium acetates. The typical neodymium acetates obtained contain the followings contaminants in μg g -1 : Sc(5.1); Y (0.9); La (1.0); Ce (6.1); Pr (34,4); Sm (12.8); Eu (1.1); Gd (15.4); Tb (29.3); Dy (5.2), Ho(7.4); Er (14.6); Tm (0.3); Yb (2.5); Lu (1.0). The high purity neodymium acetates obtained from this procedure have been applied, replacing the imported product, in research and development area on rare earth catalysts. (author)

  18. [Conversion of acetic acid to methane by thermophiles

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.H.

    1993-01-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH[sub 4]. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  19. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  20. Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose

    Directory of Open Access Journals (Sweden)

    Carol López de Dicastillo

    2015-08-01

    Full Text Available Antioxidant biocomposites have been successfully developed from cellulose acetate, eco-friendly triethyl citrate plasticizer and onion extract as a source of natural antioxidants. First, an onion extraction process was optimized to obtain the extract with highest antioxidant power. Extracts under absolute ethanol and ethanol 85% were the extracts with the highest antioxidant activity, which were the characterized through different methods, DPPH (2,2-diphenyl-1-picrylhydrazyl and ABTS (2,2ʹ-azinobis(3-ethylbenzothiazoline-6-sulphonate, that measure radical scavenger activity, and polyphenolic and flavonoid content. Afterwards, the extract was incorporated in cellulose acetate as polymer matrix owing to develop an active material intended to oxidative sensitive food products packaging. Different concentrations of onion extract and plasticizer were statistically studied by using response surface methodology in order to analyze the influence of both factors on the release of active compounds and therefore the antioxidant activity of these materials.